[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / Sema / SemaCUDA.cpp
blob0a49d72ba96344e32389b17ff669f6197de4e8df
1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallVector.h"
27 using namespace clang;
29 template <typename AttrT> static bool hasExplicitAttr(const VarDecl *D) {
30 if (!D)
31 return false;
32 if (auto *A = D->getAttr<AttrT>())
33 return !A->isImplicit();
34 return false;
37 void Sema::PushForceCUDAHostDevice() {
38 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
39 ForceCUDAHostDeviceDepth++;
42 bool Sema::PopForceCUDAHostDevice() {
43 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
44 if (ForceCUDAHostDeviceDepth == 0)
45 return false;
46 ForceCUDAHostDeviceDepth--;
47 return true;
50 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
51 MultiExprArg ExecConfig,
52 SourceLocation GGGLoc) {
53 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
54 if (!ConfigDecl)
55 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
56 << getCudaConfigureFuncName());
57 QualType ConfigQTy = ConfigDecl->getType();
59 DeclRefExpr *ConfigDR = new (Context)
60 DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
61 MarkFunctionReferenced(LLLLoc, ConfigDecl);
63 return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
64 /*IsExecConfig=*/true);
67 Sema::CUDAFunctionTarget
68 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
69 bool HasHostAttr = false;
70 bool HasDeviceAttr = false;
71 bool HasGlobalAttr = false;
72 bool HasInvalidTargetAttr = false;
73 for (const ParsedAttr &AL : Attrs) {
74 switch (AL.getKind()) {
75 case ParsedAttr::AT_CUDAGlobal:
76 HasGlobalAttr = true;
77 break;
78 case ParsedAttr::AT_CUDAHost:
79 HasHostAttr = true;
80 break;
81 case ParsedAttr::AT_CUDADevice:
82 HasDeviceAttr = true;
83 break;
84 case ParsedAttr::AT_CUDAInvalidTarget:
85 HasInvalidTargetAttr = true;
86 break;
87 default:
88 break;
92 if (HasInvalidTargetAttr)
93 return CFT_InvalidTarget;
95 if (HasGlobalAttr)
96 return CFT_Global;
98 if (HasHostAttr && HasDeviceAttr)
99 return CFT_HostDevice;
101 if (HasDeviceAttr)
102 return CFT_Device;
104 return CFT_Host;
107 template <typename A>
108 static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
109 return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
110 return isa<A>(Attribute) &&
111 !(IgnoreImplicitAttr && Attribute->isImplicit());
115 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
116 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
117 bool IgnoreImplicitHDAttr) {
118 // Code that lives outside a function is run on the host.
119 if (D == nullptr)
120 return CFT_Host;
122 if (D->hasAttr<CUDAInvalidTargetAttr>())
123 return CFT_InvalidTarget;
125 if (D->hasAttr<CUDAGlobalAttr>())
126 return CFT_Global;
128 if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
129 if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
130 return CFT_HostDevice;
131 return CFT_Device;
132 } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
133 return CFT_Host;
134 } else if ((D->isImplicit() || !D->isUserProvided()) &&
135 !IgnoreImplicitHDAttr) {
136 // Some implicit declarations (like intrinsic functions) are not marked.
137 // Set the most lenient target on them for maximal flexibility.
138 return CFT_HostDevice;
141 return CFT_Host;
144 /// IdentifyTarget - Determine the CUDA compilation target for this variable.
145 Sema::CUDAVariableTarget Sema::IdentifyCUDATarget(const VarDecl *Var) {
146 if (Var->hasAttr<HIPManagedAttr>())
147 return CVT_Unified;
148 // Only constexpr and const variabless with implicit constant attribute
149 // are emitted on both sides. Such variables are promoted to device side
150 // only if they have static constant intializers on device side.
