1 //===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements name lookup for C, C++, Objective-C, and
12 //===----------------------------------------------------------------------===//
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclLookups.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/Basic/Builtins.h"
24 #include "clang/Basic/FileManager.h"
25 #include "clang/Basic/LangOptions.h"
26 #include "clang/Lex/HeaderSearch.h"
27 #include "clang/Lex/ModuleLoader.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/Lookup.h"
31 #include "clang/Sema/Overload.h"
32 #include "clang/Sema/RISCVIntrinsicManager.h"
33 #include "clang/Sema/Scope.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/Sema.h"
36 #include "clang/Sema/SemaInternal.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "clang/Sema/TypoCorrection.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/ADT/TinyPtrVector.h"
42 #include "llvm/ADT/edit_distance.h"
43 #include "llvm/Support/ErrorHandling.h"
51 #include "OpenCLBuiltins.inc"
53 using namespace clang
;
57 class UnqualUsingEntry
{
58 const DeclContext
*Nominated
;
59 const DeclContext
*CommonAncestor
;
62 UnqualUsingEntry(const DeclContext
*Nominated
,
63 const DeclContext
*CommonAncestor
)
64 : Nominated(Nominated
), CommonAncestor(CommonAncestor
) {
67 const DeclContext
*getCommonAncestor() const {
68 return CommonAncestor
;
71 const DeclContext
*getNominatedNamespace() const {
75 // Sort by the pointer value of the common ancestor.
77 bool operator()(const UnqualUsingEntry
&L
, const UnqualUsingEntry
&R
) {
78 return L
.getCommonAncestor() < R
.getCommonAncestor();
81 bool operator()(const UnqualUsingEntry
&E
, const DeclContext
*DC
) {
82 return E
.getCommonAncestor() < DC
;
85 bool operator()(const DeclContext
*DC
, const UnqualUsingEntry
&E
) {
86 return DC
< E
.getCommonAncestor();
91 /// A collection of using directives, as used by C++ unqualified
93 class UnqualUsingDirectiveSet
{
96 typedef SmallVector
<UnqualUsingEntry
, 8> ListTy
;
99 llvm::SmallPtrSet
<DeclContext
*, 8> visited
;
102 UnqualUsingDirectiveSet(Sema
&SemaRef
) : SemaRef(SemaRef
) {}
104 void visitScopeChain(Scope
*S
, Scope
*InnermostFileScope
) {
105 // C++ [namespace.udir]p1:
106 // During unqualified name lookup, the names appear as if they
107 // were declared in the nearest enclosing namespace which contains
108 // both the using-directive and the nominated namespace.
109 DeclContext
*InnermostFileDC
= InnermostFileScope
->getEntity();
110 assert(InnermostFileDC
&& InnermostFileDC
->isFileContext());
112 for (; S
; S
= S
->getParent()) {
113 // C++ [namespace.udir]p1:
114 // A using-directive shall not appear in class scope, but may
115 // appear in namespace scope or in block scope.
116 DeclContext
*Ctx
= S
->getEntity();
117 if (Ctx
&& Ctx
->isFileContext()) {
119 } else if (!Ctx
|| Ctx
->isFunctionOrMethod()) {
120 for (auto *I
: S
->using_directives())
121 if (SemaRef
.isVisible(I
))
122 visit(I
, InnermostFileDC
);
127 // Visits a context and collect all of its using directives
128 // recursively. Treats all using directives as if they were
129 // declared in the context.
131 // A given context is only every visited once, so it is important
132 // that contexts be visited from the inside out in order to get
133 // the effective DCs right.
134 void visit(DeclContext
*DC
, DeclContext
*EffectiveDC
) {
135 if (!visited
.insert(DC
).second
)
138 addUsingDirectives(DC
, EffectiveDC
);
141 // Visits a using directive and collects all of its using
142 // directives recursively. Treats all using directives as if they
143 // were declared in the effective DC.
144 void visit(UsingDirectiveDecl
*UD
, DeclContext
*EffectiveDC
) {
145 DeclContext
*NS
= UD
->getNominatedNamespace();
146 if (!visited
.insert(NS
).second
)
149 addUsingDirective(UD
, EffectiveDC
);
150 addUsingDirectives(NS
, EffectiveDC
);
153 // Adds all the using directives in a context (and those nominated
154 // by its using directives, transitively) as if they appeared in
155 // the given effective context.
156 void addUsingDirectives(DeclContext
*DC
, DeclContext
*EffectiveDC
) {
157 SmallVector
<DeclContext
*, 4> queue
;
159 for (auto *UD
: DC
->using_directives()) {
160 DeclContext
*NS
= UD
->getNominatedNamespace();
161 if (SemaRef
.isVisible(UD
) && visited
.insert(NS
).second
) {
162 addUsingDirective(UD
, EffectiveDC
);
170 DC
= queue
.pop_back_val();
174 // Add a using directive as if it had been declared in the given
175 // context. This helps implement C++ [namespace.udir]p3:
176 // The using-directive is transitive: if a scope contains a
177 // using-directive that nominates a second namespace that itself
178 // contains using-directives, the effect is as if the
179 // using-directives from the second namespace also appeared in
181 void addUsingDirective(UsingDirectiveDecl
*UD
, DeclContext
*EffectiveDC
) {
182 // Find the common ancestor between the effective context and
183 // the nominated namespace.
184 DeclContext
*Common
= UD
->getNominatedNamespace();
185 while (!Common
->Encloses(EffectiveDC
))
186 Common
= Common
->getParent();
187 Common
= Common
->getPrimaryContext();
189 list
.push_back(UnqualUsingEntry(UD
->getNominatedNamespace(), Common
));
192 void done() { llvm::sort(list
, UnqualUsingEntry::Comparator()); }
194 typedef ListTy::const_iterator const_iterator
;
196 const_iterator
begin() const { return list
.begin(); }
197 const_iterator
end() const { return list
.end(); }
199 llvm::iterator_range
<const_iterator
>
200 getNamespacesFor(DeclContext
*DC
) const {
201 return llvm::make_range(std::equal_range(begin(), end(),
202 DC
->getPrimaryContext(),
203 UnqualUsingEntry::Comparator()));
206 } // end anonymous namespace
208 // Retrieve the set of identifier namespaces that correspond to a
209 // specific kind of name lookup.
210 static inline unsigned getIDNS(Sema::LookupNameKind NameKind
,
212 bool Redeclaration
) {
215 case Sema::LookupObjCImplicitSelfParam
:
216 case Sema::LookupOrdinaryName
:
217 case Sema::LookupRedeclarationWithLinkage
:
218 case Sema::LookupLocalFriendName
:
219 case Sema::LookupDestructorName
:
220 IDNS
= Decl::IDNS_Ordinary
;
222 IDNS
|= Decl::IDNS_Tag
| Decl::IDNS_Member
| Decl::IDNS_Namespace
;
224 IDNS
|= Decl::IDNS_TagFriend
| Decl::IDNS_OrdinaryFriend
;
227 IDNS
|= Decl::IDNS_LocalExtern
;
230 case Sema::LookupOperatorName
:
231 // Operator lookup is its own crazy thing; it is not the same
232 // as (e.g.) looking up an operator name for redeclaration.
233 assert(!Redeclaration
&& "cannot do redeclaration operator lookup");
234 IDNS
= Decl::IDNS_NonMemberOperator
;
237 case Sema::LookupTagName
:
239 IDNS
= Decl::IDNS_Type
;
241 // When looking for a redeclaration of a tag name, we add:
242 // 1) TagFriend to find undeclared friend decls
243 // 2) Namespace because they can't "overload" with tag decls.
244 // 3) Tag because it includes class templates, which can't
245 // "overload" with tag decls.
247 IDNS
|= Decl::IDNS_Tag
| Decl::IDNS_TagFriend
| Decl::IDNS_Namespace
;
249 IDNS
= Decl::IDNS_Tag
;
253 case Sema::LookupLabel
:
254 IDNS
= Decl::IDNS_Label
;
257 case Sema::LookupMemberName
:
258 IDNS
= Decl::IDNS_Member
;
260 IDNS
|= Decl::IDNS_Tag
| Decl::IDNS_Ordinary
;
263 case Sema::LookupNestedNameSpecifierName
:
264 IDNS
= Decl::IDNS_Type
| Decl::IDNS_Namespace
;
267 case Sema::LookupNamespaceName
:
268 IDNS
= Decl::IDNS_Namespace
;
271 case Sema::LookupUsingDeclName
:
272 assert(Redeclaration
&& "should only be used for redecl lookup");
273 IDNS
= Decl::IDNS_Ordinary
| Decl::IDNS_Tag
| Decl::IDNS_Member
|
274 Decl::IDNS_Using
| Decl::IDNS_TagFriend
| Decl::IDNS_OrdinaryFriend
|
275 Decl::IDNS_LocalExtern
;
278 case Sema::LookupObjCProtocolName
:
279 IDNS
= Decl::IDNS_ObjCProtocol
;
282 case Sema::LookupOMPReductionName
:
283 IDNS
= Decl::IDNS_OMPReduction
;
286 case Sema::LookupOMPMapperName
:
287 IDNS
= Decl::IDNS_OMPMapper
;
290 case Sema::LookupAnyName
:
291 IDNS
= Decl::IDNS_Ordinary
| Decl::IDNS_Tag
| Decl::IDNS_Member
292 | Decl::IDNS_Using
| Decl::IDNS_Namespace
| Decl::IDNS_ObjCProtocol
299 void LookupResult::configure() {
300 IDNS
= getIDNS(LookupKind
, getSema().getLangOpts().CPlusPlus
,
301 isForRedeclaration());
303 // If we're looking for one of the allocation or deallocation
304 // operators, make sure that the implicitly-declared new and delete
305 // operators can be found.
306 switch (NameInfo
.getName().getCXXOverloadedOperator()) {
310 case OO_Array_Delete
:
311 getSema().DeclareGlobalNewDelete();
318 // Compiler builtins are always visible, regardless of where they end
319 // up being declared.
320 if (IdentifierInfo
*Id
= NameInfo
.getName().getAsIdentifierInfo()) {
321 if (unsigned BuiltinID
= Id
->getBuiltinID()) {
322 if (!getSema().Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
))
328 bool LookupResult::checkDebugAssumptions() const {
329 // This function is never called by NDEBUG builds.
330 assert(ResultKind
!= NotFound
|| Decls
.size() == 0);
331 assert(ResultKind
!= Found
|| Decls
.size() == 1);
332 assert(ResultKind
!= FoundOverloaded
|| Decls
.size() > 1 ||
333 (Decls
.size() == 1 &&
334 isa
<FunctionTemplateDecl
>((*begin())->getUnderlyingDecl())));
335 assert(ResultKind
!= FoundUnresolvedValue
|| checkUnresolved());
336 assert(ResultKind
!= Ambiguous
|| Decls
.size() > 1 ||
337 (Decls
.size() == 1 && (Ambiguity
== AmbiguousBaseSubobjects
||
338 Ambiguity
== AmbiguousBaseSubobjectTypes
)));
339 assert((Paths
!= nullptr) == (ResultKind
== Ambiguous
&&
340 (Ambiguity
== AmbiguousBaseSubobjectTypes
||
341 Ambiguity
== AmbiguousBaseSubobjects
)));
345 // Necessary because CXXBasePaths is not complete in Sema.h
346 void LookupResult::deletePaths(CXXBasePaths
*Paths
) {
350 /// Get a representative context for a declaration such that two declarations
351 /// will have the same context if they were found within the same scope.
352 static DeclContext
*getContextForScopeMatching(Decl
*D
) {
353 // For function-local declarations, use that function as the context. This
354 // doesn't account for scopes within the function; the caller must deal with
356 DeclContext
*DC
= D
->getLexicalDeclContext();
357 if (DC
->isFunctionOrMethod())
360 // Otherwise, look at the semantic context of the declaration. The
361 // declaration must have been found there.
362 return D
->getDeclContext()->getRedeclContext();
365 /// Determine whether \p D is a better lookup result than \p Existing,
366 /// given that they declare the same entity.
367 static bool isPreferredLookupResult(Sema
&S
, Sema::LookupNameKind Kind
,
368 NamedDecl
*D
, NamedDecl
*Existing
) {
369 // When looking up redeclarations of a using declaration, prefer a using
370 // shadow declaration over any other declaration of the same entity.
371 if (Kind
== Sema::LookupUsingDeclName
&& isa
<UsingShadowDecl
>(D
) &&
372 !isa
<UsingShadowDecl
>(Existing
))
375 auto *DUnderlying
= D
->getUnderlyingDecl();
376 auto *EUnderlying
= Existing
->getUnderlyingDecl();
378 // If they have different underlying declarations, prefer a typedef over the
379 // original type (this happens when two type declarations denote the same
380 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
381 // might carry additional semantic information, such as an alignment override.
382 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
383 // declaration over a typedef. Also prefer a tag over a typedef for
384 // destructor name lookup because in some contexts we only accept a
385 // class-name in a destructor declaration.
386 if (DUnderlying
->getCanonicalDecl() != EUnderlying
->getCanonicalDecl()) {
387 assert(isa
<TypeDecl
>(DUnderlying
) && isa
<TypeDecl
>(EUnderlying
));
388 bool HaveTag
= isa
<TagDecl
>(EUnderlying
);
390 Kind
== Sema::LookupTagName
|| Kind
== Sema::LookupDestructorName
;
391 return HaveTag
!= WantTag
;
394 // Pick the function with more default arguments.
395 // FIXME: In the presence of ambiguous default arguments, we should keep both,
396 // so we can diagnose the ambiguity if the default argument is needed.
397 // See C++ [over.match.best]p3.
398 if (auto *DFD
= dyn_cast
<FunctionDecl
>(DUnderlying
)) {
399 auto *EFD
= cast
<FunctionDecl
>(EUnderlying
);
400 unsigned DMin
= DFD
->getMinRequiredArguments();
401 unsigned EMin
= EFD
->getMinRequiredArguments();
402 // If D has more default arguments, it is preferred.
405 // FIXME: When we track visibility for default function arguments, check
406 // that we pick the declaration with more visible default arguments.
409 // Pick the template with more default template arguments.
410 if (auto *DTD
= dyn_cast
<TemplateDecl
>(DUnderlying
)) {
411 auto *ETD
= cast
<TemplateDecl
>(EUnderlying
);
412 unsigned DMin
= DTD
->getTemplateParameters()->getMinRequiredArguments();
413 unsigned EMin
= ETD
->getTemplateParameters()->getMinRequiredArguments();
414 // If D has more default arguments, it is preferred. Note that default
415 // arguments (and their visibility) is monotonically increasing across the
416 // redeclaration chain, so this is a quick proxy for "is more recent".
419 // If D has more *visible* default arguments, it is preferred. Note, an
420 // earlier default argument being visible does not imply that a later
421 // default argument is visible, so we can't just check the first one.
422 for (unsigned I
= DMin
, N
= DTD
->getTemplateParameters()->size();
424 if (!S
.hasVisibleDefaultArgument(
425 ETD
->getTemplateParameters()->getParam(I
)) &&
426 S
.hasVisibleDefaultArgument(
427 DTD
->getTemplateParameters()->getParam(I
)))
432 // VarDecl can have incomplete array types, prefer the one with more complete
434 if (VarDecl
*DVD
= dyn_cast
<VarDecl
>(DUnderlying
)) {
435 VarDecl
*EVD
= cast
<VarDecl
>(EUnderlying
);
436 if (EVD
->getType()->isIncompleteType() &&
437 !DVD
->getType()->isIncompleteType()) {
438 // Prefer the decl with a more complete type if visible.
439 return S
.isVisible(DVD
);
441 return false; // Avoid picking up a newer decl, just because it was newer.
444 // For most kinds of declaration, it doesn't really matter which one we pick.
445 if (!isa
<FunctionDecl
>(DUnderlying
) && !isa
<VarDecl
>(DUnderlying
)) {
446 // If the existing declaration is hidden, prefer the new one. Otherwise,
447 // keep what we've got.
448 return !S
.isVisible(Existing
);
451 // Pick the newer declaration; it might have a more precise type.
452 for (Decl
*Prev
= DUnderlying
->getPreviousDecl(); Prev
;
453 Prev
= Prev
->getPreviousDecl())
454 if (Prev
== EUnderlying
)
459 /// Determine whether \p D can hide a tag declaration.
460 static bool canHideTag(NamedDecl
*D
) {
461 // C++ [basic.scope.declarative]p4:
462 // Given a set of declarations in a single declarative region [...]
463 // exactly one declaration shall declare a class name or enumeration name
464 // that is not a typedef name and the other declarations shall all refer to
465 // the same variable, non-static data member, or enumerator, or all refer
466 // to functions and function templates; in this case the class name or
467 // enumeration name is hidden.
468 // C++ [basic.scope.hiding]p2:
469 // A class name or enumeration name can be hidden by the name of a
470 // variable, data member, function, or enumerator declared in the same
472 // An UnresolvedUsingValueDecl always instantiates to one of these.
473 D
= D
->getUnderlyingDecl();
474 return isa
<VarDecl
>(D
) || isa
<EnumConstantDecl
>(D
) || isa
<FunctionDecl
>(D
) ||
475 isa
<FunctionTemplateDecl
>(D
) || isa
<FieldDecl
>(D
) ||
476 isa
<UnresolvedUsingValueDecl
>(D
);
479 /// Resolves the result kind of this lookup.
480 void LookupResult::resolveKind() {
481 unsigned N
= Decls
.size();
483 // Fast case: no possible ambiguity.
485 assert(ResultKind
== NotFound
||
486 ResultKind
== NotFoundInCurrentInstantiation
);
490 // If there's a single decl, we need to examine it to decide what
491 // kind of lookup this is.
493 NamedDecl
*D
= (*Decls
.begin())->getUnderlyingDecl();
494 if (isa
<FunctionTemplateDecl
>(D
))
495 ResultKind
= FoundOverloaded
;
496 else if (isa
<UnresolvedUsingValueDecl
>(D
))
497 ResultKind
= FoundUnresolvedValue
;
501 // Don't do any extra resolution if we've already resolved as ambiguous.
502 if (ResultKind
== Ambiguous
) return;
504 llvm::SmallDenseMap
<NamedDecl
*, unsigned, 16> Unique
;
505 llvm::SmallDenseMap
<QualType
, unsigned, 16> UniqueTypes
;
507 bool Ambiguous
= false;
508 bool HasTag
= false, HasFunction
= false;
509 bool HasFunctionTemplate
= false, HasUnresolved
= false;
510 NamedDecl
*HasNonFunction
= nullptr;
512 llvm::SmallVector
<NamedDecl
*, 4> EquivalentNonFunctions
;
514 unsigned UniqueTagIndex
= 0;
518 NamedDecl
*D
= Decls
[I
]->getUnderlyingDecl();
519 D
= cast
<NamedDecl
>(D
->getCanonicalDecl());
521 // Ignore an invalid declaration unless it's the only one left.
522 if (D
->isInvalidDecl() && !(I
== 0 && N
== 1)) {
523 Decls
[I
] = Decls
[--N
];
527 llvm::Optional
<unsigned> ExistingI
;
529 // Redeclarations of types via typedef can occur both within a scope
530 // and, through using declarations and directives, across scopes. There is
531 // no ambiguity if they all refer to the same type, so unique based on the
533 if (TypeDecl
*TD
= dyn_cast
<TypeDecl
>(D
)) {
534 QualType T
= getSema().Context
.getTypeDeclType(TD
);
535 auto UniqueResult
= UniqueTypes
.insert(
536 std::make_pair(getSema().Context
.getCanonicalType(T
), I
));
537 if (!UniqueResult
.second
) {
538 // The type is not unique.
539 ExistingI
= UniqueResult
.first
->second
;
543 // For non-type declarations, check for a prior lookup result naming this
544 // canonical declaration.
546 auto UniqueResult
= Unique
.insert(std::make_pair(D
, I
));
547 if (!UniqueResult
.second
) {
548 // We've seen this entity before.
549 ExistingI
= UniqueResult
.first
->second
;
554 // This is not a unique lookup result. Pick one of the results and
555 // discard the other.
556 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls
[I
],
558 Decls
[*ExistingI
] = Decls
[I
];
559 Decls
[I
] = Decls
[--N
];
563 // Otherwise, do some decl type analysis and then continue.
565 if (isa
<UnresolvedUsingValueDecl
>(D
)) {
566 HasUnresolved
= true;
567 } else if (isa
<TagDecl
>(D
)) {
572 } else if (isa
<FunctionTemplateDecl
>(D
)) {
574 HasFunctionTemplate
= true;
575 } else if (isa
<FunctionDecl
>(D
)) {
578 if (HasNonFunction
) {
579 // If we're about to create an ambiguity between two declarations that
580 // are equivalent, but one is an internal linkage declaration from one
581 // module and the other is an internal linkage declaration from another
582 // module, just skip it.
583 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction
,
585 EquivalentNonFunctions
.push_back(D
);
586 Decls
[I
] = Decls
[--N
];
597 // C++ [basic.scope.hiding]p2:
598 // A class name or enumeration name can be hidden by the name of
599 // an object, function, or enumerator declared in the same
600 // scope. If a class or enumeration name and an object, function,
601 // or enumerator are declared in the same scope (in any order)
602 // with the same name, the class or enumeration name is hidden
603 // wherever the object, function, or enumerator name is visible.
604 // But it's still an error if there are distinct tag types found,
605 // even if they're not visible. (ref?)
606 if (N
> 1 && HideTags
&& HasTag
&& !Ambiguous
&&
607 (HasFunction
|| HasNonFunction
|| HasUnresolved
)) {
608 NamedDecl
*OtherDecl
= Decls
[UniqueTagIndex
? 0 : N
- 1];
609 if (isa
<TagDecl
>(Decls
[UniqueTagIndex
]->getUnderlyingDecl()) &&
610 getContextForScopeMatching(Decls
[UniqueTagIndex
])->Equals(
611 getContextForScopeMatching(OtherDecl
)) &&
612 canHideTag(OtherDecl
))
613 Decls
[UniqueTagIndex
] = Decls
[--N
];
618 // FIXME: This diagnostic should really be delayed until we're done with
619 // the lookup result, in case the ambiguity is resolved by the caller.
620 if (!EquivalentNonFunctions
.empty() && !Ambiguous
)
621 getSema().diagnoseEquivalentInternalLinkageDeclarations(
622 getNameLoc(), HasNonFunction
, EquivalentNonFunctions
);
626 if (HasNonFunction
&& (HasFunction
|| HasUnresolved
))
630 setAmbiguous(LookupResult::AmbiguousReference
);
631 else if (HasUnresolved
)
632 ResultKind
= LookupResult::FoundUnresolvedValue
;
633 else if (N
> 1 || HasFunctionTemplate
)
634 ResultKind
= LookupResult::FoundOverloaded
;
636 ResultKind
= LookupResult::Found
;
639 void LookupResult::addDeclsFromBasePaths(const CXXBasePaths
&P
) {
640 CXXBasePaths::const_paths_iterator I
, E
;
641 for (I
= P
.begin(), E
= P
.end(); I
!= E
; ++I
)
642 for (DeclContext::lookup_iterator DI
= I
->Decls
, DE
= DI
.end(); DI
!= DE
;
647 void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths
&P
) {
648 Paths
= new CXXBasePaths
;
650 addDeclsFromBasePaths(*Paths
);
652 setAmbiguous(AmbiguousBaseSubobjects
);
655 void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths
&P
) {
656 Paths
= new CXXBasePaths
;
658 addDeclsFromBasePaths(*Paths
);
660 setAmbiguous(AmbiguousBaseSubobjectTypes
);
663 void LookupResult::print(raw_ostream
&Out
) {
664 Out
<< Decls
.size() << " result(s)";
665 if (isAmbiguous()) Out
<< ", ambiguous";
666 if (Paths
) Out
<< ", base paths present";
668 for (iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
674 LLVM_DUMP_METHOD
void LookupResult::dump() {
675 llvm::errs() << "lookup results for " << getLookupName().getAsString()
677 for (NamedDecl
*D
: *this)
681 /// Diagnose a missing builtin type.
682 static QualType
diagOpenCLBuiltinTypeError(Sema
&S
, llvm::StringRef TypeClass
,
683 llvm::StringRef Name
) {
684 S
.Diag(SourceLocation(), diag::err_opencl_type_not_found
)
685 << TypeClass
<< Name
;
686 return S
.Context
.VoidTy
;
689 /// Lookup an OpenCL enum type.
690 static QualType
getOpenCLEnumType(Sema
&S
, llvm::StringRef Name
) {
691 LookupResult
Result(S
, &S
.Context
.Idents
.get(Name
), SourceLocation(),
692 Sema::LookupTagName
);
693 S
.LookupName(Result
, S
.TUScope
);
695 return diagOpenCLBuiltinTypeError(S
, "enum", Name
);
696 EnumDecl
*Decl
= Result
.getAsSingle
<EnumDecl
>();
698 return diagOpenCLBuiltinTypeError(S
, "enum", Name
);
699 return S
.Context
.getEnumType(Decl
);
702 /// Lookup an OpenCL typedef type.
703 static QualType
getOpenCLTypedefType(Sema
&S
, llvm::StringRef Name
) {
704 LookupResult
Result(S
, &S
.Context
.Idents
.get(Name
), SourceLocation(),
705 Sema::LookupOrdinaryName
);
706 S
.LookupName(Result
, S
.TUScope
);
708 return diagOpenCLBuiltinTypeError(S
, "typedef", Name
);
709 TypedefNameDecl
*Decl
= Result
.getAsSingle
<TypedefNameDecl
>();
711 return diagOpenCLBuiltinTypeError(S
, "typedef", Name
);
712 return S
.Context
.getTypedefType(Decl
);
715 /// Get the QualType instances of the return type and arguments for an OpenCL
716 /// builtin function signature.
717 /// \param S (in) The Sema instance.
718 /// \param OpenCLBuiltin (in) The signature currently handled.
719 /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
720 /// type used as return type or as argument.
721 /// Only meaningful for generic types, otherwise equals 1.
722 /// \param RetTypes (out) List of the possible return types.
723 /// \param ArgTypes (out) List of the possible argument types. For each
724 /// argument, ArgTypes contains QualTypes for the Cartesian product
725 /// of (vector sizes) x (types) .
726 static void GetQualTypesForOpenCLBuiltin(
727 Sema
&S
, const OpenCLBuiltinStruct
&OpenCLBuiltin
, unsigned &GenTypeMaxCnt
,
728 SmallVector
<QualType
, 1> &RetTypes
,
729 SmallVector
<SmallVector
<QualType
, 1>, 5> &ArgTypes
) {
730 // Get the QualType instances of the return types.
731 unsigned Sig
= SignatureTable
[OpenCLBuiltin
.SigTableIndex
];
732 OCL2Qual(S
, TypeTable
[Sig
], RetTypes
);
733 GenTypeMaxCnt
= RetTypes
.size();
735 // Get the QualType instances of the arguments.
736 // First type is the return type, skip it.
737 for (unsigned Index
= 1; Index
< OpenCLBuiltin
.NumTypes
; Index
++) {
738 SmallVector
<QualType
, 1> Ty
;
739 OCL2Qual(S
, TypeTable
[SignatureTable
[OpenCLBuiltin
.SigTableIndex
+ Index
]],
741 GenTypeMaxCnt
= (Ty
.size() > GenTypeMaxCnt
) ? Ty
.size() : GenTypeMaxCnt
;
742 ArgTypes
.push_back(std::move(Ty
));
746 /// Create a list of the candidate function overloads for an OpenCL builtin
748 /// \param Context (in) The ASTContext instance.
749 /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
750 /// type used as return type or as argument.
751 /// Only meaningful for generic types, otherwise equals 1.
752 /// \param FunctionList (out) List of FunctionTypes.
753 /// \param RetTypes (in) List of the possible return types.
754 /// \param ArgTypes (in) List of the possible types for the arguments.
755 static void GetOpenCLBuiltinFctOverloads(
756 ASTContext
&Context
, unsigned GenTypeMaxCnt
,
757 std::vector
<QualType
> &FunctionList
, SmallVector
<QualType
, 1> &RetTypes
,
758 SmallVector
<SmallVector
<QualType
, 1>, 5> &ArgTypes
) {
759 FunctionProtoType::ExtProtoInfo
PI(
760 Context
.getDefaultCallingConvention(false, false, true));
763 // Do not attempt to create any FunctionTypes if there are no return types,
764 // which happens when a type belongs to a disabled extension.
