1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements type-related semantic analysis.
11 //===----------------------------------------------------------------------===//
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTMutationListener.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/Type.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/Basic/PartialDiagnostic.h"
26 #include "clang/Basic/SourceLocation.h"
27 #include "clang/Basic/Specifiers.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/DelayedDiagnostic.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/ScopeInfo.h"
35 #include "clang/Sema/SemaInternal.h"
36 #include "clang/Sema/Template.h"
37 #include "clang/Sema/TemplateInstCallback.h"
38 #include "llvm/ADT/ArrayRef.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallString.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/Support/ErrorHandling.h"
45 using namespace clang
;
47 enum TypeDiagSelector
{
53 /// isOmittedBlockReturnType - Return true if this declarator is missing a
54 /// return type because this is a omitted return type on a block literal.
55 static bool isOmittedBlockReturnType(const Declarator
&D
) {
56 if (D
.getContext() != DeclaratorContext::BlockLiteral
||
57 D
.getDeclSpec().hasTypeSpecifier())
60 if (D
.getNumTypeObjects() == 0)
61 return true; // ^{ ... }
63 if (D
.getNumTypeObjects() == 1 &&
64 D
.getTypeObject(0).Kind
== DeclaratorChunk::Function
)
65 return true; // ^(int X, float Y) { ... }
70 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
71 /// doesn't apply to the given type.
72 static void diagnoseBadTypeAttribute(Sema
&S
, const ParsedAttr
&attr
,
74 TypeDiagSelector WhichType
;
75 bool useExpansionLoc
= true;
76 switch (attr
.getKind()) {
77 case ParsedAttr::AT_ObjCGC
:
78 WhichType
= TDS_Pointer
;
80 case ParsedAttr::AT_ObjCOwnership
:
81 WhichType
= TDS_ObjCObjOrBlock
;
84 // Assume everything else was a function attribute.
85 WhichType
= TDS_Function
;
86 useExpansionLoc
= false;
90 SourceLocation loc
= attr
.getLoc();
91 StringRef name
= attr
.getAttrName()->getName();
93 // The GC attributes are usually written with macros; special-case them.
94 IdentifierInfo
*II
= attr
.isArgIdent(0) ? attr
.getArgAsIdent(0)->Ident
96 if (useExpansionLoc
&& loc
.isMacroID() && II
) {
97 if (II
->isStr("strong")) {
98 if (S
.findMacroSpelling(loc
, "__strong")) name
= "__strong";
99 } else if (II
->isStr("weak")) {
100 if (S
.findMacroSpelling(loc
, "__weak")) name
= "__weak";
104 S
.Diag(loc
, diag::warn_type_attribute_wrong_type
) << name
<< WhichType
108 // objc_gc applies to Objective-C pointers or, otherwise, to the
109 // smallest available pointer type (i.e. 'void*' in 'void**').
110 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
111 case ParsedAttr::AT_ObjCGC: \
112 case ParsedAttr::AT_ObjCOwnership
114 // Calling convention attributes.
115 #define CALLING_CONV_ATTRS_CASELIST \
116 case ParsedAttr::AT_CDecl: \
117 case ParsedAttr::AT_FastCall: \
118 case ParsedAttr::AT_StdCall: \
119 case ParsedAttr::AT_ThisCall: \
120 case ParsedAttr::AT_RegCall: \
121 case ParsedAttr::AT_Pascal: \
122 case ParsedAttr::AT_SwiftCall: \
123 case ParsedAttr::AT_SwiftAsyncCall: \
124 case ParsedAttr::AT_VectorCall: \
125 case ParsedAttr::AT_AArch64VectorPcs: \
126 case ParsedAttr::AT_AArch64SVEPcs: \
127 case ParsedAttr::AT_AMDGPUKernelCall: \
128 case ParsedAttr::AT_MSABI: \
129 case ParsedAttr::AT_SysVABI: \
130 case ParsedAttr::AT_Pcs: \
131 case ParsedAttr::AT_IntelOclBicc: \
132 case ParsedAttr::AT_PreserveMost: \
133 case ParsedAttr::AT_PreserveAll
135 // Function type attributes.
136 #define FUNCTION_TYPE_ATTRS_CASELIST \
137 case ParsedAttr::AT_NSReturnsRetained: \
138 case ParsedAttr::AT_NoReturn: \
139 case ParsedAttr::AT_Regparm: \
140 case ParsedAttr::AT_CmseNSCall: \
141 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
142 case ParsedAttr::AT_AnyX86NoCfCheck: \
143 CALLING_CONV_ATTRS_CASELIST
145 // Microsoft-specific type qualifiers.
146 #define MS_TYPE_ATTRS_CASELIST \
147 case ParsedAttr::AT_Ptr32: \
148 case ParsedAttr::AT_Ptr64: \
149 case ParsedAttr::AT_SPtr: \
150 case ParsedAttr::AT_UPtr
152 // Nullability qualifiers.
153 #define NULLABILITY_TYPE_ATTRS_CASELIST \
154 case ParsedAttr::AT_TypeNonNull: \
155 case ParsedAttr::AT_TypeNullable: \
156 case ParsedAttr::AT_TypeNullableResult: \
157 case ParsedAttr::AT_TypeNullUnspecified
160 /// An object which stores processing state for the entire
161 /// GetTypeForDeclarator process.
162 class TypeProcessingState
{
165 /// The declarator being processed.
166 Declarator
&declarator
;
168 /// The index of the declarator chunk we're currently processing.
169 /// May be the total number of valid chunks, indicating the
173 /// The original set of attributes on the DeclSpec.
174 SmallVector
<ParsedAttr
*, 2> savedAttrs
;
176 /// A list of attributes to diagnose the uselessness of when the
177 /// processing is complete.
178 SmallVector
<ParsedAttr
*, 2> ignoredTypeAttrs
;
180 /// Attributes corresponding to AttributedTypeLocs that we have not yet
182 // FIXME: The two-phase mechanism by which we construct Types and fill
183 // their TypeLocs makes it hard to correctly assign these. We keep the
184 // attributes in creation order as an attempt to make them line up
186 using TypeAttrPair
= std::pair
<const AttributedType
*, const Attr
*>;
187 SmallVector
<TypeAttrPair
, 8> AttrsForTypes
;
188 bool AttrsForTypesSorted
= true;
190 /// MacroQualifiedTypes mapping to macro expansion locations that will be
191 /// stored in a MacroQualifiedTypeLoc.
192 llvm::DenseMap
<const MacroQualifiedType
*, SourceLocation
> LocsForMacros
;
194 /// Flag to indicate we parsed a noderef attribute. This is used for
195 /// validating that noderef was used on a pointer or array.
199 TypeProcessingState(Sema
&sema
, Declarator
&declarator
)
200 : sema(sema
), declarator(declarator
),
201 chunkIndex(declarator
.getNumTypeObjects()), parsedNoDeref(false) {}
203 Sema
&getSema() const {
207 Declarator
&getDeclarator() const {
211 bool isProcessingDeclSpec() const {
212 return chunkIndex
== declarator
.getNumTypeObjects();
215 unsigned getCurrentChunkIndex() const {
219 void setCurrentChunkIndex(unsigned idx
) {
220 assert(idx
<= declarator
.getNumTypeObjects());
224 ParsedAttributesView
&getCurrentAttributes() const {
225 if (isProcessingDeclSpec())
226 return getMutableDeclSpec().getAttributes();
227 return declarator
.getTypeObject(chunkIndex
).getAttrs();
230 /// Save the current set of attributes on the DeclSpec.
231 void saveDeclSpecAttrs() {
232 // Don't try to save them multiple times.
233 if (!savedAttrs
.empty())
236 DeclSpec
&spec
= getMutableDeclSpec();
237 llvm::append_range(savedAttrs
,
238 llvm::make_pointer_range(spec
.getAttributes()));
241 /// Record that we had nowhere to put the given type attribute.
242 /// We will diagnose such attributes later.
243 void addIgnoredTypeAttr(ParsedAttr
&attr
) {
244 ignoredTypeAttrs
.push_back(&attr
);
247 /// Diagnose all the ignored type attributes, given that the
248 /// declarator worked out to the given type.
249 void diagnoseIgnoredTypeAttrs(QualType type
) const {
250 for (auto *Attr
: ignoredTypeAttrs
)
251 diagnoseBadTypeAttribute(getSema(), *Attr
, type
);
254 /// Get an attributed type for the given attribute, and remember the Attr
255 /// object so that we can attach it to the AttributedTypeLoc.
256 QualType
getAttributedType(Attr
*A
, QualType ModifiedType
,
257 QualType EquivType
) {
259 sema
.Context
.getAttributedType(A
->getKind(), ModifiedType
, EquivType
);
260 AttrsForTypes
.push_back({cast
<AttributedType
>(T
.getTypePtr()), A
});
261 AttrsForTypesSorted
= false;
265 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
266 QualType
getBTFTagAttributedType(const BTFTypeTagAttr
*BTFAttr
,
267 QualType WrappedType
) {
268 return sema
.Context
.getBTFTagAttributedType(BTFAttr
, WrappedType
);
271 /// Completely replace the \c auto in \p TypeWithAuto by
272 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
274 QualType
ReplaceAutoType(QualType TypeWithAuto
, QualType Replacement
) {
275 QualType T
= sema
.ReplaceAutoType(TypeWithAuto
, Replacement
);
276 if (auto *AttrTy
= TypeWithAuto
->getAs
<AttributedType
>()) {
277 // Attributed type still should be an attributed type after replacement.
278 auto *NewAttrTy
= cast
<AttributedType
>(T
.getTypePtr());
279 for (TypeAttrPair
&A
: AttrsForTypes
) {
280 if (A
.first
== AttrTy
)
283 AttrsForTypesSorted
= false;
288 /// Extract and remove the Attr* for a given attributed type.
