1 //===--- SemaLambda.cpp - Semantic Analysis for C++11 Lambdas -------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis for C++ lambda expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/DeclSpec.h"
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTLambda.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/TargetInfo.h"
17 #include "clang/Sema/Initialization.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Scope.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/SemaLambda.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang
;
27 /// Examines the FunctionScopeInfo stack to determine the nearest
28 /// enclosing lambda (to the current lambda) that is 'capture-ready' for
29 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
30 /// If successful, returns the index into Sema's FunctionScopeInfo stack
31 /// of the capture-ready lambda's LambdaScopeInfo.
33 /// Climbs down the stack of lambdas (deepest nested lambda - i.e. current
34 /// lambda - is on top) to determine the index of the nearest enclosing/outer
35 /// lambda that is ready to capture the \p VarToCapture being referenced in
36 /// the current lambda.
37 /// As we climb down the stack, we want the index of the first such lambda -
38 /// that is the lambda with the highest index that is 'capture-ready'.
40 /// A lambda 'L' is capture-ready for 'V' (var or this) if:
41 /// - its enclosing context is non-dependent
42 /// - and if the chain of lambdas between L and the lambda in which
43 /// V is potentially used (i.e. the lambda at the top of the scope info
44 /// stack), can all capture or have already captured V.
45 /// If \p VarToCapture is 'null' then we are trying to capture 'this'.
47 /// Note that a lambda that is deemed 'capture-ready' still needs to be checked
48 /// for whether it is 'capture-capable' (see
49 /// getStackIndexOfNearestEnclosingCaptureCapableLambda), before it can truly
52 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
53 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
54 /// is at the top of the stack and has the highest index.
55 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
57 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
58 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
59 /// which is capture-ready. If the return value evaluates to 'false' then
60 /// no lambda is capture-ready for \p VarToCapture.
62 static inline Optional
<unsigned>
63 getStackIndexOfNearestEnclosingCaptureReadyLambda(
64 ArrayRef
<const clang::sema::FunctionScopeInfo
*> FunctionScopes
,
65 VarDecl
*VarToCapture
) {
66 // Label failure to capture.
67 const Optional
<unsigned> NoLambdaIsCaptureReady
;
69 // Ignore all inner captured regions.
70 unsigned CurScopeIndex
= FunctionScopes
.size() - 1;
71 while (CurScopeIndex
> 0 && isa
<clang::sema::CapturedRegionScopeInfo
>(
72 FunctionScopes
[CurScopeIndex
]))
75 isa
<clang::sema::LambdaScopeInfo
>(FunctionScopes
[CurScopeIndex
]) &&
76 "The function on the top of sema's function-info stack must be a lambda");
78 // If VarToCapture is null, we are attempting to capture 'this'.
79 const bool IsCapturingThis
= !VarToCapture
;
80 const bool IsCapturingVariable
= !IsCapturingThis
;
82 // Start with the current lambda at the top of the stack (highest index).
83 DeclContext
*EnclosingDC
=
84 cast
<sema::LambdaScopeInfo
>(FunctionScopes
[CurScopeIndex
])->CallOperator
;
87 const clang::sema::LambdaScopeInfo
*LSI
=
88 cast
<sema::LambdaScopeInfo
>(FunctionScopes
[CurScopeIndex
]);
89 // IF we have climbed down to an intervening enclosing lambda that contains
90 // the variable declaration - it obviously can/must not capture the
92 // Since its enclosing DC is dependent, all the lambdas between it and the
93 // innermost nested lambda are dependent (otherwise we wouldn't have
94 // arrived here) - so we don't yet have a lambda that can capture the
96 if (IsCapturingVariable
&&
97 VarToCapture
->getDeclContext()->Equals(EnclosingDC
))
98 return NoLambdaIsCaptureReady
;
100 // For an enclosing lambda to be capture ready for an entity, all
101 // intervening lambda's have to be able to capture that entity. If even
102 // one of the intervening lambda's is not capable of capturing the entity
103 // then no enclosing lambda can ever capture that entity.
107 // [](auto b) { #2 <-- an intervening lambda that can never capture 'x'
109 // f(x, c); <-- can not lead to x's speculative capture by #1 or #2
111 // If they do not have a default implicit capture, check to see
112 // if the entity has already been explicitly captured.
113 // If even a single dependent enclosing lambda lacks the capability
114 // to ever capture this variable, there is no further enclosing
115 // non-dependent lambda that can capture this variable.
116 if (LSI
->ImpCaptureStyle
== sema::LambdaScopeInfo::ImpCap_None
) {
117 if (IsCapturingVariable
&& !LSI
->isCaptured(VarToCapture
))
118 return NoLambdaIsCaptureReady
;
119 if (IsCapturingThis
&& !LSI
->isCXXThisCaptured())
120 return NoLambdaIsCaptureReady
;
122 EnclosingDC
= getLambdaAwareParentOfDeclContext(EnclosingDC
);
124 assert(CurScopeIndex
);
126 } while (!EnclosingDC
->isTranslationUnit() &&
127 EnclosingDC
->isDependentContext() &&
128 isLambdaCallOperator(EnclosingDC
));
130 assert(CurScopeIndex
< (FunctionScopes
.size() - 1));
131 // If the enclosingDC is not dependent, then the immediately nested lambda
132 // (one index above) is capture-ready.
133 if (!EnclosingDC
->isDependentContext())
134 return CurScopeIndex
+ 1;
135 return NoLambdaIsCaptureReady
;
138 /// Examines the FunctionScopeInfo stack to determine the nearest
139 /// enclosing lambda (to the current lambda) that is 'capture-capable' for
140 /// the variable referenced in the current lambda (i.e. \p VarToCapture).
141 /// If successful, returns the index into Sema's FunctionScopeInfo stack
142 /// of the capture-capable lambda's LambdaScopeInfo.
144 /// Given the current stack of lambdas being processed by Sema and
145 /// the variable of interest, to identify the nearest enclosing lambda (to the
146 /// current lambda at the top of the stack) that can truly capture
147 /// a variable, it has to have the following two properties:
148 /// a) 'capture-ready' - be the innermost lambda that is 'capture-ready':
149 /// - climb down the stack (i.e. starting from the innermost and examining
150 /// each outer lambda step by step) checking if each enclosing
151 /// lambda can either implicitly or explicitly capture the variable.
152 /// Record the first such lambda that is enclosed in a non-dependent
153 /// context. If no such lambda currently exists return failure.
154 /// b) 'capture-capable' - make sure the 'capture-ready' lambda can truly
155 /// capture the variable by checking all its enclosing lambdas:
156 /// - check if all outer lambdas enclosing the 'capture-ready' lambda
157 /// identified above in 'a' can also capture the variable (this is done
158 /// via tryCaptureVariable for variables and CheckCXXThisCapture for
159 /// 'this' by passing in the index of the Lambda identified in step 'a')
161 /// \param FunctionScopes - Sema's stack of nested FunctionScopeInfo's (which a
162 /// LambdaScopeInfo inherits from). The current/deepest/innermost lambda
163 /// is at the top of the stack.
165 /// \param VarToCapture - the variable to capture. If NULL, capture 'this'.
168 /// \returns An Optional<unsigned> Index that if evaluates to 'true' contains
169 /// the index (into Sema's FunctionScopeInfo stack) of the innermost lambda
170 /// which is capture-capable. If the return value evaluates to 'false' then
171 /// no lambda is capture-capable for \p VarToCapture.
173 Optional
<unsigned> clang::getStackIndexOfNearestEnclosingCaptureCapableLambda(
174 ArrayRef
<const sema::FunctionScopeInfo
*> FunctionScopes
,
175 VarDecl
*VarToCapture
, Sema
&S
) {
177 const Optional
<unsigned> NoLambdaIsCaptureCapable
;
179 const Optional
<unsigned> OptionalStackIndex
=
180 getStackIndexOfNearestEnclosingCaptureReadyLambda(FunctionScopes
,
182 if (!OptionalStackIndex
)
183 return NoLambdaIsCaptureCapable
;
185 const unsigned IndexOfCaptureReadyLambda
= *OptionalStackIndex
;
186 assert(((IndexOfCaptureReadyLambda
!= (FunctionScopes
.size() - 1)) ||
187 S
.getCurGenericLambda()) &&
188 "The capture ready lambda for a potential capture can only be the "
189 "current lambda if it is a generic lambda");
191 const sema::LambdaScopeInfo
*const CaptureReadyLambdaLSI
=
192 cast
<sema::LambdaScopeInfo
>(FunctionScopes
[IndexOfCaptureReadyLambda
]);
194 // If VarToCapture is null, we are attempting to capture 'this'
195 const bool IsCapturingThis
= !VarToCapture
;
196 const bool IsCapturingVariable
= !IsCapturingThis
;
198 if (IsCapturingVariable
) {
199 // Check if the capture-ready lambda can truly capture the variable, by
200 // checking whether all enclosing lambdas of the capture-ready lambda allow
201 // the capture - i.e. make sure it is capture-capable.
202 QualType CaptureType
, DeclRefType
;
203 const bool CanCaptureVariable
=
204 !S
.tryCaptureVariable(VarToCapture
,
205 /*ExprVarIsUsedInLoc*/ SourceLocation(),
206 clang::Sema::TryCapture_Implicit
,
207 /*EllipsisLoc*/ SourceLocation(),
208 /*BuildAndDiagnose*/ false, CaptureType
,
209 DeclRefType
, &IndexOfCaptureReadyLambda
);
210 if (!CanCaptureVariable
)
211 return NoLambdaIsCaptureCapable
;
213 // Check if the capture-ready lambda can truly capture 'this' by checking
214 // whether all enclosing lambdas of the capture-ready lambda can capture
216 const bool CanCaptureThis
=
217 !S
.CheckCXXThisCapture(
218 CaptureReadyLambdaLSI
->PotentialThisCaptureLocation
,
219 /*Explicit*/ false, /*BuildAndDiagnose*/ false,
220 &IndexOfCaptureReadyLambda
);
222 return NoLambdaIsCaptureCapable
;
224 return IndexOfCaptureReadyLambda
;
227 static inline TemplateParameterList
*
228 getGenericLambdaTemplateParameterList(LambdaScopeInfo
*LSI
, Sema
&SemaRef
) {
229 if (!LSI
->GLTemplateParameterList
&& !LSI
->TemplateParams
.empty()) {
230 LSI
->GLTemplateParameterList
= TemplateParameterList::Create(
232 /*Template kw loc*/ SourceLocation(),
233 /*L angle loc*/ LSI
->ExplicitTemplateParamsRange
.getBegin(),
235 /*R angle loc*/LSI
->ExplicitTemplateParamsRange
.getEnd(),
236 LSI
->RequiresClause
.get());
238 return LSI
->GLTemplateParameterList
;
242 Sema::createLambdaClosureType(SourceRange IntroducerRange
, TypeSourceInfo
*Info
,
243 unsigned LambdaDependencyKind
,
244 LambdaCaptureDefault CaptureDefault
) {
245 DeclContext
*DC
= CurContext
;
246 while (!(DC
->isFunctionOrMethod() || DC
->isRecord() || DC
->isFileContext()))
247 DC
= DC
->getParent();
248 bool IsGenericLambda
= getGenericLambdaTemplateParameterList(getCurLambda(),
250 // Start constructing the lambda class.
251 CXXRecordDecl
*Class
= CXXRecordDecl::CreateLambda(
252 Context
, DC
, Info
, IntroducerRange
.getBegin(), LambdaDependencyKind
,
253 IsGenericLambda
, CaptureDefault
);
259 /// Determine whether the given context is or is enclosed in an inline
261 static bool isInInlineFunction(const DeclContext
*DC
) {
262 while (!DC
->isFileContext()) {
263 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(DC
))
267 DC
= DC
->getLexicalParent();
273 std::tuple
<MangleNumberingContext
*, Decl
*>
274 Sema::getCurrentMangleNumberContext(const DeclContext
*DC
) {
275 // Compute the context for allocating mangling numbers in the current
276 // expression, if the ABI requires them.
