[docs] Fix build-docs.sh
[llvm-project.git] / clang / lib / Sema / SemaCoroutine.cpp
blob34ed416da3dd614b784e3fefae4fbf53c140a996
1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ Coroutines.
11 // This file contains references to sections of the Coroutines TS, which
12 // can be found at http://wg21.link/coroutines.
14 //===----------------------------------------------------------------------===//
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Overload.h"
25 #include "clang/Sema/ScopeInfo.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/SmallSet.h"
29 using namespace clang;
30 using namespace sema;
32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33 SourceLocation Loc, bool &Res) {
34 DeclarationName DN = S.PP.getIdentifierInfo(Name);
35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36 // Suppress diagnostics when a private member is selected. The same warnings
37 // will be produced again when building the call.
38 LR.suppressDiagnostics();
39 Res = S.LookupQualifiedName(LR, RD);
40 return LR;
43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44 SourceLocation Loc) {
45 bool Res;
46 lookupMember(S, Name, RD, Loc, Res);
47 return Res;
50 /// Look up the std::coroutine_traits<...>::promise_type for the given
51 /// function type.
52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53 SourceLocation KwLoc) {
54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55 const SourceLocation FuncLoc = FD->getLocation();
57 NamespaceDecl *CoroNamespace = nullptr;
58 ClassTemplateDecl *CoroTraits =
59 S.lookupCoroutineTraits(KwLoc, FuncLoc, CoroNamespace);
60 if (!CoroTraits) {
61 return QualType();
64 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
65 // to [dcl.fct.def.coroutine]3
66 TemplateArgumentListInfo Args(KwLoc, KwLoc);
67 auto AddArg = [&](QualType T) {
68 Args.addArgument(TemplateArgumentLoc(
69 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
71 AddArg(FnType->getReturnType());
72 // If the function is a non-static member function, add the type
73 // of the implicit object parameter before the formal parameters.
74 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
75 if (MD->isInstance()) {
76 // [over.match.funcs]4
77 // For non-static member functions, the type of the implicit object
78 // parameter is
79 // -- "lvalue reference to cv X" for functions declared without a
80 // ref-qualifier or with the & ref-qualifier
81 // -- "rvalue reference to cv X" for functions declared with the &&
82 // ref-qualifier
83 QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType();
84 T = FnType->getRefQualifier() == RQ_RValue
85 ? S.Context.getRValueReferenceType(T)
86 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
87 AddArg(T);
90 for (QualType T : FnType->getParamTypes())
91 AddArg(T);
93 // Build the template-id.
94 QualType CoroTrait =
95 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
96 if (CoroTrait.isNull())
97 return QualType();
98 if (S.RequireCompleteType(KwLoc, CoroTrait,
99 diag::err_coroutine_type_missing_specialization))
100 return QualType();
102 auto *RD = CoroTrait->getAsCXXRecordDecl();
103 assert(RD && "specialization of class template is not a class?");
105 // Look up the ::promise_type member.
106 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
107 Sema::LookupOrdinaryName);
108 S.LookupQualifiedName(R, RD);
109 auto *Promise = R.getAsSingle<TypeDecl>();
110 if (!Promise) {
111 S.Diag(FuncLoc,
112 diag::err_implied_std_coroutine_traits_promise_type_not_found)
113 << RD;
114 return QualType();
116 // The promise type is required to be a class type.
117 QualType PromiseType = S.Context.getTypeDeclType(Promise);
119 auto buildElaboratedType = [&]() {
120 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, CoroNamespace);
121 NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
122 CoroTrait.getTypePtr());
123 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType);
126 if (!PromiseType->getAsCXXRecordDecl()) {
127 S.Diag(FuncLoc,
128 diag::err_implied_std_coroutine_traits_promise_type_not_class)
129 << buildElaboratedType();
130 return QualType();
132 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
133 diag::err_coroutine_promise_type_incomplete))
134 return QualType();
136 return PromiseType;
139 /// Look up the std::coroutine_handle<PromiseType>.
140 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
141 SourceLocation Loc) {
142 if (PromiseType.isNull())
143 return QualType();
145 NamespaceDecl *CoroNamespace = S.getCachedCoroNamespace();
146 assert(CoroNamespace && "Should already be diagnosed");
148 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
149 Loc, Sema::LookupOrdinaryName);
150 if (!S.LookupQualifiedName(Result, CoroNamespace)) {
151 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
152 << "std::coroutine_handle";
153 return QualType();
156 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
157 if (!CoroHandle) {
158 Result.suppressDiagnostics();
159 // We found something weird. Complain about the first thing we found.
160 NamedDecl *Found = *Result.begin();
161 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
162 return QualType();
165 // Form template argument list for coroutine_handle<Promise>.
166 TemplateArgumentListInfo Args(Loc, Loc);
167 Args.addArgument(TemplateArgumentLoc(
168 TemplateArgument(PromiseType),
169 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
171 // Build the template-id.
172 QualType CoroHandleType =
173 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
174 if (CoroHandleType.isNull())
175 return QualType();
176 if (S.RequireCompleteType(Loc, CoroHandleType,
177 diag::err_coroutine_type_missing_specialization))
178 return QualType();
180 return CoroHandleType;
183 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
184 StringRef Keyword) {
185 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
186 // a function body.
187 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
188 // appear in a default argument." But the diagnostic QoI here could be
189 // improved to inform the user that default arguments specifically are not
190 // allowed.
191 auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
192 if (!FD) {
193 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
194 ? diag::err_coroutine_objc_method
195 : diag::err_coroutine_outside_function) << Keyword;
196 return false;
199 // An enumeration for mapping the diagnostic type to the correct diagnostic
200 // selection index.
201 enum InvalidFuncDiag {
202 DiagCtor = 0,
203 DiagDtor,
204 DiagMain,
205 DiagConstexpr,
206 DiagAutoRet,
207 DiagVarargs,
208 DiagConsteval,
210 bool Diagnosed = false;
211 auto DiagInvalid = [&](InvalidFuncDiag ID) {
212 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
213 Diagnosed = true;
214 return false;
217 // Diagnose when a constructor, destructor
218 // or the function 'main' are declared as a coroutine.
219 auto *MD = dyn_cast<CXXMethodDecl>(FD);
220 // [class.ctor]p11: "A constructor shall not be a coroutine."
221 if (MD && isa<CXXConstructorDecl>(MD))
222 return DiagInvalid(DiagCtor);
223 // [class.dtor]p17: "A destructor shall not be a coroutine."
224 else if (MD && isa<CXXDestructorDecl>(MD))
225 return DiagInvalid(DiagDtor);
226 // [basic.start.main]p3: "The function main shall not be a coroutine."
