1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis member access expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
25 using namespace clang
;
28 typedef llvm::SmallPtrSet
<const CXXRecordDecl
*, 4> BaseSet
;
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema
&SemaRef
, CXXRecordDecl
*Record
,
33 const BaseSet
&Bases
) {
34 auto BaseIsNotInSet
= [&Bases
](const CXXRecordDecl
*Base
) {
35 return !Bases
.count(Base
->getCanonicalDecl());
37 return BaseIsNotInSet(Record
) && Record
->forallBases(BaseIsNotInSet
);
41 /// The reference is definitely not an instance member access.
44 /// The reference may be an implicit instance member access.
47 /// The reference may be to an instance member, but it might be invalid if
48 /// so, because the context is not an instance method.
49 IMA_Mixed_StaticContext
,
51 /// The reference may be to an instance member, but it is invalid if
52 /// so, because the context is from an unrelated class.
55 /// The reference is definitely an implicit instance member access.
58 /// The reference may be to an unresolved using declaration.
61 /// The reference is a contextually-permitted abstract member reference.
64 /// The reference may be to an unresolved using declaration and the
65 /// context is not an instance method.
66 IMA_Unresolved_StaticContext
,
68 // The reference refers to a field which is not a member of the containing
69 // class, which is allowed because we're in C++11 mode and the context is
71 IMA_Field_Uneval_Context
,
73 /// All possible referrents are instance members and the current
74 /// context is not an instance method.
75 IMA_Error_StaticContext
,
77 /// All possible referrents are instance members of an unrelated
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression. Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member. This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
88 static IMAKind
ClassifyImplicitMemberAccess(Sema
&SemaRef
,
89 const LookupResult
&R
) {
90 assert(!R
.empty() && (*R
.begin())->isCXXClassMember());
92 DeclContext
*DC
= SemaRef
.getFunctionLevelDeclContext();
94 bool isStaticContext
= SemaRef
.CXXThisTypeOverride
.isNull() &&
95 (!isa
<CXXMethodDecl
>(DC
) || cast
<CXXMethodDecl
>(DC
)->isStatic());
97 if (R
.isUnresolvableResult())
98 return isStaticContext
? IMA_Unresolved_StaticContext
: IMA_Unresolved
;
100 // Collect all the declaring classes of instance members we find.
101 bool hasNonInstance
= false;
102 bool isField
= false;
104 for (NamedDecl
*D
: R
) {
105 // Look through any using decls.
106 D
= D
->getUnderlyingDecl();
108 if (D
->isCXXInstanceMember()) {
109 isField
|= isa
<FieldDecl
>(D
) || isa
<MSPropertyDecl
>(D
) ||
110 isa
<IndirectFieldDecl
>(D
);
112 CXXRecordDecl
*R
= cast
<CXXRecordDecl
>(D
->getDeclContext());
113 Classes
.insert(R
->getCanonicalDecl());
115 hasNonInstance
= true;
118 // If we didn't find any instance members, it can't be an implicit
123 // C++11 [expr.prim.general]p12:
124 // An id-expression that denotes a non-static data member or non-static
125 // member function of a class can only be used:
127 // - if that id-expression denotes a non-static data member and it
128 // appears in an unevaluated operand.
130 // This rule is specific to C++11. However, we also permit this form
131 // in unevaluated inline assembly operands, like the operand to a SIZE.
132 IMAKind AbstractInstanceResult
= IMA_Static
; // happens to be 'false'
133 assert(!AbstractInstanceResult
);
134 switch (SemaRef
.ExprEvalContexts
.back().Context
) {
135 case Sema::ExpressionEvaluationContext::Unevaluated
:
136 case Sema::ExpressionEvaluationContext::UnevaluatedList
:
137 if (isField
&& SemaRef
.getLangOpts().CPlusPlus11
)
138 AbstractInstanceResult
= IMA_Field_Uneval_Context
;
141 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract
:
142 AbstractInstanceResult
= IMA_Abstract
;
145 case Sema::ExpressionEvaluationContext::DiscardedStatement
:
146 case Sema::ExpressionEvaluationContext::ConstantEvaluated
:
147 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext
:
148 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated
:
149 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
153 // If the current context is not an instance method, it can't be
154 // an implicit member reference.
155 if (isStaticContext
) {
157 return IMA_Mixed_StaticContext
;
159 return AbstractInstanceResult
? AbstractInstanceResult
160 : IMA_Error_StaticContext
;
163 CXXRecordDecl
*contextClass
;
164 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(DC
))
165 contextClass
= MD
->getParent()->getCanonicalDecl();
167 contextClass
= cast
<CXXRecordDecl
>(DC
);
169 // [class.mfct.non-static]p3:
170 // ...is used in the body of a non-static member function of class X,
171 // if name lookup (3.4.1) resolves the name in the id-expression to a
172 // non-static non-type member of some class C [...]
173 // ...if C is not X or a base class of X, the class member access expression
175 if (R
.getNamingClass() &&
176 contextClass
->getCanonicalDecl() !=
177 R
.getNamingClass()->getCanonicalDecl()) {
178 // If the naming class is not the current context, this was a qualified
179 // member name lookup, and it's sufficient to check that we have the naming
180 // class as a base class.
182 Classes
.insert(R
.getNamingClass()->getCanonicalDecl());
185 // If we can prove that the current context is unrelated to all the
186 // declaring classes, it can't be an implicit member reference (in
187 // which case it's an error if any of those members are selected).
188 if (isProvablyNotDerivedFrom(SemaRef
, contextClass
, Classes
))
189 return hasNonInstance
? IMA_Mixed_Unrelated
:
190 AbstractInstanceResult
? AbstractInstanceResult
:
193 return (hasNonInstance
? IMA_Mixed
: IMA_Instance
);
196 /// Diagnose a reference to a field with no object available.
197 static void diagnoseInstanceReference(Sema
&SemaRef
,
198 const CXXScopeSpec
&SS
,
200 const DeclarationNameInfo
&nameInfo
) {
201 SourceLocation Loc
= nameInfo
.getLoc();
202 SourceRange
Range(Loc
);
203 if (SS
.isSet()) Range
.setBegin(SS
.getRange().getBegin());
205 // Look through using shadow decls and aliases.
206 Rep
= Rep
->getUnderlyingDecl();
208 DeclContext
*FunctionLevelDC
= SemaRef
.getFunctionLevelDeclContext();
209 CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(FunctionLevelDC
);
210 CXXRecordDecl
*ContextClass
= Method
? Method
->getParent() : nullptr;
211 CXXRecordDecl
*RepClass
= dyn_cast
<CXXRecordDecl
>(Rep
->getDeclContext());
213 bool InStaticMethod
= Method
&& Method
->isStatic();
214 bool IsField
= isa
<FieldDecl
>(Rep
) || isa
<IndirectFieldDecl
>(Rep
);
216 if (IsField
&& InStaticMethod
)
217 // "invalid use of member 'x' in static member function"
218 SemaRef
.Diag(Loc
, diag::err_invalid_member_use_in_static_method
)
219 << Range
<< nameInfo
.getName();
220 else if (ContextClass
&& RepClass
&& SS
.isEmpty() && !InStaticMethod
&&
221 !RepClass
->Equals(ContextClass
) && RepClass
->Encloses(ContextClass
))
222 // Unqualified lookup in a non-static member function found a member of an
224 SemaRef
.Diag(Loc
, diag::err_nested_non_static_member_use
)
225 << IsField
<< RepClass
<< nameInfo
.getName() << ContextClass
<< Range
;
227 SemaRef
.Diag(Loc
, diag::err_invalid_non_static_member_use
)
228 << nameInfo
.getName() << Range
;
230 SemaRef
.Diag(Loc
, diag::err_member_call_without_object
)
234 /// Builds an expression which might be an implicit member expression.
235 ExprResult
Sema::BuildPossibleImplicitMemberExpr(
236 const CXXScopeSpec
&SS
, SourceLocation TemplateKWLoc
, LookupResult
&R
,
237 const TemplateArgumentListInfo
*TemplateArgs
, const Scope
*S
,
238 UnresolvedLookupExpr
*AsULE
) {
239 switch (ClassifyImplicitMemberAccess(*this, R
)) {
241 return BuildImplicitMemberExpr(SS
, TemplateKWLoc
, R
, TemplateArgs
, true, S
);
244 case IMA_Mixed_Unrelated
:
246 return BuildImplicitMemberExpr(SS
, TemplateKWLoc
, R
, TemplateArgs
, false,
249 case IMA_Field_Uneval_Context
:
250 Diag(R
.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use
)
251 << R
.getLookupNameInfo().getName();
255 case IMA_Mixed_StaticContext
:
256 case IMA_Unresolved_StaticContext
:
257 if (TemplateArgs
|| TemplateKWLoc
.isValid())
258 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, false, TemplateArgs
);
259 return AsULE
? AsULE
: BuildDeclarationNameExpr(SS
, R
, false);
261 case IMA_Error_StaticContext
:
262 case IMA_Error_Unrelated
:
263 diagnoseInstanceReference(*this, SS
, R
.getRepresentativeDecl(),
264 R
.getLookupNameInfo());
268 llvm_unreachable("unexpected instance member access kind");
271 /// Determine whether input char is from rgba component set.
285 // OpenCL v1.1, s6.1.7
286 // The component swizzle length must be in accordance with the acceptable
288 static bool IsValidOpenCLComponentSwizzleLength(unsigned len
)
290 return (len
>= 1 && len
<= 4) || len
== 8 || len
== 16;
293 /// Check an ext-vector component access expression.
