Fix test failures introduced by PR #113697 (#116941)
[llvm-project.git] / llvm / tools / llvm-profdata / llvm-profdata.cpp
blob7641a80129de35ae0d1a0d7324450862ef28efb5
1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/Debuginfod/HTTPClient.h"
17 #include "llvm/IR/LLVMContext.h"
18 #include "llvm/Object/Binary.h"
19 #include "llvm/ProfileData/InstrProfCorrelator.h"
20 #include "llvm/ProfileData/InstrProfReader.h"
21 #include "llvm/ProfileData/InstrProfWriter.h"
22 #include "llvm/ProfileData/MemProf.h"
23 #include "llvm/ProfileData/MemProfReader.h"
24 #include "llvm/ProfileData/ProfileCommon.h"
25 #include "llvm/ProfileData/SampleProfReader.h"
26 #include "llvm/ProfileData/SampleProfWriter.h"
27 #include "llvm/Support/BalancedPartitioning.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Discriminator.h"
30 #include "llvm/Support/Errc.h"
31 #include "llvm/Support/FileSystem.h"
32 #include "llvm/Support/Format.h"
33 #include "llvm/Support/FormattedStream.h"
34 #include "llvm/Support/LLVMDriver.h"
35 #include "llvm/Support/MD5.h"
36 #include "llvm/Support/MemoryBuffer.h"
37 #include "llvm/Support/Path.h"
38 #include "llvm/Support/Regex.h"
39 #include "llvm/Support/ThreadPool.h"
40 #include "llvm/Support/Threading.h"
41 #include "llvm/Support/VirtualFileSystem.h"
42 #include "llvm/Support/WithColor.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cmath>
46 #include <optional>
47 #include <queue>
49 using namespace llvm;
50 using ProfCorrelatorKind = InstrProfCorrelator::ProfCorrelatorKind;
52 // https://llvm.org/docs/CommandGuide/llvm-profdata.html has documentations
53 // on each subcommand.
54 cl::SubCommand ShowSubcommand(
55 "show",
56 "Takes a profile data file and displays the profiles. See detailed "
57 "documentation in "
58 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-show");
59 cl::SubCommand OrderSubcommand(
60 "order",
61 "Reads temporal profiling traces from a profile and outputs a function "
62 "order that reduces the number of page faults for those traces. See "
63 "detailed documentation in "
64 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-order");
65 cl::SubCommand OverlapSubcommand(
66 "overlap",
67 "Computes and displays the overlap between two profiles. See detailed "
68 "documentation in "
69 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-overlap");
70 cl::SubCommand MergeSubcommand(
71 "merge",
72 "Takes several profiles and merge them together. See detailed "
73 "documentation in "
74 "https://llvm.org/docs/CommandGuide/llvm-profdata.html#profdata-merge");
76 namespace {
77 enum ProfileKinds { instr, sample, memory };
78 enum FailureMode { warnOnly, failIfAnyAreInvalid, failIfAllAreInvalid };
80 enum ProfileFormat {
81 PF_None = 0,
82 PF_Text,
83 PF_Compact_Binary, // Deprecated
84 PF_Ext_Binary,
85 PF_GCC,
86 PF_Binary
89 enum class ShowFormat { Text, Json, Yaml };
90 } // namespace
92 // Common options.
93 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
94 cl::init("-"), cl::desc("Output file"),
95 cl::sub(ShowSubcommand),
96 cl::sub(OrderSubcommand),
97 cl::sub(OverlapSubcommand),
98 cl::sub(MergeSubcommand));
99 // NOTE: cl::alias must not have cl::sub(), since aliased option's cl::sub()
100 // will be used. llvm::cl::alias::done() method asserts this condition.
101 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
102 cl::aliasopt(OutputFilename));
104 // Options common to at least two commands.
105 cl::opt<ProfileKinds> ProfileKind(
106 cl::desc("Profile kind:"), cl::sub(MergeSubcommand),
107 cl::sub(OverlapSubcommand), cl::init(instr),
108 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
109 clEnumVal(sample, "Sample profile")));
110 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"),
111 cl::sub(ShowSubcommand),
112 cl::sub(OrderSubcommand));
113 cl::opt<unsigned> MaxDbgCorrelationWarnings(
114 "max-debug-info-correlation-warnings",
115 cl::desc("The maximum number of warnings to emit when correlating "
116 "profile from debug info (0 = no limit)"),
117 cl::sub(MergeSubcommand), cl::sub(ShowSubcommand), cl::init(5));
118 cl::opt<std::string> ProfiledBinary(
119 "profiled-binary", cl::init(""),
120 cl::desc("Path to binary from which the profile was collected."),
121 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
122 cl::opt<std::string> DebugInfoFilename(
123 "debug-info", cl::init(""),
124 cl::desc(
125 "For show, read and extract profile metadata from debug info and show "
126 "the functions it found. For merge, use the provided debug info to "
127 "correlate the raw profile."),
128 cl::sub(ShowSubcommand), cl::sub(MergeSubcommand));
129 cl::opt<std::string>
130 BinaryFilename("binary-file", cl::init(""),
131 cl::desc("For merge, use the provided unstripped bianry to "
132 "correlate the raw profile."),
133 cl::sub(MergeSubcommand));
134 cl::list<std::string> DebugFileDirectory(
135 "debug-file-directory",
136 cl::desc("Directories to search for object files by build ID"));
137 cl::opt<bool> DebugInfod("debuginfod", cl::init(false), cl::Hidden,
138 cl::sub(MergeSubcommand),
139 cl::desc("Enable debuginfod"));
140 cl::opt<ProfCorrelatorKind> BIDFetcherProfileCorrelate(
141 "correlate",
142 cl::desc("Use debug-info or binary correlation to correlate profiles with "
143 "build id fetcher"),
144 cl::init(InstrProfCorrelator::NONE),
145 cl::values(clEnumValN(InstrProfCorrelator::NONE, "",
146 "No profile correlation"),
147 clEnumValN(InstrProfCorrelator::DEBUG_INFO, "debug-info",
148 "Use debug info to correlate"),
149 clEnumValN(InstrProfCorrelator::BINARY, "binary",
150 "Use binary to correlate")));
151 cl::opt<std::string> FuncNameFilter(
152 "function",
153 cl::desc("Only functions matching the filter are shown in the output. For "
154 "overlapping CSSPGO, this takes a function name with calling "
155 "context."),
156 cl::sub(ShowSubcommand), cl::sub(OverlapSubcommand),
157 cl::sub(MergeSubcommand));
159 // TODO: Consider creating a template class (e.g., MergeOption, ShowOption) to
160 // factor out the common cl::sub in cl::opt constructor for subcommand-specific
161 // options.
163 // Options specific to merge subcommand.
164 cl::list<std::string> InputFilenames(cl::Positional, cl::sub(MergeSubcommand),
165 cl::desc("<filename...>"));
166 cl::list<std::string> WeightedInputFilenames("weighted-input",
167 cl::sub(MergeSubcommand),
168 cl::desc("<weight>,<filename>"));
169 cl::opt<ProfileFormat> OutputFormat(
170 cl::desc("Format of output profile"), cl::sub(MergeSubcommand),
171 cl::init(PF_Ext_Binary),
172 cl::values(clEnumValN(PF_Binary, "binary", "Binary encoding"),
173 clEnumValN(PF_Ext_Binary, "extbinary",
174 "Extensible binary encoding "
175 "(default)"),
176 clEnumValN(PF_Text, "text", "Text encoding"),
177 clEnumValN(PF_GCC, "gcc",
178 "GCC encoding (only meaningful for -sample)")));
179 cl::opt<std::string>
180 InputFilenamesFile("input-files", cl::init(""), cl::sub(MergeSubcommand),
181 cl::desc("Path to file containing newline-separated "
182 "[<weight>,]<filename> entries"));
183 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
184 cl::aliasopt(InputFilenamesFile));
185 cl::opt<bool> DumpInputFileList(
186 "dump-input-file-list", cl::init(false), cl::Hidden,
187 cl::sub(MergeSubcommand),
188 cl::desc("Dump the list of input files and their weights, then exit"));
189 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
190 cl::sub(MergeSubcommand),
191 cl::desc("Symbol remapping file"));
192 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
193 cl::aliasopt(RemappingFile));
194 cl::opt<bool>
195 UseMD5("use-md5", cl::init(false), cl::Hidden,
196 cl::desc("Choose to use MD5 to represent string in name table (only "
197 "meaningful for -extbinary)"),
198 cl::sub(MergeSubcommand));
199 cl::opt<bool> CompressAllSections(
200 "compress-all-sections", cl::init(false), cl::Hidden,
201 cl::sub(MergeSubcommand),
202 cl::desc("Compress all sections when writing the profile (only "
203 "meaningful for -extbinary)"));
204 cl::opt<bool> SampleMergeColdContext(
205 "sample-merge-cold-context", cl::init(false), cl::Hidden,
206 cl::sub(MergeSubcommand),
207 cl::desc(
208 "Merge context sample profiles whose count is below cold threshold"));
209 cl::opt<bool> SampleTrimColdContext(
210 "sample-trim-cold-context", cl::init(false), cl::Hidden,
211 cl::sub(MergeSubcommand),
212 cl::desc(
213 "Trim context sample profiles whose count is below cold threshold"));
214 cl::opt<uint32_t> SampleColdContextFrameDepth(
215 "sample-frame-depth-for-cold-context", cl::init(1),
216 cl::sub(MergeSubcommand),
217 cl::desc("Keep the last K frames while merging cold profile. 1 means the "
218 "context-less base profile"));
219 cl::opt<size_t> OutputSizeLimit(
220 "output-size-limit", cl::init(0), cl::Hidden, cl::sub(MergeSubcommand),
221 cl::desc("Trim cold functions until profile size is below specified "
222 "limit in bytes. This uses a heursitic and functions may be "
223 "excessively trimmed"));
224 cl::opt<bool> GenPartialProfile(
225 "gen-partial-profile", cl::init(false), cl::Hidden,
226 cl::sub(MergeSubcommand),
227 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
228 cl::opt<bool> SplitLayout(
229 "split-layout", cl::init(false), cl::Hidden,
230 cl::sub(MergeSubcommand),
231 cl::desc("Split the profile to two sections with one containing sample "
232 "profiles with inlined functions and the other without (only "
233 "meaningful for -extbinary)"));
234 cl::opt<std::string> SupplInstrWithSample(
235 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
236 cl::sub(MergeSubcommand),
237 cl::desc("Supplement an instr profile with sample profile, to correct "
238 "the profile unrepresentativeness issue. The sample "
239 "profile is the input of the flag. Output will be in instr "
240 "format (The flag only works with -instr)"));
241 cl::opt<float> ZeroCounterThreshold(
242 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
243 cl::sub(MergeSubcommand),
244 cl::desc("For the function which is cold in instr profile but hot in "
245 "sample profile, if the ratio of the number of zero counters "
246 "divided by the total number of counters is above the "
247 "threshold, the profile of the function will be regarded as "
248 "being harmful for performance and will be dropped."));
249 cl::opt<unsigned> SupplMinSizeThreshold(
250 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
251 cl::sub(MergeSubcommand),
252 cl::desc("If the size of a function is smaller than the threshold, "
253 "assume it can be inlined by PGO early inliner and it won't "
254 "be adjusted based on sample profile."));
255 cl::opt<unsigned> InstrProfColdThreshold(
256 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
257 cl::sub(MergeSubcommand),
258 cl::desc("User specified cold threshold for instr profile which will "
259 "override the cold threshold got from profile summary. "));
260 // WARNING: This reservoir size value is propagated to any input indexed
261 // profiles for simplicity. Changing this value between invocations could
262 // result in sample bias.
263 cl::opt<uint64_t> TemporalProfTraceReservoirSize(
264 "temporal-profile-trace-reservoir-size", cl::init(100),
265 cl::sub(MergeSubcommand),
266 cl::desc("The maximum number of stored temporal profile traces (default: "
267 "100)"));
268 cl::opt<uint64_t> TemporalProfMaxTraceLength(
269 "temporal-profile-max-trace-length", cl::init(10000),
270 cl::sub(MergeSubcommand),
271 cl::desc("The maximum length of a single temporal profile trace "
272 "(default: 10000)"));
273 cl::opt<std::string> FuncNameNegativeFilter(
274 "no-function", cl::init(""),
275 cl::sub(MergeSubcommand),
276 cl::desc("Exclude functions matching the filter from the output."));
278 cl::opt<FailureMode>
279 FailMode("failure-mode", cl::init(failIfAnyAreInvalid),
280 cl::desc("Failure mode:"), cl::sub(MergeSubcommand),
281 cl::values(clEnumValN(warnOnly, "warn",
282 "Do not fail and just print warnings."),
283 clEnumValN(failIfAnyAreInvalid, "any",
284 "Fail if any profile is invalid."),
285 clEnumValN(failIfAllAreInvalid, "all",
286 "Fail only if all profiles are invalid.")));
288 cl::opt<bool> OutputSparse(
289 "sparse", cl::init(false), cl::sub(MergeSubcommand),
290 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
291 cl::opt<unsigned> NumThreads(
292 "num-threads", cl::init(0), cl::sub(MergeSubcommand),
293 cl::desc("Number of merge threads to use (default: autodetect)"));
294 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
295 cl::aliasopt(NumThreads));
297 cl::opt<std::string> ProfileSymbolListFile(
298 "prof-sym-list", cl::init(""), cl::sub(MergeSubcommand),
299 cl::desc("Path to file containing the list of function symbols "
300 "used to populate profile symbol list"));
302 cl::opt<SampleProfileLayout> ProfileLayout(
303 "convert-sample-profile-layout",
304 cl::desc("Convert the generated profile to a profile with a new layout"),
305 cl::sub(MergeSubcommand), cl::init(SPL_None),
306 cl::values(
307 clEnumValN(SPL_Nest, "nest",
308 "Nested profile, the input should be CS flat profile"),
309 clEnumValN(SPL_Flat, "flat",
310 "Profile with nested inlinee flatten out")));
312 cl::opt<bool> DropProfileSymbolList(
313 "drop-profile-symbol-list", cl::init(false), cl::Hidden,
314 cl::sub(MergeSubcommand),
315 cl::desc("Drop the profile symbol list when merging AutoFDO profiles "
316 "(only meaningful for -sample)"));
318 cl::opt<bool> KeepVTableSymbols(
319 "keep-vtable-symbols", cl::init(false), cl::Hidden,
320 cl::sub(MergeSubcommand),
321 cl::desc("If true, keep the vtable symbols in indexed profiles"));
323 // Temporary support for writing the previous version of the format, to enable
324 // some forward compatibility.
325 // TODO: Consider enabling this with future version changes as well, to ease
326 // deployment of newer versions of llvm-profdata.
327 cl::opt<bool> DoWritePrevVersion(
328 "write-prev-version", cl::init(false), cl::Hidden,
329 cl::desc("Write the previous version of indexed format, to enable "
330 "some forward compatibility."));
332 cl::opt<memprof::IndexedVersion> MemProfVersionRequested(
333 "memprof-version", cl::Hidden, cl::sub(MergeSubcommand),
334 cl::desc("Specify the version of the memprof format to use"),
335 cl::init(memprof::Version3),
336 cl::values(clEnumValN(memprof::Version1, "1", "version 1"),
337 clEnumValN(memprof::Version2, "2", "version 2"),
338 clEnumValN(memprof::Version3, "3", "version 3")));
340 cl::opt<bool> MemProfFullSchema(
341 "memprof-full-schema", cl::Hidden, cl::sub(MergeSubcommand),
342 cl::desc("Use the full schema for serialization"), cl::init(false));
344 static cl::opt<bool>
345 MemprofGenerateRandomHotness("memprof-random-hotness", cl::init(false),
346 cl::Hidden, cl::sub(MergeSubcommand),
347 cl::desc("Generate random hotness values"));
348 static cl::opt<unsigned> MemprofGenerateRandomHotnessSeed(
349 "memprof-random-hotness-seed", cl::init(0), cl::Hidden,
350 cl::sub(MergeSubcommand),
351 cl::desc("Random hotness seed to use (0 to generate new seed)"));
353 // Options specific to overlap subcommand.