151 if ((Var->isConstexpr() || Var->getType().isConstQualified()) &&
152 Var->hasAttr<CUDAConstantAttr>() &&
153 !hasExplicitAttr<CUDAConstantAttr>(Var))
154 return CVT_Both;
155 if (Var->hasAttr<CUDADeviceAttr>() || Var->hasAttr<CUDAConstantAttr>() ||
156 Var->hasAttr<CUDASharedAttr>() ||
157 Var->getType()->isCUDADeviceBuiltinSurfaceType() ||
158 Var->getType()->isCUDADeviceBuiltinTextureType())
159 return CVT_Device;
160 // Function-scope static variable without explicit device or constant
161 // attribute are emitted
162 // - on both sides in host device functions
163 // - on device side in device or global functions
164 if (auto *FD = dyn_cast<FunctionDecl>(Var->getDeclContext())) {
165 switch (IdentifyCUDATarget(FD)) {
166 case CFT_HostDevice:
167 return CVT_Both;
168 case CFT_Device:
169 case CFT_Global:
170 return CVT_Device;
171 default:
172 return CVT_Host;
175 return CVT_Host;
178 // * CUDA Call preference table
180 // F - from,
181 // T - to
182 // Ph - preference in host mode
183 // Pd - preference in device mode
184 // H - handled in (x)
185 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
187 // | F | T | Ph | Pd | H |
188 // |----+----+-----+-----+-----+
189 // | d | d | N | N | (c) |
190 // | d | g | -- | -- | (a) |
191 // | d | h | -- | -- | (e) |
192 // | d | hd | HD | HD | (b) |
193 // | g | d | N | N | (c) |
194 // | g | g | -- | -- | (a) |
195 // | g | h | -- | -- | (e) |
196 // | g | hd | HD | HD | (b) |
197 // | h | d | -- | -- | (e) |
198 // | h | g | N | N | (c) |
199 // | h | h | N | N | (c) |
200 // | h | hd | HD | HD | (b) |
201 // | hd | d | WS | SS | (d) |
202 // | hd | g | SS | -- |(d/a)|
203 // | hd | h | SS | WS | (d) |
204 // | hd | hd | HD | HD | (b) |
206 Sema::CUDAFunctionPreference
207 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
208 const FunctionDecl *Callee) {
209 assert(Callee && "Callee must be valid.");
210 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
211 CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
213 // If one of the targets is invalid, the check always fails, no matter what
214 // the other target is.
215 if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
216 return CFP_Never;
218 // (a) Can't call global from some contexts until we support CUDA's
219 // dynamic parallelism.
220 if (CalleeTarget == CFT_Global &&
221 (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
222 return CFP_Never;
224 // (b) Calling HostDevice is OK for everyone.
225 if (CalleeTarget == CFT_HostDevice)
226 return CFP_HostDevice;
228 // (c) Best case scenarios
229 if (CalleeTarget == CallerTarget ||
230 (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
231 (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
232 return CFP_Native;
234 // (d) HostDevice behavior depends on compilation mode.
235 if (CallerTarget == CFT_HostDevice) {
236 // It's OK to call a compilation-mode matching function from an HD one.
237 if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
238 (!getLangOpts().CUDAIsDevice &&
239 (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
240 return CFP_SameSide;
242 // Calls from HD to non-mode-matching functions (i.e., to host functions
243 // when compiling in device mode or to device functions when compiling in
244 // host mode) are allowed at the sema level, but eventually rejected if
245 // they're ever codegened. TODO: Reject said calls earlier.
246 return CFP_WrongSide;
249 // (e) Calling across device/host boundary is not something you should do.
250 if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
251 (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
252 (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
253 return CFP_Never;
255 llvm_unreachable("All cases should've been handled by now.");
258 template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
259 if (!D)
260 return false;
261 if (auto *A = D->getAttr<AttrT>())
262 return A->isImplicit();
263 return D->isImplicit();
266 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
267 bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
268 bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
269 return IsImplicitDevAttr && IsImplicitHostAttr;
272 void Sema::EraseUnwantedCUDAMatches(
273 const FunctionDecl *Caller,
274 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
275 if (Matches.size() <= 1)
276 return;
278 using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
280 // Gets the CUDA function preference for a call from Caller to Match.
281 auto GetCFP = [&](const Pair &Match) {
282 return IdentifyCUDAPreference(Caller, Match.second);
285 // Find the best call preference among the functions in Matches.
286 CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
287 Matches.begin(), Matches.end(),
288 [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
290 // Erase all functions with lower priority.
291 llvm::erase_if(Matches,
292 [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
295 /// When an implicitly-declared special member has to invoke more than one
296 /// base/field special member, conflicts may occur in the targets of these
297 /// members. For example, if one base's member __host__ and another's is
298 /// __device__, it's a conflict.