289 const Attr
*takeAttrForAttributedType(const AttributedType
*AT
) {
290 if (!AttrsForTypesSorted
) {
291 llvm::stable_sort(AttrsForTypes
, llvm::less_first());
292 AttrsForTypesSorted
= true;
295 // FIXME: This is quadratic if we have lots of reuses of the same
297 for (auto It
= std::partition_point(
298 AttrsForTypes
.begin(), AttrsForTypes
.end(),
299 [=](const TypeAttrPair
&A
) { return A
.first
< AT
; });
300 It
!= AttrsForTypes
.end() && It
->first
== AT
; ++It
) {
302 const Attr
*Result
= It
->second
;
303 It
->second
= nullptr;
308 llvm_unreachable("no Attr* for AttributedType*");
312 getExpansionLocForMacroQualifiedType(const MacroQualifiedType
*MQT
) const {
313 auto FoundLoc
= LocsForMacros
.find(MQT
);
314 assert(FoundLoc
!= LocsForMacros
.end() &&
315 "Unable to find macro expansion location for MacroQualifedType");
316 return FoundLoc
->second
;
319 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType
*MQT
,
320 SourceLocation Loc
) {
321 LocsForMacros
[MQT
] = Loc
;
324 void setParsedNoDeref(bool parsed
) { parsedNoDeref
= parsed
; }
326 bool didParseNoDeref() const { return parsedNoDeref
; }
328 ~TypeProcessingState() {
329 if (savedAttrs
.empty())
332 getMutableDeclSpec().getAttributes().clearListOnly();
333 for (ParsedAttr
*AL
: savedAttrs
)
334 getMutableDeclSpec().getAttributes().addAtEnd(AL
);
338 DeclSpec
&getMutableDeclSpec() const {
339 return const_cast<DeclSpec
&>(declarator
.getDeclSpec());
342 } // end anonymous namespace
344 static void moveAttrFromListToList(ParsedAttr
&attr
,
345 ParsedAttributesView
&fromList
,
346 ParsedAttributesView
&toList
) {
347 fromList
.remove(&attr
);
348 toList
.addAtEnd(&attr
);
351 /// The location of a type attribute.
352 enum TypeAttrLocation
{
353 /// The attribute is in the decl-specifier-seq.
355 /// The attribute is part of a DeclaratorChunk.
357 /// The attribute is immediately after the declaration's name.
361 static void processTypeAttrs(TypeProcessingState
&state
, QualType
&type
,
362 TypeAttrLocation TAL
,
363 const ParsedAttributesView
&attrs
);
365 static bool handleFunctionTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
368 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState
&state
,
369 ParsedAttr
&attr
, QualType
&type
);
371 static bool handleObjCGCTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
374 static bool handleObjCOwnershipTypeAttr(TypeProcessingState
&state
,
375 ParsedAttr
&attr
, QualType
&type
);
377 static bool handleObjCPointerTypeAttr(TypeProcessingState
&state
,
378 ParsedAttr
&attr
, QualType
&type
) {
379 if (attr
.getKind() == ParsedAttr::AT_ObjCGC
)
380 return handleObjCGCTypeAttr(state
, attr
, type
);
381 assert(attr
.getKind() == ParsedAttr::AT_ObjCOwnership
);
382 return handleObjCOwnershipTypeAttr(state
, attr
, type
);
385 /// Given the index of a declarator chunk, check whether that chunk
386 /// directly specifies the return type of a function and, if so, find
387 /// an appropriate place for it.
389 /// \param i - a notional index which the search will start
390 /// immediately inside
392 /// \param onlyBlockPointers Whether we should only look into block
393 /// pointer types (vs. all pointer types).
394 static DeclaratorChunk
*maybeMovePastReturnType(Declarator
&declarator
,
396 bool onlyBlockPointers
) {
397 assert(i
<= declarator
.getNumTypeObjects());
399 DeclaratorChunk
*result
= nullptr;
401 // First, look inwards past parens for a function declarator.
402 for (; i
!= 0; --i
) {
403 DeclaratorChunk
&fnChunk
= declarator
.getTypeObject(i
-1);
404 switch (fnChunk
.Kind
) {
405 case DeclaratorChunk::Paren
:
408 // If we find anything except a function, bail out.
409 case DeclaratorChunk::Pointer
:
410 case DeclaratorChunk::BlockPointer
:
411 case DeclaratorChunk::Array
:
412 case DeclaratorChunk::Reference
:
413 case DeclaratorChunk::MemberPointer
:
414 case DeclaratorChunk::Pipe
:
417 // If we do find a function declarator, scan inwards from that,
418 // looking for a (block-)pointer declarator.
419 case DeclaratorChunk::Function
:
420 for (--i
; i
!= 0; --i
) {
421 DeclaratorChunk
&ptrChunk
= declarator
.getTypeObject(i
-1);
422 switch (ptrChunk
.Kind
) {
423 case DeclaratorChunk::Paren
:
424 case DeclaratorChunk::Array
:
425 case DeclaratorChunk::Function
:
426 case DeclaratorChunk::Reference
:
427 case DeclaratorChunk::Pipe
:
430 case DeclaratorChunk::MemberPointer
:
431 case DeclaratorChunk::Pointer
:
432 if (onlyBlockPointers
)
437 case DeclaratorChunk::BlockPointer
:
441 llvm_unreachable("bad declarator chunk kind");
444 // If we run out of declarators doing that, we're done.
447 llvm_unreachable("bad declarator chunk kind");
449 // Okay, reconsider from our new point.
453 // Ran out of chunks, bail out.
457 /// Given that an objc_gc attribute was written somewhere on a
458 /// declaration *other* than on the declarator itself (for which, use
459 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
460 /// didn't apply in whatever position it was written in, try to move
461 /// it to a more appropriate position.
462 static void distributeObjCPointerTypeAttr(TypeProcessingState
&state
,
463 ParsedAttr
&attr
, QualType type
) {
464 Declarator
&declarator
= state
.getDeclarator();
466 // Move it to the outermost normal or block pointer declarator.
467 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
468 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
469 switch (chunk
.Kind
) {
470 case DeclaratorChunk::Pointer
:
471 case DeclaratorChunk::BlockPointer
: {
472 // But don't move an ARC ownership attribute to the return type
474 DeclaratorChunk
*destChunk
= nullptr;
475 if (state
.isProcessingDeclSpec() &&
476 attr
.getKind() == ParsedAttr::AT_ObjCOwnership
)
477 destChunk
= maybeMovePastReturnType(declarator
, i
- 1,
478 /*onlyBlockPointers=*/true);
479 if (!destChunk
) destChunk
= &chunk
;
481 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
482 destChunk
->getAttrs());
486 case DeclaratorChunk::Paren
:
487 case DeclaratorChunk::Array
:
490 // We may be starting at the return type of a block.
491 case DeclaratorChunk::Function
:
492 if (state
.isProcessingDeclSpec() &&
493 attr
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
494 if (DeclaratorChunk
*dest
= maybeMovePastReturnType(
496 /*onlyBlockPointers=*/true)) {
497 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
504 // Don't walk through these.
505 case DeclaratorChunk::Reference
:
506 case DeclaratorChunk::MemberPointer
:
507 case DeclaratorChunk::Pipe
:
513 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
516 /// Distribute an objc_gc type attribute that was written on the
518 static void distributeObjCPointerTypeAttrFromDeclarator(
519 TypeProcessingState
&state
, ParsedAttr
&attr
, QualType
&declSpecType
) {
520 Declarator
&declarator
= state
.getDeclarator();
522 // objc_gc goes on the innermost pointer to something that's not a
524 unsigned innermost
= -1U;
525 bool considerDeclSpec
= true;
526 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
527 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
528 switch (chunk
.Kind
) {
529 case DeclaratorChunk::Pointer
:
530 case DeclaratorChunk::BlockPointer
:
534 case DeclaratorChunk::Reference
:
535 case DeclaratorChunk::MemberPointer
:
536 case DeclaratorChunk::Paren
:
537 case DeclaratorChunk::Array
:
538 case DeclaratorChunk::Pipe
:
541 case DeclaratorChunk::Function
:
542 considerDeclSpec
= false;
548 // That might actually be the decl spec if we weren't blocked by
549 // anything in the declarator.
550 if (considerDeclSpec
) {
551 if (handleObjCPointerTypeAttr(state
, attr
, declSpecType
)) {
552 // Splice the attribute into the decl spec. Prevents the
553 // attribute from being applied multiple times and gives
554 // the source-location-filler something to work with.
555 state
.saveDeclSpecAttrs();
556 declarator
.getMutableDeclSpec().getAttributes().takeOneFrom(
557 declarator
.getAttributes(), &attr
);
562 // Otherwise, if we found an appropriate chunk, splice the attribute
564 if (innermost
!= -1U) {
565 moveAttrFromListToList(attr
, declarator
.getAttributes(),
566 declarator
.getTypeObject(innermost
).getAttrs());
570 // Otherwise, diagnose when we're done building the type.
571 declarator
.getAttributes().remove(&attr
);
572 state
.addIgnoredTypeAttr(attr
);
575 /// A function type attribute was written somewhere in a declaration
576 /// *other* than on the declarator itself or in the decl spec. Given
577 /// that it didn't apply in whatever position it was written in, try
578 /// to move it to a more appropriate position.
579 static void distributeFunctionTypeAttr(TypeProcessingState
&state
,
580 ParsedAttr
&attr
, QualType type
) {
581 Declarator
&declarator
= state
.getDeclarator();
583 // Try to push the attribute from the return type of a function to
584 // the function itself.
585 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
586 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
587 switch (chunk
.Kind
) {
588 case DeclaratorChunk::Function
:
589 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
593 case DeclaratorChunk::Paren
:
594 case DeclaratorChunk::Pointer
:
595 case DeclaratorChunk::BlockPointer
:
596 case DeclaratorChunk::Array
:
597 case DeclaratorChunk::Reference
:
598 case DeclaratorChunk::MemberPointer
:
599 case DeclaratorChunk::Pipe
:
604 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
607 /// Try to distribute a function type attribute to the innermost
608 /// function chunk or type. Returns true if the attribute was
609 /// distributed, false if no location was found.
610 static bool distributeFunctionTypeAttrToInnermost(
611 TypeProcessingState
&state
, ParsedAttr
&attr
,
612 ParsedAttributesView
&attrList
, QualType
&declSpecType
) {
613 Declarator
&declarator
= state
.getDeclarator();
615 // Put it on the innermost function chunk, if there is one.