295 /// VK should be set in advance to the value kind of the base
298 CheckExtVectorComponent(Sema
&S
, QualType baseType
, ExprValueKind
&VK
,
299 SourceLocation OpLoc
, const IdentifierInfo
*CompName
,
300 SourceLocation CompLoc
) {
301 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
304 // FIXME: This logic can be greatly simplified by splitting it along
305 // halving/not halving and reworking the component checking.
306 const ExtVectorType
*vecType
= baseType
->getAs
<ExtVectorType
>();
308 // The vector accessor can't exceed the number of elements.
309 const char *compStr
= CompName
->getNameStart();
311 // This flag determines whether or not the component is one of the four
312 // special names that indicate a subset of exactly half the elements are
314 bool HalvingSwizzle
= false;
316 // This flag determines whether or not CompName has an 's' char prefix,
317 // indicating that it is a string of hex values to be used as vector indices.
318 bool HexSwizzle
= (*compStr
== 's' || *compStr
== 'S') && compStr
[1];
320 bool HasRepeated
= false;
321 bool HasIndex
[16] = {};
325 // Check that we've found one of the special components, or that the component
326 // names must come from the same set.
327 if (!strcmp(compStr
, "hi") || !strcmp(compStr
, "lo") ||
328 !strcmp(compStr
, "even") || !strcmp(compStr
, "odd")) {
329 HalvingSwizzle
= true;
330 } else if (!HexSwizzle
&&
331 (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1) {
332 bool HasRGBA
= IsRGBA(*compStr
);
334 // Ensure that xyzw and rgba components don't intermingle.
335 if (HasRGBA
!= IsRGBA(*compStr
))
337 if (HasIndex
[Idx
]) HasRepeated
= true;
338 HasIndex
[Idx
] = true;
340 } while (*compStr
&& (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1);
342 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
343 if (HasRGBA
|| (*compStr
&& IsRGBA(*compStr
))) {
344 if (S
.getLangOpts().OpenCL
&&
345 S
.getLangOpts().getOpenCLCompatibleVersion() < 300) {
346 const char *DiagBegin
= HasRGBA
? CompName
->getNameStart() : compStr
;
347 S
.Diag(OpLoc
, diag::ext_opencl_ext_vector_type_rgba_selector
)
348 << StringRef(DiagBegin
, 1) << SourceRange(CompLoc
);
352 if (HexSwizzle
) compStr
++;
353 while ((Idx
= vecType
->getNumericAccessorIdx(*compStr
)) != -1) {
354 if (HasIndex
[Idx
]) HasRepeated
= true;
355 HasIndex
[Idx
] = true;
360 if (!HalvingSwizzle
&& *compStr
) {
361 // We didn't get to the end of the string. This means the component names
362 // didn't come from the same set *or* we encountered an illegal name.
363 S
.Diag(OpLoc
, diag::err_ext_vector_component_name_illegal
)
364 << StringRef(compStr
, 1) << SourceRange(CompLoc
);
368 // Ensure no component accessor exceeds the width of the vector type it
370 if (!HalvingSwizzle
) {
371 compStr
= CompName
->getNameStart();
377 if (!vecType
->isAccessorWithinNumElements(*compStr
++, HexSwizzle
)) {
378 S
.Diag(OpLoc
, diag::err_ext_vector_component_exceeds_length
)
379 << baseType
<< SourceRange(CompLoc
);
385 // OpenCL mode requires swizzle length to be in accordance with accepted
386 // sizes. Clang however supports arbitrary lengths for other languages.
387 if (S
.getLangOpts().OpenCL
&& !HalvingSwizzle
) {
388 unsigned SwizzleLength
= CompName
->getLength();
393 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength
) == false) {
394 S
.Diag(OpLoc
, diag::err_opencl_ext_vector_component_invalid_length
)
395 << SwizzleLength
<< SourceRange(CompLoc
);
400 // The component accessor looks fine - now we need to compute the actual type.
401 // The vector type is implied by the component accessor. For example,
402 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
403 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
404 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
405 unsigned CompSize
= HalvingSwizzle
? (vecType
->getNumElements() + 1) / 2
406 : CompName
->getLength();
411 return vecType
->getElementType();
416 QualType VT
= S
.Context
.getExtVectorType(vecType
->getElementType(), CompSize
);
417 // Now look up the TypeDefDecl from the vector type. Without this,
418 // diagostics look bad. We want extended vector types to appear built-in.
419 for (Sema::ExtVectorDeclsType::iterator
420 I
= S
.ExtVectorDecls
.begin(S
.getExternalSource()),
421 E
= S
.ExtVectorDecls
.end();
423 if ((*I
)->getUnderlyingType() == VT
)
424 return S
.Context
.getTypedefType(*I
);
427 return VT
; // should never get here (a typedef type should always be found).
430 static Decl
*FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl
*PDecl
,
431 IdentifierInfo
*Member
,
433 ASTContext
&Context
) {
435 if (ObjCPropertyDecl
*PD
= PDecl
->FindPropertyDeclaration(
436 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
))
438 if (ObjCMethodDecl
*OMD
= PDecl
->getInstanceMethod(Sel
))
441 for (const auto *I
: PDecl
->protocols()) {
442 if (Decl
*D
= FindGetterSetterNameDeclFromProtocolList(I
, Member
, Sel
,
449 static Decl
*FindGetterSetterNameDecl(const ObjCObjectPointerType
*QIdTy
,
450 IdentifierInfo
*Member
,
452 ASTContext
&Context
) {
453 // Check protocols on qualified interfaces.
454 Decl
*GDecl
= nullptr;
455 for (const auto *I
: QIdTy
->quals()) {
457 if (ObjCPropertyDecl
*PD
= I
->FindPropertyDeclaration(
458 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
462 // Also must look for a getter or setter name which uses property syntax.
463 if (ObjCMethodDecl
*OMD
= I
->getInstanceMethod(Sel
)) {
469 for (const auto *I
: QIdTy
->quals()) {
470 // Search in the protocol-qualifier list of current protocol.
471 GDecl
= FindGetterSetterNameDeclFromProtocolList(I
, Member
, Sel
, Context
);
480 Sema::ActOnDependentMemberExpr(Expr
*BaseExpr
, QualType BaseType
,
481 bool IsArrow
, SourceLocation OpLoc
,
482 const CXXScopeSpec
&SS
,
483 SourceLocation TemplateKWLoc
,
484 NamedDecl
*FirstQualifierInScope
,
485 const DeclarationNameInfo
&NameInfo
,
486 const TemplateArgumentListInfo
*TemplateArgs
) {
487 // Even in dependent contexts, try to diagnose base expressions with
488 // obviously wrong types, e.g.:
493 // In Obj-C++, however, the above expression is valid, since it could be
494 // accessing the 'f' property if T is an Obj-C interface. The extra check
495 // allows this, while still reporting an error if T is a struct pointer.
497 const PointerType
*PT
= BaseType
->getAs
<PointerType
>();
498 if (PT
&& (!getLangOpts().ObjC
||
499 PT
->getPointeeType()->isRecordType())) {
500 assert(BaseExpr
&& "cannot happen with implicit member accesses");
501 Diag(OpLoc
, diag::err_typecheck_member_reference_struct_union
)
502 << BaseType
<< BaseExpr
->getSourceRange() << NameInfo
.getSourceRange();
507 assert(BaseType
->isDependentType() || NameInfo
.getName().isDependentName() ||
508 isDependentScopeSpecifier(SS
) ||
509 (TemplateArgs
&& llvm::any_of(TemplateArgs
->arguments(),
510 [](const TemplateArgumentLoc
&Arg
) {
511 return Arg
.getArgument().isDependent();
514 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
515 // must have pointer type, and the accessed type is the pointee.
516 return CXXDependentScopeMemberExpr::Create(
517 Context
, BaseExpr
, BaseType
, IsArrow
, OpLoc
,
518 SS
.getWithLocInContext(Context
), TemplateKWLoc
, FirstQualifierInScope
,
519 NameInfo
, TemplateArgs
);
522 /// We know that the given qualified member reference points only to
523 /// declarations which do not belong to the static type of the base
524 /// expression. Diagnose the problem.
525 static void DiagnoseQualifiedMemberReference(Sema
&SemaRef
,
528 const CXXScopeSpec
&SS
,
530 const DeclarationNameInfo
&nameInfo
) {
531 // If this is an implicit member access, use a different set of
534 return diagnoseInstanceReference(SemaRef
, SS
, rep
, nameInfo
);
536 SemaRef
.Diag(nameInfo
.getLoc(), diag::err_qualified_member_of_unrelated
)
537 << SS
.getRange() << rep
<< BaseType
;
540 // Check whether the declarations we found through a nested-name
541 // specifier in a member expression are actually members of the base
542 // type. The restriction here is:
545 // ... In these cases, the id-expression shall name a
546 // member of the class or of one of its base classes.
548 // So it's perfectly legitimate for the nested-name specifier to name
549 // an unrelated class, and for us to find an overload set including
550 // decls from classes which are not superclasses, as long as the decl
551 // we actually pick through overload resolution is from a superclass.