299 /// This function figures out if the given targets \param Target1 and
300 /// \param Target2 conflict, and if they do not it fills in
301 /// \param ResolvedTarget with a target that resolves for both calls.
302 /// \return true if there's a conflict, false otherwise.
303 static bool
304 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
305 Sema::CUDAFunctionTarget Target2,
306 Sema::CUDAFunctionTarget *ResolvedTarget) {
307 // Only free functions and static member functions may be global.
308 assert(Target1 != Sema::CFT_Global);
309 assert(Target2 != Sema::CFT_Global);
311 if (Target1 == Sema::CFT_HostDevice) {
312 *ResolvedTarget = Target2;
313 } else if (Target2 == Sema::CFT_HostDevice) {
314 *ResolvedTarget = Target1;
315 } else if (Target1 != Target2) {
316 return true;
317 } else {
318 *ResolvedTarget = Target1;
321 return false;
324 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
325 CXXSpecialMember CSM,
326 CXXMethodDecl *MemberDecl,
327 bool ConstRHS,
328 bool Diagnose) {
329 // If the defaulted special member is defined lexically outside of its
330 // owning class, or the special member already has explicit device or host
331 // attributes, do not infer.
332 bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
333 bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
334 bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
335 bool HasExplicitAttr =
336 (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
337 (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
338 if (!InClass || HasExplicitAttr)
339 return false;
341 llvm::Optional<CUDAFunctionTarget> InferredTarget;
343 // We're going to invoke special member lookup; mark that these special
344 // members are called from this one, and not from its caller.
345 ContextRAII MethodContext(*this, MemberDecl);
347 // Look for special members in base classes that should be invoked from here.
348 // Infer the target of this member base on the ones it should call.
349 // Skip direct and indirect virtual bases for abstract classes.
350 llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
351 for (const auto &B : ClassDecl->bases()) {
352 if (!B.isVirtual()) {
353 Bases.push_back(&B);
357 if (!ClassDecl->isAbstract()) {
358 llvm::append_range(Bases, llvm::make_pointer_range(ClassDecl->vbases()));
361 for (const auto *B : Bases) {
362 const RecordType *BaseType = B->getType()->getAs<RecordType>();
363 if (!BaseType) {
364 continue;
367 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
368 Sema::SpecialMemberOverloadResult SMOR =
369 LookupSpecialMember(BaseClassDecl, CSM,
370 /* ConstArg */ ConstRHS,
371 /* VolatileArg */ false,
372 /* RValueThis */ false,
373 /* ConstThis */ false,
374 /* VolatileThis */ false);
376 if (!SMOR.getMethod())
377 continue;
379 CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
380 if (!InferredTarget) {
381 InferredTarget = BaseMethodTarget;
382 } else {
383 bool ResolutionError = resolveCalleeCUDATargetConflict(
384 InferredTarget.value(), BaseMethodTarget,
385 InferredTarget.getPointer());
386 if (ResolutionError) {
387 if (Diagnose) {
388 Diag(ClassDecl->getLocation(),
389 diag::note_implicit_member_target_infer_collision)
390 << (unsigned)CSM << InferredTarget.value() << BaseMethodTarget;
392 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
393 return true;
398 // Same as for bases, but now for special members of fields.
399 for (const auto *F : ClassDecl->fields()) {
400 if (F->isInvalidDecl()) {
401 continue;
404 const RecordType *FieldType =
405 Context.getBaseElementType(F->getType())->getAs<RecordType>();
406 if (!FieldType) {
407 continue;
410 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
411 Sema::SpecialMemberOverloadResult SMOR =
412 LookupSpecialMember(FieldRecDecl, CSM,
413 /* ConstArg */ ConstRHS && !F->isMutable(),
414 /* VolatileArg */ false,
415 /* RValueThis */ false,
416 /* ConstThis */ false,
417 /* VolatileThis */ false);
419 if (!SMOR.getMethod())
420 continue;
422 CUDAFunctionTarget FieldMethodTarget =
423 IdentifyCUDATarget(SMOR.getMethod());
424 if (!InferredTarget) {
425 InferredTarget = FieldMethodTarget;
426 } else {
427 bool ResolutionError = resolveCalleeCUDATargetConflict(
428 InferredTarget.value(), FieldMethodTarget,
429 InferredTarget.getPointer());
430 if (ResolutionError) {
431 if (Diagnose) {
432 Diag(ClassDecl->getLocation(),
433 diag::note_implicit_member_target_infer_collision)
434 << (unsigned)CSM << InferredTarget.value() << FieldMethodTarget;
436 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
437 return true;
443 // If no target was inferred, mark this member as __host__ __device__;
444 // it's the least restrictive option that can be invoked from any target.
