Reland "[clang-repl] Keep the first llvm::Module empty to avoid invalid memory access...
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZTargetMachine.cpp
blob2491bd2ee2c12c74b3f9a4e8d75ec12cb1e03a9a
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetObjectFile.h"
15 #include "SystemZTargetTransformInfo.h"
16 #include "TargetInfo/SystemZTargetInfo.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/MC/TargetRegistry.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include <memory>
28 #include <optional>
29 #include <string>
31 using namespace llvm;
33 // NOLINTNEXTLINE(readability-identifier-naming)
34 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
35 // Register the target.
36 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
37 auto &PR = *PassRegistry::getPassRegistry();
38 initializeSystemZElimComparePass(PR);
39 initializeSystemZShortenInstPass(PR);
40 initializeSystemZLongBranchPass(PR);
41 initializeSystemZLDCleanupPass(PR);
42 initializeSystemZShortenInstPass(PR);
43 initializeSystemZPostRewritePass(PR);
44 initializeSystemZTDCPassPass(PR);
45 initializeSystemZDAGToDAGISelPass(PR);
48 static std::string computeDataLayout(const Triple &TT) {
49 std::string Ret;
51 // Big endian.
52 Ret += "E";
54 // Data mangling.
55 Ret += DataLayout::getManglingComponent(TT);
57 // Make sure that global data has at least 16 bits of alignment by
58 // default, so that we can refer to it using LARL. We don't have any
59 // special requirements for stack variables though.
60 Ret += "-i1:8:16-i8:8:16";
62 // 64-bit integers are naturally aligned.
63 Ret += "-i64:64";
65 // 128-bit floats are aligned only to 64 bits.
66 Ret += "-f128:64";
68 // The DataLayout string always holds a vector alignment of 64 bits, see
69 // comment in clang/lib/Basic/Targets/SystemZ.h.
70 Ret += "-v128:64";
72 // We prefer 16 bits of aligned for all globals; see above.
73 Ret += "-a:8:16";
75 // Integer registers are 32 or 64 bits.
76 Ret += "-n32:64";
78 return Ret;
81 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
82 if (TT.isOSzOS())
83 return std::make_unique<TargetLoweringObjectFileGOFF>();
85 // Note: Some times run with -triple s390x-unknown.
86 // In this case, default to ELF unless z/OS specifically provided.
87 return std::make_unique<SystemZELFTargetObjectFile>();
90 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
91 // Static code is suitable for use in a dynamic executable; there is no
92 // separate DynamicNoPIC model.
93 if (!RM || *RM == Reloc::DynamicNoPIC)
94 return Reloc::Static;
95 return *RM;
98 // For SystemZ we define the models as follows:
100 // Small: BRASL can call any function and will use a stub if necessary.
101 // Locally-binding symbols will always be in range of LARL.
103 // Medium: BRASL can call any function and will use a stub if necessary.
104 // GOT slots and locally-defined text will always be in range
105 // of LARL, but other symbols might not be.
107 // Large: Equivalent to Medium for now.
109 // Kernel: Equivalent to Medium for now.
111 // This means that any PIC module smaller than 4GB meets the
112 // requirements of Small, so Small seems like the best default there.
114 // All symbols bind locally in a non-PIC module, so the choice is less
115 // obvious. There are two cases:
117 // - When creating an executable, PLTs and copy relocations allow
118 // us to treat external symbols as part of the executable.
119 // Any executable smaller than 4GB meets the requirements of Small,
120 // so that seems like the best default.
122 // - When creating JIT code, stubs will be in range of BRASL if the
123 // image is less than 4GB in size. GOT entries will likewise be
124 // in range of LARL. However, the JIT environment has no equivalent
125 // of copy relocs, so locally-binding data symbols might not be in
126 // the range of LARL. We need the Medium model in that case.
127 static CodeModel::Model
128 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
129 Reloc::Model RM, bool JIT) {
130 if (CM) {
131 if (*CM == CodeModel::Tiny)
132 report_fatal_error("Target does not support the tiny CodeModel", false);
133 if (*CM == CodeModel::Kernel)
134 report_fatal_error("Target does not support the kernel CodeModel", false);
135 return *CM;
137 if (JIT)
138 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
139 return CodeModel::Small;
142 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
143 StringRef CPU, StringRef FS,
144 const TargetOptions &Options,
145 std::optional<Reloc::Model> RM,
146 std::optional<CodeModel::Model> CM,
147 CodeGenOptLevel OL, bool JIT)
148 : LLVMTargetMachine(
149 T, computeDataLayout(TT), TT, CPU, FS, Options,
150 getEffectiveRelocModel(RM),
151 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
152 OL),
153 TLOF(createTLOF(getTargetTriple())) {
154 initAsmInfo();
157 SystemZTargetMachine::~SystemZTargetMachine() = default;
159 const SystemZSubtarget *
160 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
161 Attribute CPUAttr = F.getFnAttribute("target-cpu");
162 Attribute TuneAttr = F.getFnAttribute("tune-cpu");
163 Attribute FSAttr = F.getFnAttribute("target-features");
165 std::string CPU =
166 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
167 std::string TuneCPU =
168 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
169 std::string FS =
170 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
172 // FIXME: This is related to the code below to reset the target options,
173 // we need to know whether the soft float and backchain flags are set on the
174 // function, so we can enable them as subtarget features.