354 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
355 cl::desc("<base profile file>"),
356 cl::sub(OverlapSubcommand));
357 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
358 cl::desc("<test profile file>"),
359 cl::sub(OverlapSubcommand));
361 cl::opt<unsigned long long> SimilarityCutoff(
362 "similarity-cutoff", cl::init(0),
363 cl::desc("For sample profiles, list function names (with calling context "
364 "for csspgo) for overlapped functions "
365 "with similarities below the cutoff (percentage times 10000)."),
366 cl::sub(OverlapSubcommand));
368 cl::opt<bool> IsCS(
369 "cs", cl::init(false),
370 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."),
371 cl::sub(OverlapSubcommand));
373 cl::opt<unsigned long long> OverlapValueCutoff(
374 "value-cutoff", cl::init(-1),
375 cl::desc(
376 "Function level overlap information for every function (with calling "
377 "context for csspgo) in test "
378 "profile with max count value greater than the parameter value"),
379 cl::sub(OverlapSubcommand));
381 // Options specific to show subcommand.
382 cl::opt<bool> ShowCounts("counts", cl::init(false),
383 cl::desc("Show counter values for shown functions"),
384 cl::sub(ShowSubcommand));
385 cl::opt<ShowFormat>
386 SFormat("show-format", cl::init(ShowFormat::Text),
387 cl::desc("Emit output in the selected format if supported"),
388 cl::sub(ShowSubcommand),
389 cl::values(clEnumValN(ShowFormat::Text, "text",
390 "emit normal text output (default)"),
391 clEnumValN(ShowFormat::Json, "json", "emit JSON"),
392 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML")));
393 // TODO: Consider replacing this with `--show-format=text-encoding`.
394 cl::opt<bool>
395 TextFormat("text", cl::init(false),
396 cl::desc("Show instr profile data in text dump format"),
397 cl::sub(ShowSubcommand));
398 cl::opt<bool>
399 JsonFormat("json",
400 cl::desc("Show sample profile data in the JSON format "
401 "(deprecated, please use --show-format=json)"),
402 cl::sub(ShowSubcommand));
403 cl::opt<bool> ShowIndirectCallTargets(
404 "ic-targets", cl::init(false),
405 cl::desc("Show indirect call site target values for shown functions"),
406 cl::sub(ShowSubcommand));
407 cl::opt<bool> ShowVTables("show-vtables", cl::init(false),
408 cl::desc("Show vtable names for shown functions"),
409 cl::sub(ShowSubcommand));
410 cl::opt<bool> ShowMemOPSizes(
411 "memop-sizes", cl::init(false),
412 cl::desc("Show the profiled sizes of the memory intrinsic calls "
413 "for shown functions"),
414 cl::sub(ShowSubcommand));
415 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
416 cl::desc("Show detailed profile summary"),
417 cl::sub(ShowSubcommand));
418 cl::list<uint32_t> DetailedSummaryCutoffs(
419 cl::CommaSeparated, "detailed-summary-cutoffs",
420 cl::desc(
421 "Cutoff percentages (times 10000) for generating detailed summary"),
422 cl::value_desc("800000,901000,999999"), cl::sub(ShowSubcommand));
423 cl::opt<bool>
424 ShowHotFuncList("hot-func-list", cl::init(false),
425 cl::desc("Show profile summary of a list of hot functions"),
426 cl::sub(ShowSubcommand));
427 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
428 cl::desc("Details for each and every function"),
429 cl::sub(ShowSubcommand));
430 cl::opt<bool> ShowCS("showcs", cl::init(false),
431 cl::desc("Show context sensitive counts"),
432 cl::sub(ShowSubcommand));
433 cl::opt<ProfileKinds> ShowProfileKind(
434 cl::desc("Profile kind supported by show:"), cl::sub(ShowSubcommand),
435 cl::init(instr),
436 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
437 clEnumVal(sample, "Sample profile"),
438 clEnumVal(memory, "MemProf memory access profile")));
439 cl::opt<uint32_t> TopNFunctions(
440 "topn", cl::init(0),
441 cl::desc("Show the list of functions with the largest internal counts"),
442 cl::sub(ShowSubcommand));
443 cl::opt<uint32_t> ShowValueCutoff(
444 "value-cutoff", cl::init(0),
445 cl::desc("Set the count value cutoff. Functions with the maximum count "
446 "less than this value will not be printed out. (Default is 0)"),
447 cl::sub(ShowSubcommand));
448 cl::opt<bool> OnlyListBelow(
449 "list-below-cutoff", cl::init(false),
450 cl::desc("Only output names of functions whose max count values are "
451 "below the cutoff value"),
452 cl::sub(ShowSubcommand));
453 cl::opt<bool> ShowProfileSymbolList(
454 "show-prof-sym-list", cl::init(false),
455 cl::desc("Show profile symbol list if it exists in the profile. "),
456 cl::sub(ShowSubcommand));
457 cl::opt<bool> ShowSectionInfoOnly(
458 "show-sec-info-only", cl::init(false),
459 cl::desc("Show the information of each section in the sample profile. "
460 "The flag is only usable when the sample profile is in "
461 "extbinary format"),
462 cl::sub(ShowSubcommand));
463 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
464 cl::desc("Show binary ids in the profile. "),
465 cl::sub(ShowSubcommand));
466 cl::opt<bool> ShowTemporalProfTraces(
467 "temporal-profile-traces",
468 cl::desc("Show temporal profile traces in the profile."),
469 cl::sub(ShowSubcommand));
471 cl::opt<bool>
472 ShowCovered("covered", cl::init(false),
473 cl::desc("Show only the functions that have been executed."),
474 cl::sub(ShowSubcommand));
476 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false),
477 cl::desc("Show profile version. "),
478 cl::sub(ShowSubcommand));
480 // Options specific to order subcommand.
481 cl::opt<unsigned>
482 NumTestTraces("num-test-traces", cl::init(0),
483 cl::desc("Keep aside the last <num-test-traces> traces in "
484 "the profile when computing the function order and "
485 "instead use them to evaluate that order"),
486 cl::sub(OrderSubcommand));
488 // We use this string to indicate that there are
489 // multiple static functions map to the same name.
490 const std::string DuplicateNameStr = "----";
492 static void warn(Twine Message, StringRef Whence = "", StringRef Hint = "") {
493 WithColor::warning();
494 if (!Whence.empty())
495 errs() << Whence << ": ";
496 errs() << Message << "\n";
497 if (!Hint.empty())
498 WithColor::note() << Hint << "\n";
501 static void warn(Error E, StringRef Whence = "") {
502 if (E.isA<InstrProfError>()) {
503 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
504 warn(IPE.message(), Whence);
509 static void exitWithError(Twine Message, StringRef Whence = "",
510 StringRef Hint = "") {
511 WithColor::error();
512 if (!Whence.empty())
513 errs() << Whence << ": ";
514 errs() << Message << "\n";
515 if (!Hint.empty())
516 WithColor::note() << Hint << "\n";
517 ::exit(1);
520 static void exitWithError(Error E, StringRef Whence = "") {
521 if (E.isA<InstrProfError>()) {
522 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
523 instrprof_error instrError = IPE.get();
524 StringRef Hint = "";
525 if (instrError == instrprof_error::unrecognized_format) {
526 // Hint in case user missed specifying the profile type.
527 Hint = "Perhaps you forgot to use the --sample or --memory option?";
529 exitWithError(IPE.message(), Whence, Hint);
531 return;
534 exitWithError(toString(std::move(E)), Whence);
537 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
538 exitWithError(EC.message(), Whence);
541 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
542 StringRef Whence = "") {
543 if (FailMode == failIfAnyAreInvalid)
544 exitWithErrorCode(EC, Whence);
545 else
546 warn(EC.message(), Whence);
549 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
550 StringRef WhenceFunction = "",
551 bool ShowHint = true) {
552 if (!WhenceFile.empty())
553 errs() << WhenceFile << ": ";
554 if (!WhenceFunction.empty())
555 errs() << WhenceFunction << ": ";
557 auto IPE = instrprof_error::success;
558 E = handleErrors(std::move(E),
559 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
560 IPE = E->get();
561 return Error(std::move(E));
563 errs() << toString(std::move(E)) << "\n";
565 if (ShowHint) {
566 StringRef Hint = "";
567 if (IPE != instrprof_error::success) {
568 switch (IPE) {
569 case instrprof_error::hash_mismatch:
570 case instrprof_error::count_mismatch:
571 case instrprof_error::value_site_count_mismatch:
572 Hint = "Make sure that all profile data to be merged is generated "
573 "from the same binary.";
574 break;
575 default:
576 break;
580 if (!Hint.empty())
581 errs() << Hint << "\n";
585 namespace {
586 /// A remapper from original symbol names to new symbol names based on a file
587 /// containing a list of mappings from old name to new name.
588 class SymbolRemapper {
589 std::unique_ptr<MemoryBuffer> File;
590 DenseMap<StringRef, StringRef> RemappingTable;
592 public:
593 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
594 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
595 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
596 if (!BufOrError)
597 exitWithErrorCode(BufOrError.getError(), InputFile);
599 auto Remapper = std::make_unique<SymbolRemapper>();
600 Remapper->File = std::move(BufOrError.get());
602 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
603 !LineIt.is_at_eof(); ++LineIt) {
604 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
605 if (Parts.first.empty() || Parts.second.empty() ||
606 Parts.second.count(' ')) {
607 exitWithError("unexpected line in remapping file",
608 (InputFile + ":" + Twine(LineIt.line_number())).str(),
609 "expected 'old_symbol new_symbol'");
611 Remapper->RemappingTable.insert(Parts);
613 return Remapper;
616 /// Attempt to map the given old symbol into a new symbol.
618 /// \return The new symbol, or \p Name if no such symbol was found.
619 StringRef operator()(StringRef Name) {
620 StringRef New = RemappingTable.lookup(Name);
621 return New.empty() ? Name : New;
624 FunctionId operator()(FunctionId Name) {
625 // MD5 name cannot be remapped.
626 if (!Name.isStringRef())
627 return Name;
628 StringRef New = RemappingTable.lookup(Name.stringRef());
629 return New.empty() ? Name : FunctionId(New);
634 struct WeightedFile {
635 std::string Filename;
636 uint64_t Weight;
638 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
640 /// Keep track of merged data and reported errors.
641 struct WriterContext {
642 std::mutex Lock;
643 InstrProfWriter Writer;
644 std::vector<std::pair<Error, std::string>> Errors;
645 std::mutex &ErrLock;
646 SmallSet<instrprof_error, 4> &WriterErrorCodes;
648 WriterContext(bool IsSparse, std::mutex &ErrLock,
649 SmallSet<instrprof_error, 4> &WriterErrorCodes,
650 uint64_t ReservoirSize = 0, uint64_t MaxTraceLength = 0)
651 : Writer(IsSparse, ReservoirSize, MaxTraceLength, DoWritePrevVersion,
652 MemProfVersionRequested, MemProfFullSchema,
653 MemprofGenerateRandomHotness, MemprofGenerateRandomHotnessSeed),
654 ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {}
657 /// Computer the overlap b/w profile BaseFilename and TestFileName,
658 /// and store the program level result to Overlap.
659 static void overlapInput(const std::string &BaseFilename,
660 const std::string &TestFilename, WriterContext *WC,
661 OverlapStats &Overlap,
662 const OverlapFuncFilters &FuncFilter,
663 raw_fd_ostream &OS, bool IsCS) {
664 auto FS = vfs::getRealFileSystem();
665 auto ReaderOrErr = InstrProfReader::create(TestFilename, *FS);
666 if (Error E = ReaderOrErr.takeError()) {
667 // Skip the empty profiles by returning sliently.
668 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
669 if (ErrorCode != instrprof_error::empty_raw_profile)
670 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
671 TestFilename);
672 return;
675 auto Reader = std::move(ReaderOrErr.get());
676 for (auto &I : *Reader) {
677 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
678 FuncOverlap.setFuncInfo(I.Name, I.Hash);
680 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
681 FuncOverlap.dump(OS);
685 /// Load an input into a writer context.
686 static void
687 loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
688 const InstrProfCorrelator *Correlator, const StringRef ProfiledBinary,
689 WriterContext *WC, const object::BuildIDFetcher *BIDFetcher = nullptr,
690 const ProfCorrelatorKind *BIDFetcherCorrelatorKind = nullptr) {
691 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
693 // Copy the filename, because llvm::ThreadPool copied the input "const
694 // WeightedFile &" by value, making a reference to the filename within it
695 // invalid outside of this packaged task.
696 std::string Filename = Input.Filename;
698 using ::llvm::memprof::RawMemProfReader;
699 if (RawMemProfReader::hasFormat(Input.Filename)) {
700 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
701 if (!ReaderOrErr) {
702 exitWithError(ReaderOrErr.takeError(), Input.Filename);
704 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
705 // Check if the profile types can be merged, e.g. clang frontend profiles
706 // should not be merged with memprof profiles.
707 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
708 consumeError(std::move(E));
709 WC->Errors.emplace_back(
710 make_error<StringError>(
711 "Cannot merge MemProf profile with Clang generated profile.",
712 std::error_code()),
713 Filename);
714 return;
717 auto MemProfError = [&](Error E) {
718 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
719 WC->Errors.emplace_back(make_error<InstrProfError>(ErrorCode, Msg),
720 Filename);
723 WC->Writer.addMemProfData(Reader->takeMemProfData(), MemProfError);
724 return;
727 auto FS = vfs::getRealFileSystem();
728 // TODO: This only saves the first non-fatal error from InstrProfReader, and
729 // then added to WriterContext::Errors. However, this is not extensible, if
730 // we have more non-fatal errors from InstrProfReader in the future. How
731 // should this interact with different -failure-mode?
732 std::optional<std::pair<Error, std::string>> ReaderWarning;
733 auto Warn = [&](Error E) {
734 if (ReaderWarning) {
735 consumeError(std::move(E));
736 return;
738 // Only show the first time an error occurs in this file.
739 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
740 ReaderWarning = {make_error<InstrProfError>(ErrCode, Msg), Filename};
743 const ProfCorrelatorKind CorrelatorKind = BIDFetcherCorrelatorKind
744 ? *BIDFetcherCorrelatorKind
745 : ProfCorrelatorKind::NONE;
746 auto ReaderOrErr = InstrProfReader::create(Input.Filename, *FS, Correlator,
747 BIDFetcher, CorrelatorKind, Warn);
748 if (Error E = ReaderOrErr.takeError()) {
749 // Skip the empty profiles by returning silently.
750 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
751 if (ErrCode != instrprof_error::empty_raw_profile)
752 WC->Errors.emplace_back(make_error<InstrProfError>(ErrCode, Msg),
753 Filename);
754 return;
757 auto Reader = std::move(ReaderOrErr.get());
758 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
759 consumeError(std::move(E));
760 WC->Errors.emplace_back(
761 make_error<StringError>(
762 "Merge IR generated profile with Clang generated profile.",
763 std::error_code()),
764 Filename);
765 return;
768 for (auto &I : *Reader) {
769 if (Remapper)
770 I.Name = (*Remapper)(I.Name);
771 const StringRef FuncName = I.Name;
772 bool Reported = false;
773 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
774 if (Reported) {
775 consumeError(std::move(E));
776 return;
778 Reported = true;
779 // Only show hint the first time an error occurs.