445 bool NeedsH = true, NeedsD = true;
446 if (InferredTarget) {
447 if (InferredTarget.value() == CFT_Device)
448 NeedsH = false;
449 else if (InferredTarget.value() == CFT_Host)
450 NeedsD = false;
453 // We either setting attributes first time, or the inferred ones must match
454 // previously set ones.
455 if (NeedsD && !HasD)
456 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
457 if (NeedsH && !HasH)
458 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
460 return false;
463 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
464 if (!CD->isDefined() && CD->isTemplateInstantiation())
465 InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
467 // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
468 // empty at a point in the translation unit, if it is either a
469 // trivial constructor
470 if (CD->isTrivial())
471 return true;
473 // ... or it satisfies all of the following conditions:
474 // The constructor function has been defined.
475 // The constructor function has no parameters,
476 // and the function body is an empty compound statement.
477 if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
478 return false;
480 // Its class has no virtual functions and no virtual base classes.
481 if (CD->getParent()->isDynamicClass())
482 return false;
484 // Union ctor does not call ctors of its data members.
485 if (CD->getParent()->isUnion())
486 return true;
488 // The only form of initializer allowed is an empty constructor.
489 // This will recursively check all base classes and member initializers
490 if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
491 if (const CXXConstructExpr *CE =
492 dyn_cast<CXXConstructExpr>(CI->getInit()))
493 return isEmptyCudaConstructor(Loc, CE->getConstructor());
494 return false;
496 return false;
498 return true;
501 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
502 // No destructor -> no problem.
503 if (!DD)
504 return true;
506 if (!DD->isDefined() && DD->isTemplateInstantiation())
507 InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
509 // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
510 // empty at a point in the translation unit, if it is either a
511 // trivial constructor
512 if (DD->isTrivial())
513 return true;
515 // ... or it satisfies all of the following conditions:
516 // The destructor function has been defined.
517 // and the function body is an empty compound statement.
518 if (!DD->hasTrivialBody())
519 return false;
521 const CXXRecordDecl *ClassDecl = DD->getParent();
523 // Its class has no virtual functions and no virtual base classes.
524 if (ClassDecl->isDynamicClass())
525 return false;
527 // Union does not have base class and union dtor does not call dtors of its
528 // data members.
529 if (DD->getParent()->isUnion())
530 return true;
532 // Only empty destructors are allowed. This will recursively check
533 // destructors for all base classes...
534 if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
535 if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
536 return isEmptyCudaDestructor(Loc, RD->getDestructor());
537 return true;
539 return false;
541 // ... and member fields.
542 if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
543 if (CXXRecordDecl *RD = Field->getType()
544 ->getBaseElementTypeUnsafe()
545 ->getAsCXXRecordDecl())
546 return isEmptyCudaDestructor(Loc, RD->getDestructor());
547 return true;
549 return false;
551 return true;
554 namespace {
555 enum CUDAInitializerCheckKind {
556 CICK_DeviceOrConstant, // Check initializer for device/constant variable
557 CICK_Shared, // Check initializer for shared variable
560 bool IsDependentVar(VarDecl *VD) {
561 if (VD->getType()->isDependentType())
562 return true;
563 if (const auto *Init = VD->getInit())
564 return Init->isValueDependent();
565 return false;
568 // Check whether a variable has an allowed initializer for a CUDA device side
569 // variable with global storage. \p VD may be a host variable to be checked for
570 // potential promotion to device side variable.
572 // CUDA/HIP allows only empty constructors as initializers for global
573 // variables (see E.2.3.1, CUDA 7.5). The same restriction also applies to all
574 // __shared__ variables whether they are local or not (they all are implicitly
575 // static in CUDA). One exception is that CUDA allows constant initializers
576 // for __constant__ and __device__ variables.
