1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
21 #include "SyntheticSections.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/Support/BLAKE3.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/RandomNumberGenerator.h"
32 #include "llvm/Support/TimeProfiler.h"
33 #include "llvm/Support/xxhash.h"
36 #define DEBUG_TYPE "lld"
39 using namespace llvm::ELF
;
40 using namespace llvm::object
;
41 using namespace llvm::support
;
42 using namespace llvm::support::endian
;
44 using namespace lld::elf
;
47 // The writer writes a SymbolTable result to a file.
48 template <class ELFT
> class Writer
{
50 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
52 Writer() : buffer(errorHandler().outputBuffer
) {}
57 void addSectionSymbols();
59 void resolveShfLinkOrder();
60 void finalizeAddressDependentContent();
61 void optimizeBasicBlockJumps();
62 void sortInputSections();
63 void sortOrphanSections();
64 void finalizeSections();
65 void checkExecuteOnly();
66 void setReservedSymbolSections();
68 SmallVector
<PhdrEntry
*, 0> createPhdrs(Partition
&part
);
69 void addPhdrForSection(Partition
&part
, unsigned shType
, unsigned pType
,
71 void assignFileOffsets();
72 void assignFileOffsetsBinary();
73 void setPhdrs(Partition
&part
);
75 void fixSectionAlignments();
77 void writeTrapInstr();
80 void writeSectionsBinary();
83 std::unique_ptr
<FileOutputBuffer
> &buffer
;
85 void addRelIpltSymbols();
86 void addStartEndSymbols();
87 void addStartStopSymbols(OutputSection
&osec
);
90 uint64_t sectionHeaderOff
;
92 } // anonymous namespace
94 template <class ELFT
> void elf::writeResult() {
98 static void removeEmptyPTLoad(SmallVector
<PhdrEntry
*, 0> &phdrs
) {
99 auto it
= std::stable_partition(
100 phdrs
.begin(), phdrs
.end(), [&](const PhdrEntry
*p
) {
101 if (p
->p_type
!= PT_LOAD
)
105 uint64_t size
= p
->lastSec
->addr
+ p
->lastSec
->size
- p
->firstSec
->addr
;
109 // Clear OutputSection::ptLoad for sections contained in removed
111 DenseSet
<PhdrEntry
*> removed(it
, phdrs
.end());
112 for (OutputSection
*sec
: outputSections
)
113 if (removed
.count(sec
->ptLoad
))
114 sec
->ptLoad
= nullptr;
115 phdrs
.erase(it
, phdrs
.end());
118 void elf::copySectionsIntoPartitions() {
119 SmallVector
<InputSectionBase
*, 0> newSections
;
120 const size_t ehSize
= ctx
.ehInputSections
.size();
121 for (unsigned part
= 2; part
!= partitions
.size() + 1; ++part
) {
122 for (InputSectionBase
*s
: ctx
.inputSections
) {
123 if (!(s
->flags
& SHF_ALLOC
) || !s
->isLive() || s
->type
!= SHT_NOTE
)
125 auto *copy
= make
<InputSection
>(cast
<InputSection
>(*s
));
126 copy
->partition
= part
;
127 newSections
.push_back(copy
);
129 for (size_t i
= 0; i
!= ehSize
; ++i
) {
130 assert(ctx
.ehInputSections
[i
]->isLive());
131 auto *copy
= make
<EhInputSection
>(*ctx
.ehInputSections
[i
]);
132 copy
->partition
= part
;
133 ctx
.ehInputSections
.push_back(copy
);
137 ctx
.inputSections
.insert(ctx
.inputSections
.end(), newSections
.begin(),
141 static Defined
*addOptionalRegular(StringRef name
, SectionBase
*sec
,
142 uint64_t val
, uint8_t stOther
= STV_HIDDEN
) {
143 Symbol
*s
= symtab
.find(name
);
144 if (!s
|| s
->isDefined() || s
->isCommon())
147 s
->resolve(Defined
{ctx
.internalFile
, StringRef(), STB_GLOBAL
, stOther
,
150 s
->isUsedInRegularObj
= true;
151 return cast
<Defined
>(s
);
154 // The linker is expected to define some symbols depending on
155 // the linking result. This function defines such symbols.
156 void elf::addReservedSymbols() {
157 if (config
->emachine
== EM_MIPS
) {
158 auto addAbsolute
= [](StringRef name
) {
160 symtab
.addSymbol(Defined
{ctx
.internalFile
, name
, STB_GLOBAL
,
161 STV_HIDDEN
, STT_NOTYPE
, 0, 0, nullptr});
162 sym
->isUsedInRegularObj
= true;
163 return cast
<Defined
>(sym
);
165 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
166 // so that it points to an absolute address which by default is relative
167 // to GOT. Default offset is 0x7ff0.
168 // See "Global Data Symbols" in Chapter 6 in the following document:
169 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
170 ElfSym::mipsGp
= addAbsolute("_gp");
172 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
173 // start of function and 'gp' pointer into GOT.
174 if (symtab
.find("_gp_disp"))
175 ElfSym::mipsGpDisp
= addAbsolute("_gp_disp");
177 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
178 // pointer. This symbol is used in the code generated by .cpload pseudo-op
179 // in case of using -mno-shared option.
180 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
181 if (symtab
.find("__gnu_local_gp"))
182 ElfSym::mipsLocalGp
= addAbsolute("__gnu_local_gp");
183 } else if (config
->emachine
== EM_PPC
) {
184 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
185 // support Small Data Area, define it arbitrarily as 0.
186 addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN
);
187 } else if (config
->emachine
== EM_PPC64
) {
188 addPPC64SaveRestore();
191 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
192 // combines the typical ELF GOT with the small data sections. It commonly
193 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
194 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
195 // represent the TOC base which is offset by 0x8000 bytes from the start of
197 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
198 // correctness of some relocations depends on its value.
199 StringRef gotSymName
=
200 (config
->emachine
== EM_PPC64
) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
202 if (Symbol
*s
= symtab
.find(gotSymName
)) {
203 if (s
->isDefined()) {
204 error(toString(s
->file
) + " cannot redefine linker defined symbol '" +
210 if (config
->emachine
== EM_PPC64
)
213 s
->resolve(Defined
{ctx
.internalFile
, StringRef(), STB_GLOBAL
, STV_HIDDEN
,
214 STT_NOTYPE
, gotOff
, /*size=*/0, Out::elfHeader
});
215 ElfSym::globalOffsetTable
= cast
<Defined
>(s
);
218 // __ehdr_start is the location of ELF file headers. Note that we define
219 // this symbol unconditionally even when using a linker script, which
220 // differs from the behavior implemented by GNU linker which only define
221 // this symbol if ELF headers are in the memory mapped segment.
222 addOptionalRegular("__ehdr_start", Out::elfHeader
, 0, STV_HIDDEN
);
224 // __executable_start is not documented, but the expectation of at
225 // least the Android libc is that it points to the ELF header.
226 addOptionalRegular("__executable_start", Out::elfHeader
, 0, STV_HIDDEN
);
228 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
229 // each DSO. The address of the symbol doesn't matter as long as they are
230 // different in different DSOs, so we chose the start address of the DSO.
231 addOptionalRegular("__dso_handle", Out::elfHeader
, 0, STV_HIDDEN
);
233 // If linker script do layout we do not need to create any standard symbols.
234 if (script
->hasSectionsCommand
)
237 auto add
= [](StringRef s
, int64_t pos
) {
238 return addOptionalRegular(s
, Out::elfHeader
, pos
, STV_DEFAULT
);
241 ElfSym::bss
= add("__bss_start", 0);
242 ElfSym::end1
= add("end", -1);
243 ElfSym::end2
= add("_end", -1);
244 ElfSym::etext1
= add("etext", -1);
245 ElfSym::etext2
= add("_etext", -1);
246 ElfSym::edata1
= add("edata", -1);
247 ElfSym::edata2
= add("_edata", -1);
250 static void demoteDefined(Defined
&sym
, DenseMap
<SectionBase
*, size_t> &map
) {
252 for (auto [i
, sec
] : llvm::enumerate(sym
.file
->getSections()))
253 map
.try_emplace(sec
, i
);
254 // Change WEAK to GLOBAL so that if a scanned relocation references sym,
255 // maybeReportUndefined will report an error.
256 uint8_t binding
= sym
.isWeak() ? uint8_t(STB_GLOBAL
) : sym
.binding
;
257 Undefined(sym
.file
, sym
.getName(), binding
, sym
.stOther
, sym
.type
,
258 /*discardedSecIdx=*/map
.lookup(sym
.section
))
260 // Eliminate from the symbol table, otherwise we would leave an undefined
261 // symbol if the symbol is unreferenced in the absence of GC.
262 sym
.isUsedInRegularObj
= false;
265 // If all references to a DSO happen to be weak, the DSO is not added to
266 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid
267 // dangling references to an unneeded DSO. Use a weak binding to avoid
268 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols.
270 // In addition, demote symbols defined in discarded sections, so that
271 // references to /DISCARD/ discarded symbols will lead to errors.
272 static void demoteSymbolsAndComputeIsPreemptible() {
273 llvm::TimeTraceScope
timeScope("Demote symbols");
274 DenseMap
<InputFile
*, DenseMap
<SectionBase
*, size_t>> sectionIndexMap
;
275 for (Symbol
*sym
: symtab
.getSymbols()) {
276 if (auto *d
= dyn_cast
<Defined
>(sym
)) {
277 if (d
->section
&& !d
->section
->isLive())
278 demoteDefined(*d
, sectionIndexMap
[d
->file
]);
280 auto *s
= dyn_cast
<SharedSymbol
>(sym
);
281 if (sym
->isLazy() || (s
&& !cast
<SharedFile
>(s
->file
)->isNeeded
)) {
282 uint8_t binding
= sym
->isLazy() ? sym
->binding
: uint8_t(STB_WEAK
);
283 Undefined(ctx
.internalFile
, sym
->getName(), binding
, sym
->stOther
,
286 sym
->versionId
= VER_NDX_GLOBAL
;
290 if (config
->hasDynSymTab
)
291 sym
->isPreemptible
= computeIsPreemptible(*sym
);
295 static OutputSection
*findSection(StringRef name
, unsigned partition
= 1) {
296 for (SectionCommand
*cmd
: script
->sectionCommands
)
297 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
298 if (osd
->osec
.name
== name
&& osd
->osec
.partition
== partition
)
303 // The main function of the writer.
304 template <class ELFT
> void Writer
<ELFT
>::run() {
305 // Now that we have a complete set of output sections. This function
306 // completes section contents. For example, we need to add strings
307 // to the string table, and add entries to .got and .plt.
308 // finalizeSections does that.
312 // If --compressed-debug-sections is specified, compress .debug_* sections.
313 // Do it right now because it changes the size of output sections.
314 for (OutputSection
*sec
: outputSections
)
315 sec
->maybeCompress
<ELFT
>();
317 if (script
->hasSectionsCommand
)
318 script
->allocateHeaders(mainPart
->phdrs
);
320 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
321 // 0 sized region. This has to be done late since only after assignAddresses
322 // we know the size of the sections.
323 for (Partition
&part
: partitions
)
324 removeEmptyPTLoad(part
.phdrs
);
326 if (!config
->oFormatBinary
)
329 assignFileOffsetsBinary();
331 for (Partition
&part
: partitions
)
334 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
335 // because the files may be useful in case checkSections() or openFile()
336 // fails, for example, due to an erroneous file size.
339 // Handle --print-memory-usage option.
340 if (config
->printMemoryUsage
)
341 script
->printMemoryUsage(lld::outs());
343 if (config
->checkSections
)
346 // It does not make sense try to open the file if we have error already.
351 llvm::TimeTraceScope
timeScope("Write output file");
352 // Write the result down to a file.
357 if (!config
->oFormatBinary
) {
358 if (config
->zSeparate
!= SeparateSegmentKind::None
)
363 writeSectionsBinary();
366 // Backfill .note.gnu.build-id section content. This is done at last
367 // because the content is usually a hash value of the entire output file.
372 if (auto e
= buffer
->commit())
373 fatal("failed to write output '" + buffer
->getPath() +
374 "': " + toString(std::move(e
)));
376 if (!config
->cmseOutputLib
.empty())
377 writeARMCmseImportLib
<ELFT
>();
381 template <class ELFT
, class RelTy
>
382 static void markUsedLocalSymbolsImpl(ObjFile
<ELFT
> *file
,
383 llvm::ArrayRef
<RelTy
> rels
) {
384 for (const RelTy
&rel
: rels
) {
385 Symbol
&sym
= file
->getRelocTargetSym(rel
);
391 // The function ensures that the "used" field of local symbols reflects the fact
392 // that the symbol is used in a relocation from a live section.
393 template <class ELFT
> static void markUsedLocalSymbols() {
394 // With --gc-sections, the field is already filled.
395 // See MarkLive<ELFT>::resolveReloc().
396 if (config
->gcSections
)
398 for (ELFFileBase
*file
: ctx
.objectFiles
) {
399 ObjFile
<ELFT
> *f
= cast
<ObjFile
<ELFT
>>(file
);
400 for (InputSectionBase
*s
: f
->getSections()) {
401 InputSection
*isec
= dyn_cast_or_null
<InputSection
>(s
);
404 if (isec
->type
== SHT_REL
) {
405 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rel
>());
406 } else if (isec
->type
== SHT_RELA
) {
407 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rela
>());
408 } else if (isec
->type
== SHT_CREL
) {
409 // The is64=true variant also works with ELF32 since only the r_symidx
411 for (Elf_Crel_Impl
<true> r
: RelocsCrel
<true>(isec
->content_
)) {
412 Symbol
&sym
= file
->getSymbol(r
.r_symidx
);
421 static bool shouldKeepInSymtab(const Defined
&sym
) {
425 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
426 // from live sections.
427 if (sym
.used
&& config
->copyRelocs
)
430 // Exclude local symbols pointing to .ARM.exidx sections.
431 // They are probably mapping symbols "$d", which are optional for these
432 // sections. After merging the .ARM.exidx sections, some of these symbols
433 // may become dangling. The easiest way to avoid the issue is not to add
434 // them to the symbol table from the beginning.