780 auto [ErrCode, Msg] = InstrProfError::take(std::move(E));
781 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
782 bool firstTime = WC->WriterErrorCodes.insert(ErrCode).second;
783 handleMergeWriterError(make_error<InstrProfError>(ErrCode, Msg),
784 Input.Filename, FuncName, firstTime);
788 if (KeepVTableSymbols) {
789 const InstrProfSymtab &symtab = Reader->getSymtab();
790 const auto &VTableNames = symtab.getVTableNames();
792 for (const auto &kv : VTableNames)
793 WC->Writer.addVTableName(kv.getKey());
796 if (Reader->hasTemporalProfile()) {
797 auto &Traces = Reader->getTemporalProfTraces(Input.Weight);
798 if (!Traces.empty())
799 WC->Writer.addTemporalProfileTraces(
800 Traces, Reader->getTemporalProfTraceStreamSize());
802 if (Reader->hasError()) {
803 if (Error E = Reader->getError()) {
804 WC->Errors.emplace_back(std::move(E), Filename);
805 return;
809 std::vector<llvm::object::BuildID> BinaryIds;
810 if (Error E = Reader->readBinaryIds(BinaryIds)) {
811 WC->Errors.emplace_back(std::move(E), Filename);
812 return;
814 WC->Writer.addBinaryIds(BinaryIds);
816 if (ReaderWarning) {
817 WC->Errors.emplace_back(std::move(ReaderWarning->first),
818 ReaderWarning->second);
822 /// Merge the \p Src writer context into \p Dst.
823 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
824 for (auto &ErrorPair : Src->Errors)
825 Dst->Errors.push_back(std::move(ErrorPair));
826 Src->Errors.clear();
828 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind()))
829 exitWithError(std::move(E));
831 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
832 auto [ErrorCode, Msg] = InstrProfError::take(std::move(E));
833 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
834 bool firstTime = Dst->WriterErrorCodes.insert(ErrorCode).second;
835 if (firstTime)
836 warn(toString(make_error<InstrProfError>(ErrorCode, Msg)));
840 static StringRef
841 getFuncName(const StringMap<InstrProfWriter::ProfilingData>::value_type &Val) {
842 return Val.first();
845 static std::string
846 getFuncName(const SampleProfileMap::value_type &Val) {
847 return Val.second.getContext().toString();
850 template <typename T>
851 static void filterFunctions(T &ProfileMap) {
852 bool hasFilter = !FuncNameFilter.empty();
853 bool hasNegativeFilter = !FuncNameNegativeFilter.empty();
854 if (!hasFilter && !hasNegativeFilter)
855 return;
857 // If filter starts with '?' it is MSVC mangled name, not a regex.
858 llvm::Regex ProbablyMSVCMangledName("[?@$_0-9A-Za-z]+");
859 if (hasFilter && FuncNameFilter[0] == '?' &&
860 ProbablyMSVCMangledName.match(FuncNameFilter))
861 FuncNameFilter = llvm::Regex::escape(FuncNameFilter);
862 if (hasNegativeFilter && FuncNameNegativeFilter[0] == '?' &&
863 ProbablyMSVCMangledName.match(FuncNameNegativeFilter))
864 FuncNameNegativeFilter = llvm::Regex::escape(FuncNameNegativeFilter);
866 size_t Count = ProfileMap.size();
867 llvm::Regex Pattern(FuncNameFilter);
868 llvm::Regex NegativePattern(FuncNameNegativeFilter);
869 std::string Error;
870 if (hasFilter && !Pattern.isValid(Error))
871 exitWithError(Error);
872 if (hasNegativeFilter && !NegativePattern.isValid(Error))
873 exitWithError(Error);
875 // Handle MD5 profile, so it is still able to match using the original name.
876 std::string MD5Name = std::to_string(llvm::MD5Hash(FuncNameFilter));
877 std::string NegativeMD5Name =
878 std::to_string(llvm::MD5Hash(FuncNameNegativeFilter));
880 for (auto I = ProfileMap.begin(); I != ProfileMap.end();) {
881 auto Tmp = I++;
882 const auto &FuncName = getFuncName(*Tmp);
883 // Negative filter has higher precedence than positive filter.
884 if ((hasNegativeFilter &&
885 (NegativePattern.match(FuncName) ||
886 (FunctionSamples::UseMD5 && NegativeMD5Name == FuncName))) ||
887 (hasFilter && !(Pattern.match(FuncName) ||
888 (FunctionSamples::UseMD5 && MD5Name == FuncName))))
889 ProfileMap.erase(Tmp);
892 llvm::dbgs() << Count - ProfileMap.size() << " of " << Count << " functions "
893 << "in the original profile are filtered.\n";
896 static void writeInstrProfile(StringRef OutputFilename,
897 ProfileFormat OutputFormat,
898 InstrProfWriter &Writer) {
899 std::error_code EC;
900 raw_fd_ostream Output(OutputFilename.data(), EC,
901 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
902 : sys::fs::OF_None);
903 if (EC)
904 exitWithErrorCode(EC, OutputFilename);
906 if (OutputFormat == PF_Text) {
907 if (Error E = Writer.writeText(Output))
908 warn(std::move(E));
909 } else {
910 if (Output.is_displayed())
911 exitWithError("cannot write a non-text format profile to the terminal");
912 if (Error E = Writer.write(Output))
913 warn(std::move(E));
917 static void mergeInstrProfile(const WeightedFileVector &Inputs,
918 SymbolRemapper *Remapper,
919 int MaxDbgCorrelationWarnings,
920 const StringRef ProfiledBinary) {
921 const uint64_t TraceReservoirSize = TemporalProfTraceReservoirSize.getValue();
922 const uint64_t MaxTraceLength = TemporalProfMaxTraceLength.getValue();
923 if (OutputFormat == PF_Compact_Binary)
924 exitWithError("Compact Binary is deprecated");
925 if (OutputFormat != PF_Binary && OutputFormat != PF_Ext_Binary &&
926 OutputFormat != PF_Text)
927 exitWithError("unknown format is specified");
929 // TODO: Maybe we should support correlation with mixture of different
930 // correlation modes(w/wo debug-info/object correlation).
931 if (DebugInfoFilename.empty()) {
932 if (!BinaryFilename.empty() && (DebugInfod || !DebugFileDirectory.empty()))
933 exitWithError("Expected only one of -binary-file, -debuginfod or "
934 "-debug-file-directory");
935 } else if (!BinaryFilename.empty() || DebugInfod ||
936 !DebugFileDirectory.empty()) {
937 exitWithError("Expected only one of -debug-info, -binary-file, -debuginfod "
938 "or -debug-file-directory");
940 std::string CorrelateFilename;
941 ProfCorrelatorKind CorrelateKind = ProfCorrelatorKind::NONE;
942 if (!DebugInfoFilename.empty()) {
943 CorrelateFilename = DebugInfoFilename;
944 CorrelateKind = ProfCorrelatorKind::DEBUG_INFO;
945 } else if (!BinaryFilename.empty()) {
946 CorrelateFilename = BinaryFilename;
947 CorrelateKind = ProfCorrelatorKind::BINARY;
950 std::unique_ptr<InstrProfCorrelator> Correlator;
951 if (CorrelateKind != InstrProfCorrelator::NONE) {
952 if (auto Err = InstrProfCorrelator::get(CorrelateFilename, CorrelateKind)
953 .moveInto(Correlator))
954 exitWithError(std::move(Err), CorrelateFilename);
955 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
956 exitWithError(std::move(Err), CorrelateFilename);
959 ProfCorrelatorKind BIDFetcherCorrelateKind = ProfCorrelatorKind::NONE;
960 std::unique_ptr<object::BuildIDFetcher> BIDFetcher;
961 if (DebugInfod) {
962 llvm::HTTPClient::initialize();
963 BIDFetcher = std::make_unique<DebuginfodFetcher>(DebugFileDirectory);
964 if (!BIDFetcherProfileCorrelate)
965 exitWithError("Expected --correlate when --debuginfod is provided");
966 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate;
967 } else if (!DebugFileDirectory.empty()) {
968 BIDFetcher = std::make_unique<object::BuildIDFetcher>(DebugFileDirectory);
969 if (!BIDFetcherProfileCorrelate)
970 exitWithError("Expected --correlate when --debug-file-directory "
971 "is provided");
972 BIDFetcherCorrelateKind = BIDFetcherProfileCorrelate;
973 } else if (BIDFetcherProfileCorrelate) {
974 exitWithError("Expected --debuginfod or --debug-file-directory when "
975 "--correlate is provided");
978 std::mutex ErrorLock;
979 SmallSet<instrprof_error, 4> WriterErrorCodes;
981 // If NumThreads is not specified, auto-detect a good default.
982 if (NumThreads == 0)
983 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
984 unsigned((Inputs.size() + 1) / 2));
986 // Initialize the writer contexts.
987 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
988 for (unsigned I = 0; I < NumThreads; ++I)
989 Contexts.emplace_back(std::make_unique<WriterContext>(
990 OutputSparse, ErrorLock, WriterErrorCodes, TraceReservoirSize,
991 MaxTraceLength));
993 if (NumThreads == 1) {
994 for (const auto &Input : Inputs)
995 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
996 Contexts[0].get(), BIDFetcher.get(), &BIDFetcherCorrelateKind);
997 } else {
998 DefaultThreadPool Pool(hardware_concurrency(NumThreads));
1000 // Load the inputs in parallel (N/NumThreads serial steps).
1001 unsigned Ctx = 0;
1002 for (const auto &Input : Inputs) {
1003 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
1004 Contexts[Ctx].get(), BIDFetcher.get(),
1005 &BIDFetcherCorrelateKind);
1006 Ctx = (Ctx + 1) % NumThreads;
1008 Pool.wait();
1010 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
1011 unsigned Mid = Contexts.size() / 2;
1012 unsigned End = Contexts.size();
1013 assert(Mid > 0 && "Expected more than one context");
1014 do {
1015 for (unsigned I = 0; I < Mid; ++I)
1016 Pool.async(mergeWriterContexts, Contexts[I].get(),
1017 Contexts[I + Mid].get());
1018 Pool.wait();
1019 if (End & 1) {
1020 Pool.async(mergeWriterContexts, Contexts[0].get(),
1021 Contexts[End - 1].get());
1022 Pool.wait();
1024 End = Mid;
1025 Mid /= 2;
1026 } while (Mid > 0);
1029 // Handle deferred errors encountered during merging. If the number of errors
1030 // is equal to the number of inputs the merge failed.
1031 unsigned NumErrors = 0;
1032 for (std::unique_ptr<WriterContext> &WC : Contexts) {
1033 for (auto &ErrorPair : WC->Errors) {
1034 ++NumErrors;
1035 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
1038 if ((NumErrors == Inputs.size() && FailMode == failIfAllAreInvalid) ||
1039 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
1040 exitWithError("no profile can be merged");
1042 filterFunctions(Contexts[0]->Writer.getProfileData());
1044 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
1047 /// The profile entry for a function in instrumentation profile.
1048 struct InstrProfileEntry {
1049 uint64_t MaxCount = 0;
1050 uint64_t NumEdgeCounters = 0;
1051 float ZeroCounterRatio = 0.0;
1052 InstrProfRecord *ProfRecord;
1053 InstrProfileEntry(InstrProfRecord *Record);
1054 InstrProfileEntry() = default;
1057 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
1058 ProfRecord = Record;
1059 uint64_t CntNum = Record->Counts.size();
1060 uint64_t ZeroCntNum = 0;
1061 for (size_t I = 0; I < CntNum; ++I) {
1062 MaxCount = std::max(MaxCount, Record->Counts[I]);
1063 ZeroCntNum += !Record->Counts[I];
1065 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
1066 NumEdgeCounters = CntNum;
1069 /// Either set all the counters in the instr profile entry \p IFE to
1070 /// -1 / -2 /in order to drop the profile or scale up the
1071 /// counters in \p IFP to be above hot / cold threshold. We use
1072 /// the ratio of zero counters in the profile of a function to
1073 /// decide the profile is helpful or harmful for performance,
1074 /// and to choose whether to scale up or drop it.
1075 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot,
1076 uint64_t HotInstrThreshold,
1077 uint64_t ColdInstrThreshold,
1078 float ZeroCounterThreshold) {
1079 InstrProfRecord *ProfRecord = IFE.ProfRecord;
1080 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
1081 // If all or most of the counters of the function are zero, the
1082 // profile is unaccountable and should be dropped. Reset all the
1083 // counters to be -1 / -2 and PGO profile-use will drop the profile.
1084 // All counters being -1 also implies that the function is hot so
1085 // PGO profile-use will also set the entry count metadata to be
1086 // above hot threshold.
1087 // All counters being -2 implies that the function is warm so
1088 // PGO profile-use will also set the entry count metadata to be
1089 // above cold threshold.
1090 auto Kind =
1091 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm);
1092 ProfRecord->setPseudoCount(Kind);
1093 return;
1096 // Scale up the MaxCount to be multiple times above hot / cold threshold.
1097 const unsigned MultiplyFactor = 3;
1098 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold);
1099 uint64_t Numerator = Threshold * MultiplyFactor;
1101 // Make sure Threshold for warm counters is below the HotInstrThreshold.
1102 if (!SetToHot && Threshold >= HotInstrThreshold) {
1103 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2;
1106 uint64_t Denominator = IFE.MaxCount;
1107 if (Numerator <= Denominator)
1108 return;
1109 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
1110 warn(toString(make_error<InstrProfError>(E)));
1114 const uint64_t ColdPercentileIdx = 15;
1115 const uint64_t HotPercentileIdx = 11;
1117 using sampleprof::FSDiscriminatorPass;
1119 // Internal options to set FSDiscriminatorPass. Used in merge and show
1120 // commands.
1121 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
1122 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
1123 cl::desc("Zero out the discriminator bits for the FS discrimiantor "
1124 "pass beyond this value. The enum values are defined in "
1125 "Support/Discriminator.h"),
1126 cl::values(clEnumVal(Base, "Use base discriminators only"),
1127 clEnumVal(Pass1, "Use base and pass 1 discriminators"),
1128 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
1129 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
1130 clEnumVal(PassLast, "Use all discriminator bits (default)")));
1132 static unsigned getDiscriminatorMask() {
1133 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
1136 /// Adjust the instr profile in \p WC based on the sample profile in
1137 /// \p Reader.
1138 static void
1139 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
1140 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
1141 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
1142 unsigned InstrProfColdThreshold) {
1143 // Function to its entry in instr profile.
1144 StringMap<InstrProfileEntry> InstrProfileMap;
1145 StringMap<StringRef> StaticFuncMap;
1146 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
1148 auto checkSampleProfileHasFUnique = [&Reader]() {
1149 for (const auto &PD : Reader->getProfiles()) {
1150 auto &FContext = PD.second.getContext();
1151 if (FContext.toString().find(FunctionSamples::UniqSuffix) !=
1152 std::string::npos) {
1153 return true;
1156 return false;
1159 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique();
1161 auto buildStaticFuncMap = [&StaticFuncMap,
1162 SampleProfileHasFUnique](const StringRef Name) {
1163 std::string FilePrefixes[] = {".cpp", "cc", ".c", ".hpp", ".h"};
1164 size_t PrefixPos = StringRef::npos;
1165 for (auto &FilePrefix : FilePrefixes) {
1166 std::string NamePrefix = FilePrefix + GlobalIdentifierDelimiter;
1167 PrefixPos = Name.find_insensitive(NamePrefix);
1168 if (PrefixPos == StringRef::npos)
1169 continue;
1170 PrefixPos += NamePrefix.size();
1171 break;
1174 if (PrefixPos == StringRef::npos) {
1175 return;
1178 StringRef NewName = Name.drop_front(PrefixPos);
1179 StringRef FName = Name.substr(0, PrefixPos - 1);
1180 if (NewName.size() == 0) {
1181 return;
1184 // This name should have a static linkage.