227 else if (FD->isMain())
228 return DiagInvalid(DiagMain);
230 // Emit a diagnostics for each of the following conditions which is not met.
231 // [expr.const]p2: "An expression e is a core constant expression unless the
232 // evaluation of e [...] would evaluate one of the following expressions:
233 // [...] an await-expression [...] a yield-expression."
234 if (FD->isConstexpr())
235 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
236 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
237 // placeholder type shall not be a coroutine."
238 if (FD->getReturnType()->isUndeducedType())
239 DiagInvalid(DiagAutoRet);
240 // [dcl.fct.def.coroutine]p1
241 // The parameter-declaration-clause of the coroutine shall not terminate with
242 // an ellipsis that is not part of a parameter-declaration.
243 if (FD->isVariadic())
244 DiagInvalid(DiagVarargs);
246 return !Diagnosed;
249 /// Build a call to 'operator co_await' if there is a suitable operator for
250 /// the given expression.
251 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
252 UnresolvedLookupExpr *Lookup) {
253 UnresolvedSet<16> Functions;
254 Functions.append(Lookup->decls_begin(), Lookup->decls_end());
255 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
258 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
259 SourceLocation Loc, Expr *E) {
260 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
261 if (R.isInvalid())
262 return ExprError();
263 return SemaRef.BuildOperatorCoawaitCall(Loc, E,
264 cast<UnresolvedLookupExpr>(R.get()));
267 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
268 SourceLocation Loc) {
269 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
270 if (CoroHandleType.isNull())
271 return ExprError();
273 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
274 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
275 Sema::LookupOrdinaryName);
276 if (!S.LookupQualifiedName(Found, LookupCtx)) {
277 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
278 << "from_address";
279 return ExprError();
282 Expr *FramePtr =
283 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
285 CXXScopeSpec SS;
286 ExprResult FromAddr =
287 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
288 if (FromAddr.isInvalid())
289 return ExprError();
291 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
294 struct ReadySuspendResumeResult {
295 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
296 Expr *Results[3];
297 OpaqueValueExpr *OpaqueValue;
298 bool IsInvalid;
301 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
302 StringRef Name, MultiExprArg Args) {
303 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
305 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
306 CXXScopeSpec SS;
307 ExprResult Result = S.BuildMemberReferenceExpr(
308 Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
309 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
310 /*Scope=*/nullptr);
311 if (Result.isInvalid())
312 return ExprError();
314 // We meant exactly what we asked for. No need for typo correction.
315 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
316 S.clearDelayedTypo(TE);
317 S.Diag(Loc, diag::err_no_member)
318 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
319 << Base->getSourceRange();
320 return ExprError();
323 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr);
326 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
327 // on its address. This is to enable experimental support for coroutine-handle
328 // returning await_suspend that results in a guaranteed tail call to the target
329 // coroutine.
330 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
331 SourceLocation Loc) {
332 if (RetType->isReferenceType())
333 return nullptr;
334 Type const *T = RetType.getTypePtr();
335 if (!T->isClassType() && !T->isStructureType())
336 return nullptr;
338 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
339 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
340 // a private function in SemaExprCXX.cpp
342 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", None);
343 if (AddressExpr.isInvalid())
344 return nullptr;
346 Expr *JustAddress = AddressExpr.get();
348 // Check that the type of AddressExpr is void*
349 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
350 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
351 diag::warn_coroutine_handle_address_invalid_return_type)
352 << JustAddress->getType();
354 // Clean up temporary objects so that they don't live across suspension points
355 // unnecessarily. We choose to clean up before the call to
356 // __builtin_coro_resume so that the cleanup code are not inserted in-between
357 // the resume call and return instruction, which would interfere with the
358 // musttail call contract.
359 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
360 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
361 JustAddress);
364 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
365 /// expression.
366 /// The generated AST tries to clean up temporary objects as early as
367 /// possible so that they don't live across suspension points if possible.
368 /// Having temporary objects living across suspension points unnecessarily can
369 /// lead to large frame size, and also lead to memory corruptions if the
370 /// coroutine frame is destroyed after coming back from suspension. This is done
371 /// by wrapping both the await_ready call and the await_suspend call with
372 /// ExprWithCleanups. In the end of this function, we also need to explicitly
373 /// set cleanup state so that the CoawaitExpr is also wrapped with an
374 /// ExprWithCleanups to clean up the awaiter associated with the co_await
375 /// expression.
376 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
377 SourceLocation Loc, Expr *E) {
378 OpaqueValueExpr *Operand = new (S.Context)
379 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
381 // Assume valid until we see otherwise.
382 // Further operations are responsible for setting IsInalid to true.
383 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
385 using ACT = ReadySuspendResumeResult::AwaitCallType;
387 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
388 MultiExprArg Arg) -> Expr * {
389 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
390 if (Result.isInvalid()) {
391 Calls.IsInvalid = true;
392 return nullptr;
394 Calls.Results[CallType] = Result.get();
395 return Result.get();
398 CallExpr *AwaitReady =
399 cast_or_null<CallExpr>(BuildSubExpr(ACT::ACT_Ready, "await_ready", None));
400 if (!AwaitReady)
401 return Calls;
402 if (!AwaitReady->getType()->isDependentType()) {
403 // [expr.await]p3 [...]
404 // — await-ready is the expression e.await_ready(), contextually converted
405 // to bool.
406 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
407 if (Conv.isInvalid()) {
408 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
409 diag::note_await_ready_no_bool_conversion);
410 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
411 << AwaitReady->getDirectCallee() << E->getSourceRange();
412 Calls.IsInvalid = true;
413 } else
414 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
417 ExprResult CoroHandleRes =
418 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
419 if (CoroHandleRes.isInvalid()) {
420 Calls.IsInvalid = true;
421 return Calls;
423 Expr *CoroHandle = CoroHandleRes.get();
424 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
425 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
426 if (!AwaitSuspend)
427 return Calls;
428 if (!AwaitSuspend->getType()->isDependentType()) {
429 // [expr.await]p3 [...]
430 // - await-suspend is the expression e.await_suspend(h), which shall be
431 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
432 // type Z.
433 QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
435 // Experimental support for coroutine_handle returning await_suspend.
436 if (Expr *TailCallSuspend =
437 maybeTailCall(S, RetType, AwaitSuspend, Loc))
438 // Note that we don't wrap the expression with ExprWithCleanups here
439 // because that might interfere with tailcall contract (e.g. inserting
440 // clean up instructions in-between tailcall and return). Instead
441 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
442 // call.