435 if (config
->emachine
== EM_ARM
&& sym
.section
&&
436 sym
.section
->type
== SHT_ARM_EXIDX
)
439 if (config
->discard
== DiscardPolicy::None
)
441 if (config
->discard
== DiscardPolicy::All
)
444 // In ELF assembly .L symbols are normally discarded by the assembler.
445 // If the assembler fails to do so, the linker discards them if
446 // * --discard-locals is used.
447 // * The symbol is in a SHF_MERGE section, which is normally the reason for
448 // the assembler keeping the .L symbol.
449 if (sym
.getName().starts_with(".L") &&
450 (config
->discard
== DiscardPolicy::Locals
||
451 (sym
.section
&& (sym
.section
->flags
& SHF_MERGE
))))
456 bool lld::elf::includeInSymtab(const Symbol
&b
) {
457 if (auto *d
= dyn_cast
<Defined
>(&b
)) {
458 // Always include absolute symbols.
459 SectionBase
*sec
= d
->section
;
462 assert(sec
->isLive());
464 if (auto *s
= dyn_cast
<MergeInputSection
>(sec
))
465 return s
->getSectionPiece(d
->value
).live
;
468 return b
.used
|| !config
->gcSections
;
471 // Scan local symbols to:
473 // - demote symbols defined relative to /DISCARD/ discarded input sections so
474 // that relocations referencing them will lead to errors.
475 // - copy eligible symbols to .symTab
476 static void demoteAndCopyLocalSymbols() {
477 llvm::TimeTraceScope
timeScope("Add local symbols");
478 for (ELFFileBase
*file
: ctx
.objectFiles
) {
479 DenseMap
<SectionBase
*, size_t> sectionIndexMap
;
480 for (Symbol
*b
: file
->getLocalSymbols()) {
481 assert(b
->isLocal() && "should have been caught in initializeSymbols()");
482 auto *dr
= dyn_cast
<Defined
>(b
);
486 if (dr
->section
&& !dr
->section
->isLive())
487 demoteDefined(*dr
, sectionIndexMap
);
488 else if (in
.symTab
&& includeInSymtab(*b
) && shouldKeepInSymtab(*dr
))
489 in
.symTab
->addSymbol(b
);
494 // Create a section symbol for each output section so that we can represent
495 // relocations that point to the section. If we know that no relocation is
496 // referring to a section (that happens if the section is a synthetic one), we
497 // don't create a section symbol for that section.
498 template <class ELFT
> void Writer
<ELFT
>::addSectionSymbols() {
499 for (SectionCommand
*cmd
: script
->sectionCommands
) {
500 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
503 OutputSection
&osec
= osd
->osec
;
504 InputSectionBase
*isec
= nullptr;
505 // Iterate over all input sections and add a STT_SECTION symbol if any input
506 // section may be a relocation target.
507 for (SectionCommand
*cmd
: osec
.commands
) {
508 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
511 for (InputSectionBase
*s
: isd
->sections
) {
512 // Relocations are not using REL[A] section symbols.
513 if (isStaticRelSecType(s
->type
))
516 // Unlike other synthetic sections, mergeable output sections contain
517 // data copied from input sections, and there may be a relocation
518 // pointing to its contents if -r or --emit-reloc is given.
519 if (isa
<SyntheticSection
>(s
) && !(s
->flags
& SHF_MERGE
))
529 // Set the symbol to be relative to the output section so that its st_value
530 // equals the output section address. Note, there may be a gap between the
531 // start of the output section and isec.
532 in
.symTab
->addSymbol(makeDefined(isec
->file
, "", STB_LOCAL
, /*stOther=*/0,
534 /*value=*/0, /*size=*/0, &osec
));
538 // Today's loaders have a feature to make segments read-only after
539 // processing dynamic relocations to enhance security. PT_GNU_RELRO
540 // is defined for that.
542 // This function returns true if a section needs to be put into a
543 // PT_GNU_RELRO segment.
544 static bool isRelroSection(const OutputSection
*sec
) {
550 uint64_t flags
= sec
->flags
;
552 // Non-allocatable or non-writable sections don't need RELRO because
553 // they are not writable or not even mapped to memory in the first place.
554 // RELRO is for sections that are essentially read-only but need to
555 // be writable only at process startup to allow dynamic linker to
556 // apply relocations.
557 if (!(flags
& SHF_ALLOC
) || !(flags
& SHF_WRITE
))
560 // Once initialized, TLS data segments are used as data templates
561 // for a thread-local storage. For each new thread, runtime
562 // allocates memory for a TLS and copy templates there. No thread
563 // are supposed to use templates directly. Thus, it can be in RELRO.
567 // .init_array, .preinit_array and .fini_array contain pointers to
568 // functions that are executed on process startup or exit. These
569 // pointers are set by the static linker, and they are not expected
570 // to change at runtime. But if you are an attacker, you could do
571 // interesting things by manipulating pointers in .fini_array, for
572 // example. So they are put into RELRO.
573 uint32_t type
= sec
->type
;
574 if (type
== SHT_INIT_ARRAY
|| type
== SHT_FINI_ARRAY
||
575 type
== SHT_PREINIT_ARRAY
)
578 // .got contains pointers to external symbols. They are resolved by
579 // the dynamic linker when a module is loaded into memory, and after
580 // that they are not expected to change. So, it can be in RELRO.
581 if (in
.got
&& sec
== in
.got
->getParent())
584 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
585 // through r2 register, which is reserved for that purpose. Since r2 is used
586 // for accessing .got as well, .got and .toc need to be close enough in the
587 // virtual address space. Usually, .toc comes just after .got. Since we place
588 // .got into RELRO, .toc needs to be placed into RELRO too.
589 if (sec
->name
== ".toc")
592 // .got.plt contains pointers to external function symbols. They are
593 // by default resolved lazily, so we usually cannot put it into RELRO.
594 // However, if "-z now" is given, the lazy symbol resolution is
595 // disabled, which enables us to put it into RELRO.
596 if (sec
== in
.gotPlt
->getParent())
599 if (in
.relroPadding
&& sec
== in
.relroPadding
->getParent())
602 // .dynamic section contains data for the dynamic linker, and
603 // there's no need to write to it at runtime, so it's better to put
605 if (sec
->name
== ".dynamic")
608 // Sections with some special names are put into RELRO. This is a
609 // bit unfortunate because section names shouldn't be significant in
610 // ELF in spirit. But in reality many linker features depend on
611 // magic section names.
612 StringRef s
= sec
->name
;
614 bool abiAgnostic
= s
== ".data.rel.ro" || s
== ".bss.rel.ro" ||
615 s
== ".ctors" || s
== ".dtors" || s
== ".jcr" ||
616 s
== ".eh_frame" || s
== ".fini_array" ||
617 s
== ".init_array" || s
== ".preinit_array";
620 config
->osabi
== ELFOSABI_OPENBSD
&& s
== ".openbsd.randomdata";
622 return abiAgnostic
|| abiSpecific
;
625 // We compute a rank for each section. The rank indicates where the
626 // section should be placed in the file. Instead of using simple
627 // numbers (0,1,2...), we use a series of flags. One for each decision
628 // point when placing the section.
629 // Using flags has two key properties:
630 // * It is easy to check if a give branch was taken.
631 // * It is easy two see how similar two ranks are (see getRankProximity).
633 RF_NOT_ADDR_SET
= 1 << 27,
634 RF_NOT_ALLOC
= 1 << 26,
635 RF_PARTITION
= 1 << 18, // Partition number (8 bits)
636 RF_LARGE_ALT
= 1 << 15,
638 RF_EXEC_WRITE
= 1 << 13,
642 RF_NOT_RELRO
= 1 << 9,
647 unsigned elf::getSectionRank(OutputSection
&osec
) {
648 unsigned rank
= osec
.partition
* RF_PARTITION
;
650 // We want to put section specified by -T option first, so we
651 // can start assigning VA starting from them later.
652 if (config
->sectionStartMap
.count(osec
.name
))
654 rank
|= RF_NOT_ADDR_SET
;
656 // Allocatable sections go first to reduce the total PT_LOAD size and
657 // so debug info doesn't change addresses in actual code.
658 if (!(osec
.flags
& SHF_ALLOC
))
659 return rank
| RF_NOT_ALLOC
;
661 // Sort sections based on their access permission in the following
662 // order: R, RX, RXW, RW(RELRO), RW(non-RELRO).
664 // Read-only sections come first such that they go in the PT_LOAD covering the
665 // program headers at the start of the file.
667 // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro
668 // .bss.rel.ro) | .data .bss), where | marks where page alignment happens.
669 // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro
670 // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment
672 bool isExec
= osec
.flags
& SHF_EXECINSTR
;
673 bool isWrite
= osec
.flags
& SHF_WRITE
;
675 if (!isWrite
&& !isExec
) {
676 // Among PROGBITS sections, place .lrodata further from .text.
677 // For -z lrodata-after-bss, place .lrodata after .lbss like GNU ld. This
678 // layout has one extra PT_LOAD, but alleviates relocation overflow
679 // pressure for absolute relocations referencing small data from -fno-pic
680 // relocatable files.
681 if (osec
.flags
& SHF_X86_64_LARGE
&& config
->emachine
== EM_X86_64
)
682 rank
|= config
->zLrodataAfterBss
? RF_LARGE_ALT
: 0;
684 rank
|= config
->zLrodataAfterBss
? 0 : RF_LARGE
;
686 if (osec
.type
== SHT_LLVM_PART_EHDR
)
688 else if (osec
.type
== SHT_LLVM_PART_PHDR
)
690 else if (osec
.name
== ".interp")
692 // Put .note sections at the beginning so that they are likely to be
693 // included in a truncate core file. In particular, .note.gnu.build-id, if
694 // available, can identify the object file.
695 else if (osec
.type
== SHT_NOTE
)
697 // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to
698 // alleviate relocation overflow pressure. Large special sections such as
699 // .dynstr and .dynsym can be away from .text.
700 else if (osec
.type
!= SHT_PROGBITS
)
705 rank
|= isWrite
? RF_EXEC_WRITE
: RF_EXEC
;
708 // The TLS initialization block needs to be a single contiguous block. Place
709 // TLS sections directly before the other RELRO sections.
710 if (!(osec
.flags
& SHF_TLS
))
712 if (isRelroSection(&osec
))
715 rank
|= RF_NOT_RELRO
;
716 // Place .ldata and .lbss after .bss. Making .bss closer to .text
717 // alleviates relocation overflow pressure.
718 // For -z lrodata-after-bss, place .lbss/.lrodata/.ldata after .bss.
719 // .bss/.lbss being adjacent reuses the NOBITS size optimization.
720 if (osec
.flags
& SHF_X86_64_LARGE
&& config
->emachine
== EM_X86_64
) {
721 rank
|= config
->zLrodataAfterBss
722 ? (osec
.type
== SHT_NOBITS
? 1 : RF_LARGE_ALT
)
727 // Within TLS sections, or within other RelRo sections, or within non-RelRo
728 // sections, place non-NOBITS sections first.
729 if (osec
.type
== SHT_NOBITS
)
732 // Some architectures have additional ordering restrictions for sections
733 // within the same PT_LOAD.
734 if (config
->emachine
== EM_PPC64
) {
735 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
736 // that we would like to make sure appear is a specific order to maximize
737 // their coverage by a single signed 16-bit offset from the TOC base
739 StringRef name
= osec
.name
;
742 else if (name
== ".toc")
746 if (config
->emachine
== EM_MIPS
) {
747 if (osec
.name
!= ".got")
749 // All sections with SHF_MIPS_GPREL flag should be grouped together
750 // because data in these sections is addressable with a gp relative address.
751 if (osec
.flags
& SHF_MIPS_GPREL
)
755 if (config
->emachine
== EM_RISCV
) {
756 // .sdata and .sbss are placed closer to make GP relaxation more profitable
758 StringRef name
= osec
.name
;
759 if (name
== ".sdata" || (osec
.type
== SHT_NOBITS
&& name
!= ".sbss"))
766 static bool compareSections(const SectionCommand
*aCmd
,
767 const SectionCommand
*bCmd
) {
768 const OutputSection
*a
= &cast
<OutputDesc
>(aCmd
)->osec
;
769 const OutputSection
*b
= &cast
<OutputDesc
>(bCmd
)->osec
;
771 if (a
->sortRank
!= b
->sortRank
)
772 return a
->sortRank
< b
->sortRank
;
774 if (!(a
->sortRank
& RF_NOT_ADDR_SET
))
775 return config
->sectionStartMap
.lookup(a
->name
) <
776 config
->sectionStartMap
.lookup(b
->name
);
780 void PhdrEntry::add(OutputSection
*sec
) {
784 p_align
= std::max(p_align
, sec
->addralign
);
785 if (p_type
== PT_LOAD
)
789 // A statically linked position-dependent executable should only contain
790 // IRELATIVE relocations and no other dynamic relocations. Encapsulation symbols
791 // __rel[a]_iplt_{start,end} will be defined for .rel[a].dyn, to be
792 // processed by the libc runtime. Other executables or DSOs use dynamic tags
794 template <class ELFT
> void Writer
<ELFT
>::addRelIpltSymbols() {
798 // __rela_iplt_{start,end} are initially defined relative to dummy section 0.
799 // We'll override Out::elfHeader with relaDyn later when we are sure that
800 // .rela.dyn will be present in the output.
801 std::string name
= config
->isRela
? "__rela_iplt_start" : "__rel_iplt_start";
802 ElfSym::relaIpltStart
=
803 addOptionalRegular(name
, Out::elfHeader
, 0, STV_HIDDEN
);
804 name
.replace(name
.size() - 5, 5, "end");
805 ElfSym::relaIpltEnd
= addOptionalRegular(name
, Out::elfHeader
, 0, STV_HIDDEN
);
808 // This function generates assignments for predefined symbols (e.g. _end or
809 // _etext) and inserts them into the commands sequence to be processed at the
810 // appropriate time. This ensures that the value is going to be correct by the
811 // time any references to these symbols are processed and is equivalent to
812 // defining these symbols explicitly in the linker script.
813 template <class ELFT
> void Writer
<ELFT
>::setReservedSymbolSections() {
814 if (ElfSym::globalOffsetTable
) {
815 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
816 // to the start of the .got or .got.plt section.