1185 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix);
1186 bool ProfileHasFUnique = (PostfixPos != StringRef::npos);
1188 // If sample profile and instrumented profile do not agree on symbol
1189 // uniqification.
1190 if (SampleProfileHasFUnique != ProfileHasFUnique) {
1191 // If instrumented profile uses -funique-internal-linkage-symbols,
1192 // we need to trim the name.
1193 if (ProfileHasFUnique) {
1194 NewName = NewName.substr(0, PostfixPos);
1195 } else {
1196 // If sample profile uses -funique-internal-linkage-symbols,
1197 // we build the map.
1198 std::string NStr =
1199 NewName.str() + getUniqueInternalLinkagePostfix(FName);
1200 NewName = StringRef(NStr);
1201 StaticFuncMap[NewName] = Name;
1202 return;
1206 auto [It, Inserted] = StaticFuncMap.try_emplace(NewName, Name);
1207 if (!Inserted)
1208 It->second = DuplicateNameStr;
1211 // We need to flatten the SampleFDO profile as the InstrFDO
1212 // profile does not have inlined callsite profiles.
1213 // One caveat is the pre-inlined function -- their samples
1214 // should be collapsed into the caller function.
1215 // Here we do a DFS traversal to get the flatten profile
1216 // info: the sum of entrycount and the max of maxcount.
1217 // Here is the algorithm:
1218 // recursive (FS, root_name) {
1219 // name = FS->getName();
1220 // get samples for FS;
1221 // if (InstrProf.find(name) {
1222 // root_name = name;
1223 // } else {
1224 // if (name is in static_func map) {
1225 // root_name = static_name;
1226 // }
1227 // }
1228 // update the Map entry for root_name;
1229 // for (subfs: FS) {
1230 // recursive(subfs, root_name);
1231 // }
1232 // }
1234 // Here is an example.
1236 // SampleProfile:
1237 // foo:12345:1000
1238 // 1: 1000
1239 // 2.1: 1000
1240 // 15: 5000
1241 // 4: bar:1000
1242 // 1: 1000
1243 // 2: goo:3000
1244 // 1: 3000
1245 // 8: bar:40000
1246 // 1: 10000
1247 // 2: goo:30000
1248 // 1: 30000
1250 // InstrProfile has two entries:
1251 // foo
1252 // bar.cc;bar
1254 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap:
1255 // {"foo", {1000, 5000}}
1256 // {"bar.cc;bar", {11000, 30000}}
1258 // foo's has an entry count of 1000, and max body count of 5000.
1259 // bar.cc;bar has an entry count of 11000 (sum two callsites of 1000 and
1260 // 10000), and max count of 30000 (from the callsite in line 8).
1262 // Note that goo's count will remain in bar.cc;bar() as it does not have an
1263 // entry in InstrProfile.
1264 llvm::StringMap<std::pair<uint64_t, uint64_t>> FlattenSampleMap;
1265 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap,
1266 &InstrProfileMap](const FunctionSamples &FS,
1267 const StringRef &RootName) {
1268 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS,
1269 const StringRef &RootName,
1270 auto &BuildImpl) -> void {
1271 std::string NameStr = FS.getFunction().str();
1272 const StringRef Name = NameStr;
1273 const StringRef *NewRootName = &RootName;
1274 uint64_t EntrySample = FS.getHeadSamplesEstimate();
1275 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true);
1277 auto It = InstrProfileMap.find(Name);
1278 if (It != InstrProfileMap.end()) {
1279 NewRootName = &Name;
1280 } else {
1281 auto NewName = StaticFuncMap.find(Name);
1282 if (NewName != StaticFuncMap.end()) {
1283 It = InstrProfileMap.find(NewName->second);
1284 if (NewName->second != DuplicateNameStr) {
1285 NewRootName = &NewName->second;
1287 } else {
1288 // Here the EntrySample is of an inlined function, so we should not
1289 // update the EntrySample in the map.
1290 EntrySample = 0;
1293 EntrySample += FlattenSampleMap[*NewRootName].first;
1294 MaxBodySample =
1295 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample);
1296 FlattenSampleMap[*NewRootName] =
1297 std::make_pair(EntrySample, MaxBodySample);
1299 for (const auto &C : FS.getCallsiteSamples())
1300 for (const auto &F : C.second)
1301 BuildImpl(F.second, *NewRootName, BuildImpl);
1303 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl);
1306 for (auto &PD : WC->Writer.getProfileData()) {
1307 // Populate IPBuilder.
1308 for (const auto &PDV : PD.getValue()) {
1309 InstrProfRecord Record = PDV.second;
1310 IPBuilder.addRecord(Record);
1313 // If a function has multiple entries in instr profile, skip it.
1314 if (PD.getValue().size() != 1)
1315 continue;
1317 // Initialize InstrProfileMap.
1318 InstrProfRecord *R = &PD.getValue().begin()->second;
1319 StringRef FullName = PD.getKey();
1320 InstrProfileMap[FullName] = InstrProfileEntry(R);
1321 buildStaticFuncMap(FullName);
1324 for (auto &PD : Reader->getProfiles()) {
1325 sampleprof::FunctionSamples &FS = PD.second;
1326 std::string Name = FS.getFunction().str();
1327 BuildMaxSampleMap(FS, Name);
1330 ProfileSummary InstrPS = *IPBuilder.getSummary();
1331 ProfileSummary SamplePS = Reader->getSummary();
1333 // Compute cold thresholds for instr profile and sample profile.
1334 uint64_t HotSampleThreshold =
1335 ProfileSummaryBuilder::getEntryForPercentile(
1336 SamplePS.getDetailedSummary(),
1337 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1338 .MinCount;
1339 uint64_t ColdSampleThreshold =
1340 ProfileSummaryBuilder::getEntryForPercentile(
1341 SamplePS.getDetailedSummary(),
1342 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1343 .MinCount;
1344 uint64_t HotInstrThreshold =
1345 ProfileSummaryBuilder::getEntryForPercentile(
1346 InstrPS.getDetailedSummary(),
1347 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
1348 .MinCount;
1349 uint64_t ColdInstrThreshold =
1350 InstrProfColdThreshold
1351 ? InstrProfColdThreshold
1352 : ProfileSummaryBuilder::getEntryForPercentile(
1353 InstrPS.getDetailedSummary(),
1354 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
1355 .MinCount;
1357 // Find hot/warm functions in sample profile which is cold in instr profile
1358 // and adjust the profiles of those functions in the instr profile.
1359 for (const auto &E : FlattenSampleMap) {
1360 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second);
1361 if (SampleMaxCount < ColdSampleThreshold)
1362 continue;
1363 StringRef Name = E.first();
1364 auto It = InstrProfileMap.find(Name);
1365 if (It == InstrProfileMap.end()) {
1366 auto NewName = StaticFuncMap.find(Name);
1367 if (NewName != StaticFuncMap.end()) {
1368 It = InstrProfileMap.find(NewName->second);
1369 if (NewName->second == DuplicateNameStr) {
1370 WithColor::warning()
1371 << "Static function " << Name
1372 << " has multiple promoted names, cannot adjust profile.\n";
1376 if (It == InstrProfileMap.end() ||
1377 It->second.MaxCount > ColdInstrThreshold ||
1378 It->second.NumEdgeCounters < SupplMinSizeThreshold)
1379 continue;
1380 bool SetToHot = SampleMaxCount >= HotSampleThreshold;
1381 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold,
1382 ColdInstrThreshold, ZeroCounterThreshold);
1386 /// The main function to supplement instr profile with sample profile.
1387 /// \Inputs contains the instr profile. \p SampleFilename specifies the
1388 /// sample profile. \p OutputFilename specifies the output profile name.
1389 /// \p OutputFormat specifies the output profile format. \p OutputSparse
1390 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
1391 /// specifies the minimal size for the functions whose profile will be
1392 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
1393 /// a function contains too many zero counters and whether its profile
1394 /// should be dropped. \p InstrProfColdThreshold is the user specified
1395 /// cold threshold which will override the cold threshold got from the
1396 /// instr profile summary.
1397 static void supplementInstrProfile(const WeightedFileVector &Inputs,
1398 StringRef SampleFilename, bool OutputSparse,
1399 unsigned SupplMinSizeThreshold,
1400 float ZeroCounterThreshold,
1401 unsigned InstrProfColdThreshold) {
1402 if (OutputFilename == "-")
1403 exitWithError("cannot write indexed profdata format to stdout");
1404 if (Inputs.size() != 1)
1405 exitWithError("expect one input to be an instr profile");
1406 if (Inputs[0].Weight != 1)
1407 exitWithError("expect instr profile doesn't have weight");
1409 StringRef InstrFilename = Inputs[0].Filename;
1411 // Read sample profile.
1412 LLVMContext Context;
1413 auto FS = vfs::getRealFileSystem();
1414 auto ReaderOrErr = sampleprof::SampleProfileReader::create(
1415 SampleFilename.str(), Context, *FS, FSDiscriminatorPassOption);
1416 if (std::error_code EC = ReaderOrErr.getError())
1417 exitWithErrorCode(EC, SampleFilename);
1418 auto Reader = std::move(ReaderOrErr.get());
1419 if (std::error_code EC = Reader->read())
1420 exitWithErrorCode(EC, SampleFilename);
1422 // Read instr profile.
1423 std::mutex ErrorLock;
1424 SmallSet<instrprof_error, 4> WriterErrorCodes;
1425 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
1426 WriterErrorCodes);
1427 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
1428 if (WC->Errors.size() > 0)
1429 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
1431 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
1432 InstrProfColdThreshold);
1433 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
1436 /// Make a copy of the given function samples with all symbol names remapped
1437 /// by the provided symbol remapper.
1438 static sampleprof::FunctionSamples
1439 remapSamples(const sampleprof::FunctionSamples &Samples,
1440 SymbolRemapper &Remapper, sampleprof_error &Error) {
1441 sampleprof::FunctionSamples Result;
1442 Result.setFunction(Remapper(Samples.getFunction()));
1443 Result.addTotalSamples(Samples.getTotalSamples());
1444 Result.addHeadSamples(Samples.getHeadSamples());
1445 for (const auto &BodySample : Samples.getBodySamples()) {
1446 uint32_t MaskedDiscriminator =
1447 BodySample.first.Discriminator & getDiscriminatorMask();
1448 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
1449 BodySample.second.getSamples());
1450 for (const auto &Target : BodySample.second.getCallTargets()) {
1451 Result.addCalledTargetSamples(BodySample.first.LineOffset,
1452 MaskedDiscriminator,
1453 Remapper(Target.first), Target.second);
1456 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
1457 sampleprof::FunctionSamplesMap &Target =
1458 Result.functionSamplesAt(CallsiteSamples.first);
1459 for (const auto &Callsite : CallsiteSamples.second) {
1460 sampleprof::FunctionSamples Remapped =
1461 remapSamples(Callsite.second, Remapper, Error);
1462 mergeSampleProfErrors(Error,
1463 Target[Remapped.getFunction()].merge(Remapped));
1466 return Result;
1469 static sampleprof::SampleProfileFormat FormatMap[] = {
1470 sampleprof::SPF_None,
1471 sampleprof::SPF_Text,
1472 sampleprof::SPF_None,
1473 sampleprof::SPF_Ext_Binary,
1474 sampleprof::SPF_GCC,
1475 sampleprof::SPF_Binary};
1477 static std::unique_ptr<MemoryBuffer>
1478 getInputFileBuf(const StringRef &InputFile) {
1479 if (InputFile == "")
1480 return {};
1482 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
1483 if (!BufOrError)
1484 exitWithErrorCode(BufOrError.getError(), InputFile);
1486 return std::move(*BufOrError);
1489 static void populateProfileSymbolList(MemoryBuffer *Buffer,
1490 sampleprof::ProfileSymbolList &PSL) {
1491 if (!Buffer)
1492 return;
1494 SmallVector<StringRef, 32> SymbolVec;
1495 StringRef Data = Buffer->getBuffer();
1496 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1498 for (StringRef SymbolStr : SymbolVec)
1499 PSL.add(SymbolStr.trim());
1502 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
1503 ProfileFormat OutputFormat,
1504 MemoryBuffer *Buffer,
1505 sampleprof::ProfileSymbolList &WriterList,
1506 bool CompressAllSections, bool UseMD5,
1507 bool GenPartialProfile) {
1508 if (SplitLayout) {
1509 if (OutputFormat == PF_Binary)
1510 warn("-split-layout is ignored. Specify -extbinary to enable it");
1511 else
1512 Writer.setUseCtxSplitLayout();
1515 populateProfileSymbolList(Buffer, WriterList);
1516 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
1517 warn("Profile Symbol list is not empty but the output format is not "
1518 "ExtBinary format. The list will be lost in the output. ");
1520 Writer.setProfileSymbolList(&WriterList);
1522 if (CompressAllSections) {
1523 if (OutputFormat != PF_Ext_Binary)
1524 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
1525 else
1526 Writer.setToCompressAllSections();
1528 if (UseMD5) {
1529 if (OutputFormat != PF_Ext_Binary)
1530 warn("-use-md5 is ignored. Specify -extbinary to enable it");
1531 else
1532 Writer.setUseMD5();
1534 if (GenPartialProfile) {
1535 if (OutputFormat != PF_Ext_Binary)
1536 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
1537 else
1538 Writer.setPartialProfile();
1542 static void mergeSampleProfile(const WeightedFileVector &Inputs,
1543 SymbolRemapper *Remapper,
1544 StringRef ProfileSymbolListFile,
1545 size_t OutputSizeLimit) {
1546 using namespace sampleprof;
1547 SampleProfileMap ProfileMap;
1548 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
1549 LLVMContext Context;
1550 sampleprof::ProfileSymbolList WriterList;
1551 std::optional<bool> ProfileIsProbeBased;
1552 std::optional<bool> ProfileIsCS;
1553 for (const auto &Input : Inputs) {
1554 auto FS = vfs::getRealFileSystem();
1555 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context, *FS,
1556 FSDiscriminatorPassOption);
1557 if (std::error_code EC = ReaderOrErr.getError()) {
1558 warnOrExitGivenError(FailMode, EC, Input.Filename);
1559 continue;
1562 // We need to keep the readers around until after all the files are
1563 // read so that we do not lose the function names stored in each
1564 // reader's memory. The function names are needed to write out the
1565 // merged profile map.
1566 Readers.push_back(std::move(ReaderOrErr.get()));
1567 const auto Reader = Readers.back().get();
1568 if (std::error_code EC = Reader->read()) {
1569 warnOrExitGivenError(FailMode, EC, Input.Filename);
1570 Readers.pop_back();
1571 continue;
1574 SampleProfileMap &Profiles = Reader->getProfiles();
1575 if (ProfileIsProbeBased &&
1576 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
1577 exitWithError(
1578 "cannot merge probe-based profile with non-probe-based profile");
1579 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
1580 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS)
1581 exitWithError("cannot merge CS profile with non-CS profile");
1582 ProfileIsCS = FunctionSamples::ProfileIsCS;
1583 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
1584 I != E; ++I) {
1585 sampleprof_error Result = sampleprof_error::success;
1586 FunctionSamples Remapped =
1587 Remapper ? remapSamples(I->second, *Remapper, Result)
1588 : FunctionSamples();
1589 FunctionSamples &Samples = Remapper ? Remapped : I->second;
1590 SampleContext FContext = Samples.getContext();
1591 mergeSampleProfErrors(Result,
1592 ProfileMap[FContext].merge(Samples, Input.Weight));
1593 if (Result != sampleprof_error::success) {
1594 std::error_code EC = make_error_code(Result);
1595 handleMergeWriterError(errorCodeToError(EC), Input.Filename,
1596 FContext.toString());
1600 if (!DropProfileSymbolList) {
1601 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
1602 Reader->getProfileSymbolList();
1603 if (ReaderList)
1604 WriterList.merge(*ReaderList);
1608 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
1609 // Use threshold calculated from profile summary unless specified.