443 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
444 else {
445 // non-class prvalues always have cv-unqualified types
446 if (RetType->isReferenceType() ||
447 (!RetType->isBooleanType() && !RetType->isVoidType())) {
448 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
449 diag::err_await_suspend_invalid_return_type)
450 << RetType;
451 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
452 << AwaitSuspend->getDirectCallee();
453 Calls.IsInvalid = true;
454 } else
455 Calls.Results[ACT::ACT_Suspend] =
456 S.MaybeCreateExprWithCleanups(AwaitSuspend);
460 BuildSubExpr(ACT::ACT_Resume, "await_resume", None);
462 // Make sure the awaiter object gets a chance to be cleaned up.
463 S.Cleanup.setExprNeedsCleanups(true);
465 return Calls;
468 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
469 SourceLocation Loc, StringRef Name,
470 MultiExprArg Args) {
472 // Form a reference to the promise.
473 ExprResult PromiseRef = S.BuildDeclRefExpr(
474 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
475 if (PromiseRef.isInvalid())
476 return ExprError();
478 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
481 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
482 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
483 auto *FD = cast<FunctionDecl>(CurContext);
484 bool IsThisDependentType = [&] {
485 if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD))
486 return MD->isInstance() && MD->getThisType()->isDependentType();
487 else
488 return false;
489 }();
491 QualType T = FD->getType()->isDependentType() || IsThisDependentType
492 ? Context.DependentTy
493 : lookupPromiseType(*this, FD, Loc);
494 if (T.isNull())
495 return nullptr;
497 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
498 &PP.getIdentifierTable().get("__promise"), T,
499 Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
500 VD->setImplicit();
501 CheckVariableDeclarationType(VD);
502 if (VD->isInvalidDecl())
503 return nullptr;
505 auto *ScopeInfo = getCurFunction();
507 // Build a list of arguments, based on the coroutine function's arguments,
508 // that if present will be passed to the promise type's constructor.
509 llvm::SmallVector<Expr *, 4> CtorArgExprs;
511 // Add implicit object parameter.
512 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
513 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
514 ExprResult ThisExpr = ActOnCXXThis(Loc);
515 if (ThisExpr.isInvalid())
516 return nullptr;
517 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
518 if (ThisExpr.isInvalid())
519 return nullptr;
520 CtorArgExprs.push_back(ThisExpr.get());
524 // Add the coroutine function's parameters.
525 auto &Moves = ScopeInfo->CoroutineParameterMoves;
526 for (auto *PD : FD->parameters()) {
527 if (PD->getType()->isDependentType())
528 continue;
530 auto RefExpr = ExprEmpty();
531 auto Move = Moves.find(PD);
532 assert(Move != Moves.end() &&
533 "Coroutine function parameter not inserted into move map");
534 // If a reference to the function parameter exists in the coroutine
535 // frame, use that reference.
536 auto *MoveDecl =
537 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
538 RefExpr =
539 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
540 ExprValueKind::VK_LValue, FD->getLocation());
541 if (RefExpr.isInvalid())
542 return nullptr;
543 CtorArgExprs.push_back(RefExpr.get());
546 // If we have a non-zero number of constructor arguments, try to use them.
547 // Otherwise, fall back to the promise type's default constructor.
548 if (!CtorArgExprs.empty()) {
549 // Create an initialization sequence for the promise type using the
550 // constructor arguments, wrapped in a parenthesized list expression.
551 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
552 CtorArgExprs, FD->getLocation());
553 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
554 InitializationKind Kind = InitializationKind::CreateForInit(
555 VD->getLocation(), /*DirectInit=*/true, PLE);
556 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
557 /*TopLevelOfInitList=*/false,
558 /*TreatUnavailableAsInvalid=*/false);
560 // [dcl.fct.def.coroutine]5.7
561 // promise-constructor-arguments is determined as follows: overload
562 // resolution is performed on a promise constructor call created by
563 // assembling an argument list q_1 ... q_n . If a viable constructor is
564 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
565 // , ..., q_n ), otherwise promise-constructor-arguments is empty.
566 if (InitSeq) {
567 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
568 if (Result.isInvalid()) {
569 VD->setInvalidDecl();
570 } else if (Result.get()) {
571 VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
572 VD->setInitStyle(VarDecl::CallInit);
573 CheckCompleteVariableDeclaration(VD);
575 } else
576 ActOnUninitializedDecl(VD);
577 } else
578 ActOnUninitializedDecl(VD);
580 FD->addDecl(VD);
581 return VD;
584 /// Check that this is a context in which a coroutine suspension can appear.
585 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
586 StringRef Keyword,
587 bool IsImplicit = false) {
588 if (!isValidCoroutineContext(S, Loc, Keyword))
589 return nullptr;
591 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
593 auto *ScopeInfo = S.getCurFunction();
594 assert(ScopeInfo && "missing function scope for function");
596 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
597 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
599 if (ScopeInfo->CoroutinePromise)
600 return ScopeInfo;
602 if (!S.buildCoroutineParameterMoves(Loc))
603 return nullptr;
605 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
606 if (!ScopeInfo->CoroutinePromise)
607 return nullptr;
609 return ScopeInfo;
612 /// Recursively check \p E and all its children to see if any call target
613 /// (including constructor call) is declared noexcept. Also any value returned
614 /// from the call has a noexcept destructor.
615 static void checkNoThrow(Sema &S, const Stmt *E,
616 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
617 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
618 // In the case of dtor, the call to dtor is implicit and hence we should
619 // pass nullptr to canCalleeThrow.
620 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
621 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
622 // co_await promise.final_suspend() could end up calling
623 // __builtin_coro_resume for symmetric transfer if await_suspend()
624 // returns a handle. In that case, even __builtin_coro_resume is not
625 // declared as noexcept and may throw, it does not throw _into_ the
626 // coroutine that just suspended, but rather throws back out from
627 // whoever called coroutine_handle::resume(), hence we claim that
628 // logically it does not throw.
629 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
630 return;
632 if (ThrowingDecls.empty()) {
633 // [dcl.fct.def.coroutine]p15
634 // The expression co_await promise.final_suspend() shall not be
635 // potentially-throwing ([except.spec]).
637 // First time seeing an error, emit the error message.
638 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
639 diag::err_coroutine_promise_final_suspend_requires_nothrow);
641 ThrowingDecls.insert(D);
645 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
646 CXXConstructorDecl *Ctor = CE->getConstructor();
647 checkDeclNoexcept(Ctor);
648 // Check the corresponding destructor of the constructor.
649 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
650 } else if (auto *CE = dyn_cast<CallExpr>(E)) {
651 if (CE->isTypeDependent())
652 return;
654 checkDeclNoexcept(CE->getCalleeDecl());
655 QualType ReturnType = CE->getCallReturnType(S.getASTContext());
656 // Check the destructor of the call return type, if any.