765 if (RetTypes
.size() == 0)
768 // Create FunctionTypes for each (gen)type.
769 for (unsigned IGenType
= 0; IGenType
< GenTypeMaxCnt
; IGenType
++) {
770 SmallVector
<QualType
, 5> ArgList
;
772 for (unsigned A
= 0; A
< ArgTypes
.size(); A
++) {
773 // Bail out if there is an argument that has no available types.
774 if (ArgTypes
[A
].size() == 0)
777 // Builtins such as "max" have an "sgentype" argument that represents
778 // the corresponding scalar type of a gentype. The number of gentypes
779 // must be a multiple of the number of sgentypes.
780 assert(GenTypeMaxCnt
% ArgTypes
[A
].size() == 0 &&
781 "argument type count not compatible with gentype type count");
782 unsigned Idx
= IGenType
% ArgTypes
[A
].size();
783 ArgList
.push_back(ArgTypes
[A
][Idx
]);
786 FunctionList
.push_back(Context
.getFunctionType(
787 RetTypes
[(RetTypes
.size() != 1) ? IGenType
: 0], ArgList
, PI
));
791 /// When trying to resolve a function name, if isOpenCLBuiltin() returns a
792 /// non-null <Index, Len> pair, then the name is referencing an OpenCL
793 /// builtin function. Add all candidate signatures to the LookUpResult.
795 /// \param S (in) The Sema instance.
796 /// \param LR (inout) The LookupResult instance.
797 /// \param II (in) The identifier being resolved.
798 /// \param FctIndex (in) Starting index in the BuiltinTable.
799 /// \param Len (in) The signature list has Len elements.
800 static void InsertOCLBuiltinDeclarationsFromTable(Sema
&S
, LookupResult
&LR
,
802 const unsigned FctIndex
,
803 const unsigned Len
) {
804 // The builtin function declaration uses generic types (gentype).
805 bool HasGenType
= false;
807 // Maximum number of types contained in a generic type used as return type or
808 // as argument. Only meaningful for generic types, otherwise equals 1.
809 unsigned GenTypeMaxCnt
;
811 ASTContext
&Context
= S
.Context
;
813 for (unsigned SignatureIndex
= 0; SignatureIndex
< Len
; SignatureIndex
++) {
814 const OpenCLBuiltinStruct
&OpenCLBuiltin
=
815 BuiltinTable
[FctIndex
+ SignatureIndex
];
817 // Ignore this builtin function if it is not available in the currently
818 // selected language version.
819 if (!isOpenCLVersionContainedInMask(Context
.getLangOpts(),
820 OpenCLBuiltin
.Versions
))
823 // Ignore this builtin function if it carries an extension macro that is
824 // not defined. This indicates that the extension is not supported by the
825 // target, so the builtin function should not be available.
826 StringRef Extensions
= FunctionExtensionTable
[OpenCLBuiltin
.Extension
];
827 if (!Extensions
.empty()) {
828 SmallVector
<StringRef
, 2> ExtVec
;
829 Extensions
.split(ExtVec
, " ");
830 bool AllExtensionsDefined
= true;
831 for (StringRef Ext
: ExtVec
) {
832 if (!S
.getPreprocessor().isMacroDefined(Ext
)) {
833 AllExtensionsDefined
= false;
837 if (!AllExtensionsDefined
)
841 SmallVector
<QualType
, 1> RetTypes
;
842 SmallVector
<SmallVector
<QualType
, 1>, 5> ArgTypes
;
844 // Obtain QualType lists for the function signature.
845 GetQualTypesForOpenCLBuiltin(S
, OpenCLBuiltin
, GenTypeMaxCnt
, RetTypes
,
847 if (GenTypeMaxCnt
> 1) {
851 // Create function overload for each type combination.
852 std::vector
<QualType
> FunctionList
;
853 GetOpenCLBuiltinFctOverloads(Context
, GenTypeMaxCnt
, FunctionList
, RetTypes
,
856 SourceLocation Loc
= LR
.getNameLoc();
857 DeclContext
*Parent
= Context
.getTranslationUnitDecl();
858 FunctionDecl
*NewOpenCLBuiltin
;
860 for (const auto &FTy
: FunctionList
) {
861 NewOpenCLBuiltin
= FunctionDecl::Create(
862 Context
, Parent
, Loc
, Loc
, II
, FTy
, /*TInfo=*/nullptr, SC_Extern
,
863 S
.getCurFPFeatures().isFPConstrained(), false,
864 FTy
->isFunctionProtoType());
865 NewOpenCLBuiltin
->setImplicit();
867 // Create Decl objects for each parameter, adding them to the
869 const auto *FP
= cast
<FunctionProtoType
>(FTy
);
870 SmallVector
<ParmVarDecl
*, 4> ParmList
;
871 for (unsigned IParm
= 0, e
= FP
->getNumParams(); IParm
!= e
; ++IParm
) {
872 ParmVarDecl
*Parm
= ParmVarDecl::Create(
873 Context
, NewOpenCLBuiltin
, SourceLocation(), SourceLocation(),
874 nullptr, FP
->getParamType(IParm
), nullptr, SC_None
, nullptr);
875 Parm
->setScopeInfo(0, IParm
);
876 ParmList
.push_back(Parm
);
878 NewOpenCLBuiltin
->setParams(ParmList
);
880 // Add function attributes.
881 if (OpenCLBuiltin
.IsPure
)
882 NewOpenCLBuiltin
->addAttr(PureAttr::CreateImplicit(Context
));
883 if (OpenCLBuiltin
.IsConst
)
884 NewOpenCLBuiltin
->addAttr(ConstAttr::CreateImplicit(Context
));
885 if (OpenCLBuiltin
.IsConv
)
886 NewOpenCLBuiltin
->addAttr(ConvergentAttr::CreateImplicit(Context
));
888 if (!S
.getLangOpts().OpenCLCPlusPlus
)
889 NewOpenCLBuiltin
->addAttr(OverloadableAttr::CreateImplicit(Context
));
891 LR
.addDecl(NewOpenCLBuiltin
);
895 // If we added overloads, need to resolve the lookup result.
896 if (Len
> 1 || HasGenType
)
900 /// Lookup a builtin function, when name lookup would otherwise
902 bool Sema::LookupBuiltin(LookupResult
&R
) {
903 Sema::LookupNameKind NameKind
= R
.getLookupKind();
905 // If we didn't find a use of this identifier, and if the identifier
906 // corresponds to a compiler builtin, create the decl object for the builtin
907 // now, injecting it into translation unit scope, and return it.
908 if (NameKind
== Sema::LookupOrdinaryName
||
909 NameKind
== Sema::LookupRedeclarationWithLinkage
) {
910 IdentifierInfo
*II
= R
.getLookupName().getAsIdentifierInfo();
912 if (getLangOpts().CPlusPlus
&& NameKind
== Sema::LookupOrdinaryName
) {
913 if (II
== getASTContext().getMakeIntegerSeqName()) {
914 R
.addDecl(getASTContext().getMakeIntegerSeqDecl());
916 } else if (II
== getASTContext().getTypePackElementName()) {
917 R
.addDecl(getASTContext().getTypePackElementDecl());
922 // Check if this is an OpenCL Builtin, and if so, insert its overloads.
923 if (getLangOpts().OpenCL
&& getLangOpts().DeclareOpenCLBuiltins
) {
924 auto Index
= isOpenCLBuiltin(II
->getName());
926 InsertOCLBuiltinDeclarationsFromTable(*this, R
, II
, Index
.first
- 1,
932 if (DeclareRISCVVBuiltins
) {
933 if (!RVIntrinsicManager
)
934 RVIntrinsicManager
= CreateRISCVIntrinsicManager(*this);
936 if (RVIntrinsicManager
->CreateIntrinsicIfFound(R
, II
, PP
))
940 // If this is a builtin on this (or all) targets, create the decl.
941 if (unsigned BuiltinID
= II
->getBuiltinID()) {
942 // In C++, C2x, and OpenCL (spec v1.2 s6.9.f), we don't have any
943 // predefined library functions like 'malloc'. Instead, we'll just
945 if ((getLangOpts().CPlusPlus
|| getLangOpts().OpenCL
||
946 getLangOpts().C2x
) &&
947 Context
.BuiltinInfo
.isPredefinedLibFunction(BuiltinID
))
951 LazilyCreateBuiltin(II
, BuiltinID
, TUScope
,
952 R
.isForRedeclaration(), R
.getNameLoc())) {
963 /// Looks up the declaration of "struct objc_super" and
964 /// saves it for later use in building builtin declaration of
965 /// objc_msgSendSuper and objc_msgSendSuper_stret.
966 static void LookupPredefedObjCSuperType(Sema
&Sema
, Scope
*S
) {
967 ASTContext
&Context
= Sema
.Context
;
968 LookupResult
Result(Sema
, &Context
.Idents
.get("objc_super"), SourceLocation(),
969 Sema::LookupTagName
);
970 Sema
.LookupName(Result
, S
);
971 if (Result
.getResultKind() == LookupResult::Found
)
972 if (const TagDecl
*TD
= Result
.getAsSingle
<TagDecl
>())
973 Context
.setObjCSuperType(Context
.getTagDeclType(TD
));
976 void Sema::LookupNecessaryTypesForBuiltin(Scope
*S
, unsigned ID
) {
977 if (ID
== Builtin::BIobjc_msgSendSuper
)
978 LookupPredefedObjCSuperType(*this, S
);
981 /// Determine whether we can declare a special member function within
982 /// the class at this point.
983 static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl
*Class
) {
984 // We need to have a definition for the class.
985 if (!Class
->getDefinition() || Class
->isDependentContext())
988 // We can't be in the middle of defining the class.
989 return !Class
->isBeingDefined();
992 void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl
*Class
) {
993 if (!CanDeclareSpecialMemberFunction(Class
))
996 // If the default constructor has not yet been declared, do so now.
997 if (Class
->needsImplicitDefaultConstructor())
998 DeclareImplicitDefaultConstructor(Class
);
1000 // If the copy constructor has not yet been declared, do so now.
1001 if (Class
->needsImplicitCopyConstructor())
1002 DeclareImplicitCopyConstructor(Class
);
1004 // If the copy assignment operator has not yet been declared, do so now.
1005 if (Class
->needsImplicitCopyAssignment())
1006 DeclareImplicitCopyAssignment(Class
);
1008 if (getLangOpts().CPlusPlus11
) {
1009 // If the move constructor has not yet been declared, do so now.
1010 if (Class
->needsImplicitMoveConstructor())
1011 DeclareImplicitMoveConstructor(Class
);
1013 // If the move assignment operator has not yet been declared, do so now.
1014 if (Class
->needsImplicitMoveAssignment())
1015 DeclareImplicitMoveAssignment(Class
);
1018 // If the destructor has not yet been declared, do so now.
1019 if (Class
->needsImplicitDestructor())
1020 DeclareImplicitDestructor(Class
);
1023 /// Determine whether this is the name of an implicitly-declared
1024 /// special member function.
1025 static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name
) {
1026 switch (Name
.getNameKind()) {
1027 case DeclarationName::CXXConstructorName
:
1028 case DeclarationName::CXXDestructorName
:
1031 case DeclarationName::CXXOperatorName
:
1032 return Name
.getCXXOverloadedOperator() == OO_Equal
;
1041 /// If there are any implicit member functions with the given name
1042 /// that need to be declared in the given declaration context, do so.
1043 static void DeclareImplicitMemberFunctionsWithName(Sema
&S
,
1044 DeclarationName Name
,
1046 const DeclContext
*DC
) {
1050 switch (Name
.getNameKind()) {
1051 case DeclarationName::CXXConstructorName
:
1052 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
))
1053 if (Record
->getDefinition() && CanDeclareSpecialMemberFunction(Record
)) {
1054 CXXRecordDecl
*Class
= const_cast<CXXRecordDecl
*>(Record
);
1055 if (Record
->needsImplicitDefaultConstructor())
1056 S
.DeclareImplicitDefaultConstructor(Class
);
1057 if (Record
->needsImplicitCopyConstructor())
1058 S
.DeclareImplicitCopyConstructor(Class
);
1059 if (S
.getLangOpts().CPlusPlus11
&&
1060 Record
->needsImplicitMoveConstructor())
1061 S
.DeclareImplicitMoveConstructor(Class
);
1065 case DeclarationName::CXXDestructorName
:
1066 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
))
1067 if (Record
->getDefinition() && Record
->needsImplicitDestructor() &&
1068 CanDeclareSpecialMemberFunction(Record
))
1069 S
.DeclareImplicitDestructor(const_cast<CXXRecordDecl
*>(Record
));
1072 case DeclarationName::CXXOperatorName
:
1073 if (Name
.getCXXOverloadedOperator() != OO_Equal
)
1076 if (const CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(DC
)) {
1077 if (Record
->getDefinition() && CanDeclareSpecialMemberFunction(Record
)) {
1078 CXXRecordDecl
*Class
= const_cast<CXXRecordDecl
*>(Record
);
1079 if (Record
->needsImplicitCopyAssignment())
1080 S
.DeclareImplicitCopyAssignment(Class
);
1081 if (S
.getLangOpts().CPlusPlus11
&&
1082 Record
->needsImplicitMoveAssignment())
1083 S
.DeclareImplicitMoveAssignment(Class
);
1088 case DeclarationName::CXXDeductionGuideName
:
1089 S
.DeclareImplicitDeductionGuides(Name
.getCXXDeductionGuideTemplate(), Loc
);
1097 // Adds all qualifying matches for a name within a decl context to the
1098 // given lookup result. Returns true if any matches were found.
1099 static bool LookupDirect(Sema
&S
, LookupResult
&R
, const DeclContext
*DC
) {
1102 // Lazily declare C++ special member functions.
1103 if (S
.getLangOpts().CPlusPlus
)
1104 DeclareImplicitMemberFunctionsWithName(S
, R
.getLookupName(), R
.getNameLoc(),
1107 // Perform lookup into this declaration context.
1108 DeclContext::lookup_result DR
= DC
->lookup(R
.getLookupName());
1109 for (NamedDecl
*D
: DR
) {
1110 if ((D
= R
.getAcceptableDecl(D
))) {
1116 if (!Found
&& DC
->isTranslationUnit() && S
.LookupBuiltin(R
))
1119 if (R
.getLookupName().getNameKind()
1120 != DeclarationName::CXXConversionFunctionName
||
1121 R
.getLookupName().getCXXNameType()->isDependentType() ||
1122 !isa
<CXXRecordDecl
>(DC
))
1125 // C++ [temp.mem]p6:
1126 // A specialization of a conversion function template is not found by
1127 // name lookup. Instead, any conversion function templates visible in the
1128 // context of the use are considered. [...]
1129 const CXXRecordDecl
*Record
= cast
<CXXRecordDecl
>(DC
);
1130 if (!Record
->isCompleteDefinition())
1133 // For conversion operators, 'operator auto' should only match
1134 // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
1135 // as a candidate for template substitution.
1136 auto *ContainedDeducedType
=
1137 R
.getLookupName().getCXXNameType()->getContainedDeducedType();
1138 if (R
.getLookupName().getNameKind() ==
1139 DeclarationName::CXXConversionFunctionName
&&
1140 ContainedDeducedType
&& ContainedDeducedType
->isUndeducedType())
1143 for (CXXRecordDecl::conversion_iterator U
= Record
->conversion_begin(),
1144 UEnd
= Record
->conversion_end(); U
!= UEnd
; ++U
) {
1145 FunctionTemplateDecl
*ConvTemplate
= dyn_cast
<FunctionTemplateDecl
>(*U
);
1149 // When we're performing lookup for the purposes of redeclaration, just
1150 // add the conversion function template. When we deduce template
1151 // arguments for specializations, we'll end up unifying the return
1152 // type of the new declaration with the type of the function template.
1153 if (R
.isForRedeclaration()) {
1154 R
.addDecl(ConvTemplate
);
1159 // C++ [temp.mem]p6:
1160 // [...] For each such operator, if argument deduction succeeds
1161 // (14.9.2.3), the resulting specialization is used as if found by
1164 // When referencing a conversion function for any purpose other than
1165 // a redeclaration (such that we'll be building an expression with the
1166 // result), perform template argument deduction and place the
1167 // specialization into the result set. We do this to avoid forcing all
1168 // callers to perform special deduction for conversion functions.
1169 TemplateDeductionInfo
Info(R
.getNameLoc());
1170 FunctionDecl
*Specialization
= nullptr;
1172 const FunctionProtoType
*ConvProto
1173 = ConvTemplate
->getTemplatedDecl()->getType()->getAs
<FunctionProtoType
>();
1174 assert(ConvProto
&& "Nonsensical conversion function template type");
1176 // Compute the type of the function that we would expect the conversion
1177 // function to have, if it were to match the name given.
1178 // FIXME: Calling convention!
1179 FunctionProtoType::ExtProtoInfo EPI
= ConvProto
->getExtProtoInfo();
1180 EPI
.ExtInfo
= EPI
.ExtInfo
.withCallingConv(CC_C
);
1181 EPI
.ExceptionSpec
= EST_None
;
1182 QualType ExpectedType
1183 = R
.getSema().Context
.getFunctionType(R
.getLookupName().getCXXNameType(),
1186 // Perform template argument deduction against the type that we would
1187 // expect the function to have.
1188 if (R
.getSema().DeduceTemplateArguments(ConvTemplate
, nullptr, ExpectedType
,
1189 Specialization
, Info
)
1190 == Sema::TDK_Success
) {
1191 R
.addDecl(Specialization
);
1199 // Performs C++ unqualified lookup into the given file context.
1201 CppNamespaceLookup(Sema
&S
, LookupResult
&R
, ASTContext
&Context
,
1202 DeclContext
*NS
, UnqualUsingDirectiveSet
&UDirs
) {
1204 assert(NS
&& NS
->isFileContext() && "CppNamespaceLookup() requires namespace!");
1206 // Perform direct name lookup into the LookupCtx.
1207 bool Found
= LookupDirect(S
, R
, NS
);
1209 // Perform direct name lookup into the namespaces nominated by the
1210 // using directives whose common ancestor is this namespace.
1211 for (const UnqualUsingEntry
&UUE
: UDirs
.getNamespacesFor(NS
))
1212 if (LookupDirect(S
, R
, UUE
.getNominatedNamespace()))
1220 static bool isNamespaceOrTranslationUnitScope(Scope
*S
) {
1221 if (DeclContext
*Ctx
= S
->getEntity())
1222 return Ctx
->isFileContext();
1226 /// Find the outer declaration context from this scope. This indicates the
1227 /// context that we should search up to (exclusive) before considering the
1228 /// parent of the specified scope.
1229 static DeclContext
*findOuterContext(Scope
*S
) {
1230 for (Scope
*OuterS
= S
->getParent(); OuterS
; OuterS
= OuterS
->getParent())
1231 if (DeclContext
*DC
= OuterS
->getLookupEntity())
1237 /// An RAII object to specify that we want to find block scope extern
1239 struct FindLocalExternScope
{
1240 FindLocalExternScope(LookupResult
&R
)
1241 : R(R
), OldFindLocalExtern(R
.getIdentifierNamespace() &
1242 Decl::IDNS_LocalExtern
) {
1243 R
.setFindLocalExtern(R
.getIdentifierNamespace() &
1244 (Decl::IDNS_Ordinary
| Decl::IDNS_NonMemberOperator
));
1247 R
.setFindLocalExtern(OldFindLocalExtern
);
1249 ~FindLocalExternScope() {
1253 bool OldFindLocalExtern
;
1255 } // end anonymous namespace
1257 bool Sema::CppLookupName(LookupResult
&R
, Scope
*S
) {
1258 assert(getLangOpts().CPlusPlus
&& "Can perform only C++ lookup");
1260 DeclarationName Name
= R
.getLookupName();
1261 Sema::LookupNameKind NameKind
= R
.getLookupKind();
1263 // If this is the name of an implicitly-declared special member function,
1264 // go through the scope stack to implicitly declare
1265 if (isImplicitlyDeclaredMemberFunctionName(Name
)) {
1266 for (Scope
*PreS
= S
; PreS
; PreS
= PreS
->getParent())
1267 if (DeclContext
*DC
= PreS
->getEntity())
1268 DeclareImplicitMemberFunctionsWithName(*this, Name
, R
.getNameLoc(), DC
);
1271 // Implicitly declare member functions with the name we're looking for, if in
1272 // fact we are in a scope where it matters.
1275 IdentifierResolver::iterator
1276 I
= IdResolver
.begin(Name
),
1277 IEnd
= IdResolver
.end();
1279 // First we lookup local scope.
1280 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1281 // ...During unqualified name lookup (3.4.1), the names appear as if
1282 // they were declared in the nearest enclosing namespace which contains
1283 // both the using-directive and the nominated namespace.
1284 // [Note: in this context, "contains" means "contains directly or
1288 // namespace A { int i; }
1292 // using namespace A;
1293 // ++i; // finds local 'i', A::i appears at global scope
1297 UnqualUsingDirectiveSet
UDirs(*this);
1298 bool VisitedUsingDirectives
= false;
1299 bool LeftStartingScope
= false;
1301 // When performing a scope lookup, we want to find local extern decls.
1302 FindLocalExternScope
FindLocals(R
);
1304 for (; S
&& !isNamespaceOrTranslationUnitScope(S
); S
= S
->getParent()) {
1305 bool SearchNamespaceScope
= true;
1306 // Check whether the IdResolver has anything in this scope.
1307 for (; I
!= IEnd
&& S
->isDeclScope(*I
); ++I
) {
1308 if (NamedDecl
*ND
= R
.getAcceptableDecl(*I
)) {
1309 if (NameKind
== LookupRedeclarationWithLinkage
&&
1310 !(*I
)->isTemplateParameter()) {
1311 // If it's a template parameter, we still find it, so we can diagnose
1312 // the invalid redeclaration.
1314 // Determine whether this (or a previous) declaration is
1316 if (!LeftStartingScope
&& !Initial
->isDeclScope(*I
))
1317 LeftStartingScope
= true;
1319 // If we found something outside of our starting scope that
1320 // does not have linkage, skip it.
1321 if (LeftStartingScope
&& !((*I
)->hasLinkage())) {
1326 // We found something in this scope, we should not look at the
1328 SearchNamespaceScope
= false;
1333 if (!SearchNamespaceScope
) {
1335 if (S
->isClassScope())
1336 if (CXXRecordDecl
*Record
=
1337 dyn_cast_or_null
<CXXRecordDecl
>(S
->getEntity()))
1338 R
.setNamingClass(Record
);
1342 if (NameKind
== LookupLocalFriendName
&& !S
->isClassScope()) {
1343 // C++11 [class.friend]p11:
1344 // If a friend declaration appears in a local class and the name
1345 // specified is an unqualified name, a prior declaration is
1346 // looked up without considering scopes that are outside the
1347 // innermost enclosing non-class scope.
1351 if (DeclContext
*Ctx
= S
->getLookupEntity()) {
1352 DeclContext
*OuterCtx
= findOuterContext(S
);
1353 for (; Ctx
&& !Ctx
->Equals(OuterCtx
); Ctx
= Ctx
->getLookupParent()) {
1354 // We do not directly look into transparent contexts, since
1355 // those entities will be found in the nearest enclosing
1356 // non-transparent context.
1357 if (Ctx
->isTransparentContext())
1360 // We do not look directly into function or method contexts,
1361 // since all of the local variables and parameters of the
1362 // function/method are present within the Scope.
1363 if (Ctx
->isFunctionOrMethod()) {
1364 // If we have an Objective-C instance method, look for ivars
1365 // in the corresponding interface.
1366 if (ObjCMethodDecl
*Method
= dyn_cast
<ObjCMethodDecl
>(Ctx
)) {
1367 if (Method
->isInstanceMethod() && Name
.getAsIdentifierInfo())
1368 if (ObjCInterfaceDecl
*Class
= Method
->getClassInterface()) {
1369 ObjCInterfaceDecl
*ClassDeclared
;
1370 if (ObjCIvarDecl
*Ivar
= Class
->lookupInstanceVariable(
1371 Name
.getAsIdentifierInfo(),
1373 if (NamedDecl
*ND
= R
.getAcceptableDecl(Ivar
)) {
1385 // If this is a file context, we need to perform unqualified name
1386 // lookup considering using directives.
1387 if (Ctx
->isFileContext()) {
1388 // If we haven't handled using directives yet, do so now.
1389 if (!VisitedUsingDirectives
) {
1390 // Add using directives from this context up to the top level.
1391 for (DeclContext
*UCtx
= Ctx
; UCtx
; UCtx
= UCtx
->getParent()) {
1392 if (UCtx
->isTransparentContext())
1395 UDirs
.visit(UCtx
, UCtx
);
1398 // Find the innermost file scope, so we can add using directives
1399 // from local scopes.
1400 Scope
*InnermostFileScope
= S
;
1401 while (InnermostFileScope
&&
1402 !isNamespaceOrTranslationUnitScope(InnermostFileScope
))
1403 InnermostFileScope
= InnermostFileScope
->getParent();
1404 UDirs
.visitScopeChain(Initial
, InnermostFileScope
);
1408 VisitedUsingDirectives
= true;
1411 if (CppNamespaceLookup(*this, R
, Context
, Ctx
, UDirs
)) {
1419 // Perform qualified name lookup into this context.
1420 // FIXME: In some cases, we know that every name that could be found by
1421 // this qualified name lookup will also be on the identifier chain. For
1422 // example, inside a class without any base classes, we never need to
1423 // perform qualified lookup because all of the members are on top of the
1424 // identifier chain.
1425 if (LookupQualifiedName(R
, Ctx
, /*InUnqualifiedLookup=*/true))
1431 // Stop if we ran out of scopes.
1432 // FIXME: This really, really shouldn't be happening.
1433 if (!S
) return false;
1435 // If we are looking for members, no need to look into global/namespace scope.
1436 if (NameKind
== LookupMemberName
)
1439 // Collect UsingDirectiveDecls in all scopes, and recursively all
1440 // nominated namespaces by those using-directives.
1442 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1443 // don't build it for each lookup!
1444 if (!VisitedUsingDirectives
) {
1445 UDirs
.visitScopeChain(Initial
, S
);
1449 // If we're not performing redeclaration lookup, do not look for local
1450 // extern declarations outside of a function scope.
1451 if (!R
.isForRedeclaration())
1452 FindLocals
.restore();
1454 // Lookup namespace scope, and global scope.
1455 // Unqualified name lookup in C++ requires looking into scopes
1456 // that aren't strictly lexical, and therefore we walk through the
1457 // context as well as walking through the scopes.
1458 for (; S
; S
= S
->getParent()) {
1459 // Check whether the IdResolver has anything in this scope.
1461 for (; I
!= IEnd
&& S
->isDeclScope(*I
); ++I
) {
1462 if (NamedDecl
*ND
= R
.getAcceptableDecl(*I
)) {
1463 // We found something. Look for anything else in our scope
1464 // with this same name and in an acceptable identifier
1465 // namespace, so that we can construct an overload set if we
1472 if (Found
&& S
->isTemplateParamScope()) {
1477 DeclContext
*Ctx
= S
->getLookupEntity();
1479 DeclContext
*OuterCtx
= findOuterContext(S
);
1480 for (; Ctx
&& !Ctx
->Equals(OuterCtx
); Ctx
= Ctx
->getLookupParent()) {
1481 // We do not directly look into transparent contexts, since
1482 // those entities will be found in the nearest enclosing
1483 // non-transparent context.
1484 if (Ctx
->isTransparentContext())
1487 // If we have a context, and it's not a context stashed in the
1488 // template parameter scope for an out-of-line definition, also
1489 // look into that context.
1490 if (!(Found
&& S
->isTemplateParamScope())) {
1491 assert(Ctx
->isFileContext() &&
1492 "We should have been looking only at file context here already.");
1494 // Look into context considering using-directives.
1495 if (CppNamespaceLookup(*this, R
, Context
, Ctx
, UDirs
))
1504 if (R
.isForRedeclaration() && !Ctx
->isTransparentContext())
1509 if (R
.isForRedeclaration() && Ctx
&& !Ctx
->isTransparentContext())
1516 void Sema::makeMergedDefinitionVisible(NamedDecl
*ND
) {
1517 if (auto *M
= getCurrentModule())
1518 Context
.mergeDefinitionIntoModule(ND
, M
);
1520 // We're not building a module; just make the definition visible.
1521 ND
->setVisibleDespiteOwningModule();
1523 // If ND is a template declaration, make the template parameters
1524 // visible too. They're not (necessarily) within a mergeable DeclContext.