616 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
617 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
618 if (chunk
.Kind
!= DeclaratorChunk::Function
) continue;
620 moveAttrFromListToList(attr
, attrList
, chunk
.getAttrs());
624 return handleFunctionTypeAttr(state
, attr
, declSpecType
);
627 /// A function type attribute was written in the decl spec. Try to
628 /// apply it somewhere.
629 static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState
&state
,
631 QualType
&declSpecType
) {
632 state
.saveDeclSpecAttrs();
634 // Try to distribute to the innermost.
635 if (distributeFunctionTypeAttrToInnermost(
636 state
, attr
, state
.getCurrentAttributes(), declSpecType
))
639 // If that failed, diagnose the bad attribute when the declarator is
641 state
.addIgnoredTypeAttr(attr
);
644 /// A function type attribute was written on the declarator or declaration.
645 /// Try to apply it somewhere.
646 /// `Attrs` is the attribute list containing the declaration (either of the
647 /// declarator or the declaration).
648 static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState
&state
,
650 QualType
&declSpecType
) {
651 Declarator
&declarator
= state
.getDeclarator();
653 // Try to distribute to the innermost.
654 if (distributeFunctionTypeAttrToInnermost(
655 state
, attr
, declarator
.getAttributes(), declSpecType
))
658 // If that failed, diagnose the bad attribute when the declarator is
660 declarator
.getAttributes().remove(&attr
);
661 state
.addIgnoredTypeAttr(attr
);
664 /// Given that there are attributes written on the declarator or declaration
665 /// itself, try to distribute any type attributes to the appropriate
666 /// declarator chunk.
668 /// These are attributes like the following:
671 /// but not necessarily this:
674 /// `Attrs` is the attribute list containing the declaration (either of the
675 /// declarator or the declaration).
676 static void distributeTypeAttrsFromDeclarator(TypeProcessingState
&state
,
677 QualType
&declSpecType
) {
678 // The called functions in this loop actually remove things from the current
679 // list, so iterating over the existing list isn't possible. Instead, make a
680 // non-owning copy and iterate over that.
681 ParsedAttributesView AttrsCopy
{state
.getDeclarator().getAttributes()};
682 for (ParsedAttr
&attr
: AttrsCopy
) {
683 // Do not distribute [[]] attributes. They have strict rules for what
684 // they appertain to.
685 if (attr
.isStandardAttributeSyntax())
688 switch (attr
.getKind()) {
689 OBJC_POINTER_TYPE_ATTRS_CASELIST
:
690 distributeObjCPointerTypeAttrFromDeclarator(state
, attr
, declSpecType
);
693 FUNCTION_TYPE_ATTRS_CASELIST
:
694 distributeFunctionTypeAttrFromDeclarator(state
, attr
, declSpecType
);
697 MS_TYPE_ATTRS_CASELIST
:
698 // Microsoft type attributes cannot go after the declarator-id.
701 NULLABILITY_TYPE_ATTRS_CASELIST
:
702 // Nullability specifiers cannot go after the declarator-id.
704 // Objective-C __kindof does not get distributed.
705 case ParsedAttr::AT_ObjCKindOf
:
714 /// Add a synthetic '()' to a block-literal declarator if it is
715 /// required, given the return type.
716 static void maybeSynthesizeBlockSignature(TypeProcessingState
&state
,
717 QualType declSpecType
) {
718 Declarator
&declarator
= state
.getDeclarator();
720 // First, check whether the declarator would produce a function,
721 // i.e. whether the innermost semantic chunk is a function.
722 if (declarator
.isFunctionDeclarator()) {
723 // If so, make that declarator a prototyped declarator.
724 declarator
.getFunctionTypeInfo().hasPrototype
= true;
728 // If there are any type objects, the type as written won't name a
729 // function, regardless of the decl spec type. This is because a
730 // block signature declarator is always an abstract-declarator, and
731 // abstract-declarators can't just be parentheses chunks. Therefore
732 // we need to build a function chunk unless there are no type
733 // objects and the decl spec type is a function.
734 if (!declarator
.getNumTypeObjects() && declSpecType
->isFunctionType())
737 // Note that there *are* cases with invalid declarators where
738 // declarators consist solely of parentheses. In general, these
739 // occur only in failed efforts to make function declarators, so
740 // faking up the function chunk is still the right thing to do.
742 // Otherwise, we need to fake up a function declarator.
743 SourceLocation loc
= declarator
.getBeginLoc();
745 // ...and *prepend* it to the declarator.
746 SourceLocation NoLoc
;
747 declarator
.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
749 /*IsAmbiguous=*/false,
753 /*EllipsisLoc=*/NoLoc
,
755 /*RefQualifierIsLvalueRef=*/true,
756 /*RefQualifierLoc=*/NoLoc
,
757 /*MutableLoc=*/NoLoc
, EST_None
,
758 /*ESpecRange=*/SourceRange(),
759 /*Exceptions=*/nullptr,
760 /*ExceptionRanges=*/nullptr,
762 /*NoexceptExpr=*/nullptr,
763 /*ExceptionSpecTokens=*/nullptr,
764 /*DeclsInPrototype=*/None
, loc
, loc
, declarator
));
766 // For consistency, make sure the state still has us as processing
768 assert(state
.getCurrentChunkIndex() == declarator
.getNumTypeObjects() - 1);
769 state
.setCurrentChunkIndex(declarator
.getNumTypeObjects());
772 static void diagnoseAndRemoveTypeQualifiers(Sema
&S
, const DeclSpec
&DS
,
777 // If this occurs outside a template instantiation, warn the user about
778 // it; they probably didn't mean to specify a redundant qualifier.
779 typedef std::pair
<DeclSpec::TQ
, SourceLocation
> QualLoc
;
780 for (QualLoc Qual
: {QualLoc(DeclSpec::TQ_const
, DS
.getConstSpecLoc()),
781 QualLoc(DeclSpec::TQ_restrict
, DS
.getRestrictSpecLoc()),
782 QualLoc(DeclSpec::TQ_volatile
, DS
.getVolatileSpecLoc()),
783 QualLoc(DeclSpec::TQ_atomic
, DS
.getAtomicSpecLoc())}) {
784 if (!(RemoveTQs
& Qual
.first
))
787 if (!S
.inTemplateInstantiation()) {
788 if (TypeQuals
& Qual
.first
)
789 S
.Diag(Qual
.second
, DiagID
)
790 << DeclSpec::getSpecifierName(Qual
.first
) << TypeSoFar
791 << FixItHint::CreateRemoval(Qual
.second
);
794 TypeQuals
&= ~Qual
.first
;
798 /// Return true if this is omitted block return type. Also check type
799 /// attributes and type qualifiers when returning true.
800 static bool checkOmittedBlockReturnType(Sema
&S
, Declarator
&declarator
,
802 if (!isOmittedBlockReturnType(declarator
))
805 // Warn if we see type attributes for omitted return type on a block literal.
806 SmallVector
<ParsedAttr
*, 2> ToBeRemoved
;
807 for (ParsedAttr
&AL
: declarator
.getMutableDeclSpec().getAttributes()) {
808 if (AL
.isInvalid() || !AL
.isTypeAttr())
811 diag::warn_block_literal_attributes_on_omitted_return_type
)
813 ToBeRemoved
.push_back(&AL
);
815 // Remove bad attributes from the list.
816 for (ParsedAttr
*AL
: ToBeRemoved
)
817 declarator
.getMutableDeclSpec().getAttributes().remove(AL
);
819 // Warn if we see type qualifiers for omitted return type on a block literal.
820 const DeclSpec
&DS
= declarator
.getDeclSpec();
821 unsigned TypeQuals
= DS
.getTypeQualifiers();
822 diagnoseAndRemoveTypeQualifiers(S
, DS
, TypeQuals
, Result
, (unsigned)-1,
823 diag::warn_block_literal_qualifiers_on_omitted_return_type
);
824 declarator
.getMutableDeclSpec().ClearTypeQualifiers();
829 /// Apply Objective-C type arguments to the given type.
830 static QualType
applyObjCTypeArgs(Sema
&S
, SourceLocation loc
, QualType type
,
831 ArrayRef
<TypeSourceInfo
*> typeArgs
,
832 SourceRange typeArgsRange
,
833 bool failOnError
= false) {
834 // We can only apply type arguments to an Objective-C class type.
835 const auto *objcObjectType
= type
->getAs
<ObjCObjectType
>();
836 if (!objcObjectType
|| !objcObjectType
->getInterface()) {
837 S
.Diag(loc
, diag::err_objc_type_args_non_class
)
846 // The class type must be parameterized.
847 ObjCInterfaceDecl
*objcClass
= objcObjectType
->getInterface();
848 ObjCTypeParamList
*typeParams
= objcClass
->getTypeParamList();
850 S
.Diag(loc
, diag::err_objc_type_args_non_parameterized_class
)
851 << objcClass
->getDeclName()
852 << FixItHint::CreateRemoval(typeArgsRange
);
860 // The type must not already be specialized.
861 if (objcObjectType
->isSpecialized()) {
862 S
.Diag(loc
, diag::err_objc_type_args_specialized_class
)
864 << FixItHint::CreateRemoval(typeArgsRange
);
872 // Check the type arguments.
873 SmallVector
<QualType
, 4> finalTypeArgs
;
874 unsigned numTypeParams
= typeParams
->size();
875 bool anyPackExpansions
= false;
876 for (unsigned i
= 0, n
= typeArgs
.size(); i
!= n
; ++i
) {
877 TypeSourceInfo
*typeArgInfo
= typeArgs
[i
];
878 QualType typeArg
= typeArgInfo
->getType();
880 // Type arguments cannot have explicit qualifiers or nullability.
881 // We ignore indirect sources of these, e.g. behind typedefs or
882 // template arguments.