552 bool Sema::CheckQualifiedMemberReference(Expr
*BaseExpr
,
554 const CXXScopeSpec
&SS
,
555 const LookupResult
&R
) {
556 CXXRecordDecl
*BaseRecord
=
557 cast_or_null
<CXXRecordDecl
>(computeDeclContext(BaseType
));
559 // We can't check this yet because the base type is still
561 assert(BaseType
->isDependentType());
565 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
566 // If this is an implicit member reference and we find a
567 // non-instance member, it's not an error.
568 if (!BaseExpr
&& !(*I
)->isCXXInstanceMember())
571 // Note that we use the DC of the decl, not the underlying decl.
572 DeclContext
*DC
= (*I
)->getDeclContext()->getNonTransparentContext();
576 CXXRecordDecl
*MemberRecord
= cast
<CXXRecordDecl
>(DC
)->getCanonicalDecl();
577 if (BaseRecord
->getCanonicalDecl() == MemberRecord
||
578 !BaseRecord
->isProvablyNotDerivedFrom(MemberRecord
))
582 DiagnoseQualifiedMemberReference(*this, BaseExpr
, BaseType
, SS
,
583 R
.getRepresentativeDecl(),
584 R
.getLookupNameInfo());
590 // Callback to only accept typo corrections that are either a ValueDecl or a
591 // FunctionTemplateDecl and are declared in the current record or, for a C++
592 // classes, one of its base classes.
593 class RecordMemberExprValidatorCCC final
: public CorrectionCandidateCallback
{
595 explicit RecordMemberExprValidatorCCC(const RecordType
*RTy
)
596 : Record(RTy
->getDecl()) {
597 // Don't add bare keywords to the consumer since they will always fail
598 // validation by virtue of not being associated with any decls.
599 WantTypeSpecifiers
= false;
600 WantExpressionKeywords
= false;
601 WantCXXNamedCasts
= false;
602 WantFunctionLikeCasts
= false;
603 WantRemainingKeywords
= false;
606 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
607 NamedDecl
*ND
= candidate
.getCorrectionDecl();
608 // Don't accept candidates that cannot be member functions, constants,
609 // variables, or templates.
610 if (!ND
|| !(isa
<ValueDecl
>(ND
) || isa
<FunctionTemplateDecl
>(ND
)))
613 // Accept candidates that occur in the current record.
614 if (Record
->containsDecl(ND
))
617 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(Record
)) {
618 // Accept candidates that occur in any of the current class' base classes.
619 for (const auto &BS
: RD
->bases()) {
620 if (const auto *BSTy
= BS
.getType()->getAs
<RecordType
>()) {
621 if (BSTy
->getDecl()->containsDecl(ND
))
630 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
631 return std::make_unique
<RecordMemberExprValidatorCCC
>(*this);
635 const RecordDecl
*const Record
;
640 static bool LookupMemberExprInRecord(Sema
&SemaRef
, LookupResult
&R
,
642 const RecordType
*RTy
,
643 SourceLocation OpLoc
, bool IsArrow
,
644 CXXScopeSpec
&SS
, bool HasTemplateArgs
,
645 SourceLocation TemplateKWLoc
,
647 SourceRange BaseRange
= BaseExpr
? BaseExpr
->getSourceRange() : SourceRange();
648 RecordDecl
*RDecl
= RTy
->getDecl();
649 if (!SemaRef
.isThisOutsideMemberFunctionBody(QualType(RTy
, 0)) &&
650 SemaRef
.RequireCompleteType(OpLoc
, QualType(RTy
, 0),
651 diag::err_typecheck_incomplete_tag
,
655 if (HasTemplateArgs
|| TemplateKWLoc
.isValid()) {
656 // LookupTemplateName doesn't expect these both to exist simultaneously.
657 QualType ObjectType
= SS
.isSet() ? QualType() : QualType(RTy
, 0);
660 return SemaRef
.LookupTemplateName(R
, nullptr, SS
, ObjectType
, false, MOUS
,
664 DeclContext
*DC
= RDecl
;
666 // If the member name was a qualified-id, look into the
667 // nested-name-specifier.
668 DC
= SemaRef
.computeDeclContext(SS
, false);
670 if (SemaRef
.RequireCompleteDeclContext(SS
, DC
)) {
671 SemaRef
.Diag(SS
.getRange().getEnd(), diag::err_typecheck_incomplete_tag
)
672 << SS
.getRange() << DC
;
676 assert(DC
&& "Cannot handle non-computable dependent contexts in lookup");
678 if (!isa
<TypeDecl
>(DC
)) {
679 SemaRef
.Diag(R
.getNameLoc(), diag::err_qualified_member_nonclass
)
680 << DC
<< SS
.getRange();
685 // The record definition is complete, now look up the member.
686 SemaRef
.LookupQualifiedName(R
, DC
, SS
);
691 DeclarationName Typo
= R
.getLookupName();
692 SourceLocation TypoLoc
= R
.getNameLoc();
696 DeclarationNameInfo NameInfo
;
697 Sema::LookupNameKind LookupKind
;
698 Sema::RedeclarationKind Redecl
;
700 QueryState Q
= {R
.getSema(), R
.getLookupNameInfo(), R
.getLookupKind(),
701 R
.redeclarationKind()};
702 RecordMemberExprValidatorCCC
CCC(RTy
);
703 TE
= SemaRef
.CorrectTypoDelayed(
704 R
.getLookupNameInfo(), R
.getLookupKind(), nullptr, &SS
, CCC
,
705 [=, &SemaRef
](const TypoCorrection
&TC
) {
707 assert(!TC
.isKeyword() &&
708 "Got a keyword as a correction for a member!");
709 bool DroppedSpecifier
=
710 TC
.WillReplaceSpecifier() &&
711 Typo
.getAsString() == TC
.getAsString(SemaRef
.getLangOpts());
712 SemaRef
.diagnoseTypo(TC
, SemaRef
.PDiag(diag::err_no_member_suggest
)
713 << Typo
<< DC
<< DroppedSpecifier
716 SemaRef
.Diag(TypoLoc
, diag::err_no_member
) << Typo
<< DC
<< BaseRange
;
719 [=](Sema
&SemaRef
, TypoExpr
*TE
, TypoCorrection TC
) mutable {
720 LookupResult
R(Q
.SemaRef
, Q
.NameInfo
, Q
.LookupKind
, Q
.Redecl
);
721 R
.clear(); // Ensure there's no decls lingering in the shared state.
722 R
.suppressDiagnostics();
723 R
.setLookupName(TC
.getCorrection());
724 for (NamedDecl
*ND
: TC
)
727 return SemaRef
.BuildMemberReferenceExpr(
728 BaseExpr
, BaseExpr
->getType(), OpLoc
, IsArrow
, SS
, SourceLocation(),
729 nullptr, R
, nullptr, nullptr);
731 Sema::CTK_ErrorRecovery
, DC
);
736 static ExprResult
LookupMemberExpr(Sema
&S
, LookupResult
&R
,
737 ExprResult
&BaseExpr
, bool &IsArrow
,
738 SourceLocation OpLoc
, CXXScopeSpec
&SS
,
739 Decl
*ObjCImpDecl
, bool HasTemplateArgs
,
740 SourceLocation TemplateKWLoc
);
743 Sema::BuildMemberReferenceExpr(Expr
*Base
, QualType BaseType
,
744 SourceLocation OpLoc
, bool IsArrow
,
746 SourceLocation TemplateKWLoc
,
747 NamedDecl
*FirstQualifierInScope
,
748 const DeclarationNameInfo
&NameInfo
,
749 const TemplateArgumentListInfo
*TemplateArgs
,
751 ActOnMemberAccessExtraArgs
*ExtraArgs
) {
752 if (BaseType
->isDependentType() ||
753 (SS
.isSet() && isDependentScopeSpecifier(SS
)))
754 return ActOnDependentMemberExpr(Base
, BaseType
,
756 SS
, TemplateKWLoc
, FirstQualifierInScope
,
757 NameInfo
, TemplateArgs
);
759 LookupResult
R(*this, NameInfo
, LookupMemberName
);
761 // Implicit member accesses.
763 TypoExpr
*TE
= nullptr;
764 QualType RecordTy
= BaseType
;
765 if (IsArrow
) RecordTy
= RecordTy
->castAs
<PointerType
>()->getPointeeType();
766 if (LookupMemberExprInRecord(
767 *this, R
, nullptr, RecordTy
->getAs
<RecordType
>(), OpLoc
, IsArrow
,
768 SS
, TemplateArgs
!= nullptr, TemplateKWLoc
, TE
))
773 // Explicit member accesses.
775 ExprResult BaseResult
= Base
;
777 LookupMemberExpr(*this, R
, BaseResult
, IsArrow
, OpLoc
, SS
,
778 ExtraArgs
? ExtraArgs
->ObjCImpDecl
: nullptr,
779 TemplateArgs
!= nullptr, TemplateKWLoc
);
781 if (BaseResult
.isInvalid())
783 Base
= BaseResult
.get();
785 if (Result
.isInvalid())
791 // LookupMemberExpr can modify Base, and thus change BaseType
792 BaseType
= Base
->getType();
795 return BuildMemberReferenceExpr(Base
, BaseType
,
796 OpLoc
, IsArrow
, SS
, TemplateKWLoc
,
797 FirstQualifierInScope
, R
, TemplateArgs
, S
,
802 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec
&SS
,
804 IndirectFieldDecl
*indirectField
,
805 DeclAccessPair foundDecl
,
806 Expr
*baseObjectExpr
,
807 SourceLocation opLoc
) {
808 // First, build the expression that refers to the base object.
810 // Case 1: the base of the indirect field is not a field.