175 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
176 if (SoftFloat)
177 FS += FS.empty() ? "+soft-float" : ",+soft-float";
178 bool BackChain = F.hasFnAttribute("backchain");
179 if (BackChain)
180 FS += FS.empty() ? "+backchain" : ",+backchain";
182 auto &I = SubtargetMap[CPU + TuneCPU + FS];
183 if (!I) {
184 // This needs to be done before we create a new subtarget since any
185 // creation will depend on the TM and the code generation flags on the
186 // function that reside in TargetOptions.
187 resetTargetOptions(F);
188 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
189 *this);
192 return I.get();
195 namespace {
197 /// SystemZ Code Generator Pass Configuration Options.
198 class SystemZPassConfig : public TargetPassConfig {
199 public:
200 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
201 : TargetPassConfig(TM, PM) {}
203 SystemZTargetMachine &getSystemZTargetMachine() const {
204 return getTM<SystemZTargetMachine>();
207 ScheduleDAGInstrs *
208 createPostMachineScheduler(MachineSchedContext *C) const override {
209 return new ScheduleDAGMI(C,
210 std::make_unique<SystemZPostRASchedStrategy>(C),
211 /*RemoveKillFlags=*/true);
214 void addIRPasses() override;
215 bool addInstSelector() override;
216 bool addILPOpts() override;
217 void addPreRegAlloc() override;
218 void addPostRewrite() override;
219 void addPostRegAlloc() override;
220 void addPreSched2() override;
221 void addPreEmitPass() override;
224 } // end anonymous namespace
226 void SystemZPassConfig::addIRPasses() {
227 if (getOptLevel() != CodeGenOptLevel::None) {
228 addPass(createSystemZTDCPass());
229 addPass(createLoopDataPrefetchPass());
232 addPass(createAtomicExpandLegacyPass());
234 TargetPassConfig::addIRPasses();
237 bool SystemZPassConfig::addInstSelector() {
238 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
240 if (getOptLevel() != CodeGenOptLevel::None)
241 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
243 return false;
246 bool SystemZPassConfig::addILPOpts() {
247 addPass(&EarlyIfConverterID);
248 return true;
251 void SystemZPassConfig::addPreRegAlloc() {
252 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
255 void SystemZPassConfig::addPostRewrite() {
256 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
259 void SystemZPassConfig::addPostRegAlloc() {
260 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
261 // is not called).
262 if (getOptLevel() == CodeGenOptLevel::None)
263 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
266 void SystemZPassConfig::addPreSched2() {
267 if (getOptLevel() != CodeGenOptLevel::None)
268 addPass(&IfConverterID);
271 void SystemZPassConfig::addPreEmitPass() {
272 // Do instruction shortening before compare elimination because some
273 // vector instructions will be shortened into opcodes that compare
274 // elimination recognizes.
275 if (getOptLevel() != CodeGenOptLevel::None)
276 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
278 // We eliminate comparisons here rather than earlier because some
279 // transformations can change the set of available CC values and we
280 // generally want those transformations to have priority. This is
281 // especially true in the commonest case where the result of the comparison
282 // is used by a single in-range branch instruction, since we will then
283 // be able to fuse the compare and the branch instead.
285 // For example, two-address NILF can sometimes be converted into
286 // three-address RISBLG. NILF produces a CC value that indicates whether
287 // the low word is zero, but RISBLG does not modify CC at all. On the
288 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
289 // The CC value produced by NILL isn't useful for our purposes, but the
290 // value produced by RISBG can be used for any comparison with zero
291 // (not just equality). So there are some transformations that lose
292 // CC values (while still being worthwhile) and others that happen to make
293 // the CC result more useful than it was originally.
295 // Another reason is that we only want to use BRANCH ON COUNT in cases
296 // where we know that the count register is not going to be spilled.
298 // Doing it so late makes it more likely that a register will be reused
299 // between the comparison and the branch, but it isn't clear whether
300 // preventing that would be a win or not.
301 if (getOptLevel() != CodeGenOptLevel::None)
302 addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
303 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
305 // Do final scheduling after all other optimizations, to get an
306 // optimal input for the decoder (branch relaxation must happen
307 // after block placement).
308 if (getOptLevel() != CodeGenOptLevel::None)
309 addPass(&PostMachineSchedulerID);
312 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
313 return new SystemZPassConfig(*this, PM);
316 TargetTransformInfo
317 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
318 return TargetTransformInfo(SystemZTTIImpl(this, F));
321 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
322 BumpPtrAllocator &Allocator, const Function &F,
323 const TargetSubtargetInfo *STI) const {
324 return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
325 Allocator, F, STI);