1610 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1611 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
1612 uint64_t SampleProfColdThreshold =
1613 ProfileSummaryBuilder::getColdCountThreshold(
1614 (Summary->getDetailedSummary()));
1616 // Trim and merge cold context profile using cold threshold above;
1617 SampleContextTrimmer(ProfileMap)
1618 .trimAndMergeColdContextProfiles(
1619 SampleProfColdThreshold, SampleTrimColdContext,
1620 SampleMergeColdContext, SampleColdContextFrameDepth, false);
1623 if (ProfileLayout == llvm::sampleprof::SPL_Flat) {
1624 ProfileConverter::flattenProfile(ProfileMap, FunctionSamples::ProfileIsCS);
1625 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1626 } else if (ProfileIsCS && ProfileLayout == llvm::sampleprof::SPL_Nest) {
1627 ProfileConverter CSConverter(ProfileMap);
1628 CSConverter.convertCSProfiles();
1629 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1632 filterFunctions(ProfileMap);
1634 auto WriterOrErr =
1635 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
1636 if (std::error_code EC = WriterOrErr.getError())
1637 exitWithErrorCode(EC, OutputFilename);
1639 auto Writer = std::move(WriterOrErr.get());
1640 // WriterList will have StringRef refering to string in Buffer.
1641 // Make sure Buffer lives as long as WriterList.
1642 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
1643 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
1644 CompressAllSections, UseMD5, GenPartialProfile);
1646 // If OutputSizeLimit is 0 (default), it is the same as write().
1647 if (std::error_code EC =
1648 Writer->writeWithSizeLimit(ProfileMap, OutputSizeLimit))
1649 exitWithErrorCode(EC);
1652 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
1653 StringRef WeightStr, FileName;
1654 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
1656 uint64_t Weight;
1657 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
1658 exitWithError("input weight must be a positive integer");
1660 return {std::string(FileName), Weight};
1663 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
1664 StringRef Filename = WF.Filename;
1665 uint64_t Weight = WF.Weight;
1667 // If it's STDIN just pass it on.
1668 if (Filename == "-") {
1669 WNI.push_back({std::string(Filename), Weight});
1670 return;
1673 llvm::sys::fs::file_status Status;
1674 llvm::sys::fs::status(Filename, Status);
1675 if (!llvm::sys::fs::exists(Status))
1676 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
1677 Filename);
1678 // If it's a source file, collect it.
1679 if (llvm::sys::fs::is_regular_file(Status)) {
1680 WNI.push_back({std::string(Filename), Weight});
1681 return;
1684 if (llvm::sys::fs::is_directory(Status)) {
1685 std::error_code EC;
1686 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
1687 F != E && !EC; F.increment(EC)) {
1688 if (llvm::sys::fs::is_regular_file(F->path())) {
1689 addWeightedInput(WNI, {F->path(), Weight});
1692 if (EC)
1693 exitWithErrorCode(EC, Filename);
1697 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
1698 WeightedFileVector &WFV) {
1699 if (!Buffer)
1700 return;
1702 SmallVector<StringRef, 8> Entries;
1703 StringRef Data = Buffer->getBuffer();
1704 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1705 for (const StringRef &FileWeightEntry : Entries) {
1706 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
1707 // Skip comments.
1708 if (SanitizedEntry.starts_with("#"))
1709 continue;
1710 // If there's no comma, it's an unweighted profile.
1711 else if (!SanitizedEntry.contains(','))
1712 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
1713 else
1714 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
1718 static int merge_main(StringRef ProgName) {
1719 WeightedFileVector WeightedInputs;
1720 for (StringRef Filename : InputFilenames)
1721 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
1722 for (StringRef WeightedFilename : WeightedInputFilenames)
1723 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
1725 // Make sure that the file buffer stays alive for the duration of the
1726 // weighted input vector's lifetime.
1727 auto Buffer = getInputFileBuf(InputFilenamesFile);
1728 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
1730 if (WeightedInputs.empty())
1731 exitWithError("no input files specified. See " + ProgName + " merge -help");
1733 if (DumpInputFileList) {
1734 for (auto &WF : WeightedInputs)
1735 outs() << WF.Weight << "," << WF.Filename << "\n";
1736 return 0;
1739 std::unique_ptr<SymbolRemapper> Remapper;
1740 if (!RemappingFile.empty())
1741 Remapper = SymbolRemapper::create(RemappingFile);
1743 if (!SupplInstrWithSample.empty()) {
1744 if (ProfileKind != instr)
1745 exitWithError(
1746 "-supplement-instr-with-sample can only work with -instr. ");
1748 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputSparse,
1749 SupplMinSizeThreshold, ZeroCounterThreshold,
1750 InstrProfColdThreshold);
1751 return 0;
1754 if (ProfileKind == instr)
1755 mergeInstrProfile(WeightedInputs, Remapper.get(), MaxDbgCorrelationWarnings,
1756 ProfiledBinary);
1757 else
1758 mergeSampleProfile(WeightedInputs, Remapper.get(), ProfileSymbolListFile,
1759 OutputSizeLimit);
1760 return 0;
1763 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
1764 static void overlapInstrProfile(const std::string &BaseFilename,
1765 const std::string &TestFilename,
1766 const OverlapFuncFilters &FuncFilter,
1767 raw_fd_ostream &OS, bool IsCS) {
1768 std::mutex ErrorLock;
1769 SmallSet<instrprof_error, 4> WriterErrorCodes;
1770 WriterContext Context(false, ErrorLock, WriterErrorCodes);
1771 WeightedFile WeightedInput{BaseFilename, 1};
1772 OverlapStats Overlap;
1773 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1774 if (E)
1775 exitWithError(std::move(E), "error in getting profile count sums");
1776 if (Overlap.Base.CountSum < 1.0f) {
1777 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1778 exit(0);
1780 if (Overlap.Test.CountSum < 1.0f) {
1781 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1782 exit(0);
1784 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
1785 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1786 IsCS);
1787 Overlap.dump(OS);
1790 namespace {
1791 struct SampleOverlapStats {
1792 SampleContext BaseName;
1793 SampleContext TestName;
1794 // Number of overlap units
1795 uint64_t OverlapCount = 0;
1796 // Total samples of overlap units
1797 uint64_t OverlapSample = 0;
1798 // Number of and total samples of units that only present in base or test
1799 // profile
1800 uint64_t BaseUniqueCount = 0;
1801 uint64_t BaseUniqueSample = 0;
1802 uint64_t TestUniqueCount = 0;
1803 uint64_t TestUniqueSample = 0;
1804 // Number of units and total samples in base or test profile
1805 uint64_t BaseCount = 0;
1806 uint64_t BaseSample = 0;
1807 uint64_t TestCount = 0;
1808 uint64_t TestSample = 0;
1809 // Number of and total samples of units that present in at least one profile
1810 uint64_t UnionCount = 0;
1811 uint64_t UnionSample = 0;
1812 // Weighted similarity
1813 double Similarity = 0.0;
1814 // For SampleOverlapStats instances representing functions, weights of the
1815 // function in base and test profiles
1816 double BaseWeight = 0.0;
1817 double TestWeight = 0.0;
1819 SampleOverlapStats() = default;
1821 } // end anonymous namespace
1823 namespace {
1824 struct FuncSampleStats {
1825 uint64_t SampleSum = 0;
1826 uint64_t MaxSample = 0;
1827 uint64_t HotBlockCount = 0;
1828 FuncSampleStats() = default;
1829 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1830 uint64_t HotBlockCount)
1831 : SampleSum(SampleSum), MaxSample(MaxSample),
1832 HotBlockCount(HotBlockCount) {}
1834 } // end anonymous namespace
1836 namespace {
1837 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1839 // Class for updating merging steps for two sorted maps. The class should be
1840 // instantiated with a map iterator type.
1841 template <class T> class MatchStep {
1842 public:
1843 MatchStep() = delete;
1845 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1846 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1847 SecondEnd(SecondEnd), Status(MS_None) {}
1849 bool areBothFinished() const {
1850 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1853 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1855 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1857 /// Advance one step based on the previous match status unless the previous
1858 /// status is MS_None. Then update Status based on the comparison between two
1859 /// container iterators at the current step. If the previous status is
1860 /// MS_None, it means two iterators are at the beginning and no comparison has
1861 /// been made, so we simply update Status without advancing the iterators.
1862 void updateOneStep();
1864 T getFirstIter() const { return FirstIter; }
1866 T getSecondIter() const { return SecondIter; }
1868 MatchStatus getMatchStatus() const { return Status; }
1870 private:
1871 // Current iterator and end iterator of the first container.
1872 T FirstIter;
1873 T FirstEnd;
1874 // Current iterator and end iterator of the second container.
1875 T SecondIter;
1876 T SecondEnd;
1877 // Match status of the current step.
1878 MatchStatus Status;
1880 } // end anonymous namespace
1882 template <class T> void MatchStep<T>::updateOneStep() {
1883 switch (Status) {
1884 case MS_Match:
1885 ++FirstIter;
1886 ++SecondIter;
1887 break;
1888 case MS_FirstUnique:
1889 ++FirstIter;
1890 break;
1891 case MS_SecondUnique:
1892 ++SecondIter;
1893 break;
1894 case MS_None:
1895 break;
1898 // Update Status according to iterators at the current step.
1899 if (areBothFinished())
1900 return;
1901 if (FirstIter != FirstEnd &&
1902 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1903 Status = MS_FirstUnique;
1904 else if (SecondIter != SecondEnd &&
1905 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1906 Status = MS_SecondUnique;
1907 else
1908 Status = MS_Match;
1911 // Return the sum of line/block samples, the max line/block sample, and the
1912 // number of line/block samples above the given threshold in a function
1913 // including its inlinees.
1914 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1915 FuncSampleStats &FuncStats,
1916 uint64_t HotThreshold) {
1917 for (const auto &L : Func.getBodySamples()) {
1918 uint64_t Sample = L.second.getSamples();
1919 FuncStats.SampleSum += Sample;
1920 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1921 if (Sample >= HotThreshold)
1922 ++FuncStats.HotBlockCount;
1925 for (const auto &C : Func.getCallsiteSamples()) {
1926 for (const auto &F : C.second)
1927 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1931 /// Predicate that determines if a function is hot with a given threshold. We
1932 /// keep it separate from its callsites for possible extension in the future.
1933 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1934 uint64_t HotThreshold) {
1935 // We intentionally compare the maximum sample count in a function with the
1936 // HotThreshold to get an approximate determination on hot functions.
1937 return (FuncStats.MaxSample >= HotThreshold);
1940 namespace {
1941 class SampleOverlapAggregator {
1942 public:
1943 SampleOverlapAggregator(const std::string &BaseFilename,
1944 const std::string &TestFilename,
1945 double LowSimilarityThreshold, double Epsilon,
1946 const OverlapFuncFilters &FuncFilter)
1947 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1948 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1949 FuncFilter(FuncFilter) {}
1951 /// Detect 0-sample input profile and report to output stream. This interface
1952 /// should be called after loadProfiles().
1953 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1955 /// Write out function-level similarity statistics for functions specified by
1956 /// options --function, --value-cutoff, and --similarity-cutoff.
1957 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1959 /// Write out program-level similarity and overlap statistics.
1960 void dumpProgramSummary(raw_fd_ostream &OS) const;
1962 /// Write out hot-function and hot-block statistics for base_profile,
1963 /// test_profile, and their overlap. For both cases, the overlap HO is
1964 /// calculated as follows:
1965 /// Given the number of functions (or blocks) that are hot in both profiles
1966 /// HCommon and the number of functions (or blocks) that are hot in at
1967 /// least one profile HUnion, HO = HCommon / HUnion.
1968 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1970 /// This function tries matching functions in base and test profiles. For each
1971 /// pair of matched functions, it aggregates the function-level
1972 /// similarity into a profile-level similarity. It also dump function-level
1973 /// similarity information of functions specified by --function,
1974 /// --value-cutoff, and --similarity-cutoff options. The program-level
1975 /// similarity PS is computed as follows:
1976 /// Given function-level similarity FS(A) for all function A, the
1977 /// weight of function A in base profile WB(A), and the weight of function
1978 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1979 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1980 /// meaning no-overlap.
1981 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1983 /// Initialize ProfOverlap with the sum of samples in base and test
1984 /// profiles. This function also computes and keeps the sum of samples and
1985 /// max sample counts of each function in BaseStats and TestStats for later
1986 /// use to avoid re-computations.
1987 void initializeSampleProfileOverlap();
1989 /// Load profiles specified by BaseFilename and TestFilename.
1990 std::error_code loadProfiles();
1992 using FuncSampleStatsMap =
1993 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1995 private:
1996 SampleOverlapStats ProfOverlap;
1997 SampleOverlapStats HotFuncOverlap;
1998 SampleOverlapStats HotBlockOverlap;
1999 std::string BaseFilename;
2000 std::string TestFilename;
2001 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
2002 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
2003 // BaseStats and TestStats hold FuncSampleStats for each function, with
2004 // function name as the key.
2005 FuncSampleStatsMap BaseStats;
2006 FuncSampleStatsMap TestStats;
2007 // Low similarity threshold in floating point number
2008 double LowSimilarityThreshold;
2009 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
2010 // for tracking hot blocks.
2011 uint64_t BaseHotThreshold;
2012 uint64_t TestHotThreshold;
2013 // A small threshold used to round the results of floating point accumulations
2014 // to resolve imprecision.
2015 const double Epsilon;
2016 std::multimap<double, SampleOverlapStats, std::greater<double>>
2017 FuncSimilarityDump;
2018 // FuncFilter carries specifications in options --value-cutoff and
2019 // --function.
2020 OverlapFuncFilters FuncFilter;
2021 // Column offsets for printing the function-level details table.
2022 static const unsigned int TestWeightCol = 15;
2023 static const unsigned int SimilarityCol = 30;
2024 static const unsigned int OverlapCol = 43;
2025 static const unsigned int BaseUniqueCol = 53;
2026 static const unsigned int TestUniqueCol = 67;
2027 static const unsigned int BaseSampleCol = 81;
2028 static const unsigned int TestSampleCol = 96;
2029 static const unsigned int FuncNameCol = 111;
2031 /// Return a similarity of two line/block sample counters in the same
2032 /// function in base and test profiles. The line/block-similarity BS(i) is
2033 /// computed as follows:
2034 /// For an offsets i, given the sample count at i in base profile BB(i),
2035 /// the sample count at i in test profile BT(i), the sum of sample counts
2036 /// in this function in base profile SB, and the sum of sample counts in
2037 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
2038 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
2039 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
2040 const SampleOverlapStats &FuncOverlap) const;
2042 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
2043 uint64_t HotBlockCount);
2045 void getHotFunctions(const FuncSampleStatsMap &ProfStats,
2046 FuncSampleStatsMap &HotFunc,
2047 uint64_t HotThreshold) const;
2049 void computeHotFuncOverlap();
2051 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2052 /// Difference for two sample units in a matched function according to the
2053 /// given match status.
2054 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
2055 uint64_t HotBlockCount,
2056 SampleOverlapStats &FuncOverlap,
2057 double &Difference, MatchStatus Status);
2059 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
2060 /// Difference for unmatched callees that only present in one profile in a
2061 /// matched caller function.