1525 if (auto *TD
= dyn_cast
<TemplateDecl
>(ND
))
1526 for (auto *Param
: *TD
->getTemplateParameters())
1527 makeMergedDefinitionVisible(Param
);
1530 /// Find the module in which the given declaration was defined.
1531 static Module
*getDefiningModule(Sema
&S
, Decl
*Entity
) {
1532 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(Entity
)) {
1533 // If this function was instantiated from a template, the defining module is
1534 // the module containing the pattern.
1535 if (FunctionDecl
*Pattern
= FD
->getTemplateInstantiationPattern())
1537 } else if (CXXRecordDecl
*RD
= dyn_cast
<CXXRecordDecl
>(Entity
)) {
1538 if (CXXRecordDecl
*Pattern
= RD
->getTemplateInstantiationPattern())
1540 } else if (EnumDecl
*ED
= dyn_cast
<EnumDecl
>(Entity
)) {
1541 if (auto *Pattern
= ED
->getTemplateInstantiationPattern())
1543 } else if (VarDecl
*VD
= dyn_cast
<VarDecl
>(Entity
)) {
1544 if (VarDecl
*Pattern
= VD
->getTemplateInstantiationPattern())
1548 // Walk up to the containing context. That might also have been instantiated
1550 DeclContext
*Context
= Entity
->getLexicalDeclContext();
1551 if (Context
->isFileContext())
1552 return S
.getOwningModule(Entity
);
1553 return getDefiningModule(S
, cast
<Decl
>(Context
));
1556 llvm::DenseSet
<Module
*> &Sema::getLookupModules() {
1557 unsigned N
= CodeSynthesisContexts
.size();
1558 for (unsigned I
= CodeSynthesisContextLookupModules
.size();
1560 Module
*M
= CodeSynthesisContexts
[I
].Entity
?
1561 getDefiningModule(*this, CodeSynthesisContexts
[I
].Entity
) :
1563 if (M
&& !LookupModulesCache
.insert(M
).second
)
1565 CodeSynthesisContextLookupModules
.push_back(M
);
1567 return LookupModulesCache
;
1570 /// Determine if we could use all the declarations in the module.
1571 bool Sema::isUsableModule(const Module
*M
) {
1572 assert(M
&& "We shouldn't check nullness for module here");
1573 // Return quickly if we cached the result.
1574 if (UsableModuleUnitsCache
.count(M
))
1577 // If M is the global module fragment of the current translation unit. So it
1578 // should be usable.
1579 // [module.global.frag]p1:
1580 // The global module fragment can be used to provide declarations that are
1581 // attached to the global module and usable within the module unit.
1582 if (M
== GlobalModuleFragment
||
1583 // If M is the module we're parsing, it should be usable. This covers the
1584 // private module fragment. The private module fragment is usable only if
1585 // it is within the current module unit. And it must be the current
1586 // parsing module unit if it is within the current module unit according
1587 // to the grammar of the private module fragment. NOTE: This is covered by
1588 // the following condition. The intention of the check is to avoid string
1589 // comparison as much as possible.
1590 M
== getCurrentModule() ||
1591 // The module unit which is in the same module with the current module
1594 // FIXME: Here we judge if they are in the same module by comparing the
1595 // string. Is there any better solution?
1596 M
->getPrimaryModuleInterfaceName() ==
1597 llvm::StringRef(getLangOpts().CurrentModule
).split(':').first
) {
1598 UsableModuleUnitsCache
.insert(M
);
1605 bool Sema::hasVisibleMergedDefinition(NamedDecl
*Def
) {
1606 for (const Module
*Merged
: Context
.getModulesWithMergedDefinition(Def
))
1607 if (isModuleVisible(Merged
))
1612 bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl
*Def
) {
1613 for (const Module
*Merged
: Context
.getModulesWithMergedDefinition(Def
))
1614 if (isUsableModule(Merged
))
1619 template <typename ParmDecl
>
1621 hasAcceptableDefaultArgument(Sema
&S
, const ParmDecl
*D
,
1622 llvm::SmallVectorImpl
<Module
*> *Modules
,
1623 Sema::AcceptableKind Kind
) {
1624 if (!D
->hasDefaultArgument())
1627 llvm::SmallDenseSet
<const ParmDecl
*, 4> Visited
;
1628 while (D
&& !Visited
.count(D
)) {
1631 auto &DefaultArg
= D
->getDefaultArgStorage();
1632 if (!DefaultArg
.isInherited() && S
.isAcceptable(D
, Kind
))
1635 if (!DefaultArg
.isInherited() && Modules
) {
1636 auto *NonConstD
= const_cast<ParmDecl
*>(D
);
1637 Modules
->push_back(S
.getOwningModule(NonConstD
));
1640 // If there was a previous default argument, maybe its parameter is
1642 D
= DefaultArg
.getInheritedFrom();
1647 bool Sema::hasAcceptableDefaultArgument(
1648 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
,
1649 Sema::AcceptableKind Kind
) {
1650 if (auto *P
= dyn_cast
<TemplateTypeParmDecl
>(D
))
1651 return ::hasAcceptableDefaultArgument(*this, P
, Modules
, Kind
);
1653 if (auto *P
= dyn_cast
<NonTypeTemplateParmDecl
>(D
))
1654 return ::hasAcceptableDefaultArgument(*this, P
, Modules
, Kind
);
1656 return ::hasAcceptableDefaultArgument(
1657 *this, cast
<TemplateTemplateParmDecl
>(D
), Modules
, Kind
);
1660 bool Sema::hasVisibleDefaultArgument(const NamedDecl
*D
,
1661 llvm::SmallVectorImpl
<Module
*> *Modules
) {
1662 return hasAcceptableDefaultArgument(D
, Modules
,
1663 Sema::AcceptableKind::Visible
);
1666 bool Sema::hasReachableDefaultArgument(
1667 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1668 return hasAcceptableDefaultArgument(D
, Modules
,
1669 Sema::AcceptableKind::Reachable
);
1672 template <typename Filter
>
1674 hasAcceptableDeclarationImpl(Sema
&S
, const NamedDecl
*D
,
1675 llvm::SmallVectorImpl
<Module
*> *Modules
, Filter F
,
1676 Sema::AcceptableKind Kind
) {
1677 bool HasFilteredRedecls
= false;
1679 for (auto *Redecl
: D
->redecls()) {
1680 auto *R
= cast
<NamedDecl
>(Redecl
);
1684 if (S
.isAcceptable(R
, Kind
))
1687 HasFilteredRedecls
= true;
1690 Modules
->push_back(R
->getOwningModule());
1693 // Only return false if there is at least one redecl that is not filtered out.
1694 if (HasFilteredRedecls
)
1701 hasAcceptableExplicitSpecialization(Sema
&S
, const NamedDecl
*D
,
1702 llvm::SmallVectorImpl
<Module
*> *Modules
,
1703 Sema::AcceptableKind Kind
) {
1704 return hasAcceptableDeclarationImpl(
1706 [](const NamedDecl
*D
) {
1707 if (auto *RD
= dyn_cast
<CXXRecordDecl
>(D
))
1708 return RD
->getTemplateSpecializationKind() ==
1709 TSK_ExplicitSpecialization
;
1710 if (auto *FD
= dyn_cast
<FunctionDecl
>(D
))
1711 return FD
->getTemplateSpecializationKind() ==
1712 TSK_ExplicitSpecialization
;
1713 if (auto *VD
= dyn_cast
<VarDecl
>(D
))
1714 return VD
->getTemplateSpecializationKind() ==
1715 TSK_ExplicitSpecialization
;
1716 llvm_unreachable("unknown explicit specialization kind");
1721 bool Sema::hasVisibleExplicitSpecialization(
1722 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1723 return ::hasAcceptableExplicitSpecialization(*this, D
, Modules
,
1724 Sema::AcceptableKind::Visible
);
1727 bool Sema::hasReachableExplicitSpecialization(
1728 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1729 return ::hasAcceptableExplicitSpecialization(*this, D
, Modules
,
1730 Sema::AcceptableKind::Reachable
);
1734 hasAcceptableMemberSpecialization(Sema
&S
, const NamedDecl
*D
,
1735 llvm::SmallVectorImpl
<Module
*> *Modules
,
1736 Sema::AcceptableKind Kind
) {
1737 assert(isa
<CXXRecordDecl
>(D
->getDeclContext()) &&
1738 "not a member specialization");
1739 return hasAcceptableDeclarationImpl(
1741 [](const NamedDecl
*D
) {
1742 // If the specialization is declared at namespace scope, then it's a
1743 // member specialization declaration. If it's lexically inside the class
1744 // definition then it was instantiated.
1746 // FIXME: This is a hack. There should be a better way to determine
1748 // FIXME: What about MS-style explicit specializations declared within a
1749 // class definition?
1750 return D
->getLexicalDeclContext()->isFileContext();
1755 bool Sema::hasVisibleMemberSpecialization(
1756 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1757 return hasAcceptableMemberSpecialization(*this, D
, Modules
,
1758 Sema::AcceptableKind::Visible
);
1761 bool Sema::hasReachableMemberSpecialization(
1762 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
1763 return hasAcceptableMemberSpecialization(*this, D
, Modules
,
1764 Sema::AcceptableKind::Reachable
);
1767 /// Determine whether a declaration is acceptable to name lookup.
1769 /// This routine determines whether the declaration D is acceptable in the
1770 /// current lookup context, taking into account the current template
1771 /// instantiation stack. During template instantiation, a declaration is
1772 /// acceptable if it is acceptable from a module containing any entity on the
1773 /// template instantiation path (by instantiating a template, you allow it to
1774 /// see the declarations that your module can see, including those later on in
1776 bool LookupResult::isAcceptableSlow(Sema
&SemaRef
, NamedDecl
*D
,
1777 Sema::AcceptableKind Kind
) {
1778 assert(!D
->isUnconditionallyVisible() &&
1779 "should not call this: not in slow case");
1781 Module
*DeclModule
= SemaRef
.getOwningModule(D
);
1782 assert(DeclModule
&& "hidden decl has no owning module");
1784 // If the owning module is visible, the decl is acceptable.
1785 if (SemaRef
.isModuleVisible(DeclModule
,
1786 D
->isInvisibleOutsideTheOwningModule()))
1789 // Determine whether a decl context is a file context for the purpose of
1790 // visibility/reachability. This looks through some (export and linkage spec)
1791 // transparent contexts, but not others (enums).
1792 auto IsEffectivelyFileContext
= [](const DeclContext
*DC
) {
1793 return DC
->isFileContext() || isa
<LinkageSpecDecl
>(DC
) ||
1794 isa
<ExportDecl
>(DC
);
1797 // If this declaration is not at namespace scope
1798 // then it is acceptable if its lexical parent has a acceptable definition.
1799 DeclContext
*DC
= D
->getLexicalDeclContext();
1800 if (DC
&& !IsEffectivelyFileContext(DC
)) {
1801 // For a parameter, check whether our current template declaration's
1802 // lexical context is acceptable, not whether there's some other acceptable
1803 // definition of it, because parameters aren't "within" the definition.
1805 // In C++ we need to check for a acceptable definition due to ODR merging,
1806 // and in C we must not because each declaration of a function gets its own
1807 // set of declarations for tags in prototype scope.
1808 bool AcceptableWithinParent
;
1809 if (D
->isTemplateParameter()) {
1810 bool SearchDefinitions
= true;
1811 if (const auto *DCD
= dyn_cast
<Decl
>(DC
)) {
1812 if (const auto *TD
= DCD
->getDescribedTemplate()) {
1813 TemplateParameterList
*TPL
= TD
->getTemplateParameters();
1814 auto Index
= getDepthAndIndex(D
).second
;
1815 SearchDefinitions
= Index
>= TPL
->size() || TPL
->getParam(Index
) != D
;
1818 if (SearchDefinitions
)
1819 AcceptableWithinParent
=
1820 SemaRef
.hasAcceptableDefinition(cast
<NamedDecl
>(DC
), Kind
);
1822 AcceptableWithinParent
=
1823 isAcceptable(SemaRef
, cast
<NamedDecl
>(DC
), Kind
);
1824 } else if (isa
<ParmVarDecl
>(D
) ||
1825 (isa
<FunctionDecl
>(DC
) && !SemaRef
.getLangOpts().CPlusPlus
))
1826 AcceptableWithinParent
= isAcceptable(SemaRef
, cast
<NamedDecl
>(DC
), Kind
);
1827 else if (D
->isModulePrivate()) {
1828 // A module-private declaration is only acceptable if an enclosing lexical
1829 // parent was merged with another definition in the current module.
1830 AcceptableWithinParent
= false;
1832 if (SemaRef
.hasMergedDefinitionInCurrentModule(cast
<NamedDecl
>(DC
))) {
1833 AcceptableWithinParent
= true;
1836 DC
= DC
->getLexicalParent();
1837 } while (!IsEffectivelyFileContext(DC
));
1839 AcceptableWithinParent
=
1840 SemaRef
.hasAcceptableDefinition(cast
<NamedDecl
>(DC
), Kind
);
1843 if (AcceptableWithinParent
&& SemaRef
.CodeSynthesisContexts
.empty() &&
1844 Kind
== Sema::AcceptableKind::Visible
&&
1845 // FIXME: Do something better in this case.
1846 !SemaRef
.getLangOpts().ModulesLocalVisibility
) {
1847 // Cache the fact that this declaration is implicitly visible because
1848 // its parent has a visible definition.
1849 D
->setVisibleDespiteOwningModule();
1851 return AcceptableWithinParent
;
1854 if (Kind
== Sema::AcceptableKind::Visible
)
1857 assert(Kind
== Sema::AcceptableKind::Reachable
&&
1858 "Additional Sema::AcceptableKind?");
1859 return isReachableSlow(SemaRef
, D
);
1862 bool Sema::isModuleVisible(const Module
*M
, bool ModulePrivate
) {
1863 // [module.global.frag]p2:
1864 // A global-module-fragment specifies the contents of the global module
1865 // fragment for a module unit. The global module fragment can be used to
1866 // provide declarations that are attached to the global module and usable
1867 // within the module unit.
1869 // Global module fragment is special. Global Module fragment is only usable
1870 // within the module unit it got defined [module.global.frag]p2. So here we
1871 // check if the Module is the global module fragment in current translation
1873 if (M
->isGlobalModule() && M
!= this->GlobalModuleFragment
)
1876 // The module might be ordinarily visible. For a module-private query, that
1877 // means it is part of the current module.
1878 if (ModulePrivate
&& isUsableModule(M
))
1881 // For a query which is not module-private, that means it is in our visible
1883 if (!ModulePrivate
&& VisibleModules
.isVisible(M
))
1886 // Otherwise, it might be visible by virtue of the query being within a
1887 // template instantiation or similar that is permitted to look inside M.
1889 // Find the extra places where we need to look.
1890 const auto &LookupModules
= getLookupModules();
1891 if (LookupModules
.empty())
1894 // If our lookup set contains the module, it's visible.
1895 if (LookupModules
.count(M
))
1898 // For a module-private query, that's everywhere we get to look.
1902 // Check whether M is transitively exported to an import of the lookup set.
1903 return llvm::any_of(LookupModules
, [&](const Module
*LookupM
) {
1904 return LookupM
->isModuleVisible(M
);
1908 // FIXME: Return false directly if we don't have an interface dependency on the
1909 // translation unit containing D.
1910 bool LookupResult::isReachableSlow(Sema
&SemaRef
, NamedDecl
*D
) {
1911 assert(!isVisible(SemaRef
, D
) && "Shouldn't call the slow case.\n");
1913 Module
*DeclModule
= SemaRef
.getOwningModule(D
);
1914 assert(DeclModule
&& "hidden decl has no owning module");
1916 // Entities in module map modules are reachable only if they're visible.
1917 if (DeclModule
->isModuleMapModule())
1920 // If D comes from a module and SemaRef doesn't own a module, it implies D
1921 // comes from another TU. In case SemaRef owns a module, we could judge if D
1922 // comes from another TU by comparing the module unit.
1923 if (SemaRef
.isModuleUnitOfCurrentTU(DeclModule
))
1926 // [module.reach]/p3:
1927 // A declaration D is reachable from a point P if:
1929 // - D is not discarded ([module.global.frag]), appears in a translation unit
1930 // that is reachable from P, and does not appear within a private module
1933 // A declaration that's discarded in the GMF should be module-private.
1934 if (D
->isModulePrivate())
1937 // [module.reach]/p1
1938 // A translation unit U is necessarily reachable from a point P if U is a
1939 // module interface unit on which the translation unit containing P has an
1940 // interface dependency, or the translation unit containing P imports U, in
1941 // either case prior to P ([module.import]).
1943 // [module.import]/p10
1944 // A translation unit has an interface dependency on a translation unit U if
1945 // it contains a declaration (possibly a module-declaration) that imports U
1946 // or if it has an interface dependency on a translation unit that has an
1947 // interface dependency on U.
1949 // So we could conclude the module unit U is necessarily reachable if:
1950 // (1) The module unit U is module interface unit.
1951 // (2) The current unit has an interface dependency on the module unit U.
1953 // Here we only check for the first condition. Since we couldn't see
1954 // DeclModule if it isn't (transitively) imported.
1955 if (DeclModule
->getTopLevelModule()->isModuleInterfaceUnit())
1958 // [module.reach]/p2
1959 // Additional translation units on
1960 // which the point within the program has an interface dependency may be
1961 // considered reachable, but it is unspecified which are and under what
1964 // The decision here is to treat all additional tranditional units as
1969 bool Sema::isAcceptableSlow(const NamedDecl
*D
, Sema::AcceptableKind Kind
) {
1970 return LookupResult::isAcceptable(*this, const_cast<NamedDecl
*>(D
), Kind
);
1973 bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult
&R
, const NamedDecl
*New
) {
1974 // FIXME: If there are both visible and hidden declarations, we need to take
1975 // into account whether redeclaration is possible. Example:
1977 // Non-imported module:
1980 // static int f(U); // #2, not a redeclaration of #1
1981 // int f(T); // #3, finds both, should link with #1 if T != U, but
1982 // // with #2 if T == U; neither should be ambiguous.
1986 assert(D
->isExternallyDeclarable() &&
1987 "should not have hidden, non-externally-declarable result here");
1990 // This function is called once "New" is essentially complete, but before a
1991 // previous declaration is attached. We can't query the linkage of "New" in
1992 // general, because attaching the previous declaration can change the
1993 // linkage of New to match the previous declaration.
1995 // However, because we've just determined that there is no *visible* prior
1996 // declaration, we can compute the linkage here. There are two possibilities:
1998 // * This is not a redeclaration; it's safe to compute the linkage now.
2000 // * This is a redeclaration of a prior declaration that is externally
2001 // redeclarable. In that case, the linkage of the declaration is not
2002 // changed by attaching the prior declaration, because both are externally
2003 // declarable (and thus ExternalLinkage or VisibleNoLinkage).
2005 // FIXME: This is subtle and fragile.
2006 return New
->isExternallyDeclarable();
2009 /// Retrieve the visible declaration corresponding to D, if any.
2011 /// This routine determines whether the declaration D is visible in the current
2012 /// module, with the current imports. If not, it checks whether any
2013 /// redeclaration of D is visible, and if so, returns that declaration.
2015 /// \returns D, or a visible previous declaration of D, whichever is more recent
2016 /// and visible. If no declaration of D is visible, returns null.
2017 static NamedDecl
*findAcceptableDecl(Sema
&SemaRef
, NamedDecl
*D
,
2019 assert(!LookupResult::isAvailableForLookup(SemaRef
, D
) && "not in slow case");
2021 for (auto *RD
: D
->redecls()) {
2022 // Don't bother with extra checks if we already know this one isn't visible.
2026 auto ND
= cast
<NamedDecl
>(RD
);
2027 // FIXME: This is wrong in the case where the previous declaration is not
2028 // visible in the same scope as D. This needs to be done much more
2030 if (ND
->isInIdentifierNamespace(IDNS
) &&
2031 LookupResult::isAvailableForLookup(SemaRef
, ND
))
2038 bool Sema::hasVisibleDeclarationSlow(const NamedDecl
*D
,
2039 llvm::SmallVectorImpl
<Module
*> *Modules
) {
2040 assert(!isVisible(D
) && "not in slow case");
2041 return hasAcceptableDeclarationImpl(
2042 *this, D
, Modules
, [](const NamedDecl
*) { return true; },
2043 Sema::AcceptableKind::Visible
);
2046 bool Sema::hasReachableDeclarationSlow(
2047 const NamedDecl
*D
, llvm::SmallVectorImpl
<Module
*> *Modules
) {
2048 assert(!isReachable(D
) && "not in slow case");
2049 return hasAcceptableDeclarationImpl(
2050 *this, D
, Modules
, [](const NamedDecl
*) { return true; },
2051 Sema::AcceptableKind::Reachable
);
2054 NamedDecl
*LookupResult::getAcceptableDeclSlow(NamedDecl
*D
) const {
2055 if (auto *ND
= dyn_cast
<NamespaceDecl
>(D
)) {
2056 // Namespaces are a bit of a special case: we expect there to be a lot of
2057 // redeclarations of some namespaces, all declarations of a namespace are
2058 // essentially interchangeable, all declarations are found by name lookup
2059 // if any is, and namespaces are never looked up during template
2060 // instantiation. So we benefit from caching the check in this case, and
2061 // it is correct to do so.
2062 auto *Key
= ND
->getCanonicalDecl();
2063 if (auto *Acceptable
= getSema().VisibleNamespaceCache
.lookup(Key
))
2065 auto *Acceptable
= isVisible(getSema(), Key
)
2067 : findAcceptableDecl(getSema(), Key
, IDNS
);
2069 getSema().VisibleNamespaceCache
.insert(std::make_pair(Key
, Acceptable
));
2073 return findAcceptableDecl(getSema(), D
, IDNS
);
2076 bool LookupResult::isVisible(Sema
&SemaRef
, NamedDecl
*D
) {
2077 // If this declaration is already visible, return it directly.
2078 if (D
->isUnconditionallyVisible())
2081 // During template instantiation, we can refer to hidden declarations, if
2082 // they were visible in any module along the path of instantiation.
2083 return isAcceptableSlow(SemaRef
, D
, Sema::AcceptableKind::Visible
);
2086 bool LookupResult::isReachable(Sema
&SemaRef
, NamedDecl
*D
) {
2087 if (D
->isUnconditionallyVisible())
2090 return isAcceptableSlow(SemaRef
, D
, Sema::AcceptableKind::Reachable
);
2093 bool LookupResult::isAvailableForLookup(Sema
&SemaRef
, NamedDecl
*ND
) {
2094 // We should check the visibility at the callsite already.
2095 if (isVisible(SemaRef
, ND
))
2098 // Deduction guide lives in namespace scope generally, but it is just a
2099 // hint to the compilers. What we actually lookup for is the generated member
2100 // of the corresponding template. So it is sufficient to check the
2101 // reachability of the template decl.
2102 if (auto *DeductionGuide
= ND
->getDeclName().getCXXDeductionGuideTemplate())
2103 return SemaRef
.hasReachableDefinition(DeductionGuide
);
2105 auto *DC
= ND
->getDeclContext();
2106 // If ND is not visible and it is at namespace scope, it shouldn't be found
2108 if (DC
->isFileContext())
2111 // [module.interface]p7
2112 // Class and enumeration member names can be found by name lookup in any
2113 // context in which a definition of the type is reachable.
2115 // FIXME: The current implementation didn't consider about scope. For example,
2123 // auto a = E1::e1; // Error as expected.
2124 // auto b = e1; // Should be error. namespace-scope name e1 is not visible
2127 // For the above example, the current implementation would emit error for `a`
2128 // correctly. However, the implementation wouldn't diagnose about `b` now.
2129 // Since we only check the reachability for the parent only.
2130 // See clang/test/CXX/module/module.interface/p7.cpp for example.
2131 if (auto *TD
= dyn_cast
<TagDecl
>(DC
))
2132 return SemaRef
.hasReachableDefinition(TD
);
2137 /// Perform unqualified name lookup starting from a given
2140 /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
2141 /// used to find names within the current scope. For example, 'x' in
2145 /// return x; // unqualified name look finds 'x' in the global scope
2149 /// Different lookup criteria can find different names. For example, a
2150 /// particular scope can have both a struct and a function of the same
2151 /// name, and each can be found by certain lookup criteria. For more
2152 /// information about lookup criteria, see the documentation for the
2153 /// class LookupCriteria.
2155 /// @param S The scope from which unqualified name lookup will
2156 /// begin. If the lookup criteria permits, name lookup may also search
2157 /// in the parent scopes.
2159 /// @param [in,out] R Specifies the lookup to perform (e.g., the name to
2160 /// look up and the lookup kind), and is updated with the results of lookup
2161 /// including zero or more declarations and possibly additional information
2162 /// used to diagnose ambiguities.
2164 /// @returns \c true if lookup succeeded and false otherwise.
2165 bool Sema::LookupName(LookupResult
&R
, Scope
*S
, bool AllowBuiltinCreation
,
2166 bool ForceNoCPlusPlus
) {
2167 DeclarationName Name
= R
.getLookupName();
2168 if (!Name
) return false;
2170 LookupNameKind NameKind
= R
.getLookupKind();
2172 if (!getLangOpts().CPlusPlus
|| ForceNoCPlusPlus
) {
2173 // Unqualified name lookup in C/Objective-C is purely lexical, so
2174 // search in the declarations attached to the name.
2175 if (NameKind
== Sema::LookupRedeclarationWithLinkage
) {
2176 // Find the nearest non-transparent declaration scope.
2177 while (!(S
->getFlags() & Scope::DeclScope
) ||
2178 (S
->getEntity() && S
->getEntity()->isTransparentContext()))
2182 // When performing a scope lookup, we want to find local extern decls.
2183 FindLocalExternScope
FindLocals(R
);
2185 // Scan up the scope chain looking for a decl that matches this
2186 // identifier that is in the appropriate namespace. This search
2187 // should not take long, as shadowing of names is uncommon, and
2188 // deep shadowing is extremely uncommon.
2189 bool LeftStartingScope
= false;
2191 for (IdentifierResolver::iterator I
= IdResolver
.begin(Name
),
2192 IEnd
= IdResolver
.end();
2194 if (NamedDecl
*D
= R
.getAcceptableDecl(*I
)) {
2195 if (NameKind
== LookupRedeclarationWithLinkage
) {
2196 // Determine whether this (or a previous) declaration is
2198 if (!LeftStartingScope
&& !S
->isDeclScope(*I
))
2199 LeftStartingScope
= true;
2201 // If we found something outside of our starting scope that
2202 // does not have linkage, skip it.
2203 if (LeftStartingScope
&& !((*I
)->hasLinkage())) {
2208 else if (NameKind
== LookupObjCImplicitSelfParam
&&
2209 !isa
<ImplicitParamDecl
>(*I
))
2214 // Check whether there are any other declarations with the same name
2215 // and in the same scope.
2217 // Find the scope in which this declaration was declared (if it
2218 // actually exists in a Scope).
2219 while (S
&& !S
->isDeclScope(D
))
2222 // If the scope containing the declaration is the translation unit,
2223 // then we'll need to perform our checks based on the matching
2224 // DeclContexts rather than matching scopes.
2225 if (S
&& isNamespaceOrTranslationUnitScope(S
))
2228 // Compute the DeclContext, if we need it.
2229 DeclContext
*DC
= nullptr;
2231 DC
= (*I
)->getDeclContext()->getRedeclContext();
2233 IdentifierResolver::iterator LastI
= I
;
2234 for (++LastI
; LastI
!= IEnd
; ++LastI
) {
2236 // Match based on scope.
2237 if (!S
->isDeclScope(*LastI
))
2240 // Match based on DeclContext.
2242 = (*LastI
)->getDeclContext()->getRedeclContext();
2243 if (!LastDC
->Equals(DC
))
2247 // If the declaration is in the right namespace and visible, add it.
2248 if (NamedDecl
*LastD
= R
.getAcceptableDecl(*LastI
))
2258 // Perform C++ unqualified name lookup.
2259 if (CppLookupName(R
, S
))
2263 // If we didn't find a use of this identifier, and if the identifier
2264 // corresponds to a compiler builtin, create the decl object for the builtin
2265 // now, injecting it into translation unit scope, and return it.
2266 if (AllowBuiltinCreation
&& LookupBuiltin(R
))
2269 // If we didn't find a use of this identifier, the ExternalSource
2270 // may be able to handle the situation.
2271 // Note: some lookup failures are expected!