577 bool HasAllowedCUDADeviceStaticInitializer(Sema &S, VarDecl *VD,
578 CUDAInitializerCheckKind CheckKind) {
579 assert(!VD->isInvalidDecl() && VD->hasGlobalStorage());
580 assert(!IsDependentVar(VD) && "do not check dependent var");
581 const Expr *Init = VD->getInit();
582 auto IsEmptyInit = [&](const Expr *Init) {
583 if (!Init)
584 return true;
585 if (const auto *CE = dyn_cast<CXXConstructExpr>(Init)) {
586 return S.isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
588 return false;
590 auto IsConstantInit = [&](const Expr *Init) {
591 assert(Init);
592 ASTContext::CUDAConstantEvalContextRAII EvalCtx(S.Context,
593 /*NoWronSidedVars=*/true);
594 return Init->isConstantInitializer(S.Context,
595 VD->getType()->isReferenceType());
597 auto HasEmptyDtor = [&](VarDecl *VD) {
598 if (const auto *RD = VD->getType()->getAsCXXRecordDecl())
599 return S.isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
600 return true;
602 if (CheckKind == CICK_Shared)
603 return IsEmptyInit(Init) && HasEmptyDtor(VD);
604 return S.LangOpts.GPUAllowDeviceInit ||
605 ((IsEmptyInit(Init) || IsConstantInit(Init)) && HasEmptyDtor(VD));
607 } // namespace
609 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
610 // Do not check dependent variables since the ctor/dtor/initializer are not
611 // determined. Do it after instantiation.
612 if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage() ||
613 IsDependentVar(VD))
614 return;
615 const Expr *Init = VD->getInit();
616 bool IsSharedVar = VD->hasAttr<CUDASharedAttr>();
617 bool IsDeviceOrConstantVar =
618 !IsSharedVar &&
619 (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>());
620 if (IsDeviceOrConstantVar || IsSharedVar) {
621 if (HasAllowedCUDADeviceStaticInitializer(
622 *this, VD, IsSharedVar ? CICK_Shared : CICK_DeviceOrConstant))
623 return;
624 Diag(VD->getLocation(),
625 IsSharedVar ? diag::err_shared_var_init : diag::err_dynamic_var_init)
626 << Init->getSourceRange();
627 VD->setInvalidDecl();
628 } else {
629 // This is a host-side global variable. Check that the initializer is
630 // callable from the host side.
631 const FunctionDecl *InitFn = nullptr;
632 if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
633 InitFn = CE->getConstructor();
634 } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
635 InitFn = CE->getDirectCallee();
637 if (InitFn) {
638 CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
639 if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
640 Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
641 << InitFnTarget << InitFn;
642 Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
643 VD->setInvalidDecl();
649 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
650 // treated as implicitly __host__ __device__, unless:
651 // * it is a variadic function (device-side variadic functions are not
652 // allowed), or
653 // * a __device__ function with this signature was already declared, in which
654 // case in which case we output an error, unless the __device__ decl is in a
655 // system header, in which case we leave the constexpr function unattributed.
657 // In addition, all function decls are treated as __host__ __device__ when
658 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
659 // #pragma clang force_cuda_host_device_begin/end
660 // pair).
661 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
662 const LookupResult &Previous) {
663 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
665 if (ForceCUDAHostDeviceDepth > 0) {
666 if (!NewD->hasAttr<CUDAHostAttr>())
667 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
668 if (!NewD->hasAttr<CUDADeviceAttr>())
669 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
670 return;
673 if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
674 NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
675 NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
676 return;
678 // Is D a __device__ function with the same signature as NewD, ignoring CUDA
679 // attributes?
680 auto IsMatchingDeviceFn = [&](NamedDecl *D) {
681 if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
682 D = Using->getTargetDecl();
683 FunctionDecl *OldD = D->getAsFunction();
684 return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
685 !OldD->hasAttr<CUDAHostAttr>() &&
686 !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
687 /* ConsiderCudaAttrs = */ false);
689 auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
690 if (It != Previous.end()) {
691 // We found a __device__ function with the same name and signature as NewD
692 // (ignoring CUDA attrs). This is an error unless that function is defined
693 // in a system header, in which case we simply return without making NewD
694 // host+device.
695 NamedDecl *Match = *It;
696 if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
697 Diag(NewD->getLocation(),
698 diag::err_cuda_unattributed_constexpr_cannot_overload_device)
699 << NewD;
700 Diag(Match->getLocation(),
701 diag::note_cuda_conflicting_device_function_declared_here);
703 return;
706 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
707 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
710 // TODO: `__constant__` memory may be a limited resource for certain targets.