817 InputSection
*sec
= in
.gotPlt
.get();
818 if (!target
->gotBaseSymInGotPlt
)
819 sec
= in
.mipsGot
? cast
<InputSection
>(in
.mipsGot
.get())
820 : cast
<InputSection
>(in
.got
.get());
821 ElfSym::globalOffsetTable
->section
= sec
;
824 // .rela_iplt_{start,end} mark the start and the end of .rel[a].dyn.
825 if (ElfSym::relaIpltStart
&& mainPart
->relaDyn
->isNeeded()) {
826 ElfSym::relaIpltStart
->section
= mainPart
->relaDyn
.get();
827 ElfSym::relaIpltEnd
->section
= mainPart
->relaDyn
.get();
828 ElfSym::relaIpltEnd
->value
= mainPart
->relaDyn
->getSize();
831 PhdrEntry
*last
= nullptr;
832 OutputSection
*lastRO
= nullptr;
833 auto isLarge
= [](OutputSection
*osec
) {
834 return config
->emachine
== EM_X86_64
&& osec
->flags
& SHF_X86_64_LARGE
;
836 for (Partition
&part
: partitions
) {
837 for (PhdrEntry
*p
: part
.phdrs
) {
838 if (p
->p_type
!= PT_LOAD
)
841 if (!(p
->p_flags
& PF_W
) && p
->lastSec
&& !isLarge(p
->lastSec
))
847 // _etext is the first location after the last read-only loadable segment
848 // that does not contain large sections.
850 ElfSym::etext1
->section
= lastRO
;
852 ElfSym::etext2
->section
= lastRO
;
856 // _edata points to the end of the last non-large mapped initialized
858 OutputSection
*edata
= nullptr;
859 for (OutputSection
*os
: outputSections
) {
860 if (os
->type
!= SHT_NOBITS
&& !isLarge(os
))
862 if (os
== last
->lastSec
)
867 ElfSym::edata1
->section
= edata
;
869 ElfSym::edata2
->section
= edata
;
871 // _end is the first location after the uninitialized data region.
873 ElfSym::end1
->section
= last
->lastSec
;
875 ElfSym::end2
->section
= last
->lastSec
;
879 // On RISC-V, set __bss_start to the start of .sbss if present.
880 OutputSection
*sbss
=
881 config
->emachine
== EM_RISCV
? findSection(".sbss") : nullptr;
882 ElfSym::bss
->section
= sbss
? sbss
: findSection(".bss");
885 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
886 // be equal to the _gp symbol's value.
887 if (ElfSym::mipsGp
) {
888 // Find GP-relative section with the lowest address
889 // and use this address to calculate default _gp value.
890 for (OutputSection
*os
: outputSections
) {
891 if (os
->flags
& SHF_MIPS_GPREL
) {
892 ElfSym::mipsGp
->section
= os
;
893 ElfSym::mipsGp
->value
= 0x7ff0;
900 // We want to find how similar two ranks are.
901 // The more branches in getSectionRank that match, the more similar they are.
902 // Since each branch corresponds to a bit flag, we can just use
903 // countLeadingZeros.
904 static int getRankProximity(OutputSection
*a
, SectionCommand
*b
) {
905 auto *osd
= dyn_cast
<OutputDesc
>(b
);
906 return (osd
&& osd
->osec
.hasInputSections
)
907 ? llvm::countl_zero(a
->sortRank
^ osd
->osec
.sortRank
)
911 // When placing orphan sections, we want to place them after symbol assignments
912 // so that an orphan after
916 // doesn't break the intended meaning of the begin/end symbols.
917 // We don't want to go over sections since findOrphanPos is the
918 // one in charge of deciding the order of the sections.
919 // We don't want to go over changes to '.', since doing so in
920 // rx_sec : { *(rx_sec) }
921 // . = ALIGN(0x1000);
922 // /* The RW PT_LOAD starts here*/
923 // rw_sec : { *(rw_sec) }
924 // would mean that the RW PT_LOAD would become unaligned.
925 static bool shouldSkip(SectionCommand
*cmd
) {
926 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
927 return assign
->name
!= ".";
931 // We want to place orphan sections so that they share as much
932 // characteristics with their neighbors as possible. For example, if
933 // both are rw, or both are tls.
934 static SmallVectorImpl
<SectionCommand
*>::iterator
935 findOrphanPos(SmallVectorImpl
<SectionCommand
*>::iterator b
,
936 SmallVectorImpl
<SectionCommand
*>::iterator e
) {
937 // Place non-alloc orphan sections at the end. This matches how we assign file
938 // offsets to non-alloc sections.
939 OutputSection
*sec
= &cast
<OutputDesc
>(*e
)->osec
;
940 if (!(sec
->flags
& SHF_ALLOC
))
943 // As a special case, place .relro_padding before the SymbolAssignment using
944 // DATA_SEGMENT_RELRO_END, if present.
945 if (in
.relroPadding
&& sec
== in
.relroPadding
->getParent()) {
946 auto i
= std::find_if(b
, e
, [=](SectionCommand
*a
) {
947 if (auto *assign
= dyn_cast
<SymbolAssignment
>(a
))
948 return assign
->dataSegmentRelroEnd
;
955 // Find the most similar output section as the anchor. Rank Proximity is a
956 // value in the range [-1, 32] where [0, 32] indicates potential anchors (0:
957 // least similar; 32: identical). -1 means not an anchor.
959 // In the event of proximity ties, we select the first or last section
960 // depending on whether the orphan's rank is smaller.
963 for (auto j
= b
; j
!= e
; ++j
) {
964 int p
= getRankProximity(sec
, *j
);
966 (p
== maxP
&& cast
<OutputDesc
>(*j
)->osec
.sortRank
<= sec
->sortRank
)) {
974 auto isOutputSecWithInputSections
= [](SectionCommand
*cmd
) {
975 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
976 return osd
&& osd
->osec
.hasInputSections
;
979 // Then, scan backward or forward through the script for a suitable insertion
980 // point. If i's rank is larger, the orphan section can be placed before i.
982 // However, don't do this if custom program headers are defined. Otherwise,
983 // adding the orphan to a previous segment can change its flags, for example,
984 // making a read-only segment writable. If memory regions are defined, an
985 // orphan section should continue the same region as the found section to
986 // better resemble the behavior of GNU ld.
987 bool mustAfter
= script
->hasPhdrsCommands() || !script
->memoryRegions
.empty();
988 if (cast
<OutputDesc
>(*i
)->osec
.sortRank
<= sec
->sortRank
|| mustAfter
) {
989 for (auto j
= ++i
; j
!= e
; ++j
) {
990 if (!isOutputSecWithInputSections(*j
))
992 if (getRankProximity(sec
, *j
) != maxP
)
998 if (isOutputSecWithInputSections(i
[-1]))
1002 // As a special case, if the orphan section is the last section, put
1003 // it at the very end, past any other commands.
1004 // This matches bfd's behavior and is convenient when the linker script fully
1005 // specifies the start of the file, but doesn't care about the end (the non
1006 // alloc sections for example).
1007 if (std::find_if(i
, e
, isOutputSecWithInputSections
) == e
)
1010 while (i
!= e
&& shouldSkip(*i
))
1015 // Adds random priorities to sections not already in the map.
1016 static void maybeShuffle(DenseMap
<const InputSectionBase
*, int> &order
) {
1017 if (config
->shuffleSections
.empty())
1020 SmallVector
<InputSectionBase
*, 0> matched
, sections
= ctx
.inputSections
;
1021 matched
.reserve(sections
.size());
1022 for (const auto &patAndSeed
: config
->shuffleSections
) {
1024 for (InputSectionBase
*sec
: sections
)
1025 if (patAndSeed
.first
.match(sec
->name
))
1026 matched
.push_back(sec
);
1027 const uint32_t seed
= patAndSeed
.second
;
1028 if (seed
== UINT32_MAX
) {
1029 // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1030 // section order is stable even if the number of sections changes. This is
1031 // useful to catch issues like static initialization order fiasco
1033 std::reverse(matched
.begin(), matched
.end());
1035 std::mt19937
g(seed
? seed
: std::random_device()());
1036 llvm::shuffle(matched
.begin(), matched
.end(), g
);
1039 for (InputSectionBase
*&sec
: sections
)
1040 if (patAndSeed
.first
.match(sec
->name
))
1044 // Existing priorities are < 0, so use priorities >= 0 for the missing
1047 for (InputSectionBase
*sec
: sections
) {
1048 if (order
.try_emplace(sec
, prio
).second
)
1053 // Builds section order for handling --symbol-ordering-file.
1054 static DenseMap
<const InputSectionBase
*, int> buildSectionOrder() {
1055 DenseMap
<const InputSectionBase
*, int> sectionOrder
;
1056 // Use the rarely used option --call-graph-ordering-file to sort sections.
1057 if (!config
->callGraphProfile
.empty())
1058 return computeCallGraphProfileOrder();
1060 if (config
->symbolOrderingFile
.empty())
1061 return sectionOrder
;
1063 struct SymbolOrderEntry
{
1068 // Build a map from symbols to their priorities. Symbols that didn't
1069 // appear in the symbol ordering file have the lowest priority 0.
1070 // All explicitly mentioned symbols have negative (higher) priorities.
1071 DenseMap
<CachedHashStringRef
, SymbolOrderEntry
> symbolOrder
;
1072 int priority
= -config
->symbolOrderingFile
.size();
1073 for (StringRef s
: config
->symbolOrderingFile
)
1074 symbolOrder
.insert({CachedHashStringRef(s
), {priority
++, false}});
1076 // Build a map from sections to their priorities.
1077 auto addSym
= [&](Symbol
&sym
) {
1078 auto it
= symbolOrder
.find(CachedHashStringRef(sym
.getName()));
1079 if (it
== symbolOrder
.end())
1081 SymbolOrderEntry
&ent
= it
->second
;
1084 maybeWarnUnorderableSymbol(&sym
);
1086 if (auto *d
= dyn_cast
<Defined
>(&sym
)) {
1087 if (auto *sec
= dyn_cast_or_null
<InputSectionBase
>(d
->section
)) {
1088 int &priority
= sectionOrder
[cast
<InputSectionBase
>(sec
)];
1089 priority
= std::min(priority
, ent
.priority
);
1094 // We want both global and local symbols. We get the global ones from the
1095 // symbol table and iterate the object files for the local ones.
1096 for (Symbol
*sym
: symtab
.getSymbols())
1099 for (ELFFileBase
*file
: ctx
.objectFiles
)
1100 for (Symbol
*sym
: file
->getLocalSymbols())
1103 if (config
->warnSymbolOrdering
)
1104 for (auto orderEntry
: symbolOrder
)
1105 if (!orderEntry
.second
.present
)
1106 warn("symbol ordering file: no such symbol: " + orderEntry
.first
.val());
1108 return sectionOrder
;
1111 // Sorts the sections in ISD according to the provided section order.
1113 sortISDBySectionOrder(InputSectionDescription
*isd
,
1114 const DenseMap
<const InputSectionBase
*, int> &order
,
1115 bool executableOutputSection
) {
1116 SmallVector
<InputSection
*, 0> unorderedSections
;
1117 SmallVector
<std::pair
<InputSection
*, int>, 0> orderedSections
;
1118 uint64_t unorderedSize
= 0;
1119 uint64_t totalSize
= 0;
1121 for (InputSection
*isec
: isd
->sections
) {
1122 if (executableOutputSection
)
1123 totalSize
+= isec
->getSize();
1124 auto i
= order
.find(isec
);
1125 if (i
== order
.end()) {
1126 unorderedSections
.push_back(isec
);
1127 unorderedSize
+= isec
->getSize();
1130 orderedSections
.push_back({isec
, i
->second
});
1132 llvm::sort(orderedSections
, llvm::less_second());
1134 // Find an insertion point for the ordered section list in the unordered
1135 // section list. On targets with limited-range branches, this is the mid-point
1136 // of the unordered section list. This decreases the likelihood that a range
1137 // extension thunk will be needed to enter or exit the ordered region. If the
1138 // ordered section list is a list of hot functions, we can generally expect
1139 // the ordered functions to be called more often than the unordered functions,
1140 // making it more likely that any particular call will be within range, and
1141 // therefore reducing the number of thunks required.
1143 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1144 // If the layout is:
1149 // only the first 8-16MB of the cold code (depending on which hot function it
1150 // is actually calling) can call the hot code without a range extension thunk.
1151 // However, if we use this layout:
1157 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1158 // of the second block of cold code can call the hot code without a thunk. So
1159 // we effectively double the amount of code that could potentially call into
1160 // the hot code without a thunk.
1162 // The above is not necessary if total size of input sections in this "isd"
1163 // is small. Note that we assume all input sections are executable if the
1164 // output section is executable (which is not always true but supposed to
1165 // cover most cases).
1167 if (executableOutputSection
&& !orderedSections
.empty() &&
1168 target
->getThunkSectionSpacing() &&
1169 totalSize
>= target
->getThunkSectionSpacing()) {
1170 uint64_t unorderedPos
= 0;
1171 for (; insPt
!= unorderedSections
.size(); ++insPt
) {
1172 unorderedPos
+= unorderedSections
[insPt
]->getSize();
1173 if (unorderedPos
> unorderedSize
/ 2)
1178 isd
->sections
.clear();
1179 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(0, insPt
))
1180 isd
->sections
.push_back(isec
);
1181 for (std::pair
<InputSection
*, int> p
: orderedSections
)
1182 isd
->sections
.push_back(p
.first
);
1183 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(insPt
))
1184 isd
->sections
.push_back(isec
);
1187 static void sortSection(OutputSection
&osec
,
1188 const DenseMap
<const InputSectionBase
*, int> &order
) {
1189 StringRef name
= osec
.name
;
1191 // Never sort these.