657 if (ReturnType.isDestructedType() ==
658 QualType::DestructionKind::DK_cxx_destructor) {
659 const auto *T =
660 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
661 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
662 /*IsDtor=*/true);
664 } else
665 for (const auto *Child : E->children()) {
666 if (!Child)
667 continue;
668 checkNoThrow(S, Child, ThrowingDecls);
672 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
673 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
674 // We first collect all declarations that should not throw but not declared
675 // with noexcept. We then sort them based on the location before printing.
676 // This is to avoid emitting the same note multiple times on the same
677 // declaration, and also provide a deterministic order for the messages.
678 checkNoThrow(*this, FinalSuspend, ThrowingDecls);
679 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
680 ThrowingDecls.end()};
681 sort(SortedDecls, [](const Decl *A, const Decl *B) {
682 return A->getEndLoc() < B->getEndLoc();
684 for (const auto *D : SortedDecls) {
685 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
687 return ThrowingDecls.empty();
690 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
691 StringRef Keyword) {
692 if (!checkCoroutineContext(*this, KWLoc, Keyword))
693 return false;
694 auto *ScopeInfo = getCurFunction();
695 assert(ScopeInfo->CoroutinePromise);
697 // If we have existing coroutine statements then we have already built
698 // the initial and final suspend points.
699 if (!ScopeInfo->NeedsCoroutineSuspends)
700 return true;
702 ScopeInfo->setNeedsCoroutineSuspends(false);
704 auto *Fn = cast<FunctionDecl>(CurContext);
705 SourceLocation Loc = Fn->getLocation();
706 // Build the initial suspend point
707 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
708 ExprResult Operand =
709 buildPromiseCall(*this, ScopeInfo->CoroutinePromise, Loc, Name, None);
710 if (Operand.isInvalid())
711 return StmtError();
712 ExprResult Suspend =
713 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
714 if (Suspend.isInvalid())
715 return StmtError();
716 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
717 /*IsImplicit*/ true);
718 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
719 if (Suspend.isInvalid()) {
720 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
721 << ((Name == "initial_suspend") ? 0 : 1);
722 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
723 return StmtError();
725 return cast<Stmt>(Suspend.get());
728 StmtResult InitSuspend = buildSuspends("initial_suspend");
729 if (InitSuspend.isInvalid())
730 return true;
732 StmtResult FinalSuspend = buildSuspends("final_suspend");
733 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
734 return true;
736 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
738 return true;
741 // Recursively walks up the scope hierarchy until either a 'catch' or a function
742 // scope is found, whichever comes first.
743 static bool isWithinCatchScope(Scope *S) {
744 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
745 // lambdas that use 'co_await' are allowed. The loop below ends when a
746 // function scope is found in order to ensure the following behavior:
748 // void foo() { // <- function scope
749 // try { //
750 // co_await x; // <- 'co_await' is OK within a function scope
751 // } catch { // <- catch scope
752 // co_await x; // <- 'co_await' is not OK within a catch scope
753 // []() { // <- function scope
754 // co_await x; // <- 'co_await' is OK within a function scope
755 // }();
756 // }
757 // }
758 while (S && !S->isFunctionScope()) {
759 if (S->isCatchScope())
760 return true;
761 S = S->getParent();
763 return false;
766 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
767 // a *potentially evaluated* expression within the compound-statement of a
768 // function-body *outside of a handler* [...] A context within a function
769 // where an await-expression can appear is called a suspension context of the
770 // function."
771 static void checkSuspensionContext(Sema &S, SourceLocation Loc,
772 StringRef Keyword) {
773 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
774 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
775 // \c sizeof.
776 if (S.isUnevaluatedContext())
777 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
779 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
780 if (isWithinCatchScope(S.getCurScope()))
781 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
784 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
785 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
786 CorrectDelayedTyposInExpr(E);
787 return ExprError();
790 checkSuspensionContext(*this, Loc, "co_await");
792 if (E->hasPlaceholderType()) {
793 ExprResult R = CheckPlaceholderExpr(E);
794 if (R.isInvalid()) return ExprError();
795 E = R.get();
797 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
798 if (Lookup.isInvalid())
799 return ExprError();
800 return BuildUnresolvedCoawaitExpr(Loc, E,
801 cast<UnresolvedLookupExpr>(Lookup.get()));
804 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
805 DeclarationName OpName =
806 Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
807 LookupResult Operators(*this, OpName, SourceLocation(),
808 Sema::LookupOperatorName);
809 LookupName(Operators, S);
811 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
812 const auto &Functions = Operators.asUnresolvedSet();
813 bool IsOverloaded =
814 Functions.size() > 1 ||
815 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
816 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
817 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
818 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
819 Functions.begin(), Functions.end());
820 assert(CoawaitOp);
821 return CoawaitOp;
824 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
825 // DependentCoawaitExpr if needed.
826 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
827 UnresolvedLookupExpr *Lookup) {
828 auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
829 if (!FSI)
830 return ExprError();
832 if (Operand->hasPlaceholderType()) {
833 ExprResult R = CheckPlaceholderExpr(Operand);
834 if (R.isInvalid())
835 return ExprError();
836 Operand = R.get();
839 auto *Promise = FSI->CoroutinePromise;
840 if (Promise->getType()->isDependentType()) {
841 Expr *Res = new (Context)
842 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
843 return Res;
846 auto *RD = Promise->getType()->getAsCXXRecordDecl();
847 auto *Transformed = Operand;
848 if (lookupMember(*this, "await_transform", RD, Loc)) {
849 ExprResult R =
850 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
851 if (R.isInvalid()) {
852 Diag(Loc,
853 diag::note_coroutine_promise_implicit_await_transform_required_here)
854 << Operand->getSourceRange();
855 return ExprError();
857 Transformed = R.get();
859 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
860 if (Awaiter.isInvalid())
861 return ExprError();
863 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
866 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
867 Expr *Awaiter, bool IsImplicit) {
868 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
869 if (!Coroutine)
870 return ExprError();
872 if (Awaiter->hasPlaceholderType()) {
873 ExprResult R = CheckPlaceholderExpr(Awaiter);
874 if (R.isInvalid()) return ExprError();
875 Awaiter = R.get();
878 if (Awaiter->getType()->isDependentType()) {
879 Expr *Res = new (Context)
880 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
881 return Res;
884 // If the expression is a temporary, materialize it as an lvalue so that we
885 // can use it multiple times.
886 if (Awaiter->isPRValue())
887 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
889 // The location of the `co_await` token cannot be used when constructing
890 // the member call expressions since it's before the location of `Expr`, which
891 // is used as the start of the member call expression.