277 Decl
*ManglingContextDecl
= ExprEvalContexts
.back().ManglingContextDecl
;
288 // Default arguments of member function parameters that appear in a class
289 // definition, as well as the initializers of data members, receive special
290 // treatment. Identify them.
291 if (ManglingContextDecl
) {
292 if (ParmVarDecl
*Param
= dyn_cast
<ParmVarDecl
>(ManglingContextDecl
)) {
293 if (const DeclContext
*LexicalDC
294 = Param
->getDeclContext()->getLexicalParent())
295 if (LexicalDC
->isRecord())
296 Kind
= DefaultArgument
;
297 } else if (VarDecl
*Var
= dyn_cast
<VarDecl
>(ManglingContextDecl
)) {
298 if (Var
->getDeclContext()->isRecord())
299 Kind
= StaticDataMember
;
300 else if (Var
->getMostRecentDecl()->isInline())
301 Kind
= InlineVariable
;
302 else if (Var
->getDescribedVarTemplate())
303 Kind
= VariableTemplate
;
304 else if (auto *VTS
= dyn_cast
<VarTemplateSpecializationDecl
>(Var
)) {
305 if (!VTS
->isExplicitSpecialization())
306 Kind
= VariableTemplate
;
308 } else if (isa
<FieldDecl
>(ManglingContextDecl
)) {
313 // Itanium ABI [5.1.7]:
314 // In the following contexts [...] the one-definition rule requires closure
315 // types in different translation units to "correspond":
316 bool IsInNonspecializedTemplate
=
317 inTemplateInstantiation() || CurContext
->isDependentContext();
320 // -- the bodies of non-exported nonspecialized template functions
321 // -- the bodies of inline functions
322 if ((IsInNonspecializedTemplate
&&
323 !(ManglingContextDecl
&& isa
<ParmVarDecl
>(ManglingContextDecl
))) ||
324 isInInlineFunction(CurContext
)) {
325 while (auto *CD
= dyn_cast
<CapturedDecl
>(DC
))
326 DC
= CD
->getParent();
327 return std::make_tuple(&Context
.getManglingNumberContext(DC
), nullptr);
330 return std::make_tuple(nullptr, nullptr);
333 case StaticDataMember
:
334 // -- the initializers of nonspecialized static members of template classes
335 if (!IsInNonspecializedTemplate
)
336 return std::make_tuple(nullptr, ManglingContextDecl
);
337 // Fall through to get the current context.
341 // -- the in-class initializers of class members
342 case DefaultArgument
:
343 // -- default arguments appearing in class definitions
345 // -- the initializers of inline variables
346 case VariableTemplate
:
347 // -- the initializers of templated variables
348 return std::make_tuple(
349 &Context
.getManglingNumberContext(ASTContext::NeedExtraManglingDecl
,
350 ManglingContextDecl
),
351 ManglingContextDecl
);
354 llvm_unreachable("unexpected context");
357 CXXMethodDecl
*Sema::startLambdaDefinition(CXXRecordDecl
*Class
,
358 SourceRange IntroducerRange
,
359 TypeSourceInfo
*MethodTypeInfo
,
360 SourceLocation EndLoc
,
361 ArrayRef
<ParmVarDecl
*> Params
,
362 ConstexprSpecKind ConstexprKind
,
363 Expr
*TrailingRequiresClause
) {
364 QualType MethodType
= MethodTypeInfo
->getType();
365 TemplateParameterList
*TemplateParams
=
366 getGenericLambdaTemplateParameterList(getCurLambda(), *this);
367 // If a lambda appears in a dependent context or is a generic lambda (has
368 // template parameters) and has an 'auto' return type, deduce it to a
370 if (Class
->isDependentContext() || TemplateParams
) {
371 const FunctionProtoType
*FPT
= MethodType
->castAs
<FunctionProtoType
>();
372 QualType Result
= FPT
->getReturnType();
373 if (Result
->isUndeducedType()) {
374 Result
= SubstAutoTypeDependent(Result
);
375 MethodType
= Context
.getFunctionType(Result
, FPT
->getParamTypes(),
376 FPT
->getExtProtoInfo());
380 // C++11 [expr.prim.lambda]p5:
381 // The closure type for a lambda-expression has a public inline function
382 // call operator (13.5.4) whose parameters and return type are described by
383 // the lambda-expression's parameter-declaration-clause and
384 // trailing-return-type respectively.
385 DeclarationName MethodName
386 = Context
.DeclarationNames
.getCXXOperatorName(OO_Call
);
387 DeclarationNameLoc MethodNameLoc
=
388 DeclarationNameLoc::makeCXXOperatorNameLoc(IntroducerRange
);
389 CXXMethodDecl
*Method
= CXXMethodDecl::Create(
390 Context
, Class
, EndLoc
,
391 DeclarationNameInfo(MethodName
, IntroducerRange
.getBegin(),
393 MethodType
, MethodTypeInfo
, SC_None
, getCurFPFeatures().isFPConstrained(),
394 /*isInline=*/true, ConstexprKind
, EndLoc
, TrailingRequiresClause
);
395 Method
->setAccess(AS_public
);
397 Class
->addDecl(Method
);
399 // Temporarily set the lexical declaration context to the current
400 // context, so that the Scope stack matches the lexical nesting.
401 Method
->setLexicalDeclContext(CurContext
);
402 // Create a function template if we have a template parameter list
403 FunctionTemplateDecl
*const TemplateMethod
= TemplateParams
?
404 FunctionTemplateDecl::Create(Context
, Class
,
405 Method
->getLocation(), MethodName
,
408 if (TemplateMethod
) {
409 TemplateMethod
->setAccess(AS_public
);
410 Method
->setDescribedFunctionTemplate(TemplateMethod
);
411 Class
->addDecl(TemplateMethod
);
412 TemplateMethod
->setLexicalDeclContext(CurContext
);
416 if (!Params
.empty()) {
417 Method
->setParams(Params
);
418 CheckParmsForFunctionDef(Params
,
419 /*CheckParameterNames=*/false);
421 for (auto *P
: Method
->parameters())
422 P
->setOwningFunction(Method
);
428 void Sema::handleLambdaNumbering(
429 CXXRecordDecl
*Class
, CXXMethodDecl
*Method
,
430 Optional
<std::tuple
<bool, unsigned, unsigned, Decl
*>> Mangling
) {
432 bool HasKnownInternalLinkage
;
433 unsigned ManglingNumber
, DeviceManglingNumber
;
434 Decl
*ManglingContextDecl
;
435 std::tie(HasKnownInternalLinkage
, ManglingNumber
, DeviceManglingNumber
,
436 ManglingContextDecl
) = *Mangling
;
437 Class
->setLambdaMangling(ManglingNumber
, ManglingContextDecl
,
438 HasKnownInternalLinkage
);
439 Class
->setDeviceLambdaManglingNumber(DeviceManglingNumber
);
443 auto getMangleNumberingContext
=
444 [this](CXXRecordDecl
*Class
,
445 Decl
*ManglingContextDecl
) -> MangleNumberingContext
* {
446 // Get mangle numbering context if there's any extra decl context.
447 if (ManglingContextDecl
)
448 return &Context
.getManglingNumberContext(
449 ASTContext::NeedExtraManglingDecl
, ManglingContextDecl
);
450 // Otherwise, from that lambda's decl context.
451 auto DC
= Class
->getDeclContext();
452 while (auto *CD
= dyn_cast
<CapturedDecl
>(DC
))
453 DC
= CD
->getParent();
454 return &Context
.getManglingNumberContext(DC
);
457 MangleNumberingContext
*MCtx
;
458 Decl
*ManglingContextDecl
;
459 std::tie(MCtx
, ManglingContextDecl
) =
460 getCurrentMangleNumberContext(Class
->getDeclContext());
461 bool HasKnownInternalLinkage
= false;
462 if (!MCtx
&& (getLangOpts().CUDA
|| getLangOpts().SYCLIsDevice
||
463 getLangOpts().SYCLIsHost
)) {
464 // Force lambda numbering in CUDA/HIP as we need to name lambdas following
465 // ODR. Both device- and host-compilation need to have a consistent naming
466 // on kernel functions. As lambdas are potential part of these `__global__`
467 // function names, they needs numbering following ODR.
468 // Also force for SYCL, since we need this for the
469 // __builtin_sycl_unique_stable_name implementation, which depends on lambda
471 MCtx
= getMangleNumberingContext(Class
, ManglingContextDecl
);
472 assert(MCtx
&& "Retrieving mangle numbering context failed!");
473 HasKnownInternalLinkage
= true;
476 unsigned ManglingNumber
= MCtx
->getManglingNumber(Method
);
477 Class
->setLambdaMangling(ManglingNumber
, ManglingContextDecl
,
478 HasKnownInternalLinkage
);
479 Class
->setDeviceLambdaManglingNumber(MCtx
->getDeviceManglingNumber(Method
));
483 void Sema::buildLambdaScope(LambdaScopeInfo
*LSI
,
484 CXXMethodDecl
*CallOperator
,
485 SourceRange IntroducerRange
,
486 LambdaCaptureDefault CaptureDefault
,
487 SourceLocation CaptureDefaultLoc
,
489 bool ExplicitResultType
,
491 LSI
->CallOperator
= CallOperator
;
492 CXXRecordDecl
*LambdaClass
= CallOperator
->getParent();
493 LSI
->Lambda
= LambdaClass
;
494 if (CaptureDefault
== LCD_ByCopy
)
495 LSI
->ImpCaptureStyle
= LambdaScopeInfo::ImpCap_LambdaByval
;
496 else if (CaptureDefault
== LCD_ByRef
)
497 LSI
->ImpCaptureStyle
= LambdaScopeInfo::ImpCap_LambdaByref
;
498 LSI
->CaptureDefaultLoc
= CaptureDefaultLoc
;
499 LSI
->IntroducerRange
= IntroducerRange
;
500 LSI
->ExplicitParams
= ExplicitParams
;
501 LSI
->Mutable
= Mutable
;
503 if (ExplicitResultType
) {
504 LSI
->ReturnType
= CallOperator
->getReturnType();
506 if (!LSI
->ReturnType
->isDependentType() &&
507 !LSI
->ReturnType
->isVoidType()) {
508 if (RequireCompleteType(CallOperator
->getBeginLoc(), LSI
->ReturnType
,
509 diag::err_lambda_incomplete_result
)) {
514 LSI
->HasImplicitReturnType
= true;
518 void Sema::finishLambdaExplicitCaptures(LambdaScopeInfo
*LSI
) {
519 LSI
->finishedExplicitCaptures();
522 void Sema::ActOnLambdaExplicitTemplateParameterList(SourceLocation LAngleLoc
,
523 ArrayRef
<NamedDecl
*> TParams
,
524 SourceLocation RAngleLoc
,
525 ExprResult RequiresClause
) {
526 LambdaScopeInfo
*LSI
= getCurLambda();
527 assert(LSI
&& "Expected a lambda scope");
528 assert(LSI
->NumExplicitTemplateParams
== 0 &&
529 "Already acted on explicit template parameters");
530 assert(LSI
->TemplateParams
.empty() &&
531 "Explicit template parameters should come "
532 "before invented (auto) ones");
533 assert(!TParams
.empty() &&
534 "No template parameters to act on");
535 LSI
->TemplateParams
.append(TParams
.begin(), TParams
.end());
536 LSI
->NumExplicitTemplateParams
= TParams
.size();
537 LSI
->ExplicitTemplateParamsRange
= {LAngleLoc
, RAngleLoc
};
538 LSI
->RequiresClause
= RequiresClause
;
541 void Sema::addLambdaParameters(
542 ArrayRef
<LambdaIntroducer::LambdaCapture
> Captures
,
543 CXXMethodDecl
*CallOperator
, Scope
*CurScope
) {
544 // Introduce our parameters into the function scope
545 for (unsigned p
= 0, NumParams
= CallOperator
->getNumParams();
546 p
< NumParams
; ++p
) {
547 ParmVarDecl
*Param
= CallOperator
->getParamDecl(p
);
549 // If this has an identifier, add it to the scope stack.
