1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetObjectFile.h"
15 #include "SystemZTargetTransformInfo.h"
16 #include "TargetInfo/SystemZTargetInfo.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/MC/TargetRegistry.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
26 #include "llvm/Transforms/Scalar.h"
33 // NOLINTNEXTLINE(readability-identifier-naming)
34 extern "C" LLVM_EXTERNAL_VISIBILITY
void LLVMInitializeSystemZTarget() {
35 // Register the target.
36 RegisterTargetMachine
<SystemZTargetMachine
> X(getTheSystemZTarget());
37 auto &PR
= *PassRegistry::getPassRegistry();
38 initializeSystemZElimComparePass(PR
);
39 initializeSystemZShortenInstPass(PR
);
40 initializeSystemZLongBranchPass(PR
);
41 initializeSystemZLDCleanupPass(PR
);
42 initializeSystemZShortenInstPass(PR
);
43 initializeSystemZPostRewritePass(PR
);
44 initializeSystemZTDCPassPass(PR
);
45 initializeSystemZDAGToDAGISelPass(PR
);
48 static std::string
computeDataLayout(const Triple
&TT
) {
55 Ret
+= DataLayout::getManglingComponent(TT
);
57 // Make sure that global data has at least 16 bits of alignment by
58 // default, so that we can refer to it using LARL. We don't have any
59 // special requirements for stack variables though.
60 Ret
+= "-i1:8:16-i8:8:16";
62 // 64-bit integers are naturally aligned.
65 // 128-bit floats are aligned only to 64 bits.
68 // The DataLayout string always holds a vector alignment of 64 bits, see
69 // comment in clang/lib/Basic/Targets/SystemZ.h.
72 // We prefer 16 bits of aligned for all globals; see above.
75 // Integer registers are 32 or 64 bits.
81 static std::unique_ptr
<TargetLoweringObjectFile
> createTLOF(const Triple
&TT
) {
83 return std::make_unique
<TargetLoweringObjectFileGOFF
>();
85 // Note: Some times run with -triple s390x-unknown.
86 // In this case, default to ELF unless z/OS specifically provided.
87 return std::make_unique
<SystemZELFTargetObjectFile
>();
90 static Reloc::Model
getEffectiveRelocModel(std::optional
<Reloc::Model
> RM
) {
91 // Static code is suitable for use in a dynamic executable; there is no
92 // separate DynamicNoPIC model.
93 if (!RM
|| *RM
== Reloc::DynamicNoPIC
)
98 // For SystemZ we define the models as follows:
100 // Small: BRASL can call any function and will use a stub if necessary.
101 // Locally-binding symbols will always be in range of LARL.
103 // Medium: BRASL can call any function and will use a stub if necessary.
104 // GOT slots and locally-defined text will always be in range
105 // of LARL, but other symbols might not be.
107 // Large: Equivalent to Medium for now.
109 // Kernel: Equivalent to Medium for now.
111 // This means that any PIC module smaller than 4GB meets the
112 // requirements of Small, so Small seems like the best default there.
114 // All symbols bind locally in a non-PIC module, so the choice is less
115 // obvious. There are two cases:
117 // - When creating an executable, PLTs and copy relocations allow
118 // us to treat external symbols as part of the executable.
119 // Any executable smaller than 4GB meets the requirements of Small,
120 // so that seems like the best default.
122 // - When creating JIT code, stubs will be in range of BRASL if the
123 // image is less than 4GB in size. GOT entries will likewise be
124 // in range of LARL. However, the JIT environment has no equivalent
125 // of copy relocs, so locally-binding data symbols might not be in
126 // the range of LARL. We need the Medium model in that case.
127 static CodeModel::Model
128 getEffectiveSystemZCodeModel(std::optional
<CodeModel::Model
> CM
,
129 Reloc::Model RM
, bool JIT
) {
131 if (*CM
== CodeModel::Tiny
)
132 report_fatal_error("Target does not support the tiny CodeModel", false);
133 if (*CM
== CodeModel::Kernel
)
134 report_fatal_error("Target does not support the kernel CodeModel", false);
138 return RM
== Reloc::PIC_
? CodeModel::Small
: CodeModel::Medium
;
139 return CodeModel::Small
;
142 SystemZTargetMachine::SystemZTargetMachine(const Target
&T
, const Triple
&TT
,
143 StringRef CPU
, StringRef FS
,
144 const TargetOptions
&Options
,
145 std::optional
<Reloc::Model
> RM
,
146 std::optional
<CodeModel::Model
> CM
,
147 CodeGenOptLevel OL
, bool JIT
)
149 T
, computeDataLayout(TT
), TT
, CPU
, FS
, Options
,
150 getEffectiveRelocModel(RM
),
151 getEffectiveSystemZCodeModel(CM
, getEffectiveRelocModel(RM
), JIT
),
153 TLOF(createTLOF(getTargetTriple())) {
157 SystemZTargetMachine::~SystemZTargetMachine() = default;
159 const SystemZSubtarget
*
160 SystemZTargetMachine::getSubtargetImpl(const Function
&F
) const {
161 Attribute CPUAttr
= F
.getFnAttribute("target-cpu");
162 Attribute TuneAttr
= F
.getFnAttribute("tune-cpu");
163 Attribute FSAttr
= F
.getFnAttribute("target-features");
166 CPUAttr
.isValid() ? CPUAttr
.getValueAsString().str() : TargetCPU
;
167 std::string TuneCPU
=
168 TuneAttr
.isValid() ? TuneAttr
.getValueAsString().str() : CPU
;
170 FSAttr
.isValid() ? FSAttr
.getValueAsString().str() : TargetFS
;
172 // FIXME: This is related to the code below to reset the target options,
173 // we need to know whether the soft float and backchain flags are set on the
174 // function, so we can enable them as subtarget features.