892 SourceLocation CallLoc = Awaiter->getExprLoc();
894 // Build the await_ready, await_suspend, await_resume calls.
895 ReadySuspendResumeResult RSS =
896 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
897 if (RSS.IsInvalid)
898 return ExprError();
900 Expr *Res = new (Context)
901 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
902 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
904 return Res;
907 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
908 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
909 CorrectDelayedTyposInExpr(E);
910 return ExprError();
913 checkSuspensionContext(*this, Loc, "co_yield");
915 // Build yield_value call.
916 ExprResult Awaitable = buildPromiseCall(
917 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
918 if (Awaitable.isInvalid())
919 return ExprError();
921 // Build 'operator co_await' call.
922 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
923 if (Awaitable.isInvalid())
924 return ExprError();
926 return BuildCoyieldExpr(Loc, Awaitable.get());
928 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
929 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
930 if (!Coroutine)
931 return ExprError();
933 if (E->hasPlaceholderType()) {
934 ExprResult R = CheckPlaceholderExpr(E);
935 if (R.isInvalid()) return ExprError();
936 E = R.get();
939 Expr *Operand = E;
941 if (E->getType()->isDependentType()) {
942 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
943 return Res;
946 // If the expression is a temporary, materialize it as an lvalue so that we
947 // can use it multiple times.
948 if (E->isPRValue())
949 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
951 // Build the await_ready, await_suspend, await_resume calls.
952 ReadySuspendResumeResult RSS = buildCoawaitCalls(
953 *this, Coroutine->CoroutinePromise, Loc, E);
954 if (RSS.IsInvalid)
955 return ExprError();
957 Expr *Res =
958 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
959 RSS.Results[2], RSS.OpaqueValue);
961 return Res;
964 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
965 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
966 CorrectDelayedTyposInExpr(E);
967 return StmtError();
969 return BuildCoreturnStmt(Loc, E);
972 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
973 bool IsImplicit) {
974 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
975 if (!FSI)
976 return StmtError();
978 if (E && E->hasPlaceholderType() &&
979 !E->hasPlaceholderType(BuiltinType::Overload)) {
980 ExprResult R = CheckPlaceholderExpr(E);
981 if (R.isInvalid()) return StmtError();
982 E = R.get();
985 VarDecl *Promise = FSI->CoroutinePromise;
986 ExprResult PC;
987 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
988 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
989 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
990 } else {
991 E = MakeFullDiscardedValueExpr(E).get();
992 PC = buildPromiseCall(*this, Promise, Loc, "return_void", None);
994 if (PC.isInvalid())
995 return StmtError();
997 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
999 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1000 return Res;
1003 /// Look up the std::nothrow object.
1004 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1005 NamespaceDecl *Std = S.getStdNamespace();
1006 assert(Std && "Should already be diagnosed");
1008 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1009 Sema::LookupOrdinaryName);
1010 if (!S.LookupQualifiedName(Result, Std)) {
1011 // <coroutine> is not requred to include <new>, so we couldn't omit
1012 // the check here.
1013 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1014 return nullptr;
1017 auto *VD = Result.getAsSingle<VarDecl>();
1018 if (!VD) {
1019 Result.suppressDiagnostics();
1020 // We found something weird. Complain about the first thing we found.
1021 NamedDecl *Found = *Result.begin();
1022 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1023 return nullptr;
1026 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1027 if (DR.isInvalid())
1028 return nullptr;
1030 return DR.get();
1033 // Find an appropriate delete for the promise.
1034 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1035 FunctionDecl *&OperatorDelete) {
1036 DeclarationName DeleteName =
1037 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1039 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1040 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1042 // [dcl.fct.def.coroutine]p12
1043 // The deallocation function's name is looked up by searching for it in the
1044 // scope of the promise type. If nothing is found, a search is performed in
1045 // the global scope.
1046 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1047 /*Diagnose*/ true, /*WantSize*/ true))
1048 return false;
1050 // [dcl.fct.def.coroutine]p12
1051 // If both a usual deallocation function with only a pointer parameter and a
1052 // usual deallocation function with both a pointer parameter and a size
1053 // parameter are found, then the selected deallocation function shall be the
1054 // one with two parameters. Otherwise, the selected deallocation function
1055 // shall be the function with one parameter.
1056 if (!OperatorDelete) {
1057 // Look for a global declaration.
1058 // Coroutines can always provide their required size.
1059 const bool CanProvideSize = true;
1060 const bool Overaligned = false;
1061 // Sema::FindUsualDeallocationFunction will try to find the one with two
1062 // parameters first. It will return the deallocation function with one
1063 // parameter if failed.
1064 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1065 Overaligned, DeleteName);
1067 if (!OperatorDelete)
1068 return false;
1071 S.MarkFunctionReferenced(Loc, OperatorDelete);
1072 return true;
1076 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1077 FunctionScopeInfo *Fn = getCurFunction();
1078 assert(Fn && Fn->isCoroutine() && "not a coroutine");
1079 if (!Body) {
1080 assert(FD->isInvalidDecl() &&
1081 "a null body is only allowed for invalid declarations");
1082 return;
1084 // We have a function that uses coroutine keywords, but we failed to build
1085 // the promise type.
1086 if (!Fn->CoroutinePromise)
1087 return FD->setInvalidDecl();
1089 if (isa<CoroutineBodyStmt>(Body)) {
1090 // Nothing todo. the body is already a transformed coroutine body statement.
1091 return;
1094 // The always_inline attribute doesn't reliably apply to a coroutine,
1095 // because the coroutine will be split into pieces and some pieces
1096 // might be called indirectly, as in a virtual call. Even the ramp
1097 // function cannot be inlined at -O0, due to pipeline ordering
1098 // problems (see https://llvm.org/PR53413). Tell the user about it.
1099 if (FD->hasAttr<AlwaysInlineAttr>())
1100 Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1102 // [stmt.return.coroutine]p1:
1103 // A coroutine shall not enclose a return statement ([stmt.return]).
1104 if (Fn->FirstReturnLoc.isValid()) {
1105 assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1106 "first coroutine location not set");
1107 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1108 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1109 << Fn->getFirstCoroutineStmtKeyword();
1111 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1112 if (Builder.isInvalid() || !Builder.buildStatements())
1113 return FD->setInvalidDecl();
1115 // Build body for the coroutine wrapper statement.