550 if (CurScope
&& Param
->getIdentifier()) {
552 // Resolution of CWG 2211 in C++17 renders shadowing ill-formed, but we
553 // retroactively apply it.
554 for (const auto &Capture
: Captures
) {
555 if (Capture
.Id
== Param
->getIdentifier()) {
557 Diag(Param
->getLocation(), diag::err_parameter_shadow_capture
);
558 Diag(Capture
.Loc
, diag::note_var_explicitly_captured_here
)
559 << Capture
.Id
<< true;
563 CheckShadow(CurScope
, Param
);
565 PushOnScopeChains(Param
, CurScope
);
570 /// If this expression is an enumerator-like expression of some type
571 /// T, return the type T; otherwise, return null.
573 /// Pointer comparisons on the result here should always work because
574 /// it's derived from either the parent of an EnumConstantDecl
575 /// (i.e. the definition) or the declaration returned by
576 /// EnumType::getDecl() (i.e. the definition).
577 static EnumDecl
*findEnumForBlockReturn(Expr
*E
) {
578 // An expression is an enumerator-like expression of type T if,
579 // ignoring parens and parens-like expressions:
580 E
= E
->IgnoreParens();
582 // - it is an enumerator whose enum type is T or
583 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
)) {
584 if (EnumConstantDecl
*D
585 = dyn_cast
<EnumConstantDecl
>(DRE
->getDecl())) {
586 return cast
<EnumDecl
>(D
->getDeclContext());
591 // - it is a comma expression whose RHS is an enumerator-like
592 // expression of type T or
593 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(E
)) {
594 if (BO
->getOpcode() == BO_Comma
)
595 return findEnumForBlockReturn(BO
->getRHS());
599 // - it is a statement-expression whose value expression is an
600 // enumerator-like expression of type T or
601 if (StmtExpr
*SE
= dyn_cast
<StmtExpr
>(E
)) {
602 if (Expr
*last
= dyn_cast_or_null
<Expr
>(SE
->getSubStmt()->body_back()))
603 return findEnumForBlockReturn(last
);
607 // - it is a ternary conditional operator (not the GNU ?:
608 // extension) whose second and third operands are
609 // enumerator-like expressions of type T or
610 if (ConditionalOperator
*CO
= dyn_cast
<ConditionalOperator
>(E
)) {
611 if (EnumDecl
*ED
= findEnumForBlockReturn(CO
->getTrueExpr()))
612 if (ED
== findEnumForBlockReturn(CO
->getFalseExpr()))
618 // - it is an implicit integral conversion applied to an
619 // enumerator-like expression of type T or
620 if (ImplicitCastExpr
*ICE
= dyn_cast
<ImplicitCastExpr
>(E
)) {
621 // We can sometimes see integral conversions in valid
622 // enumerator-like expressions.
623 if (ICE
->getCastKind() == CK_IntegralCast
)
624 return findEnumForBlockReturn(ICE
->getSubExpr());
626 // Otherwise, just rely on the type.
629 // - it is an expression of that formal enum type.
630 if (const EnumType
*ET
= E
->getType()->getAs
<EnumType
>()) {
631 return ET
->getDecl();
638 /// Attempt to find a type T for which the returned expression of the
639 /// given statement is an enumerator-like expression of that type.
640 static EnumDecl
*findEnumForBlockReturn(ReturnStmt
*ret
) {
641 if (Expr
*retValue
= ret
->getRetValue())
642 return findEnumForBlockReturn(retValue
);
646 /// Attempt to find a common type T for which all of the returned
647 /// expressions in a block are enumerator-like expressions of that
649 static EnumDecl
*findCommonEnumForBlockReturns(ArrayRef
<ReturnStmt
*> returns
) {
650 ArrayRef
<ReturnStmt
*>::iterator i
= returns
.begin(), e
= returns
.end();
652 // Try to find one for the first return.
653 EnumDecl
*ED
= findEnumForBlockReturn(*i
);
654 if (!ED
) return nullptr;
656 // Check that the rest of the returns have the same enum.
657 for (++i
; i
!= e
; ++i
) {
658 if (findEnumForBlockReturn(*i
) != ED
)
662 // Never infer an anonymous enum type.
663 if (!ED
->hasNameForLinkage()) return nullptr;
668 /// Adjust the given return statements so that they formally return
669 /// the given type. It should require, at most, an IntegralCast.
670 static void adjustBlockReturnsToEnum(Sema
&S
, ArrayRef
<ReturnStmt
*> returns
,
671 QualType returnType
) {
672 for (ArrayRef
<ReturnStmt
*>::iterator
673 i
= returns
.begin(), e
= returns
.end(); i
!= e
; ++i
) {
674 ReturnStmt
*ret
= *i
;
675 Expr
*retValue
= ret
->getRetValue();
676 if (S
.Context
.hasSameType(retValue
->getType(), returnType
))
679 // Right now we only support integral fixup casts.
680 assert(returnType
->isIntegralOrUnscopedEnumerationType());
681 assert(retValue
->getType()->isIntegralOrUnscopedEnumerationType());
683 ExprWithCleanups
*cleanups
= dyn_cast
<ExprWithCleanups
>(retValue
);
685 Expr
*E
= (cleanups
? cleanups
->getSubExpr() : retValue
);
686 E
= ImplicitCastExpr::Create(S
.Context
, returnType
, CK_IntegralCast
, E
,
687 /*base path*/ nullptr, VK_PRValue
,
688 FPOptionsOverride());
690 cleanups
->setSubExpr(E
);
697 void Sema::deduceClosureReturnType(CapturingScopeInfo
&CSI
) {
698 assert(CSI
.HasImplicitReturnType
);
699 // If it was ever a placeholder, it had to been deduced to DependentTy.
700 assert(CSI
.ReturnType
.isNull() || !CSI
.ReturnType
->isUndeducedType());
701 assert((!isa
<LambdaScopeInfo
>(CSI
) || !getLangOpts().CPlusPlus14
) &&
702 "lambda expressions use auto deduction in C++14 onwards");
704 // C++ core issue 975:
705 // If a lambda-expression does not include a trailing-return-type,
706 // it is as if the trailing-return-type denotes the following type:
707 // - if there are no return statements in the compound-statement,
708 // or all return statements return either an expression of type
709 // void or no expression or braced-init-list, the type void;
710 // - otherwise, if all return statements return an expression
711 // and the types of the returned expressions after
712 // lvalue-to-rvalue conversion (4.1 [conv.lval]),
713 // array-to-pointer conversion (4.2 [conv.array]), and
714 // function-to-pointer conversion (4.3 [conv.func]) are the
715 // same, that common type;
716 // - otherwise, the program is ill-formed.
718 // C++ core issue 1048 additionally removes top-level cv-qualifiers
719 // from the types of returned expressions to match the C++14 auto
722 // In addition, in blocks in non-C++ modes, if all of the return
723 // statements are enumerator-like expressions of some type T, where
724 // T has a name for linkage, then we infer the return type of the
725 // block to be that type.
727 // First case: no return statements, implicit void return type.
728 ASTContext
&Ctx
= getASTContext();
729 if (CSI
.Returns
.empty()) {
730 // It's possible there were simply no /valid/ return statements.
731 // In this case, the first one we found may have at least given us a type.
732 if (CSI
.ReturnType
.isNull())
733 CSI
.ReturnType
= Ctx
.VoidTy
;
737 // Second case: at least one return statement has dependent type.
738 // Delay type checking until instantiation.
739 assert(!CSI
.ReturnType
.isNull() && "We should have a tentative return type.");
740 if (CSI
.ReturnType
->isDependentType())
743 // Try to apply the enum-fuzz rule.
744 if (!getLangOpts().CPlusPlus
) {
745 assert(isa
<BlockScopeInfo
>(CSI
));
746 const EnumDecl
*ED
= findCommonEnumForBlockReturns(CSI
.Returns
);
748 CSI
.ReturnType
= Context
.getTypeDeclType(ED
);
749 adjustBlockReturnsToEnum(*this, CSI
.Returns
, CSI
.ReturnType
);
754 // Third case: only one return statement. Don't bother doing extra work!
755 if (CSI
.Returns
.size() == 1)
758 // General case: many return statements.
759 // Check that they all have compatible return types.
761 // We require the return types to strictly match here.
762 // Note that we've already done the required promotions as part of
763 // processing the return statement.
764 for (const ReturnStmt
*RS
: CSI
.Returns
) {
765 const Expr
*RetE
= RS
->getRetValue();
767 QualType ReturnType
=
768 (RetE
? RetE
->getType() : Context
.VoidTy
).getUnqualifiedType();
769 if (Context
.getCanonicalFunctionResultType(ReturnType
) ==
770 Context
.getCanonicalFunctionResultType(CSI
.ReturnType
)) {
771 // Use the return type with the strictest possible nullability annotation.
772 auto RetTyNullability
= ReturnType
->getNullability(Ctx
);
773 auto BlockNullability
= CSI
.ReturnType
->getNullability(Ctx
);
774 if (BlockNullability
&&
775 (!RetTyNullability
||
776 hasWeakerNullability(*RetTyNullability
, *BlockNullability
)))
777 CSI
.ReturnType
= ReturnType
;
781 // FIXME: This is a poor diagnostic for ReturnStmts without expressions.
782 // TODO: It's possible that the *first* return is the divergent one.
783 Diag(RS
->getBeginLoc(),
784 diag::err_typecheck_missing_return_type_incompatible
)
785 << ReturnType
<< CSI
.ReturnType
<< isa
<LambdaScopeInfo
>(CSI
);
786 // Continue iterating so that we keep emitting diagnostics.
790 QualType
Sema::buildLambdaInitCaptureInitialization(
791 SourceLocation Loc
, bool ByRef
, SourceLocation EllipsisLoc
,
792 Optional
<unsigned> NumExpansions
, IdentifierInfo
*Id
, bool IsDirectInit
,
794 // Create an 'auto' or 'auto&' TypeSourceInfo that we can use to
796 QualType DeductType
= Context
.getAutoDeductType();
798 AutoTypeLoc TL
= TLB
.push
<AutoTypeLoc
>(DeductType
);
801 DeductType
= BuildReferenceType(DeductType
, true, Loc
, Id
);
802 assert(!DeductType
.isNull() && "can't build reference to auto");
803 TLB
.push
<ReferenceTypeLoc
>(DeductType
).setSigilLoc(Loc
);
805 if (EllipsisLoc
.isValid()) {
806 if (Init
->containsUnexpandedParameterPack()) {
807 Diag(EllipsisLoc
, getLangOpts().CPlusPlus20
808 ? diag::warn_cxx17_compat_init_capture_pack
809 : diag::ext_init_capture_pack
);
810 DeductType
= Context
.getPackExpansionType(DeductType
, NumExpansions
,
811 /*ExpectPackInType=*/false);
812 TLB
.push
<PackExpansionTypeLoc
>(DeductType
).setEllipsisLoc(EllipsisLoc
);
814 // Just ignore the ellipsis for now and form a non-pack variable. We'll
815 // diagnose this later when we try to capture it.
818 TypeSourceInfo
*TSI
= TLB
.getTypeSourceInfo(Context
, DeductType
);
820 // Deduce the type of the init capture.
821 QualType DeducedType
= deduceVarTypeFromInitializer(
822 /*VarDecl*/nullptr, DeclarationName(Id
), DeductType
, TSI
,
823 SourceRange(Loc
, Loc
), IsDirectInit
, Init
);
824 if (DeducedType
.isNull())
827 // Are we a non-list direct initialization?