1192 if (name
== ".init" || name
== ".fini")
1195 // Sort input sections by priority using the list provided by
1196 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1197 // digit radix sort. The sections may be sorted stably again by a more
1200 for (SectionCommand
*b
: osec
.commands
)
1201 if (auto *isd
= dyn_cast
<InputSectionDescription
>(b
))
1202 sortISDBySectionOrder(isd
, order
, osec
.flags
& SHF_EXECINSTR
);
1204 if (script
->hasSectionsCommand
)
1207 if (name
== ".init_array" || name
== ".fini_array") {
1208 osec
.sortInitFini();
1209 } else if (name
== ".ctors" || name
== ".dtors") {
1210 osec
.sortCtorsDtors();
1211 } else if (config
->emachine
== EM_PPC64
&& name
== ".toc") {
1212 // .toc is allocated just after .got and is accessed using GOT-relative
1213 // relocations. Object files compiled with small code model have an
1214 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1215 // To reduce the risk of relocation overflow, .toc contents are sorted so
1216 // that sections having smaller relocation offsets are at beginning of .toc
1217 assert(osec
.commands
.size() == 1);
1218 auto *isd
= cast
<InputSectionDescription
>(osec
.commands
[0]);
1219 llvm::stable_sort(isd
->sections
,
1220 [](const InputSection
*a
, const InputSection
*b
) -> bool {
1221 return a
->file
->ppc64SmallCodeModelTocRelocs
&&
1222 !b
->file
->ppc64SmallCodeModelTocRelocs
;
1227 // If no layout was provided by linker script, we want to apply default
1228 // sorting for special input sections. This also handles --symbol-ordering-file.
1229 template <class ELFT
> void Writer
<ELFT
>::sortInputSections() {
1230 // Build the order once since it is expensive.
1231 DenseMap
<const InputSectionBase
*, int> order
= buildSectionOrder();
1232 maybeShuffle(order
);
1233 for (SectionCommand
*cmd
: script
->sectionCommands
)
1234 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1235 sortSection(osd
->osec
, order
);
1238 template <class ELFT
> void Writer
<ELFT
>::sortSections() {
1239 llvm::TimeTraceScope
timeScope("Sort sections");
1241 // Don't sort if using -r. It is not necessary and we want to preserve the
1242 // relative order for SHF_LINK_ORDER sections.
1243 if (config
->relocatable
) {
1244 script
->adjustOutputSections();
1248 sortInputSections();
1250 for (SectionCommand
*cmd
: script
->sectionCommands
)
1251 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1252 osd
->osec
.sortRank
= getSectionRank(osd
->osec
);
1253 if (!script
->hasSectionsCommand
) {
1254 // OutputDescs are mostly contiguous, but may be interleaved with
1255 // SymbolAssignments in the presence of INSERT commands.
1256 auto mid
= std::stable_partition(
1257 script
->sectionCommands
.begin(), script
->sectionCommands
.end(),
1258 [](SectionCommand
*cmd
) { return isa
<OutputDesc
>(cmd
); });
1259 std::stable_sort(script
->sectionCommands
.begin(), mid
, compareSections
);
1262 // Process INSERT commands and update output section attributes. From this
1263 // point onwards the order of script->sectionCommands is fixed.
1264 script
->processInsertCommands();
1265 script
->adjustOutputSections();
1267 if (script
->hasSectionsCommand
)
1268 sortOrphanSections();
1270 script
->adjustSectionsAfterSorting();
1273 template <class ELFT
> void Writer
<ELFT
>::sortOrphanSections() {
1274 // Orphan sections are sections present in the input files which are
1275 // not explicitly placed into the output file by the linker script.
1277 // The sections in the linker script are already in the correct
1278 // order. We have to figuere out where to insert the orphan
1281 // The order of the sections in the script is arbitrary and may not agree with
1282 // compareSections. This means that we cannot easily define a strict weak
1283 // ordering. To see why, consider a comparison of a section in the script and
1284 // one not in the script. We have a two simple options:
1285 // * Make them equivalent (a is not less than b, and b is not less than a).
1286 // The problem is then that equivalence has to be transitive and we can
1287 // have sections a, b and c with only b in a script and a less than c
1288 // which breaks this property.
1289 // * Use compareSectionsNonScript. Given that the script order doesn't have
1290 // to match, we can end up with sections a, b, c, d where b and c are in the
1291 // script and c is compareSectionsNonScript less than b. In which case d
1292 // can be equivalent to c, a to b and d < a. As a concrete example:
1293 // .a (rx) # not in script
1294 // .b (rx) # in script
1295 // .c (ro) # in script
1296 // .d (ro) # not in script
1298 // The way we define an order then is:
1299 // * Sort only the orphan sections. They are in the end right now.
1300 // * Move each orphan section to its preferred position. We try
1301 // to put each section in the last position where it can share
1304 // There is some ambiguity as to where exactly a new entry should be
1305 // inserted, because Commands contains not only output section
1306 // commands but also other types of commands such as symbol assignment
1307 // expressions. There's no correct answer here due to the lack of the
1308 // formal specification of the linker script. We use heuristics to
1309 // determine whether a new output command should be added before or
1310 // after another commands. For the details, look at shouldSkip
1313 auto i
= script
->sectionCommands
.begin();
1314 auto e
= script
->sectionCommands
.end();
1315 auto nonScriptI
= std::find_if(i
, e
, [](SectionCommand
*cmd
) {
1316 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1317 return osd
->osec
.sectionIndex
== UINT32_MAX
;
1321 // Sort the orphan sections.
1322 std::stable_sort(nonScriptI
, e
, compareSections
);
1324 // As a horrible special case, skip the first . assignment if it is before any
1325 // section. We do this because it is common to set a load address by starting
1326 // the script with ". = 0xabcd" and the expectation is that every section is
1328 auto firstSectionOrDotAssignment
=
1329 std::find_if(i
, e
, [](SectionCommand
*cmd
) { return !shouldSkip(cmd
); });
1330 if (firstSectionOrDotAssignment
!= e
&&
1331 isa
<SymbolAssignment
>(**firstSectionOrDotAssignment
))
1332 ++firstSectionOrDotAssignment
;
1333 i
= firstSectionOrDotAssignment
;
1335 while (nonScriptI
!= e
) {
1336 auto pos
= findOrphanPos(i
, nonScriptI
);
1337 OutputSection
*orphan
= &cast
<OutputDesc
>(*nonScriptI
)->osec
;
1339 // As an optimization, find all sections with the same sort rank
1340 // and insert them with one rotate.
1341 unsigned rank
= orphan
->sortRank
;
1342 auto end
= std::find_if(nonScriptI
+ 1, e
, [=](SectionCommand
*cmd
) {
1343 return cast
<OutputDesc
>(cmd
)->osec
.sortRank
!= rank
;
1345 std::rotate(pos
, nonScriptI
, end
);
1350 static bool compareByFilePosition(InputSection
*a
, InputSection
*b
) {
1351 InputSection
*la
= a
->flags
& SHF_LINK_ORDER
? a
->getLinkOrderDep() : nullptr;
1352 InputSection
*lb
= b
->flags
& SHF_LINK_ORDER
? b
->getLinkOrderDep() : nullptr;
1353 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1354 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1357 OutputSection
*aOut
= la
->getParent();
1358 OutputSection
*bOut
= lb
->getParent();
1361 return la
->outSecOff
< lb
->outSecOff
;
1362 if (aOut
->addr
== bOut
->addr
)
1363 return aOut
->sectionIndex
< bOut
->sectionIndex
;
1364 return aOut
->addr
< bOut
->addr
;
1367 template <class ELFT
> void Writer
<ELFT
>::resolveShfLinkOrder() {
1368 llvm::TimeTraceScope
timeScope("Resolve SHF_LINK_ORDER");
1369 for (OutputSection
*sec
: outputSections
) {
1370 if (!(sec
->flags
& SHF_LINK_ORDER
))
1373 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1374 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1375 if (!config
->relocatable
&& config
->emachine
== EM_ARM
&&
1376 sec
->type
== SHT_ARM_EXIDX
)
1379 // Link order may be distributed across several InputSectionDescriptions.
1380 // Sorting is performed separately.
1381 SmallVector
<InputSection
**, 0> scriptSections
;
1382 SmallVector
<InputSection
*, 0> sections
;
1383 for (SectionCommand
*cmd
: sec
->commands
) {
1384 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
1387 bool hasLinkOrder
= false;
1388 scriptSections
.clear();
1390 for (InputSection
*&isec
: isd
->sections
) {
1391 if (isec
->flags
& SHF_LINK_ORDER
) {
1392 InputSection
*link
= isec
->getLinkOrderDep();
1393 if (link
&& !link
->getParent())
1394 error(toString(isec
) + ": sh_link points to discarded section " +
1396 hasLinkOrder
= true;
1398 scriptSections
.push_back(&isec
);
1399 sections
.push_back(isec
);
1401 if (hasLinkOrder
&& errorCount() == 0) {
1402 llvm::stable_sort(sections
, compareByFilePosition
);
1403 for (int i
= 0, n
= sections
.size(); i
!= n
; ++i
)
1404 *scriptSections
[i
] = sections
[i
];
1410 static void finalizeSynthetic(SyntheticSection
*sec
) {
1411 if (sec
&& sec
->isNeeded() && sec
->getParent()) {
1412 llvm::TimeTraceScope
timeScope("Finalize synthetic sections", sec
->name
);
1413 sec
->finalizeContents();
1417 // We need to generate and finalize the content that depends on the address of
1418 // InputSections. As the generation of the content may also alter InputSection
1419 // addresses we must converge to a fixed point. We do that here. See the comment
1420 // in Writer<ELFT>::finalizeSections().
1421 template <class ELFT
> void Writer
<ELFT
>::finalizeAddressDependentContent() {
1422 llvm::TimeTraceScope
timeScope("Finalize address dependent content");
1424 AArch64Err843419Patcher a64p
;
1425 ARMErr657417Patcher a32p
;
1426 script
->assignAddresses();
1428 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1429 // do require the relative addresses of OutputSections because linker scripts
1430 // can assign Virtual Addresses to OutputSections that are not monotonically
1431 // increasing. Anything here must be repeatable, since spilling may change
1433 const auto finalizeOrderDependentContent
= [this] {
1434 for (Partition
&part
: partitions
)
1435 finalizeSynthetic(part
.armExidx
.get());
1436 resolveShfLinkOrder();
1438 finalizeOrderDependentContent();
1440 // Converts call x@GDPLT to call __tls_get_addr
1441 if (config
->emachine
== EM_HEXAGON
)
1442 hexagonTLSSymbolUpdate(outputSections
);
1444 uint32_t pass
= 0, assignPasses
= 0;
1446 bool changed
= target
->needsThunks
? tc
.createThunks(pass
, outputSections
)
1447 : target
->relaxOnce(pass
);
1448 bool spilled
= script
->spillSections();
1452 // With Thunk Size much smaller than branch range we expect to
1453 // converge quickly; if we get to 30 something has gone wrong.
1454 if (changed
&& pass
>= 30) {
1455 error(target
->needsThunks
? "thunk creation not converged"
1456 : "relaxation not converged");
1460 if (config
->fixCortexA53Errata843419
) {
1462 script
->assignAddresses();
1463 changed
|= a64p
.createFixes();
1465 if (config
->fixCortexA8
) {
1467 script
->assignAddresses();
1468 changed
|= a32p
.createFixes();
1471 finalizeSynthetic(in
.got
.get());
1473 in
.mipsGot
->updateAllocSize();
1475 for (Partition
&part
: partitions
) {
1476 // The R_AARCH64_AUTH_RELATIVE has a smaller addend field as bits [63:32]
1477 // encode the signing schema. We've put relocations in .relr.auth.dyn
1478 // during RelocationScanner::processAux, but the target VA for some of
1479 // them might be wider than 32 bits. We can only know the final VA at this
1480 // point, so move relocations with large values from .relr.auth.dyn to
1481 // .rela.dyn. See also AArch64::relocate.
1482 if (part
.relrAuthDyn
) {
1483 auto it
= llvm::remove_if(
1484 part
.relrAuthDyn
->relocs
, [&part
](const RelativeReloc
&elem
) {
1485 const Relocation
&reloc
= elem
.inputSec
->relocs()[elem
.relocIdx
];
1486 if (isInt
<32>(reloc
.sym
->getVA(reloc
.addend
)))
1488 part
.relaDyn
->addReloc({R_AARCH64_AUTH_RELATIVE
, elem
.inputSec
,
1490 DynamicReloc::AddendOnlyWithTargetVA
,
1491 *reloc
.sym
, reloc
.addend
, R_ABS
});
1494 changed
|= (it
!= part
.relrAuthDyn
->relocs
.end());
1495 part
.relrAuthDyn
->relocs
.erase(it
, part
.relrAuthDyn
->relocs
.end());
1498 changed
|= part
.relaDyn
->updateAllocSize();
1500 changed
|= part
.relrDyn
->updateAllocSize();
1501 if (part
.relrAuthDyn
)
1502 changed
|= part
.relrAuthDyn
->updateAllocSize();
1503 if (part
.memtagGlobalDescriptors
)
1504 changed
|= part
.memtagGlobalDescriptors
->updateAllocSize();
1507 std::pair
<const OutputSection
*, const Defined
*> changes
=
1508 script
->assignAddresses();
1510 // Some symbols may be dependent on section addresses. When we break the
1511 // loop, the symbol values are finalized because a previous
1512 // assignAddresses() finalized section addresses.
1513 if (!changes
.first
&& !changes
.second
)
1515 if (++assignPasses
== 5) {
1517 errorOrWarn("address (0x" + Twine::utohexstr(changes
.first
->addr
) +
1518 ") of section '" + changes
.first
->name
+
1519 "' does not converge");
1521 errorOrWarn("assignment to symbol " + toString(*changes
.second
) +
1522 " does not converge");
1525 } else if (spilled
) {
1526 // Spilling can change relative section order.
1527 finalizeOrderDependentContent();
1530 if (!config
->relocatable
)
1531 target
->finalizeRelax(pass
);
1533 if (config
->relocatable
)
1534 for (OutputSection
*sec
: outputSections
)
1537 // If addrExpr is set, the address may not be a multiple of the alignment.
1538 // Warn because this is error-prone.
1539 for (SectionCommand
*cmd
: script
->sectionCommands
)
1540 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1541 OutputSection
*osec
= &osd
->osec
;
1542 if (osec
->addr
% osec
->addralign
!= 0)
1543 warn("address (0x" + Twine::utohexstr(osec
->addr
) + ") of section " +
1544 osec
->name
+ " is not a multiple of alignment (" +
1545 Twine(osec
->addralign
) + ")");
1548 // Sizes are no longer allowed to grow, so all allowable spills have been
1549 // taken. Remove any leftover potential spills.
1550 script
->erasePotentialSpillSections();
1553 // If Input Sections have been shrunk (basic block sections) then
1554 // update symbol values and sizes associated with these sections. With basic
1555 // block sections, input sections can shrink when the jump instructions at
1556 // the end of the section are relaxed.