2272 // See e.g. R.isForRedeclaration().
2273 return (ExternalSource
&& ExternalSource
->LookupUnqualified(R
, S
));
2276 /// Perform qualified name lookup in the namespaces nominated by
2277 /// using directives by the given context.
2279 /// C++98 [namespace.qual]p2:
2280 /// Given X::m (where X is a user-declared namespace), or given \::m
2281 /// (where X is the global namespace), let S be the set of all
2282 /// declarations of m in X and in the transitive closure of all
2283 /// namespaces nominated by using-directives in X and its used
2284 /// namespaces, except that using-directives are ignored in any
2285 /// namespace, including X, directly containing one or more
2286 /// declarations of m. No namespace is searched more than once in
2287 /// the lookup of a name. If S is the empty set, the program is
2288 /// ill-formed. Otherwise, if S has exactly one member, or if the
2289 /// context of the reference is a using-declaration
2290 /// (namespace.udecl), S is the required set of declarations of
2291 /// m. Otherwise if the use of m is not one that allows a unique
2292 /// declaration to be chosen from S, the program is ill-formed.
2294 /// C++98 [namespace.qual]p5:
2295 /// During the lookup of a qualified namespace member name, if the
2296 /// lookup finds more than one declaration of the member, and if one
2297 /// declaration introduces a class name or enumeration name and the
2298 /// other declarations either introduce the same object, the same
2299 /// enumerator or a set of functions, the non-type name hides the
2300 /// class or enumeration name if and only if the declarations are
2301 /// from the same namespace; otherwise (the declarations are from
2302 /// different namespaces), the program is ill-formed.
2303 static bool LookupQualifiedNameInUsingDirectives(Sema
&S
, LookupResult
&R
,
2304 DeclContext
*StartDC
) {
2305 assert(StartDC
->isFileContext() && "start context is not a file context");
2307 // We have not yet looked into these namespaces, much less added
2308 // their "using-children" to the queue.
2309 SmallVector
<NamespaceDecl
*, 8> Queue
;
2311 // We have at least added all these contexts to the queue.
2312 llvm::SmallPtrSet
<DeclContext
*, 8> Visited
;
2313 Visited
.insert(StartDC
);
2315 // We have already looked into the initial namespace; seed the queue
2316 // with its using-children.
2317 for (auto *I
: StartDC
->using_directives()) {
2318 NamespaceDecl
*ND
= I
->getNominatedNamespace()->getOriginalNamespace();
2319 if (S
.isVisible(I
) && Visited
.insert(ND
).second
)
2320 Queue
.push_back(ND
);
2323 // The easiest way to implement the restriction in [namespace.qual]p5
2324 // is to check whether any of the individual results found a tag
2325 // and, if so, to declare an ambiguity if the final result is not
2327 bool FoundTag
= false;
2328 bool FoundNonTag
= false;
2330 LookupResult
LocalR(LookupResult::Temporary
, R
);
2333 while (!Queue
.empty()) {
2334 NamespaceDecl
*ND
= Queue
.pop_back_val();
2336 // We go through some convolutions here to avoid copying results
2337 // between LookupResults.
2338 bool UseLocal
= !R
.empty();
2339 LookupResult
&DirectR
= UseLocal
? LocalR
: R
;
2340 bool FoundDirect
= LookupDirect(S
, DirectR
, ND
);
2343 // First do any local hiding.
2344 DirectR
.resolveKind();
2346 // If the local result is a tag, remember that.
2347 if (DirectR
.isSingleTagDecl())
2352 // Append the local results to the total results if necessary.
2354 R
.addAllDecls(LocalR
);
2359 // If we find names in this namespace, ignore its using directives.
2365 for (auto *I
: ND
->using_directives()) {
2366 NamespaceDecl
*Nom
= I
->getNominatedNamespace();
2367 if (S
.isVisible(I
) && Visited
.insert(Nom
).second
)
2368 Queue
.push_back(Nom
);
2373 if (FoundTag
&& FoundNonTag
)
2374 R
.setAmbiguousQualifiedTagHiding();
2382 /// Perform qualified name lookup into a given context.
2384 /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
2385 /// names when the context of those names is explicit specified, e.g.,
2386 /// "std::vector" or "x->member", or as part of unqualified name lookup.
2388 /// Different lookup criteria can find different names. For example, a
2389 /// particular scope can have both a struct and a function of the same
2390 /// name, and each can be found by certain lookup criteria. For more
2391 /// information about lookup criteria, see the documentation for the
2392 /// class LookupCriteria.
2394 /// \param R captures both the lookup criteria and any lookup results found.
2396 /// \param LookupCtx The context in which qualified name lookup will
2397 /// search. If the lookup criteria permits, name lookup may also search
2398 /// in the parent contexts or (for C++ classes) base classes.
2400 /// \param InUnqualifiedLookup true if this is qualified name lookup that
2401 /// occurs as part of unqualified name lookup.
2403 /// \returns true if lookup succeeded, false if it failed.
2404 bool Sema::LookupQualifiedName(LookupResult
&R
, DeclContext
*LookupCtx
,
2405 bool InUnqualifiedLookup
) {
2406 assert(LookupCtx
&& "Sema::LookupQualifiedName requires a lookup context");
2408 if (!R
.getLookupName())
2411 // Make sure that the declaration context is complete.
2412 assert((!isa
<TagDecl
>(LookupCtx
) ||
2413 LookupCtx
->isDependentContext() ||
2414 cast
<TagDecl
>(LookupCtx
)->isCompleteDefinition() ||
2415 cast
<TagDecl
>(LookupCtx
)->isBeingDefined()) &&
2416 "Declaration context must already be complete!");
2418 struct QualifiedLookupInScope
{
2420 DeclContext
*Context
;
2421 // Set flag in DeclContext informing debugger that we're looking for qualified name
2422 QualifiedLookupInScope(DeclContext
*ctx
) : Context(ctx
) {
2423 oldVal
= ctx
->setUseQualifiedLookup();
2425 ~QualifiedLookupInScope() {
2426 Context
->setUseQualifiedLookup(oldVal
);
2430 if (LookupDirect(*this, R
, LookupCtx
)) {
2432 if (isa
<CXXRecordDecl
>(LookupCtx
))
2433 R
.setNamingClass(cast
<CXXRecordDecl
>(LookupCtx
));
2437 // Don't descend into implied contexts for redeclarations.
2438 // C++98 [namespace.qual]p6:
2439 // In a declaration for a namespace member in which the
2440 // declarator-id is a qualified-id, given that the qualified-id
2441 // for the namespace member has the form
2442 // nested-name-specifier unqualified-id
2443 // the unqualified-id shall name a member of the namespace
2444 // designated by the nested-name-specifier.
2445 // See also [class.mfct]p5 and [class.static.data]p2.
2446 if (R
.isForRedeclaration())
2449 // If this is a namespace, look it up in the implied namespaces.
2450 if (LookupCtx
->isFileContext())
2451 return LookupQualifiedNameInUsingDirectives(*this, R
, LookupCtx
);
2453 // If this isn't a C++ class, we aren't allowed to look into base
2454 // classes, we're done.
2455 CXXRecordDecl
*LookupRec
= dyn_cast
<CXXRecordDecl
>(LookupCtx
);
2456 if (!LookupRec
|| !LookupRec
->getDefinition())
2459 // We're done for lookups that can never succeed for C++ classes.
2460 if (R
.getLookupKind() == LookupOperatorName
||
2461 R
.getLookupKind() == LookupNamespaceName
||
2462 R
.getLookupKind() == LookupObjCProtocolName
||
2463 R
.getLookupKind() == LookupLabel
)
2466 // If we're performing qualified name lookup into a dependent class,
2467 // then we are actually looking into a current instantiation. If we have any
2468 // dependent base classes, then we either have to delay lookup until
2469 // template instantiation time (at which point all bases will be available)
2470 // or we have to fail.
2471 if (!InUnqualifiedLookup
&& LookupRec
->isDependentContext() &&
2472 LookupRec
->hasAnyDependentBases()) {
2473 R
.setNotFoundInCurrentInstantiation();
2477 // Perform lookup into our base classes.
2479 DeclarationName Name
= R
.getLookupName();
2480 unsigned IDNS
= R
.getIdentifierNamespace();
2482 // Look for this member in our base classes.
2483 auto BaseCallback
= [Name
, IDNS
](const CXXBaseSpecifier
*Specifier
,
2484 CXXBasePath
&Path
) -> bool {
2485 CXXRecordDecl
*BaseRecord
= Specifier
->getType()->getAsCXXRecordDecl();
2486 // Drop leading non-matching lookup results from the declaration list so
2487 // we don't need to consider them again below.
2488 for (Path
.Decls
= BaseRecord
->lookup(Name
).begin();
2489 Path
.Decls
!= Path
.Decls
.end(); ++Path
.Decls
) {
2490 if ((*Path
.Decls
)->isInIdentifierNamespace(IDNS
))
2497 Paths
.setOrigin(LookupRec
);
2498 if (!LookupRec
->lookupInBases(BaseCallback
, Paths
))
2501 R
.setNamingClass(LookupRec
);
2503 // C++ [class.member.lookup]p2:
2504 // [...] If the resulting set of declarations are not all from
2505 // sub-objects of the same type, or the set has a nonstatic member
2506 // and includes members from distinct sub-objects, there is an
2507 // ambiguity and the program is ill-formed. Otherwise that set is
2508 // the result of the lookup.
2509 QualType SubobjectType
;
2510 int SubobjectNumber
= 0;
2511 AccessSpecifier SubobjectAccess
= AS_none
;
2513 // Check whether the given lookup result contains only static members.
2514 auto HasOnlyStaticMembers
= [&](DeclContext::lookup_iterator Result
) {
2515 for (DeclContext::lookup_iterator I
= Result
, E
= I
.end(); I
!= E
; ++I
)
2516 if ((*I
)->isInIdentifierNamespace(IDNS
) && (*I
)->isCXXInstanceMember())
2521 bool TemplateNameLookup
= R
.isTemplateNameLookup();
2523 // Determine whether two sets of members contain the same members, as
2524 // required by C++ [class.member.lookup]p6.
2525 auto HasSameDeclarations
= [&](DeclContext::lookup_iterator A
,
2526 DeclContext::lookup_iterator B
) {
2527 using Iterator
= DeclContextLookupResult::iterator
;
2528 using Result
= const void *;
2530 auto Next
= [&](Iterator
&It
, Iterator End
) -> Result
{
2532 NamedDecl
*ND
= *It
++;
2533 if (!ND
->isInIdentifierNamespace(IDNS
))
2536 // C++ [temp.local]p3:
2537 // A lookup that finds an injected-class-name (10.2) can result in
2538 // an ambiguity in certain cases (for example, if it is found in
2539 // more than one base class). If all of the injected-class-names
2540 // that are found refer to specializations of the same class
2541 // template, and if the name is used as a template-name, the
2542 // reference refers to the class template itself and not a
2543 // specialization thereof, and is not ambiguous.
2544 if (TemplateNameLookup
)
2545 if (auto *TD
= getAsTemplateNameDecl(ND
))
2548 // C++ [class.member.lookup]p3:
2549 // type declarations (including injected-class-names) are replaced by
2550 // the types they designate
2551 if (const TypeDecl
*TD
= dyn_cast
<TypeDecl
>(ND
->getUnderlyingDecl())) {
2552 QualType T
= Context
.getTypeDeclType(TD
);
2553 return T
.getCanonicalType().getAsOpaquePtr();
2556 return ND
->getUnderlyingDecl()->getCanonicalDecl();
2561 // We'll often find the declarations are in the same order. Handle this
2562 // case (and the special case of only one declaration) efficiently.
2563 Iterator AIt
= A
, BIt
= B
, AEnd
, BEnd
;
2565 Result AResult
= Next(AIt
, AEnd
);
2566 Result BResult
= Next(BIt
, BEnd
);
2567 if (!AResult
&& !BResult
)
2569 if (!AResult
|| !BResult
)
2571 if (AResult
!= BResult
) {
2572 // Found a mismatch; carefully check both lists, accounting for the
2573 // possibility of declarations appearing more than once.
2574 llvm::SmallDenseMap
<Result
, bool, 32> AResults
;
2575 for (; AResult
; AResult
= Next(AIt
, AEnd
))
2576 AResults
.insert({AResult
, /*FoundInB*/false});
2578 for (; BResult
; BResult
= Next(BIt
, BEnd
)) {
2579 auto It
= AResults
.find(BResult
);
2580 if (It
== AResults
.end())
2587 return AResults
.size() == Found
;
2592 for (CXXBasePaths::paths_iterator Path
= Paths
.begin(), PathEnd
= Paths
.end();
2593 Path
!= PathEnd
; ++Path
) {
2594 const CXXBasePathElement
&PathElement
= Path
->back();
2596 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2597 // across all paths.
2598 SubobjectAccess
= std::min(SubobjectAccess
, Path
->Access
);
2600 // Determine whether we're looking at a distinct sub-object or not.
2601 if (SubobjectType
.isNull()) {
2602 // This is the first subobject we've looked at. Record its type.
2603 SubobjectType
= Context
.getCanonicalType(PathElement
.Base
->getType());
2604 SubobjectNumber
= PathElement
.SubobjectNumber
;
2608 if (SubobjectType
!=
2609 Context
.getCanonicalType(PathElement
.Base
->getType())) {
2610 // We found members of the given name in two subobjects of
2611 // different types. If the declaration sets aren't the same, this
2612 // lookup is ambiguous.
2614 // FIXME: The language rule says that this applies irrespective of
2615 // whether the sets contain only static members.
2616 if (HasOnlyStaticMembers(Path
->Decls
) &&
2617 HasSameDeclarations(Paths
.begin()->Decls
, Path
->Decls
))
2620 R
.setAmbiguousBaseSubobjectTypes(Paths
);
2624 // FIXME: This language rule no longer exists. Checking for ambiguous base
2625 // subobjects should be done as part of formation of a class member access
2626 // expression (when converting the object parameter to the member's type).
2627 if (SubobjectNumber
!= PathElement
.SubobjectNumber
) {
2628 // We have a different subobject of the same type.
2630 // C++ [class.member.lookup]p5:
2631 // A static member, a nested type or an enumerator defined in
2632 // a base class T can unambiguously be found even if an object
2633 // has more than one base class subobject of type T.
2634 if (HasOnlyStaticMembers(Path
->Decls
))
2637 // We have found a nonstatic member name in multiple, distinct
2638 // subobjects. Name lookup is ambiguous.
2639 R
.setAmbiguousBaseSubobjects(Paths
);
2644 // Lookup in a base class succeeded; return these results.
2646 for (DeclContext::lookup_iterator I
= Paths
.front().Decls
, E
= I
.end();
2648 AccessSpecifier AS
= CXXRecordDecl::MergeAccess(SubobjectAccess
,
2650 if (NamedDecl
*ND
= R
.getAcceptableDecl(*I
))
2657 /// Performs qualified name lookup or special type of lookup for
2658 /// "__super::" scope specifier.
2660 /// This routine is a convenience overload meant to be called from contexts
2661 /// that need to perform a qualified name lookup with an optional C++ scope
2662 /// specifier that might require special kind of lookup.
2664 /// \param R captures both the lookup criteria and any lookup results found.
2666 /// \param LookupCtx The context in which qualified name lookup will
2669 /// \param SS An optional C++ scope-specifier.
2671 /// \returns true if lookup succeeded, false if it failed.
2672 bool Sema::LookupQualifiedName(LookupResult
&R
, DeclContext
*LookupCtx
,
2674 auto *NNS
= SS
.getScopeRep();
2675 if (NNS
&& NNS
->getKind() == NestedNameSpecifier::Super
)
2676 return LookupInSuper(R
, NNS
->getAsRecordDecl());
2679 return LookupQualifiedName(R
, LookupCtx
);
2682 /// Performs name lookup for a name that was parsed in the
2683 /// source code, and may contain a C++ scope specifier.
2685 /// This routine is a convenience routine meant to be called from
2686 /// contexts that receive a name and an optional C++ scope specifier
2687 /// (e.g., "N::M::x"). It will then perform either qualified or
2688 /// unqualified name lookup (with LookupQualifiedName or LookupName,
2689 /// respectively) on the given name and return those results. It will
2690 /// perform a special type of lookup for "__super::" scope specifier.
2692 /// @param S The scope from which unqualified name lookup will
2695 /// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2697 /// @param EnteringContext Indicates whether we are going to enter the
2698 /// context of the scope-specifier SS (if present).
2700 /// @returns True if any decls were found (but possibly ambiguous)
2701 bool Sema::LookupParsedName(LookupResult
&R
, Scope
*S
, CXXScopeSpec
*SS
,
2702 bool AllowBuiltinCreation
, bool EnteringContext
) {
2703 if (SS
&& SS
->isInvalid()) {
2704 // When the scope specifier is invalid, don't even look for
2709 if (SS
&& SS
->isSet()) {
2710 NestedNameSpecifier
*NNS
= SS
->getScopeRep();
2711 if (NNS
->getKind() == NestedNameSpecifier::Super
)
2712 return LookupInSuper(R
, NNS
->getAsRecordDecl());
2714 if (DeclContext
*DC
= computeDeclContext(*SS
, EnteringContext
)) {
2715 // We have resolved the scope specifier to a particular declaration
2716 // contex, and will perform name lookup in that context.
2717 if (!DC
->isDependentContext() && RequireCompleteDeclContext(*SS
, DC
))
2720 R
.setContextRange(SS
->getRange());
2721 return LookupQualifiedName(R
, DC
);
2724 // We could not resolve the scope specified to a specific declaration
2725 // context, which means that SS refers to an unknown specialization.
2726 // Name lookup can't find anything in this case.
2727 R
.setNotFoundInCurrentInstantiation();
2728 R
.setContextRange(SS
->getRange());
2732 // Perform unqualified name lookup starting in the given scope.
2733 return LookupName(R
, S
, AllowBuiltinCreation
);
2736 /// Perform qualified name lookup into all base classes of the given
2739 /// \param R captures both the lookup criteria and any lookup results found.
2741 /// \param Class The context in which qualified name lookup will
2742 /// search. Name lookup will search in all base classes merging the results.
2744 /// @returns True if any decls were found (but possibly ambiguous)
2745 bool Sema::LookupInSuper(LookupResult
&R
, CXXRecordDecl
*Class
) {
2746 // The access-control rules we use here are essentially the rules for
2747 // doing a lookup in Class that just magically skipped the direct
2748 // members of Class itself. That is, the naming class is Class, and the
2749 // access includes the access of the base.
2750 for (const auto &BaseSpec
: Class
->bases()) {
2751 CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(
2752 BaseSpec
.getType()->castAs
<RecordType
>()->getDecl());
2753 LookupResult
Result(*this, R
.getLookupNameInfo(), R
.getLookupKind());
2754 Result
.setBaseObjectType(Context
.getRecordType(Class
));
2755 LookupQualifiedName(Result
, RD
);
2757 // Copy the lookup results into the target, merging the base's access into
2759 for (auto I
= Result
.begin(), E
= Result
.end(); I
!= E
; ++I
) {
2760 R
.addDecl(I
.getDecl(),
2761 CXXRecordDecl::MergeAccess(BaseSpec
.getAccessSpecifier(),
2765 Result
.suppressDiagnostics();
2769 R
.setNamingClass(Class
);
2774 /// Produce a diagnostic describing the ambiguity that resulted
2775 /// from name lookup.
2777 /// \param Result The result of the ambiguous lookup to be diagnosed.
2778 void Sema::DiagnoseAmbiguousLookup(LookupResult
&Result
) {
2779 assert(Result
.isAmbiguous() && "Lookup result must be ambiguous");
2781 DeclarationName Name
= Result
.getLookupName();
2782 SourceLocation NameLoc
= Result
.getNameLoc();
2783 SourceRange LookupRange
= Result
.getContextRange();
2785 switch (Result
.getAmbiguityKind()) {
2786 case LookupResult::AmbiguousBaseSubobjects
: {
2787 CXXBasePaths
*Paths
= Result
.getBasePaths();
2788 QualType SubobjectType
= Paths
->front().back().Base
->getType();
2789 Diag(NameLoc
, diag::err_ambiguous_member_multiple_subobjects
)
2790 << Name
<< SubobjectType
<< getAmbiguousPathsDisplayString(*Paths
)
2793 DeclContext::lookup_iterator Found
= Paths
->front().Decls
;
2794 while (isa
<CXXMethodDecl
>(*Found
) &&
2795 cast
<CXXMethodDecl
>(*Found
)->isStatic())
2798 Diag((*Found
)->getLocation(), diag::note_ambiguous_member_found
);
2802 case LookupResult::AmbiguousBaseSubobjectTypes
: {
2803 Diag(NameLoc
, diag::err_ambiguous_member_multiple_subobject_types
)
2804 << Name
<< LookupRange
;
2806 CXXBasePaths
*Paths
= Result
.getBasePaths();
2807 std::set
<const NamedDecl
*> DeclsPrinted
;
2808 for (CXXBasePaths::paths_iterator Path
= Paths
->begin(),
2809 PathEnd
= Paths
->end();
2810 Path
!= PathEnd
; ++Path
) {
2811 const NamedDecl
*D
= *Path
->Decls
;
2812 if (!D
->isInIdentifierNamespace(Result
.getIdentifierNamespace()))
2814 if (DeclsPrinted
.insert(D
).second
) {
2815 if (const auto *TD
= dyn_cast
<TypedefNameDecl
>(D
->getUnderlyingDecl()))
2816 Diag(D
->getLocation(), diag::note_ambiguous_member_type_found
)
2817 << TD
->getUnderlyingType();
2818 else if (const auto *TD
= dyn_cast
<TypeDecl
>(D
->getUnderlyingDecl()))
2819 Diag(D
->getLocation(), diag::note_ambiguous_member_type_found
)
2820 << Context
.getTypeDeclType(TD
);
2822 Diag(D
->getLocation(), diag::note_ambiguous_member_found
);
2828 case LookupResult::AmbiguousTagHiding
: {
2829 Diag(NameLoc
, diag::err_ambiguous_tag_hiding
) << Name
<< LookupRange
;
2831 llvm::SmallPtrSet
<NamedDecl
*, 8> TagDecls
;
2833 for (auto *D
: Result
)
2834 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(D
)) {
2835 TagDecls
.insert(TD
);
2836 Diag(TD
->getLocation(), diag::note_hidden_tag
);
2839 for (auto *D
: Result
)
2840 if (!isa
<TagDecl
>(D
))
2841 Diag(D
->getLocation(), diag::note_hiding_object
);
2843 // For recovery purposes, go ahead and implement the hiding.
2844 LookupResult::Filter F
= Result
.makeFilter();
2845 while (F
.hasNext()) {
2846 if (TagDecls
.count(F
.next()))
2853 case LookupResult::AmbiguousReference
: {
2854 Diag(NameLoc
, diag::err_ambiguous_reference
) << Name
<< LookupRange
;
2856 for (auto *D
: Result
)
2857 Diag(D
->getLocation(), diag::note_ambiguous_candidate
) << D
;
2864 struct AssociatedLookup
{
2865 AssociatedLookup(Sema
&S
, SourceLocation InstantiationLoc
,
2866 Sema::AssociatedNamespaceSet
&Namespaces
,
2867 Sema::AssociatedClassSet
&Classes
)
2868 : S(S
), Namespaces(Namespaces
), Classes(Classes
),
2869 InstantiationLoc(InstantiationLoc
) {
2872 bool addClassTransitive(CXXRecordDecl
*RD
) {
2874 return ClassesTransitive
.insert(RD
);
2878 Sema::AssociatedNamespaceSet
&Namespaces
;
2879 Sema::AssociatedClassSet
&Classes
;
2880 SourceLocation InstantiationLoc
;
2883 Sema::AssociatedClassSet ClassesTransitive
;
2885 } // end anonymous namespace
2888 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
, QualType T
);
2890 // Given the declaration context \param Ctx of a class, class template or
2891 // enumeration, add the associated namespaces to \param Namespaces as described
2892 // in [basic.lookup.argdep]p2.
2893 static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet
&Namespaces
,
2895 // The exact wording has been changed in C++14 as a result of
2896 // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
2897 // to all language versions since it is possible to return a local type
2898 // from a lambda in C++11.
2900 // C++14 [basic.lookup.argdep]p2:
2901 // If T is a class type [...]. Its associated namespaces are the innermost
2902 // enclosing namespaces of its associated classes. [...]
2904 // If T is an enumeration type, its associated namespace is the innermost
2905 // enclosing namespace of its declaration. [...]
2907 // We additionally skip inline namespaces. The innermost non-inline namespace
2908 // contains all names of all its nested inline namespaces anyway, so we can
2909 // replace the entire inline namespace tree with its root.
2910 while (!Ctx
->isFileContext() || Ctx
->isInlineNamespace())
2911 Ctx
= Ctx
->getParent();
2913 Namespaces
.insert(Ctx
->getPrimaryContext());
2916 // Add the associated classes and namespaces for argument-dependent
2917 // lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
2919 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
,
2920 const TemplateArgument
&Arg
) {
2921 // C++ [basic.lookup.argdep]p2, last bullet:
2923 switch (Arg
.getKind()) {
2924 case TemplateArgument::Null
:
2927 case TemplateArgument::Type
:
2928 // [...] the namespaces and classes associated with the types of the
2929 // template arguments provided for template type parameters (excluding
2930 // template template parameters)
2931 addAssociatedClassesAndNamespaces(Result
, Arg
.getAsType());
2934 case TemplateArgument::Template
:
2935 case TemplateArgument::TemplateExpansion
: {
2936 // [...] the namespaces in which any template template arguments are
2937 // defined; and the classes in which any member templates used as
2938 // template template arguments are defined.
2939 TemplateName Template
= Arg
.getAsTemplateOrTemplatePattern();
2940 if (ClassTemplateDecl
*ClassTemplate
2941 = dyn_cast
<ClassTemplateDecl
>(Template
.getAsTemplateDecl())) {
2942 DeclContext
*Ctx
= ClassTemplate
->getDeclContext();
2943 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
2944 Result
.Classes
.insert(EnclosingClass
);
2945 // Add the associated namespace for this class.
2946 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
2951 case TemplateArgument::Declaration
:
2952 case TemplateArgument::Integral
:
2953 case TemplateArgument::Expression
:
2954 case TemplateArgument::NullPtr
:
2955 // [Note: non-type template arguments do not contribute to the set of
2956 // associated namespaces. ]
2959 case TemplateArgument::Pack
:
2960 for (const auto &P
: Arg
.pack_elements())
2961 addAssociatedClassesAndNamespaces(Result
, P
);
2966 // Add the associated classes and namespaces for argument-dependent lookup
2967 // with an argument of class type (C++ [basic.lookup.argdep]p2).
2969 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
,
2970 CXXRecordDecl
*Class
) {
2972 // Just silently ignore anything whose name is __va_list_tag.
2973 if (Class
->getDeclName() == Result
.S
.VAListTagName
)
2976 // C++ [basic.lookup.argdep]p2:
2978 // -- If T is a class type (including unions), its associated
2979 // classes are: the class itself; the class of which it is a
2980 // member, if any; and its direct and indirect base classes.
2981 // Its associated namespaces are the innermost enclosing
2982 // namespaces of its associated classes.
2984 // Add the class of which it is a member, if any.
2985 DeclContext
*Ctx
= Class
->getDeclContext();
2986 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
2987 Result
.Classes
.insert(EnclosingClass
);
2989 // Add the associated namespace for this class.
2990 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
2992 // -- If T is a template-id, its associated namespaces and classes are
2993 // the namespace in which the template is defined; for member
2994 // templates, the member template's class; the namespaces and classes
2995 // associated with the types of the template arguments provided for
2996 // template type parameters (excluding template template parameters); the
2997 // namespaces in which any template template arguments are defined; and
2998 // the classes in which any member templates used as template template
2999 // arguments are defined. [Note: non-type template arguments do not
3000 // contribute to the set of associated namespaces. ]
3001 if (ClassTemplateSpecializationDecl
*Spec
3002 = dyn_cast
<ClassTemplateSpecializationDecl
>(Class
)) {
3003 DeclContext
*Ctx
= Spec
->getSpecializedTemplate()->getDeclContext();
3004 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
3005 Result
.Classes
.insert(EnclosingClass
);
3006 // Add the associated namespace for this class.