828 ParenListExpr
*CXXDirectInit
= dyn_cast
<ParenListExpr
>(Init
);
830 // Perform initialization analysis and ensure any implicit conversions
831 // (such as lvalue-to-rvalue) are enforced.
832 InitializedEntity Entity
=
833 InitializedEntity::InitializeLambdaCapture(Id
, DeducedType
, Loc
);
834 InitializationKind Kind
=
836 ? (CXXDirectInit
? InitializationKind::CreateDirect(
837 Loc
, Init
->getBeginLoc(), Init
->getEndLoc())
838 : InitializationKind::CreateDirectList(Loc
))
839 : InitializationKind::CreateCopy(Loc
, Init
->getBeginLoc());
841 MultiExprArg Args
= Init
;
844 MultiExprArg(CXXDirectInit
->getExprs(), CXXDirectInit
->getNumExprs());
846 InitializationSequence
InitSeq(*this, Entity
, Kind
, Args
);
847 ExprResult Result
= InitSeq
.Perform(*this, Entity
, Kind
, Args
, &DclT
);
849 if (Result
.isInvalid())
852 Init
= Result
.getAs
<Expr
>();
856 VarDecl
*Sema::createLambdaInitCaptureVarDecl(SourceLocation Loc
,
857 QualType InitCaptureType
,
858 SourceLocation EllipsisLoc
,
860 unsigned InitStyle
, Expr
*Init
) {
861 // FIXME: Retain the TypeSourceInfo from buildLambdaInitCaptureInitialization
862 // rather than reconstructing it here.
863 TypeSourceInfo
*TSI
= Context
.getTrivialTypeSourceInfo(InitCaptureType
, Loc
);
864 if (auto PETL
= TSI
->getTypeLoc().getAs
<PackExpansionTypeLoc
>())
865 PETL
.setEllipsisLoc(EllipsisLoc
);
867 // Create a dummy variable representing the init-capture. This is not actually
868 // used as a variable, and only exists as a way to name and refer to the
870 // FIXME: Pass in separate source locations for '&' and identifier.
871 VarDecl
*NewVD
= VarDecl::Create(Context
, CurContext
, Loc
,
872 Loc
, Id
, InitCaptureType
, TSI
, SC_Auto
);
873 NewVD
->setInitCapture(true);
874 NewVD
->setReferenced(true);
875 // FIXME: Pass in a VarDecl::InitializationStyle.
876 NewVD
->setInitStyle(static_cast<VarDecl::InitializationStyle
>(InitStyle
));
877 NewVD
->markUsed(Context
);
878 NewVD
->setInit(Init
);
879 if (NewVD
->isParameterPack())
880 getCurLambda()->LocalPacks
.push_back(NewVD
);
884 void Sema::addInitCapture(LambdaScopeInfo
*LSI
, VarDecl
*Var
) {
885 assert(Var
->isInitCapture() && "init capture flag should be set");
886 LSI
->addCapture(Var
, /*isBlock*/false, Var
->getType()->isReferenceType(),
887 /*isNested*/false, Var
->getLocation(), SourceLocation(),
888 Var
->getType(), /*Invalid*/false);
891 void Sema::ActOnStartOfLambdaDefinition(LambdaIntroducer
&Intro
,
892 Declarator
&ParamInfo
,
894 LambdaScopeInfo
*const LSI
= getCurLambda();
895 assert(LSI
&& "LambdaScopeInfo should be on stack!");
897 // Determine if we're within a context where we know that the lambda will
898 // be dependent, because there are template parameters in scope.
899 CXXRecordDecl::LambdaDependencyKind LambdaDependencyKind
=
900 CXXRecordDecl::LDK_Unknown
;
901 if (LSI
->NumExplicitTemplateParams
> 0) {
902 auto *TemplateParamScope
= CurScope
->getTemplateParamParent();
903 assert(TemplateParamScope
&&
904 "Lambda with explicit template param list should establish a "
905 "template param scope");
906 assert(TemplateParamScope
->getParent());
907 if (TemplateParamScope
->getParent()->getTemplateParamParent() != nullptr)
908 LambdaDependencyKind
= CXXRecordDecl::LDK_AlwaysDependent
;
909 } else if (CurScope
->getTemplateParamParent() != nullptr) {
910 LambdaDependencyKind
= CXXRecordDecl::LDK_AlwaysDependent
;
913 // Determine the signature of the call operator.
914 TypeSourceInfo
*MethodTyInfo
;
915 bool ExplicitParams
= true;
916 bool ExplicitResultType
= true;
917 bool ContainsUnexpandedParameterPack
= false;
918 SourceLocation EndLoc
;
919 SmallVector
<ParmVarDecl
*, 8> Params
;
920 if (ParamInfo
.getNumTypeObjects() == 0) {
921 // C++11 [expr.prim.lambda]p4:
922 // If a lambda-expression does not include a lambda-declarator, it is as
923 // if the lambda-declarator were ().
924 FunctionProtoType::ExtProtoInfo
EPI(Context
.getDefaultCallingConvention(
925 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
926 EPI
.HasTrailingReturn
= true;
927 EPI
.TypeQuals
.addConst();
928 LangAS AS
= getDefaultCXXMethodAddrSpace();
929 if (AS
!= LangAS::Default
)
930 EPI
.TypeQuals
.addAddressSpace(AS
);
932 // C++1y [expr.prim.lambda]:
933 // The lambda return type is 'auto', which is replaced by the
934 // trailing-return type if provided and/or deduced from 'return'
936 // We don't do this before C++1y, because we don't support deduced return
938 QualType DefaultTypeForNoTrailingReturn
=
939 getLangOpts().CPlusPlus14
? Context
.getAutoDeductType()
940 : Context
.DependentTy
;
942 Context
.getFunctionType(DefaultTypeForNoTrailingReturn
, None
, EPI
);
943 MethodTyInfo
= Context
.getTrivialTypeSourceInfo(MethodTy
);
944 ExplicitParams
= false;
945 ExplicitResultType
= false;
946 EndLoc
= Intro
.Range
.getEnd();
948 assert(ParamInfo
.isFunctionDeclarator() &&
949 "lambda-declarator is a function");
950 DeclaratorChunk::FunctionTypeInfo
&FTI
= ParamInfo
.getFunctionTypeInfo();
952 // C++11 [expr.prim.lambda]p5:
953 // This function call operator is declared const (9.3.1) if and only if
954 // the lambda-expression's parameter-declaration-clause is not followed
955 // by mutable. It is neither virtual nor declared volatile. [...]
956 if (!FTI
.hasMutableQualifier()) {
957 FTI
.getOrCreateMethodQualifiers().SetTypeQual(DeclSpec::TQ_const
,
961 MethodTyInfo
= GetTypeForDeclarator(ParamInfo
, CurScope
);
962 assert(MethodTyInfo
&& "no type from lambda-declarator");
963 EndLoc
= ParamInfo
.getSourceRange().getEnd();
965 ExplicitResultType
= FTI
.hasTrailingReturnType();
967 if (FTIHasNonVoidParameters(FTI
)) {
968 Params
.reserve(FTI
.NumParams
);
969 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
)
970 Params
.push_back(cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
));
973 // Check for unexpanded parameter packs in the method type.
974 if (MethodTyInfo
->getType()->containsUnexpandedParameterPack())
975 DiagnoseUnexpandedParameterPack(Intro
.Range
.getBegin(), MethodTyInfo
,
976 UPPC_DeclarationType
);
979 CXXRecordDecl
*Class
= createLambdaClosureType(
980 Intro
.Range
, MethodTyInfo
, LambdaDependencyKind
, Intro
.Default
);
981 CXXMethodDecl
*Method
=
982 startLambdaDefinition(Class
, Intro
.Range
, MethodTyInfo
, EndLoc
, Params
,
983 ParamInfo
.getDeclSpec().getConstexprSpecifier(),
984 ParamInfo
.getTrailingRequiresClause());
986 CheckCXXDefaultArguments(Method
);
988 // This represents the function body for the lambda function, check if we
989 // have to apply optnone due to a pragma.
990 AddRangeBasedOptnone(Method
);
992 // code_seg attribute on lambda apply to the method.
993 if (Attr
*A
= getImplicitCodeSegOrSectionAttrForFunction(Method
, /*IsDefinition=*/true))
996 // Attributes on the lambda apply to the method.
997 ProcessDeclAttributes(CurScope
, Method
, ParamInfo
);
999 // CUDA lambdas get implicit host and device attributes.
1000 if (getLangOpts().CUDA
)
1001 CUDASetLambdaAttrs(Method
);
1003 // OpenMP lambdas might get assumumption attributes.
1004 if (LangOpts
.OpenMP
)
1005 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(Method
);
1007 // Number the lambda for linkage purposes if necessary.
1008 handleLambdaNumbering(Class
, Method
);
1010 // Introduce the function call operator as the current declaration context.
1011 PushDeclContext(CurScope
, Method
);
1013 // Build the lambda scope.
1014 buildLambdaScope(LSI
, Method
, Intro
.Range
, Intro
.Default
, Intro
.DefaultLoc
,
1015 ExplicitParams
, ExplicitResultType
, !Method
->isConst());
1017 // C++11 [expr.prim.lambda]p9:
1018 // A lambda-expression whose smallest enclosing scope is a block scope is a
1019 // local lambda expression; any other lambda expression shall not have a
1020 // capture-default or simple-capture in its lambda-introducer.
1022 // For simple-captures, this is covered by the check below that any named
1023 // entity is a variable that can be captured.
1025 // For DR1632, we also allow a capture-default in any context where we can
1026 // odr-use 'this' (in particular, in a default initializer for a non-static
1028 if (Intro
.Default
!= LCD_None
&& !Class
->getParent()->isFunctionOrMethod() &&
1029 (getCurrentThisType().isNull() ||
1030 CheckCXXThisCapture(SourceLocation(), /*Explicit*/true,
1031 /*BuildAndDiagnose*/false)))
1032 Diag(Intro
.DefaultLoc
, diag::err_capture_default_non_local
);
1034 // Distinct capture names, for diagnostics.
1035 llvm::SmallSet
<IdentifierInfo
*, 8> CaptureNames
;
1037 // Handle explicit captures.
1038 SourceLocation PrevCaptureLoc
1039 = Intro
.Default
== LCD_None
? Intro
.Range
.getBegin() : Intro
.DefaultLoc
;
1040 for (auto C
= Intro
.Captures
.begin(), E
= Intro
.Captures
.end(); C
!= E
;
1041 PrevCaptureLoc
= C
->Loc
, ++C
) {
1042 if (C
->Kind
== LCK_This
|| C
->Kind
== LCK_StarThis
) {
1043 if (C
->Kind
== LCK_StarThis
)
1044 Diag(C
->Loc
, !getLangOpts().CPlusPlus17
1045 ? diag::ext_star_this_lambda_capture_cxx17
1046 : diag::warn_cxx14_compat_star_this_lambda_capture
);
1048 // C++11 [expr.prim.lambda]p8:
1049 // An identifier or this shall not appear more than once in a
1051 if (LSI
->isCXXThisCaptured()) {
1052 Diag(C
->Loc
, diag::err_capture_more_than_once
)
1053 << "'this'" << SourceRange(LSI
->getCXXThisCapture().getLocation())
1054 << FixItHint::CreateRemoval(
1055 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1059 // C++2a [expr.prim.lambda]p8:
1060 // If a lambda-capture includes a capture-default that is =,
1061 // each simple-capture of that lambda-capture shall be of the form
1062 // "&identifier", "this", or "* this". [ Note: The form [&,this] is
1063 // redundant but accepted for compatibility with ISO C++14. --end note ]
1064 if (Intro
.Default
== LCD_ByCopy
&& C
->Kind
!= LCK_StarThis
)
1065 Diag(C
->Loc
, !getLangOpts().CPlusPlus20
1066 ? diag::ext_equals_this_lambda_capture_cxx20
1067 : diag::warn_cxx17_compat_equals_this_lambda_capture
);
1069 // C++11 [expr.prim.lambda]p12:
1070 // If this is captured by a local lambda expression, its nearest
1071 // enclosing function shall be a non-static member function.