1116 Body = CoroutineBodyStmt::Create(Context, Builder);
1119 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1120 sema::FunctionScopeInfo &Fn,
1121 Stmt *Body)
1122 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1123 IsPromiseDependentType(
1124 !Fn.CoroutinePromise ||
1125 Fn.CoroutinePromise->getType()->isDependentType()) {
1126 this->Body = Body;
1128 for (auto KV : Fn.CoroutineParameterMoves)
1129 this->ParamMovesVector.push_back(KV.second);
1130 this->ParamMoves = this->ParamMovesVector;
1132 if (!IsPromiseDependentType) {
1133 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1134 assert(PromiseRecordDecl && "Type should have already been checked");
1136 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1139 bool CoroutineStmtBuilder::buildStatements() {
1140 assert(this->IsValid && "coroutine already invalid");
1141 this->IsValid = makeReturnObject();
1142 if (this->IsValid && !IsPromiseDependentType)
1143 buildDependentStatements();
1144 return this->IsValid;
1147 bool CoroutineStmtBuilder::buildDependentStatements() {
1148 assert(this->IsValid && "coroutine already invalid");
1149 assert(!this->IsPromiseDependentType &&
1150 "coroutine cannot have a dependent promise type");
1151 this->IsValid = makeOnException() && makeOnFallthrough() &&
1152 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1153 makeNewAndDeleteExpr();
1154 return this->IsValid;
1157 bool CoroutineStmtBuilder::makePromiseStmt() {
1158 // Form a declaration statement for the promise declaration, so that AST
1159 // visitors can more easily find it.
1160 StmtResult PromiseStmt =
1161 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1162 if (PromiseStmt.isInvalid())
1163 return false;
1165 this->Promise = PromiseStmt.get();
1166 return true;
1169 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1170 if (Fn.hasInvalidCoroutineSuspends())
1171 return false;
1172 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1173 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1174 return true;
1177 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1178 CXXRecordDecl *PromiseRecordDecl,
1179 FunctionScopeInfo &Fn) {
1180 auto Loc = E->getExprLoc();
1181 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1182 auto *Decl = DeclRef->getDecl();
1183 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1184 if (Method->isStatic())
1185 return true;
1186 else
1187 Loc = Decl->getLocation();
1191 S.Diag(
1192 Loc,
1193 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1194 << PromiseRecordDecl;
1195 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1196 << Fn.getFirstCoroutineStmtKeyword();
1197 return false;
1200 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1201 assert(!IsPromiseDependentType &&
1202 "cannot make statement while the promise type is dependent");
1204 // [dcl.fct.def.coroutine]p10
1205 // If a search for the name get_return_object_on_allocation_failure in
1206 // the scope of the promise type ([class.member.lookup]) finds any
1207 // declarations, then the result of a call to an allocation function used to
1208 // obtain storage for the coroutine state is assumed to return nullptr if it
1209 // fails to obtain storage, ... If the allocation function returns nullptr,
1210 // ... and the return value is obtained by a call to
1211 // T::get_return_object_on_allocation_failure(), where T is the
1212 // promise type.
1213 DeclarationName DN =
1214 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1215 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1216 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1217 return true;
1219 CXXScopeSpec SS;
1220 ExprResult DeclNameExpr =
1221 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1222 if (DeclNameExpr.isInvalid())
1223 return false;
1225 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1226 return false;
1228 ExprResult ReturnObjectOnAllocationFailure =
1229 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1230 if (ReturnObjectOnAllocationFailure.isInvalid())
1231 return false;
1233 StmtResult ReturnStmt =
1234 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1235 if (ReturnStmt.isInvalid()) {
1236 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1237 << DN;
1238 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1239 << Fn.getFirstCoroutineStmtKeyword();
1240 return false;
1243 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1244 return true;
1247 // Collect placement arguments for allocation function of coroutine FD.
1248 // Return true if we collect placement arguments succesfully. Return false,
1249 // otherwise.
1250 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1251 SmallVectorImpl<Expr *> &PlacementArgs) {
1252 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1253 if (MD->isInstance() && !isLambdaCallOperator(MD)) {
1254 ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1255 if (ThisExpr.isInvalid())
1256 return false;
1257 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1258 if (ThisExpr.isInvalid())
1259 return false;
1260 PlacementArgs.push_back(ThisExpr.get());
1264 for (auto *PD : FD.parameters()) {
1265 if (PD->getType()->isDependentType())
1266 continue;
1268 // Build a reference to the parameter.
1269 auto PDLoc = PD->getLocation();
1270 ExprResult PDRefExpr =
1271 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1272 ExprValueKind::VK_LValue, PDLoc);
1273 if (PDRefExpr.isInvalid())
1274 return false;
1276 PlacementArgs.push_back(PDRefExpr.get());
1279 return true;
1282 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1283 // Form and check allocation and deallocation calls.
1284 assert(!IsPromiseDependentType &&
1285 "cannot make statement while the promise type is dependent");
1286 QualType PromiseType = Fn.CoroutinePromise->getType();
1288 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1289 return false;
1291 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1293 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1294 // parameter list composed of the requested size of the coroutine state being
1295 // allocated, followed by the coroutine function's arguments. If a matching
1296 // allocation function exists, use it. Otherwise, use an allocation function
1297 // that just takes the requested size.
1299 // [dcl.fct.def.coroutine]p9
1300 // An implementation may need to allocate additional storage for a
1301 // coroutine.
1302 // This storage is known as the coroutine state and is obtained by calling a
1303 // non-array allocation function ([basic.stc.dynamic.allocation]). The
1304 // allocation function's name is looked up by searching for it in the scope of
1305 // the promise type.
1306 // - If any declarations are found, overload resolution is performed on a
1307 // function call created by assembling an argument list. The first argument is
1308 // the amount of space requested, and has type std::size_t. The
1309 // lvalues p1 ... pn are the succeeding arguments.
1311 // ...where "p1 ... pn" are defined earlier as:
1313 // [dcl.fct.def.coroutine]p3
1314 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1315 // Pn>`
1316 // , where R is the return type of the function, and `P1, ..., Pn` are the
1317 // sequence of types of the non-object function parameters, preceded by the
1318 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1319 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1320 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1321 // the i-th non-object function parameter for a non-static member function,
1322 // and p_i denotes the i-th function parameter otherwise. For a non-static
1323 // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1324 // lvalue that denotes the parameter copy corresponding to p_i.
1326 FunctionDecl *OperatorNew = nullptr;
1327 bool PassAlignment = false;
1328 SmallVector<Expr *, 1> PlacementArgs;
1330 const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1331 DeclarationName NewName =
1332 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1333 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1335 if (PromiseType->isRecordType())
1336 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1338 return !R.empty() && !R.isAmbiguous();
1339 }();
1341 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1342 Sema::AFS_Both) {
1343 // [dcl.fct.def.coroutine]p9
1344 // The allocation function's name is looked up by searching for it in the
1345 // scope of the promise type.
1346 // - If any declarations are found, ...