883 if (TypeLoc qual
= typeArgInfo
->getTypeLoc().findExplicitQualifierLoc()) {
884 bool diagnosed
= false;
885 SourceRange rangeToRemove
;
886 if (auto attr
= qual
.getAs
<AttributedTypeLoc
>()) {
887 rangeToRemove
= attr
.getLocalSourceRange();
888 if (attr
.getTypePtr()->getImmediateNullability()) {
889 typeArg
= attr
.getTypePtr()->getModifiedType();
890 S
.Diag(attr
.getBeginLoc(),
891 diag::err_objc_type_arg_explicit_nullability
)
892 << typeArg
<< FixItHint::CreateRemoval(rangeToRemove
);
898 S
.Diag(qual
.getBeginLoc(), diag::err_objc_type_arg_qualified
)
899 << typeArg
<< typeArg
.getQualifiers().getAsString()
900 << FixItHint::CreateRemoval(rangeToRemove
);
904 // Remove qualifiers even if they're non-local.
905 typeArg
= typeArg
.getUnqualifiedType();
907 finalTypeArgs
.push_back(typeArg
);
909 if (typeArg
->getAs
<PackExpansionType
>())
910 anyPackExpansions
= true;
912 // Find the corresponding type parameter, if there is one.
913 ObjCTypeParamDecl
*typeParam
= nullptr;
914 if (!anyPackExpansions
) {
915 if (i
< numTypeParams
) {
916 typeParam
= typeParams
->begin()[i
];
918 // Too many arguments.
919 S
.Diag(loc
, diag::err_objc_type_args_wrong_arity
)
921 << objcClass
->getDeclName()
922 << (unsigned)typeArgs
.size()
924 S
.Diag(objcClass
->getLocation(), diag::note_previous_decl
)
934 // Objective-C object pointer types must be substitutable for the bounds.
935 if (const auto *typeArgObjC
= typeArg
->getAs
<ObjCObjectPointerType
>()) {
936 // If we don't have a type parameter to match against, assume
937 // everything is fine. There was a prior pack expansion that
938 // means we won't be able to match anything.
940 assert(anyPackExpansions
&& "Too many arguments?");
944 // Retrieve the bound.
945 QualType bound
= typeParam
->getUnderlyingType();
946 const auto *boundObjC
= bound
->getAs
<ObjCObjectPointerType
>();
948 // Determine whether the type argument is substitutable for the bound.
949 if (typeArgObjC
->isObjCIdType()) {
950 // When the type argument is 'id', the only acceptable type
951 // parameter bound is 'id'.
952 if (boundObjC
->isObjCIdType())
954 } else if (S
.Context
.canAssignObjCInterfaces(boundObjC
, typeArgObjC
)) {
955 // Otherwise, we follow the assignability rules.
959 // Diagnose the mismatch.
960 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
961 diag::err_objc_type_arg_does_not_match_bound
)
962 << typeArg
<< bound
<< typeParam
->getDeclName();
963 S
.Diag(typeParam
->getLocation(), diag::note_objc_type_param_here
)
964 << typeParam
->getDeclName();
972 // Block pointer types are permitted for unqualified 'id' bounds.
973 if (typeArg
->isBlockPointerType()) {
974 // If we don't have a type parameter to match against, assume
975 // everything is fine. There was a prior pack expansion that
976 // means we won't be able to match anything.
978 assert(anyPackExpansions
&& "Too many arguments?");
982 // Retrieve the bound.
983 QualType bound
= typeParam
->getUnderlyingType();
984 if (bound
->isBlockCompatibleObjCPointerType(S
.Context
))
987 // Diagnose the mismatch.
988 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
989 diag::err_objc_type_arg_does_not_match_bound
)
990 << typeArg
<< bound
<< typeParam
->getDeclName();
991 S
.Diag(typeParam
->getLocation(), diag::note_objc_type_param_here
)
992 << typeParam
->getDeclName();
1000 // Dependent types will be checked at instantiation time.
1001 if (typeArg
->isDependentType()) {
1005 // Diagnose non-id-compatible type arguments.
1006 S
.Diag(typeArgInfo
->getTypeLoc().getBeginLoc(),
1007 diag::err_objc_type_arg_not_id_compatible
)
1008 << typeArg
<< typeArgInfo
->getTypeLoc().getSourceRange();
1016 // Make sure we didn't have the wrong number of arguments.
1017 if (!anyPackExpansions
&& finalTypeArgs
.size() != numTypeParams
) {
1018 S
.Diag(loc
, diag::err_objc_type_args_wrong_arity
)
1019 << (typeArgs
.size() < typeParams
->size())
1020 << objcClass
->getDeclName()
1021 << (unsigned)finalTypeArgs
.size()
1022 << (unsigned)numTypeParams
;
1023 S
.Diag(objcClass
->getLocation(), diag::note_previous_decl
)
1032 // Success. Form the specialized type.
1033 return S
.Context
.getObjCObjectType(type
, finalTypeArgs
, { }, false);
1036 QualType
Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl
*Decl
,
1037 SourceLocation ProtocolLAngleLoc
,
1038 ArrayRef
<ObjCProtocolDecl
*> Protocols
,
1039 ArrayRef
<SourceLocation
> ProtocolLocs
,
1040 SourceLocation ProtocolRAngleLoc
,
1042 QualType Result
= QualType(Decl
->getTypeForDecl(), 0);
1043 if (!Protocols
.empty()) {
1045 Result
= Context
.applyObjCProtocolQualifiers(Result
, Protocols
,
1048 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers
)
1049 << SourceRange(ProtocolLAngleLoc
, ProtocolRAngleLoc
);
1050 if (FailOnError
) Result
= QualType();
1052 if (FailOnError
&& Result
.isNull())
1059 QualType
Sema::BuildObjCObjectType(QualType BaseType
,
1061 SourceLocation TypeArgsLAngleLoc
,
1062 ArrayRef
<TypeSourceInfo
*> TypeArgs
,
1063 SourceLocation TypeArgsRAngleLoc
,
1064 SourceLocation ProtocolLAngleLoc
,
1065 ArrayRef
<ObjCProtocolDecl
*> Protocols
,
1066 ArrayRef
<SourceLocation
> ProtocolLocs
,
1067 SourceLocation ProtocolRAngleLoc
,
1069 QualType Result
= BaseType
;
1070 if (!TypeArgs
.empty()) {
1071 Result
= applyObjCTypeArgs(*this, Loc
, Result
, TypeArgs
,
1072 SourceRange(TypeArgsLAngleLoc
,
1075 if (FailOnError
&& Result
.isNull())
1079 if (!Protocols
.empty()) {
1081 Result
= Context
.applyObjCProtocolQualifiers(Result
, Protocols
,
1084 Diag(Loc
, diag::err_invalid_protocol_qualifiers
)
1085 << SourceRange(ProtocolLAngleLoc
, ProtocolRAngleLoc
);
1086 if (FailOnError
) Result
= QualType();
1088 if (FailOnError
&& Result
.isNull())
1095 TypeResult
Sema::actOnObjCProtocolQualifierType(
1096 SourceLocation lAngleLoc
,
1097 ArrayRef
<Decl
*> protocols
,
1098 ArrayRef
<SourceLocation
> protocolLocs
,
1099 SourceLocation rAngleLoc
) {
1100 // Form id<protocol-list>.
1101 QualType Result
= Context
.getObjCObjectType(
1102 Context
.ObjCBuiltinIdTy
, { },
1104 (ObjCProtocolDecl
* const *)protocols
.data(),
1107 Result
= Context
.getObjCObjectPointerType(Result
);
1109 TypeSourceInfo
*ResultTInfo
= Context
.CreateTypeSourceInfo(Result
);
1110 TypeLoc ResultTL
= ResultTInfo
->getTypeLoc();
1112 auto ObjCObjectPointerTL
= ResultTL
.castAs
<ObjCObjectPointerTypeLoc
>();
1113 ObjCObjectPointerTL
.setStarLoc(SourceLocation()); // implicit
1115 auto ObjCObjectTL
= ObjCObjectPointerTL
.getPointeeLoc()
1116 .castAs
<ObjCObjectTypeLoc
>();
1117 ObjCObjectTL
.setHasBaseTypeAsWritten(false);
1118 ObjCObjectTL
.getBaseLoc().initialize(Context
, SourceLocation());
1120 // No type arguments.
1121 ObjCObjectTL
.setTypeArgsLAngleLoc(SourceLocation());
1122 ObjCObjectTL
.setTypeArgsRAngleLoc(SourceLocation());
1124 // Fill in protocol qualifiers.
1125 ObjCObjectTL
.setProtocolLAngleLoc(lAngleLoc
);
1126 ObjCObjectTL
.setProtocolRAngleLoc(rAngleLoc
);
1127 for (unsigned i
= 0, n
= protocols
.size(); i
!= n
; ++i
)
1128 ObjCObjectTL
.setProtocolLoc(i
, protocolLocs
[i
]);
1130 // We're done. Return the completed type to the parser.
1131 return CreateParsedType(Result
, ResultTInfo
);
1134 TypeResult
Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1137 ParsedType BaseType
,
1138 SourceLocation TypeArgsLAngleLoc
,
1139 ArrayRef
<ParsedType
> TypeArgs
,
1140 SourceLocation TypeArgsRAngleLoc
,
1141 SourceLocation ProtocolLAngleLoc
,
1142 ArrayRef
<Decl
*> Protocols
,
1143 ArrayRef
<SourceLocation
> ProtocolLocs
,
1144 SourceLocation ProtocolRAngleLoc
) {
1145 TypeSourceInfo
*BaseTypeInfo
= nullptr;
1146 QualType T
= GetTypeFromParser(BaseType
, &BaseTypeInfo
);
1150 // Handle missing type-source info.
1152 BaseTypeInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
1154 // Extract type arguments.
1155 SmallVector
<TypeSourceInfo
*, 4> ActualTypeArgInfos
;
1156 for (unsigned i
= 0, n
= TypeArgs
.size(); i
!= n
; ++i
) {
1157 TypeSourceInfo
*TypeArgInfo
= nullptr;
1158 QualType TypeArg
= GetTypeFromParser(TypeArgs
[i
], &TypeArgInfo
);
1159 if (TypeArg
.isNull()) {
1160 ActualTypeArgInfos
.clear();
1164 assert(TypeArgInfo
&& "No type source info?");
1165 ActualTypeArgInfos
.push_back(TypeArgInfo
);
1168 // Build the object type.