3007 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
3009 const TemplateArgumentList
&TemplateArgs
= Spec
->getTemplateArgs();
3010 for (unsigned I
= 0, N
= TemplateArgs
.size(); I
!= N
; ++I
)
3011 addAssociatedClassesAndNamespaces(Result
, TemplateArgs
[I
]);
3014 // Add the class itself. If we've already transitively visited this class,
3015 // we don't need to visit base classes.
3016 if (!Result
.addClassTransitive(Class
))
3019 // Only recurse into base classes for complete types.
3020 if (!Result
.S
.isCompleteType(Result
.InstantiationLoc
,
3021 Result
.S
.Context
.getRecordType(Class
)))
3024 // Add direct and indirect base classes along with their associated
3026 SmallVector
<CXXRecordDecl
*, 32> Bases
;
3027 Bases
.push_back(Class
);
3028 while (!Bases
.empty()) {
3029 // Pop this class off the stack.
3030 Class
= Bases
.pop_back_val();
3032 // Visit the base classes.
3033 for (const auto &Base
: Class
->bases()) {
3034 const RecordType
*BaseType
= Base
.getType()->getAs
<RecordType
>();
3035 // In dependent contexts, we do ADL twice, and the first time around,
3036 // the base type might be a dependent TemplateSpecializationType, or a
3037 // TemplateTypeParmType. If that happens, simply ignore it.
3038 // FIXME: If we want to support export, we probably need to add the
3039 // namespace of the template in a TemplateSpecializationType, or even
3040 // the classes and namespaces of known non-dependent arguments.
3043 CXXRecordDecl
*BaseDecl
= cast
<CXXRecordDecl
>(BaseType
->getDecl());
3044 if (Result
.addClassTransitive(BaseDecl
)) {
3045 // Find the associated namespace for this base class.
3046 DeclContext
*BaseCtx
= BaseDecl
->getDeclContext();
3047 CollectEnclosingNamespace(Result
.Namespaces
, BaseCtx
);
3049 // Make sure we visit the bases of this base class.
3050 if (BaseDecl
->bases_begin() != BaseDecl
->bases_end())
3051 Bases
.push_back(BaseDecl
);
3057 // Add the associated classes and namespaces for
3058 // argument-dependent lookup with an argument of type T
3059 // (C++ [basic.lookup.koenig]p2).
3061 addAssociatedClassesAndNamespaces(AssociatedLookup
&Result
, QualType Ty
) {
3062 // C++ [basic.lookup.koenig]p2:
3064 // For each argument type T in the function call, there is a set
3065 // of zero or more associated namespaces and a set of zero or more
3066 // associated classes to be considered. The sets of namespaces and
3067 // classes is determined entirely by the types of the function
3068 // arguments (and the namespace of any template template
3069 // argument). Typedef names and using-declarations used to specify
3070 // the types do not contribute to this set. The sets of namespaces
3071 // and classes are determined in the following way:
3073 SmallVector
<const Type
*, 16> Queue
;
3074 const Type
*T
= Ty
->getCanonicalTypeInternal().getTypePtr();
3077 switch (T
->getTypeClass()) {
3079 #define TYPE(Class, Base)
3080 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
3081 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3082 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
3083 #define ABSTRACT_TYPE(Class, Base)
3084 #include "clang/AST/TypeNodes.inc"
3085 // T is canonical. We can also ignore dependent types because
3086 // we don't need to do ADL at the definition point, but if we
3087 // wanted to implement template export (or if we find some other
3088 // use for associated classes and namespaces...) this would be
3092 // -- If T is a pointer to U or an array of U, its associated
3093 // namespaces and classes are those associated with U.
3095 T
= cast
<PointerType
>(T
)->getPointeeType().getTypePtr();
3097 case Type::ConstantArray
:
3098 case Type::IncompleteArray
:
3099 case Type::VariableArray
:
3100 T
= cast
<ArrayType
>(T
)->getElementType().getTypePtr();
3103 // -- If T is a fundamental type, its associated sets of
3104 // namespaces and classes are both empty.
3108 // -- If T is a class type (including unions), its associated
3109 // classes are: the class itself; the class of which it is
3110 // a member, if any; and its direct and indirect base classes.
3111 // Its associated namespaces are the innermost enclosing
3112 // namespaces of its associated classes.
3113 case Type::Record
: {
3114 CXXRecordDecl
*Class
=
3115 cast
<CXXRecordDecl
>(cast
<RecordType
>(T
)->getDecl());
3116 addAssociatedClassesAndNamespaces(Result
, Class
);
3120 // -- If T is an enumeration type, its associated namespace
3121 // is the innermost enclosing namespace of its declaration.
3122 // If it is a class member, its associated class is the
3123 // member’s class; else it has no associated class.
3125 EnumDecl
*Enum
= cast
<EnumType
>(T
)->getDecl();
3127 DeclContext
*Ctx
= Enum
->getDeclContext();
3128 if (CXXRecordDecl
*EnclosingClass
= dyn_cast
<CXXRecordDecl
>(Ctx
))
3129 Result
.Classes
.insert(EnclosingClass
);
3131 // Add the associated namespace for this enumeration.
3132 CollectEnclosingNamespace(Result
.Namespaces
, Ctx
);
3137 // -- If T is a function type, its associated namespaces and
3138 // classes are those associated with the function parameter
3139 // types and those associated with the return type.
3140 case Type::FunctionProto
: {
3141 const FunctionProtoType
*Proto
= cast
<FunctionProtoType
>(T
);
3142 for (const auto &Arg
: Proto
->param_types())
3143 Queue
.push_back(Arg
.getTypePtr());
3147 case Type::FunctionNoProto
: {
3148 const FunctionType
*FnType
= cast
<FunctionType
>(T
);
3149 T
= FnType
->getReturnType().getTypePtr();
3153 // -- If T is a pointer to a member function of a class X, its
3154 // associated namespaces and classes are those associated
3155 // with the function parameter types and return type,
3156 // together with those associated with X.
3158 // -- If T is a pointer to a data member of class X, its
3159 // associated namespaces and classes are those associated
3160 // with the member type together with those associated with
3162 case Type::MemberPointer
: {
3163 const MemberPointerType
*MemberPtr
= cast
<MemberPointerType
>(T
);
3165 // Queue up the class type into which this points.
3166 Queue
.push_back(MemberPtr
->getClass());
3168 // And directly continue with the pointee type.
3169 T
= MemberPtr
->getPointeeType().getTypePtr();
3173 // As an extension, treat this like a normal pointer.
3174 case Type::BlockPointer
:
3175 T
= cast
<BlockPointerType
>(T
)->getPointeeType().getTypePtr();
3178 // References aren't covered by the standard, but that's such an
3179 // obvious defect that we cover them anyway.
3180 case Type::LValueReference
:
3181 case Type::RValueReference
:
3182 T
= cast
<ReferenceType
>(T
)->getPointeeType().getTypePtr();
3185 // These are fundamental types.
3187 case Type::ExtVector
:
3188 case Type::ConstantMatrix
:
3193 // Non-deduced auto types only get here for error cases.
3195 case Type::DeducedTemplateSpecialization
:
3198 // If T is an Objective-C object or interface type, or a pointer to an
3199 // object or interface type, the associated namespace is the global
3201 case Type::ObjCObject
:
3202 case Type::ObjCInterface
:
3203 case Type::ObjCObjectPointer
:
3204 Result
.Namespaces
.insert(Result
.S
.Context
.getTranslationUnitDecl());
3207 // Atomic types are just wrappers; use the associations of the
3210 T
= cast
<AtomicType
>(T
)->getValueType().getTypePtr();
3213 T
= cast
<PipeType
>(T
)->getElementType().getTypePtr();
3219 T
= Queue
.pop_back_val();
3223 /// Find the associated classes and namespaces for
3224 /// argument-dependent lookup for a call with the given set of
3227 /// This routine computes the sets of associated classes and associated
3228 /// namespaces searched by argument-dependent lookup
3229 /// (C++ [basic.lookup.argdep]) for a given set of arguments.
3230 void Sema::FindAssociatedClassesAndNamespaces(
3231 SourceLocation InstantiationLoc
, ArrayRef
<Expr
*> Args
,
3232 AssociatedNamespaceSet
&AssociatedNamespaces
,
3233 AssociatedClassSet
&AssociatedClasses
) {
3234 AssociatedNamespaces
.clear();
3235 AssociatedClasses
.clear();
3237 AssociatedLookup
Result(*this, InstantiationLoc
,
3238 AssociatedNamespaces
, AssociatedClasses
);
3240 // C++ [basic.lookup.koenig]p2:
3241 // For each argument type T in the function call, there is a set
3242 // of zero or more associated namespaces and a set of zero or more
3243 // associated classes to be considered. The sets of namespaces and
3244 // classes is determined entirely by the types of the function
3245 // arguments (and the namespace of any template template
3247 for (unsigned ArgIdx
= 0; ArgIdx
!= Args
.size(); ++ArgIdx
) {
3248 Expr
*Arg
= Args
[ArgIdx
];
3250 if (Arg
->getType() != Context
.OverloadTy
) {
3251 addAssociatedClassesAndNamespaces(Result
, Arg
->getType());
3255 // [...] In addition, if the argument is the name or address of a
3256 // set of overloaded functions and/or function templates, its
3257 // associated classes and namespaces are the union of those
3258 // associated with each of the members of the set: the namespace
3259 // in which the function or function template is defined and the
3260 // classes and namespaces associated with its (non-dependent)
3261 // parameter types and return type.
3262 OverloadExpr
*OE
= OverloadExpr::find(Arg
).Expression
;
3264 for (const NamedDecl
*D
: OE
->decls()) {
3265 // Look through any using declarations to find the underlying function.
3266 const FunctionDecl
*FDecl
= D
->getUnderlyingDecl()->getAsFunction();
3268 // Add the classes and namespaces associated with the parameter
3269 // types and return type of this function.
3270 addAssociatedClassesAndNamespaces(Result
, FDecl
->getType());
3275 NamedDecl
*Sema::LookupSingleName(Scope
*S
, DeclarationName Name
,
3277 LookupNameKind NameKind
,
3278 RedeclarationKind Redecl
) {
3279 LookupResult
R(*this, Name
, Loc
, NameKind
, Redecl
);
3281 return R
.getAsSingle
<NamedDecl
>();
3284 /// Find the protocol with the given name, if any.
3285 ObjCProtocolDecl
*Sema::LookupProtocol(IdentifierInfo
*II
,
3286 SourceLocation IdLoc
,
3287 RedeclarationKind Redecl
) {
3288 Decl
*D
= LookupSingleName(TUScope
, II
, IdLoc
,
3289 LookupObjCProtocolName
, Redecl
);
3290 return cast_or_null
<ObjCProtocolDecl
>(D
);
3293 void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op
, Scope
*S
,
3294 UnresolvedSetImpl
&Functions
) {
3295 // C++ [over.match.oper]p3:
3296 // -- The set of non-member candidates is the result of the
3297 // unqualified lookup of operator@ in the context of the
3298 // expression according to the usual rules for name lookup in
3299 // unqualified function calls (3.4.2) except that all member
3300 // functions are ignored.
3301 DeclarationName OpName
= Context
.DeclarationNames
.getCXXOperatorName(Op
);
3302 LookupResult
Operators(*this, OpName
, SourceLocation(), LookupOperatorName
);
3303 LookupName(Operators
, S
);
3305 assert(!Operators
.isAmbiguous() && "Operator lookup cannot be ambiguous");
3306 Functions
.append(Operators
.begin(), Operators
.end());
3309 Sema::SpecialMemberOverloadResult
Sema::LookupSpecialMember(CXXRecordDecl
*RD
,
3310 CXXSpecialMember SM
,
3315 bool VolatileThis
) {
3316 assert(CanDeclareSpecialMemberFunction(RD
) &&
3317 "doing special member lookup into record that isn't fully complete");
3318 RD
= RD
->getDefinition();
3319 if (RValueThis
|| ConstThis
|| VolatileThis
)
3320 assert((SM
== CXXCopyAssignment
|| SM
== CXXMoveAssignment
) &&
3321 "constructors and destructors always have unqualified lvalue this");
3322 if (ConstArg
|| VolatileArg
)
3323 assert((SM
!= CXXDefaultConstructor
&& SM
!= CXXDestructor
) &&
3324 "parameter-less special members can't have qualified arguments");
3326 // FIXME: Get the caller to pass in a location for the lookup.
3327 SourceLocation LookupLoc
= RD
->getLocation();
3329 llvm::FoldingSetNodeID ID
;
3332 ID
.AddInteger(ConstArg
);
3333 ID
.AddInteger(VolatileArg
);
3334 ID
.AddInteger(RValueThis
);
3335 ID
.AddInteger(ConstThis
);
3336 ID
.AddInteger(VolatileThis
);
3339 SpecialMemberOverloadResultEntry
*Result
=
3340 SpecialMemberCache
.FindNodeOrInsertPos(ID
, InsertPoint
);
3342 // This was already cached
3346 Result
= BumpAlloc
.Allocate
<SpecialMemberOverloadResultEntry
>();
3347 Result
= new (Result
) SpecialMemberOverloadResultEntry(ID
);
3348 SpecialMemberCache
.InsertNode(Result
, InsertPoint
);
3350 if (SM
== CXXDestructor
) {
3351 if (RD
->needsImplicitDestructor()) {
3352 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3353 DeclareImplicitDestructor(RD
);
3356 CXXDestructorDecl
*DD
= RD
->getDestructor();
3357 Result
->setMethod(DD
);
3358 Result
->setKind(DD
&& !DD
->isDeleted()
3359 ? SpecialMemberOverloadResult::Success
3360 : SpecialMemberOverloadResult::NoMemberOrDeleted
);
3364 // Prepare for overload resolution. Here we construct a synthetic argument
3365 // if necessary and make sure that implicit functions are declared.
3366 CanQualType CanTy
= Context
.getCanonicalType(Context
.getTagDeclType(RD
));
3367 DeclarationName Name
;
3368 Expr
*Arg
= nullptr;
3371 QualType ArgType
= CanTy
;
3372 ExprValueKind VK
= VK_LValue
;
3374 if (SM
== CXXDefaultConstructor
) {
3375 Name
= Context
.DeclarationNames
.getCXXConstructorName(CanTy
);
3377 if (RD
->needsImplicitDefaultConstructor()) {
3378 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3379 DeclareImplicitDefaultConstructor(RD
);
3383 if (SM
== CXXCopyConstructor
|| SM
== CXXMoveConstructor
) {
3384 Name
= Context
.DeclarationNames
.getCXXConstructorName(CanTy
);
3385 if (RD
->needsImplicitCopyConstructor()) {
3386 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3387 DeclareImplicitCopyConstructor(RD
);
3390 if (getLangOpts().CPlusPlus11
&& RD
->needsImplicitMoveConstructor()) {
3391 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3392 DeclareImplicitMoveConstructor(RD
);
3396 Name
= Context
.DeclarationNames
.getCXXOperatorName(OO_Equal
);
3397 if (RD
->needsImplicitCopyAssignment()) {
3398 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3399 DeclareImplicitCopyAssignment(RD
);
3402 if (getLangOpts().CPlusPlus11
&& RD
->needsImplicitMoveAssignment()) {
3403 runWithSufficientStackSpace(RD
->getLocation(), [&] {
3404 DeclareImplicitMoveAssignment(RD
);
3412 ArgType
.addVolatile();
3414 // This isn't /really/ specified by the standard, but it's implied
3415 // we should be working from a PRValue in the case of move to ensure
3416 // that we prefer to bind to rvalue references, and an LValue in the
3417 // case of copy to ensure we don't bind to rvalue references.
3418 // Possibly an XValue is actually correct in the case of move, but
3419 // there is no semantic difference for class types in this restricted
3421 if (SM
== CXXCopyConstructor
|| SM
== CXXCopyAssignment
)
3427 OpaqueValueExpr
FakeArg(LookupLoc
, ArgType
, VK
);
3429 if (SM
!= CXXDefaultConstructor
) {
3434 // Create the object argument
3435 QualType ThisTy
= CanTy
;
3439 ThisTy
.addVolatile();
3440 Expr::Classification Classification
=
3441 OpaqueValueExpr(LookupLoc
, ThisTy
, RValueThis
? VK_PRValue
: VK_LValue
)
3444 // Now we perform lookup on the name we computed earlier and do overload
3445 // resolution. Lookup is only performed directly into the class since there
3446 // will always be a (possibly implicit) declaration to shadow any others.
3447 OverloadCandidateSet
OCS(LookupLoc
, OverloadCandidateSet::CSK_Normal
);
3448 DeclContext::lookup_result R
= RD
->lookup(Name
);
3451 // We might have no default constructor because we have a lambda's closure
3452 // type, rather than because there's some other declared constructor.
3453 // Every class has a copy/move constructor, copy/move assignment, and
3455 assert(SM
== CXXDefaultConstructor
&&
3456 "lookup for a constructor or assignment operator was empty");
3457 Result
->setMethod(nullptr);
3458 Result
->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted
);
3462 // Copy the candidates as our processing of them may load new declarations
3463 // from an external source and invalidate lookup_result.
3464 SmallVector
<NamedDecl
*, 8> Candidates(R
.begin(), R
.end());
3466 for (NamedDecl
*CandDecl
: Candidates
) {
3467 if (CandDecl
->isInvalidDecl())
3470 DeclAccessPair Cand
= DeclAccessPair::make(CandDecl
, AS_public
);
3471 auto CtorInfo
= getConstructorInfo(Cand
);
3472 if (CXXMethodDecl
*M
= dyn_cast
<CXXMethodDecl
>(Cand
->getUnderlyingDecl())) {
3473 if (SM
== CXXCopyAssignment
|| SM
== CXXMoveAssignment
)
3474 AddMethodCandidate(M
, Cand
, RD
, ThisTy
, Classification
,
3475 llvm::makeArrayRef(&Arg
, NumArgs
), OCS
, true);
3477 AddOverloadCandidate(CtorInfo
.Constructor
, CtorInfo
.FoundDecl
,
3478 llvm::makeArrayRef(&Arg
, NumArgs
), OCS
,
3479 /*SuppressUserConversions*/ true);
3481 AddOverloadCandidate(M
, Cand
, llvm::makeArrayRef(&Arg
, NumArgs
), OCS
,
3482 /*SuppressUserConversions*/ true);
3483 } else if (FunctionTemplateDecl
*Tmpl
=
3484 dyn_cast
<FunctionTemplateDecl
>(Cand
->getUnderlyingDecl())) {
3485 if (SM
== CXXCopyAssignment
|| SM
== CXXMoveAssignment
)
3486 AddMethodTemplateCandidate(
3487 Tmpl
, Cand
, RD
, nullptr, ThisTy
, Classification
,
3488 llvm::makeArrayRef(&Arg
, NumArgs
), OCS
, true);
3490 AddTemplateOverloadCandidate(
3491 CtorInfo
.ConstructorTmpl
, CtorInfo
.FoundDecl
, nullptr,
3492 llvm::makeArrayRef(&Arg
, NumArgs
), OCS
, true);
3494 AddTemplateOverloadCandidate(
3495 Tmpl
, Cand
, nullptr, llvm::makeArrayRef(&Arg
, NumArgs
), OCS
, true);
3497 assert(isa
<UsingDecl
>(Cand
.getDecl()) &&
3498 "illegal Kind of operator = Decl");
3502 OverloadCandidateSet::iterator Best
;
3503 switch (OCS
.BestViableFunction(*this, LookupLoc
, Best
)) {
3505 Result
->setMethod(cast
<CXXMethodDecl
>(Best
->Function
));
3506 Result
->setKind(SpecialMemberOverloadResult::Success
);
3510 Result
->setMethod(cast
<CXXMethodDecl
>(Best
->Function
));
3511 Result
->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted
);
3515 Result
->setMethod(nullptr);
3516 Result
->setKind(SpecialMemberOverloadResult::Ambiguous
);
3519 case OR_No_Viable_Function
:
3520 Result
->setMethod(nullptr);
3521 Result
->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted
);
3528 /// Look up the default constructor for the given class.
3529 CXXConstructorDecl
*Sema::LookupDefaultConstructor(CXXRecordDecl
*Class
) {
3530 SpecialMemberOverloadResult Result
=
3531 LookupSpecialMember(Class
, CXXDefaultConstructor
, false, false, false,
3534 return cast_or_null
<CXXConstructorDecl
>(Result
.getMethod());
3537 /// Look up the copying constructor for the given class.
3538 CXXConstructorDecl
*Sema::LookupCopyingConstructor(CXXRecordDecl
*Class
,
3540 assert(!(Quals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3541 "non-const, non-volatile qualifiers for copy ctor arg");
3542 SpecialMemberOverloadResult Result
=
3543 LookupSpecialMember(Class
, CXXCopyConstructor
, Quals
& Qualifiers::Const
,
3544 Quals
& Qualifiers::Volatile
, false, false, false);
3546 return cast_or_null
<CXXConstructorDecl
>(Result
.getMethod());
3549 /// Look up the moving constructor for the given class.
3550 CXXConstructorDecl
*Sema::LookupMovingConstructor(CXXRecordDecl
*Class
,
3552 SpecialMemberOverloadResult Result
=
3553 LookupSpecialMember(Class
, CXXMoveConstructor
, Quals
& Qualifiers::Const
,
3554 Quals
& Qualifiers::Volatile
, false, false, false);
3556 return cast_or_null
<CXXConstructorDecl
>(Result
.getMethod());
3559 /// Look up the constructors for the given class.
3560 DeclContext::lookup_result
Sema::LookupConstructors(CXXRecordDecl
*Class
) {
3561 // If the implicit constructors have not yet been declared, do so now.
3562 if (CanDeclareSpecialMemberFunction(Class
)) {
3563 runWithSufficientStackSpace(Class
->getLocation(), [&] {
3564 if (Class
->needsImplicitDefaultConstructor())
3565 DeclareImplicitDefaultConstructor(Class
);
3566 if (Class
->needsImplicitCopyConstructor())
3567 DeclareImplicitCopyConstructor(Class
);
3568 if (getLangOpts().CPlusPlus11
&& Class
->needsImplicitMoveConstructor())
3569 DeclareImplicitMoveConstructor(Class
);
3573 CanQualType T
= Context
.getCanonicalType(Context
.getTypeDeclType(Class
));
3574 DeclarationName Name
= Context
.DeclarationNames
.getCXXConstructorName(T
);
3575 return Class
->lookup(Name
);
3578 /// Look up the copying assignment operator for the given class.
3579 CXXMethodDecl
*Sema::LookupCopyingAssignment(CXXRecordDecl
*Class
,
3580 unsigned Quals
, bool RValueThis
,
3581 unsigned ThisQuals
) {
3582 assert(!(Quals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3583 "non-const, non-volatile qualifiers for copy assignment arg");
3584 assert(!(ThisQuals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3585 "non-const, non-volatile qualifiers for copy assignment this");
3586 SpecialMemberOverloadResult Result
=
3587 LookupSpecialMember(Class
, CXXCopyAssignment
, Quals
& Qualifiers::Const
,
3588 Quals
& Qualifiers::Volatile
, RValueThis
,
3589 ThisQuals
& Qualifiers::Const
,
3590 ThisQuals
& Qualifiers::Volatile
);
3592 return Result
.getMethod();
3595 /// Look up the moving assignment operator for the given class.
3596 CXXMethodDecl
*Sema::LookupMovingAssignment(CXXRecordDecl
*Class
,
3599 unsigned ThisQuals
) {
3600 assert(!(ThisQuals
& ~(Qualifiers::Const
| Qualifiers::Volatile
)) &&
3601 "non-const, non-volatile qualifiers for copy assignment this");
3602 SpecialMemberOverloadResult Result
=
3603 LookupSpecialMember(Class
, CXXMoveAssignment
, Quals
& Qualifiers::Const
,
3604 Quals
& Qualifiers::Volatile
, RValueThis
,
3605 ThisQuals
& Qualifiers::Const
,
3606 ThisQuals
& Qualifiers::Volatile
);
3608 return Result
.getMethod();
3611 /// Look for the destructor of the given class.
3613 /// During semantic analysis, this routine should be used in lieu of
3614 /// CXXRecordDecl::getDestructor().
3616 /// \returns The destructor for this class.
3617 CXXDestructorDecl
*Sema::LookupDestructor(CXXRecordDecl
*Class
) {
3618 return cast
<CXXDestructorDecl
>(LookupSpecialMember(Class
, CXXDestructor
,
3619 false, false, false,
3620 false, false).getMethod());
3623 /// LookupLiteralOperator - Determine which literal operator should be used for
3624 /// a user-defined literal, per C++11 [lex.ext].
3626 /// Normal overload resolution is not used to select which literal operator to
3627 /// call for a user-defined literal. Look up the provided literal operator name,
3628 /// and filter the results to the appropriate set for the given argument types.
3629 Sema::LiteralOperatorLookupResult
3630 Sema::LookupLiteralOperator(Scope
*S
, LookupResult
&R
,
3631 ArrayRef
<QualType
> ArgTys
, bool AllowRaw
,
3632 bool AllowTemplate
, bool AllowStringTemplatePack
,
3633 bool DiagnoseMissing
, StringLiteral
*StringLit
) {
3635 assert(R
.getResultKind() != LookupResult::Ambiguous
&&
3636 "literal operator lookup can't be ambiguous");
3638 // Filter the lookup results appropriately.
3639 LookupResult::Filter F
= R
.makeFilter();
3641 bool AllowCooked
= true;
3642 bool FoundRaw
= false;
3643 bool FoundTemplate
= false;
3644 bool FoundStringTemplatePack
= false;
3645 bool FoundCooked
= false;
3647 while (F
.hasNext()) {
3649 if (UsingShadowDecl
*USD
= dyn_cast
<UsingShadowDecl
>(D
))
3650 D
= USD
->getTargetDecl();
3652 // If the declaration we found is invalid, skip it.
3653 if (D
->isInvalidDecl()) {
3659 bool IsTemplate
= false;
3660 bool IsStringTemplatePack
= false;
3661 bool IsCooked
= false;
3663 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
)) {
3664 if (FD
->getNumParams() == 1 &&
3665 FD
->getParamDecl(0)->getType()->getAs
<PointerType
>())
3667 else if (FD
->getNumParams() == ArgTys
.size()) {
3669 for (unsigned ArgIdx
= 0; ArgIdx
!= ArgTys
.size(); ++ArgIdx
) {
3670 QualType ParamTy
= FD
->getParamDecl(ArgIdx
)->getType();
3671 if (!Context
.hasSameUnqualifiedType(ArgTys
[ArgIdx
], ParamTy
)) {
3678 if (FunctionTemplateDecl
*FD
= dyn_cast
<FunctionTemplateDecl
>(D
)) {
3679 TemplateParameterList
*Params
= FD
->getTemplateParameters();
3680 if (Params
->size() == 1) {
3682 if (!Params
->getParam(0)->isTemplateParameterPack() && !StringLit
) {
3683 // Implied but not stated: user-defined integer and floating literals
3684 // only ever use numeric literal operator templates, not templates
3685 // taking a parameter of class type.
3690 // A string literal template is only considered if the string literal
3691 // is a well-formed template argument for the template parameter.
3693 SFINAETrap
Trap(*this);
3694 SmallVector
<TemplateArgument
, 1> Checked
;
3695 TemplateArgumentLoc
Arg(TemplateArgument(StringLit
), StringLit
);
3696 if (CheckTemplateArgument(Params
->getParam(0), Arg
, FD
,
3697 R
.getNameLoc(), R
.getNameLoc(), 0,
3699 Trap
.hasErrorOccurred())
3703 IsStringTemplatePack
= true;
3707 if (AllowTemplate
&& StringLit
&& IsTemplate
) {
3708 FoundTemplate
= true;
3710 AllowCooked
= false;
3711 AllowStringTemplatePack
= false;
3712 if (FoundRaw
|| FoundCooked
|| FoundStringTemplatePack
) {
3714 FoundRaw
= FoundCooked
= FoundStringTemplatePack
= false;
3716 } else if (AllowCooked
&& IsCooked
) {
3719 AllowTemplate
= StringLit
;
3720 AllowStringTemplatePack
= false;
3721 if (FoundRaw
|| FoundTemplate
|| FoundStringTemplatePack
) {
3722 // Go through again and remove the raw and template decls we've
3725 FoundRaw
= FoundTemplate
= FoundStringTemplatePack
= false;
3727 } else if (AllowRaw
&& IsRaw
) {
3729 } else if (AllowTemplate
&& IsTemplate
) {
3730 FoundTemplate
= true;
3731 } else if (AllowStringTemplatePack
&& IsStringTemplatePack
) {
3732 FoundStringTemplatePack
= true;
3740 // Per C++20 [lex.ext]p5, we prefer the template form over the non-template
3741 // form for string literal operator templates.