1072 QualType ThisCaptureType
= getCurrentThisType();
1073 if (ThisCaptureType
.isNull()) {
1074 Diag(C
->Loc
, diag::err_this_capture
) << true;
1078 CheckCXXThisCapture(C
->Loc
, /*Explicit=*/true, /*BuildAndDiagnose*/ true,
1079 /*FunctionScopeIndexToStopAtPtr*/ nullptr,
1080 C
->Kind
== LCK_StarThis
);
1081 if (!LSI
->Captures
.empty())
1082 LSI
->ExplicitCaptureRanges
[LSI
->Captures
.size() - 1] = C
->ExplicitRange
;
1086 assert(C
->Id
&& "missing identifier for capture");
1088 if (C
->Init
.isInvalid())
1091 ValueDecl
*Var
= nullptr;
1092 if (C
->Init
.isUsable()) {
1093 Diag(C
->Loc
, getLangOpts().CPlusPlus14
1094 ? diag::warn_cxx11_compat_init_capture
1095 : diag::ext_init_capture
);
1097 // If the initializer expression is usable, but the InitCaptureType
1098 // is not, then an error has occurred - so ignore the capture for now.
1099 // for e.g., [n{0}] { }; <-- if no <initializer_list> is included.
1100 // FIXME: we should create the init capture variable and mark it invalid
1102 if (C
->InitCaptureType
.get().isNull())
1105 if (C
->Init
.get()->containsUnexpandedParameterPack() &&
1106 !C
->InitCaptureType
.get()->getAs
<PackExpansionType
>())
1107 DiagnoseUnexpandedParameterPack(C
->Init
.get(), UPPC_Initializer
);
1110 switch (C
->InitKind
) {
1111 case LambdaCaptureInitKind::NoInit
:
1112 llvm_unreachable("not an init-capture?");
1113 case LambdaCaptureInitKind::CopyInit
:
1114 InitStyle
= VarDecl::CInit
;
1116 case LambdaCaptureInitKind::DirectInit
:
1117 InitStyle
= VarDecl::CallInit
;
1119 case LambdaCaptureInitKind::ListInit
:
1120 InitStyle
= VarDecl::ListInit
;
1123 Var
= createLambdaInitCaptureVarDecl(C
->Loc
, C
->InitCaptureType
.get(),
1124 C
->EllipsisLoc
, C
->Id
, InitStyle
,
1126 // C++1y [expr.prim.lambda]p11:
1127 // An init-capture behaves as if it declares and explicitly
1128 // captures a variable [...] whose declarative region is the
1129 // lambda-expression's compound-statement
1131 PushOnScopeChains(Var
, CurScope
, false);
1133 assert(C
->InitKind
== LambdaCaptureInitKind::NoInit
&&
1134 "init capture has valid but null init?");
1136 // C++11 [expr.prim.lambda]p8:
1137 // If a lambda-capture includes a capture-default that is &, the
1138 // identifiers in the lambda-capture shall not be preceded by &.
1139 // If a lambda-capture includes a capture-default that is =, [...]
1140 // each identifier it contains shall be preceded by &.
1141 if (C
->Kind
== LCK_ByRef
&& Intro
.Default
== LCD_ByRef
) {
1142 Diag(C
->Loc
, diag::err_reference_capture_with_reference_default
)
1143 << FixItHint::CreateRemoval(
1144 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1146 } else if (C
->Kind
== LCK_ByCopy
&& Intro
.Default
== LCD_ByCopy
) {
1147 Diag(C
->Loc
, diag::err_copy_capture_with_copy_default
)
1148 << FixItHint::CreateRemoval(
1149 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1153 // C++11 [expr.prim.lambda]p10:
1154 // The identifiers in a capture-list are looked up using the usual
1155 // rules for unqualified name lookup (3.4.1)
1156 DeclarationNameInfo
Name(C
->Id
, C
->Loc
);
1157 LookupResult
R(*this, Name
, LookupOrdinaryName
);
1158 LookupName(R
, CurScope
);
1159 if (R
.isAmbiguous())
1162 // FIXME: Disable corrections that would add qualification?
1163 CXXScopeSpec ScopeSpec
;
1164 DeclFilterCCC
<VarDecl
> Validator
{};
1165 if (DiagnoseEmptyLookup(CurScope
, ScopeSpec
, R
, Validator
))
1169 if (auto *BD
= R
.getAsSingle
<BindingDecl
>())
1172 Var
= R
.getAsSingle
<VarDecl
>();
1173 if (Var
&& DiagnoseUseOfDecl(Var
, C
->Loc
))
1177 // C++11 [expr.prim.lambda]p8:
1178 // An identifier or this shall not appear more than once in a
1180 if (!CaptureNames
.insert(C
->Id
).second
) {
1181 if (Var
&& LSI
->isCaptured(Var
)) {
1182 Diag(C
->Loc
, diag::err_capture_more_than_once
)
1183 << C
->Id
<< SourceRange(LSI
->getCapture(Var
).getLocation())
1184 << FixItHint::CreateRemoval(
1185 SourceRange(getLocForEndOfToken(PrevCaptureLoc
), C
->Loc
));
1187 // Previous capture captured something different (one or both was
1188 // an init-cpature): no fixit.
1189 Diag(C
->Loc
, diag::err_capture_more_than_once
) << C
->Id
;
1193 // C++11 [expr.prim.lambda]p10:
1194 // [...] each such lookup shall find a variable with automatic storage
1195 // duration declared in the reaching scope of the local lambda expression.
1196 // Note that the 'reaching scope' check happens in tryCaptureVariable().
1198 Diag(C
->Loc
, diag::err_capture_does_not_name_variable
) << C
->Id
;
1202 // Ignore invalid decls; they'll just confuse the code later.
1203 if (Var
->isInvalidDecl())
1206 VarDecl
*Underlying
;
1207 if (auto *BD
= dyn_cast
<BindingDecl
>(Var
))
1208 Underlying
= dyn_cast
<VarDecl
>(BD
->getDecomposedDecl());
1210 Underlying
= cast
<VarDecl
>(Var
);
1212 if (!Underlying
->hasLocalStorage()) {
1213 Diag(C
->Loc
, diag::err_capture_non_automatic_variable
) << C
->Id
;
1214 Diag(Var
->getLocation(), diag::note_previous_decl
) << C
->Id
;
1218 // C++11 [expr.prim.lambda]p23:
1219 // A capture followed by an ellipsis is a pack expansion (14.5.3).
1220 SourceLocation EllipsisLoc
;
1221 if (C
->EllipsisLoc
.isValid()) {
1222 if (Var
->isParameterPack()) {
1223 EllipsisLoc
= C
->EllipsisLoc
;
1225 Diag(C
->EllipsisLoc
, diag::err_pack_expansion_without_parameter_packs
)
1226 << (C
->Init
.isUsable() ? C
->Init
.get()->getSourceRange()
1227 : SourceRange(C
->Loc
));
1229 // Just ignore the ellipsis.
1231 } else if (Var
->isParameterPack()) {
1232 ContainsUnexpandedParameterPack
= true;
1235 if (C
->Init
.isUsable()) {
1236 addInitCapture(LSI
, cast
<VarDecl
>(Var
));
1238 TryCaptureKind Kind
= C
->Kind
== LCK_ByRef
? TryCapture_ExplicitByRef
:
1239 TryCapture_ExplicitByVal
;
1240 tryCaptureVariable(Var
, C
->Loc
, Kind
, EllipsisLoc
);
1242 if (!LSI
->Captures
.empty())
1243 LSI
->ExplicitCaptureRanges
[LSI
->Captures
.size() - 1] = C
->ExplicitRange
;
1245 finishLambdaExplicitCaptures(LSI
);
1247 LSI
->ContainsUnexpandedParameterPack
|= ContainsUnexpandedParameterPack
;
1249 // Add lambda parameters into scope.
1250 addLambdaParameters(Intro
.Captures
, Method
, CurScope
);
1252 // Enter a new evaluation context to insulate the lambda from any
1253 // cleanups from the enclosing full-expression.
1254 PushExpressionEvaluationContext(
1255 LSI
->CallOperator
->isConsteval()
1256 ? ExpressionEvaluationContext::ImmediateFunctionContext
1257 : ExpressionEvaluationContext::PotentiallyEvaluated
);
1260 void Sema::ActOnLambdaError(SourceLocation StartLoc
, Scope
*CurScope
,
1261 bool IsInstantiation
) {
1262 LambdaScopeInfo
*LSI
= cast
<LambdaScopeInfo
>(FunctionScopes
.back());
1264 // Leave the expression-evaluation context.
1265 DiscardCleanupsInEvaluationContext();
1266 PopExpressionEvaluationContext();
1268 // Leave the context of the lambda.
1269 if (!IsInstantiation
)
1272 // Finalize the lambda.
1273 CXXRecordDecl
*Class
= LSI
->Lambda
;
1274 Class
->setInvalidDecl();
1275 SmallVector
<Decl
*, 4> Fields(Class
->fields());
1276 ActOnFields(nullptr, Class
->getLocation(), Class
, Fields
, SourceLocation(),
1277 SourceLocation(), ParsedAttributesView());
1278 CheckCompletedCXXClass(nullptr, Class
);
1280 PopFunctionScopeInfo();
1283 template <typename Func
>
1284 static void repeatForLambdaConversionFunctionCallingConvs(
1285 Sema
&S
, const FunctionProtoType
&CallOpProto
, Func F
) {
1286 CallingConv DefaultFree
= S
.Context
.getDefaultCallingConvention(
1287 CallOpProto
.isVariadic(), /*IsCXXMethod=*/false);
1288 CallingConv DefaultMember
= S
.Context
.getDefaultCallingConvention(
1289 CallOpProto
.isVariadic(), /*IsCXXMethod=*/true);
1290 CallingConv CallOpCC
= CallOpProto
.getCallConv();
1292 /// Implement emitting a version of the operator for many of the calling
1293 /// conventions for MSVC, as described here:
1294 /// https://devblogs.microsoft.com/oldnewthing/20150220-00/?p=44623.
1295 /// Experimentally, we determined that cdecl, stdcall, fastcall, and
1296 /// vectorcall are generated by MSVC when it is supported by the target.
1297 /// Additionally, we are ensuring that the default-free/default-member and
1298 /// call-operator calling convention are generated as well.
1299 /// NOTE: We intentionally generate a 'thiscall' on Win32 implicitly from the
1300 /// 'member default', despite MSVC not doing so. We do this in order to ensure
1301 /// that someone who intentionally places 'thiscall' on the lambda call
1302 /// operator will still get that overload, since we don't have the a way of
1303 /// detecting the attribute by the time we get here.
1304 if (S
.getLangOpts().MSVCCompat
) {
1305 CallingConv Convs
[] = {
1306 CC_C
, CC_X86StdCall
, CC_X86FastCall
, CC_X86VectorCall
,
1307 DefaultFree
, DefaultMember
, CallOpCC
};
1309 llvm::iterator_range
<CallingConv
*> Range(
1310 std::begin(Convs
), std::unique(std::begin(Convs
), std::end(Convs
)));
1311 const TargetInfo
&TI
= S
.getASTContext().getTargetInfo();
1313 for (CallingConv C
: Range
) {
1314 if (TI
.checkCallingConvention(C
) == TargetInfo::CCCR_OK
)
1320 if (CallOpCC
== DefaultMember
&& DefaultMember
!= DefaultFree
) {
1328 // Returns the 'standard' calling convention to be used for the lambda
1329 // conversion function, that is, the 'free' function calling convention unless
1330 // it is overridden by a non-default calling convention attribute.