1347 // - If no declarations are found in the scope of the promise type, a search
1348 // is performed in the global scope.
1349 if (NewScope == Sema::AFS_Both)
1350 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1352 FunctionDecl *UnusedResult = nullptr;
1353 S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
1354 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1355 /*isArray*/ false, PassAlignment, PlacementArgs,
1356 OperatorNew, UnusedResult, /*Diagnose*/ false);
1359 // We don't expect to call to global operator new with (size, p0, …, pn).
1360 // So if we choose to lookup the allocation function in global scope, we
1361 // shouldn't lookup placement arguments.
1362 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1363 return false;
1365 LookupAllocationFunction();
1367 // [dcl.fct.def.coroutine]p9
1368 // If no viable function is found ([over.match.viable]), overload resolution
1369 // is performed again on a function call created by passing just the amount of
1370 // space required as an argument of type std::size_t.
1371 if (!OperatorNew && !PlacementArgs.empty() && PromiseContainsNew) {
1372 PlacementArgs.clear();
1373 LookupAllocationFunction();
1376 bool IsGlobalOverload =
1377 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1378 // If we didn't find a class-local new declaration and non-throwing new
1379 // was is required then we need to lookup the non-throwing global operator
1380 // instead.
1381 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1382 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1383 if (!StdNoThrow)
1384 return false;
1385 PlacementArgs = {StdNoThrow};
1386 OperatorNew = nullptr;
1387 LookupAllocationFunction(Sema::AFS_Global);
1390 if (!OperatorNew) {
1391 if (PromiseContainsNew)
1392 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1393 else if (RequiresNoThrowAlloc)
1394 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) << &FD;
1396 return false;
1399 if (RequiresNoThrowAlloc) {
1400 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1401 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1402 S.Diag(OperatorNew->getLocation(),
1403 diag::err_coroutine_promise_new_requires_nothrow)
1404 << OperatorNew;
1405 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1406 << OperatorNew;
1407 return false;
1411 FunctionDecl *OperatorDelete = nullptr;
1412 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1413 // FIXME: We should add an error here. According to:
1414 // [dcl.fct.def.coroutine]p12
1415 // If no usual deallocation function is found, the program is ill-formed.
1416 return false;
1419 Expr *FramePtr =
1420 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1422 Expr *FrameSize =
1423 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1425 // Make new call.
1427 ExprResult NewRef =
1428 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1429 if (NewRef.isInvalid())
1430 return false;
1432 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1433 llvm::append_range(NewArgs, PlacementArgs);
1435 ExprResult NewExpr =
1436 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1437 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1438 if (NewExpr.isInvalid())
1439 return false;
1441 // Make delete call.
1443 QualType OpDeleteQualType = OperatorDelete->getType();
1445 ExprResult DeleteRef =
1446 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1447 if (DeleteRef.isInvalid())
1448 return false;
1450 Expr *CoroFree =
1451 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1453 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1455 // [dcl.fct.def.coroutine]p12
1456 // The selected deallocation function shall be called with the address of
1457 // the block of storage to be reclaimed as its first argument. If a
1458 // deallocation function with a parameter of type std::size_t is
1459 // used, the size of the block is passed as the corresponding argument.
1460 const auto *OpDeleteType =
1461 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1462 if (OpDeleteType->getNumParams() > 1)
1463 DeleteArgs.push_back(FrameSize);
1465 ExprResult DeleteExpr =
1466 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1467 DeleteExpr =
1468 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1469 if (DeleteExpr.isInvalid())
1470 return false;
1472 this->Allocate = NewExpr.get();
1473 this->Deallocate = DeleteExpr.get();
1475 return true;
1478 bool CoroutineStmtBuilder::makeOnFallthrough() {
1479 assert(!IsPromiseDependentType &&
1480 "cannot make statement while the promise type is dependent");
1482 // [dcl.fct.def.coroutine]/p6
1483 // If searches for the names return_void and return_value in the scope of
1484 // the promise type each find any declarations, the program is ill-formed.
1485 // [Note 1: If return_void is found, flowing off the end of a coroutine is
1486 // equivalent to a co_return with no operand. Otherwise, flowing off the end
1487 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1488 // end note]
1489 bool HasRVoid, HasRValue;
1490 LookupResult LRVoid =
1491 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1492 LookupResult LRValue =
1493 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1495 StmtResult Fallthrough;
1496 if (HasRVoid && HasRValue) {
1497 // FIXME Improve this diagnostic
1498 S.Diag(FD.getLocation(),
1499 diag::err_coroutine_promise_incompatible_return_functions)
1500 << PromiseRecordDecl;
1501 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1502 diag::note_member_first_declared_here)
1503 << LRVoid.getLookupName();
1504 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1505 diag::note_member_first_declared_here)
1506 << LRValue.getLookupName();
1507 return false;
1508 } else if (!HasRVoid && !HasRValue) {
1509 // We need to set 'Fallthrough'. Otherwise the other analysis part might
1510 // think the coroutine has defined a return_value method. So it might emit
1511 // **false** positive warning. e.g.,
1513 // promise_without_return_func foo() {
1514 // co_await something();
1515 // }
1517 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1518 // co_return statements, which isn't correct.
1519 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1520 if (Fallthrough.isInvalid())
1521 return false;
1522 } else if (HasRVoid) {
1523 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1524 /*IsImplicit*/false);
1525 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1526 if (Fallthrough.isInvalid())
1527 return false;
1530 this->OnFallthrough = Fallthrough.get();
1531 return true;
1534 bool CoroutineStmtBuilder::makeOnException() {
1535 // Try to form 'p.unhandled_exception();'
1536 assert(!IsPromiseDependentType &&
1537 "cannot make statement while the promise type is dependent");
1539 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1541 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1542 auto DiagID =
1543 RequireUnhandledException
1544 ? diag::err_coroutine_promise_unhandled_exception_required
1545 : diag::
1546 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1547 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1548 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1549 << PromiseRecordDecl;
1550 return !RequireUnhandledException;
1553 // If exceptions are disabled, don't try to build OnException.
1554 if (!S.getLangOpts().CXXExceptions)
1555 return true;
1557 ExprResult UnhandledException = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1558 "unhandled_exception", None);
1559 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1560 /*DiscardedValue*/ false);
1561 if (UnhandledException.isInvalid())
1562 return false;
1564 // Since the body of the coroutine will be wrapped in try-catch, it will
1565 // be incompatible with SEH __try if present in a function.
1566 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1567 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1568 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1569 << Fn.getFirstCoroutineStmtKeyword();
1570 return false;
1573 this->OnException = UnhandledException.get();
1574 return true;
1577 bool CoroutineStmtBuilder::makeReturnObject() {
1578 // [dcl.fct.def.coroutine]p7
1579 // The expression promise.get_return_object() is used to initialize the
1580 // returned reference or prvalue result object of a call to a coroutine.