3742 if (StringLit
&& FoundTemplate
)
3743 return LOLR_Template
;
3745 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3746 // parameter type, that is used in preference to a raw literal operator
3747 // or literal operator template.
3751 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3752 // operator template, but not both.
3753 if (FoundRaw
&& FoundTemplate
) {
3754 Diag(R
.getNameLoc(), diag::err_ovl_ambiguous_call
) << R
.getLookupName();
3755 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
)
3756 NoteOverloadCandidate(*I
, (*I
)->getUnderlyingDecl()->getAsFunction());
3764 return LOLR_Template
;
3766 if (FoundStringTemplatePack
)
3767 return LOLR_StringTemplatePack
;
3769 // Didn't find anything we could use.
3770 if (DiagnoseMissing
) {
3771 Diag(R
.getNameLoc(), diag::err_ovl_no_viable_literal_operator
)
3772 << R
.getLookupName() << (int)ArgTys
.size() << ArgTys
[0]
3773 << (ArgTys
.size() == 2 ? ArgTys
[1] : QualType()) << AllowRaw
3774 << (AllowTemplate
|| AllowStringTemplatePack
);
3778 return LOLR_ErrorNoDiagnostic
;
3781 void ADLResult::insert(NamedDecl
*New
) {
3782 NamedDecl
*&Old
= Decls
[cast
<NamedDecl
>(New
->getCanonicalDecl())];
3784 // If we haven't yet seen a decl for this key, or the last decl
3785 // was exactly this one, we're done.
3786 if (Old
== nullptr || Old
== New
) {
3791 // Otherwise, decide which is a more recent redeclaration.
3792 FunctionDecl
*OldFD
= Old
->getAsFunction();
3793 FunctionDecl
*NewFD
= New
->getAsFunction();
3795 FunctionDecl
*Cursor
= NewFD
;
3797 Cursor
= Cursor
->getPreviousDecl();
3799 // If we got to the end without finding OldFD, OldFD is the newer
3800 // declaration; leave things as they are.
3801 if (!Cursor
) return;
3803 // If we do find OldFD, then NewFD is newer.
3804 if (Cursor
== OldFD
) break;
3806 // Otherwise, keep looking.
3812 void Sema::ArgumentDependentLookup(DeclarationName Name
, SourceLocation Loc
,
3813 ArrayRef
<Expr
*> Args
, ADLResult
&Result
) {
3814 // Find all of the associated namespaces and classes based on the
3815 // arguments we have.
3816 AssociatedNamespaceSet AssociatedNamespaces
;
3817 AssociatedClassSet AssociatedClasses
;
3818 FindAssociatedClassesAndNamespaces(Loc
, Args
,
3819 AssociatedNamespaces
,
3822 // C++ [basic.lookup.argdep]p3:
3823 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3824 // and let Y be the lookup set produced by argument dependent
3825 // lookup (defined as follows). If X contains [...] then Y is
3826 // empty. Otherwise Y is the set of declarations found in the
3827 // namespaces associated with the argument types as described
3828 // below. The set of declarations found by the lookup of the name
3829 // is the union of X and Y.
3831 // Here, we compute Y and add its members to the overloaded
3833 for (auto *NS
: AssociatedNamespaces
) {
3834 // When considering an associated namespace, the lookup is the
3835 // same as the lookup performed when the associated namespace is
3836 // used as a qualifier (3.4.3.2) except that:
3838 // -- Any using-directives in the associated namespace are
3841 // -- Any namespace-scope friend functions declared in
3842 // associated classes are visible within their respective
3843 // namespaces even if they are not visible during an ordinary
3846 // C++20 [basic.lookup.argdep] p4.3
3847 // -- are exported, are attached to a named module M, do not appear
3848 // in the translation unit containing the point of the lookup, and
3849 // have the same innermost enclosing non-inline namespace scope as
3850 // a declaration of an associated entity attached to M.
3851 DeclContext::lookup_result R
= NS
->lookup(Name
);
3853 auto *Underlying
= D
;
3854 if (auto *USD
= dyn_cast
<UsingShadowDecl
>(D
))
3855 Underlying
= USD
->getTargetDecl();
3857 if (!isa
<FunctionDecl
>(Underlying
) &&
3858 !isa
<FunctionTemplateDecl
>(Underlying
))
3861 // The declaration is visible to argument-dependent lookup if either
3862 // it's ordinarily visible or declared as a friend in an associated
3864 bool Visible
= false;
3865 for (D
= D
->getMostRecentDecl(); D
;
3866 D
= cast_or_null
<NamedDecl
>(D
->getPreviousDecl())) {
3867 if (D
->getIdentifierNamespace() & Decl::IDNS_Ordinary
) {
3871 } else if (getLangOpts().CPlusPlusModules
&&
3872 D
->isInExportDeclContext()) {
3873 // C++20 [basic.lookup.argdep] p4.3 .. are exported ...
3874 Module
*FM
= D
->getOwningModule();
3875 // exports are only valid in module purview and outside of any
3876 // PMF (although a PMF should not even be present in a module
3878 assert(FM
&& FM
->isModulePurview() && !FM
->isPrivateModule() &&
3879 "bad export context");
3880 // .. are attached to a named module M, do not appear in the
3881 // translation unit containing the point of the lookup..
3882 if (!isModuleUnitOfCurrentTU(FM
) &&
3883 llvm::any_of(AssociatedClasses
, [&](auto *E
) {
3884 // ... and have the same innermost enclosing non-inline
3885 // namespace scope as a declaration of an associated entity
3887 if (!E
->hasOwningModule() ||
3888 E
->getOwningModule()->getTopLevelModuleName() !=
3889 FM
->getTopLevelModuleName())
3891 // TODO: maybe this could be cached when generating the
3892 // associated namespaces / entities.
3893 DeclContext
*Ctx
= E
->getDeclContext();
3894 while (!Ctx
->isFileContext() || Ctx
->isInlineNamespace())
3895 Ctx
= Ctx
->getParent();
3902 } else if (D
->getFriendObjectKind()) {
3903 auto *RD
= cast
<CXXRecordDecl
>(D
->getLexicalDeclContext());
3904 // [basic.lookup.argdep]p4:
3905 // Argument-dependent lookup finds all declarations of functions and
3906 // function templates that
3908 // - are declared as a friend ([class.friend]) of any class with a
3909 // reachable definition in the set of associated entities,
3911 // FIXME: If there's a merged definition of D that is reachable, then
3912 // the friend declaration should be considered.
3913 if (AssociatedClasses
.count(RD
) && isReachable(D
)) {
3920 // FIXME: Preserve D as the FoundDecl.
3922 Result
.insert(Underlying
);
3927 //----------------------------------------------------------------------------
3928 // Search for all visible declarations.
3929 //----------------------------------------------------------------------------
3930 VisibleDeclConsumer::~VisibleDeclConsumer() { }
3932 bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3936 class ShadowContextRAII
;
3938 class VisibleDeclsRecord
{
3940 /// An entry in the shadow map, which is optimized to store a
3941 /// single declaration (the common case) but can also store a list
3942 /// of declarations.
3943 typedef llvm::TinyPtrVector
<NamedDecl
*> ShadowMapEntry
;
3946 /// A mapping from declaration names to the declarations that have
3947 /// this name within a particular scope.
3948 typedef llvm::DenseMap
<DeclarationName
, ShadowMapEntry
> ShadowMap
;
3950 /// A list of shadow maps, which is used to model name hiding.
3951 std::list
<ShadowMap
> ShadowMaps
;
3953 /// The declaration contexts we have already visited.
3954 llvm::SmallPtrSet
<DeclContext
*, 8> VisitedContexts
;
3956 friend class ShadowContextRAII
;
3959 /// Determine whether we have already visited this context
3960 /// (and, if not, note that we are going to visit that context now).
3961 bool visitedContext(DeclContext
*Ctx
) {
3962 return !VisitedContexts
.insert(Ctx
).second
;
3965 bool alreadyVisitedContext(DeclContext
*Ctx
) {
3966 return VisitedContexts
.count(Ctx
);
3969 /// Determine whether the given declaration is hidden in the
3972 /// \returns the declaration that hides the given declaration, or
3973 /// NULL if no such declaration exists.
3974 NamedDecl
*checkHidden(NamedDecl
*ND
);
3976 /// Add a declaration to the current shadow map.
3977 void add(NamedDecl
*ND
) {
3978 ShadowMaps
.back()[ND
->getDeclName()].push_back(ND
);
3982 /// RAII object that records when we've entered a shadow context.
3983 class ShadowContextRAII
{
3984 VisibleDeclsRecord
&Visible
;
3986 typedef VisibleDeclsRecord::ShadowMap ShadowMap
;
3989 ShadowContextRAII(VisibleDeclsRecord
&Visible
) : Visible(Visible
) {
3990 Visible
.ShadowMaps
.emplace_back();
3993 ~ShadowContextRAII() {
3994 Visible
.ShadowMaps
.pop_back();
3998 } // end anonymous namespace
4000 NamedDecl
*VisibleDeclsRecord::checkHidden(NamedDecl
*ND
) {
4001 unsigned IDNS
= ND
->getIdentifierNamespace();
4002 std::list
<ShadowMap
>::reverse_iterator SM
= ShadowMaps
.rbegin();
4003 for (std::list
<ShadowMap
>::reverse_iterator SMEnd
= ShadowMaps
.rend();
4004 SM
!= SMEnd
; ++SM
) {
4005 ShadowMap::iterator Pos
= SM
->find(ND
->getDeclName());
4006 if (Pos
== SM
->end())
4009 for (auto *D
: Pos
->second
) {
4010 // A tag declaration does not hide a non-tag declaration.
4011 if (D
->hasTagIdentifierNamespace() &&
4012 (IDNS
& (Decl::IDNS_Member
| Decl::IDNS_Ordinary
|
4013 Decl::IDNS_ObjCProtocol
)))
4016 // Protocols are in distinct namespaces from everything else.
4017 if (((D
->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol
)
4018 || (IDNS
& Decl::IDNS_ObjCProtocol
)) &&
4019 D
->getIdentifierNamespace() != IDNS
)
4022 // Functions and function templates in the same scope overload
4023 // rather than hide. FIXME: Look for hiding based on function
4025 if (D
->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4026 ND
->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
4027 SM
== ShadowMaps
.rbegin())
4030 // A shadow declaration that's created by a resolved using declaration
4031 // is not hidden by the same using declaration.
4032 if (isa
<UsingShadowDecl
>(ND
) && isa
<UsingDecl
>(D
) &&
4033 cast
<UsingShadowDecl
>(ND
)->getIntroducer() == D
)
4036 // We've found a declaration that hides this one.
4045 class LookupVisibleHelper
{
4047 LookupVisibleHelper(VisibleDeclConsumer
&Consumer
, bool IncludeDependentBases
,
4049 : Consumer(Consumer
), IncludeDependentBases(IncludeDependentBases
),
4050 LoadExternal(LoadExternal
) {}
4052 void lookupVisibleDecls(Sema
&SemaRef
, Scope
*S
, Sema::LookupNameKind Kind
,
4053 bool IncludeGlobalScope
) {
4054 // Determine the set of using directives available during
4055 // unqualified name lookup.
4057 UnqualUsingDirectiveSet
UDirs(SemaRef
);
4058 if (SemaRef
.getLangOpts().CPlusPlus
) {
4059 // Find the first namespace or translation-unit scope.
4060 while (S
&& !isNamespaceOrTranslationUnitScope(S
))
4063 UDirs
.visitScopeChain(Initial
, S
);
4067 // Look for visible declarations.
4068 LookupResult
Result(SemaRef
, DeclarationName(), SourceLocation(), Kind
);
4069 Result
.setAllowHidden(Consumer
.includeHiddenDecls());
4070 if (!IncludeGlobalScope
)
4071 Visited
.visitedContext(SemaRef
.getASTContext().getTranslationUnitDecl());
4072 ShadowContextRAII
Shadow(Visited
);
4073 lookupInScope(Initial
, Result
, UDirs
);
4076 void lookupVisibleDecls(Sema
&SemaRef
, DeclContext
*Ctx
,
4077 Sema::LookupNameKind Kind
, bool IncludeGlobalScope
) {
4078 LookupResult
Result(SemaRef
, DeclarationName(), SourceLocation(), Kind
);
4079 Result
.setAllowHidden(Consumer
.includeHiddenDecls());
4080 if (!IncludeGlobalScope
)
4081 Visited
.visitedContext(SemaRef
.getASTContext().getTranslationUnitDecl());
4083 ShadowContextRAII
Shadow(Visited
);
4084 lookupInDeclContext(Ctx
, Result
, /*QualifiedNameLookup=*/true,
4085 /*InBaseClass=*/false);
4089 void lookupInDeclContext(DeclContext
*Ctx
, LookupResult
&Result
,
4090 bool QualifiedNameLookup
, bool InBaseClass
) {
4094 // Make sure we don't visit the same context twice.
4095 if (Visited
.visitedContext(Ctx
->getPrimaryContext()))
4098 Consumer
.EnteredContext(Ctx
);
4100 // Outside C++, lookup results for the TU live on identifiers.
4101 if (isa
<TranslationUnitDecl
>(Ctx
) &&
4102 !Result
.getSema().getLangOpts().CPlusPlus
) {
4103 auto &S
= Result
.getSema();
4104 auto &Idents
= S
.Context
.Idents
;
4106 // Ensure all external identifiers are in the identifier table.
4108 if (IdentifierInfoLookup
*External
=
4109 Idents
.getExternalIdentifierLookup()) {
4110 std::unique_ptr
<IdentifierIterator
> Iter(External
->getIdentifiers());
4111 for (StringRef Name
= Iter
->Next(); !Name
.empty();
4112 Name
= Iter
->Next())
4116 // Walk all lookup results in the TU for each identifier.
4117 for (const auto &Ident
: Idents
) {
4118 for (auto I
= S
.IdResolver
.begin(Ident
.getValue()),
4119 E
= S
.IdResolver
.end();
4121 if (S
.IdResolver
.isDeclInScope(*I
, Ctx
)) {
4122 if (NamedDecl
*ND
= Result
.getAcceptableDecl(*I
)) {
4123 Consumer
.FoundDecl(ND
, Visited
.checkHidden(ND
), Ctx
, InBaseClass
);
4133 if (CXXRecordDecl
*Class
= dyn_cast
<CXXRecordDecl
>(Ctx
))
4134 Result
.getSema().ForceDeclarationOfImplicitMembers(Class
);
4136 llvm::SmallVector
<NamedDecl
*, 4> DeclsToVisit
;
4137 // We sometimes skip loading namespace-level results (they tend to be huge).
4138 bool Load
= LoadExternal
||
4139 !(isa
<TranslationUnitDecl
>(Ctx
) || isa
<NamespaceDecl
>(Ctx
));
4140 // Enumerate all of the results in this context.
4141 for (DeclContextLookupResult R
:
4142 Load
? Ctx
->lookups()
4143 : Ctx
->noload_lookups(/*PreserveInternalState=*/false)) {
4145 if (auto *ND
= Result
.getAcceptableDecl(D
)) {
4146 // Rather than visit immediately, we put ND into a vector and visit
4147 // all decls, in order, outside of this loop. The reason is that
4148 // Consumer.FoundDecl() may invalidate the iterators used in the two
4150 DeclsToVisit
.push_back(ND
);
4155 for (auto *ND
: DeclsToVisit
) {
4156 Consumer
.FoundDecl(ND
, Visited
.checkHidden(ND
), Ctx
, InBaseClass
);
4159 DeclsToVisit
.clear();
4161 // Traverse using directives for qualified name lookup.
4162 if (QualifiedNameLookup
) {
4163 ShadowContextRAII
Shadow(Visited
);
4164 for (auto *I
: Ctx
->using_directives()) {
4165 if (!Result
.getSema().isVisible(I
))
4167 lookupInDeclContext(I
->getNominatedNamespace(), Result
,
4168 QualifiedNameLookup
, InBaseClass
);
4172 // Traverse the contexts of inherited C++ classes.
4173 if (CXXRecordDecl
*Record
= dyn_cast
<CXXRecordDecl
>(Ctx
)) {
4174 if (!Record
->hasDefinition())
4177 for (const auto &B
: Record
->bases()) {
4178 QualType BaseType
= B
.getType();
4181 if (BaseType
->isDependentType()) {
4182 if (!IncludeDependentBases
) {
4183 // Don't look into dependent bases, because name lookup can't look
4187 const auto *TST
= BaseType
->getAs
<TemplateSpecializationType
>();
4190 TemplateName TN
= TST
->getTemplateName();
4192 dyn_cast_or_null
<ClassTemplateDecl
>(TN
.getAsTemplateDecl());
4195 RD
= TD
->getTemplatedDecl();
4197 const auto *Record
= BaseType
->getAs
<RecordType
>();
4200 RD
= Record
->getDecl();
4203 // FIXME: It would be nice to be able to determine whether referencing
4204 // a particular member would be ambiguous. For example, given
4206 // struct A { int member; };
4207 // struct B { int member; };
4208 // struct C : A, B { };
4210 // void f(C *c) { c->### }
4212 // accessing 'member' would result in an ambiguity. However, we
4213 // could be smart enough to qualify the member with the base
4222 // Find results in this base class (and its bases).
4223 ShadowContextRAII
Shadow(Visited
);
4224 lookupInDeclContext(RD
, Result
, QualifiedNameLookup
,
4225 /*InBaseClass=*/true);
4229 // Traverse the contexts of Objective-C classes.
4230 if (ObjCInterfaceDecl
*IFace
= dyn_cast
<ObjCInterfaceDecl
>(Ctx
)) {
4231 // Traverse categories.
4232 for (auto *Cat
: IFace
->visible_categories()) {
4233 ShadowContextRAII
Shadow(Visited
);
4234 lookupInDeclContext(Cat
, Result
, QualifiedNameLookup
,
4235 /*InBaseClass=*/false);
4238 // Traverse protocols.
4239 for (auto *I
: IFace
->all_referenced_protocols()) {
4240 ShadowContextRAII
Shadow(Visited
);
4241 lookupInDeclContext(I
, Result
, QualifiedNameLookup
,
4242 /*InBaseClass=*/false);
4245 // Traverse the superclass.
4246 if (IFace
->getSuperClass()) {
4247 ShadowContextRAII
Shadow(Visited
);
4248 lookupInDeclContext(IFace
->getSuperClass(), Result
, QualifiedNameLookup
,
4249 /*InBaseClass=*/true);
4252 // If there is an implementation, traverse it. We do this to find
4253 // synthesized ivars.
4254 if (IFace
->getImplementation()) {
4255 ShadowContextRAII
Shadow(Visited
);
4256 lookupInDeclContext(IFace
->getImplementation(), Result
,
4257 QualifiedNameLookup
, InBaseClass
);
4259 } else if (ObjCProtocolDecl
*Protocol
= dyn_cast
<ObjCProtocolDecl
>(Ctx
)) {
4260 for (auto *I
: Protocol
->protocols()) {
4261 ShadowContextRAII
Shadow(Visited
);
4262 lookupInDeclContext(I
, Result
, QualifiedNameLookup
,
4263 /*InBaseClass=*/false);
4265 } else if (ObjCCategoryDecl
*Category
= dyn_cast
<ObjCCategoryDecl
>(Ctx
)) {
4266 for (auto *I
: Category
->protocols()) {
4267 ShadowContextRAII
Shadow(Visited
);
4268 lookupInDeclContext(I
, Result
, QualifiedNameLookup
,
4269 /*InBaseClass=*/false);
4272 // If there is an implementation, traverse it.
4273 if (Category
->getImplementation()) {
4274 ShadowContextRAII
Shadow(Visited
);
4275 lookupInDeclContext(Category
->getImplementation(), Result
,
4276 QualifiedNameLookup
, /*InBaseClass=*/true);
4281 void lookupInScope(Scope
*S
, LookupResult
&Result
,
4282 UnqualUsingDirectiveSet
&UDirs
) {
4283 // No clients run in this mode and it's not supported. Please add tests and
4284 // remove the assertion if you start relying on it.
4285 assert(!IncludeDependentBases
&& "Unsupported flag for lookupInScope");
4290 if (!S
->getEntity() ||
4291 (!S
->getParent() && !Visited
.alreadyVisitedContext(S
->getEntity())) ||
4292 (S
->getEntity())->isFunctionOrMethod()) {
4293 FindLocalExternScope
FindLocals(Result
);
4294 // Walk through the declarations in this Scope. The consumer might add new
4295 // decls to the scope as part of deserialization, so make a copy first.
4296 SmallVector
<Decl
*, 8> ScopeDecls(S
->decls().begin(), S
->decls().end());
4297 for (Decl
*D
: ScopeDecls
) {
4298 if (NamedDecl
*ND
= dyn_cast
<NamedDecl
>(D
))
4299 if ((ND
= Result
.getAcceptableDecl(ND
))) {
4300 Consumer
.FoundDecl(ND
, Visited
.checkHidden(ND
), nullptr, false);
4306 DeclContext
*Entity
= S
->getLookupEntity();
4308 // Look into this scope's declaration context, along with any of its
4309 // parent lookup contexts (e.g., enclosing classes), up to the point
4310 // where we hit the context stored in the next outer scope.
4311 DeclContext
*OuterCtx
= findOuterContext(S
);
4313 for (DeclContext
*Ctx
= Entity
; Ctx
&& !Ctx
->Equals(OuterCtx
);
4314 Ctx
= Ctx
->getLookupParent()) {
4315 if (ObjCMethodDecl
*Method
= dyn_cast
<ObjCMethodDecl
>(Ctx
)) {
4316 if (Method
->isInstanceMethod()) {
4317 // For instance methods, look for ivars in the method's interface.
4318 LookupResult
IvarResult(Result
.getSema(), Result
.getLookupName(),
4319 Result
.getNameLoc(),
4320 Sema::LookupMemberName
);
4321 if (ObjCInterfaceDecl
*IFace
= Method
->getClassInterface()) {
4322 lookupInDeclContext(IFace
, IvarResult
,
4323 /*QualifiedNameLookup=*/false,
4324 /*InBaseClass=*/false);
4328 // We've already performed all of the name lookup that we need
4329 // to for Objective-C methods; the next context will be the
4334 if (Ctx
->isFunctionOrMethod())
4337 lookupInDeclContext(Ctx
, Result
, /*QualifiedNameLookup=*/false,
4338 /*InBaseClass=*/false);
4340 } else if (!S
->getParent()) {
4341 // Look into the translation unit scope. We walk through the translation
4342 // unit's declaration context, because the Scope itself won't have all of
4343 // the declarations if we loaded a precompiled header.
4344 // FIXME: We would like the translation unit's Scope object to point to
4345 // the translation unit, so we don't need this special "if" branch.
4346 // However, doing so would force the normal C++ name-lookup code to look
4347 // into the translation unit decl when the IdentifierInfo chains would
4348 // suffice. Once we fix that problem (which is part of a more general
4349 // "don't look in DeclContexts unless we have to" optimization), we can
4351 Entity
= Result
.getSema().Context
.getTranslationUnitDecl();
4352 lookupInDeclContext(Entity
, Result
, /*QualifiedNameLookup=*/false,
4353 /*InBaseClass=*/false);
4357 // Lookup visible declarations in any namespaces found by using
4359 for (const UnqualUsingEntry
&UUE
: UDirs
.getNamespacesFor(Entity
))
4360 lookupInDeclContext(
4361 const_cast<DeclContext
*>(UUE
.getNominatedNamespace()), Result
,
4362 /*QualifiedNameLookup=*/false,
4363 /*InBaseClass=*/false);
4366 // Lookup names in the parent scope.
4367 ShadowContextRAII
Shadow(Visited
);
4368 lookupInScope(S
->getParent(), Result
, UDirs
);
4372 VisibleDeclsRecord Visited
;
4373 VisibleDeclConsumer
&Consumer
;
4374 bool IncludeDependentBases
;
4379 void Sema::LookupVisibleDecls(Scope
*S
, LookupNameKind Kind
,
4380 VisibleDeclConsumer
&Consumer
,
4381 bool IncludeGlobalScope
, bool LoadExternal
) {
4382 LookupVisibleHelper
H(Consumer
, /*IncludeDependentBases=*/false,
4384 H
.lookupVisibleDecls(*this, S
, Kind
, IncludeGlobalScope
);
4387 void Sema::LookupVisibleDecls(DeclContext
*Ctx
, LookupNameKind Kind
,
4388 VisibleDeclConsumer
&Consumer
,
4389 bool IncludeGlobalScope
,
4390 bool IncludeDependentBases
, bool LoadExternal
) {
4391 LookupVisibleHelper
H(Consumer
, IncludeDependentBases
, LoadExternal
);
4392 H
.lookupVisibleDecls(*this, Ctx
, Kind
, IncludeGlobalScope
);
4395 /// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
4396 /// If GnuLabelLoc is a valid source location, then this is a definition
4397 /// of an __label__ label name, otherwise it is a normal label definition
4399 LabelDecl
*Sema::LookupOrCreateLabel(IdentifierInfo
*II
, SourceLocation Loc
,
4400 SourceLocation GnuLabelLoc
) {
4401 // Do a lookup to see if we have a label with this name already.
4402 NamedDecl
*Res
= nullptr;
4404 if (GnuLabelLoc
.isValid()) {
4405 // Local label definitions always shadow existing labels.
4406 Res
= LabelDecl::Create(Context
, CurContext
, Loc
, II
, GnuLabelLoc
);
4407 Scope
*S
= CurScope
;
4408 PushOnScopeChains(Res
, S
, true);
4409 return cast
<LabelDecl
>(Res
);
4412 // Not a GNU local label.
4413 Res
= LookupSingleName(CurScope
, II
, Loc
, LookupLabel
, NotForRedeclaration
);
4414 // If we found a label, check to see if it is in the same context as us.
4415 // When in a Block, we don't want to reuse a label in an enclosing function.
4416 if (Res
&& Res
->getDeclContext() != CurContext
)
4419 // If not forward referenced or defined already, create the backing decl.
4420 Res
= LabelDecl::Create(Context
, CurContext
, Loc
, II
);
4421 Scope
*S
= CurScope
->getFnParent();
4422 assert(S
&& "Not in a function?");
4423 PushOnScopeChains(Res
, S
, true);
4425 return cast
<LabelDecl
>(Res
);
4428 //===----------------------------------------------------------------------===//
4430 //===----------------------------------------------------------------------===//
4432 static bool isCandidateViable(CorrectionCandidateCallback
&CCC
,
4433 TypoCorrection
&Candidate
) {
4434 Candidate
.setCallbackDistance(CCC
.RankCandidate(Candidate
));
4435 return Candidate
.getEditDistance(false) != TypoCorrection::InvalidDistance
;
4438 static void LookupPotentialTypoResult(Sema
&SemaRef
,
4440 IdentifierInfo
*Name
,
4441 Scope
*S
, CXXScopeSpec
*SS
,
4442 DeclContext
*MemberContext
,
4443 bool EnteringContext
,
4444 bool isObjCIvarLookup
,
4447 /// Check whether the declarations found for a typo correction are
4448 /// visible. Set the correction's RequiresImport flag to true if none of the
4449 /// declarations are visible, false otherwise.
4450 static void checkCorrectionVisibility(Sema
&SemaRef
, TypoCorrection
&TC
) {
4451 TypoCorrection::decl_iterator DI
= TC
.begin(), DE
= TC
.end();
4453 for (/**/; DI
!= DE
; ++DI
)
4454 if (!LookupResult::isVisible(SemaRef
, *DI
))
4456 // No filtering needed if all decls are visible.
4458 TC
.setRequiresImport(false);
4462 llvm::SmallVector
<NamedDecl
*, 4> NewDecls(TC
.begin(), DI
);
4463 bool AnyVisibleDecls
= !NewDecls
.empty();
4465 for (/**/; DI
!= DE
; ++DI
) {
4466 if (LookupResult::isVisible(SemaRef
, *DI
)) {
4467 if (!AnyVisibleDecls
) {
4468 // Found a visible decl, discard all hidden ones.
4469 AnyVisibleDecls
= true;
4472 NewDecls
.push_back(*DI
);
4473 } else if (!AnyVisibleDecls
&& !(*DI
)->isModulePrivate())
4474 NewDecls
.push_back(*DI
);
4477 if (NewDecls
.empty())
4478 TC
= TypoCorrection();
4480 TC
.setCorrectionDecls(NewDecls
);
4481 TC
.setRequiresImport(!AnyVisibleDecls
);
4485 // Fill the supplied vector with the IdentifierInfo pointers for each piece of
4486 // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
4487 // fill the vector with the IdentifierInfo pointers for "foo" and "bar").