811 VarDecl
*baseVariable
= indirectField
->getVarDecl();
812 CXXScopeSpec EmptySS
;
814 assert(baseVariable
->getType()->isRecordType());
816 // In principle we could have a member access expression that
817 // accesses an anonymous struct/union that's a static member of
818 // the base object's class. However, under the current standard,
819 // static data members cannot be anonymous structs or unions.
820 // Supporting this is as easy as building a MemberExpr here.
821 assert(!baseObjectExpr
&& "anonymous struct/union is static data member?");
823 DeclarationNameInfo
baseNameInfo(DeclarationName(), loc
);
826 = BuildDeclarationNameExpr(EmptySS
, baseNameInfo
, baseVariable
);
827 if (result
.isInvalid()) return ExprError();
829 baseObjectExpr
= result
.get();
832 assert((baseVariable
|| baseObjectExpr
) &&
833 "referencing anonymous struct/union without a base variable or "
836 // Build the implicit member references to the field of the
837 // anonymous struct/union.
838 Expr
*result
= baseObjectExpr
;
839 IndirectFieldDecl::chain_iterator
840 FI
= indirectField
->chain_begin(), FEnd
= indirectField
->chain_end();
842 // Case 2: the base of the indirect field is a field and the user
843 // wrote a member expression.
845 FieldDecl
*field
= cast
<FieldDecl
>(*FI
);
847 bool baseObjectIsPointer
= baseObjectExpr
->getType()->isPointerType();
849 // Make a nameInfo that properly uses the anonymous name.
850 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
852 // Build the first member access in the chain with full information.
854 BuildFieldReferenceExpr(result
, baseObjectIsPointer
, SourceLocation(),
855 SS
, field
, foundDecl
, memberNameInfo
)
861 // In all cases, we should now skip the first declaration in the chain.
865 FieldDecl
*field
= cast
<FieldDecl
>(*FI
++);
867 // FIXME: these are somewhat meaningless
868 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
869 DeclAccessPair fakeFoundDecl
=
870 DeclAccessPair::make(field
, field
->getAccess());
873 BuildFieldReferenceExpr(result
, /*isarrow*/ false, SourceLocation(),
874 (FI
== FEnd
? SS
: EmptySS
), field
,
875 fakeFoundDecl
, memberNameInfo
)
883 BuildMSPropertyRefExpr(Sema
&S
, Expr
*BaseExpr
, bool IsArrow
,
884 const CXXScopeSpec
&SS
,
886 const DeclarationNameInfo
&NameInfo
) {
887 // Property names are always simple identifiers and therefore never
888 // require any interesting additional storage.
889 return new (S
.Context
) MSPropertyRefExpr(BaseExpr
, PD
, IsArrow
,
890 S
.Context
.PseudoObjectTy
, VK_LValue
,
891 SS
.getWithLocInContext(S
.Context
),
895 MemberExpr
*Sema::BuildMemberExpr(
896 Expr
*Base
, bool IsArrow
, SourceLocation OpLoc
, const CXXScopeSpec
*SS
,
897 SourceLocation TemplateKWLoc
, ValueDecl
*Member
, DeclAccessPair FoundDecl
,
898 bool HadMultipleCandidates
, const DeclarationNameInfo
&MemberNameInfo
,
899 QualType Ty
, ExprValueKind VK
, ExprObjectKind OK
,
900 const TemplateArgumentListInfo
*TemplateArgs
) {
901 NestedNameSpecifierLoc NNS
=
902 SS
? SS
->getWithLocInContext(Context
) : NestedNameSpecifierLoc();
903 return BuildMemberExpr(Base
, IsArrow
, OpLoc
, NNS
, TemplateKWLoc
, Member
,
904 FoundDecl
, HadMultipleCandidates
, MemberNameInfo
, Ty
,
905 VK
, OK
, TemplateArgs
);
908 MemberExpr
*Sema::BuildMemberExpr(
909 Expr
*Base
, bool IsArrow
, SourceLocation OpLoc
, NestedNameSpecifierLoc NNS
,
910 SourceLocation TemplateKWLoc
, ValueDecl
*Member
, DeclAccessPair FoundDecl
,
911 bool HadMultipleCandidates
, const DeclarationNameInfo
&MemberNameInfo
,
912 QualType Ty
, ExprValueKind VK
, ExprObjectKind OK
,
913 const TemplateArgumentListInfo
*TemplateArgs
) {
914 assert((!IsArrow
|| Base
->isPRValue()) &&
915 "-> base must be a pointer prvalue");
917 MemberExpr::Create(Context
, Base
, IsArrow
, OpLoc
, NNS
, TemplateKWLoc
,
918 Member
, FoundDecl
, MemberNameInfo
, TemplateArgs
, Ty
,
919 VK
, OK
, getNonOdrUseReasonInCurrentContext(Member
));
920 E
->setHadMultipleCandidates(HadMultipleCandidates
);
921 MarkMemberReferenced(E
);
923 // C++ [except.spec]p17:
924 // An exception-specification is considered to be needed when:
925 // - in an expression the function is the unique lookup result or the
926 // selected member of a set of overloaded functions
927 if (auto *FPT
= Ty
->getAs
<FunctionProtoType
>()) {
928 if (isUnresolvedExceptionSpec(FPT
->getExceptionSpecType())) {
929 if (auto *NewFPT
= ResolveExceptionSpec(MemberNameInfo
.getLoc(), FPT
))
930 E
->setType(Context
.getQualifiedType(NewFPT
, Ty
.getQualifiers()));
937 /// Determine if the given scope is within a function-try-block handler.
938 static bool IsInFnTryBlockHandler(const Scope
*S
) {
939 // Walk the scope stack until finding a FnTryCatchScope, or leave the
940 // function scope. If a FnTryCatchScope is found, check whether the TryScope
941 // flag is set. If it is not, it's a function-try-block handler.
942 for (; S
!= S
->getFnParent(); S
= S
->getParent()) {
943 if (S
->isFnTryCatchScope())
944 return (S
->getFlags() & Scope::TryScope
) != Scope::TryScope
;
950 Sema::BuildMemberReferenceExpr(Expr
*BaseExpr
, QualType BaseExprType
,
951 SourceLocation OpLoc
, bool IsArrow
,
952 const CXXScopeSpec
&SS
,
953 SourceLocation TemplateKWLoc
,
954 NamedDecl
*FirstQualifierInScope
,
956 const TemplateArgumentListInfo
*TemplateArgs
,
958 bool SuppressQualifierCheck
,
959 ActOnMemberAccessExtraArgs
*ExtraArgs
) {
960 QualType BaseType
= BaseExprType
;
962 assert(BaseType
->isPointerType());
963 BaseType
= BaseType
->castAs
<PointerType
>()->getPointeeType();
965 R
.setBaseObjectType(BaseType
);
967 // C++1z [expr.ref]p2:
968 // For the first option (dot) the first expression shall be a glvalue [...]
969 if (!IsArrow
&& BaseExpr
&& BaseExpr
->isPRValue()) {
970 ExprResult Converted
= TemporaryMaterializationConversion(BaseExpr
);
971 if (Converted
.isInvalid())
973 BaseExpr
= Converted
.get();
976 const DeclarationNameInfo
&MemberNameInfo
= R
.getLookupNameInfo();
977 DeclarationName MemberName
= MemberNameInfo
.getName();
978 SourceLocation MemberLoc
= MemberNameInfo
.getLoc();
983 // [except.handle]p10: Referring to any non-static member or base class of an
984 // object in the handler for a function-try-block of a constructor or
985 // destructor for that object results in undefined behavior.
986 const auto *FD
= getCurFunctionDecl();
987 if (S
&& BaseExpr
&& FD
&&
988 (isa
<CXXDestructorDecl
>(FD
) || isa
<CXXConstructorDecl
>(FD
)) &&
989 isa
<CXXThisExpr
>(BaseExpr
->IgnoreImpCasts()) &&
990 IsInFnTryBlockHandler(S
))
991 Diag(MemberLoc
, diag::warn_cdtor_function_try_handler_mem_expr
)
992 << isa
<CXXDestructorDecl
>(FD
);
995 // Rederive where we looked up.
996 DeclContext
*DC
= (SS
.isSet()
997 ? computeDeclContext(SS
, false)
998 : BaseType
->castAs
<RecordType
>()->getDecl());
1001 ExprResult RetryExpr
;
1002 if (!IsArrow
&& BaseExpr
) {
1003 SFINAETrap
Trap(*this, true);
1004 ParsedType ObjectType
;
1005 bool MayBePseudoDestructor
= false;
1006 RetryExpr
= ActOnStartCXXMemberReference(getCurScope(), BaseExpr
,
1007 OpLoc
, tok::arrow
, ObjectType
,
1008 MayBePseudoDestructor
);
1009 if (RetryExpr
.isUsable() && !Trap
.hasErrorOccurred()) {
1010 CXXScopeSpec
TempSS(SS
);
1011 RetryExpr
= ActOnMemberAccessExpr(
1012 ExtraArgs
->S
, RetryExpr
.get(), OpLoc
, tok::arrow
, TempSS
,
1013 TemplateKWLoc
, ExtraArgs
->Id
, ExtraArgs
->ObjCImpDecl
);
1015 if (Trap
.hasErrorOccurred())
1016 RetryExpr
= ExprError();
1018 if (RetryExpr
.isUsable()) {
1019 Diag(OpLoc
, diag::err_no_member_overloaded_arrow
)
1020 << MemberName
<< DC
<< FixItHint::CreateReplacement(OpLoc
, "->");
1025 Diag(R
.getNameLoc(), diag::err_no_member
)
1027 << (BaseExpr
? BaseExpr
->getSourceRange() : SourceRange());
1031 // Diagnose lookups that find only declarations from a non-base
1032 // type. This is possible for either qualified lookups (which may
1033 // have been qualified with an unrelated type) or implicit member
1034 // expressions (which were found with unqualified lookup and thus
1035 // may have come from an enclosing scope). Note that it's okay for
1036 // lookup to find declarations from a non-base type as long as those
1037 // aren't the ones picked by overload resolution.