2062 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
2063 SampleOverlapStats &FuncOverlap,
2064 double &Difference, MatchStatus Status);
2066 /// This function updates sample overlap statistics of an overlap function in
2067 /// base and test profile. It also calculates a function-internal similarity
2068 /// FIS as follows:
2069 /// For offsets i that have samples in at least one profile in this
2070 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
2071 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
2072 /// 0.0 meaning no overlap.
2073 double computeSampleFunctionInternalOverlap(
2074 const sampleprof::FunctionSamples &BaseFunc,
2075 const sampleprof::FunctionSamples &TestFunc,
2076 SampleOverlapStats &FuncOverlap);
2078 /// Function-level similarity (FS) is a weighted value over function internal
2079 /// similarity (FIS). This function computes a function's FS from its FIS by
2080 /// applying the weight.
2081 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
2082 uint64_t TestFuncSample) const;
2084 /// The function-level similarity FS(A) for a function A is computed as
2085 /// follows:
2086 /// Compute a function-internal similarity FIS(A) by
2087 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
2088 /// function A in base profile WB(A), and the weight of function A in test
2089 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
2090 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
2091 double
2092 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
2093 const sampleprof::FunctionSamples *TestFunc,
2094 SampleOverlapStats *FuncOverlap,
2095 uint64_t BaseFuncSample,
2096 uint64_t TestFuncSample);
2098 /// Profile-level similarity (PS) is a weighted aggregate over function-level
2099 /// similarities (FS). This method weights the FS value by the function
2100 /// weights in the base and test profiles for the aggregation.
2101 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
2102 uint64_t TestFuncSample) const;
2104 } // end anonymous namespace
2106 bool SampleOverlapAggregator::detectZeroSampleProfile(
2107 raw_fd_ostream &OS) const {
2108 bool HaveZeroSample = false;
2109 if (ProfOverlap.BaseSample == 0) {
2110 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
2111 HaveZeroSample = true;
2113 if (ProfOverlap.TestSample == 0) {
2114 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
2115 HaveZeroSample = true;
2117 return HaveZeroSample;
2120 double SampleOverlapAggregator::computeBlockSimilarity(
2121 uint64_t BaseSample, uint64_t TestSample,
2122 const SampleOverlapStats &FuncOverlap) const {
2123 double BaseFrac = 0.0;
2124 double TestFrac = 0.0;
2125 if (FuncOverlap.BaseSample > 0)
2126 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
2127 if (FuncOverlap.TestSample > 0)
2128 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
2129 return 1.0 - std::fabs(BaseFrac - TestFrac);
2132 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
2133 uint64_t TestSample,
2134 uint64_t HotBlockCount) {
2135 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
2136 bool IsTestHot = (TestSample >= TestHotThreshold);
2137 if (!IsBaseHot && !IsTestHot)
2138 return;
2140 HotBlockOverlap.UnionCount += HotBlockCount;
2141 if (IsBaseHot)
2142 HotBlockOverlap.BaseCount += HotBlockCount;
2143 if (IsTestHot)
2144 HotBlockOverlap.TestCount += HotBlockCount;
2145 if (IsBaseHot && IsTestHot)
2146 HotBlockOverlap.OverlapCount += HotBlockCount;
2149 void SampleOverlapAggregator::getHotFunctions(
2150 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
2151 uint64_t HotThreshold) const {
2152 for (const auto &F : ProfStats) {
2153 if (isFunctionHot(F.second, HotThreshold))
2154 HotFunc.emplace(F.first, F.second);
2158 void SampleOverlapAggregator::computeHotFuncOverlap() {
2159 FuncSampleStatsMap BaseHotFunc;
2160 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
2161 HotFuncOverlap.BaseCount = BaseHotFunc.size();
2163 FuncSampleStatsMap TestHotFunc;
2164 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
2165 HotFuncOverlap.TestCount = TestHotFunc.size();
2166 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
2168 for (const auto &F : BaseHotFunc) {
2169 if (TestHotFunc.count(F.first))
2170 ++HotFuncOverlap.OverlapCount;
2171 else
2172 ++HotFuncOverlap.UnionCount;
2176 void SampleOverlapAggregator::updateOverlapStatsForFunction(
2177 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
2178 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
2179 assert(Status != MS_None &&
2180 "Match status should be updated before updating overlap statistics");
2181 if (Status == MS_FirstUnique) {
2182 TestSample = 0;
2183 FuncOverlap.BaseUniqueSample += BaseSample;
2184 } else if (Status == MS_SecondUnique) {
2185 BaseSample = 0;
2186 FuncOverlap.TestUniqueSample += TestSample;
2187 } else {
2188 ++FuncOverlap.OverlapCount;
2191 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
2192 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
2193 Difference +=
2194 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
2195 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
2198 void SampleOverlapAggregator::updateForUnmatchedCallee(
2199 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
2200 double &Difference, MatchStatus Status) {
2201 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
2202 "Status must be either of the two unmatched cases");
2203 FuncSampleStats FuncStats;
2204 if (Status == MS_FirstUnique) {
2205 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
2206 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
2207 FuncStats.HotBlockCount, FuncOverlap,
2208 Difference, Status);
2209 } else {
2210 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
2211 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
2212 FuncStats.HotBlockCount, FuncOverlap,
2213 Difference, Status);
2217 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
2218 const sampleprof::FunctionSamples &BaseFunc,
2219 const sampleprof::FunctionSamples &TestFunc,
2220 SampleOverlapStats &FuncOverlap) {
2222 using namespace sampleprof;
2224 double Difference = 0;
2226 // Accumulate Difference for regular line/block samples in the function.
2227 // We match them through sort-merge join algorithm because
2228 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
2229 // by their offsets.
2230 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
2231 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
2232 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
2233 BlockIterStep.updateOneStep();
2234 while (!BlockIterStep.areBothFinished()) {
2235 uint64_t BaseSample =
2236 BlockIterStep.isFirstFinished()
2238 : BlockIterStep.getFirstIter()->second.getSamples();
2239 uint64_t TestSample =
2240 BlockIterStep.isSecondFinished()
2242 : BlockIterStep.getSecondIter()->second.getSamples();
2243 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
2244 Difference, BlockIterStep.getMatchStatus());
2246 BlockIterStep.updateOneStep();
2249 // Accumulate Difference for callsite lines in the function. We match
2250 // them through sort-merge algorithm because
2251 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
2252 // ordered by their offsets.
2253 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
2254 BaseFunc.getCallsiteSamples().cbegin(),
2255 BaseFunc.getCallsiteSamples().cend(),
2256 TestFunc.getCallsiteSamples().cbegin(),
2257 TestFunc.getCallsiteSamples().cend());
2258 CallsiteIterStep.updateOneStep();
2259 while (!CallsiteIterStep.areBothFinished()) {
2260 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
2261 assert(CallsiteStepStatus != MS_None &&
2262 "Match status should be updated before entering loop body");
2264 if (CallsiteStepStatus != MS_Match) {
2265 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
2266 ? CallsiteIterStep.getFirstIter()
2267 : CallsiteIterStep.getSecondIter();
2268 for (const auto &F : Callsite->second)
2269 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
2270 CallsiteStepStatus);
2271 } else {
2272 // There may be multiple inlinees at the same offset, so we need to try
2273 // matching all of them. This match is implemented through sort-merge
2274 // algorithm because callsite records at the same offset are ordered by
2275 // function names.
2276 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
2277 CallsiteIterStep.getFirstIter()->second.cbegin(),
2278 CallsiteIterStep.getFirstIter()->second.cend(),
2279 CallsiteIterStep.getSecondIter()->second.cbegin(),
2280 CallsiteIterStep.getSecondIter()->second.cend());
2281 CalleeIterStep.updateOneStep();
2282 while (!CalleeIterStep.areBothFinished()) {
2283 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
2284 if (CalleeStepStatus != MS_Match) {
2285 auto Callee = (CalleeStepStatus == MS_FirstUnique)
2286 ? CalleeIterStep.getFirstIter()
2287 : CalleeIterStep.getSecondIter();
2288 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
2289 CalleeStepStatus);
2290 } else {
2291 // An inlined function can contain other inlinees inside, so compute
2292 // the Difference recursively.
2293 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
2294 CalleeIterStep.getFirstIter()->second,
2295 CalleeIterStep.getSecondIter()->second,
2296 FuncOverlap);
2298 CalleeIterStep.updateOneStep();
2301 CallsiteIterStep.updateOneStep();
2304 // Difference reflects the total differences of line/block samples in this
2305 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
2306 // reflect the similarity between function profiles in [0.0f to 1.0f].
2307 return (2.0 - Difference) / 2;
2310 double SampleOverlapAggregator::weightForFuncSimilarity(
2311 double FuncInternalSimilarity, uint64_t BaseFuncSample,
2312 uint64_t TestFuncSample) const {
2313 // Compute the weight as the distance between the function weights in two
2314 // profiles.
2315 double BaseFrac = 0.0;
2316 double TestFrac = 0.0;
2317 assert(ProfOverlap.BaseSample > 0 &&
2318 "Total samples in base profile should be greater than 0");
2319 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
2320 assert(ProfOverlap.TestSample > 0 &&
2321 "Total samples in test profile should be greater than 0");
2322 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
2323 double WeightDistance = std::fabs(BaseFrac - TestFrac);
2325 // Take WeightDistance into the similarity.
2326 return FuncInternalSimilarity * (1 - WeightDistance);
2329 double
2330 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
2331 uint64_t BaseFuncSample,
2332 uint64_t TestFuncSample) const {
2334 double BaseFrac = 0.0;
2335 double TestFrac = 0.0;
2336 assert(ProfOverlap.BaseSample > 0 &&
2337 "Total samples in base profile should be greater than 0");
2338 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
2339 assert(ProfOverlap.TestSample > 0 &&
2340 "Total samples in test profile should be greater than 0");
2341 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
2342 return FuncSimilarity * (BaseFrac + TestFrac);
2345 double SampleOverlapAggregator::computeSampleFunctionOverlap(
2346 const sampleprof::FunctionSamples *BaseFunc,
2347 const sampleprof::FunctionSamples *TestFunc,
2348 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
2349 uint64_t TestFuncSample) {
2350 // Default function internal similarity before weighted, meaning two functions
2351 // has no overlap.
2352 const double DefaultFuncInternalSimilarity = 0;
2353 double FuncSimilarity;
2354 double FuncInternalSimilarity;
2356 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
2357 // In this case, we use DefaultFuncInternalSimilarity as the function internal
2358 // similarity.
2359 if (!BaseFunc || !TestFunc) {
2360 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
2361 } else {
2362 assert(FuncOverlap != nullptr &&
2363 "FuncOverlap should be provided in this case");
2364 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
2365 *BaseFunc, *TestFunc, *FuncOverlap);
2366 // Now, FuncInternalSimilarity may be a little less than 0 due to
2367 // imprecision of floating point accumulations. Make it zero if the
2368 // difference is below Epsilon.
2369 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
2371 : FuncInternalSimilarity;
2373 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
2374 BaseFuncSample, TestFuncSample);
2375 return FuncSimilarity;
2378 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
2379 using namespace sampleprof;
2381 std::unordered_map<SampleContext, const FunctionSamples *,
2382 SampleContext::Hash>
2383 BaseFuncProf;
2384 const auto &BaseProfiles = BaseReader->getProfiles();
2385 for (const auto &BaseFunc : BaseProfiles) {
2386 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
2388 ProfOverlap.UnionCount = BaseFuncProf.size();
2390 const auto &TestProfiles = TestReader->getProfiles();
2391 for (const auto &TestFunc : TestProfiles) {
2392 SampleOverlapStats FuncOverlap;
2393 FuncOverlap.TestName = TestFunc.second.getContext();
2394 assert(TestStats.count(FuncOverlap.TestName) &&
2395 "TestStats should have records for all functions in test profile "
2396 "except inlinees");
2397 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
2399 bool Matched = false;
2400 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
2401 if (Match == BaseFuncProf.end()) {
2402 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
2403 ++ProfOverlap.TestUniqueCount;
2404 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
2405 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
2407 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
2409 double FuncSimilarity = computeSampleFunctionOverlap(
2410 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
2411 ProfOverlap.Similarity +=
2412 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
2414 ++ProfOverlap.UnionCount;
2415 ProfOverlap.UnionSample += FuncStats.SampleSum;
2416 } else {
2417 ++ProfOverlap.OverlapCount;
2419 // Two functions match with each other. Compute function-level overlap and
2420 // aggregate them into profile-level overlap.
2421 FuncOverlap.BaseName = Match->second->getContext();
2422 assert(BaseStats.count(FuncOverlap.BaseName) &&
2423 "BaseStats should have records for all functions in base profile "
2424 "except inlinees");
2425 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
2427 FuncOverlap.Similarity = computeSampleFunctionOverlap(
2428 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
2429 FuncOverlap.TestSample);
2430 ProfOverlap.Similarity +=
2431 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
2432 FuncOverlap.TestSample);
2433 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
2434 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
2436 // Accumulate the percentage of base unique and test unique samples into
2437 // ProfOverlap.
2438 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
2439 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
2441 // Remove matched base functions for later reporting functions not found
2442 // in test profile.
2443 BaseFuncProf.erase(Match);
2444 Matched = true;
2447 // Print function-level similarity information if specified by options.
2448 assert(TestStats.count(FuncOverlap.TestName) &&
2449 "TestStats should have records for all functions in test profile "
2450 "except inlinees");
2451 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
2452 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
2453 (Matched && !FuncFilter.NameFilter.empty() &&
2454 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
2455 std::string::npos)) {
2456 assert(ProfOverlap.BaseSample > 0 &&
2457 "Total samples in base profile should be greater than 0");
2458 FuncOverlap.BaseWeight =
2459 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
2460 assert(ProfOverlap.TestSample > 0 &&
2461 "Total samples in test profile should be greater than 0");
2462 FuncOverlap.TestWeight =
2463 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
2464 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
2468 // Traverse through functions in base profile but not in test profile.
2469 for (const auto &F : BaseFuncProf) {
2470 assert(BaseStats.count(F.second->getContext()) &&
2471 "BaseStats should have records for all functions in base profile "
2472 "except inlinees");
2473 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
2474 ++ProfOverlap.BaseUniqueCount;
2475 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
2477 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
2479 double FuncSimilarity = computeSampleFunctionOverlap(
2480 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
2481 ProfOverlap.Similarity +=
2482 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
2484 ProfOverlap.UnionSample += FuncStats.SampleSum;
2487 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
2488 // of floating point accumulations. Make it 1.0 if the difference is below
2489 // Epsilon.