1169 QualType Result
= BuildObjCObjectType(
1170 T
, BaseTypeInfo
->getTypeLoc().getSourceRange().getBegin(),
1171 TypeArgsLAngleLoc
, ActualTypeArgInfos
, TypeArgsRAngleLoc
,
1173 llvm::makeArrayRef((ObjCProtocolDecl
* const *)Protocols
.data(),
1175 ProtocolLocs
, ProtocolRAngleLoc
,
1176 /*FailOnError=*/false);
1181 // Create source information for this type.
1182 TypeSourceInfo
*ResultTInfo
= Context
.CreateTypeSourceInfo(Result
);
1183 TypeLoc ResultTL
= ResultTInfo
->getTypeLoc();
1185 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1186 // object pointer type. Fill in source information for it.
1187 if (auto ObjCObjectPointerTL
= ResultTL
.getAs
<ObjCObjectPointerTypeLoc
>()) {
1188 // The '*' is implicit.
1189 ObjCObjectPointerTL
.setStarLoc(SourceLocation());
1190 ResultTL
= ObjCObjectPointerTL
.getPointeeLoc();
1193 if (auto OTPTL
= ResultTL
.getAs
<ObjCTypeParamTypeLoc
>()) {
1194 // Protocol qualifier information.
1195 if (OTPTL
.getNumProtocols() > 0) {
1196 assert(OTPTL
.getNumProtocols() == Protocols
.size());
1197 OTPTL
.setProtocolLAngleLoc(ProtocolLAngleLoc
);
1198 OTPTL
.setProtocolRAngleLoc(ProtocolRAngleLoc
);
1199 for (unsigned i
= 0, n
= Protocols
.size(); i
!= n
; ++i
)
1200 OTPTL
.setProtocolLoc(i
, ProtocolLocs
[i
]);
1203 // We're done. Return the completed type to the parser.
1204 return CreateParsedType(Result
, ResultTInfo
);
1207 auto ObjCObjectTL
= ResultTL
.castAs
<ObjCObjectTypeLoc
>();
1209 // Type argument information.
1210 if (ObjCObjectTL
.getNumTypeArgs() > 0) {
1211 assert(ObjCObjectTL
.getNumTypeArgs() == ActualTypeArgInfos
.size());
1212 ObjCObjectTL
.setTypeArgsLAngleLoc(TypeArgsLAngleLoc
);
1213 ObjCObjectTL
.setTypeArgsRAngleLoc(TypeArgsRAngleLoc
);
1214 for (unsigned i
= 0, n
= ActualTypeArgInfos
.size(); i
!= n
; ++i
)
1215 ObjCObjectTL
.setTypeArgTInfo(i
, ActualTypeArgInfos
[i
]);
1217 ObjCObjectTL
.setTypeArgsLAngleLoc(SourceLocation());
1218 ObjCObjectTL
.setTypeArgsRAngleLoc(SourceLocation());
1221 // Protocol qualifier information.
1222 if (ObjCObjectTL
.getNumProtocols() > 0) {
1223 assert(ObjCObjectTL
.getNumProtocols() == Protocols
.size());
1224 ObjCObjectTL
.setProtocolLAngleLoc(ProtocolLAngleLoc
);
1225 ObjCObjectTL
.setProtocolRAngleLoc(ProtocolRAngleLoc
);
1226 for (unsigned i
= 0, n
= Protocols
.size(); i
!= n
; ++i
)
1227 ObjCObjectTL
.setProtocolLoc(i
, ProtocolLocs
[i
]);
1229 ObjCObjectTL
.setProtocolLAngleLoc(SourceLocation());
1230 ObjCObjectTL
.setProtocolRAngleLoc(SourceLocation());
1234 ObjCObjectTL
.setHasBaseTypeAsWritten(true);
1235 if (ObjCObjectTL
.getType() == T
)
1236 ObjCObjectTL
.getBaseLoc().initializeFullCopy(BaseTypeInfo
->getTypeLoc());
1238 ObjCObjectTL
.getBaseLoc().initialize(Context
, Loc
);
1240 // We're done. Return the completed type to the parser.
1241 return CreateParsedType(Result
, ResultTInfo
);
1244 static OpenCLAccessAttr::Spelling
1245 getImageAccess(const ParsedAttributesView
&Attrs
) {
1246 for (const ParsedAttr
&AL
: Attrs
)
1247 if (AL
.getKind() == ParsedAttr::AT_OpenCLAccess
)
1248 return static_cast<OpenCLAccessAttr::Spelling
>(AL
.getSemanticSpelling());
1249 return OpenCLAccessAttr::Keyword_read_only
;
1252 static UnaryTransformType::UTTKind
1253 TSTToUnaryTransformType(DeclSpec::TST SwitchTST
) {
1254 switch (SwitchTST
) {
1255 #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
1257 return UnaryTransformType::Enum;
1258 #include "clang/Basic/TransformTypeTraits.def"
1260 llvm_unreachable("attempted to parse a non-unary transform builtin");
1264 /// Convert the specified declspec to the appropriate type
1266 /// \param state Specifies the declarator containing the declaration specifier
1267 /// to be converted, along with other associated processing state.
1268 /// \returns The type described by the declaration specifiers. This function
1269 /// never returns null.
1270 static QualType
ConvertDeclSpecToType(TypeProcessingState
&state
) {
1271 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1274 Sema
&S
= state
.getSema();
1275 Declarator
&declarator
= state
.getDeclarator();
1276 DeclSpec
&DS
= declarator
.getMutableDeclSpec();
1277 SourceLocation DeclLoc
= declarator
.getIdentifierLoc();
1278 if (DeclLoc
.isInvalid())
1279 DeclLoc
= DS
.getBeginLoc();
1281 ASTContext
&Context
= S
.Context
;
1284 switch (DS
.getTypeSpecType()) {
1285 case DeclSpec::TST_void
:
1286 Result
= Context
.VoidTy
;
1288 case DeclSpec::TST_char
:
1289 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
)
1290 Result
= Context
.CharTy
;
1291 else if (DS
.getTypeSpecSign() == TypeSpecifierSign::Signed
)
1292 Result
= Context
.SignedCharTy
;
1294 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
&&
1295 "Unknown TSS value");
1296 Result
= Context
.UnsignedCharTy
;
1299 case DeclSpec::TST_wchar
:
1300 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
)
1301 Result
= Context
.WCharTy
;
1302 else if (DS
.getTypeSpecSign() == TypeSpecifierSign::Signed
) {
1303 S
.Diag(DS
.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec
)
1304 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1305 Context
.getPrintingPolicy());
1306 Result
= Context
.getSignedWCharType();
1308 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
&&
1309 "Unknown TSS value");
1310 S
.Diag(DS
.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec
)
1311 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1312 Context
.getPrintingPolicy());
1313 Result
= Context
.getUnsignedWCharType();
1316 case DeclSpec::TST_char8
:
1317 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1318 "Unknown TSS value");
1319 Result
= Context
.Char8Ty
;
1321 case DeclSpec::TST_char16
:
1322 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1323 "Unknown TSS value");
1324 Result
= Context
.Char16Ty
;
1326 case DeclSpec::TST_char32
:
1327 assert(DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1328 "Unknown TSS value");
1329 Result
= Context
.Char32Ty
;
1331 case DeclSpec::TST_unspecified
:
1332 // If this is a missing declspec in a block literal return context, then it
1333 // is inferred from the return statements inside the block.
1334 // The declspec is always missing in a lambda expr context; it is either
1335 // specified with a trailing return type or inferred.
1336 if (S
.getLangOpts().CPlusPlus14
&&
1337 declarator
.getContext() == DeclaratorContext::LambdaExpr
) {
1338 // In C++1y, a lambda's implicit return type is 'auto'.
1339 Result
= Context
.getAutoDeductType();
1341 } else if (declarator
.getContext() == DeclaratorContext::LambdaExpr
||
1342 checkOmittedBlockReturnType(S
, declarator
,
1343 Context
.DependentTy
)) {
1344 Result
= Context
.DependentTy
;
1348 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1349 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1350 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1351 // Note that the one exception to this is function definitions, which are
1352 // allowed to be completely missing a declspec. This is handled in the
1353 // parser already though by it pretending to have seen an 'int' in this
1355 if (S
.getLangOpts().isImplicitIntRequired()) {
1356 S
.Diag(DeclLoc
, diag::warn_missing_type_specifier
)
1357 << DS
.getSourceRange()
1358 << FixItHint::CreateInsertion(DS
.getBeginLoc(), "int");
1359 } else if (!DS
.hasTypeSpecifier()) {
1360 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1361 // "At least one type specifier shall be given in the declaration
1362 // specifiers in each declaration, and in the specifier-qualifier list in
1363 // each struct declaration and type name."
1364 if (!S
.getLangOpts().isImplicitIntAllowed() && !DS
.isTypeSpecPipe()) {
1365 S
.Diag(DeclLoc
, diag::err_missing_type_specifier
)
1366 << DS
.getSourceRange();
1368 // When this occurs, often something is very broken with the value
1369 // being declared, poison it as invalid so we don't get chains of
1371 declarator
.setInvalidType(true);
1372 } else if (S
.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1373 DS
.isTypeSpecPipe()) {
1374 S
.Diag(DeclLoc
, diag::err_missing_actual_pipe_type
)
1375 << DS
.getSourceRange();
1376 declarator
.setInvalidType(true);
1378 assert(S
.getLangOpts().isImplicitIntAllowed() &&
1379 "implicit int is disabled?");
1380 S
.Diag(DeclLoc
, diag::ext_missing_type_specifier
)
1381 << DS
.getSourceRange()
1382 << FixItHint::CreateInsertion(DS
.getBeginLoc(), "int");
1387 case DeclSpec::TST_int
: {
1388 if (DS
.getTypeSpecSign() != TypeSpecifierSign::Unsigned
) {
1389 switch (DS
.getTypeSpecWidth()) {
1390 case TypeSpecifierWidth::Unspecified
:
1391 Result
= Context
.IntTy
;
1393 case TypeSpecifierWidth::Short
:
1394 Result
= Context
.ShortTy
;
1396 case TypeSpecifierWidth::Long
:
1397 Result
= Context
.LongTy
;
1399 case TypeSpecifierWidth::LongLong
:
1400 Result
= Context
.LongLongTy
;
1402 // 'long long' is a C99 or C++11 feature.