1332 getLambdaConversionFunctionCallConv(Sema
&S
,
1333 const FunctionProtoType
*CallOpProto
) {
1334 CallingConv DefaultFree
= S
.Context
.getDefaultCallingConvention(
1335 CallOpProto
->isVariadic(), /*IsCXXMethod=*/false);
1336 CallingConv DefaultMember
= S
.Context
.getDefaultCallingConvention(
1337 CallOpProto
->isVariadic(), /*IsCXXMethod=*/true);
1338 CallingConv CallOpCC
= CallOpProto
->getCallConv();
1340 // If the call-operator hasn't been changed, return both the 'free' and
1341 // 'member' function calling convention.
1342 if (CallOpCC
== DefaultMember
&& DefaultMember
!= DefaultFree
)
1347 QualType
Sema::getLambdaConversionFunctionResultType(
1348 const FunctionProtoType
*CallOpProto
, CallingConv CC
) {
1349 const FunctionProtoType::ExtProtoInfo CallOpExtInfo
=
1350 CallOpProto
->getExtProtoInfo();
1351 FunctionProtoType::ExtProtoInfo InvokerExtInfo
= CallOpExtInfo
;
1352 InvokerExtInfo
.ExtInfo
= InvokerExtInfo
.ExtInfo
.withCallingConv(CC
);
1353 InvokerExtInfo
.TypeQuals
= Qualifiers();
1354 assert(InvokerExtInfo
.RefQualifier
== RQ_None
&&
1355 "Lambda's call operator should not have a reference qualifier");
1356 return Context
.getFunctionType(CallOpProto
->getReturnType(),
1357 CallOpProto
->getParamTypes(), InvokerExtInfo
);
1360 /// Add a lambda's conversion to function pointer, as described in
1361 /// C++11 [expr.prim.lambda]p6.
1362 static void addFunctionPointerConversion(Sema
&S
, SourceRange IntroducerRange
,
1363 CXXRecordDecl
*Class
,
1364 CXXMethodDecl
*CallOperator
,
1365 QualType InvokerFunctionTy
) {
1366 // This conversion is explicitly disabled if the lambda's function has
1367 // pass_object_size attributes on any of its parameters.
1368 auto HasPassObjectSizeAttr
= [](const ParmVarDecl
*P
) {
1369 return P
->hasAttr
<PassObjectSizeAttr
>();
1371 if (llvm::any_of(CallOperator
->parameters(), HasPassObjectSizeAttr
))
1374 // Add the conversion to function pointer.
1375 QualType PtrToFunctionTy
= S
.Context
.getPointerType(InvokerFunctionTy
);
1377 // Create the type of the conversion function.
1378 FunctionProtoType::ExtProtoInfo
ConvExtInfo(
1379 S
.Context
.getDefaultCallingConvention(
1380 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1381 // The conversion function is always const and noexcept.
1382 ConvExtInfo
.TypeQuals
= Qualifiers();
1383 ConvExtInfo
.TypeQuals
.addConst();
1384 ConvExtInfo
.ExceptionSpec
.Type
= EST_BasicNoexcept
;
1386 S
.Context
.getFunctionType(PtrToFunctionTy
, None
, ConvExtInfo
);
1388 SourceLocation Loc
= IntroducerRange
.getBegin();
1389 DeclarationName ConversionName
1390 = S
.Context
.DeclarationNames
.getCXXConversionFunctionName(
1391 S
.Context
.getCanonicalType(PtrToFunctionTy
));
1392 // Construct a TypeSourceInfo for the conversion function, and wire
1393 // all the parameters appropriately for the FunctionProtoTypeLoc
1394 // so that everything works during transformation/instantiation of
1396 // The main reason for wiring up the parameters of the conversion
1397 // function with that of the call operator is so that constructs
1398 // like the following work:
1399 // auto L = [](auto b) { <-- 1
1400 // return [](auto a) -> decltype(a) { <-- 2
1404 // int (*fp)(int) = L(5);
1405 // Because the trailing return type can contain DeclRefExprs that refer
1406 // to the original call operator's variables, we hijack the call
1407 // operators ParmVarDecls below.
1408 TypeSourceInfo
*ConvNamePtrToFunctionTSI
=
1409 S
.Context
.getTrivialTypeSourceInfo(PtrToFunctionTy
, Loc
);
1410 DeclarationNameLoc ConvNameLoc
=
1411 DeclarationNameLoc::makeNamedTypeLoc(ConvNamePtrToFunctionTSI
);
1413 // The conversion function is a conversion to a pointer-to-function.
1414 TypeSourceInfo
*ConvTSI
= S
.Context
.getTrivialTypeSourceInfo(ConvTy
, Loc
);
1415 FunctionProtoTypeLoc ConvTL
=
1416 ConvTSI
->getTypeLoc().getAs
<FunctionProtoTypeLoc
>();
1417 // Get the result of the conversion function which is a pointer-to-function.
1418 PointerTypeLoc PtrToFunctionTL
=
1419 ConvTL
.getReturnLoc().getAs
<PointerTypeLoc
>();
1420 // Do the same for the TypeSourceInfo that is used to name the conversion
1422 PointerTypeLoc ConvNamePtrToFunctionTL
=
1423 ConvNamePtrToFunctionTSI
->getTypeLoc().getAs
<PointerTypeLoc
>();
1425 // Get the underlying function types that the conversion function will
1426 // be converting to (should match the type of the call operator).
1427 FunctionProtoTypeLoc CallOpConvTL
=
1428 PtrToFunctionTL
.getPointeeLoc().getAs
<FunctionProtoTypeLoc
>();
1429 FunctionProtoTypeLoc CallOpConvNameTL
=
1430 ConvNamePtrToFunctionTL
.getPointeeLoc().getAs
<FunctionProtoTypeLoc
>();
1432 // Wire up the FunctionProtoTypeLocs with the call operator's parameters.
1433 // These parameter's are essentially used to transform the name and
1434 // the type of the conversion operator. By using the same parameters
1435 // as the call operator's we don't have to fix any back references that
1436 // the trailing return type of the call operator's uses (such as
1437 // decltype(some_type<decltype(a)>::type{} + decltype(a){}) etc.)
1438 // - we can simply use the return type of the call operator, and
1439 // everything should work.
1440 SmallVector
<ParmVarDecl
*, 4> InvokerParams
;
1441 for (unsigned I
= 0, N
= CallOperator
->getNumParams(); I
!= N
; ++I
) {
1442 ParmVarDecl
*From
= CallOperator
->getParamDecl(I
);
1444 InvokerParams
.push_back(ParmVarDecl::Create(
1446 // Temporarily add to the TU. This is set to the invoker below.
1447 S
.Context
.getTranslationUnitDecl(), From
->getBeginLoc(),
1448 From
->getLocation(), From
->getIdentifier(), From
->getType(),
1449 From
->getTypeSourceInfo(), From
->getStorageClass(),
1450 /*DefArg=*/nullptr));
1451 CallOpConvTL
.setParam(I
, From
);
1452 CallOpConvNameTL
.setParam(I
, From
);
1455 CXXConversionDecl
*Conversion
= CXXConversionDecl::Create(
1456 S
.Context
, Class
, Loc
,
1457 DeclarationNameInfo(ConversionName
, Loc
, ConvNameLoc
), ConvTy
, ConvTSI
,
1458 S
.getCurFPFeatures().isFPConstrained(),
1459 /*isInline=*/true, ExplicitSpecifier(),
1460 S
.getLangOpts().CPlusPlus17
? ConstexprSpecKind::Constexpr
1461 : ConstexprSpecKind::Unspecified
,
1462 CallOperator
->getBody()->getEndLoc());
1463 Conversion
->setAccess(AS_public
);
1464 Conversion
->setImplicit(true);
1466 if (Class
->isGenericLambda()) {
1467 // Create a template version of the conversion operator, using the template
1468 // parameter list of the function call operator.
1469 FunctionTemplateDecl
*TemplateCallOperator
=
1470 CallOperator
->getDescribedFunctionTemplate();
1471 FunctionTemplateDecl
*ConversionTemplate
=
1472 FunctionTemplateDecl::Create(S
.Context
, Class
,
1473 Loc
, ConversionName
,
1474 TemplateCallOperator
->getTemplateParameters(),
1476 ConversionTemplate
->setAccess(AS_public
);
1477 ConversionTemplate
->setImplicit(true);
1478 Conversion
->setDescribedFunctionTemplate(ConversionTemplate
);
1479 Class
->addDecl(ConversionTemplate
);
1481 Class
->addDecl(Conversion
);
1482 // Add a non-static member function that will be the result of
1483 // the conversion with a certain unique ID.
1484 DeclarationName InvokerName
= &S
.Context
.Idents
.get(
1485 getLambdaStaticInvokerName());
1486 // FIXME: Instead of passing in the CallOperator->getTypeSourceInfo()
1487 // we should get a prebuilt TrivialTypeSourceInfo from Context
1488 // using FunctionTy & Loc and get its TypeLoc as a FunctionProtoTypeLoc
1489 // then rewire the parameters accordingly, by hoisting up the InvokeParams
1490 // loop below and then use its Params to set Invoke->setParams(...) below.
1491 // This would avoid the 'const' qualifier of the calloperator from
1492 // contaminating the type of the invoker, which is currently adjusted
1493 // in SemaTemplateDeduction.cpp:DeduceTemplateArguments. Fixing the
1494 // trailing return type of the invoker would require a visitor to rebuild
1495 // the trailing return type and adjusting all back DeclRefExpr's to refer
1496 // to the new static invoker parameters - not the call operator's.
1497 CXXMethodDecl
*Invoke
= CXXMethodDecl::Create(
1498 S
.Context
, Class
, Loc
, DeclarationNameInfo(InvokerName
, Loc
),
1499 InvokerFunctionTy
, CallOperator
->getTypeSourceInfo(), SC_Static
,
1500 S
.getCurFPFeatures().isFPConstrained(),
1501 /*isInline=*/true, ConstexprSpecKind::Unspecified
,
1502 CallOperator
->getBody()->getEndLoc());
1503 for (unsigned I
= 0, N
= CallOperator
->getNumParams(); I
!= N
; ++I
)
1504 InvokerParams
[I
]->setOwningFunction(Invoke
);
1505 Invoke
->setParams(InvokerParams
);
1506 Invoke
->setAccess(AS_private
);
1507 Invoke
->setImplicit(true);
1508 if (Class
->isGenericLambda()) {
1509 FunctionTemplateDecl
*TemplateCallOperator
=
1510 CallOperator
->getDescribedFunctionTemplate();
1511 FunctionTemplateDecl
*StaticInvokerTemplate
= FunctionTemplateDecl::Create(
1512 S
.Context
, Class
, Loc
, InvokerName
,
1513 TemplateCallOperator
->getTemplateParameters(),
1515 StaticInvokerTemplate
->setAccess(AS_private
);
1516 StaticInvokerTemplate
->setImplicit(true);
1517 Invoke
->setDescribedFunctionTemplate(StaticInvokerTemplate
);
1518 Class
->addDecl(StaticInvokerTemplate
);
1520 Class
->addDecl(Invoke
);
1523 /// Add a lambda's conversion to function pointers, as described in
1524 /// C++11 [expr.prim.lambda]p6. Note that in most cases, this should emit only a
1525 /// single pointer conversion. In the event that the default calling convention
1526 /// for free and member functions is different, it will emit both conventions.
1527 static void addFunctionPointerConversions(Sema
&S
, SourceRange IntroducerRange
,
1528 CXXRecordDecl
*Class
,
1529 CXXMethodDecl
*CallOperator
) {
1530 const FunctionProtoType
*CallOpProto
=
1531 CallOperator
->getType()->castAs
<FunctionProtoType
>();
1533 repeatForLambdaConversionFunctionCallingConvs(
1534 S
, *CallOpProto
, [&](CallingConv CC
) {
1535 QualType InvokerFunctionTy
=
1536 S
.getLambdaConversionFunctionResultType(CallOpProto
, CC
);
1537 addFunctionPointerConversion(S
, IntroducerRange
, Class
, CallOperator
,
1542 /// Add a lambda's conversion to block pointer.