1038 if ((SS
.isSet() || !BaseExpr
||
1039 (isa
<CXXThisExpr
>(BaseExpr
) &&
1040 cast
<CXXThisExpr
>(BaseExpr
)->isImplicit())) &&
1041 !SuppressQualifierCheck
&&
1042 CheckQualifiedMemberReference(BaseExpr
, BaseType
, SS
, R
))
1045 // Construct an unresolved result if we in fact got an unresolved
1047 if (R
.isOverloadedResult() || R
.isUnresolvableResult()) {
1048 // Suppress any lookup-related diagnostics; we'll do these when we
1050 R
.suppressDiagnostics();
1052 UnresolvedMemberExpr
*MemExpr
1053 = UnresolvedMemberExpr::Create(Context
, R
.isUnresolvableResult(),
1054 BaseExpr
, BaseExprType
,
1056 SS
.getWithLocInContext(Context
),
1057 TemplateKWLoc
, MemberNameInfo
,
1058 TemplateArgs
, R
.begin(), R
.end());
1063 assert(R
.isSingleResult());
1064 DeclAccessPair FoundDecl
= R
.begin().getPair();
1065 NamedDecl
*MemberDecl
= R
.getFoundDecl();
1067 // FIXME: diagnose the presence of template arguments now.
1069 // If the decl being referenced had an error, return an error for this
1070 // sub-expr without emitting another error, in order to avoid cascading
1072 if (MemberDecl
->isInvalidDecl())
1075 // Handle the implicit-member-access case.
1077 // If this is not an instance member, convert to a non-member access.
1078 if (!MemberDecl
->isCXXInstanceMember()) {
1079 // We might have a variable template specialization (or maybe one day a
1080 // member concept-id).
1081 if (TemplateArgs
|| TemplateKWLoc
.isValid())
1082 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, /*ADL*/false, TemplateArgs
);
1084 return BuildDeclarationNameExpr(SS
, R
.getLookupNameInfo(), MemberDecl
,
1085 FoundDecl
, TemplateArgs
);
1087 SourceLocation Loc
= R
.getNameLoc();
1088 if (SS
.getRange().isValid())
1089 Loc
= SS
.getRange().getBegin();
1090 BaseExpr
= BuildCXXThisExpr(Loc
, BaseExprType
, /*IsImplicit=*/true);
1093 // Check the use of this member.
1094 if (DiagnoseUseOfDecl(MemberDecl
, MemberLoc
))
1097 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(MemberDecl
))
1098 return BuildFieldReferenceExpr(BaseExpr
, IsArrow
, OpLoc
, SS
, FD
, FoundDecl
,
1101 if (MSPropertyDecl
*PD
= dyn_cast
<MSPropertyDecl
>(MemberDecl
))
1102 return BuildMSPropertyRefExpr(*this, BaseExpr
, IsArrow
, SS
, PD
,
1105 if (IndirectFieldDecl
*FD
= dyn_cast
<IndirectFieldDecl
>(MemberDecl
))
1106 // We may have found a field within an anonymous union or struct
1107 // (C++ [class.union]).
1108 return BuildAnonymousStructUnionMemberReference(SS
, MemberLoc
, FD
,
1109 FoundDecl
, BaseExpr
,
1112 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(MemberDecl
)) {
1113 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
, Var
,
1114 FoundDecl
, /*HadMultipleCandidates=*/false,
1115 MemberNameInfo
, Var
->getType().getNonReferenceType(),
1116 VK_LValue
, OK_Ordinary
);
1119 if (CXXMethodDecl
*MemberFn
= dyn_cast
<CXXMethodDecl
>(MemberDecl
)) {
1120 ExprValueKind valueKind
;
1122 if (MemberFn
->isInstance()) {
1123 valueKind
= VK_PRValue
;
1124 type
= Context
.BoundMemberTy
;
1126 valueKind
= VK_LValue
;
1127 type
= MemberFn
->getType();
1130 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
,
1131 MemberFn
, FoundDecl
, /*HadMultipleCandidates=*/false,
1132 MemberNameInfo
, type
, valueKind
, OK_Ordinary
);
1134 assert(!isa
<FunctionDecl
>(MemberDecl
) && "member function not C++ method?");
1136 if (EnumConstantDecl
*Enum
= dyn_cast
<EnumConstantDecl
>(MemberDecl
)) {
1137 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
, Enum
,
1138 FoundDecl
, /*HadMultipleCandidates=*/false,
1139 MemberNameInfo
, Enum
->getType(), VK_PRValue
,
1143 if (VarTemplateDecl
*VarTempl
= dyn_cast
<VarTemplateDecl
>(MemberDecl
)) {
1144 if (!TemplateArgs
) {
1145 diagnoseMissingTemplateArguments(TemplateName(VarTempl
), MemberLoc
);
1149 DeclResult VDecl
= CheckVarTemplateId(VarTempl
, TemplateKWLoc
,
1150 MemberNameInfo
.getLoc(), *TemplateArgs
);
1151 if (VDecl
.isInvalid())
1154 // Non-dependent member, but dependent template arguments.
1156 return ActOnDependentMemberExpr(
1157 BaseExpr
, BaseExpr
->getType(), IsArrow
, OpLoc
, SS
, TemplateKWLoc
,
1158 FirstQualifierInScope
, MemberNameInfo
, TemplateArgs
);
1160 VarDecl
*Var
= cast
<VarDecl
>(VDecl
.get());
1161 if (!Var
->getTemplateSpecializationKind())
1162 Var
->setTemplateSpecializationKind(TSK_ImplicitInstantiation
, MemberLoc
);
1164 return BuildMemberExpr(
1165 BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
, Var
, FoundDecl
,
1166 /*HadMultipleCandidates=*/false, MemberNameInfo
,
1167 Var
->getType().getNonReferenceType(), VK_LValue
, OK_Ordinary
);
1170 // We found something that we didn't expect. Complain.
1171 if (isa
<TypeDecl
>(MemberDecl
))
1172 Diag(MemberLoc
, diag::err_typecheck_member_reference_type
)
1173 << MemberName
<< BaseType
<< int(IsArrow
);
1175 Diag(MemberLoc
, diag::err_typecheck_member_reference_unknown
)
1176 << MemberName
<< BaseType
<< int(IsArrow
);
1178 Diag(MemberDecl
->getLocation(), diag::note_member_declared_here
)
1180 R
.suppressDiagnostics();
1184 /// Given that normal member access failed on the given expression,
1185 /// and given that the expression's type involves builtin-id or
1186 /// builtin-Class, decide whether substituting in the redefinition
1187 /// types would be profitable. The redefinition type is whatever
1188 /// this translation unit tried to typedef to id/Class; we store
1189 /// it to the side and then re-use it in places like this.
1190 static bool ShouldTryAgainWithRedefinitionType(Sema
&S
, ExprResult
&base
) {
1191 const ObjCObjectPointerType
*opty
1192 = base
.get()->getType()->getAs
<ObjCObjectPointerType
>();
1193 if (!opty
) return false;
1195 const ObjCObjectType
*ty
= opty
->getObjectType();
1198 if (ty
->isObjCId()) {
1199 redef
= S
.Context
.getObjCIdRedefinitionType();
1200 } else if (ty
->isObjCClass()) {
1201 redef
= S
.Context
.getObjCClassRedefinitionType();
1206 // Do the substitution as long as the redefinition type isn't just a
1207 // possibly-qualified pointer to builtin-id or builtin-Class again.
1208 opty
= redef
->getAs
<ObjCObjectPointerType
>();
1209 if (opty
&& !opty
->getObjectType()->getInterface())
1212 base
= S
.ImpCastExprToType(base
.get(), redef
, CK_BitCast
);
1216 static bool isRecordType(QualType T
) {
1217 return T
->isRecordType();
1219 static bool isPointerToRecordType(QualType T
) {
1220 if (const PointerType
*PT
= T
->getAs
<PointerType
>())
1221 return PT
->getPointeeType()->isRecordType();
1225 /// Perform conversions on the LHS of a member access expression.
1227 Sema::PerformMemberExprBaseConversion(Expr
*Base
, bool IsArrow
) {
1228 if (IsArrow
&& !Base
->getType()->isFunctionType())
1229 return DefaultFunctionArrayLvalueConversion(Base
);
1231 return CheckPlaceholderExpr(Base
);
1234 /// Look up the given member of the given non-type-dependent
1235 /// expression. This can return in one of two ways:
1236 /// * If it returns a sentinel null-but-valid result, the caller will
1237 /// assume that lookup was performed and the results written into
1238 /// the provided structure. It will take over from there.
1239 /// * Otherwise, the returned expression will be produced in place of
1240 /// an ordinary member expression.
1242 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1243 /// fixed for ObjC++.