711 // A safeguard may be needed at the end of compilation pipeline if
712 // `__constant__` memory usage goes beyond limit.
713 void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
714 // Do not promote dependent variables since the cotr/dtor/initializer are
715 // not determined. Do it after instantiation.
716 if (getLangOpts().CUDAIsDevice && !VD->hasAttr<CUDAConstantAttr>() &&
717 !VD->hasAttr<CUDASharedAttr>() &&
718 (VD->isFileVarDecl() || VD->isStaticDataMember()) &&
719 !IsDependentVar(VD) &&
720 ((VD->isConstexpr() || VD->getType().isConstQualified()) &&
721 HasAllowedCUDADeviceStaticInitializer(*this, VD,
722 CICK_DeviceOrConstant))) {
723 VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
727 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
728 unsigned DiagID) {
729 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
730 FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
731 SemaDiagnosticBuilder::Kind DiagKind = [&] {
732 if (!CurFunContext)
733 return SemaDiagnosticBuilder::K_Nop;
734 switch (CurrentCUDATarget()) {
735 case CFT_Global:
736 case CFT_Device:
737 return SemaDiagnosticBuilder::K_Immediate;
738 case CFT_HostDevice:
739 // An HD function counts as host code if we're compiling for host, and
740 // device code if we're compiling for device. Defer any errors in device
741 // mode until the function is known-emitted.
742 if (!getLangOpts().CUDAIsDevice)
743 return SemaDiagnosticBuilder::K_Nop;
744 if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
745 return SemaDiagnosticBuilder::K_Immediate;
746 return (getEmissionStatus(CurFunContext) ==
747 FunctionEmissionStatus::Emitted)
748 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
749 : SemaDiagnosticBuilder::K_Deferred;
750 default:
751 return SemaDiagnosticBuilder::K_Nop;
753 }();
754 return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
757 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
758 unsigned DiagID) {
759 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
760 FunctionDecl *CurFunContext = getCurFunctionDecl(/*AllowLambda=*/true);
761 SemaDiagnosticBuilder::Kind DiagKind = [&] {
762 if (!CurFunContext)
763 return SemaDiagnosticBuilder::K_Nop;
764 switch (CurrentCUDATarget()) {
765 case CFT_Host:
766 return SemaDiagnosticBuilder::K_Immediate;
767 case CFT_HostDevice:
768 // An HD function counts as host code if we're compiling for host, and
769 // device code if we're compiling for device. Defer any errors in device
770 // mode until the function is known-emitted.
771 if (getLangOpts().CUDAIsDevice)
772 return SemaDiagnosticBuilder::K_Nop;
773 if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
774 return SemaDiagnosticBuilder::K_Immediate;
775 return (getEmissionStatus(CurFunContext) ==
776 FunctionEmissionStatus::Emitted)
777 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
778 : SemaDiagnosticBuilder::K_Deferred;
779 default:
780 return SemaDiagnosticBuilder::K_Nop;
782 }();
783 return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, CurFunContext, *this);
786 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
787 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
788 assert(Callee && "Callee may not be null.");
790 auto &ExprEvalCtx = ExprEvalContexts.back();
791 if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
792 return true;
794 // FIXME: Is bailing out early correct here? Should we instead assume that
795 // the caller is a global initializer?
796 FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
797 if (!Caller)
798 return true;
800 // If the caller is known-emitted, mark the callee as known-emitted.
801 // Otherwise, mark the call in our call graph so we can traverse it later.
802 bool CallerKnownEmitted =
803 getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
804 SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
805 CallerKnownEmitted] {
806 switch (IdentifyCUDAPreference(Caller, Callee)) {
807 case CFP_Never:
808 case CFP_WrongSide:
809 assert(Caller && "Never/wrongSide calls require a non-null caller");
810 // If we know the caller will be emitted, we know this wrong-side call
811 // will be emitted, so it's an immediate error. Otherwise, defer the
812 // error until we know the caller is emitted.
813 return CallerKnownEmitted
814 ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
815 : SemaDiagnosticBuilder::K_Deferred;
816 default:
817 return SemaDiagnosticBuilder::K_Nop;
819 }();
821 if (DiagKind == SemaDiagnosticBuilder::K_Nop) {
822 // For -fgpu-rdc, keep track of external kernels used by host functions.