2490 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
2492 : ProfOverlap.Similarity;
2494 computeHotFuncOverlap();
2497 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
2498 const auto &BaseProf = BaseReader->getProfiles();
2499 for (const auto &I : BaseProf) {
2500 ++ProfOverlap.BaseCount;
2501 FuncSampleStats FuncStats;
2502 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
2503 ProfOverlap.BaseSample += FuncStats.SampleSum;
2504 BaseStats.emplace(I.second.getContext(), FuncStats);
2507 const auto &TestProf = TestReader->getProfiles();
2508 for (const auto &I : TestProf) {
2509 ++ProfOverlap.TestCount;
2510 FuncSampleStats FuncStats;
2511 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
2512 ProfOverlap.TestSample += FuncStats.SampleSum;
2513 TestStats.emplace(I.second.getContext(), FuncStats);
2516 ProfOverlap.BaseName = StringRef(BaseFilename);
2517 ProfOverlap.TestName = StringRef(TestFilename);
2520 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
2521 using namespace sampleprof;
2523 if (FuncSimilarityDump.empty())
2524 return;
2526 formatted_raw_ostream FOS(OS);
2527 FOS << "Function-level details:\n";
2528 FOS << "Base weight";
2529 FOS.PadToColumn(TestWeightCol);
2530 FOS << "Test weight";
2531 FOS.PadToColumn(SimilarityCol);
2532 FOS << "Similarity";
2533 FOS.PadToColumn(OverlapCol);
2534 FOS << "Overlap";
2535 FOS.PadToColumn(BaseUniqueCol);
2536 FOS << "Base unique";
2537 FOS.PadToColumn(TestUniqueCol);
2538 FOS << "Test unique";
2539 FOS.PadToColumn(BaseSampleCol);
2540 FOS << "Base samples";
2541 FOS.PadToColumn(TestSampleCol);
2542 FOS << "Test samples";
2543 FOS.PadToColumn(FuncNameCol);
2544 FOS << "Function name\n";
2545 for (const auto &F : FuncSimilarityDump) {
2546 double OverlapPercent =
2547 F.second.UnionSample > 0
2548 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
2549 : 0;
2550 double BaseUniquePercent =
2551 F.second.BaseSample > 0
2552 ? static_cast<double>(F.second.BaseUniqueSample) /
2553 F.second.BaseSample
2554 : 0;
2555 double TestUniquePercent =
2556 F.second.TestSample > 0
2557 ? static_cast<double>(F.second.TestUniqueSample) /
2558 F.second.TestSample
2559 : 0;
2561 FOS << format("%.2f%%", F.second.BaseWeight * 100);
2562 FOS.PadToColumn(TestWeightCol);
2563 FOS << format("%.2f%%", F.second.TestWeight * 100);
2564 FOS.PadToColumn(SimilarityCol);
2565 FOS << format("%.2f%%", F.second.Similarity * 100);
2566 FOS.PadToColumn(OverlapCol);
2567 FOS << format("%.2f%%", OverlapPercent * 100);
2568 FOS.PadToColumn(BaseUniqueCol);
2569 FOS << format("%.2f%%", BaseUniquePercent * 100);
2570 FOS.PadToColumn(TestUniqueCol);
2571 FOS << format("%.2f%%", TestUniquePercent * 100);
2572 FOS.PadToColumn(BaseSampleCol);
2573 FOS << F.second.BaseSample;
2574 FOS.PadToColumn(TestSampleCol);
2575 FOS << F.second.TestSample;
2576 FOS.PadToColumn(FuncNameCol);
2577 FOS << F.second.TestName.toString() << "\n";
2581 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
2582 OS << "Profile overlap infomation for base_profile: "
2583 << ProfOverlap.BaseName.toString()
2584 << " and test_profile: " << ProfOverlap.TestName.toString()
2585 << "\nProgram level:\n";
2587 OS << " Whole program profile similarity: "
2588 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
2590 assert(ProfOverlap.UnionSample > 0 &&
2591 "Total samples in two profile should be greater than 0");
2592 double OverlapPercent =
2593 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
2594 assert(ProfOverlap.BaseSample > 0 &&
2595 "Total samples in base profile should be greater than 0");
2596 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
2597 ProfOverlap.BaseSample;
2598 assert(ProfOverlap.TestSample > 0 &&
2599 "Total samples in test profile should be greater than 0");
2600 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
2601 ProfOverlap.TestSample;
2603 OS << " Whole program sample overlap: "
2604 << format("%.3f%%", OverlapPercent * 100) << "\n";
2605 OS << " percentage of samples unique in base profile: "
2606 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
2607 OS << " percentage of samples unique in test profile: "
2608 << format("%.3f%%", TestUniquePercent * 100) << "\n";
2609 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
2610 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
2612 assert(ProfOverlap.UnionCount > 0 &&
2613 "There should be at least one function in two input profiles");
2614 double FuncOverlapPercent =
2615 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
2616 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
2617 << "\n";
2618 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
2619 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
2620 << "\n";
2621 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
2622 << "\n";
2625 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
2626 raw_fd_ostream &OS) const {
2627 assert(HotFuncOverlap.UnionCount > 0 &&
2628 "There should be at least one hot function in two input profiles");
2629 OS << " Hot-function overlap: "
2630 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
2631 HotFuncOverlap.UnionCount * 100)
2632 << "\n";
2633 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
2634 OS << " hot functions unique in base profile: "
2635 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
2636 OS << " hot functions unique in test profile: "
2637 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
2639 assert(HotBlockOverlap.UnionCount > 0 &&
2640 "There should be at least one hot block in two input profiles");
2641 OS << " Hot-block overlap: "
2642 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
2643 HotBlockOverlap.UnionCount * 100)
2644 << "\n";
2645 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
2646 OS << " hot blocks unique in base profile: "
2647 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
2648 OS << " hot blocks unique in test profile: "
2649 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
2652 std::error_code SampleOverlapAggregator::loadProfiles() {
2653 using namespace sampleprof;
2655 LLVMContext Context;
2656 auto FS = vfs::getRealFileSystem();
2657 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context, *FS,
2658 FSDiscriminatorPassOption);
2659 if (std::error_code EC = BaseReaderOrErr.getError())
2660 exitWithErrorCode(EC, BaseFilename);
2662 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context, *FS,
2663 FSDiscriminatorPassOption);
2664 if (std::error_code EC = TestReaderOrErr.getError())
2665 exitWithErrorCode(EC, TestFilename);
2667 BaseReader = std::move(BaseReaderOrErr.get());
2668 TestReader = std::move(TestReaderOrErr.get());
2670 if (std::error_code EC = BaseReader->read())
2671 exitWithErrorCode(EC, BaseFilename);
2672 if (std::error_code EC = TestReader->read())
2673 exitWithErrorCode(EC, TestFilename);
2674 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
2675 exitWithError(
2676 "cannot compare probe-based profile with non-probe-based profile");
2677 if (BaseReader->profileIsCS() != TestReader->profileIsCS())
2678 exitWithError("cannot compare CS profile with non-CS profile");
2680 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
2681 // profile summary.
2682 ProfileSummary &BasePS = BaseReader->getSummary();
2683 ProfileSummary &TestPS = TestReader->getSummary();
2684 BaseHotThreshold =
2685 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
2686 TestHotThreshold =
2687 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
2689 return std::error_code();
2692 void overlapSampleProfile(const std::string &BaseFilename,
2693 const std::string &TestFilename,
2694 const OverlapFuncFilters &FuncFilter,
2695 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
2696 using namespace sampleprof;
2698 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
2699 // report 2--3 places after decimal point in percentage numbers.
2700 SampleOverlapAggregator OverlapAggr(
2701 BaseFilename, TestFilename,
2702 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
2703 if (std::error_code EC = OverlapAggr.loadProfiles())
2704 exitWithErrorCode(EC);
2706 OverlapAggr.initializeSampleProfileOverlap();
2707 if (OverlapAggr.detectZeroSampleProfile(OS))
2708 return;
2710 OverlapAggr.computeSampleProfileOverlap(OS);
2712 OverlapAggr.dumpProgramSummary(OS);
2713 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
2714 OverlapAggr.dumpFuncSimilarity(OS);
2717 static int overlap_main() {
2718 std::error_code EC;
2719 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2720 if (EC)
2721 exitWithErrorCode(EC, OutputFilename);
2723 if (ProfileKind == instr)
2724 overlapInstrProfile(BaseFilename, TestFilename,
2725 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2726 OS, IsCS);
2727 else
2728 overlapSampleProfile(BaseFilename, TestFilename,
2729 OverlapFuncFilters{OverlapValueCutoff, FuncNameFilter},
2730 SimilarityCutoff, OS);
2732 return 0;
2735 namespace {
2736 struct ValueSitesStats {
2737 ValueSitesStats() = default;
2738 uint64_t TotalNumValueSites = 0;
2739 uint64_t TotalNumValueSitesWithValueProfile = 0;
2740 uint64_t TotalNumValues = 0;
2741 std::vector<unsigned> ValueSitesHistogram;
2743 } // namespace
2745 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2746 ValueSitesStats &Stats, raw_fd_ostream &OS,
2747 InstrProfSymtab *Symtab) {
2748 uint32_t NS = Func.getNumValueSites(VK);
2749 Stats.TotalNumValueSites += NS;
2750 for (size_t I = 0; I < NS; ++I) {
2751 auto VD = Func.getValueArrayForSite(VK, I);
2752 uint32_t NV = VD.size();
2753 if (NV == 0)
2754 continue;
2755 Stats.TotalNumValues += NV;
2756 Stats.TotalNumValueSitesWithValueProfile++;
2757 if (NV > Stats.ValueSitesHistogram.size())
2758 Stats.ValueSitesHistogram.resize(NV, 0);
2759 Stats.ValueSitesHistogram[NV - 1]++;
2761 uint64_t SiteSum = 0;
2762 for (const auto &V : VD)
2763 SiteSum += V.Count;
2764 if (SiteSum == 0)
2765 SiteSum = 1;
2767 for (const auto &V : VD) {
2768 OS << "\t[ " << format("%2u", I) << ", ";
2769 if (Symtab == nullptr)
2770 OS << format("%4" PRIu64, V.Value);
2771 else
2772 OS << Symtab->getFuncOrVarName(V.Value);
2773 OS << ", " << format("%10" PRId64, V.Count) << " ] ("
2774 << format("%.2f%%", (V.Count * 100.0 / SiteSum)) << ")\n";
2779 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2780 ValueSitesStats &Stats) {
2781 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2782 OS << " Total number of sites with values: "
2783 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2784 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2786 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2787 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2788 if (Stats.ValueSitesHistogram[I] > 0)
2789 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2793 static int showInstrProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
2794 if (SFormat == ShowFormat::Json)
2795 exitWithError("JSON output is not supported for instr profiles");
2796 if (SFormat == ShowFormat::Yaml)
2797 exitWithError("YAML output is not supported for instr profiles");
2798 auto FS = vfs::getRealFileSystem();
2799 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
2800 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2801 if (ShowDetailedSummary && Cutoffs.empty()) {
2802 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
2804 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2805 if (Error E = ReaderOrErr.takeError())
2806 exitWithError(std::move(E), Filename);
2808 auto Reader = std::move(ReaderOrErr.get());
2809 bool IsIRInstr = Reader->isIRLevelProfile();
2810 size_t ShownFunctions = 0;
2811 size_t BelowCutoffFunctions = 0;
2812 int NumVPKind = IPVK_Last - IPVK_First + 1;
2813 std::vector<ValueSitesStats> VPStats(NumVPKind);
2815 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2816 const std::pair<std::string, uint64_t> &v2) {
2817 return v1.second > v2.second;
2820 std::priority_queue<std::pair<std::string, uint64_t>,
2821 std::vector<std::pair<std::string, uint64_t>>,
2822 decltype(MinCmp)>
2823 HottestFuncs(MinCmp);
2825 if (!TextFormat && OnlyListBelow) {
2826 OS << "The list of functions with the maximum counter less than "
2827 << ShowValueCutoff << ":\n";
2830 // Add marker so that IR-level instrumentation round-trips properly.
2831 if (TextFormat && IsIRInstr)
2832 OS << ":ir\n";
2834 for (const auto &Func : *Reader) {
2835 if (Reader->isIRLevelProfile()) {
2836 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2837 if (FuncIsCS != ShowCS)
2838 continue;
2840 bool Show = ShowAllFunctions ||
2841 (!FuncNameFilter.empty() && Func.Name.contains(FuncNameFilter));
2843 bool doTextFormatDump = (Show && TextFormat);
2845 if (doTextFormatDump) {
2846 InstrProfSymtab &Symtab = Reader->getSymtab();
2847 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2848 OS);
2849 continue;
2852 assert(Func.Counts.size() > 0 && "function missing entry counter");
2853 Builder.addRecord(Func);
2855 if (ShowCovered) {
2856 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; }))
2857 OS << Func.Name << "\n";
2858 continue;
2861 uint64_t FuncMax = 0;
2862 uint64_t FuncSum = 0;
2864 auto PseudoKind = Func.getCountPseudoKind();
2865 if (PseudoKind != InstrProfRecord::NotPseudo) {
2866 if (Show) {
2867 if (!ShownFunctions)
2868 OS << "Counters:\n";
2869 ++ShownFunctions;
2870 OS << " " << Func.Name << ":\n"
2871 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2872 << " Counters: " << Func.Counts.size();
2873 if (PseudoKind == InstrProfRecord::PseudoHot)
2874 OS << " <PseudoHot>\n";
2875 else if (PseudoKind == InstrProfRecord::PseudoWarm)
2876 OS << " <PseudoWarm>\n";
2877 else
2878 llvm_unreachable("Unknown PseudoKind");
2880 continue;
2883 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2884 FuncMax = std::max(FuncMax, Func.Counts[I]);
2885 FuncSum += Func.Counts[I];
2888 if (FuncMax < ShowValueCutoff) {
2889 ++BelowCutoffFunctions;
2890 if (OnlyListBelow) {
2891 OS << " " << Func.Name << ": (Max = " << FuncMax
2892 << " Sum = " << FuncSum << ")\n";
2894 continue;
2895 } else if (OnlyListBelow)
2896 continue;
2898 if (TopNFunctions) {
2899 if (HottestFuncs.size() == TopNFunctions) {
2900 if (HottestFuncs.top().second < FuncMax) {
2901 HottestFuncs.pop();
2902 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2904 } else
2905 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2908 if (Show) {
2909 if (!ShownFunctions)
2910 OS << "Counters:\n";
2912 ++ShownFunctions;
2914 OS << " " << Func.Name << ":\n"
2915 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2916 << " Counters: " << Func.Counts.size() << "\n";
2917 if (!IsIRInstr)
2918 OS << " Function count: " << Func.Counts[0] << "\n";
2920 if (ShowIndirectCallTargets)
2921 OS << " Indirect Call Site Count: "
2922 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2924 if (ShowVTables)
2925 OS << " Number of instrumented vtables: "
2926 << Func.getNumValueSites(IPVK_VTableTarget) << "\n";
2928 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2929 if (ShowMemOPSizes && NumMemOPCalls > 0)
2930 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2931 << "\n";
2933 if (ShowCounts) {
2934 OS << " Block counts: [";
2935 size_t Start = (IsIRInstr ? 0 : 1);
2936 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2937 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2939 OS << "]\n";
2942 if (ShowIndirectCallTargets) {
2943 OS << " Indirect Target Results:\n";
2944 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2945 VPStats[IPVK_IndirectCallTarget], OS,
2946 &(Reader->getSymtab()));
2949 if (ShowVTables) {
2950 OS << " VTable Results:\n";
2951 traverseAllValueSites(Func, IPVK_VTableTarget,
2952 VPStats[IPVK_VTableTarget], OS,
2953 &(Reader->getSymtab()));
2956 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2957 OS << " Memory Intrinsic Size Results:\n";
2958 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2959 nullptr);
2963 if (Reader->hasError())
2964 exitWithError(Reader->getError(), Filename);
2966 if (TextFormat || ShowCovered)
2967 return 0;
2968 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2969 bool IsIR = Reader->isIRLevelProfile();
2970 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2971 if (IsIR)
2972 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2973 OS << "\n";
2974 if (ShowAllFunctions || !FuncNameFilter.empty())
2975 OS << "Functions shown: " << ShownFunctions << "\n";
2976 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2977 if (ShowValueCutoff > 0) {
2978 OS << "Number of functions with maximum count (< " << ShowValueCutoff
2979 << "): " << BelowCutoffFunctions << "\n";
2980 OS << "Number of functions with maximum count (>= " << ShowValueCutoff
2981 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2983 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2984 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2986 if (TopNFunctions) {
2987 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2988 while (!HottestFuncs.empty()) {
2989 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2990 HottestFuncs.pop();
2992 OS << "Top " << TopNFunctions
2993 << " functions with the largest internal block counts: \n";
2994 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2995 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2998 if (ShownFunctions && ShowIndirectCallTargets) {
2999 OS << "Statistics for indirect call sites profile:\n";
3000 showValueSitesStats(OS, IPVK_IndirectCallTarget,
3001 VPStats[IPVK_IndirectCallTarget]);
3004 if (ShownFunctions && ShowVTables) {
3005 OS << "Statistics for vtable profile:\n";
3006 showValueSitesStats(OS, IPVK_VTableTarget, VPStats[IPVK_VTableTarget]);
3009 if (ShownFunctions && ShowMemOPSizes) {
3010 OS << "Statistics for memory intrinsic calls sizes profile:\n";
3011 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
3014 if (ShowDetailedSummary) {
3015 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
3016 OS << "Total count: " << PS->getTotalCount() << "\n";
3017 PS->printDetailedSummary(OS);
3020 if (ShowBinaryIds)
3021 if (Error E = Reader->printBinaryIds(OS))
3022 exitWithError(std::move(E), Filename);
3024 if (ShowProfileVersion)
3025 OS << "Profile version: " << Reader->getVersion() << "\n";
3027 if (ShowTemporalProfTraces) {
3028 auto &Traces = Reader->getTemporalProfTraces();
3029 OS << "Temporal Profile Traces (samples=" << Traces.size()
3030 << " seen=" << Reader->getTemporalProfTraceStreamSize() << "):\n";
3031 for (unsigned i = 0; i < Traces.size(); i++) {
3032 OS << " Temporal Profile Trace " << i << " (weight=" << Traces[i].Weight
3033 << " count=" << Traces[i].FunctionNameRefs.size() << "):\n";
3034 for (auto &NameRef : Traces[i].FunctionNameRefs)
3035 OS << " " << Reader->getSymtab().getFuncOrVarName(NameRef) << "\n";
3039 return 0;
3042 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
3043 raw_fd_ostream &OS) {
3044 if (!Reader->dumpSectionInfo(OS)) {
3045 WithColor::warning() << "-show-sec-info-only is only supported for "
3046 << "sample profile in extbinary format and is "
3047 << "ignored for other formats.\n";
3048 return;
3052 namespace {
3053 struct HotFuncInfo {
3054 std::string FuncName;
3055 uint64_t TotalCount = 0;
3056 double TotalCountPercent = 0.0f;
3057 uint64_t MaxCount = 0;
3058 uint64_t EntryCount = 0;
3060 HotFuncInfo() = default;
3062 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
3063 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
3064 MaxCount(MS), EntryCount(ES) {}
3066 } // namespace
3068 // Print out detailed information about hot functions in PrintValues vector.