1244 static ExprResult
LookupMemberExpr(Sema
&S
, LookupResult
&R
,
1245 ExprResult
&BaseExpr
, bool &IsArrow
,
1246 SourceLocation OpLoc
, CXXScopeSpec
&SS
,
1247 Decl
*ObjCImpDecl
, bool HasTemplateArgs
,
1248 SourceLocation TemplateKWLoc
) {
1249 assert(BaseExpr
.get() && "no base expression");
1251 // Perform default conversions.
1252 BaseExpr
= S
.PerformMemberExprBaseConversion(BaseExpr
.get(), IsArrow
);
1253 if (BaseExpr
.isInvalid())
1256 QualType BaseType
= BaseExpr
.get()->getType();
1257 assert(!BaseType
->isDependentType());
1259 DeclarationName MemberName
= R
.getLookupName();
1260 SourceLocation MemberLoc
= R
.getNameLoc();
1262 // For later type-checking purposes, turn arrow accesses into dot
1263 // accesses. The only access type we support that doesn't follow
1264 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1265 // and those never use arrows, so this is unaffected.
1267 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>())
1268 BaseType
= Ptr
->getPointeeType();
1269 else if (const ObjCObjectPointerType
*Ptr
1270 = BaseType
->getAs
<ObjCObjectPointerType
>())
1271 BaseType
= Ptr
->getPointeeType();
1272 else if (BaseType
->isRecordType()) {
1273 // Recover from arrow accesses to records, e.g.:
1274 // struct MyRecord foo;
1276 // This is actually well-formed in C++ if MyRecord has an
1277 // overloaded operator->, but that should have been dealt with
1278 // by now--or a diagnostic message already issued if a problem
1279 // was encountered while looking for the overloaded operator->.
1280 if (!S
.getLangOpts().CPlusPlus
) {
1281 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
1282 << BaseType
<< int(IsArrow
) << BaseExpr
.get()->getSourceRange()
1283 << FixItHint::CreateReplacement(OpLoc
, ".");
1286 } else if (BaseType
->isFunctionType()) {
1289 S
.Diag(MemberLoc
, diag::err_typecheck_member_reference_arrow
)
1290 << BaseType
<< BaseExpr
.get()->getSourceRange();
1295 // If the base type is an atomic type, this access is undefined behavior per
1296 // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1297 // about the UB and recover by converting the atomic lvalue into a non-atomic
1298 // lvalue. Because this is inherently unsafe as an atomic operation, the
1299 // warning defaults to an error.
1300 if (const auto *ATy
= BaseType
->getAs
<AtomicType
>()) {
1301 S
.DiagRuntimeBehavior(OpLoc
, nullptr,
1302 S
.PDiag(diag::warn_atomic_member_access
));
1303 BaseType
= ATy
->getValueType().getUnqualifiedType();
1304 BaseExpr
= ImplicitCastExpr::Create(
1305 S
.Context
, IsArrow
? S
.Context
.getPointerType(BaseType
) : BaseType
,
1306 CK_AtomicToNonAtomic
, BaseExpr
.get(), nullptr,
1307 BaseExpr
.get()->getValueKind(), FPOptionsOverride());
1310 // Handle field access to simple records.
1311 if (const RecordType
*RTy
= BaseType
->getAs
<RecordType
>()) {
1312 TypoExpr
*TE
= nullptr;
1313 if (LookupMemberExprInRecord(S
, R
, BaseExpr
.get(), RTy
, OpLoc
, IsArrow
, SS
,
1314 HasTemplateArgs
, TemplateKWLoc
, TE
))
1317 // Returning valid-but-null is how we indicate to the caller that
1318 // the lookup result was filled in. If typo correction was attempted and
1319 // failed, the lookup result will have been cleared--that combined with the
1320 // valid-but-null ExprResult will trigger the appropriate diagnostics.
1321 return ExprResult(TE
);
1324 // Handle ivar access to Objective-C objects.
1325 if (const ObjCObjectType
*OTy
= BaseType
->getAs
<ObjCObjectType
>()) {
1326 if (!SS
.isEmpty() && !SS
.isInvalid()) {
1327 S
.Diag(SS
.getRange().getBegin(), diag::err_qualified_objc_access
)
1328 << 1 << SS
.getScopeRep()
1329 << FixItHint::CreateRemoval(SS
.getRange());
1333 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1335 // There are three cases for the base type:
1336 // - builtin id (qualified or unqualified)
1337 // - builtin Class (qualified or unqualified)
1339 ObjCInterfaceDecl
*IDecl
= OTy
->getInterface();
1341 if (S
.getLangOpts().ObjCAutoRefCount
&&
1342 (OTy
->isObjCId() || OTy
->isObjCClass()))
1344 // There's an implicit 'isa' ivar on all objects.
1345 // But we only actually find it this way on objects of type 'id',
1347 if (OTy
->isObjCId() && Member
->isStr("isa"))
1348 return new (S
.Context
) ObjCIsaExpr(BaseExpr
.get(), IsArrow
, MemberLoc
,
1349 OpLoc
, S
.Context
.getObjCClassType());
1350 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1351 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1352 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1356 if (S
.RequireCompleteType(OpLoc
, BaseType
,
1357 diag::err_typecheck_incomplete_tag
,
1361 ObjCInterfaceDecl
*ClassDeclared
= nullptr;
1362 ObjCIvarDecl
*IV
= IDecl
->lookupInstanceVariable(Member
, ClassDeclared
);
1365 // Attempt to correct for typos in ivar names.
1366 DeclFilterCCC
<ObjCIvarDecl
> Validator
{};
1367 Validator
.IsObjCIvarLookup
= IsArrow
;
1368 if (TypoCorrection Corrected
= S
.CorrectTypo(
1369 R
.getLookupNameInfo(), Sema::LookupMemberName
, nullptr, nullptr,
1370 Validator
, Sema::CTK_ErrorRecovery
, IDecl
)) {
1371 IV
= Corrected
.getCorrectionDeclAs
<ObjCIvarDecl
>();
1374 S
.PDiag(diag::err_typecheck_member_reference_ivar_suggest
)
1375 << IDecl
->getDeclName() << MemberName
);
1377 // Figure out the class that declares the ivar.
1378 assert(!ClassDeclared
);
1380 Decl
*D
= cast
<Decl
>(IV
->getDeclContext());
1381 if (auto *Category
= dyn_cast
<ObjCCategoryDecl
>(D
))
1382 D
= Category
->getClassInterface();
1384 if (auto *Implementation
= dyn_cast
<ObjCImplementationDecl
>(D
))
1385 ClassDeclared
= Implementation
->getClassInterface();
1386 else if (auto *Interface
= dyn_cast
<ObjCInterfaceDecl
>(D
))
1387 ClassDeclared
= Interface
;
1389 assert(ClassDeclared
&& "cannot query interface");
1392 IDecl
->FindPropertyDeclaration(
1393 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
1394 S
.Diag(MemberLoc
, diag::err_property_found_suggest
)
1395 << Member
<< BaseExpr
.get()->getType()
1396 << FixItHint::CreateReplacement(OpLoc
, ".");
1400 S
.Diag(MemberLoc
, diag::err_typecheck_member_reference_ivar
)
1401 << IDecl
->getDeclName() << MemberName
1402 << BaseExpr
.get()->getSourceRange();
1407 assert(ClassDeclared
);
1409 // If the decl being referenced had an error, return an error for this
1410 // sub-expr without emitting another error, in order to avoid cascading
1412 if (IV
->isInvalidDecl())
1415 // Check whether we can reference this field.
1416 if (S
.DiagnoseUseOfDecl(IV
, MemberLoc
))
1418 if (IV
->getAccessControl() != ObjCIvarDecl::Public
&&
1419 IV
->getAccessControl() != ObjCIvarDecl::Package
) {
1420 ObjCInterfaceDecl
*ClassOfMethodDecl
= nullptr;
1421 if (ObjCMethodDecl
*MD
= S
.getCurMethodDecl())
1422 ClassOfMethodDecl
= MD
->getClassInterface();
1423 else if (ObjCImpDecl
&& S
.getCurFunctionDecl()) {
1424 // Case of a c-function declared inside an objc implementation.
1425 // FIXME: For a c-style function nested inside an objc implementation
1426 // class, there is no implementation context available, so we pass
1427 // down the context as argument to this routine. Ideally, this context
1428 // need be passed down in the AST node and somehow calculated from the
1429 // AST for a function decl.