4488 static void getNestedNameSpecifierIdentifiers(
4489 NestedNameSpecifier
*NNS
,
4490 SmallVectorImpl
<const IdentifierInfo
*> &Identifiers
) {
4491 if (NestedNameSpecifier
*Prefix
= NNS
->getPrefix())
4492 getNestedNameSpecifierIdentifiers(Prefix
, Identifiers
);
4494 Identifiers
.clear();
4496 const IdentifierInfo
*II
= nullptr;
4498 switch (NNS
->getKind()) {
4499 case NestedNameSpecifier::Identifier
:
4500 II
= NNS
->getAsIdentifier();
4503 case NestedNameSpecifier::Namespace
:
4504 if (NNS
->getAsNamespace()->isAnonymousNamespace())
4506 II
= NNS
->getAsNamespace()->getIdentifier();
4509 case NestedNameSpecifier::NamespaceAlias
:
4510 II
= NNS
->getAsNamespaceAlias()->getIdentifier();
4513 case NestedNameSpecifier::TypeSpecWithTemplate
:
4514 case NestedNameSpecifier::TypeSpec
:
4515 II
= QualType(NNS
->getAsType(), 0).getBaseTypeIdentifier();
4518 case NestedNameSpecifier::Global
:
4519 case NestedNameSpecifier::Super
:
4524 Identifiers
.push_back(II
);
4527 void TypoCorrectionConsumer::FoundDecl(NamedDecl
*ND
, NamedDecl
*Hiding
,
4528 DeclContext
*Ctx
, bool InBaseClass
) {
4529 // Don't consider hidden names for typo correction.
4533 // Only consider entities with identifiers for names, ignoring
4534 // special names (constructors, overloaded operators, selectors,
4536 IdentifierInfo
*Name
= ND
->getIdentifier();
4540 // Only consider visible declarations and declarations from modules with
4541 // names that exactly match.
4542 if (!LookupResult::isVisible(SemaRef
, ND
) && Name
!= Typo
)
4545 FoundName(Name
->getName());
4548 void TypoCorrectionConsumer::FoundName(StringRef Name
) {
4549 // Compute the edit distance between the typo and the name of this
4550 // entity, and add the identifier to the list of results.
4551 addName(Name
, nullptr);
4554 void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword
) {
4555 // Compute the edit distance between the typo and this keyword,
4556 // and add the keyword to the list of results.
4557 addName(Keyword
, nullptr, nullptr, true);
4560 void TypoCorrectionConsumer::addName(StringRef Name
, NamedDecl
*ND
,
4561 NestedNameSpecifier
*NNS
, bool isKeyword
) {
4562 // Use a simple length-based heuristic to determine the minimum possible
4563 // edit distance. If the minimum isn't good enough, bail out early.
4564 StringRef TypoStr
= Typo
->getName();
4565 unsigned MinED
= abs((int)Name
.size() - (int)TypoStr
.size());
4566 if (MinED
&& TypoStr
.size() / MinED
< 3)
4569 // Compute an upper bound on the allowable edit distance, so that the
4570 // edit-distance algorithm can short-circuit.
4571 unsigned UpperBound
= (TypoStr
.size() + 2) / 3;
4572 unsigned ED
= TypoStr
.edit_distance(Name
, true, UpperBound
);
4573 if (ED
> UpperBound
) return;
4575 TypoCorrection
TC(&SemaRef
.Context
.Idents
.get(Name
), ND
, NNS
, ED
);
4576 if (isKeyword
) TC
.makeKeyword();
4577 TC
.setCorrectionRange(nullptr, Result
.getLookupNameInfo());
4581 static const unsigned MaxTypoDistanceResultSets
= 5;
4583 void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction
) {
4584 StringRef TypoStr
= Typo
->getName();
4585 StringRef Name
= Correction
.getCorrectionAsIdentifierInfo()->getName();
4587 // For very short typos, ignore potential corrections that have a different
4588 // base identifier from the typo or which have a normalized edit distance
4589 // longer than the typo itself.
4590 if (TypoStr
.size() < 3 &&
4591 (Name
!= TypoStr
|| Correction
.getEditDistance(true) > TypoStr
.size()))
4594 // If the correction is resolved but is not viable, ignore it.
4595 if (Correction
.isResolved()) {
4596 checkCorrectionVisibility(SemaRef
, Correction
);
4597 if (!Correction
|| !isCandidateViable(*CorrectionValidator
, Correction
))
4601 TypoResultList
&CList
=
4602 CorrectionResults
[Correction
.getEditDistance(false)][Name
];
4604 if (!CList
.empty() && !CList
.back().isResolved())
4606 if (NamedDecl
*NewND
= Correction
.getCorrectionDecl()) {
4607 auto RI
= llvm::find_if(CList
, [NewND
](const TypoCorrection
&TypoCorr
) {
4608 return TypoCorr
.getCorrectionDecl() == NewND
;
4610 if (RI
!= CList
.end()) {
4611 // The Correction refers to a decl already in the list. No insertion is
4612 // necessary and all further cases will return.
4614 auto IsDeprecated
= [](Decl
*D
) {
4616 if (D
->isDeprecated())
4618 D
= llvm::dyn_cast_or_null
<NamespaceDecl
>(D
->getDeclContext());
4623 // Prefer non deprecated Corrections over deprecated and only then
4624 // sort using an alphabetical order.
4625 std::pair
<bool, std::string
> NewKey
= {
4626 IsDeprecated(Correction
.getFoundDecl()),
4627 Correction
.getAsString(SemaRef
.getLangOpts())};
4629 std::pair
<bool, std::string
> PrevKey
= {
4630 IsDeprecated(RI
->getFoundDecl()),
4631 RI
->getAsString(SemaRef
.getLangOpts())};
4633 if (NewKey
< PrevKey
)
4638 if (CList
.empty() || Correction
.isResolved())
4639 CList
.push_back(Correction
);
4641 while (CorrectionResults
.size() > MaxTypoDistanceResultSets
)
4642 CorrectionResults
.erase(std::prev(CorrectionResults
.end()));
4645 void TypoCorrectionConsumer::addNamespaces(
4646 const llvm::MapVector
<NamespaceDecl
*, bool> &KnownNamespaces
) {
4647 SearchNamespaces
= true;
4649 for (auto KNPair
: KnownNamespaces
)
4650 Namespaces
.addNameSpecifier(KNPair
.first
);
4652 bool SSIsTemplate
= false;
4653 if (NestedNameSpecifier
*NNS
=
4654 (SS
&& SS
->isValid()) ? SS
->getScopeRep() : nullptr) {
4655 if (const Type
*T
= NNS
->getAsType())
4656 SSIsTemplate
= T
->getTypeClass() == Type::TemplateSpecialization
;
4658 // Do not transform this into an iterator-based loop. The loop body can
4659 // trigger the creation of further types (through lazy deserialization) and
4660 // invalid iterators into this list.
4661 auto &Types
= SemaRef
.getASTContext().getTypes();
4662 for (unsigned I
= 0; I
!= Types
.size(); ++I
) {
4663 const auto *TI
= Types
[I
];
4664 if (CXXRecordDecl
*CD
= TI
->getAsCXXRecordDecl()) {
4665 CD
= CD
->getCanonicalDecl();
4666 if (!CD
->isDependentType() && !CD
->isAnonymousStructOrUnion() &&
4667 !CD
->isUnion() && CD
->getIdentifier() &&
4668 (SSIsTemplate
|| !isa
<ClassTemplateSpecializationDecl
>(CD
)) &&
4669 (CD
->isBeingDefined() || CD
->isCompleteDefinition()))
4670 Namespaces
.addNameSpecifier(CD
);
4675 const TypoCorrection
&TypoCorrectionConsumer::getNextCorrection() {
4676 if (++CurrentTCIndex
< ValidatedCorrections
.size())
4677 return ValidatedCorrections
[CurrentTCIndex
];
4679 CurrentTCIndex
= ValidatedCorrections
.size();
4680 while (!CorrectionResults
.empty()) {
4681 auto DI
= CorrectionResults
.begin();
4682 if (DI
->second
.empty()) {
4683 CorrectionResults
.erase(DI
);
4687 auto RI
= DI
->second
.begin();
4688 if (RI
->second
.empty()) {
4689 DI
->second
.erase(RI
);
4690 performQualifiedLookups();
4694 TypoCorrection TC
= RI
->second
.pop_back_val();
4695 if (TC
.isResolved() || TC
.requiresImport() || resolveCorrection(TC
)) {
4696 ValidatedCorrections
.push_back(TC
);
4697 return ValidatedCorrections
[CurrentTCIndex
];
4700 return ValidatedCorrections
[0]; // The empty correction.
4703 bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection
&Candidate
) {
4704 IdentifierInfo
*Name
= Candidate
.getCorrectionAsIdentifierInfo();
4705 DeclContext
*TempMemberContext
= MemberContext
;
4706 CXXScopeSpec
*TempSS
= SS
.get();
4708 LookupPotentialTypoResult(SemaRef
, Result
, Name
, S
, TempSS
, TempMemberContext
,
4710 CorrectionValidator
->IsObjCIvarLookup
,
4711 Name
== Typo
&& !Candidate
.WillReplaceSpecifier());
4712 switch (Result
.getResultKind()) {
4713 case LookupResult::NotFound
:
4714 case LookupResult::NotFoundInCurrentInstantiation
:
4715 case LookupResult::FoundUnresolvedValue
:
4717 // Immediately retry the lookup without the given CXXScopeSpec
4719 Candidate
.WillReplaceSpecifier(true);
4722 if (TempMemberContext
) {
4725 TempMemberContext
= nullptr;
4728 if (SearchNamespaces
)
4729 QualifiedResults
.push_back(Candidate
);
4732 case LookupResult::Ambiguous
:
4733 // We don't deal with ambiguities.
4736 case LookupResult::Found
:
4737 case LookupResult::FoundOverloaded
:
4738 // Store all of the Decls for overloaded symbols
4739 for (auto *TRD
: Result
)
4740 Candidate
.addCorrectionDecl(TRD
);
4741 checkCorrectionVisibility(SemaRef
, Candidate
);
4742 if (!isCandidateViable(*CorrectionValidator
, Candidate
)) {
4743 if (SearchNamespaces
)
4744 QualifiedResults
.push_back(Candidate
);
4747 Candidate
.setCorrectionRange(SS
.get(), Result
.getLookupNameInfo());
4753 void TypoCorrectionConsumer::performQualifiedLookups() {
4754 unsigned TypoLen
= Typo
->getName().size();
4755 for (const TypoCorrection
&QR
: QualifiedResults
) {
4756 for (const auto &NSI
: Namespaces
) {
4757 DeclContext
*Ctx
= NSI
.DeclCtx
;
4758 const Type
*NSType
= NSI
.NameSpecifier
->getAsType();
4760 // If the current NestedNameSpecifier refers to a class and the
4761 // current correction candidate is the name of that class, then skip
4762 // it as it is unlikely a qualified version of the class' constructor
4763 // is an appropriate correction.
4764 if (CXXRecordDecl
*NSDecl
= NSType
? NSType
->getAsCXXRecordDecl() :
4766 if (NSDecl
->getIdentifier() == QR
.getCorrectionAsIdentifierInfo())
4770 TypoCorrection
TC(QR
);
4771 TC
.ClearCorrectionDecls();
4772 TC
.setCorrectionSpecifier(NSI
.NameSpecifier
);
4773 TC
.setQualifierDistance(NSI
.EditDistance
);
4774 TC
.setCallbackDistance(0); // Reset the callback distance
4776 // If the current correction candidate and namespace combination are
4777 // too far away from the original typo based on the normalized edit
4778 // distance, then skip performing a qualified name lookup.
4779 unsigned TmpED
= TC
.getEditDistance(true);
4780 if (QR
.getCorrectionAsIdentifierInfo() != Typo
&& TmpED
&&
4781 TypoLen
/ TmpED
< 3)
4785 Result
.setLookupName(QR
.getCorrectionAsIdentifierInfo());
4786 if (!SemaRef
.LookupQualifiedName(Result
, Ctx
))
4789 // Any corrections added below will be validated in subsequent
4790 // iterations of the main while() loop over the Consumer's contents.
4791 switch (Result
.getResultKind()) {
4792 case LookupResult::Found
:
4793 case LookupResult::FoundOverloaded
: {
4794 if (SS
&& SS
->isValid()) {
4795 std::string NewQualified
= TC
.getAsString(SemaRef
.getLangOpts());
4796 std::string OldQualified
;
4797 llvm::raw_string_ostream
OldOStream(OldQualified
);
4798 SS
->getScopeRep()->print(OldOStream
, SemaRef
.getPrintingPolicy());
4799 OldOStream
<< Typo
->getName();
4800 // If correction candidate would be an identical written qualified
4801 // identifier, then the existing CXXScopeSpec probably included a
4802 // typedef that didn't get accounted for properly.
4803 if (OldOStream
.str() == NewQualified
)
4806 for (LookupResult::iterator TRD
= Result
.begin(), TRDEnd
= Result
.end();
4807 TRD
!= TRDEnd
; ++TRD
) {
4808 if (SemaRef
.CheckMemberAccess(TC
.getCorrectionRange().getBegin(),
4809 NSType
? NSType
->getAsCXXRecordDecl()
4811 TRD
.getPair()) == Sema::AR_accessible
)
4812 TC
.addCorrectionDecl(*TRD
);
4814 if (TC
.isResolved()) {
4815 TC
.setCorrectionRange(SS
.get(), Result
.getLookupNameInfo());
4820 case LookupResult::NotFound
:
4821 case LookupResult::NotFoundInCurrentInstantiation
:
4822 case LookupResult::Ambiguous
:
4823 case LookupResult::FoundUnresolvedValue
:
4828 QualifiedResults
.clear();
4831 TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4832 ASTContext
&Context
, DeclContext
*CurContext
, CXXScopeSpec
*CurScopeSpec
)
4833 : Context(Context
), CurContextChain(buildContextChain(CurContext
)) {
4834 if (NestedNameSpecifier
*NNS
=
4835 CurScopeSpec
? CurScopeSpec
->getScopeRep() : nullptr) {
4836 llvm::raw_string_ostream
SpecifierOStream(CurNameSpecifier
);
4837 NNS
->print(SpecifierOStream
, Context
.getPrintingPolicy());
4839 getNestedNameSpecifierIdentifiers(NNS
, CurNameSpecifierIdentifiers
);
4841 // Build the list of identifiers that would be used for an absolute
4842 // (from the global context) NestedNameSpecifier referring to the current
4844 for (DeclContext
*C
: llvm::reverse(CurContextChain
)) {
4845 if (auto *ND
= dyn_cast_or_null
<NamespaceDecl
>(C
))
4846 CurContextIdentifiers
.push_back(ND
->getIdentifier());
4849 // Add the global context as a NestedNameSpecifier
4850 SpecifierInfo SI
= {cast
<DeclContext
>(Context
.getTranslationUnitDecl()),
4851 NestedNameSpecifier::GlobalSpecifier(Context
), 1};
4852 DistanceMap
[1].push_back(SI
);
4855 auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4856 DeclContext
*Start
) -> DeclContextList
{
4857 assert(Start
&& "Building a context chain from a null context");
4858 DeclContextList Chain
;
4859 for (DeclContext
*DC
= Start
->getPrimaryContext(); DC
!= nullptr;
4860 DC
= DC
->getLookupParent()) {
4861 NamespaceDecl
*ND
= dyn_cast_or_null
<NamespaceDecl
>(DC
);
4862 if (!DC
->isInlineNamespace() && !DC
->isTransparentContext() &&
4863 !(ND
&& ND
->isAnonymousNamespace()))
4864 Chain
.push_back(DC
->getPrimaryContext());
4870 TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4871 DeclContextList
&DeclChain
, NestedNameSpecifier
*&NNS
) {
4872 unsigned NumSpecifiers
= 0;
4873 for (DeclContext
*C
: llvm::reverse(DeclChain
)) {
4874 if (auto *ND
= dyn_cast_or_null
<NamespaceDecl
>(C
)) {
4875 NNS
= NestedNameSpecifier::Create(Context
, NNS
, ND
);
4877 } else if (auto *RD
= dyn_cast_or_null
<RecordDecl
>(C
)) {
4878 NNS
= NestedNameSpecifier::Create(Context
, NNS
, RD
->isTemplateDecl(),
4879 RD
->getTypeForDecl());
4883 return NumSpecifiers
;
4886 void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4888 NestedNameSpecifier
*NNS
= nullptr;
4889 unsigned NumSpecifiers
= 0;
4890 DeclContextList
NamespaceDeclChain(buildContextChain(Ctx
));
4891 DeclContextList
FullNamespaceDeclChain(NamespaceDeclChain
);
4893 // Eliminate common elements from the two DeclContext chains.
4894 for (DeclContext
*C
: llvm::reverse(CurContextChain
)) {
4895 if (NamespaceDeclChain
.empty() || NamespaceDeclChain
.back() != C
)
4897 NamespaceDeclChain
.pop_back();
4900 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4901 NumSpecifiers
= buildNestedNameSpecifier(NamespaceDeclChain
, NNS
);
4903 // Add an explicit leading '::' specifier if needed.
4904 if (NamespaceDeclChain
.empty()) {
4905 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4906 NNS
= NestedNameSpecifier::GlobalSpecifier(Context
);
4908 buildNestedNameSpecifier(FullNamespaceDeclChain
, NNS
);
4909 } else if (NamedDecl
*ND
=
4910 dyn_cast_or_null
<NamedDecl
>(NamespaceDeclChain
.back())) {
4911 IdentifierInfo
*Name
= ND
->getIdentifier();
4912 bool SameNameSpecifier
= false;
4913 if (llvm::is_contained(CurNameSpecifierIdentifiers
, Name
)) {
4914 std::string NewNameSpecifier
;
4915 llvm::raw_string_ostream
SpecifierOStream(NewNameSpecifier
);
4916 SmallVector
<const IdentifierInfo
*, 4> NewNameSpecifierIdentifiers
;
4917 getNestedNameSpecifierIdentifiers(NNS
, NewNameSpecifierIdentifiers
);
4918 NNS
->print(SpecifierOStream
, Context
.getPrintingPolicy());
4919 SpecifierOStream
.flush();
4920 SameNameSpecifier
= NewNameSpecifier
== CurNameSpecifier
;
4922 if (SameNameSpecifier
|| llvm::is_contained(CurContextIdentifiers
, Name
)) {
4923 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4924 NNS
= NestedNameSpecifier::GlobalSpecifier(Context
);
4926 buildNestedNameSpecifier(FullNamespaceDeclChain
, NNS
);
4930 // If the built NestedNameSpecifier would be replacing an existing
4931 // NestedNameSpecifier, use the number of component identifiers that
4932 // would need to be changed as the edit distance instead of the number
4933 // of components in the built NestedNameSpecifier.
4934 if (NNS
&& !CurNameSpecifierIdentifiers
.empty()) {
4935 SmallVector
<const IdentifierInfo
*, 4> NewNameSpecifierIdentifiers
;
4936 getNestedNameSpecifierIdentifiers(NNS
, NewNameSpecifierIdentifiers
);
4937 NumSpecifiers
= llvm::ComputeEditDistance(
4938 llvm::makeArrayRef(CurNameSpecifierIdentifiers
),
4939 llvm::makeArrayRef(NewNameSpecifierIdentifiers
));
4942 SpecifierInfo SI
= {Ctx
, NNS
, NumSpecifiers
};
4943 DistanceMap
[NumSpecifiers
].push_back(SI
);
4946 /// Perform name lookup for a possible result for typo correction.
4947 static void LookupPotentialTypoResult(Sema
&SemaRef
,
4949 IdentifierInfo
*Name
,
4950 Scope
*S
, CXXScopeSpec
*SS
,
4951 DeclContext
*MemberContext
,
4952 bool EnteringContext
,
4953 bool isObjCIvarLookup
,
4955 Res
.suppressDiagnostics();
4957 Res
.setLookupName(Name
);
4958 Res
.setAllowHidden(FindHidden
);
4959 if (MemberContext
) {
4960 if (ObjCInterfaceDecl
*Class
= dyn_cast
<ObjCInterfaceDecl
>(MemberContext
)) {
4961 if (isObjCIvarLookup
) {
4962 if (ObjCIvarDecl
*Ivar
= Class
->lookupInstanceVariable(Name
)) {
4969 if (ObjCPropertyDecl
*Prop
= Class
->FindPropertyDeclaration(
4970 Name
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
4977 SemaRef
.LookupQualifiedName(Res
, MemberContext
);
4981 SemaRef
.LookupParsedName(Res
, S
, SS
, /*AllowBuiltinCreation=*/false,
4984 // Fake ivar lookup; this should really be part of
4985 // LookupParsedName.
4986 if (ObjCMethodDecl
*Method
= SemaRef
.getCurMethodDecl()) {
4987 if (Method
->isInstanceMethod() && Method
->getClassInterface() &&
4989 (Res
.isSingleResult() &&
4990 Res
.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4991 if (ObjCIvarDecl
*IV
4992 = Method
->getClassInterface()->lookupInstanceVariable(Name
)) {
5000 /// Add keywords to the consumer as possible typo corrections.
5001 static void AddKeywordsToConsumer(Sema
&SemaRef
,
5002 TypoCorrectionConsumer
&Consumer
,
5003 Scope
*S
, CorrectionCandidateCallback
&CCC
,
5004 bool AfterNestedNameSpecifier
) {
5005 if (AfterNestedNameSpecifier
) {
5006 // For 'X::', we know exactly which keywords can appear next.
5007 Consumer
.addKeywordResult("template");
5008 if (CCC
.WantExpressionKeywords
)
5009 Consumer
.addKeywordResult("operator");
5013 if (CCC
.WantObjCSuper
)
5014 Consumer
.addKeywordResult("super");
5016 if (CCC
.WantTypeSpecifiers
) {
5017 // Add type-specifier keywords to the set of results.
5018 static const char *const CTypeSpecs
[] = {
5019 "char", "const", "double", "enum", "float", "int", "long", "short",
5020 "signed", "struct", "union", "unsigned", "void", "volatile",
5021 "_Complex", "_Imaginary",
5022 // storage-specifiers as well
5023 "extern", "inline", "static", "typedef"
5026 for (const auto *CTS
: CTypeSpecs
)
5027 Consumer
.addKeywordResult(CTS
);
5029 if (SemaRef
.getLangOpts().C99
)
5030 Consumer
.addKeywordResult("restrict");
5031 if (SemaRef
.getLangOpts().Bool
|| SemaRef
.getLangOpts().CPlusPlus
)
5032 Consumer
.addKeywordResult("bool");
5033 else if (SemaRef
.getLangOpts().C99
)
5034 Consumer
.addKeywordResult("_Bool");
5036 if (SemaRef
.getLangOpts().CPlusPlus
) {
5037 Consumer
.addKeywordResult("class");
5038 Consumer
.addKeywordResult("typename");
5039 Consumer
.addKeywordResult("wchar_t");
5041 if (SemaRef
.getLangOpts().CPlusPlus11
) {
5042 Consumer
.addKeywordResult("char16_t");
5043 Consumer
.addKeywordResult("char32_t");
5044 Consumer
.addKeywordResult("constexpr");
5045 Consumer
.addKeywordResult("decltype");
5046 Consumer
.addKeywordResult("thread_local");
5050 if (SemaRef
.getLangOpts().GNUKeywords
)
5051 Consumer
.addKeywordResult("typeof");
5052 } else if (CCC
.WantFunctionLikeCasts
) {
5053 static const char *const CastableTypeSpecs
[] = {
5054 "char", "double", "float", "int", "long", "short",
5055 "signed", "unsigned", "void"
5057 for (auto *kw
: CastableTypeSpecs
)
5058 Consumer
.addKeywordResult(kw
);
5061 if (CCC
.WantCXXNamedCasts
&& SemaRef
.getLangOpts().CPlusPlus
) {
5062 Consumer
.addKeywordResult("const_cast");
5063 Consumer
.addKeywordResult("dynamic_cast");
5064 Consumer
.addKeywordResult("reinterpret_cast");
5065 Consumer
.addKeywordResult("static_cast");
5068 if (CCC
.WantExpressionKeywords
) {
5069 Consumer
.addKeywordResult("sizeof");
5070 if (SemaRef
.getLangOpts().Bool
|| SemaRef
.getLangOpts().CPlusPlus
) {
5071 Consumer
.addKeywordResult("false");
5072 Consumer
.addKeywordResult("true");
5075 if (SemaRef
.getLangOpts().CPlusPlus
) {
5076 static const char *const CXXExprs
[] = {
5077 "delete", "new", "operator", "throw", "typeid"
5079 for (const auto *CE
: CXXExprs
)
5080 Consumer
.addKeywordResult(CE
);
5082 if (isa
<CXXMethodDecl
>(SemaRef
.CurContext
) &&
5083 cast
<CXXMethodDecl
>(SemaRef
.CurContext
)->isInstance())
5084 Consumer
.addKeywordResult("this");
5086 if (SemaRef
.getLangOpts().CPlusPlus11
) {
5087 Consumer
.addKeywordResult("alignof");
5088 Consumer
.addKeywordResult("nullptr");
5092 if (SemaRef
.getLangOpts().C11
) {
5093 // FIXME: We should not suggest _Alignof if the alignof macro
5095 Consumer
.addKeywordResult("_Alignof");
5099 if (CCC
.WantRemainingKeywords
) {
5100 if (SemaRef
.getCurFunctionOrMethodDecl() || SemaRef
.getCurBlock()) {
5102 static const char *const CStmts
[] = {
5103 "do", "else", "for", "goto", "if", "return", "switch", "while" };
5104 for (const auto *CS
: CStmts
)
5105 Consumer
.addKeywordResult(CS
);
5107 if (SemaRef
.getLangOpts().CPlusPlus
) {
5108 Consumer
.addKeywordResult("catch");
5109 Consumer
.addKeywordResult("try");
5112 if (S
&& S
->getBreakParent())
5113 Consumer
.addKeywordResult("break");
5115 if (S
&& S
->getContinueParent())
5116 Consumer
.addKeywordResult("continue");
5118 if (SemaRef
.getCurFunction() &&
5119 !SemaRef
.getCurFunction()->SwitchStack
.empty()) {
5120 Consumer
.addKeywordResult("case");
5121 Consumer
.addKeywordResult("default");
5124 if (SemaRef
.getLangOpts().CPlusPlus
) {
5125 Consumer
.addKeywordResult("namespace");
5126 Consumer
.addKeywordResult("template");
5129 if (S
&& S
->isClassScope()) {
5130 Consumer
.addKeywordResult("explicit");
5131 Consumer
.addKeywordResult("friend");
5132 Consumer
.addKeywordResult("mutable");
5133 Consumer
.addKeywordResult("private");
5134 Consumer
.addKeywordResult("protected");
5135 Consumer
.addKeywordResult("public");
5136 Consumer
.addKeywordResult("virtual");
5140 if (SemaRef
.getLangOpts().CPlusPlus
) {
5141 Consumer
.addKeywordResult("using");
5143 if (SemaRef
.getLangOpts().CPlusPlus11
)
5144 Consumer
.addKeywordResult("static_assert");
5149 std::unique_ptr
<TypoCorrectionConsumer
> Sema::makeTypoCorrectionConsumer(
5150 const DeclarationNameInfo
&TypoName
, Sema::LookupNameKind LookupKind
,
5151 Scope
*S
, CXXScopeSpec
*SS
, CorrectionCandidateCallback
&CCC
,
5152 DeclContext
*MemberContext
, bool EnteringContext
,
5153 const ObjCObjectPointerType
*OPT
, bool ErrorRecovery
) {
5155 if (Diags
.hasFatalErrorOccurred() || !getLangOpts().SpellChecking
||
5156 DisableTypoCorrection
)
5159 // In Microsoft mode, don't perform typo correction in a template member
5160 // function dependent context because it interferes with the "lookup into
5161 // dependent bases of class templates" feature.
5162 if (getLangOpts().MSVCCompat
&& CurContext
->isDependentContext() &&
5163 isa
<CXXMethodDecl
>(CurContext
))
5166 // We only attempt to correct typos for identifiers.