1557 static void fixSymbolsAfterShrinking() {
1558 for (InputFile
*File
: ctx
.objectFiles
) {
1559 parallelForEach(File
->getSymbols(), [&](Symbol
*Sym
) {
1560 auto *def
= dyn_cast
<Defined
>(Sym
);
1564 const SectionBase
*sec
= def
->section
;
1568 const InputSectionBase
*inputSec
= dyn_cast
<InputSectionBase
>(sec
);
1569 if (!inputSec
|| !inputSec
->bytesDropped
)
1572 const size_t OldSize
= inputSec
->content().size();
1573 const size_t NewSize
= OldSize
- inputSec
->bytesDropped
;
1575 if (def
->value
> NewSize
&& def
->value
<= OldSize
) {
1576 LLVM_DEBUG(llvm::dbgs()
1577 << "Moving symbol " << Sym
->getName() << " from "
1578 << def
->value
<< " to "
1579 << def
->value
- inputSec
->bytesDropped
<< " bytes\n");
1580 def
->value
-= inputSec
->bytesDropped
;
1584 if (def
->value
+ def
->size
> NewSize
&& def
->value
<= OldSize
&&
1585 def
->value
+ def
->size
<= OldSize
) {
1586 LLVM_DEBUG(llvm::dbgs()
1587 << "Shrinking symbol " << Sym
->getName() << " from "
1588 << def
->size
<< " to " << def
->size
- inputSec
->bytesDropped
1590 def
->size
-= inputSec
->bytesDropped
;
1596 // If basic block sections exist, there are opportunities to delete fall thru
1597 // jumps and shrink jump instructions after basic block reordering. This
1598 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1600 template <class ELFT
> void Writer
<ELFT
>::optimizeBasicBlockJumps() {
1601 assert(config
->optimizeBBJumps
);
1602 SmallVector
<InputSection
*, 0> storage
;
1604 script
->assignAddresses();
1605 // For every output section that has executable input sections, this
1606 // does the following:
1607 // 1. Deletes all direct jump instructions in input sections that
1608 // jump to the following section as it is not required.
1609 // 2. If there are two consecutive jump instructions, it checks
1610 // if they can be flipped and one can be deleted.
1611 for (OutputSection
*osec
: outputSections
) {
1612 if (!(osec
->flags
& SHF_EXECINSTR
))
1614 ArrayRef
<InputSection
*> sections
= getInputSections(*osec
, storage
);
1615 size_t numDeleted
= 0;
1616 // Delete all fall through jump instructions. Also, check if two
1617 // consecutive jump instructions can be flipped so that a fall
1618 // through jmp instruction can be deleted.
1619 for (size_t i
= 0, e
= sections
.size(); i
!= e
; ++i
) {
1620 InputSection
*next
= i
+ 1 < sections
.size() ? sections
[i
+ 1] : nullptr;
1621 InputSection
&sec
= *sections
[i
];
1622 numDeleted
+= target
->deleteFallThruJmpInsn(sec
, sec
.file
, next
);
1624 if (numDeleted
> 0) {
1625 script
->assignAddresses();
1626 LLVM_DEBUG(llvm::dbgs()
1627 << "Removing " << numDeleted
<< " fall through jumps\n");
1631 fixSymbolsAfterShrinking();
1633 for (OutputSection
*osec
: outputSections
)
1634 for (InputSection
*is
: getInputSections(*osec
, storage
))
1638 // In order to allow users to manipulate linker-synthesized sections,
1639 // we had to add synthetic sections to the input section list early,
1640 // even before we make decisions whether they are needed. This allows
1641 // users to write scripts like this: ".mygot : { .got }".
1643 // Doing it has an unintended side effects. If it turns out that we
1644 // don't need a .got (for example) at all because there's no
1645 // relocation that needs a .got, we don't want to emit .got.
1647 // To deal with the above problem, this function is called after
1648 // scanRelocations is called to remove synthetic sections that turn
1650 static void removeUnusedSyntheticSections() {
1651 // All input synthetic sections that can be empty are placed after
1652 // all regular ones. Reverse iterate to find the first synthetic section
1653 // after a non-synthetic one which will be our starting point.
1655 llvm::find_if(llvm::reverse(ctx
.inputSections
), [](InputSectionBase
*s
) {
1656 return !isa
<SyntheticSection
>(s
);
1659 // Remove unused synthetic sections from ctx.inputSections;
1660 DenseSet
<InputSectionBase
*> unused
;
1662 std::remove_if(start
, ctx
.inputSections
.end(), [&](InputSectionBase
*s
) {
1663 auto *sec
= cast
<SyntheticSection
>(s
);
1664 if (sec
->getParent() && sec
->isNeeded())
1666 // .relr.auth.dyn relocations may be moved to .rela.dyn in
1667 // finalizeAddressDependentContent, making .rela.dyn no longer empty.
1668 // Conservatively keep .rela.dyn. .relr.auth.dyn can be made empty, but
1669 // we would fail to remove it here.
1670 if (config
->emachine
== EM_AARCH64
&& config
->relrPackDynRelocs
)
1671 if (auto *relSec
= dyn_cast
<RelocationBaseSection
>(sec
))
1672 if (relSec
== mainPart
->relaDyn
.get())
1677 ctx
.inputSections
.erase(end
, ctx
.inputSections
.end());
1679 // Remove unused synthetic sections from the corresponding input section
1680 // description and orphanSections.
1681 for (auto *sec
: unused
)
1682 if (OutputSection
*osec
= cast
<SyntheticSection
>(sec
)->getParent())
1683 for (SectionCommand
*cmd
: osec
->commands
)
1684 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
))
1685 llvm::erase_if(isd
->sections
, [&](InputSection
*isec
) {
1686 return unused
.count(isec
);
1688 llvm::erase_if(script
->orphanSections
, [&](const InputSectionBase
*sec
) {
1689 return unused
.count(sec
);
1693 // Create output section objects and add them to OutputSections.
1694 template <class ELFT
> void Writer
<ELFT
>::finalizeSections() {
1695 if (!config
->relocatable
) {
1696 Out::preinitArray
= findSection(".preinit_array");
1697 Out::initArray
= findSection(".init_array");
1698 Out::finiArray
= findSection(".fini_array");
1700 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1701 // symbols for sections, so that the runtime can get the start and end
1702 // addresses of each section by section name. Add such symbols.
1703 addStartEndSymbols();
1704 for (SectionCommand
*cmd
: script
->sectionCommands
)
1705 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1706 addStartStopSymbols(osd
->osec
);
1708 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1709 // It should be okay as no one seems to care about the type.
1710 // Even the author of gold doesn't remember why gold behaves that way.
1711 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1712 if (mainPart
->dynamic
->parent
) {
1713 Symbol
*s
= symtab
.addSymbol(Defined
{
1714 ctx
.internalFile
, "_DYNAMIC", STB_WEAK
, STV_HIDDEN
, STT_NOTYPE
,
1715 /*value=*/0, /*size=*/0, mainPart
->dynamic
.get()});
1716 s
->isUsedInRegularObj
= true;
1719 // Define __rel[a]_iplt_{start,end} symbols if needed.
1720 addRelIpltSymbols();
1722 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1723 // should only be defined in an executable. If .sdata does not exist, its
1724 // value/section does not matter but it has to be relative, so set its
1725 // st_shndx arbitrarily to 1 (Out::elfHeader).
1726 if (config
->emachine
== EM_RISCV
) {
1727 ElfSym::riscvGlobalPointer
= nullptr;
1728 if (!config
->shared
) {
1729 OutputSection
*sec
= findSection(".sdata");
1731 "__global_pointer$", sec
? sec
: Out::elfHeader
, 0x800, STV_DEFAULT
);
1732 // Set riscvGlobalPointer to be used by the optional global pointer
1734 if (config
->relaxGP
) {
1735 Symbol
*s
= symtab
.find("__global_pointer$");
1736 if (s
&& s
->isDefined())
1737 ElfSym::riscvGlobalPointer
= cast
<Defined
>(s
);
1742 if (config
->emachine
== EM_386
|| config
->emachine
== EM_X86_64
) {
1743 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1746 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1748 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1749 // in the TLS block).
1751 // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1752 // as an absolute symbol of zero. This is different from GNU linkers which
1753 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1754 Symbol
*s
= symtab
.find("_TLS_MODULE_BASE_");
1755 if (s
&& s
->isUndefined()) {
1756 s
->resolve(Defined
{ctx
.internalFile
, StringRef(), STB_GLOBAL
,
1757 STV_HIDDEN
, STT_TLS
, /*value=*/0, 0,
1758 /*section=*/nullptr});
1759 ElfSym::tlsModuleBase
= cast
<Defined
>(s
);
1763 // This responsible for splitting up .eh_frame section into
1764 // pieces. The relocation scan uses those pieces, so this has to be
1767 llvm::TimeTraceScope
timeScope("Finalize .eh_frame");
1768 for (Partition
&part
: partitions
)
1769 finalizeSynthetic(part
.ehFrame
.get());
1773 demoteSymbolsAndComputeIsPreemptible();
1775 if (config
->copyRelocs
&& config
->discard
!= DiscardPolicy::None
)
1776 markUsedLocalSymbols
<ELFT
>();
1777 demoteAndCopyLocalSymbols();
1779 if (config
->copyRelocs
)
1780 addSectionSymbols();
1782 // Change values of linker-script-defined symbols from placeholders (assigned
1783 // by declareSymbols) to actual definitions.
1784 script
->processSymbolAssignments();
1786 if (!config
->relocatable
) {
1787 llvm::TimeTraceScope
timeScope("Scan relocations");
1788 // Scan relocations. This must be done after every symbol is declared so
1789 // that we can correctly decide if a dynamic relocation is needed. This is
1790 // called after processSymbolAssignments() because it needs to know whether
1791 // a linker-script-defined symbol is absolute.
1792 ppc64noTocRelax
.clear();
1793 scanRelocations
<ELFT
>();
1794 reportUndefinedSymbols();
1795 postScanRelocations();
1797 if (in
.plt
&& in
.plt
->isNeeded())
1798 in
.plt
->addSymbols();
1799 if (in
.iplt
&& in
.iplt
->isNeeded())
1800 in
.iplt
->addSymbols();
1802 if (config
->unresolvedSymbolsInShlib
!= UnresolvedPolicy::Ignore
) {
1804 config
->unresolvedSymbolsInShlib
== UnresolvedPolicy::ReportError
1807 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1808 // entries are seen. These cases would otherwise lead to runtime errors
1809 // reported by the dynamic linker.
1811 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
1812 // to catch more cases. That is too much for us. Our approach resembles
1813 // the one used in ld.gold, achieves a good balance to be useful but not
1816 // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol
1817 // is overridden by a hidden visibility Defined (which is later discarded
1818 // due to GC), don't report the diagnostic. However, this may indicate an
1819 // unintended SharedSymbol.
1820 for (SharedFile
*file
: ctx
.sharedFiles
) {
1821 bool allNeededIsKnown
=
1822 llvm::all_of(file
->dtNeeded
, [&](StringRef needed
) {
1823 return symtab
.soNames
.count(CachedHashStringRef(needed
));
1825 if (!allNeededIsKnown
)
1827 for (Symbol
*sym
: file
->requiredSymbols
) {
1828 if (sym
->dsoDefined
)
1830 if (sym
->isUndefined() && !sym
->isWeak()) {
1831 diagnose("undefined reference: " + toString(*sym
) +
1832 "\n>>> referenced by " + toString(file
) +
1833 " (disallowed by --no-allow-shlib-undefined)");
1834 } else if (sym
->isDefined() && sym
->computeBinding() == STB_LOCAL
) {
1835 diagnose("non-exported symbol '" + toString(*sym
) + "' in '" +
1836 toString(sym
->file
) + "' is referenced by DSO '" +
1837 toString(file
) + "'");
1845 llvm::TimeTraceScope
timeScope("Add symbols to symtabs");
1846 // Now that we have defined all possible global symbols including linker-
1847 // synthesized ones. Visit all symbols to give the finishing touches.
1848 for (Symbol
*sym
: symtab
.getSymbols()) {
1849 if (!sym
->isUsedInRegularObj
|| !includeInSymtab(*sym
))
1851 if (!config
->relocatable
)
1852 sym
->binding
= sym
->computeBinding();
1854 in
.symTab
->addSymbol(sym
);
1856 if (sym
->includeInDynsym()) {
1857 partitions
[sym
->partition
- 1].dynSymTab
->addSymbol(sym
);
1858 if (auto *file
= dyn_cast_or_null
<SharedFile
>(sym
->file
))
1859 if (file
->isNeeded
&& !sym
->isUndefined())
1864 // We also need to scan the dynamic relocation tables of the other
1865 // partitions and add any referenced symbols to the partition's dynsym.
1866 for (Partition
&part
: MutableArrayRef
<Partition
>(partitions
).slice(1)) {
1867 DenseSet
<Symbol
*> syms
;
1868 for (const SymbolTableEntry
&e
: part
.dynSymTab
->getSymbols())
1870 for (DynamicReloc
&reloc
: part
.relaDyn
->relocs
)
1871 if (reloc
.sym
&& reloc
.needsDynSymIndex() &&
1872 syms
.insert(reloc
.sym
).second
)
1873 part
.dynSymTab
->addSymbol(reloc
.sym
);
1878 in
.mipsGot
->build();
1880 removeUnusedSyntheticSections();
1881 script
->diagnoseOrphanHandling();
1882 script
->diagnoseMissingSGSectionAddress();
1886 // Create a list of OutputSections, assign sectionIndex, and populate
1888 for (SectionCommand
*cmd
: script
->sectionCommands
)
1889 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1890 OutputSection
*osec
= &osd
->osec
;
1891 outputSections
.push_back(osec
);
1892 osec
->sectionIndex
= outputSections
.size();
1893 osec
->shName
= in
.shStrTab
->addString(osec
->name
);
1896 // Prefer command line supplied address over other constraints.
1897 for (OutputSection
*sec
: outputSections
) {
1898 auto i
= config
->sectionStartMap
.find(sec
->name
);
1899 if (i
!= config
->sectionStartMap
.end())
1900 sec
->addrExpr
= [=] { return i
->second
; };
1903 // With the outputSections available check for GDPLT relocations
1904 // and add __tls_get_addr symbol if needed.