1430 if (ObjCImplementationDecl
*IMPD
=
1431 dyn_cast
<ObjCImplementationDecl
>(ObjCImpDecl
))
1432 ClassOfMethodDecl
= IMPD
->getClassInterface();
1433 else if (ObjCCategoryImplDecl
* CatImplClass
=
1434 dyn_cast
<ObjCCategoryImplDecl
>(ObjCImpDecl
))
1435 ClassOfMethodDecl
= CatImplClass
->getClassInterface();
1437 if (!S
.getLangOpts().DebuggerSupport
) {
1438 if (IV
->getAccessControl() == ObjCIvarDecl::Private
) {
1439 if (!declaresSameEntity(ClassDeclared
, IDecl
) ||
1440 !declaresSameEntity(ClassOfMethodDecl
, ClassDeclared
))
1441 S
.Diag(MemberLoc
, diag::err_private_ivar_access
)
1442 << IV
->getDeclName();
1443 } else if (!IDecl
->isSuperClassOf(ClassOfMethodDecl
))
1445 S
.Diag(MemberLoc
, diag::err_protected_ivar_access
)
1446 << IV
->getDeclName();
1450 if (S
.getLangOpts().ObjCWeak
) {
1451 Expr
*BaseExp
= BaseExpr
.get()->IgnoreParenImpCasts();
1452 if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(BaseExp
))
1453 if (UO
->getOpcode() == UO_Deref
)
1454 BaseExp
= UO
->getSubExpr()->IgnoreParenCasts();
1456 if (DeclRefExpr
*DE
= dyn_cast
<DeclRefExpr
>(BaseExp
))
1457 if (DE
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1458 S
.Diag(DE
->getLocation(), diag::err_arc_weak_ivar_access
);
1463 if (ObjCMethodDecl
*MD
= S
.getCurMethodDecl()) {
1464 ObjCMethodFamily MF
= MD
->getMethodFamily();
1465 warn
= (MF
!= OMF_init
&& MF
!= OMF_dealloc
&&
1466 MF
!= OMF_finalize
&&
1467 !S
.IvarBacksCurrentMethodAccessor(IDecl
, MD
, IV
));
1470 S
.Diag(MemberLoc
, diag::warn_direct_ivar_access
) << IV
->getDeclName();
1473 ObjCIvarRefExpr
*Result
= new (S
.Context
) ObjCIvarRefExpr(
1474 IV
, IV
->getUsageType(BaseType
), MemberLoc
, OpLoc
, BaseExpr
.get(),
1477 if (IV
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1478 if (!S
.isUnevaluatedContext() &&
1479 !S
.Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
, MemberLoc
))
1480 S
.getCurFunction()->recordUseOfWeak(Result
);
1486 // Objective-C property access.
1487 const ObjCObjectPointerType
*OPT
;
1488 if (!IsArrow
&& (OPT
= BaseType
->getAs
<ObjCObjectPointerType
>())) {
1489 if (!SS
.isEmpty() && !SS
.isInvalid()) {
1490 S
.Diag(SS
.getRange().getBegin(), diag::err_qualified_objc_access
)
1491 << 0 << SS
.getScopeRep() << FixItHint::CreateRemoval(SS
.getRange());
1495 // This actually uses the base as an r-value.
1496 BaseExpr
= S
.DefaultLvalueConversion(BaseExpr
.get());
1497 if (BaseExpr
.isInvalid())
1500 assert(S
.Context
.hasSameUnqualifiedType(BaseType
,
1501 BaseExpr
.get()->getType()));
1503 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1505 const ObjCObjectType
*OT
= OPT
->getObjectType();
1507 // id, with and without qualifiers.
1508 if (OT
->isObjCId()) {
1509 // Check protocols on qualified interfaces.
1510 Selector Sel
= S
.PP
.getSelectorTable().getNullarySelector(Member
);
1512 FindGetterSetterNameDecl(OPT
, Member
, Sel
, S
.Context
)) {
1513 if (ObjCPropertyDecl
*PD
= dyn_cast
<ObjCPropertyDecl
>(PMDecl
)) {
1514 // Check the use of this declaration
1515 if (S
.DiagnoseUseOfDecl(PD
, MemberLoc
))
1518 return new (S
.Context
)
1519 ObjCPropertyRefExpr(PD
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1520 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1523 if (ObjCMethodDecl
*OMD
= dyn_cast
<ObjCMethodDecl
>(PMDecl
)) {
1524 Selector SetterSel
=
1525 SelectorTable::constructSetterSelector(S
.PP
.getIdentifierTable(),
1526 S
.PP
.getSelectorTable(),
1528 ObjCMethodDecl
*SMD
= nullptr;
1529 if (Decl
*SDecl
= FindGetterSetterNameDecl(OPT
,
1530 /*Property id*/ nullptr,
1531 SetterSel
, S
.Context
))
1532 SMD
= dyn_cast
<ObjCMethodDecl
>(SDecl
);
1534 return new (S
.Context
)
1535 ObjCPropertyRefExpr(OMD
, SMD
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1536 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1539 // Use of id.member can only be for a property reference. Do not
1540 // use the 'id' redefinition in this case.
1541 if (IsArrow
&& ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1542 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1543 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1545 return ExprError(S
.Diag(MemberLoc
, diag::err_property_not_found
)
1546 << MemberName
<< BaseType
);
1549 // 'Class', unqualified only.
1550 if (OT
->isObjCClass()) {
1551 // Only works in a method declaration (??!).
1552 ObjCMethodDecl
*MD
= S
.getCurMethodDecl();
1554 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1555 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1556 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1561 // Also must look for a getter name which uses property syntax.
1562 Selector Sel
= S
.PP
.getSelectorTable().getNullarySelector(Member
);
1563 ObjCInterfaceDecl
*IFace
= MD
->getClassInterface();
1567 ObjCMethodDecl
*Getter
;
1568 if ((Getter
= IFace
->lookupClassMethod(Sel
))) {
1569 // Check the use of this method.
1570 if (S
.DiagnoseUseOfDecl(Getter
, MemberLoc
))
1573 Getter
= IFace
->lookupPrivateMethod(Sel
, false);
1574 // If we found a getter then this may be a valid dot-reference, we
1575 // will look for the matching setter, in case it is needed.
1576 Selector SetterSel
=
1577 SelectorTable::constructSetterSelector(S
.PP
.getIdentifierTable(),
1578 S
.PP
.getSelectorTable(),
1580 ObjCMethodDecl
*Setter
= IFace
->lookupClassMethod(SetterSel
);
1582 // If this reference is in an @implementation, also check for 'private'
1584 Setter
= IFace
->lookupPrivateMethod(SetterSel
, false);
1587 if (Setter
&& S
.DiagnoseUseOfDecl(Setter
, MemberLoc
))
1590 if (Getter
|| Setter
) {
1591 return new (S
.Context
) ObjCPropertyRefExpr(
1592 Getter
, Setter
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1593 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1596 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1597 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1598 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1600 return ExprError(S
.Diag(MemberLoc
, diag::err_property_not_found
)
1601 << MemberName
<< BaseType
);
1604 // Normal property access.
1605 return S
.HandleExprPropertyRefExpr(OPT
, BaseExpr
.get(), OpLoc
, MemberName
,
1606 MemberLoc
, SourceLocation(), QualType(),
1610 if (BaseType
->isExtVectorBoolType()) {
1611 // We disallow element access for ext_vector_type bool. There is no way to
1612 // materialize a reference to a vector element as a pointer (each element is
1613 // one bit in the vector).
1614 S
.Diag(R
.getNameLoc(), diag::err_ext_vector_component_name_illegal
)
1616 << (BaseExpr
.get() ? BaseExpr
.get()->getSourceRange() : SourceRange());
1620 // Handle 'field access' to vectors, such as 'V.xx'.
1621 if (BaseType
->isExtVectorType()) {
1622 // FIXME: this expr should store IsArrow.
1623 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1628 if (PseudoObjectExpr
*POE
= dyn_cast
<PseudoObjectExpr
>(BaseExpr
.get()))
1629 VK
= POE
->getSyntacticForm()->getValueKind();
1631 VK
= BaseExpr
.get()->getValueKind();
1634 QualType ret
= CheckExtVectorComponent(S
, BaseType
, VK
, OpLoc
,
1639 S
.Context
.getCanonicalType(BaseExpr
.get()->getType()).getQualifiers();
1640 ret
= S
.Context
.getQualifiedType(ret
, BaseQ
);
1642 return new (S
.Context
)
1643 ExtVectorElementExpr(ret
, VK
, BaseExpr
.get(), *Member
, MemberLoc
);
1646 // Adjust builtin-sel to the appropriate redefinition type if that's
1647 // not just a pointer to builtin-sel again.
1648 if (IsArrow
&& BaseType
->isSpecificBuiltinType(BuiltinType::ObjCSel
) &&
1649 !S
.Context
.getObjCSelRedefinitionType()->isObjCSelType()) {
1650 BaseExpr
= S
.ImpCastExprToType(
1651 BaseExpr
.get(), S
.Context
.getObjCSelRedefinitionType(), CK_BitCast
);
1652 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1653 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1659 // Recover from dot accesses to pointers, e.g.:
1662 // This is actually well-formed in two cases:
1663 // - 'type' is an Objective C type
1664 // - 'bar' is a pseudo-destructor name which happens to refer to
1665 // the appropriate pointer type
1666 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>()) {
1667 if (!IsArrow
&& Ptr
->getPointeeType()->isRecordType() &&
1668 MemberName
.getNameKind() != DeclarationName::CXXDestructorName
) {
1669 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
1670 << BaseType
<< int(IsArrow
) << BaseExpr
.get()->getSourceRange()
1671 << FixItHint::CreateReplacement(OpLoc
, "->");
1673 if (S
.isSFINAEContext())
1676 // Recurse as an -> access.
1678 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1679 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1683 // If the user is trying to apply -> or . to a function name, it's probably
1684 // because they forgot parentheses to call that function.
1685 if (S
.tryToRecoverWithCall(
1686 BaseExpr
, S
.PDiag(diag::err_member_reference_needs_call
),
1688 IsArrow
? &isPointerToRecordType
: &isRecordType
)) {
1689 if (BaseExpr
.isInvalid())
1691 BaseExpr
= S
.DefaultFunctionArrayConversion(BaseExpr
.get());
1692 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1693 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1696 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_struct_union
)
1697 << BaseType
<< BaseExpr
.get()->getSourceRange() << MemberLoc
;
1702 /// The main callback when the parser finds something like
1703 /// expression . [nested-name-specifier] identifier
1704 /// expression -> [nested-name-specifier] identifier
1705 /// where 'identifier' encompasses a fairly broad spectrum of
1706 /// possibilities, including destructor and operator references.