1403 if (!S
.getLangOpts().C99
) {
1404 if (S
.getLangOpts().CPlusPlus
)
1405 S
.Diag(DS
.getTypeSpecWidthLoc(),
1406 S
.getLangOpts().CPlusPlus11
?
1407 diag::warn_cxx98_compat_longlong
: diag::ext_cxx11_longlong
);
1409 S
.Diag(DS
.getTypeSpecWidthLoc(), diag::ext_c99_longlong
);
1414 switch (DS
.getTypeSpecWidth()) {
1415 case TypeSpecifierWidth::Unspecified
:
1416 Result
= Context
.UnsignedIntTy
;
1418 case TypeSpecifierWidth::Short
:
1419 Result
= Context
.UnsignedShortTy
;
1421 case TypeSpecifierWidth::Long
:
1422 Result
= Context
.UnsignedLongTy
;
1424 case TypeSpecifierWidth::LongLong
:
1425 Result
= Context
.UnsignedLongLongTy
;
1427 // 'long long' is a C99 or C++11 feature.
1428 if (!S
.getLangOpts().C99
) {
1429 if (S
.getLangOpts().CPlusPlus
)
1430 S
.Diag(DS
.getTypeSpecWidthLoc(),
1431 S
.getLangOpts().CPlusPlus11
?
1432 diag::warn_cxx98_compat_longlong
: diag::ext_cxx11_longlong
);
1434 S
.Diag(DS
.getTypeSpecWidthLoc(), diag::ext_c99_longlong
);
1441 case DeclSpec::TST_bitint
: {
1442 if (!S
.Context
.getTargetInfo().hasBitIntType())
1443 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "_BitInt";
1445 S
.BuildBitIntType(DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
,
1446 DS
.getRepAsExpr(), DS
.getBeginLoc());
1447 if (Result
.isNull()) {
1448 Result
= Context
.IntTy
;
1449 declarator
.setInvalidType(true);
1453 case DeclSpec::TST_accum
: {
1454 switch (DS
.getTypeSpecWidth()) {
1455 case TypeSpecifierWidth::Short
:
1456 Result
= Context
.ShortAccumTy
;
1458 case TypeSpecifierWidth::Unspecified
:
1459 Result
= Context
.AccumTy
;
1461 case TypeSpecifierWidth::Long
:
1462 Result
= Context
.LongAccumTy
;
1464 case TypeSpecifierWidth::LongLong
:
1465 llvm_unreachable("Unable to specify long long as _Accum width");
1468 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1469 Result
= Context
.getCorrespondingUnsignedType(Result
);
1471 if (DS
.isTypeSpecSat())
1472 Result
= Context
.getCorrespondingSaturatedType(Result
);
1476 case DeclSpec::TST_fract
: {
1477 switch (DS
.getTypeSpecWidth()) {
1478 case TypeSpecifierWidth::Short
:
1479 Result
= Context
.ShortFractTy
;
1481 case TypeSpecifierWidth::Unspecified
:
1482 Result
= Context
.FractTy
;
1484 case TypeSpecifierWidth::Long
:
1485 Result
= Context
.LongFractTy
;
1487 case TypeSpecifierWidth::LongLong
:
1488 llvm_unreachable("Unable to specify long long as _Fract width");
1491 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1492 Result
= Context
.getCorrespondingUnsignedType(Result
);
1494 if (DS
.isTypeSpecSat())
1495 Result
= Context
.getCorrespondingSaturatedType(Result
);
1499 case DeclSpec::TST_int128
:
1500 if (!S
.Context
.getTargetInfo().hasInt128Type() &&
1501 !(S
.getLangOpts().SYCLIsDevice
|| S
.getLangOpts().CUDAIsDevice
||
1502 (S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsDevice
)))
1503 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1505 if (DS
.getTypeSpecSign() == TypeSpecifierSign::Unsigned
)
1506 Result
= Context
.UnsignedInt128Ty
;
1508 Result
= Context
.Int128Ty
;
1510 case DeclSpec::TST_float16
:
1511 // CUDA host and device may have different _Float16 support, therefore
1512 // do not diagnose _Float16 usage to avoid false alarm.
1513 // ToDo: more precise diagnostics for CUDA.
1514 if (!S
.Context
.getTargetInfo().hasFloat16Type() && !S
.getLangOpts().CUDA
&&
1515 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsDevice
))
1516 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1518 Result
= Context
.Float16Ty
;
1520 case DeclSpec::TST_half
: Result
= Context
.HalfTy
; break;
1521 case DeclSpec::TST_BFloat16
:
1522 if (!S
.Context
.getTargetInfo().hasBFloat16Type())
1523 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1525 Result
= Context
.BFloat16Ty
;
1527 case DeclSpec::TST_float
: Result
= Context
.FloatTy
; break;
1528 case DeclSpec::TST_double
:
1529 if (DS
.getTypeSpecWidth() == TypeSpecifierWidth::Long
)
1530 Result
= Context
.LongDoubleTy
;
1532 Result
= Context
.DoubleTy
;
1533 if (S
.getLangOpts().OpenCL
) {
1534 if (!S
.getOpenCLOptions().isSupported("cl_khr_fp64", S
.getLangOpts()))
1535 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1537 << (S
.getLangOpts().getOpenCLCompatibleVersion() == 300
1538 ? "cl_khr_fp64 and __opencl_c_fp64"
1540 else if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S
.getLangOpts()))
1541 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma
);
1544 case DeclSpec::TST_float128
:
1545 if (!S
.Context
.getTargetInfo().hasFloat128Type() &&
1546 !S
.getLangOpts().SYCLIsDevice
&&
1547 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsDevice
))
1548 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
)
1550 Result
= Context
.Float128Ty
;
1552 case DeclSpec::TST_ibm128
:
1553 if (!S
.Context
.getTargetInfo().hasIbm128Type() &&
1554 !S
.getLangOpts().SYCLIsDevice
&&
1555 !(S
.getLangOpts().OpenMP
&& S
.getLangOpts().OpenMPIsDevice
))
1556 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_type_unsupported
) << "__ibm128";
1557 Result
= Context
.Ibm128Ty
;
1559 case DeclSpec::TST_bool
:
1560 Result
= Context
.BoolTy
; // _Bool or bool
1562 case DeclSpec::TST_decimal32
: // _Decimal32
1563 case DeclSpec::TST_decimal64
: // _Decimal64
1564 case DeclSpec::TST_decimal128
: // _Decimal128
1565 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_decimal_unsupported
);
1566 Result
= Context
.IntTy
;
1567 declarator
.setInvalidType(true);
1569 case DeclSpec::TST_class
:
1570 case DeclSpec::TST_enum
:
1571 case DeclSpec::TST_union
:
1572 case DeclSpec::TST_struct
:
1573 case DeclSpec::TST_interface
: {
1574 TagDecl
*D
= dyn_cast_or_null
<TagDecl
>(DS
.getRepAsDecl());
1576 // This can happen in C++ with ambiguous lookups.
1577 Result
= Context
.IntTy
;
1578 declarator
.setInvalidType(true);
1582 // If the type is deprecated or unavailable, diagnose it.
1583 S
.DiagnoseUseOfDecl(D
, DS
.getTypeSpecTypeNameLoc());
1585 assert(DS
.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified
&&
1586 DS
.getTypeSpecComplex() == 0 &&
1587 DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1588 "No qualifiers on tag names!");
1590 // TypeQuals handled by caller.
1591 Result
= Context
.getTypeDeclType(D
);
1593 // In both C and C++, make an ElaboratedType.
1594 ElaboratedTypeKeyword Keyword
1595 = ElaboratedType::getKeywordForTypeSpec(DS
.getTypeSpecType());
1596 Result
= S
.getElaboratedType(Keyword
, DS
.getTypeSpecScope(), Result
,
1597 DS
.isTypeSpecOwned() ? D
: nullptr);
1600 case DeclSpec::TST_typename
: {
1601 assert(DS
.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified
&&
1602 DS
.getTypeSpecComplex() == 0 &&
1603 DS
.getTypeSpecSign() == TypeSpecifierSign::Unspecified
&&
1604 "Can't handle qualifiers on typedef names yet!");
1605 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1606 if (Result
.isNull()) {
1607 declarator
.setInvalidType(true);
1610 // TypeQuals handled by caller.
1613 case DeclSpec::TST_typeofType
:
1614 // FIXME: Preserve type source info.
1615 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1616 assert(!Result
.isNull() && "Didn't get a type for typeof?");
1617 if (!Result
->isDependentType())
1618 if (const TagType
*TT
= Result
->getAs
<TagType
>())
1619 S
.DiagnoseUseOfDecl(TT
->getDecl(), DS
.getTypeSpecTypeLoc());
1620 // TypeQuals handled by caller.
1621 Result
= Context
.getTypeOfType(Result
);
1623 case DeclSpec::TST_typeofExpr
: {
1624 Expr
*E
= DS
.getRepAsExpr();
1625 assert(E
&& "Didn't get an expression for typeof?");
1626 // TypeQuals handled by caller.
1627 Result
= S
.BuildTypeofExprType(E
);
1628 if (Result
.isNull()) {
1629 Result
= Context
.IntTy
;
1630 declarator
.setInvalidType(true);
1634 case DeclSpec::TST_decltype
: {
1635 Expr
*E
= DS
.getRepAsExpr();
1636 assert(E
&& "Didn't get an expression for decltype?");
1637 // TypeQuals handled by caller.