175 bool SoftFloat
= F
.getFnAttribute("use-soft-float").getValueAsBool();
177 FS
+= FS
.empty() ? "+soft-float" : ",+soft-float";
178 bool BackChain
= F
.hasFnAttribute("backchain");
180 FS
+= FS
.empty() ? "+backchain" : ",+backchain";
182 auto &I
= SubtargetMap
[CPU
+ TuneCPU
+ FS
];
184 // This needs to be done before we create a new subtarget since any
185 // creation will depend on the TM and the code generation flags on the
186 // function that reside in TargetOptions.
187 resetTargetOptions(F
);
188 I
= std::make_unique
<SystemZSubtarget
>(TargetTriple
, CPU
, TuneCPU
, FS
,
197 /// SystemZ Code Generator Pass Configuration Options.
198 class SystemZPassConfig
: public TargetPassConfig
{
200 SystemZPassConfig(SystemZTargetMachine
&TM
, PassManagerBase
&PM
)
201 : TargetPassConfig(TM
, PM
) {}
203 SystemZTargetMachine
&getSystemZTargetMachine() const {
204 return getTM
<SystemZTargetMachine
>();
208 createPostMachineScheduler(MachineSchedContext
*C
) const override
{
209 return new ScheduleDAGMI(C
,
210 std::make_unique
<SystemZPostRASchedStrategy
>(C
),
211 /*RemoveKillFlags=*/true);
214 void addIRPasses() override
;
215 bool addInstSelector() override
;
216 bool addILPOpts() override
;
217 void addPreRegAlloc() override
;
218 void addPostRewrite() override
;
219 void addPostRegAlloc() override
;
220 void addPreSched2() override
;
221 void addPreEmitPass() override
;
224 } // end anonymous namespace
226 void SystemZPassConfig::addIRPasses() {
227 if (getOptLevel() != CodeGenOptLevel::None
) {
228 addPass(createSystemZTDCPass());
229 addPass(createLoopDataPrefetchPass());
232 addPass(createAtomicExpandLegacyPass());
234 TargetPassConfig::addIRPasses();
237 bool SystemZPassConfig::addInstSelector() {
238 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
240 if (getOptLevel() != CodeGenOptLevel::None
)
241 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
246 bool SystemZPassConfig::addILPOpts() {
247 addPass(&EarlyIfConverterID
);
251 void SystemZPassConfig::addPreRegAlloc() {
252 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
255 void SystemZPassConfig::addPostRewrite() {
256 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
259 void SystemZPassConfig::addPostRegAlloc() {
260 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
262 if (getOptLevel() == CodeGenOptLevel::None
)
263 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
266 void SystemZPassConfig::addPreSched2() {
267 if (getOptLevel() != CodeGenOptLevel::None
)
268 addPass(&IfConverterID
);
271 void SystemZPassConfig::addPreEmitPass() {
272 // Do instruction shortening before compare elimination because some
273 // vector instructions will be shortened into opcodes that compare
274 // elimination recognizes.
275 if (getOptLevel() != CodeGenOptLevel::None
)
276 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
278 // We eliminate comparisons here rather than earlier because some
279 // transformations can change the set of available CC values and we
280 // generally want those transformations to have priority. This is
281 // especially true in the commonest case where the result of the comparison
282 // is used by a single in-range branch instruction, since we will then
283 // be able to fuse the compare and the branch instead.
285 // For example, two-address NILF can sometimes be converted into
286 // three-address RISBLG. NILF produces a CC value that indicates whether
287 // the low word is zero, but RISBLG does not modify CC at all. On the
288 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
289 // The CC value produced by NILL isn't useful for our purposes, but the
290 // value produced by RISBG can be used for any comparison with zero
291 // (not just equality). So there are some transformations that lose
292 // CC values (while still being worthwhile) and others that happen to make
293 // the CC result more useful than it was originally.
295 // Another reason is that we only want to use BRANCH ON COUNT in cases
296 // where we know that the count register is not going to be spilled.
298 // Doing it so late makes it more likely that a register will be reused
299 // between the comparison and the branch, but it isn't clear whether
300 // preventing that would be a win or not.
301 if (getOptLevel() != CodeGenOptLevel::None
)
302 addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
303 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
305 // Do final scheduling after all other optimizations, to get an
306 // optimal input for the decoder (branch relaxation must happen
307 // after block placement).
308 if (getOptLevel() != CodeGenOptLevel::None
)
309 addPass(&PostMachineSchedulerID
);
312 TargetPassConfig
*SystemZTargetMachine::createPassConfig(PassManagerBase
&PM
) {
313 return new SystemZPassConfig(*this, PM
);
317 SystemZTargetMachine::getTargetTransformInfo(const Function
&F
) const {
318 return TargetTransformInfo(SystemZTTIImpl(this, F
));
321 MachineFunctionInfo
*SystemZTargetMachine::createMachineFunctionInfo(
322 BumpPtrAllocator
&Allocator
, const Function
&F
,
323 const TargetSubtargetInfo
*STI
) const {
324 return SystemZMachineFunctionInfo::create
<SystemZMachineFunctionInfo
>(