1581 ExprResult ReturnObject =
1582 buildPromiseCall(S, Fn.CoroutinePromise, Loc, "get_return_object", None);
1583 if (ReturnObject.isInvalid())
1584 return false;
1586 this->ReturnValue = ReturnObject.get();
1587 return true;
1590 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1591 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1592 auto *MethodDecl = MbrRef->getMethodDecl();
1593 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1594 << MethodDecl;
1596 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1597 << Fn.getFirstCoroutineStmtKeyword();
1600 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1601 assert(!IsPromiseDependentType &&
1602 "cannot make statement while the promise type is dependent");
1603 assert(this->ReturnValue && "ReturnValue must be already formed");
1605 QualType const GroType = this->ReturnValue->getType();
1606 assert(!GroType->isDependentType() &&
1607 "get_return_object type must no longer be dependent");
1609 QualType const FnRetType = FD.getReturnType();
1610 assert(!FnRetType->isDependentType() &&
1611 "get_return_object type must no longer be dependent");
1613 if (FnRetType->isVoidType()) {
1614 ExprResult Res =
1615 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1616 if (Res.isInvalid())
1617 return false;
1619 return true;
1622 if (GroType->isVoidType()) {
1623 // Trigger a nice error message.
1624 InitializedEntity Entity =
1625 InitializedEntity::InitializeResult(Loc, FnRetType);
1626 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1627 noteMemberDeclaredHere(S, ReturnValue, Fn);
1628 return false;
1631 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1632 if (ReturnStmt.isInvalid()) {
1633 noteMemberDeclaredHere(S, ReturnValue, Fn);
1634 return false;
1637 this->ReturnStmt = ReturnStmt.get();
1638 return true;
1641 // Create a static_cast\<T&&>(expr).
1642 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1643 if (T.isNull())
1644 T = E->getType();
1645 QualType TargetType = S.BuildReferenceType(
1646 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1647 SourceLocation ExprLoc = E->getBeginLoc();
1648 TypeSourceInfo *TargetLoc =
1649 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1651 return S
1652 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1653 SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1654 .get();
1657 /// Build a variable declaration for move parameter.
1658 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1659 IdentifierInfo *II) {
1660 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1661 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1662 TInfo, SC_None);
1663 Decl->setImplicit();
1664 return Decl;
1667 // Build statements that move coroutine function parameters to the coroutine
1668 // frame, and store them on the function scope info.
1669 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1670 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1671 auto *FD = cast<FunctionDecl>(CurContext);
1673 auto *ScopeInfo = getCurFunction();
1674 if (!ScopeInfo->CoroutineParameterMoves.empty())
1675 return false;
1677 // [dcl.fct.def.coroutine]p13
1678 // When a coroutine is invoked, after initializing its parameters
1679 // ([expr.call]), a copy is created for each coroutine parameter. For a
1680 // parameter of type cv T, the copy is a variable of type cv T with
1681 // automatic storage duration that is direct-initialized from an xvalue of
1682 // type T referring to the parameter.
1683 for (auto *PD : FD->parameters()) {
1684 if (PD->getType()->isDependentType())
1685 continue;
1687 ExprResult PDRefExpr =
1688 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1689 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1690 if (PDRefExpr.isInvalid())
1691 return false;
1693 Expr *CExpr = nullptr;
1694 if (PD->getType()->getAsCXXRecordDecl() ||
1695 PD->getType()->isRValueReferenceType())
1696 CExpr = castForMoving(*this, PDRefExpr.get());
1697 else
1698 CExpr = PDRefExpr.get();
1699 // [dcl.fct.def.coroutine]p13
1700 // The initialization and destruction of each parameter copy occurs in the
1701 // context of the called coroutine.
1702 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1703 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1705 // Convert decl to a statement.
1706 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1707 if (Stmt.isInvalid())
1708 return false;
1710 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1712 return true;
1715 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1716 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1717 if (!Res)
1718 return StmtError();
1719 return Res;
1722 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1723 SourceLocation FuncLoc,
1724 NamespaceDecl *&Namespace) {
1725 if (!StdCoroutineTraitsCache) {
1726 // Because coroutines moved from std::experimental in the TS to std in
1727 // C++20, we look in both places to give users time to transition their
1728 // TS-specific code to C++20. Diagnostics are given when the TS usage is
1729 // discovered.
1730 // TODO: Become stricter when <experimental/coroutine> is removed.
1732 IdentifierInfo const &TraitIdent =
1733 PP.getIdentifierTable().get("coroutine_traits");
1735 NamespaceDecl *StdSpace = getStdNamespace();
1736 LookupResult ResStd(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1737 bool InStd = StdSpace && LookupQualifiedName(ResStd, StdSpace);
1739 NamespaceDecl *ExpSpace = lookupStdExperimentalNamespace();
1740 LookupResult ResExp(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1741 bool InExp = ExpSpace && LookupQualifiedName(ResExp, ExpSpace);
1743 if (!InStd && !InExp) {
1744 // The goggles, they found nothing!
1745 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1746 << "std::coroutine_traits";
1747 return nullptr;
1750 // Prefer ::std to std::experimental.
1751 LookupResult &Result = InStd ? ResStd : ResExp;
1752 CoroTraitsNamespaceCache = InStd ? StdSpace : ExpSpace;
1754 // coroutine_traits is required to be a class template.
1755 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
1756 if (!StdCoroutineTraitsCache) {
1757 Result.suppressDiagnostics();
1758 NamedDecl *Found = *Result.begin();
1759 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1760 return nullptr;
1763 if (InExp) {
1764 // Found in std::experimental
1765 Diag(KwLoc, diag::warn_deprecated_coroutine_namespace)
1766 << "coroutine_traits";
1767 ResExp.suppressDiagnostics();
1768 NamedDecl *Found = *ResExp.begin();
1769 Diag(Found->getLocation(), diag::note_entity_declared_at) << Found;
1771 if (InStd &&
1772 StdCoroutineTraitsCache != ResExp.getAsSingle<ClassTemplateDecl>()) {
1773 // Also found something different in std
1774 Diag(KwLoc,
1775 diag::err_mixed_use_std_and_experimental_namespace_for_coroutine);
1776 Diag(StdCoroutineTraitsCache->getLocation(),
1777 diag::note_entity_declared_at)
1778 << StdCoroutineTraitsCache;
1780 return nullptr;
1784 Namespace = CoroTraitsNamespaceCache;
1785 return StdCoroutineTraitsCache;