1543 static void addBlockPointerConversion(Sema
&S
,
1544 SourceRange IntroducerRange
,
1545 CXXRecordDecl
*Class
,
1546 CXXMethodDecl
*CallOperator
) {
1547 const FunctionProtoType
*CallOpProto
=
1548 CallOperator
->getType()->castAs
<FunctionProtoType
>();
1549 QualType FunctionTy
= S
.getLambdaConversionFunctionResultType(
1550 CallOpProto
, getLambdaConversionFunctionCallConv(S
, CallOpProto
));
1551 QualType BlockPtrTy
= S
.Context
.getBlockPointerType(FunctionTy
);
1553 FunctionProtoType::ExtProtoInfo
ConversionEPI(
1554 S
.Context
.getDefaultCallingConvention(
1555 /*IsVariadic=*/false, /*IsCXXMethod=*/true));
1556 ConversionEPI
.TypeQuals
= Qualifiers();
1557 ConversionEPI
.TypeQuals
.addConst();
1558 QualType ConvTy
= S
.Context
.getFunctionType(BlockPtrTy
, None
, ConversionEPI
);
1560 SourceLocation Loc
= IntroducerRange
.getBegin();
1561 DeclarationName Name
1562 = S
.Context
.DeclarationNames
.getCXXConversionFunctionName(
1563 S
.Context
.getCanonicalType(BlockPtrTy
));
1564 DeclarationNameLoc NameLoc
= DeclarationNameLoc::makeNamedTypeLoc(
1565 S
.Context
.getTrivialTypeSourceInfo(BlockPtrTy
, Loc
));
1566 CXXConversionDecl
*Conversion
= CXXConversionDecl::Create(
1567 S
.Context
, Class
, Loc
, DeclarationNameInfo(Name
, Loc
, NameLoc
), ConvTy
,
1568 S
.Context
.getTrivialTypeSourceInfo(ConvTy
, Loc
),
1569 S
.getCurFPFeatures().isFPConstrained(),
1570 /*isInline=*/true, ExplicitSpecifier(), ConstexprSpecKind::Unspecified
,
1571 CallOperator
->getBody()->getEndLoc());
1572 Conversion
->setAccess(AS_public
);
1573 Conversion
->setImplicit(true);
1574 Class
->addDecl(Conversion
);
1577 ExprResult
Sema::BuildCaptureInit(const Capture
&Cap
,
1578 SourceLocation ImplicitCaptureLoc
,
1579 bool IsOpenMPMapping
) {
1580 // VLA captures don't have a stored initialization expression.
1581 if (Cap
.isVLATypeCapture())
1582 return ExprResult();
1584 // An init-capture is initialized directly from its stored initializer.
1585 if (Cap
.isInitCapture())
1586 return cast
<VarDecl
>(Cap
.getVariable())->getInit();
1588 // For anything else, build an initialization expression. For an implicit
1589 // capture, the capture notionally happens at the capture-default, so use
1590 // that location here.
1591 SourceLocation Loc
=
1592 ImplicitCaptureLoc
.isValid() ? ImplicitCaptureLoc
: Cap
.getLocation();
1594 // C++11 [expr.prim.lambda]p21:
1595 // When the lambda-expression is evaluated, the entities that
1596 // are captured by copy are used to direct-initialize each
1597 // corresponding non-static data member of the resulting closure
1598 // object. (For array members, the array elements are
1599 // direct-initialized in increasing subscript order.) These
1600 // initializations are performed in the (unspecified) order in
1601 // which the non-static data members are declared.
1603 // C++ [expr.prim.lambda]p12:
1604 // An entity captured by a lambda-expression is odr-used (3.2) in
1605 // the scope containing the lambda-expression.
1607 IdentifierInfo
*Name
= nullptr;
1608 if (Cap
.isThisCapture()) {
1609 QualType ThisTy
= getCurrentThisType();
1610 Expr
*This
= BuildCXXThisExpr(Loc
, ThisTy
, ImplicitCaptureLoc
.isValid());
1611 if (Cap
.isCopyCapture())
1612 Init
= CreateBuiltinUnaryOp(Loc
, UO_Deref
, This
);
1616 assert(Cap
.isVariableCapture() && "unknown kind of capture");
1617 ValueDecl
*Var
= Cap
.getVariable();
1618 Name
= Var
->getIdentifier();
1619 Init
= BuildDeclarationNameExpr(
1620 CXXScopeSpec(), DeclarationNameInfo(Var
->getDeclName(), Loc
), Var
);
1623 // In OpenMP, the capture kind doesn't actually describe how to capture:
1624 // variables are "mapped" onto the device in a process that does not formally
1625 // make a copy, even for a "copy capture".
1626 if (IsOpenMPMapping
)
1629 if (Init
.isInvalid())
1632 Expr
*InitExpr
= Init
.get();
1633 InitializedEntity Entity
= InitializedEntity::InitializeLambdaCapture(
1634 Name
, Cap
.getCaptureType(), Loc
);
1635 InitializationKind InitKind
=
1636 InitializationKind::CreateDirect(Loc
, Loc
, Loc
);
1637 InitializationSequence
InitSeq(*this, Entity
, InitKind
, InitExpr
);
1638 return InitSeq
.Perform(*this, Entity
, InitKind
, InitExpr
);
1641 ExprResult
Sema::ActOnLambdaExpr(SourceLocation StartLoc
, Stmt
*Body
,
1643 LambdaScopeInfo LSI
= *cast
<LambdaScopeInfo
>(FunctionScopes
.back());
1644 ActOnFinishFunctionBody(LSI
.CallOperator
, Body
);
1645 return BuildLambdaExpr(StartLoc
, Body
->getEndLoc(), &LSI
);
1648 static LambdaCaptureDefault
1649 mapImplicitCaptureStyle(CapturingScopeInfo::ImplicitCaptureStyle ICS
) {
1651 case CapturingScopeInfo::ImpCap_None
:
1653 case CapturingScopeInfo::ImpCap_LambdaByval
:
1655 case CapturingScopeInfo::ImpCap_CapturedRegion
:
1656 case CapturingScopeInfo::ImpCap_LambdaByref
:
1658 case CapturingScopeInfo::ImpCap_Block
:
1659 llvm_unreachable("block capture in lambda");
1661 llvm_unreachable("Unknown implicit capture style");
1664 bool Sema::CaptureHasSideEffects(const Capture
&From
) {
1665 if (From
.isInitCapture()) {
1666 Expr
*Init
= cast
<VarDecl
>(From
.getVariable())->getInit();
1667 if (Init
&& Init
->HasSideEffects(Context
))
1671 if (!From
.isCopyCapture())
1674 const QualType T
= From
.isThisCapture()
1675 ? getCurrentThisType()->getPointeeType()
1676 : From
.getCaptureType();
1678 if (T
.isVolatileQualified())
1681 const Type
*BaseT
= T
->getBaseElementTypeUnsafe();
1682 if (const CXXRecordDecl
*RD
= BaseT
->getAsCXXRecordDecl())
1683 return !RD
->isCompleteDefinition() || !RD
->hasTrivialCopyConstructor() ||
1684 !RD
->hasTrivialDestructor();
1689 bool Sema::DiagnoseUnusedLambdaCapture(SourceRange CaptureRange
,
1690 const Capture
&From
) {
1691 if (CaptureHasSideEffects(From
))
1694 if (From
.isVLATypeCapture())
1697 auto diag
= Diag(From
.getLocation(), diag::warn_unused_lambda_capture
);
1698 if (From
.isThisCapture())
1701 diag
<< From
.getVariable();
1702 diag
<< From
.isNonODRUsed();
1703 diag
<< FixItHint::CreateRemoval(CaptureRange
);
1707 /// Create a field within the lambda class or captured statement record for the
1709 FieldDecl
*Sema::BuildCaptureField(RecordDecl
*RD
,
1710 const sema::Capture
&Capture
) {
1711 SourceLocation Loc
= Capture
.getLocation();
1712 QualType FieldType
= Capture
.getCaptureType();
1714 TypeSourceInfo
*TSI
= nullptr;
1715 if (Capture
.isVariableCapture()) {
1716 const auto *Var
= dyn_cast_or_null
<VarDecl
>(Capture
.getVariable());
1717 if (Var
&& Var
->isInitCapture())
1718 TSI
= Var
->getTypeSourceInfo();
1721 // FIXME: Should we really be doing this? A null TypeSourceInfo seems more
1722 // appropriate, at least for an implicit capture.
1724 TSI
= Context
.getTrivialTypeSourceInfo(FieldType
, Loc
);
1726 // Build the non-static data member.
1728 FieldDecl::Create(Context
, RD
, /*StartLoc=*/Loc
, /*IdLoc=*/Loc
,
1729 /*Id=*/nullptr, FieldType
, TSI
, /*BW=*/nullptr,
1730 /*Mutable=*/false, ICIS_NoInit
);
1731 // If the variable being captured has an invalid type, mark the class as
1733 if (!FieldType
->isDependentType()) {
1734 if (RequireCompleteSizedType(Loc
, FieldType
,
1735 diag::err_field_incomplete_or_sizeless
)) {
1736 RD
->setInvalidDecl();
1737 Field
->setInvalidDecl();
1740 FieldType
->isIncompleteType(&Def
);
1741 if (Def
&& Def
->isInvalidDecl()) {
1742 RD
->setInvalidDecl();
1743 Field
->setInvalidDecl();
1747 Field
->setImplicit(true);
1748 Field
->setAccess(AS_private
);
1751 if (Capture
.isVLATypeCapture())
1752 Field
->setCapturedVLAType(Capture
.getCapturedVLAType());
1757 ExprResult
Sema::BuildLambdaExpr(SourceLocation StartLoc
, SourceLocation EndLoc
,
1758 LambdaScopeInfo
*LSI
) {
1759 // Collect information from the lambda scope.
1760 SmallVector
<LambdaCapture
, 4> Captures
;
1761 SmallVector
<Expr
*, 4> CaptureInits
;
1762 SourceLocation CaptureDefaultLoc
= LSI
->CaptureDefaultLoc
;
1763 LambdaCaptureDefault CaptureDefault
=
1764 mapImplicitCaptureStyle(LSI
->ImpCaptureStyle
);
1765 CXXRecordDecl
*Class
;
1766 CXXMethodDecl
*CallOperator
;
1767 SourceRange IntroducerRange
;
1768 bool ExplicitParams
;
1769 bool ExplicitResultType
;
1770 CleanupInfo LambdaCleanup
;
1771 bool ContainsUnexpandedParameterPack
;
1772 bool IsGenericLambda
;
1774 CallOperator
= LSI
->CallOperator
;
1775 Class
= LSI
->Lambda
;
1776 IntroducerRange
= LSI
->IntroducerRange
;
1777 ExplicitParams
= LSI
->ExplicitParams
;
1778 ExplicitResultType
= !LSI
->HasImplicitReturnType
;
1779 LambdaCleanup
= LSI
->Cleanup
;
1780 ContainsUnexpandedParameterPack
= LSI
->ContainsUnexpandedParameterPack
;
1781 IsGenericLambda
= Class
->isGenericLambda();
1783 CallOperator
->setLexicalDeclContext(Class
);
1784 Decl
*TemplateOrNonTemplateCallOperatorDecl
=
1785 CallOperator
->getDescribedFunctionTemplate()
1786 ? CallOperator
->getDescribedFunctionTemplate()
1787 : cast
<Decl
>(CallOperator
);
1789 // FIXME: Is this really the best choice? Keeping the lexical decl context
1790 // set as CurContext seems more faithful to the source.
1791 TemplateOrNonTemplateCallOperatorDecl
->setLexicalDeclContext(Class
);
1793 PopExpressionEvaluationContext();
1795 // True if the current capture has a used capture or default before it.