5167 IdentifierInfo
*Typo
= TypoName
.getName().getAsIdentifierInfo();
5171 // If the scope specifier itself was invalid, don't try to correct
5173 if (SS
&& SS
->isInvalid())
5176 // Never try to correct typos during any kind of code synthesis.
5177 if (!CodeSynthesisContexts
.empty())
5180 // Don't try to correct 'super'.
5181 if (S
&& S
->isInObjcMethodScope() && Typo
== getSuperIdentifier())
5184 // Abort if typo correction already failed for this specific typo.
5185 IdentifierSourceLocations::iterator locs
= TypoCorrectionFailures
.find(Typo
);
5186 if (locs
!= TypoCorrectionFailures
.end() &&
5187 locs
->second
.count(TypoName
.getLoc()))
5190 // Don't try to correct the identifier "vector" when in AltiVec mode.
5191 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
5192 // remove this workaround.
5193 if ((getLangOpts().AltiVec
|| getLangOpts().ZVector
) && Typo
->isStr("vector"))
5196 // Provide a stop gap for files that are just seriously broken. Trying
5197 // to correct all typos can turn into a HUGE performance penalty, causing
5198 // some files to take minutes to get rejected by the parser.
5199 unsigned Limit
= getDiagnostics().getDiagnosticOptions().SpellCheckingLimit
;
5200 if (Limit
&& TyposCorrected
>= Limit
)
5204 // If we're handling a missing symbol error, using modules, and the
5205 // special search all modules option is used, look for a missing import.
5206 if (ErrorRecovery
&& getLangOpts().Modules
&&
5207 getLangOpts().ModulesSearchAll
) {
5208 // The following has the side effect of loading the missing module.
5209 getModuleLoader().lookupMissingImports(Typo
->getName(),
5210 TypoName
.getBeginLoc());
5213 // Extend the lifetime of the callback. We delayed this until here
5214 // to avoid allocations in the hot path (which is where no typo correction
5215 // occurs). Note that CorrectionCandidateCallback is polymorphic and
5216 // initially stack-allocated.
5217 std::unique_ptr
<CorrectionCandidateCallback
> ClonedCCC
= CCC
.clone();
5218 auto Consumer
= std::make_unique
<TypoCorrectionConsumer
>(
5219 *this, TypoName
, LookupKind
, S
, SS
, std::move(ClonedCCC
), MemberContext
,
5222 // Perform name lookup to find visible, similarly-named entities.
5223 bool IsUnqualifiedLookup
= false;
5224 DeclContext
*QualifiedDC
= MemberContext
;
5225 if (MemberContext
) {
5226 LookupVisibleDecls(MemberContext
, LookupKind
, *Consumer
);
5228 // Look in qualified interfaces.
5230 for (auto *I
: OPT
->quals())
5231 LookupVisibleDecls(I
, LookupKind
, *Consumer
);
5233 } else if (SS
&& SS
->isSet()) {
5234 QualifiedDC
= computeDeclContext(*SS
, EnteringContext
);
5238 LookupVisibleDecls(QualifiedDC
, LookupKind
, *Consumer
);
5240 IsUnqualifiedLookup
= true;
5243 // Determine whether we are going to search in the various namespaces for
5245 bool SearchNamespaces
5246 = getLangOpts().CPlusPlus
&&
5247 (IsUnqualifiedLookup
|| (SS
&& SS
->isSet()));
5249 if (IsUnqualifiedLookup
|| SearchNamespaces
) {
5250 // For unqualified lookup, look through all of the names that we have
5251 // seen in this translation unit.
5252 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5253 for (const auto &I
: Context
.Idents
)
5254 Consumer
->FoundName(I
.getKey());
5256 // Walk through identifiers in external identifier sources.
5257 // FIXME: Re-add the ability to skip very unlikely potential corrections.
5258 if (IdentifierInfoLookup
*External
5259 = Context
.Idents
.getExternalIdentifierLookup()) {
5260 std::unique_ptr
<IdentifierIterator
> Iter(External
->getIdentifiers());
5262 StringRef Name
= Iter
->Next();
5266 Consumer
->FoundName(Name
);
5271 AddKeywordsToConsumer(*this, *Consumer
, S
,
5272 *Consumer
->getCorrectionValidator(),
5273 SS
&& SS
->isNotEmpty());
5275 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
5276 // to search those namespaces.
5277 if (SearchNamespaces
) {
5278 // Load any externally-known namespaces.
5279 if (ExternalSource
&& !LoadedExternalKnownNamespaces
) {
5280 SmallVector
<NamespaceDecl
*, 4> ExternalKnownNamespaces
;
5281 LoadedExternalKnownNamespaces
= true;
5282 ExternalSource
->ReadKnownNamespaces(ExternalKnownNamespaces
);
5283 for (auto *N
: ExternalKnownNamespaces
)
5284 KnownNamespaces
[N
] = true;
5287 Consumer
->addNamespaces(KnownNamespaces
);
5293 /// Try to "correct" a typo in the source code by finding
5294 /// visible declarations whose names are similar to the name that was
5295 /// present in the source code.
5297 /// \param TypoName the \c DeclarationNameInfo structure that contains
5298 /// the name that was present in the source code along with its location.
5300 /// \param LookupKind the name-lookup criteria used to search for the name.
5302 /// \param S the scope in which name lookup occurs.
5304 /// \param SS the nested-name-specifier that precedes the name we're
5305 /// looking for, if present.
5307 /// \param CCC A CorrectionCandidateCallback object that provides further
5308 /// validation of typo correction candidates. It also provides flags for
5309 /// determining the set of keywords permitted.
5311 /// \param MemberContext if non-NULL, the context in which to look for
5312 /// a member access expression.
5314 /// \param EnteringContext whether we're entering the context described by
5315 /// the nested-name-specifier SS.
5317 /// \param OPT when non-NULL, the search for visible declarations will
5318 /// also walk the protocols in the qualified interfaces of \p OPT.
5320 /// \returns a \c TypoCorrection containing the corrected name if the typo
5321 /// along with information such as the \c NamedDecl where the corrected name
5322 /// was declared, and any additional \c NestedNameSpecifier needed to access
5323 /// it (C++ only). The \c TypoCorrection is empty if there is no correction.
5324 TypoCorrection
Sema::CorrectTypo(const DeclarationNameInfo
&TypoName
,
5325 Sema::LookupNameKind LookupKind
,
5326 Scope
*S
, CXXScopeSpec
*SS
,
5327 CorrectionCandidateCallback
&CCC
,
5328 CorrectTypoKind Mode
,
5329 DeclContext
*MemberContext
,
5330 bool EnteringContext
,
5331 const ObjCObjectPointerType
*OPT
,
5332 bool RecordFailure
) {
5333 // Always let the ExternalSource have the first chance at correction, even
5334 // if we would otherwise have given up.
5335 if (ExternalSource
) {
5336 if (TypoCorrection Correction
=
5337 ExternalSource
->CorrectTypo(TypoName
, LookupKind
, S
, SS
, CCC
,
5338 MemberContext
, EnteringContext
, OPT
))
5342 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
5343 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
5344 // some instances of CTC_Unknown, while WantRemainingKeywords is true
5345 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
5346 bool ObjCMessageReceiver
= CCC
.WantObjCSuper
&& !CCC
.WantRemainingKeywords
;
5348 IdentifierInfo
*Typo
= TypoName
.getName().getAsIdentifierInfo();
5349 auto Consumer
= makeTypoCorrectionConsumer(TypoName
, LookupKind
, S
, SS
, CCC
,
5350 MemberContext
, EnteringContext
,
5351 OPT
, Mode
== CTK_ErrorRecovery
);
5354 return TypoCorrection();
5356 // If we haven't found anything, we're done.
5357 if (Consumer
->empty())
5358 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5360 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5361 // is not more that about a third of the length of the typo's identifier.
5362 unsigned ED
= Consumer
->getBestEditDistance(true);
5363 unsigned TypoLen
= Typo
->getName().size();
5364 if (ED
> 0 && TypoLen
/ ED
< 3)
5365 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5367 TypoCorrection BestTC
= Consumer
->getNextCorrection();
5368 TypoCorrection SecondBestTC
= Consumer
->getNextCorrection();
5370 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5372 ED
= BestTC
.getEditDistance();
5374 if (TypoLen
>= 3 && ED
> 0 && TypoLen
/ ED
< 3) {
5375 // If this was an unqualified lookup and we believe the callback
5376 // object wouldn't have filtered out possible corrections, note
5377 // that no correction was found.
5378 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5381 // If only a single name remains, return that result.
5382 if (!SecondBestTC
||
5383 SecondBestTC
.getEditDistance(false) > BestTC
.getEditDistance(false)) {
5384 const TypoCorrection
&Result
= BestTC
;
5386 // Don't correct to a keyword that's the same as the typo; the keyword
5387 // wasn't actually in scope.
5388 if (ED
== 0 && Result
.isKeyword())
5389 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5391 TypoCorrection TC
= Result
;
5392 TC
.setCorrectionRange(SS
, TypoName
);
5393 checkCorrectionVisibility(*this, TC
);
5395 } else if (SecondBestTC
&& ObjCMessageReceiver
) {
5396 // Prefer 'super' when we're completing in a message-receiver
5399 if (BestTC
.getCorrection().getAsString() != "super") {
5400 if (SecondBestTC
.getCorrection().getAsString() == "super")
5401 BestTC
= SecondBestTC
;
5402 else if ((*Consumer
)["super"].front().isKeyword())
5403 BestTC
= (*Consumer
)["super"].front();
5405 // Don't correct to a keyword that's the same as the typo; the keyword
5406 // wasn't actually in scope.
5407 if (BestTC
.getEditDistance() == 0 ||
5408 BestTC
.getCorrection().getAsString() != "super")
5409 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
);
5411 BestTC
.setCorrectionRange(SS
, TypoName
);
5415 // Record the failure's location if needed and return an empty correction. If
5416 // this was an unqualified lookup and we believe the callback object did not
5417 // filter out possible corrections, also cache the failure for the typo.
5418 return FailedCorrection(Typo
, TypoName
.getLoc(), RecordFailure
&& !SecondBestTC
);
5421 /// Try to "correct" a typo in the source code by finding
5422 /// visible declarations whose names are similar to the name that was
5423 /// present in the source code.
5425 /// \param TypoName the \c DeclarationNameInfo structure that contains
5426 /// the name that was present in the source code along with its location.
5428 /// \param LookupKind the name-lookup criteria used to search for the name.
5430 /// \param S the scope in which name lookup occurs.
5432 /// \param SS the nested-name-specifier that precedes the name we're
5433 /// looking for, if present.
5435 /// \param CCC A CorrectionCandidateCallback object that provides further
5436 /// validation of typo correction candidates. It also provides flags for
5437 /// determining the set of keywords permitted.
5439 /// \param TDG A TypoDiagnosticGenerator functor that will be used to print
5440 /// diagnostics when the actual typo correction is attempted.
5442 /// \param TRC A TypoRecoveryCallback functor that will be used to build an
5443 /// Expr from a typo correction candidate.
5445 /// \param MemberContext if non-NULL, the context in which to look for
5446 /// a member access expression.
5448 /// \param EnteringContext whether we're entering the context described by
5449 /// the nested-name-specifier SS.
5451 /// \param OPT when non-NULL, the search for visible declarations will
5452 /// also walk the protocols in the qualified interfaces of \p OPT.
5454 /// \returns a new \c TypoExpr that will later be replaced in the AST with an
5455 /// Expr representing the result of performing typo correction, or nullptr if
5456 /// typo correction is not possible. If nullptr is returned, no diagnostics will
5457 /// be emitted and it is the responsibility of the caller to emit any that are
5459 TypoExpr
*Sema::CorrectTypoDelayed(
5460 const DeclarationNameInfo
&TypoName
, Sema::LookupNameKind LookupKind
,
5461 Scope
*S
, CXXScopeSpec
*SS
, CorrectionCandidateCallback
&CCC
,
5462 TypoDiagnosticGenerator TDG
, TypoRecoveryCallback TRC
, CorrectTypoKind Mode
,
5463 DeclContext
*MemberContext
, bool EnteringContext
,
5464 const ObjCObjectPointerType
*OPT
) {
5465 auto Consumer
= makeTypoCorrectionConsumer(TypoName
, LookupKind
, S
, SS
, CCC
,
5466 MemberContext
, EnteringContext
,
5467 OPT
, Mode
== CTK_ErrorRecovery
);
5469 // Give the external sema source a chance to correct the typo.
5470 TypoCorrection ExternalTypo
;
5471 if (ExternalSource
&& Consumer
) {
5472 ExternalTypo
= ExternalSource
->CorrectTypo(
5473 TypoName
, LookupKind
, S
, SS
, *Consumer
->getCorrectionValidator(),
5474 MemberContext
, EnteringContext
, OPT
);
5476 Consumer
->addCorrection(ExternalTypo
);
5479 if (!Consumer
|| Consumer
->empty())
5482 // Make sure the best edit distance (prior to adding any namespace qualifiers)
5483 // is not more that about a third of the length of the typo's identifier.
5484 unsigned ED
= Consumer
->getBestEditDistance(true);
5485 IdentifierInfo
*Typo
= TypoName
.getName().getAsIdentifierInfo();
5486 if (!ExternalTypo
&& ED
> 0 && Typo
->getName().size() / ED
< 3)
5488 ExprEvalContexts
.back().NumTypos
++;
5489 return createDelayedTypo(std::move(Consumer
), std::move(TDG
), std::move(TRC
),
5493 void TypoCorrection::addCorrectionDecl(NamedDecl
*CDecl
) {
5497 CorrectionDecls
.clear();
5499 CorrectionDecls
.push_back(CDecl
);
5501 if (!CorrectionName
)
5502 CorrectionName
= CDecl
->getDeclName();
5505 std::string
TypoCorrection::getAsString(const LangOptions
&LO
) const {
5506 if (CorrectionNameSpec
) {
5507 std::string tmpBuffer
;
5508 llvm::raw_string_ostream
PrefixOStream(tmpBuffer
);
5509 CorrectionNameSpec
->print(PrefixOStream
, PrintingPolicy(LO
));
5510 PrefixOStream
<< CorrectionName
;
5511 return PrefixOStream
.str();
5514 return CorrectionName
.getAsString();
5517 bool CorrectionCandidateCallback::ValidateCandidate(
5518 const TypoCorrection
&candidate
) {
5519 if (!candidate
.isResolved())
5522 if (candidate
.isKeyword())
5523 return WantTypeSpecifiers
|| WantExpressionKeywords
|| WantCXXNamedCasts
||
5524 WantRemainingKeywords
|| WantObjCSuper
;
5526 bool HasNonType
= false;
5527 bool HasStaticMethod
= false;
5528 bool HasNonStaticMethod
= false;
5529 for (Decl
*D
: candidate
) {
5530 if (FunctionTemplateDecl
*FTD
= dyn_cast
<FunctionTemplateDecl
>(D
))
5531 D
= FTD
->getTemplatedDecl();
5532 if (CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(D
)) {
5533 if (Method
->isStatic())
5534 HasStaticMethod
= true;
5536 HasNonStaticMethod
= true;
5538 if (!isa
<TypeDecl
>(D
))
5542 if (IsAddressOfOperand
&& HasNonStaticMethod
&& !HasStaticMethod
&&
5543 !candidate
.getCorrectionSpecifier())
5546 return WantTypeSpecifiers
|| HasNonType
;
5549 FunctionCallFilterCCC::FunctionCallFilterCCC(Sema
&SemaRef
, unsigned NumArgs
,
5550 bool HasExplicitTemplateArgs
,
5552 : NumArgs(NumArgs
), HasExplicitTemplateArgs(HasExplicitTemplateArgs
),
5553 CurContext(SemaRef
.CurContext
), MemberFn(ME
) {
5554 WantTypeSpecifiers
= false;
5555 WantFunctionLikeCasts
= SemaRef
.getLangOpts().CPlusPlus
&&
5556 !HasExplicitTemplateArgs
&& NumArgs
== 1;
5557 WantCXXNamedCasts
= HasExplicitTemplateArgs
&& NumArgs
== 1;
5558 WantRemainingKeywords
= false;
5561 bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection
&candidate
) {
5562 if (!candidate
.getCorrectionDecl())
5563 return candidate
.isKeyword();
5565 for (auto *C
: candidate
) {
5566 FunctionDecl
*FD
= nullptr;
5567 NamedDecl
*ND
= C
->getUnderlyingDecl();
5568 if (FunctionTemplateDecl
*FTD
= dyn_cast
<FunctionTemplateDecl
>(ND
))
5569 FD
= FTD
->getTemplatedDecl();
5570 if (!HasExplicitTemplateArgs
&& !FD
) {
5571 if (!(FD
= dyn_cast
<FunctionDecl
>(ND
)) && isa
<ValueDecl
>(ND
)) {
5572 // If the Decl is neither a function nor a template function,
5573 // determine if it is a pointer or reference to a function. If so,
5574 // check against the number of arguments expected for the pointee.
5575 QualType ValType
= cast
<ValueDecl
>(ND
)->getType();
5576 if (ValType
.isNull())
5578 if (ValType
->isAnyPointerType() || ValType
->isReferenceType())
5579 ValType
= ValType
->getPointeeType();
5580 if (const FunctionProtoType
*FPT
= ValType
->getAs
<FunctionProtoType
>())
5581 if (FPT
->getNumParams() == NumArgs
)
5586 // A typo for a function-style cast can look like a function call in C++.
5587 if ((HasExplicitTemplateArgs
? getAsTypeTemplateDecl(ND
) != nullptr
5588 : isa
<TypeDecl
>(ND
)) &&
5589 CurContext
->getParentASTContext().getLangOpts().CPlusPlus
)
5590 // Only a class or class template can take two or more arguments.
5591 return NumArgs
<= 1 || HasExplicitTemplateArgs
|| isa
<CXXRecordDecl
>(ND
);
5593 // Skip the current candidate if it is not a FunctionDecl or does not accept
5594 // the current number of arguments.
5595 if (!FD
|| !(FD
->getNumParams() >= NumArgs
&&
5596 FD
->getMinRequiredArguments() <= NumArgs
))
5599 // If the current candidate is a non-static C++ method, skip the candidate
5600 // unless the method being corrected--or the current DeclContext, if the
5601 // function being corrected is not a method--is a method in the same class
5602 // or a descendent class of the candidate's parent class.
5603 if (CXXMethodDecl
*MD
= dyn_cast
<CXXMethodDecl
>(FD
)) {
5604 if (MemberFn
|| !MD
->isStatic()) {
5605 CXXMethodDecl
*CurMD
=
5607 ? dyn_cast_or_null
<CXXMethodDecl
>(MemberFn
->getMemberDecl())
5608 : dyn_cast_or_null
<CXXMethodDecl
>(CurContext
);
5609 CXXRecordDecl
*CurRD
=
5610 CurMD
? CurMD
->getParent()->getCanonicalDecl() : nullptr;
5611 CXXRecordDecl
*RD
= MD
->getParent()->getCanonicalDecl();
5612 if (!CurRD
|| (CurRD
!= RD
&& !CurRD
->isDerivedFrom(RD
)))
5621 void Sema::diagnoseTypo(const TypoCorrection
&Correction
,
5622 const PartialDiagnostic
&TypoDiag
,
5623 bool ErrorRecovery
) {
5624 diagnoseTypo(Correction
, TypoDiag
, PDiag(diag::note_previous_decl
),
5628 /// Find which declaration we should import to provide the definition of
5629 /// the given declaration.
5630 static NamedDecl
*getDefinitionToImport(NamedDecl
*D
) {
5631 if (VarDecl
*VD
= dyn_cast
<VarDecl
>(D
))
5632 return VD
->getDefinition();
5633 if (FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(D
))
5634 return FD
->getDefinition();
5635 if (TagDecl
*TD
= dyn_cast
<TagDecl
>(D
))
5636 return TD
->getDefinition();
5637 if (ObjCInterfaceDecl
*ID
= dyn_cast
<ObjCInterfaceDecl
>(D
))
5638 return ID
->getDefinition();
5639 if (ObjCProtocolDecl
*PD
= dyn_cast
<ObjCProtocolDecl
>(D
))
5640 return PD
->getDefinition();
5641 if (TemplateDecl
*TD
= dyn_cast
<TemplateDecl
>(D
))
5642 if (NamedDecl
*TTD
= TD
->getTemplatedDecl())
5643 return getDefinitionToImport(TTD
);
5647 void Sema::diagnoseMissingImport(SourceLocation Loc
, NamedDecl
*Decl
,
5648 MissingImportKind MIK
, bool Recover
) {
5649 // Suggest importing a module providing the definition of this entity, if
5651 NamedDecl
*Def
= getDefinitionToImport(Decl
);
5655 Module
*Owner
= getOwningModule(Def
);
5656 assert(Owner
&& "definition of hidden declaration is not in a module");
5658 llvm::SmallVector
<Module
*, 8> OwningModules
;
5659 OwningModules
.push_back(Owner
);
5660 auto Merged
= Context
.getModulesWithMergedDefinition(Def
);
5661 OwningModules
.insert(OwningModules
.end(), Merged
.begin(), Merged
.end());
5663 diagnoseMissingImport(Loc
, Def
, Def
->getLocation(), OwningModules
, MIK
,
5667 /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
5668 /// suggesting the addition of a #include of the specified file.
5669 static std::string
getHeaderNameForHeader(Preprocessor
&PP
, const FileEntry
*E
,
5670 llvm::StringRef IncludingFile
) {
5671 bool IsSystem
= false;
5672 auto Path
= PP
.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
5673 E
, IncludingFile
, &IsSystem
);
5674 return (IsSystem
? '<' : '"') + Path
+ (IsSystem
? '>' : '"');
5677 void Sema::diagnoseMissingImport(SourceLocation UseLoc
, NamedDecl
*Decl
,
5678 SourceLocation DeclLoc
,
5679 ArrayRef
<Module
*> Modules
,
5680 MissingImportKind MIK
, bool Recover
) {
5681 assert(!Modules
.empty());
5683 auto NotePrevious
= [&] {
5684 // FIXME: Suppress the note backtrace even under
5685 // -fdiagnostics-show-note-include-stack. We don't care how this
5686 // declaration was previously reached.
5687 Diag(DeclLoc
, diag::note_unreachable_entity
) << (int)MIK
;
5690 // Weed out duplicates from module list.
5691 llvm::SmallVector
<Module
*, 8> UniqueModules
;
5692 llvm::SmallDenseSet
<Module
*, 8> UniqueModuleSet
;
5693 for (auto *M
: Modules
) {
5694 if (M
->isGlobalModule() || M
->isPrivateModule())
5696 if (UniqueModuleSet
.insert(M
).second
)
5697 UniqueModules
.push_back(M
);
5700 // Try to find a suitable header-name to #include.
5701 std::string HeaderName
;
5702 if (const FileEntry
*Header
=
5703 PP
.getHeaderToIncludeForDiagnostics(UseLoc
, DeclLoc
)) {
5704 if (const FileEntry
*FE
=
5705 SourceMgr
.getFileEntryForID(SourceMgr
.getFileID(UseLoc
)))
5706 HeaderName
= getHeaderNameForHeader(PP
, Header
, FE
->tryGetRealPathName());
5709 // If we have a #include we should suggest, or if all definition locations
5710 // were in global module fragments, don't suggest an import.
5711 if (!HeaderName
.empty() || UniqueModules
.empty()) {
5712 // FIXME: Find a smart place to suggest inserting a #include, and add
5713 // a FixItHint there.
5714 Diag(UseLoc
, diag::err_module_unimported_use_header
)
5715 << (int)MIK
<< Decl
<< !HeaderName
.empty() << HeaderName
;
5716 // Produce a note showing where the entity was declared.
5719 createImplicitModuleImportForErrorRecovery(UseLoc
, Modules
[0]);
5723 Modules
= UniqueModules
;
5725 if (Modules
.size() > 1) {
5726 std::string ModuleList
;
5728 for (Module
*M
: Modules
) {
5729 ModuleList
+= "\n ";
5730 if (++N
== 5 && N
!= Modules
.size()) {
5731 ModuleList
+= "[...]";
5734 ModuleList
+= M
->getFullModuleName();
5737 Diag(UseLoc
, diag::err_module_unimported_use_multiple
)
5738 << (int)MIK
<< Decl
<< ModuleList
;
5740 // FIXME: Add a FixItHint that imports the corresponding module.
5741 Diag(UseLoc
, diag::err_module_unimported_use
)
5742 << (int)MIK
<< Decl
<< Modules
[0]->getFullModuleName();
5747 // Try to recover by implicitly importing this module.
5749 createImplicitModuleImportForErrorRecovery(UseLoc
, Modules
[0]);
5752 /// Diagnose a successfully-corrected typo. Separated from the correction
5753 /// itself to allow external validation of the result, etc.
5755 /// \param Correction The result of performing typo correction.
5756 /// \param TypoDiag The diagnostic to produce. This will have the corrected
5757 /// string added to it (and usually also a fixit).
5758 /// \param PrevNote A note to use when indicating the location of the entity to
5759 /// which we are correcting. Will have the correction string added to it.
5760 /// \param ErrorRecovery If \c true (the default), the caller is going to
5761 /// recover from the typo as if the corrected string had been typed.
5762 /// In this case, \c PDiag must be an error, and we will attach a fixit
5764 void Sema::diagnoseTypo(const TypoCorrection
&Correction
,
5765 const PartialDiagnostic
&TypoDiag
,
5766 const PartialDiagnostic
&PrevNote
,
5767 bool ErrorRecovery
) {
5768 std::string CorrectedStr
= Correction
.getAsString(getLangOpts());
5769 std::string CorrectedQuotedStr
= Correction
.getQuoted(getLangOpts());
5770 FixItHint FixTypo
= FixItHint::CreateReplacement(
5771 Correction
.getCorrectionRange(), CorrectedStr
);
5773 // Maybe we're just missing a module import.
5774 if (Correction
.requiresImport()) {
5775 NamedDecl
*Decl
= Correction
.getFoundDecl();
5776 assert(Decl
&& "import required but no declaration to import");
5778 diagnoseMissingImport(Correction
.getCorrectionRange().getBegin(), Decl
,
5779 MissingImportKind::Declaration
, ErrorRecovery
);
5783 Diag(Correction
.getCorrectionRange().getBegin(), TypoDiag
)
5784 << CorrectedQuotedStr
<< (ErrorRecovery
? FixTypo
: FixItHint());
5786 NamedDecl
*ChosenDecl
=
5787 Correction
.isKeyword() ? nullptr : Correction
.getFoundDecl();
5788 if (PrevNote
.getDiagID() && ChosenDecl
)
5789 Diag(ChosenDecl
->getLocation(), PrevNote
)
5790 << CorrectedQuotedStr
<< (ErrorRecovery
? FixItHint() : FixTypo
);
5792 // Add any extra diagnostics.
5793 for (const PartialDiagnostic
&PD
: Correction
.getExtraDiagnostics())
5794 Diag(Correction
.getCorrectionRange().getBegin(), PD
);
5797 TypoExpr
*Sema::createDelayedTypo(std::unique_ptr
<TypoCorrectionConsumer
> TCC
,
5798 TypoDiagnosticGenerator TDG
,
5799 TypoRecoveryCallback TRC
,
5800 SourceLocation TypoLoc
) {
5801 assert(TCC
&& "createDelayedTypo requires a valid TypoCorrectionConsumer");
5802 auto TE
= new (Context
) TypoExpr(Context
.DependentTy
, TypoLoc
);
5803 auto &State
= DelayedTypos
[TE
];
5804 State
.Consumer
= std::move(TCC
);
5805 State
.DiagHandler
= std::move(TDG
);
5806 State
.RecoveryHandler
= std::move(TRC
);
5808 TypoExprs
.push_back(TE
);
5812 const Sema::TypoExprState
&Sema::getTypoExprState(TypoExpr
*TE
) const {
5813 auto Entry
= DelayedTypos
.find(TE
);
5814 assert(Entry
!= DelayedTypos
.end() &&
5815 "Failed to get the state for a TypoExpr!");
5816 return Entry
->second
;
5819 void Sema::clearDelayedTypo(TypoExpr
*TE
) {
5820 DelayedTypos
.erase(TE
);
5823 void Sema::ActOnPragmaDump(Scope
*S
, SourceLocation IILoc
, IdentifierInfo
*II
) {
5824 DeclarationNameInfo
Name(II
, IILoc
);
5825 LookupResult
R(*this, Name
, LookupAnyName
, Sema::NotForRedeclaration
);
5826 R
.suppressDiagnostics();
5827 R
.setHideTags(false);