3069 // Users specify titles and offset of every columns through ColumnTitle and
3070 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
3071 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
3072 // print out or let it be an empty string.
3073 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
3074 const std::vector<int> &ColumnOffset,
3075 const std::vector<HotFuncInfo> &PrintValues,
3076 uint64_t HotFuncCount, uint64_t TotalFuncCount,
3077 uint64_t HotProfCount, uint64_t TotalProfCount,
3078 const std::string &HotFuncMetric,
3079 uint32_t TopNFunctions, raw_fd_ostream &OS) {
3080 assert(ColumnOffset.size() == ColumnTitle.size() &&
3081 "ColumnOffset and ColumnTitle should have the same size");
3082 assert(ColumnTitle.size() >= 4 &&
3083 "ColumnTitle should have at least 4 elements");
3084 assert(TotalFuncCount > 0 &&
3085 "There should be at least one function in the profile");
3086 double TotalProfPercent = 0;
3087 if (TotalProfCount > 0)
3088 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
3090 formatted_raw_ostream FOS(OS);
3091 FOS << HotFuncCount << " out of " << TotalFuncCount
3092 << " functions with profile ("
3093 << format("%.2f%%",
3094 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
3095 << ") are considered hot functions";
3096 if (!HotFuncMetric.empty())
3097 FOS << " (" << HotFuncMetric << ")";
3098 FOS << ".\n";
3099 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
3100 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
3102 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
3103 FOS.PadToColumn(ColumnOffset[I]);
3104 FOS << ColumnTitle[I];
3106 FOS << "\n";
3108 uint32_t Count = 0;
3109 for (const auto &R : PrintValues) {
3110 if (TopNFunctions && (Count++ == TopNFunctions))
3111 break;
3112 FOS.PadToColumn(ColumnOffset[0]);
3113 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
3114 FOS.PadToColumn(ColumnOffset[1]);
3115 FOS << R.MaxCount;
3116 FOS.PadToColumn(ColumnOffset[2]);
3117 FOS << R.EntryCount;
3118 FOS.PadToColumn(ColumnOffset[3]);
3119 FOS << R.FuncName << "\n";
3123 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
3124 ProfileSummary &PS, uint32_t TopN,
3125 raw_fd_ostream &OS) {
3126 using namespace sampleprof;
3128 const uint32_t HotFuncCutoff = 990000;
3129 auto &SummaryVector = PS.getDetailedSummary();
3130 uint64_t MinCountThreshold = 0;
3131 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
3132 if (SummaryEntry.Cutoff == HotFuncCutoff) {
3133 MinCountThreshold = SummaryEntry.MinCount;
3134 break;
3138 // Traverse all functions in the profile and keep only hot functions.
3139 // The following loop also calculates the sum of total samples of all
3140 // functions.
3141 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
3142 std::greater<uint64_t>>
3143 HotFunc;
3144 uint64_t ProfileTotalSample = 0;
3145 uint64_t HotFuncSample = 0;
3146 uint64_t HotFuncCount = 0;
3148 for (const auto &I : Profiles) {
3149 FuncSampleStats FuncStats;
3150 const FunctionSamples &FuncProf = I.second;
3151 ProfileTotalSample += FuncProf.getTotalSamples();
3152 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
3154 if (isFunctionHot(FuncStats, MinCountThreshold)) {
3155 HotFunc.emplace(FuncProf.getTotalSamples(),
3156 std::make_pair(&(I.second), FuncStats.MaxSample));
3157 HotFuncSample += FuncProf.getTotalSamples();
3158 ++HotFuncCount;
3162 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
3163 "Entry sample", "Function name"};
3164 std::vector<int> ColumnOffset{0, 24, 42, 58};
3165 std::string Metric =
3166 std::string("max sample >= ") + std::to_string(MinCountThreshold);
3167 std::vector<HotFuncInfo> PrintValues;
3168 for (const auto &FuncPair : HotFunc) {
3169 const FunctionSamples &Func = *FuncPair.second.first;
3170 double TotalSamplePercent =
3171 (ProfileTotalSample > 0)
3172 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
3173 : 0;
3174 PrintValues.emplace_back(
3175 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(),
3176 TotalSamplePercent, FuncPair.second.second,
3177 Func.getHeadSamplesEstimate()));
3179 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
3180 Profiles.size(), HotFuncSample, ProfileTotalSample,
3181 Metric, TopN, OS);
3183 return 0;
3186 static int showSampleProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3187 if (SFormat == ShowFormat::Yaml)
3188 exitWithError("YAML output is not supported for sample profiles");
3189 using namespace sampleprof;
3190 LLVMContext Context;
3191 auto FS = vfs::getRealFileSystem();
3192 auto ReaderOrErr = SampleProfileReader::create(Filename, Context, *FS,
3193 FSDiscriminatorPassOption);
3194 if (std::error_code EC = ReaderOrErr.getError())
3195 exitWithErrorCode(EC, Filename);
3197 auto Reader = std::move(ReaderOrErr.get());
3198 if (ShowSectionInfoOnly) {
3199 showSectionInfo(Reader.get(), OS);
3200 return 0;
3203 if (std::error_code EC = Reader->read())
3204 exitWithErrorCode(EC, Filename);
3206 if (ShowAllFunctions || FuncNameFilter.empty()) {
3207 if (SFormat == ShowFormat::Json)
3208 Reader->dumpJson(OS);
3209 else
3210 Reader->dump(OS);
3211 } else {
3212 if (SFormat == ShowFormat::Json)
3213 exitWithError(
3214 "the JSON format is supported only when all functions are to "
3215 "be printed");
3217 // TODO: parse context string to support filtering by contexts.
3218 FunctionSamples *FS = Reader->getSamplesFor(StringRef(FuncNameFilter));
3219 Reader->dumpFunctionProfile(FS ? *FS : FunctionSamples(), OS);
3222 if (ShowProfileSymbolList) {
3223 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
3224 Reader->getProfileSymbolList();
3225 ReaderList->dump(OS);
3228 if (ShowDetailedSummary) {
3229 auto &PS = Reader->getSummary();
3230 PS.printSummary(OS);
3231 PS.printDetailedSummary(OS);
3234 if (ShowHotFuncList || TopNFunctions)
3235 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(),
3236 TopNFunctions, OS);
3238 return 0;
3241 static int showMemProfProfile(ShowFormat SFormat, raw_fd_ostream &OS) {
3242 if (SFormat == ShowFormat::Json)
3243 exitWithError("JSON output is not supported for MemProf");
3244 auto ReaderOr = llvm::memprof::RawMemProfReader::create(
3245 Filename, ProfiledBinary, /*KeepNames=*/true);
3246 if (Error E = ReaderOr.takeError())
3247 // Since the error can be related to the profile or the binary we do not
3248 // pass whence. Instead additional context is provided where necessary in
3249 // the error message.
3250 exitWithError(std::move(E), /*Whence*/ "");
3252 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
3253 ReaderOr.get().release());
3255 Reader->printYAML(OS);
3256 return 0;
3259 static int showDebugInfoCorrelation(const std::string &Filename,
3260 ShowFormat SFormat, raw_fd_ostream &OS) {
3261 if (SFormat == ShowFormat::Json)
3262 exitWithError("JSON output is not supported for debug info correlation");
3263 std::unique_ptr<InstrProfCorrelator> Correlator;
3264 if (auto Err =
3265 InstrProfCorrelator::get(Filename, InstrProfCorrelator::DEBUG_INFO)
3266 .moveInto(Correlator))
3267 exitWithError(std::move(Err), Filename);
3268 if (SFormat == ShowFormat::Yaml) {
3269 if (auto Err = Correlator->dumpYaml(MaxDbgCorrelationWarnings, OS))
3270 exitWithError(std::move(Err), Filename);
3271 return 0;
3274 if (auto Err = Correlator->correlateProfileData(MaxDbgCorrelationWarnings))
3275 exitWithError(std::move(Err), Filename);
3277 InstrProfSymtab Symtab;
3278 if (auto Err = Symtab.create(
3279 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
3280 exitWithError(std::move(Err), Filename);
3282 if (ShowProfileSymbolList)
3283 Symtab.dumpNames(OS);
3284 // TODO: Read "Profile Data Type" from debug info to compute and show how many
3285 // counters the section holds.
3286 if (ShowDetailedSummary)
3287 OS << "Counters section size: 0x"
3288 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
3289 OS << "Found " << Correlator->getDataSize() << " functions\n";
3291 return 0;
3294 static int show_main(StringRef ProgName) {
3295 if (Filename.empty() && DebugInfoFilename.empty())
3296 exitWithError(
3297 "the positional argument '<profdata-file>' is required unless '--" +
3298 DebugInfoFilename.ArgStr + "' is provided");
3300 if (Filename == OutputFilename) {
3301 errs() << ProgName
3302 << " show: Input file name cannot be the same as the output file "
3303 "name!\n";
3304 return 1;
3306 if (JsonFormat)
3307 SFormat = ShowFormat::Json;
3309 std::error_code EC;
3310 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3311 if (EC)
3312 exitWithErrorCode(EC, OutputFilename);
3314 if (ShowAllFunctions && !FuncNameFilter.empty())
3315 WithColor::warning() << "-function argument ignored: showing all functions\n";
3317 if (!DebugInfoFilename.empty())
3318 return showDebugInfoCorrelation(DebugInfoFilename, SFormat, OS);
3320 if (ShowProfileKind == instr)
3321 return showInstrProfile(SFormat, OS);
3322 if (ShowProfileKind == sample)
3323 return showSampleProfile(SFormat, OS);
3324 return showMemProfProfile(SFormat, OS);
3327 static int order_main() {
3328 std::error_code EC;
3329 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
3330 if (EC)
3331 exitWithErrorCode(EC, OutputFilename);
3332 auto FS = vfs::getRealFileSystem();
3333 auto ReaderOrErr = InstrProfReader::create(Filename, *FS);
3334 if (Error E = ReaderOrErr.takeError())
3335 exitWithError(std::move(E), Filename);
3337 auto Reader = std::move(ReaderOrErr.get());
3338 for (auto &I : *Reader) {
3339 // Read all entries
3340 (void)I;
3342 ArrayRef Traces = Reader->getTemporalProfTraces();
3343 if (NumTestTraces && NumTestTraces >= Traces.size())
3344 exitWithError(
3345 "--" + NumTestTraces.ArgStr +
3346 " must be smaller than the total number of traces: expected: < " +
3347 Twine(Traces.size()) + ", actual: " + Twine(NumTestTraces));
3348 ArrayRef TestTraces = Traces.take_back(NumTestTraces);
3349 Traces = Traces.drop_back(NumTestTraces);
3351 std::vector<BPFunctionNode> Nodes;
3352 TemporalProfTraceTy::createBPFunctionNodes(Traces, Nodes);
3353 BalancedPartitioningConfig Config;
3354 BalancedPartitioning BP(Config);
3355 BP.run(Nodes);
3357 OS << "# Ordered " << Nodes.size() << " functions\n";
3358 if (!TestTraces.empty()) {
3359 // Since we don't know the symbol sizes, we assume 32 functions per page.
3360 DenseMap<BPFunctionNode::IDT, unsigned> IdToPageNumber;
3361 for (auto &Node : Nodes)
3362 IdToPageNumber[Node.Id] = IdToPageNumber.size() / 32;
3364 SmallSet<unsigned, 0> TouchedPages;
3365 unsigned Area = 0;
3366 for (auto &Trace : TestTraces) {
3367 for (auto Id : Trace.FunctionNameRefs) {
3368 auto It = IdToPageNumber.find(Id);
3369 if (It == IdToPageNumber.end())
3370 continue;
3371 TouchedPages.insert(It->getSecond());
3372 Area += TouchedPages.size();
3374 TouchedPages.clear();
3376 OS << "# Total area under the page fault curve: " << (float)Area << "\n";
3378 OS << "# Warning: Mach-O may prefix symbols with \"_\" depending on the "
3379 "linkage and this output does not take that into account. Some "
3380 "post-processing may be required before passing to the linker via "
3381 "-order_file.\n";
3382 for (auto &N : Nodes) {
3383 auto [Filename, ParsedFuncName] =
3384 getParsedIRPGOName(Reader->getSymtab().getFuncOrVarName(N.Id));
3385 if (!Filename.empty())
3386 OS << "# " << Filename << "\n";
3387 OS << ParsedFuncName << "\n";
3389 return 0;
3392 int llvm_profdata_main(int argc, char **argvNonConst,
3393 const llvm::ToolContext &) {
3394 const char **argv = const_cast<const char **>(argvNonConst);
3396 StringRef ProgName(sys::path::filename(argv[0]));
3398 if (argc < 2) {
3399 errs()
3400 << ProgName
3401 << ": No subcommand specified! Run llvm-profdata --help for usage.\n";
3402 return 1;
3405 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data\n");
3407 if (ShowSubcommand)
3408 return show_main(ProgName);
3410 if (OrderSubcommand)
3411 return order_main();
3413 if (OverlapSubcommand)
3414 return overlap_main();
3416 if (MergeSubcommand)
3417 return merge_main(ProgName);
3419 errs() << ProgName
3420 << ": Unknown command. Run llvm-profdata --help for usage.\n";
3421 return 1;