1905 if (config
->emachine
== EM_HEXAGON
&& hexagonNeedsTLSSymbol(outputSections
)) {
1907 symtab
.addSymbol(Undefined
{ctx
.internalFile
, "__tls_get_addr",
1908 STB_GLOBAL
, STV_DEFAULT
, STT_NOTYPE
});
1909 sym
->isPreemptible
= true;
1910 partitions
[0].dynSymTab
->addSymbol(sym
);
1913 // This is a bit of a hack. A value of 0 means undef, so we set it
1914 // to 1 to make __ehdr_start defined. The section number is not
1915 // particularly relevant.
1916 Out::elfHeader
->sectionIndex
= 1;
1917 Out::elfHeader
->size
= sizeof(typename
ELFT::Ehdr
);
1919 // Binary and relocatable output does not have PHDRS.
1920 // The headers have to be created before finalize as that can influence the
1921 // image base and the dynamic section on mips includes the image base.
1922 if (!config
->relocatable
&& !config
->oFormatBinary
) {
1923 for (Partition
&part
: partitions
) {
1924 part
.phdrs
= script
->hasPhdrsCommands() ? script
->createPhdrs()
1925 : createPhdrs(part
);
1926 if (config
->emachine
== EM_ARM
) {
1927 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
1928 addPhdrForSection(part
, SHT_ARM_EXIDX
, PT_ARM_EXIDX
, PF_R
);
1930 if (config
->emachine
== EM_MIPS
) {
1931 // Add separate segments for MIPS-specific sections.
1932 addPhdrForSection(part
, SHT_MIPS_REGINFO
, PT_MIPS_REGINFO
, PF_R
);
1933 addPhdrForSection(part
, SHT_MIPS_OPTIONS
, PT_MIPS_OPTIONS
, PF_R
);
1934 addPhdrForSection(part
, SHT_MIPS_ABIFLAGS
, PT_MIPS_ABIFLAGS
, PF_R
);
1936 if (config
->emachine
== EM_RISCV
)
1937 addPhdrForSection(part
, SHT_RISCV_ATTRIBUTES
, PT_RISCV_ATTRIBUTES
,
1940 Out::programHeaders
->size
= sizeof(Elf_Phdr
) * mainPart
->phdrs
.size();
1942 // Find the TLS segment. This happens before the section layout loop so that
1943 // Android relocation packing can look up TLS symbol addresses. We only need
1944 // to care about the main partition here because all TLS symbols were moved
1945 // to the main partition (see MarkLive.cpp).
1946 for (PhdrEntry
*p
: mainPart
->phdrs
)
1947 if (p
->p_type
== PT_TLS
)
1951 // Some symbols are defined in term of program headers. Now that we
1952 // have the headers, we can find out which sections they point to.
1953 setReservedSymbolSections();
1955 if (script
->noCrossRefs
.size()) {
1956 llvm::TimeTraceScope
timeScope("Check NOCROSSREFS");
1957 checkNoCrossRefs
<ELFT
>();
1961 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
1963 finalizeSynthetic(in
.bss
.get());
1964 finalizeSynthetic(in
.bssRelRo
.get());
1965 finalizeSynthetic(in
.symTabShndx
.get());
1966 finalizeSynthetic(in
.shStrTab
.get());
1967 finalizeSynthetic(in
.strTab
.get());
1968 finalizeSynthetic(in
.got
.get());
1969 finalizeSynthetic(in
.mipsGot
.get());
1970 finalizeSynthetic(in
.igotPlt
.get());
1971 finalizeSynthetic(in
.gotPlt
.get());
1972 finalizeSynthetic(in
.relaPlt
.get());
1973 finalizeSynthetic(in
.plt
.get());
1974 finalizeSynthetic(in
.iplt
.get());
1975 finalizeSynthetic(in
.ppc32Got2
.get());
1976 finalizeSynthetic(in
.partIndex
.get());
1978 // Dynamic section must be the last one in this list and dynamic
1979 // symbol table section (dynSymTab) must be the first one.
1980 for (Partition
&part
: partitions
) {
1982 part
.relaDyn
->mergeRels();
1983 // Compute DT_RELACOUNT to be used by part.dynamic.
1984 part
.relaDyn
->partitionRels();
1985 finalizeSynthetic(part
.relaDyn
.get());
1988 part
.relrDyn
->mergeRels();
1989 finalizeSynthetic(part
.relrDyn
.get());
1991 if (part
.relrAuthDyn
) {
1992 part
.relrAuthDyn
->mergeRels();
1993 finalizeSynthetic(part
.relrAuthDyn
.get());
1996 finalizeSynthetic(part
.dynSymTab
.get());
1997 finalizeSynthetic(part
.gnuHashTab
.get());
1998 finalizeSynthetic(part
.hashTab
.get());
1999 finalizeSynthetic(part
.verDef
.get());
2000 finalizeSynthetic(part
.ehFrameHdr
.get());
2001 finalizeSynthetic(part
.verSym
.get());
2002 finalizeSynthetic(part
.verNeed
.get());
2003 finalizeSynthetic(part
.dynamic
.get());
2007 if (!script
->hasSectionsCommand
&& !config
->relocatable
)
2008 fixSectionAlignments();
2011 // 1) Create "thunks":
2012 // Jump instructions in many ISAs have small displacements, and therefore
2013 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2014 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2015 // responsibility to create and insert small pieces of code between
2016 // sections to extend the ranges if jump targets are out of range. Such
2017 // code pieces are called "thunks".
2019 // We add thunks at this stage. We couldn't do this before this point
2020 // because this is the earliest point where we know sizes of sections and
2021 // their layouts (that are needed to determine if jump targets are in
2024 // 2) Update the sections. We need to generate content that depends on the
2025 // address of InputSections. For example, MIPS GOT section content or
2026 // android packed relocations sections content.
2028 // 3) Assign the final values for the linker script symbols. Linker scripts
2029 // sometimes using forward symbol declarations. We want to set the correct
2030 // values. They also might change after adding the thunks.
2031 finalizeAddressDependentContent();
2033 // All information needed for OutputSection part of Map file is available.
2038 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
2039 // finalizeAddressDependentContent may have added local symbols to the
2040 // static symbol table.
2041 finalizeSynthetic(in
.symTab
.get());
2042 finalizeSynthetic(in
.debugNames
.get());
2043 finalizeSynthetic(in
.ppc64LongBranchTarget
.get());
2044 finalizeSynthetic(in
.armCmseSGSection
.get());
2047 // Relaxation to delete inter-basic block jumps created by basic block
2048 // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
2049 // can relax jump instructions based on symbol offset.
2050 if (config
->optimizeBBJumps
)
2051 optimizeBasicBlockJumps();
2053 // Fill other section headers. The dynamic table is finalized
2054 // at the end because some tags like RELSZ depend on result
2055 // of finalizing other sections.
2056 for (OutputSection
*sec
: outputSections
)
2059 script
->checkFinalScriptConditions();
2061 if (config
->emachine
== EM_ARM
&& !config
->isLE
&& config
->armBe8
) {
2062 addArmInputSectionMappingSymbols();
2063 sortArmMappingSymbols();
2067 // Ensure data sections are not mixed with executable sections when
2068 // --execute-only is used. --execute-only make pages executable but not
2070 template <class ELFT
> void Writer
<ELFT
>::checkExecuteOnly() {
2071 if (!config
->executeOnly
)
2074 SmallVector
<InputSection
*, 0> storage
;
2075 for (OutputSection
*osec
: outputSections
)
2076 if (osec
->flags
& SHF_EXECINSTR
)
2077 for (InputSection
*isec
: getInputSections(*osec
, storage
))
2078 if (!(isec
->flags
& SHF_EXECINSTR
))
2079 error("cannot place " + toString(isec
) + " into " +
2080 toString(osec
->name
) +
2081 ": --execute-only does not support intermingling data and code");
2084 // The linker is expected to define SECNAME_start and SECNAME_end
2085 // symbols for a few sections. This function defines them.
2086 template <class ELFT
> void Writer
<ELFT
>::addStartEndSymbols() {
2087 // If the associated output section does not exist, there is ambiguity as to
2088 // how we define _start and _end symbols for an init/fini section. Users
2089 // expect no "undefined symbol" linker errors and loaders expect equal
2090 // st_value but do not particularly care whether the symbols are defined or
2091 // not. We retain the output section so that the section indexes will be
2093 auto define
= [=](StringRef start
, StringRef end
, OutputSection
*os
) {
2095 Defined
*startSym
= addOptionalRegular(start
, os
, 0);
2096 Defined
*stopSym
= addOptionalRegular(end
, os
, -1);
2097 if (startSym
|| stopSym
)
2098 os
->usedInExpression
= true;
2100 addOptionalRegular(start
, Out::elfHeader
, 0);
2101 addOptionalRegular(end
, Out::elfHeader
, 0);
2105 define("__preinit_array_start", "__preinit_array_end", Out::preinitArray
);
2106 define("__init_array_start", "__init_array_end", Out::initArray
);
2107 define("__fini_array_start", "__fini_array_end", Out::finiArray
);
2109 // As a special case, don't unnecessarily retain .ARM.exidx, which would
2110 // create an empty PT_ARM_EXIDX.
2111 if (OutputSection
*sec
= findSection(".ARM.exidx"))
2112 define("__exidx_start", "__exidx_end", sec
);
2115 // If a section name is valid as a C identifier (which is rare because of
2116 // the leading '.'), linkers are expected to define __start_<secname> and
2117 // __stop_<secname> symbols. They are at beginning and end of the section,
2118 // respectively. This is not requested by the ELF standard, but GNU ld and
2119 // gold provide the feature, and used by many programs.
2120 template <class ELFT
>
2121 void Writer
<ELFT
>::addStartStopSymbols(OutputSection
&osec
) {
2122 StringRef s
= osec
.name
;
2123 if (!isValidCIdentifier(s
))
2125 Defined
*startSym
= addOptionalRegular(saver().save("__start_" + s
), &osec
, 0,
2126 config
->zStartStopVisibility
);
2127 Defined
*stopSym
= addOptionalRegular(saver().save("__stop_" + s
), &osec
, -1,
2128 config
->zStartStopVisibility
);
2129 if (startSym
|| stopSym
)
2130 osec
.usedInExpression
= true;
2133 static bool needsPtLoad(OutputSection
*sec
) {
2134 if (!(sec
->flags
& SHF_ALLOC
))
2137 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2138 // responsible for allocating space for them, not the PT_LOAD that
2139 // contains the TLS initialization image.
2140 if ((sec
->flags
& SHF_TLS
) && sec
->type
== SHT_NOBITS
)
2145 // Adjust phdr flags according to certain options.
2146 static uint64_t computeFlags(uint64_t flags
) {
2148 return PF_R
| PF_W
| PF_X
;
2149 if (config
->executeOnly
&& (flags
& PF_X
))
2150 return flags
& ~PF_R
;
2154 // Decide which program headers to create and which sections to include in each
2156 template <class ELFT
>
2157 SmallVector
<PhdrEntry
*, 0> Writer
<ELFT
>::createPhdrs(Partition
&part
) {
2158 SmallVector
<PhdrEntry
*, 0> ret
;
2159 auto addHdr
= [&](unsigned type
, unsigned flags
) -> PhdrEntry
* {
2160 ret
.push_back(make
<PhdrEntry
>(type
, flags
));
2164 unsigned partNo
= part
.getNumber();
2165 bool isMain
= partNo
== 1;
2167 // Add the first PT_LOAD segment for regular output sections.
2168 uint64_t flags
= computeFlags(PF_R
);
2169 PhdrEntry
*load
= nullptr;
2171 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2173 if (!config
->nmagic
&& !config
->omagic
) {
2174 // The first phdr entry is PT_PHDR which describes the program header
2177 addHdr(PT_PHDR
, PF_R
)->add(Out::programHeaders
);
2179 addHdr(PT_PHDR
, PF_R
)->add(part
.programHeaders
->getParent());
2181 // PT_INTERP must be the second entry if exists.
2182 if (OutputSection
*cmd
= findSection(".interp", partNo
))
2183 addHdr(PT_INTERP
, cmd
->getPhdrFlags())->add(cmd
);
2185 // Add the headers. We will remove them if they don't fit.
2186 // In the other partitions the headers are ordinary sections, so they don't
2187 // need to be added here.
2189 load
= addHdr(PT_LOAD
, flags
);
2190 load
->add(Out::elfHeader
);
2191 load
->add(Out::programHeaders
);
2195 // PT_GNU_RELRO includes all sections that should be marked as
2196 // read-only by dynamic linker after processing relocations.
2197 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2198 // an error message if more than one PT_GNU_RELRO PHDR is required.
2199 PhdrEntry
*relRo
= make
<PhdrEntry
>(PT_GNU_RELRO
, PF_R
);
2200 bool inRelroPhdr
= false;
2201 OutputSection
*relroEnd
= nullptr;
2202 for (OutputSection
*sec
: outputSections
) {
2203 if (sec
->partition
!= partNo
|| !needsPtLoad(sec
))
2205 if (isRelroSection(sec
)) {
2210 error("section: " + sec
->name
+ " is not contiguous with other relro" +
2212 } else if (inRelroPhdr
) {
2213 inRelroPhdr
= false;
2219 for (OutputSection
*sec
: outputSections
) {
2220 if (!needsPtLoad(sec
))
2223 // Normally, sections in partitions other than the current partition are
2224 // ignored. But partition number 255 is a special case: it contains the
2225 // partition end marker (.part.end). It needs to be added to the main
2226 // partition so that a segment is created for it in the main partition,
2227 // which will cause the dynamic loader to reserve space for the other
2229 if (sec
->partition
!= partNo
) {
2230 if (isMain
&& sec
->partition
== 255)
2231 addHdr(PT_LOAD
, computeFlags(sec
->getPhdrFlags()))->add(sec
);
2235 // Segments are contiguous memory regions that has the same attributes
2236 // (e.g. executable or writable). There is one phdr for each segment.
2237 // Therefore, we need to create a new phdr when the next section has
2238 // incompatible flags or is loaded at a discontiguous address or memory
2239 // region using AT or AT> linker script command, respectively.
2241 // As an exception, we don't create a separate load segment for the ELF
2242 // headers, even if the first "real" output has an AT or AT> attribute.