1638 Result
= S
.BuildDecltypeType(E
);
1639 if (Result
.isNull()) {
1640 Result
= Context
.IntTy
;
1641 declarator
.setInvalidType(true);
1645 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1646 #include "clang/Basic/TransformTypeTraits.def"
1647 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1648 assert(!Result
.isNull() && "Didn't get a type for the transformation?");
1649 Result
= S
.BuildUnaryTransformType(
1650 Result
, TSTToUnaryTransformType(DS
.getTypeSpecType()),
1651 DS
.getTypeSpecTypeLoc());
1652 if (Result
.isNull()) {
1653 Result
= Context
.IntTy
;
1654 declarator
.setInvalidType(true);
1658 case DeclSpec::TST_auto
:
1659 case DeclSpec::TST_decltype_auto
: {
1660 auto AutoKW
= DS
.getTypeSpecType() == DeclSpec::TST_decltype_auto
1661 ? AutoTypeKeyword::DecltypeAuto
1662 : AutoTypeKeyword::Auto
;
1664 ConceptDecl
*TypeConstraintConcept
= nullptr;
1665 llvm::SmallVector
<TemplateArgument
, 8> TemplateArgs
;
1666 if (DS
.isConstrainedAuto()) {
1667 if (TemplateIdAnnotation
*TemplateId
= DS
.getRepAsTemplateId()) {
1668 TypeConstraintConcept
=
1669 cast
<ConceptDecl
>(TemplateId
->Template
.get().getAsTemplateDecl());
1670 TemplateArgumentListInfo TemplateArgsInfo
;
1671 TemplateArgsInfo
.setLAngleLoc(TemplateId
->LAngleLoc
);
1672 TemplateArgsInfo
.setRAngleLoc(TemplateId
->RAngleLoc
);
1673 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
1674 TemplateId
->NumArgs
);
1675 S
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
1676 for (const auto &ArgLoc
: TemplateArgsInfo
.arguments())
1677 TemplateArgs
.push_back(ArgLoc
.getArgument());
1679 declarator
.setInvalidType(true);
1682 Result
= S
.Context
.getAutoType(QualType(), AutoKW
,
1683 /*IsDependent*/ false, /*IsPack=*/false,
1684 TypeConstraintConcept
, TemplateArgs
);
1688 case DeclSpec::TST_auto_type
:
1689 Result
= Context
.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType
, false);
1692 case DeclSpec::TST_unknown_anytype
:
1693 Result
= Context
.UnknownAnyTy
;
1696 case DeclSpec::TST_atomic
:
1697 Result
= S
.GetTypeFromParser(DS
.getRepAsType());
1698 assert(!Result
.isNull() && "Didn't get a type for _Atomic?");
1699 Result
= S
.BuildAtomicType(Result
, DS
.getTypeSpecTypeLoc());
1700 if (Result
.isNull()) {
1701 Result
= Context
.IntTy
;
1702 declarator
.setInvalidType(true);
1706 #define GENERIC_IMAGE_TYPE(ImgType, Id) \
1707 case DeclSpec::TST_##ImgType##_t: \
1708 switch (getImageAccess(DS.getAttributes())) { \
1709 case OpenCLAccessAttr::Keyword_write_only: \
1710 Result = Context.Id##WOTy; \
1712 case OpenCLAccessAttr::Keyword_read_write: \
1713 Result = Context.Id##RWTy; \
1715 case OpenCLAccessAttr::Keyword_read_only: \
1716 Result = Context.Id##ROTy; \
1718 case OpenCLAccessAttr::SpellingNotCalculated: \
1719 llvm_unreachable("Spelling not yet calculated"); \
1722 #include "clang/Basic/OpenCLImageTypes.def"
1724 case DeclSpec::TST_error
:
1725 Result
= Context
.IntTy
;
1726 declarator
.setInvalidType(true);
1730 // FIXME: we want resulting declarations to be marked invalid, but claiming
1731 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1733 if (Result
->containsErrors())
1734 declarator
.setInvalidType();
1736 if (S
.getLangOpts().OpenCL
) {
1737 const auto &OpenCLOptions
= S
.getOpenCLOptions();
1738 bool IsOpenCLC30Compatible
=
1739 S
.getLangOpts().getOpenCLCompatibleVersion() == 300;
1740 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1742 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1743 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1744 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1745 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1746 // only when the optional feature is supported
1747 if ((Result
->isImageType() || Result
->isSamplerT()) &&
1748 (IsOpenCLC30Compatible
&&
1749 !OpenCLOptions
.isSupported("__opencl_c_images", S
.getLangOpts()))) {
1750 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1751 << 0 << Result
<< "__opencl_c_images";
1752 declarator
.setInvalidType();
1753 } else if (Result
->isOCLImage3dWOType() &&
1754 !OpenCLOptions
.isSupported("cl_khr_3d_image_writes",
1756 S
.Diag(DS
.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension
)
1758 << (IsOpenCLC30Compatible
1759 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1760 : "cl_khr_3d_image_writes");
1761 declarator
.setInvalidType();
1765 bool IsFixedPointType
= DS
.getTypeSpecType() == DeclSpec::TST_accum
||
1766 DS
.getTypeSpecType() == DeclSpec::TST_fract
;
1768 // Only fixed point types can be saturated
1769 if (DS
.isTypeSpecSat() && !IsFixedPointType
)
1770 S
.Diag(DS
.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec
)
1771 << DS
.getSpecifierName(DS
.getTypeSpecType(),
1772 Context
.getPrintingPolicy());
1774 // Handle complex types.
1775 if (DS
.getTypeSpecComplex() == DeclSpec::TSC_complex
) {
1776 if (S
.getLangOpts().Freestanding
)
1777 S
.Diag(DS
.getTypeSpecComplexLoc(), diag::ext_freestanding_complex
);
1778 Result
= Context
.getComplexType(Result
);
1779 } else if (DS
.isTypeAltiVecVector()) {
1780 unsigned typeSize
= static_cast<unsigned>(Context
.getTypeSize(Result
));
1781 assert(typeSize
> 0 && "type size for vector must be greater than 0 bits");
1782 VectorType::VectorKind VecKind
= VectorType::AltiVecVector
;
1783 if (DS
.isTypeAltiVecPixel())
1784 VecKind
= VectorType::AltiVecPixel
;
1785 else if (DS
.isTypeAltiVecBool())
1786 VecKind
= VectorType::AltiVecBool
;
1787 Result
= Context
.getVectorType(Result
, 128/typeSize
, VecKind
);
1790 // FIXME: Imaginary.
1791 if (DS
.getTypeSpecComplex() == DeclSpec::TSC_imaginary
)
1792 S
.Diag(DS
.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported
);
1794 // Before we process any type attributes, synthesize a block literal
1795 // function declarator if necessary.
1796 if (declarator
.getContext() == DeclaratorContext::BlockLiteral
)
1797 maybeSynthesizeBlockSignature(state
, Result
);
1799 // Apply any type attributes from the decl spec. This may cause the
1800 // list of type attributes to be temporarily saved while the type
1801 // attributes are pushed around.
1802 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1803 if (!DS
.isTypeSpecPipe()) {
1804 // We also apply declaration attributes that "slide" to the decl spec.
1805 // Ordering can be important for attributes. The decalaration attributes
1806 // come syntactically before the decl spec attributes, so we process them
1808 ParsedAttributesView SlidingAttrs
;
1809 for (ParsedAttr
&AL
: declarator
.getDeclarationAttributes()) {
1810 if (AL
.slidesFromDeclToDeclSpecLegacyBehavior()) {
1811 SlidingAttrs
.addAtEnd(&AL
);
1813 // For standard syntax attributes, which would normally appertain to the
1814 // declaration here, suggest moving them to the type instead. But only
1815 // do this for our own vendor attributes; moving other vendors'
1816 // attributes might hurt portability.
1817 // There's one special case that we need to deal with here: The
1818 // `MatrixType` attribute may only be used in a typedef declaration. If
1819 // it's being used anywhere else, don't output the warning as
1820 // ProcessDeclAttributes() will output an error anyway.
1821 if (AL
.isStandardAttributeSyntax() && AL
.isClangScope() &&
1822 !(AL
.getKind() == ParsedAttr::AT_MatrixType
&&
1823 DS
.getStorageClassSpec() != DeclSpec::SCS_typedef
)) {
1824 S
.Diag(AL
.getLoc(), diag::warn_type_attribute_deprecated_on_decl
)
1829 // During this call to processTypeAttrs(),
1830 // TypeProcessingState::getCurrentAttributes() will erroneously return a
1831 // reference to the DeclSpec attributes, rather than the declaration
1832 // attributes. However, this doesn't matter, as getCurrentAttributes()
1833 // is only called when distributing attributes from one attribute list
1834 // to another. Declaration attributes are always C++11 attributes, and these
1835 // are never distributed.
1836 processTypeAttrs(state
, Result
, TAL_DeclSpec
, SlidingAttrs
);
1837 processTypeAttrs(state
, Result
, TAL_DeclSpec
, DS
.getAttributes());
1840 // Apply const/volatile/restrict qualifiers to T.
1841 if (unsigned TypeQuals
= DS
.getTypeQualifiers()) {
1842 // Warn about CV qualifiers on function types.
1844 // If the specification of a function type includes any type qualifiers,
1845 // the behavior is undefined.
1846 // C++11 [dcl.fct]p7:
1847 // The effect of a cv-qualifier-seq in a function declarator is not the
1848 // same as adding cv-qualification on top of the function type. In the
1849 // latter case, the cv-qualifiers are ignored.
1850 if (Result
->isFunctionType()) {
1851 diagnoseAndRemoveTypeQualifiers(
1852 S
, DS
, TypeQuals
, Result
, DeclSpec::TQ_const
| DeclSpec::TQ_volatile
,
1853 S
.getLangOpts().CPlusPlus
1854 ? diag::warn_typecheck_function_qualifiers_ignored
1855 : diag::warn_typecheck_function_qualifiers_unspecified
);
1856 // No diagnostic for 'restrict' or '_Atomic' applied to a
1857 // function type; we'll diagnose those later, in BuildQualifiedType.