1708 /// \param OpKind either tok::arrow or tok::period
1709 /// \param ObjCImpDecl the current Objective-C \@implementation
1710 /// decl; this is an ugly hack around the fact that Objective-C
1711 /// \@implementations aren't properly put in the context chain
1712 ExprResult
Sema::ActOnMemberAccessExpr(Scope
*S
, Expr
*Base
,
1713 SourceLocation OpLoc
,
1714 tok::TokenKind OpKind
,
1716 SourceLocation TemplateKWLoc
,
1718 Decl
*ObjCImpDecl
) {
1719 if (SS
.isSet() && SS
.isInvalid())
1722 // Warn about the explicit constructor calls Microsoft extension.
1723 if (getLangOpts().MicrosoftExt
&&
1724 Id
.getKind() == UnqualifiedIdKind::IK_ConstructorName
)
1725 Diag(Id
.getSourceRange().getBegin(),
1726 diag::ext_ms_explicit_constructor_call
);
1728 TemplateArgumentListInfo TemplateArgsBuffer
;
1730 // Decompose the name into its component parts.
1731 DeclarationNameInfo NameInfo
;
1732 const TemplateArgumentListInfo
*TemplateArgs
;
1733 DecomposeUnqualifiedId(Id
, TemplateArgsBuffer
,
1734 NameInfo
, TemplateArgs
);
1736 DeclarationName Name
= NameInfo
.getName();
1737 bool IsArrow
= (OpKind
== tok::arrow
);
1739 if (getLangOpts().HLSL
&& IsArrow
)
1740 return ExprError(Diag(OpLoc
, diag::err_hlsl_operator_unsupported
) << 2);
1742 NamedDecl
*FirstQualifierInScope
1743 = (!SS
.isSet() ? nullptr : FindFirstQualifierInScope(S
, SS
.getScopeRep()));
1745 // This is a postfix expression, so get rid of ParenListExprs.
1746 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Base
);
1747 if (Result
.isInvalid()) return ExprError();
1748 Base
= Result
.get();
1750 if (Base
->getType()->isDependentType() || Name
.isDependentName() ||
1751 isDependentScopeSpecifier(SS
)) {
1752 return ActOnDependentMemberExpr(Base
, Base
->getType(), IsArrow
, OpLoc
, SS
,
1753 TemplateKWLoc
, FirstQualifierInScope
,
1754 NameInfo
, TemplateArgs
);
1757 ActOnMemberAccessExtraArgs ExtraArgs
= {S
, Id
, ObjCImpDecl
};
1758 ExprResult Res
= BuildMemberReferenceExpr(
1759 Base
, Base
->getType(), OpLoc
, IsArrow
, SS
, TemplateKWLoc
,
1760 FirstQualifierInScope
, NameInfo
, TemplateArgs
, S
, &ExtraArgs
);
1762 if (!Res
.isInvalid() && isa
<MemberExpr
>(Res
.get()))
1763 CheckMemberAccessOfNoDeref(cast
<MemberExpr
>(Res
.get()));
1768 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr
*E
) {
1769 if (isUnevaluatedContext())
1772 QualType ResultTy
= E
->getType();
1774 // Member accesses have four cases:
1775 // 1: non-array member via "->": dereferences
1776 // 2: non-array member via ".": nothing interesting happens
1777 // 3: array member access via "->": nothing interesting happens
1778 // (this returns an array lvalue and does not actually dereference memory)
1779 // 4: array member access via ".": *adds* a layer of indirection
1780 if (ResultTy
->isArrayType()) {
1781 if (!E
->isArrow()) {
1782 // This might be something like:
1783 // (*structPtr).arrayMember
1784 // which behaves roughly like:
1785 // &(*structPtr).pointerMember
1786 // in that the apparent dereference in the base expression does not
1788 CheckAddressOfNoDeref(E
->getBase());
1790 } else if (E
->isArrow()) {
1791 if (const auto *Ptr
= dyn_cast
<PointerType
>(
1792 E
->getBase()->getType().getDesugaredType(Context
))) {
1793 if (Ptr
->getPointeeType()->hasAttr(attr::NoDeref
))
1794 ExprEvalContexts
.back().PossibleDerefs
.insert(E
);
1800 Sema::BuildFieldReferenceExpr(Expr
*BaseExpr
, bool IsArrow
,
1801 SourceLocation OpLoc
, const CXXScopeSpec
&SS
,
1802 FieldDecl
*Field
, DeclAccessPair FoundDecl
,
1803 const DeclarationNameInfo
&MemberNameInfo
) {
1804 // x.a is an l-value if 'a' has a reference type. Otherwise:
1805 // x.a is an l-value/x-value/pr-value if the base is (and note
1806 // that *x is always an l-value), except that if the base isn't
1807 // an ordinary object then we must have an rvalue.
1808 ExprValueKind VK
= VK_LValue
;
1809 ExprObjectKind OK
= OK_Ordinary
;
1811 if (BaseExpr
->getObjectKind() == OK_Ordinary
)
1812 VK
= BaseExpr
->getValueKind();
1816 if (VK
!= VK_PRValue
&& Field
->isBitField())
1819 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1820 QualType MemberType
= Field
->getType();
1821 if (const ReferenceType
*Ref
= MemberType
->getAs
<ReferenceType
>()) {
1822 MemberType
= Ref
->getPointeeType();
1825 QualType BaseType
= BaseExpr
->getType();
1826 if (IsArrow
) BaseType
= BaseType
->castAs
<PointerType
>()->getPointeeType();
1828 Qualifiers BaseQuals
= BaseType
.getQualifiers();
1830 // GC attributes are never picked up by members.
1831 BaseQuals
.removeObjCGCAttr();
1833 // CVR attributes from the base are picked up by members,
1834 // except that 'mutable' members don't pick up 'const'.
1835 if (Field
->isMutable()) BaseQuals
.removeConst();
1837 Qualifiers MemberQuals
=
1838 Context
.getCanonicalType(MemberType
).getQualifiers();
1840 assert(!MemberQuals
.hasAddressSpace());
1842 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
1843 if (Combined
!= MemberQuals
)
1844 MemberType
= Context
.getQualifiedType(MemberType
, Combined
);
1846 // Pick up NoDeref from the base in case we end up using AddrOf on the
1847 // result. E.g. the expression
1848 // &someNoDerefPtr->pointerMember
1849 // should be a noderef pointer again.
1850 if (BaseType
->hasAttr(attr::NoDeref
))
1852 Context
.getAttributedType(attr::NoDeref
, MemberType
, MemberType
);
1855 auto *CurMethod
= dyn_cast
<CXXMethodDecl
>(CurContext
);
1856 if (!(CurMethod
&& CurMethod
->isDefaulted()))
1857 UnusedPrivateFields
.remove(Field
);
1859 ExprResult Base
= PerformObjectMemberConversion(BaseExpr
, SS
.getScopeRep(),
1861 if (Base
.isInvalid())
1864 // Build a reference to a private copy for non-static data members in
1865 // non-static member functions, privatized by OpenMP constructs.
1866 if (getLangOpts().OpenMP
&& IsArrow
&&
1867 !CurContext
->isDependentContext() &&
1868 isa
<CXXThisExpr
>(Base
.get()->IgnoreParenImpCasts())) {
1869 if (auto *PrivateCopy
= isOpenMPCapturedDecl(Field
)) {
1870 return getOpenMPCapturedExpr(PrivateCopy
, VK
, OK
,
1871 MemberNameInfo
.getLoc());
1875 return BuildMemberExpr(Base
.get(), IsArrow
, OpLoc
, &SS
,
1876 /*TemplateKWLoc=*/SourceLocation(), Field
, FoundDecl
,
1877 /*HadMultipleCandidates=*/false, MemberNameInfo
,
1878 MemberType
, VK
, OK
);
1881 /// Builds an implicit member access expression. The current context
1882 /// is known to be an instance method, and the given unqualified lookup
1883 /// set is known to contain only instance members, at least one of which
1884 /// is from an appropriate type.
1886 Sema::BuildImplicitMemberExpr(const CXXScopeSpec
&SS
,
1887 SourceLocation TemplateKWLoc
,
1889 const TemplateArgumentListInfo
*TemplateArgs
,
1890 bool IsKnownInstance
, const Scope
*S
) {
1891 assert(!R
.empty() && !R
.isAmbiguous());
1893 SourceLocation loc
= R
.getNameLoc();
1895 // If this is known to be an instance access, go ahead and build an
1896 // implicit 'this' expression now.
1897 QualType ThisTy
= getCurrentThisType();
1898 assert(!ThisTy
.isNull() && "didn't correctly pre-flight capture of 'this'");
1900 Expr
*baseExpr
= nullptr; // null signifies implicit access
1901 if (IsKnownInstance
) {
1902 SourceLocation Loc
= R
.getNameLoc();
1903 if (SS
.getRange().isValid())
1904 Loc
= SS
.getRange().getBegin();
1905 baseExpr
= BuildCXXThisExpr(loc
, ThisTy
, /*IsImplicit=*/true);
1908 return BuildMemberReferenceExpr(baseExpr
, ThisTy
,
1909 /*OpLoc*/ SourceLocation(),
1912 /*FirstQualifierInScope*/ nullptr,
1913 R
, TemplateArgs
, S
);