2244 // In addition, NOBITS sections should only be placed at the end of a LOAD
2245 // segment (since it's represented as p_filesz < p_memsz). If we have a
2246 // not-NOBITS section after a NOBITS, we create a new LOAD for the latter
2247 // even if flags match, so as not to require actually writing the
2248 // supposed-to-be-NOBITS section to the output file. (However, we cannot do
2249 // so when hasSectionsCommand, since we cannot introduce the extra alignment
2250 // needed to create a new LOAD)
2251 uint64_t newFlags
= computeFlags(sec
->getPhdrFlags());
2252 // When --no-rosegment is specified, RO and RX sections are compatible.
2253 uint32_t incompatible
= flags
^ newFlags
;
2254 if (config
->singleRoRx
&& !(newFlags
& PF_W
))
2255 incompatible
&= ~PF_X
;
2259 bool sameLMARegion
=
2260 load
&& !sec
->lmaExpr
&& sec
->lmaRegion
== load
->firstSec
->lmaRegion
;
2261 if (load
&& sec
!= relroEnd
&&
2262 sec
->memRegion
== load
->firstSec
->memRegion
&&
2263 (sameLMARegion
|| load
->lastSec
== Out::programHeaders
) &&
2264 (script
->hasSectionsCommand
|| sec
->type
== SHT_NOBITS
||
2265 load
->lastSec
->type
!= SHT_NOBITS
)) {
2266 load
->p_flags
|= newFlags
;
2268 load
= addHdr(PT_LOAD
, newFlags
);
2275 // Add a TLS segment if any.
2276 PhdrEntry
*tlsHdr
= make
<PhdrEntry
>(PT_TLS
, PF_R
);
2277 for (OutputSection
*sec
: outputSections
)
2278 if (sec
->partition
== partNo
&& sec
->flags
& SHF_TLS
)
2280 if (tlsHdr
->firstSec
)
2281 ret
.push_back(tlsHdr
);
2283 // Add an entry for .dynamic.
2284 if (OutputSection
*sec
= part
.dynamic
->getParent())
2285 addHdr(PT_DYNAMIC
, sec
->getPhdrFlags())->add(sec
);
2287 if (relRo
->firstSec
)
2288 ret
.push_back(relRo
);
2290 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2291 if (part
.ehFrame
->isNeeded() && part
.ehFrameHdr
&&
2292 part
.ehFrame
->getParent() && part
.ehFrameHdr
->getParent())
2293 addHdr(PT_GNU_EH_FRAME
, part
.ehFrameHdr
->getParent()->getPhdrFlags())
2294 ->add(part
.ehFrameHdr
->getParent());
2296 if (config
->osabi
== ELFOSABI_OPENBSD
) {
2297 // PT_OPENBSD_MUTABLE makes the dynamic linker fill the segment with
2298 // zero data, like bss, but it can be treated differently.
2299 if (OutputSection
*cmd
= findSection(".openbsd.mutable", partNo
))
2300 addHdr(PT_OPENBSD_MUTABLE
, cmd
->getPhdrFlags())->add(cmd
);
2302 // PT_OPENBSD_RANDOMIZE makes the dynamic linker fill the segment
2303 // with random data.
2304 if (OutputSection
*cmd
= findSection(".openbsd.randomdata", partNo
))
2305 addHdr(PT_OPENBSD_RANDOMIZE
, cmd
->getPhdrFlags())->add(cmd
);
2307 // PT_OPENBSD_SYSCALLS makes the kernel and dynamic linker register
2308 // system call sites.
2309 if (OutputSection
*cmd
= findSection(".openbsd.syscalls", partNo
))
2310 addHdr(PT_OPENBSD_SYSCALLS
, cmd
->getPhdrFlags())->add(cmd
);
2313 if (config
->zGnustack
!= GnuStackKind::None
) {
2314 // PT_GNU_STACK is a special section to tell the loader to make the
2315 // pages for the stack non-executable. If you really want an executable
2316 // stack, you can pass -z execstack, but that's not recommended for
2317 // security reasons.
2318 unsigned perm
= PF_R
| PF_W
;
2319 if (config
->zGnustack
== GnuStackKind::Exec
)
2321 addHdr(PT_GNU_STACK
, perm
)->p_memsz
= config
->zStackSize
;
2324 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2325 // is expected to perform W^X violations, such as calling mprotect(2) or
2326 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2328 if (config
->zWxneeded
)
2329 addHdr(PT_OPENBSD_WXNEEDED
, PF_X
);
2331 if (OutputSection
*cmd
= findSection(".note.gnu.property", partNo
))
2332 addHdr(PT_GNU_PROPERTY
, PF_R
)->add(cmd
);
2334 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2336 PhdrEntry
*note
= nullptr;
2337 for (OutputSection
*sec
: outputSections
) {
2338 if (sec
->partition
!= partNo
)
2340 if (sec
->type
== SHT_NOTE
&& (sec
->flags
& SHF_ALLOC
)) {
2341 if (!note
|| sec
->lmaExpr
|| note
->lastSec
->addralign
!= sec
->addralign
)
2342 note
= addHdr(PT_NOTE
, PF_R
);
2351 template <class ELFT
>
2352 void Writer
<ELFT
>::addPhdrForSection(Partition
&part
, unsigned shType
,
2353 unsigned pType
, unsigned pFlags
) {
2354 unsigned partNo
= part
.getNumber();
2355 auto i
= llvm::find_if(outputSections
, [=](OutputSection
*cmd
) {
2356 return cmd
->partition
== partNo
&& cmd
->type
== shType
;
2358 if (i
== outputSections
.end())
2361 PhdrEntry
*entry
= make
<PhdrEntry
>(pType
, pFlags
);
2363 part
.phdrs
.push_back(entry
);
2366 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2367 // This is achieved by assigning an alignment expression to addrExpr of each
2369 template <class ELFT
> void Writer
<ELFT
>::fixSectionAlignments() {
2370 const PhdrEntry
*prev
;
2371 auto pageAlign
= [&](const PhdrEntry
*p
) {
2372 OutputSection
*cmd
= p
->firstSec
;
2375 cmd
->alignExpr
= [align
= cmd
->addralign
]() { return align
; };
2376 if (!cmd
->addrExpr
) {
2377 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2378 // padding in the file contents.
2380 // When -z separate-code is used we must not have any overlap in pages
2381 // between an executable segment and a non-executable segment. We align to
2382 // the next maximum page size boundary on transitions between executable
2383 // and non-executable segments.
2385 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2386 // sections will be extracted to a separate file. Align to the next
2387 // maximum page size boundary so that we can find the ELF header at the
2388 // start. We cannot benefit from overlapping p_offset ranges with the
2389 // previous segment anyway.
2390 if (config
->zSeparate
== SeparateSegmentKind::Loadable
||
2391 (config
->zSeparate
== SeparateSegmentKind::Code
&& prev
&&
2392 (prev
->p_flags
& PF_X
) != (p
->p_flags
& PF_X
)) ||
2393 cmd
->type
== SHT_LLVM_PART_EHDR
)
2394 cmd
->addrExpr
= [] {
2395 return alignToPowerOf2(script
->getDot(), config
->maxPageSize
);
2397 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2398 // it must be the RW. Align to p_align(PT_TLS) to make sure
2399 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2400 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2401 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2402 // be congruent to 0 modulo p_align(PT_TLS).
2404 // Technically this is not required, but as of 2019, some dynamic loaders
2405 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2406 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2407 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2408 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2409 // blocks correctly. We need to keep the workaround for a while.
2410 else if (Out::tlsPhdr
&& Out::tlsPhdr
->firstSec
== p
->firstSec
)
2411 cmd
->addrExpr
= [] {
2412 return alignToPowerOf2(script
->getDot(), config
->maxPageSize
) +
2413 alignToPowerOf2(script
->getDot() % config
->maxPageSize
,
2414 Out::tlsPhdr
->p_align
);
2417 cmd
->addrExpr
= [] {
2418 return alignToPowerOf2(script
->getDot(), config
->maxPageSize
) +
2419 script
->getDot() % config
->maxPageSize
;
2424 for (Partition
&part
: partitions
) {
2426 for (const PhdrEntry
*p
: part
.phdrs
)
2427 if (p
->p_type
== PT_LOAD
&& p
->firstSec
) {
2434 // Compute an in-file position for a given section. The file offset must be the
2435 // same with its virtual address modulo the page size, so that the loader can
2436 // load executables without any address adjustment.
2437 static uint64_t computeFileOffset(OutputSection
*os
, uint64_t off
) {
2438 // The first section in a PT_LOAD has to have congruent offset and address
2439 // modulo the maximum page size.
2440 if (os
->ptLoad
&& os
->ptLoad
->firstSec
== os
)
2441 return alignTo(off
, os
->ptLoad
->p_align
, os
->addr
);
2443 // File offsets are not significant for .bss sections other than the first one
2444 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2445 // increasing rather than setting to zero.
2446 if (os
->type
== SHT_NOBITS
&&
2447 (!Out::tlsPhdr
|| Out::tlsPhdr
->firstSec
!= os
))
2450 // If the section is not in a PT_LOAD, we just have to align it.
2452 return alignToPowerOf2(off
, os
->addralign
);
2454 // If two sections share the same PT_LOAD the file offset is calculated
2455 // using this formula: Off2 = Off1 + (VA2 - VA1).
2456 OutputSection
*first
= os
->ptLoad
->firstSec
;
2457 return first
->offset
+ os
->addr
- first
->addr
;
2460 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsetsBinary() {
2461 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2462 auto needsOffset
= [](OutputSection
&sec
) {
2463 return sec
.type
!= SHT_NOBITS
&& (sec
.flags
& SHF_ALLOC
) && sec
.size
> 0;
2465 uint64_t minAddr
= UINT64_MAX
;
2466 for (OutputSection
*sec
: outputSections
)
2467 if (needsOffset(*sec
)) {
2468 sec
->offset
= sec
->getLMA();
2469 minAddr
= std::min(minAddr
, sec
->offset
);
2472 // Sections are laid out at LMA minus minAddr.
2474 for (OutputSection
*sec
: outputSections
)
2475 if (needsOffset(*sec
)) {
2476 sec
->offset
-= minAddr
;
2477 fileSize
= std::max(fileSize
, sec
->offset
+ sec
->size
);
2481 static std::string
rangeToString(uint64_t addr
, uint64_t len
) {
2482 return "[0x" + utohexstr(addr
) + ", 0x" + utohexstr(addr
+ len
- 1) + "]";
2485 // Assign file offsets to output sections.
2486 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsets() {
2487 Out::programHeaders
->offset
= Out::elfHeader
->size
;
2488 uint64_t off
= Out::elfHeader
->size
+ Out::programHeaders
->size
;
2490 PhdrEntry
*lastRX
= nullptr;
2491 for (Partition
&part
: partitions
)
2492 for (PhdrEntry
*p
: part
.phdrs
)
2493 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2496 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2497 // will not occupy file offsets contained by a PT_LOAD.
2498 for (OutputSection
*sec
: outputSections
) {
2499 if (!(sec
->flags
& SHF_ALLOC
))
2501 off
= computeFileOffset(sec
, off
);
2503 if (sec
->type
!= SHT_NOBITS
)
2506 // If this is a last section of the last executable segment and that
2507 // segment is the last loadable segment, align the offset of the
2508 // following section to avoid loading non-segments parts of the file.
2509 if (config
->zSeparate
!= SeparateSegmentKind::None
&& lastRX
&&
2510 lastRX
->lastSec
== sec
)
2511 off
= alignToPowerOf2(off
, config
->maxPageSize
);
2513 for (OutputSection
*osec
: outputSections
) {
2514 if (osec
->flags
& SHF_ALLOC
)
2516 osec
->offset
= alignToPowerOf2(off
, osec
->addralign
);
2517 off
= osec
->offset
+ osec
->size
;
2520 sectionHeaderOff
= alignToPowerOf2(off
, config
->wordsize
);
2521 fileSize
= sectionHeaderOff
+ (outputSections
.size() + 1) * sizeof(Elf_Shdr
);
2523 // Our logic assumes that sections have rising VA within the same segment.
2524 // With use of linker scripts it is possible to violate this rule and get file
2525 // offset overlaps or overflows. That should never happen with a valid script
2526 // which does not move the location counter backwards and usually scripts do
2527 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2528 // kernel, which control segment distribution explicitly and move the counter
2529 // backwards, so we have to allow doing that to support linking them. We
2530 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2531 // we want to prevent file size overflows because it would crash the linker.
2532 for (OutputSection
*sec
: outputSections
) {
2533 if (sec
->type
== SHT_NOBITS
)
2535 if ((sec
->offset
> fileSize
) || (sec
->offset
+ sec
->size
> fileSize
))
2536 error("unable to place section " + sec
->name
+ " at file offset " +
2537 rangeToString(sec
->offset
, sec
->size
) +
2538 "; check your linker script for overflows");
2542 // Finalize the program headers. We call this function after we assign
2543 // file offsets and VAs to all sections.
2544 template <class ELFT
> void Writer
<ELFT
>::setPhdrs(Partition
&part
) {
2545 for (PhdrEntry
*p
: part
.phdrs
) {
2546 OutputSection
*first
= p
->firstSec
;
2547 OutputSection
*last
= p
->lastSec
;
2549 // .ARM.exidx sections may not be within a single .ARM.exidx
2550 // output section. We always want to describe just the
2551 // SyntheticSection.
2552 if (part
.armExidx
&& p
->p_type
== PT_ARM_EXIDX
) {
2553 p
->p_filesz
= part
.armExidx
->getSize();
2554 p
->p_memsz
= part
.armExidx
->getSize();
2555 p
->p_offset
= first
->offset
+ part
.armExidx
->outSecOff
;
2556 p
->p_vaddr
= first
->addr
+ part
.armExidx
->outSecOff
;
2557 p
->p_align
= part
.armExidx
->addralign
;
2559 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2562 p
->p_paddr
= first
->getLMA() + part
.armExidx
->outSecOff
;
2567 p
->p_filesz
= last
->offset
- first
->offset
;
2568 if (last
->type
!= SHT_NOBITS
)
2569 p
->p_filesz
+= last
->size
;
2571 p
->p_memsz
= last
->addr
+ last
->size
- first
->addr
;
2572 p
->p_offset
= first
->offset
;
2573 p
->p_vaddr
= first
->addr
;
2575 // File offsets in partitions other than the main partition are relative
2576 // to the offset of the ELF headers. Perform that adjustment now.