823 if (LangOpts.CUDAIsDevice && LangOpts.GPURelocatableDeviceCode &&
824 Callee->hasAttr<CUDAGlobalAttr>() && !Callee->isDefined())
825 getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Callee);
826 return true;
829 // Avoid emitting this error twice for the same location. Using a hashtable
830 // like this is unfortunate, but because we must continue parsing as normal
831 // after encountering a deferred error, it's otherwise very tricky for us to
832 // ensure that we only emit this deferred error once.
833 if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
834 return true;
836 SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
837 << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
838 << IdentifyCUDATarget(Caller);
839 if (!Callee->getBuiltinID())
840 SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
841 diag::note_previous_decl, Caller, *this)
842 << Callee;
843 return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
844 DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
847 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
848 // A lambda function may capture a stack variable by reference when it is
849 // defined and uses the capture by reference when the lambda is called. When
850 // the capture and use happen on different sides, the capture is invalid and
851 // should be diagnosed.
852 void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
853 const sema::Capture &Capture) {
854 // In host compilation we only need to check lambda functions emitted on host
855 // side. In such lambda functions, a reference capture is invalid only
856 // if the lambda structure is populated by a device function or kernel then
857 // is passed to and called by a host function. However that is impossible,
858 // since a device function or kernel can only call a device function, also a
859 // kernel cannot pass a lambda back to a host function since we cannot
860 // define a kernel argument type which can hold the lambda before the lambda
861 // itself is defined.
862 if (!LangOpts.CUDAIsDevice)
863 return;
865 // File-scope lambda can only do init captures for global variables, which
866 // results in passing by value for these global variables.
867 FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
868 if (!Caller)
869 return;
871 // In device compilation, we only need to check lambda functions which are
872 // emitted on device side. For such lambdas, a reference capture is invalid
873 // only if the lambda structure is populated by a host function then passed
874 // to and called in a device function or kernel.
875 bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
876 bool CallerIsHost =
877 !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
878 bool ShouldCheck = CalleeIsDevice && CallerIsHost;
879 if (!ShouldCheck || !Capture.isReferenceCapture())
880 return;
881 auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
882 if (Capture.isVariableCapture()) {
883 SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
884 diag::err_capture_bad_target, Callee, *this)
885 << Capture.getVariable();
886 } else if (Capture.isThisCapture()) {
887 // Capture of this pointer is allowed since this pointer may be pointing to
888 // managed memory which is accessible on both device and host sides. It only
889 // results in invalid memory access if this pointer points to memory not
890 // accessible on device side.
891 SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
892 diag::warn_maybe_capture_bad_target_this_ptr, Callee,
893 *this);
897 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
898 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
899 if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
900 return;
901 Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
902 Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
905 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
906 const LookupResult &Previous) {
907 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
908 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
909 for (NamedDecl *OldND : Previous) {
910 FunctionDecl *OldFD = OldND->getAsFunction();
911 if (!OldFD)
912 continue;
914 CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
915 // Don't allow HD and global functions to overload other functions with the
916 // same signature. We allow overloading based on CUDA attributes so that
917 // functions can have different implementations on the host and device, but
918 // HD/global functions "exist" in some sense on both the host and device, so
919 // should have the same implementation on both sides.
920 if (NewTarget != OldTarget &&
921 ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
922 (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
923 !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
924 /* ConsiderCudaAttrs = */ false)) {
925 Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
926 << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
927 Diag(OldFD->getLocation(), diag::note_previous_declaration);
928 NewFD->setInvalidDecl();
929 break;
934 template <typename AttrTy>
935 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
936 const FunctionDecl &TemplateFD) {
937 if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
938 AttrTy *Clone = Attribute->clone(S.Context);
939 Clone->setInherited(true);
940 FD->addAttr(Clone);
944 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
945 const FunctionTemplateDecl &TD) {
946 const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
947 copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
948 copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
949 copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
952 std::string Sema::getCudaConfigureFuncName() const {
953 if (getLangOpts().HIP)
954 return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
955 : "hipConfigureCall";
957 // New CUDA kernel launch sequence.
958 if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
959 CudaFeature::CUDA_USES_NEW_LAUNCH))
960 return "__cudaPushCallConfiguration";
962 // Legacy CUDA kernel configuration call
963 return "cudaConfigureCall";