1796 bool CurHasPreviousCapture
= CaptureDefault
!= LCD_None
;
1797 SourceLocation PrevCaptureLoc
= CurHasPreviousCapture
?
1798 CaptureDefaultLoc
: IntroducerRange
.getBegin();
1800 for (unsigned I
= 0, N
= LSI
->Captures
.size(); I
!= N
; ++I
) {
1801 const Capture
&From
= LSI
->Captures
[I
];
1803 if (From
.isInvalid())
1806 assert(!From
.isBlockCapture() && "Cannot capture __block variables");
1807 bool IsImplicit
= I
>= LSI
->NumExplicitCaptures
;
1808 SourceLocation ImplicitCaptureLoc
=
1809 IsImplicit
? CaptureDefaultLoc
: SourceLocation();
1811 // Use source ranges of explicit captures for fixits where available.
1812 SourceRange CaptureRange
= LSI
->ExplicitCaptureRanges
[I
];
1814 // Warn about unused explicit captures.
1815 bool IsCaptureUsed
= true;
1816 if (!CurContext
->isDependentContext() && !IsImplicit
&&
1817 !From
.isODRUsed()) {
1818 // Initialized captures that are non-ODR used may not be eliminated.
1819 // FIXME: Where did the IsGenericLambda here come from?
1820 bool NonODRUsedInitCapture
=
1821 IsGenericLambda
&& From
.isNonODRUsed() && From
.isInitCapture();
1822 if (!NonODRUsedInitCapture
) {
1823 bool IsLast
= (I
+ 1) == LSI
->NumExplicitCaptures
;
1824 SourceRange FixItRange
;
1825 if (CaptureRange
.isValid()) {
1826 if (!CurHasPreviousCapture
&& !IsLast
) {
1827 // If there are no captures preceding this capture, remove the
1829 FixItRange
= SourceRange(CaptureRange
.getBegin(),
1830 getLocForEndOfToken(CaptureRange
.getEnd()));
1832 // Otherwise, remove the comma since the last used capture.
1833 FixItRange
= SourceRange(getLocForEndOfToken(PrevCaptureLoc
),
1834 CaptureRange
.getEnd());
1838 IsCaptureUsed
= !DiagnoseUnusedLambdaCapture(FixItRange
, From
);
1842 if (CaptureRange
.isValid()) {
1843 CurHasPreviousCapture
|= IsCaptureUsed
;
1844 PrevCaptureLoc
= CaptureRange
.getEnd();
1847 // Map the capture to our AST representation.
1848 LambdaCapture Capture
= [&] {
1849 if (From
.isThisCapture()) {
1850 // Capturing 'this' implicitly with a default of '[=]' is deprecated,
1851 // because it results in a reference capture. Don't warn prior to
1852 // C++2a; there's nothing that can be done about it before then.
1853 if (getLangOpts().CPlusPlus20
&& IsImplicit
&&
1854 CaptureDefault
== LCD_ByCopy
) {
1855 Diag(From
.getLocation(), diag::warn_deprecated_this_capture
);
1856 Diag(CaptureDefaultLoc
, diag::note_deprecated_this_capture
)
1857 << FixItHint::CreateInsertion(
1858 getLocForEndOfToken(CaptureDefaultLoc
), ", this");
1860 return LambdaCapture(From
.getLocation(), IsImplicit
,
1861 From
.isCopyCapture() ? LCK_StarThis
: LCK_This
);
1862 } else if (From
.isVLATypeCapture()) {
1863 return LambdaCapture(From
.getLocation(), IsImplicit
, LCK_VLAType
);
1865 assert(From
.isVariableCapture() && "unknown kind of capture");
1866 ValueDecl
*Var
= From
.getVariable();
1867 LambdaCaptureKind Kind
=
1868 From
.isCopyCapture() ? LCK_ByCopy
: LCK_ByRef
;
1869 return LambdaCapture(From
.getLocation(), IsImplicit
, Kind
, Var
,
1870 From
.getEllipsisLoc());
1874 // Form the initializer for the capture field.
1875 ExprResult Init
= BuildCaptureInit(From
, ImplicitCaptureLoc
);
1877 // FIXME: Skip this capture if the capture is not used, the initializer
1878 // has no side-effects, the type of the capture is trivial, and the
1879 // lambda is not externally visible.
1881 // Add a FieldDecl for the capture and form its initializer.
1882 BuildCaptureField(Class
, From
);
1883 Captures
.push_back(Capture
);
1884 CaptureInits
.push_back(Init
.get());
1887 CUDACheckLambdaCapture(CallOperator
, From
);
1890 Class
->setCaptures(Context
, Captures
);
1892 // C++11 [expr.prim.lambda]p6:
1893 // The closure type for a lambda-expression with no lambda-capture
1894 // has a public non-virtual non-explicit const conversion function
1895 // to pointer to function having the same parameter and return
1896 // types as the closure type's function call operator.
1897 if (Captures
.empty() && CaptureDefault
== LCD_None
)
1898 addFunctionPointerConversions(*this, IntroducerRange
, Class
,
1902 // The closure type for a lambda-expression has a public non-virtual
1903 // non-explicit const conversion function to a block pointer having the
1904 // same parameter and return types as the closure type's function call
1906 // FIXME: Fix generic lambda to block conversions.
1907 if (getLangOpts().Blocks
&& getLangOpts().ObjC
&& !IsGenericLambda
)
1908 addBlockPointerConversion(*this, IntroducerRange
, Class
, CallOperator
);
1910 // Finalize the lambda class.
1911 SmallVector
<Decl
*, 4> Fields(Class
->fields());
1912 ActOnFields(nullptr, Class
->getLocation(), Class
, Fields
, SourceLocation(),
1913 SourceLocation(), ParsedAttributesView());
1914 CheckCompletedCXXClass(nullptr, Class
);
1917 Cleanup
.mergeFrom(LambdaCleanup
);
1919 LambdaExpr
*Lambda
= LambdaExpr::Create(Context
, Class
, IntroducerRange
,
1920 CaptureDefault
, CaptureDefaultLoc
,
1921 ExplicitParams
, ExplicitResultType
,
1922 CaptureInits
, EndLoc
,
1923 ContainsUnexpandedParameterPack
);
1924 // If the lambda expression's call operator is not explicitly marked constexpr
1925 // and we are not in a dependent context, analyze the call operator to infer
1926 // its constexpr-ness, suppressing diagnostics while doing so.
1927 if (getLangOpts().CPlusPlus17
&& !CallOperator
->isInvalidDecl() &&
1928 !CallOperator
->isConstexpr() &&
1929 !isa
<CoroutineBodyStmt
>(CallOperator
->getBody()) &&
1930 !Class
->getDeclContext()->isDependentContext()) {
1931 CallOperator
->setConstexprKind(
1932 CheckConstexprFunctionDefinition(CallOperator
,
1933 CheckConstexprKind::CheckValid
)
1934 ? ConstexprSpecKind::Constexpr
1935 : ConstexprSpecKind::Unspecified
);
1938 // Emit delayed shadowing warnings now that the full capture list is known.
1939 DiagnoseShadowingLambdaDecls(LSI
);
1941 if (!CurContext
->isDependentContext()) {
1942 switch (ExprEvalContexts
.back().Context
) {
1943 // C++11 [expr.prim.lambda]p2:
1944 // A lambda-expression shall not appear in an unevaluated operand
1946 case ExpressionEvaluationContext::Unevaluated
:
1947 case ExpressionEvaluationContext::UnevaluatedList
:
1948 case ExpressionEvaluationContext::UnevaluatedAbstract
:
1949 // C++1y [expr.const]p2:
1950 // A conditional-expression e is a core constant expression unless the
1951 // evaluation of e, following the rules of the abstract machine, would
1952 // evaluate [...] a lambda-expression.
1954 // This is technically incorrect, there are some constant evaluated contexts
1955 // where this should be allowed. We should probably fix this when DR1607 is
1956 // ratified, it lays out the exact set of conditions where we shouldn't
1957 // allow a lambda-expression.
1958 case ExpressionEvaluationContext::ConstantEvaluated
:
1959 case ExpressionEvaluationContext::ImmediateFunctionContext
:
1960 // We don't actually diagnose this case immediately, because we
1961 // could be within a context where we might find out later that
1962 // the expression is potentially evaluated (e.g., for typeid).
1963 ExprEvalContexts
.back().Lambdas
.push_back(Lambda
);
1966 case ExpressionEvaluationContext::DiscardedStatement
:
1967 case ExpressionEvaluationContext::PotentiallyEvaluated
:
1968 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
1973 return MaybeBindToTemporary(Lambda
);
1976 ExprResult
Sema::BuildBlockForLambdaConversion(SourceLocation CurrentLocation
,
1977 SourceLocation ConvLocation
,
1978 CXXConversionDecl
*Conv
,
1980 // Make sure that the lambda call operator is marked used.
1981 CXXRecordDecl
*Lambda
= Conv
->getParent();
1982 CXXMethodDecl
*CallOperator
1983 = cast
<CXXMethodDecl
>(
1985 Context
.DeclarationNames
.getCXXOperatorName(OO_Call
)).front());
1986 CallOperator
->setReferenced();
1987 CallOperator
->markUsed(Context
);
1989 ExprResult Init
= PerformCopyInitialization(
1990 InitializedEntity::InitializeLambdaToBlock(ConvLocation
, Src
->getType()),
1991 CurrentLocation
, Src
);
1992 if (!Init
.isInvalid())
1993 Init
= ActOnFinishFullExpr(Init
.get(), /*DiscardedValue*/ false);
1995 if (Init
.isInvalid())
1998 // Create the new block to be returned.
1999 BlockDecl
*Block
= BlockDecl::Create(Context
, CurContext
, ConvLocation
);
2001 // Set the type information.
2002 Block
->setSignatureAsWritten(CallOperator
->getTypeSourceInfo());
2003 Block
->setIsVariadic(CallOperator
->isVariadic());
2004 Block
->setBlockMissingReturnType(false);
2007 SmallVector
<ParmVarDecl
*, 4> BlockParams
;
2008 for (unsigned I
= 0, N
= CallOperator
->getNumParams(); I
!= N
; ++I
) {
2009 ParmVarDecl
*From
= CallOperator
->getParamDecl(I
);
2010 BlockParams
.push_back(ParmVarDecl::Create(
2011 Context
, Block
, From
->getBeginLoc(), From
->getLocation(),
2012 From
->getIdentifier(), From
->getType(), From
->getTypeSourceInfo(),
2013 From
->getStorageClass(),
2014 /*DefArg=*/nullptr));
2016 Block
->setParams(BlockParams
);
2018 Block
->setIsConversionFromLambda(true);
2020 // Add capture. The capture uses a fake variable, which doesn't correspond
2021 // to any actual memory location. However, the initializer copy-initializes
2022 // the lambda object.
2023 TypeSourceInfo
*CapVarTSI
=
2024 Context
.getTrivialTypeSourceInfo(Src
->getType());
2025 VarDecl
*CapVar
= VarDecl::Create(Context
, Block
, ConvLocation
,
2026 ConvLocation
, nullptr,
2027 Src
->getType(), CapVarTSI
,
2029 BlockDecl::Capture
Capture(/*variable=*/CapVar
, /*byRef=*/false,
2030 /*nested=*/false, /*copy=*/Init
.get());
2031 Block
->setCaptures(Context
, Capture
, /*CapturesCXXThis=*/false);
2033 // Add a fake function body to the block. IR generation is responsible
2034 // for filling in the actual body, which cannot be expressed as an AST.
2035 Block
->setBody(new (Context
) CompoundStmt(ConvLocation
));
2037 // Create the block literal expression.
2038 Expr
*BuildBlock
= new (Context
) BlockExpr(Block
, Conv
->getConversionType());
2039 ExprCleanupObjects
.push_back(Block
);
2040 Cleanup
.setExprNeedsCleanups(true);