2578 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2581 p
->p_paddr
= first
->getLMA();
2586 // A helper struct for checkSectionOverlap.
2588 struct SectionOffset
{
2594 // Check whether sections overlap for a specific address range (file offsets,
2595 // load and virtual addresses).
2596 static void checkOverlap(StringRef name
, std::vector
<SectionOffset
> §ions
,
2597 bool isVirtualAddr
) {
2598 llvm::sort(sections
, [=](const SectionOffset
&a
, const SectionOffset
&b
) {
2599 return a
.offset
< b
.offset
;
2602 // Finding overlap is easy given a vector is sorted by start position.
2603 // If an element starts before the end of the previous element, they overlap.
2604 for (size_t i
= 1, end
= sections
.size(); i
< end
; ++i
) {
2605 SectionOffset a
= sections
[i
- 1];
2606 SectionOffset b
= sections
[i
];
2607 if (b
.offset
>= a
.offset
+ a
.sec
->size
)
2610 // If both sections are in OVERLAY we allow the overlapping of virtual
2611 // addresses, because it is what OVERLAY was designed for.
2612 if (isVirtualAddr
&& a
.sec
->inOverlay
&& b
.sec
->inOverlay
)
2615 errorOrWarn("section " + a
.sec
->name
+ " " + name
+
2616 " range overlaps with " + b
.sec
->name
+ "\n>>> " + a
.sec
->name
+
2617 " range is " + rangeToString(a
.offset
, a
.sec
->size
) + "\n>>> " +
2618 b
.sec
->name
+ " range is " +
2619 rangeToString(b
.offset
, b
.sec
->size
));
2623 // Check for overlapping sections and address overflows.
2625 // In this function we check that none of the output sections have overlapping
2626 // file offsets. For SHF_ALLOC sections we also check that the load address
2627 // ranges and the virtual address ranges don't overlap
2628 template <class ELFT
> void Writer
<ELFT
>::checkSections() {
2629 // First, check that section's VAs fit in available address space for target.
2630 for (OutputSection
*os
: outputSections
)
2631 if ((os
->addr
+ os
->size
< os
->addr
) ||
2632 (!ELFT::Is64Bits
&& os
->addr
+ os
->size
> uint64_t(UINT32_MAX
) + 1))
2633 errorOrWarn("section " + os
->name
+ " at 0x" + utohexstr(os
->addr
) +
2634 " of size 0x" + utohexstr(os
->size
) +
2635 " exceeds available address space");
2637 // Check for overlapping file offsets. In this case we need to skip any
2638 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2639 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2640 // binary is specified only add SHF_ALLOC sections are added to the output
2641 // file so we skip any non-allocated sections in that case.
2642 std::vector
<SectionOffset
> fileOffs
;
2643 for (OutputSection
*sec
: outputSections
)
2644 if (sec
->size
> 0 && sec
->type
!= SHT_NOBITS
&&
2645 (!config
->oFormatBinary
|| (sec
->flags
& SHF_ALLOC
)))
2646 fileOffs
.push_back({sec
, sec
->offset
});
2647 checkOverlap("file", fileOffs
, false);
2649 // When linking with -r there is no need to check for overlapping virtual/load
2650 // addresses since those addresses will only be assigned when the final
2651 // executable/shared object is created.
2652 if (config
->relocatable
)
2655 // Checking for overlapping virtual and load addresses only needs to take
2656 // into account SHF_ALLOC sections since others will not be loaded.
2657 // Furthermore, we also need to skip SHF_TLS sections since these will be
2658 // mapped to other addresses at runtime and can therefore have overlapping
2659 // ranges in the file.
2660 std::vector
<SectionOffset
> vmas
;
2661 for (OutputSection
*sec
: outputSections
)
2662 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2663 vmas
.push_back({sec
, sec
->addr
});
2664 checkOverlap("virtual address", vmas
, true);
2666 // Finally, check that the load addresses don't overlap. This will usually be
2667 // the same as the virtual addresses but can be different when using a linker
2668 // script with AT().
2669 std::vector
<SectionOffset
> lmas
;
2670 for (OutputSection
*sec
: outputSections
)
2671 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2672 lmas
.push_back({sec
, sec
->getLMA()});
2673 checkOverlap("load address", lmas
, false);
2676 // The entry point address is chosen in the following ways.
2678 // 1. the '-e' entry command-line option;
2679 // 2. the ENTRY(symbol) command in a linker control script;
2680 // 3. the value of the symbol _start, if present;
2681 // 4. the number represented by the entry symbol, if it is a number;
2682 // 5. the address 0.
2683 static uint64_t getEntryAddr() {
2685 if (Symbol
*b
= symtab
.find(config
->entry
))
2690 if (to_integer(config
->entry
, addr
))
2694 if (config
->warnMissingEntry
)
2695 warn("cannot find entry symbol " + config
->entry
+
2696 "; not setting start address");
2700 static uint16_t getELFType() {
2703 if (config
->relocatable
)
2708 template <class ELFT
> void Writer
<ELFT
>::writeHeader() {
2709 writeEhdr
<ELFT
>(Out::bufferStart
, *mainPart
);
2710 writePhdrs
<ELFT
>(Out::bufferStart
+ sizeof(Elf_Ehdr
), *mainPart
);
2712 auto *eHdr
= reinterpret_cast<Elf_Ehdr
*>(Out::bufferStart
);
2713 eHdr
->e_type
= getELFType();
2714 eHdr
->e_entry
= getEntryAddr();
2715 eHdr
->e_shoff
= sectionHeaderOff
;
2717 // Write the section header table.
2719 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2720 // and e_shstrndx fields. When the value of one of these fields exceeds
2721 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2722 // use fields in the section header at index 0 to store
2723 // the value. The sentinel values and fields are:
2724 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2725 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2726 auto *sHdrs
= reinterpret_cast<Elf_Shdr
*>(Out::bufferStart
+ eHdr
->e_shoff
);
2727 size_t num
= outputSections
.size() + 1;
2728 if (num
>= SHN_LORESERVE
)
2729 sHdrs
->sh_size
= num
;
2731 eHdr
->e_shnum
= num
;
2733 uint32_t strTabIndex
= in
.shStrTab
->getParent()->sectionIndex
;
2734 if (strTabIndex
>= SHN_LORESERVE
) {
2735 sHdrs
->sh_link
= strTabIndex
;
2736 eHdr
->e_shstrndx
= SHN_XINDEX
;
2738 eHdr
->e_shstrndx
= strTabIndex
;
2741 for (OutputSection
*sec
: outputSections
)
2742 sec
->writeHeaderTo
<ELFT
>(++sHdrs
);
2745 // Open a result file.
2746 template <class ELFT
> void Writer
<ELFT
>::openFile() {
2747 uint64_t maxSize
= config
->is64
? INT64_MAX
: UINT32_MAX
;
2748 if (fileSize
!= size_t(fileSize
) || maxSize
< fileSize
) {
2750 raw_string_ostream
s(msg
);
2751 s
<< "output file too large: " << Twine(fileSize
) << " bytes\n"
2752 << "section sizes:\n";
2753 for (OutputSection
*os
: outputSections
)
2754 s
<< os
->name
<< ' ' << os
->size
<< "\n";
2759 unlinkAsync(config
->outputFile
);
2761 if (!config
->relocatable
)
2762 flags
|= FileOutputBuffer::F_executable
;
2763 if (!config
->mmapOutputFile
)
2764 flags
|= FileOutputBuffer::F_no_mmap
;
2765 Expected
<std::unique_ptr
<FileOutputBuffer
>> bufferOrErr
=
2766 FileOutputBuffer::create(config
->outputFile
, fileSize
, flags
);
2769 error("failed to open " + config
->outputFile
+ ": " +
2770 llvm::toString(bufferOrErr
.takeError()));
2773 buffer
= std::move(*bufferOrErr
);
2774 Out::bufferStart
= buffer
->getBufferStart();
2777 template <class ELFT
> void Writer
<ELFT
>::writeSectionsBinary() {
2778 parallel::TaskGroup tg
;
2779 for (OutputSection
*sec
: outputSections
)
2780 if (sec
->flags
& SHF_ALLOC
)
2781 sec
->writeTo
<ELFT
>(Out::bufferStart
+ sec
->offset
, tg
);
2784 static void fillTrap(uint8_t *i
, uint8_t *end
) {
2785 for (; i
+ 4 <= end
; i
+= 4)
2786 memcpy(i
, &target
->trapInstr
, 4);
2789 // Fill the last page of executable segments with trap instructions
2790 // instead of leaving them as zero. Even though it is not required by any
2791 // standard, it is in general a good thing to do for security reasons.
2793 // We'll leave other pages in segments as-is because the rest will be
2794 // overwritten by output sections.
2795 template <class ELFT
> void Writer
<ELFT
>::writeTrapInstr() {
2796 for (Partition
&part
: partitions
) {
2797 // Fill the last page.
2798 for (PhdrEntry
*p
: part
.phdrs
)
2799 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2800 fillTrap(Out::bufferStart
+
2801 alignDown(p
->firstSec
->offset
+ p
->p_filesz
, 4),
2803 alignToPowerOf2(p
->firstSec
->offset
+ p
->p_filesz
,
2804 config
->maxPageSize
));
2806 // Round up the file size of the last segment to the page boundary iff it is
2807 // an executable segment to ensure that other tools don't accidentally
2808 // trim the instruction padding (e.g. when stripping the file).
2809 PhdrEntry
*last
= nullptr;
2810 for (PhdrEntry
*p
: part
.phdrs
)
2811 if (p
->p_type
== PT_LOAD
)
2814 if (last
&& (last
->p_flags
& PF_X
))
2815 last
->p_memsz
= last
->p_filesz
=
2816 alignToPowerOf2(last
->p_filesz
, config
->maxPageSize
);
2820 // Write section contents to a mmap'ed file.
2821 template <class ELFT
> void Writer
<ELFT
>::writeSections() {
2822 llvm::TimeTraceScope
timeScope("Write sections");
2825 // In -r or --emit-relocs mode, write the relocation sections first as in
2826 // ELf_Rel targets we might find out that we need to modify the relocated
2827 // section while doing it.
2828 parallel::TaskGroup tg
;
2829 for (OutputSection
*sec
: outputSections
)
2830 if (isStaticRelSecType(sec
->type
))
2831 sec
->writeTo
<ELFT
>(Out::bufferStart
+ sec
->offset
, tg
);
2834 parallel::TaskGroup tg
;
2835 for (OutputSection
*sec
: outputSections
)
2836 if (!isStaticRelSecType(sec
->type
))
2837 sec
->writeTo
<ELFT
>(Out::bufferStart
+ sec
->offset
, tg
);
2840 // Finally, check that all dynamic relocation addends were written correctly.
2841 if (config
->checkDynamicRelocs
&& config
->writeAddends
) {
2842 for (OutputSection
*sec
: outputSections
)
2843 if (isStaticRelSecType(sec
->type
))
2844 sec
->checkDynRelAddends(Out::bufferStart
);
2848 // Computes a hash value of Data using a given hash function.
2849 // In order to utilize multiple cores, we first split data into 1MB
2850 // chunks, compute a hash for each chunk, and then compute a hash value
2851 // of the hash values.
2853 computeHash(llvm::MutableArrayRef
<uint8_t> hashBuf
,
2854 llvm::ArrayRef
<uint8_t> data
,
2855 std::function
<void(uint8_t *dest
, ArrayRef
<uint8_t> arr
)> hashFn
) {
2856 std::vector
<ArrayRef
<uint8_t>> chunks
= split(data
, 1024 * 1024);
2857 const size_t hashesSize
= chunks
.size() * hashBuf
.size();
2858 std::unique_ptr
<uint8_t[]> hashes(new uint8_t[hashesSize
]);
2860 // Compute hash values.
2861 parallelFor(0, chunks
.size(), [&](size_t i
) {
2862 hashFn(hashes
.get() + i
* hashBuf
.size(), chunks
[i
]);
2865 // Write to the final output buffer.
2866 hashFn(hashBuf
.data(), ArrayRef(hashes
.get(), hashesSize
));
2869 template <class ELFT
> void Writer
<ELFT
>::writeBuildId() {
2870 if (!mainPart
->buildId
|| !mainPart
->buildId
->getParent())
2873 if (config
->buildId
== BuildIdKind::Hexstring
) {
2874 for (Partition
&part
: partitions
)
2875 part
.buildId
->writeBuildId(config
->buildIdVector
);
2879 // Compute a hash of all sections of the output file.
2880 size_t hashSize
= mainPart
->buildId
->hashSize
;
2881 std::unique_ptr
<uint8_t[]> buildId(new uint8_t[hashSize
]);
2882 MutableArrayRef
<uint8_t> output(buildId
.get(), hashSize
);
2883 llvm::ArrayRef
<uint8_t> input
{Out::bufferStart
, size_t(fileSize
)};
2885 // Fedora introduced build ID as "approximation of true uniqueness across all
2886 // binaries that might be used by overlapping sets of people". It does not
2887 // need some security goals that some hash algorithms strive to provide, e.g.
2888 // (second-)preimage and collision resistance. In practice people use 'md5'
2889 // and 'sha1' just for different lengths. Implement them with the more
2890 // efficient BLAKE3.
2891 switch (config
->buildId
) {
2892 case BuildIdKind::Fast
:
2893 computeHash(output
, input
, [](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2894 write64le(dest
, xxh3_64bits(arr
));
2897 case BuildIdKind::Md5
:
2898 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2899 memcpy(dest
, BLAKE3::hash
<16>(arr
).data(), hashSize
);
2902 case BuildIdKind::Sha1
:
2903 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2904 memcpy(dest
, BLAKE3::hash
<20>(arr
).data(), hashSize
);
2907 case BuildIdKind::Uuid
:
2908 if (auto ec
= llvm::getRandomBytes(buildId
.get(), hashSize
))
2909 error("entropy source failure: " + ec
.message());
2912 llvm_unreachable("unknown BuildIdKind");
2914 for (Partition
&part
: partitions
)
2915 part
.buildId
->writeBuildId(output
);
2918 template void elf::writeResult
<ELF32LE
>();
2919 template void elf::writeResult
<ELF32BE
>();
2920 template void elf::writeResult
<ELF64LE
>();
2921 template void elf::writeResult
<ELF64BE
>();