1860 // C++11 [dcl.ref]p1:
1861 // Cv-qualified references are ill-formed except when the
1862 // cv-qualifiers are introduced through the use of a typedef-name
1863 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1865 // There don't appear to be any other contexts in which a cv-qualified
1866 // reference type could be formed, so the 'ill-formed' clause here appears
1868 if (TypeQuals
&& Result
->isReferenceType()) {
1869 diagnoseAndRemoveTypeQualifiers(
1870 S
, DS
, TypeQuals
, Result
,
1871 DeclSpec::TQ_const
| DeclSpec::TQ_volatile
| DeclSpec::TQ_atomic
,
1872 diag::warn_typecheck_reference_qualifiers
);
1875 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1876 // than once in the same specifier-list or qualifier-list, either directly
1877 // or via one or more typedefs."
1878 if (!S
.getLangOpts().C99
&& !S
.getLangOpts().CPlusPlus
1879 && TypeQuals
& Result
.getCVRQualifiers()) {
1880 if (TypeQuals
& DeclSpec::TQ_const
&& Result
.isConstQualified()) {
1881 S
.Diag(DS
.getConstSpecLoc(), diag::ext_duplicate_declspec
)
1885 if (TypeQuals
& DeclSpec::TQ_volatile
&& Result
.isVolatileQualified()) {
1886 S
.Diag(DS
.getVolatileSpecLoc(), diag::ext_duplicate_declspec
)
1890 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1891 // produce a warning in this case.
1894 QualType Qualified
= S
.BuildQualifiedType(Result
, DeclLoc
, TypeQuals
, &DS
);
1896 // If adding qualifiers fails, just use the unqualified type.
1897 if (Qualified
.isNull())
1898 declarator
.setInvalidType(true);
1903 assert(!Result
.isNull() && "This function should not return a null type");
1907 static std::string
getPrintableNameForEntity(DeclarationName Entity
) {
1909 return Entity
.getAsString();
1914 static bool isDependentOrGNUAutoType(QualType T
) {
1915 if (T
->isDependentType())
1918 const auto *AT
= dyn_cast
<AutoType
>(T
);
1919 return AT
&& AT
->isGNUAutoType();
1922 QualType
Sema::BuildQualifiedType(QualType T
, SourceLocation Loc
,
1923 Qualifiers Qs
, const DeclSpec
*DS
) {
1927 // Ignore any attempt to form a cv-qualified reference.
1928 if (T
->isReferenceType()) {
1930 Qs
.removeVolatile();
1933 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1934 // object or incomplete types shall not be restrict-qualified."
1935 if (Qs
.hasRestrict()) {
1936 unsigned DiagID
= 0;
1939 if (T
->isAnyPointerType() || T
->isReferenceType() ||
1940 T
->isMemberPointerType()) {
1942 if (T
->isObjCObjectPointerType())
1944 else if (const MemberPointerType
*PTy
= T
->getAs
<MemberPointerType
>())
1945 EltTy
= PTy
->getPointeeType();
1947 EltTy
= T
->getPointeeType();
1949 // If we have a pointer or reference, the pointee must have an object
1951 if (!EltTy
->isIncompleteOrObjectType()) {
1952 DiagID
= diag::err_typecheck_invalid_restrict_invalid_pointee
;
1955 } else if (!isDependentOrGNUAutoType(T
)) {
1956 // For an __auto_type variable, we may not have seen the initializer yet
1957 // and so have no idea whether the underlying type is a pointer type or
1959 DiagID
= diag::err_typecheck_invalid_restrict_not_pointer
;
1964 Diag(DS
? DS
->getRestrictSpecLoc() : Loc
, DiagID
) << ProblemTy
;
1965 Qs
.removeRestrict();
1969 return Context
.getQualifiedType(T
, Qs
);
1972 QualType
Sema::BuildQualifiedType(QualType T
, SourceLocation Loc
,
1973 unsigned CVRAU
, const DeclSpec
*DS
) {
1977 // Ignore any attempt to form a cv-qualified reference.
1978 if (T
->isReferenceType())
1980 ~(DeclSpec::TQ_const
| DeclSpec::TQ_volatile
| DeclSpec::TQ_atomic
);
1982 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
1984 unsigned CVR
= CVRAU
& ~(DeclSpec::TQ_atomic
| DeclSpec::TQ_unaligned
);
1987 // If the same qualifier appears more than once in the same
1988 // specifier-qualifier-list, either directly or via one or more typedefs,
1989 // the behavior is the same as if it appeared only once.
1991 // It's not specified what happens when the _Atomic qualifier is applied to
1992 // a type specified with the _Atomic specifier, but we assume that this
1993 // should be treated as if the _Atomic qualifier appeared multiple times.
1994 if (CVRAU
& DeclSpec::TQ_atomic
&& !T
->isAtomicType()) {
1996 // If other qualifiers appear along with the _Atomic qualifier in a
1997 // specifier-qualifier-list, the resulting type is the so-qualified
2000 // Don't need to worry about array types here, since _Atomic can't be
2001 // applied to such types.
2002 SplitQualType Split
= T
.getSplitUnqualifiedType();
2003 T
= BuildAtomicType(QualType(Split
.Ty
, 0),
2004 DS
? DS
->getAtomicSpecLoc() : Loc
);
2007 Split
.Quals
.addCVRQualifiers(CVR
);
2008 return BuildQualifiedType(T
, Loc
, Split
.Quals
);
2011 Qualifiers Q
= Qualifiers::fromCVRMask(CVR
);
2012 Q
.setUnaligned(CVRAU
& DeclSpec::TQ_unaligned
);
2013 return BuildQualifiedType(T
, Loc
, Q
, DS
);
2016 /// Build a paren type including \p T.
2017 QualType
Sema::BuildParenType(QualType T
) {
2018 return Context
.getParenType(T
);
2021 /// Given that we're building a pointer or reference to the given
2022 static QualType
inferARCLifetimeForPointee(Sema
&S
, QualType type
,
2025 // Bail out if retention is unrequired or already specified.
2026 if (!type
->isObjCLifetimeType() ||
2027 type
.getObjCLifetime() != Qualifiers::OCL_None
)
2030 Qualifiers::ObjCLifetime implicitLifetime
= Qualifiers::OCL_None
;
2032 // If the object type is const-qualified, we can safely use
2033 // __unsafe_unretained. This is safe (because there are no read
2034 // barriers), and it'll be safe to coerce anything but __weak* to
2035 // the resulting type.
2036 if (type
.isConstQualified()) {
2037 implicitLifetime
= Qualifiers::OCL_ExplicitNone
;
2039 // Otherwise, check whether the static type does not require
2040 // retaining. This currently only triggers for Class (possibly
2041 // protocol-qualifed, and arrays thereof).
2042 } else if (type
->isObjCARCImplicitlyUnretainedType()) {
2043 implicitLifetime
= Qualifiers::OCL_ExplicitNone
;
2045 // If we are in an unevaluated context, like sizeof, skip adding a
2047 } else if (S
.isUnevaluatedContext()) {
2050 // If that failed, give an error and recover using __strong. __strong
2051 // is the option most likely to prevent spurious second-order diagnostics,
2052 // like when binding a reference to a field.
2054 // These types can show up in private ivars in system headers, so
2055 // we need this to not be an error in those cases. Instead we
2057 if (S
.DelayedDiagnostics
.shouldDelayDiagnostics()) {
2058 S
.DelayedDiagnostics
.add(
2059 sema::DelayedDiagnostic::makeForbiddenType(loc
,
2060 diag::err_arc_indirect_no_ownership
, type
, isReference
));
2062 S
.Diag(loc
, diag::err_arc_indirect_no_ownership
) << type
<< isReference
;
2064 implicitLifetime
= Qualifiers::OCL_Strong
;
2066 assert(implicitLifetime
&& "didn't infer any lifetime!");
2069 qs
.addObjCLifetime(implicitLifetime
);
2070 return S
.Context
.getQualifiedType(type
, qs
);
2073 static std::string
getFunctionQualifiersAsString(const FunctionProtoType
*FnTy
){
2074 std::string Quals
= FnTy
->getMethodQuals().getAsString();
2076 switch (FnTy
->getRefQualifier()) {
2097 /// Kinds of declarator that cannot contain a qualified function type.
2099 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2100 /// a function type with a cv-qualifier or a ref-qualifier can only appear
2101 /// at the topmost level of a type.
2103 /// Parens and member pointers are permitted. We don't diagnose array and
2104 /// function declarators, because they don't allow function types at all.
2106 /// The values of this enum are used in diagnostics.
2107 enum QualifiedFunctionKind
{ QFK_BlockPointer
, QFK_Pointer
, QFK_Reference
};
2108 } // end anonymous namespace
2110 /// Check whether the type T is a qualified function type, and if it is,
2111 /// diagnose that it cannot be contained within the given kind of declarator.
2112 static bool checkQualifiedFunction(Sema
&S
, QualType T
, SourceLocation Loc
,
2113 QualifiedFunctionKind QFK
) {
2114 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2115 const FunctionProtoType
*FPT
= T
->getAs
<FunctionProtoType
>();
2117 (FPT
->getMethodQuals().empty() && FPT
->getRefQualifier() == RQ_None
))
2120 S
.Diag(Loc
, diag::err_compound_qualified_function_type
)
2121 << QFK
<< isa
<FunctionType
>(T
.IgnoreParens()) << T
2122 << getFunctionQualifiersAsString(FPT
);
2126 bool Sema::CheckQualifiedFunctionForTypeId(QualType T
, SourceLocation Loc
) {
2127 const FunctionProtoType
*FPT
= T
->getAs
<FunctionProtoType
>();
2129 (FPT
->getMethodQuals().empty() && FPT
->getRefQualifier() == RQ_None
))
2132 Diag(Loc
, diag::err_qualified_function_typeid
)
2133 << T
<< getFunctionQualifiersAsString(FPT
);
2137 // Helper to deduce addr space of a pointee type in OpenCL mode.
2138 static QualType
deduceOpenCLPointeeAddrSpace(Sema
&S
, QualType PointeeType
) {
2139 if (!PointeeType
->isUndeducedAutoType() && !PointeeType
->isDependentType() &&
2140 !PointeeType
->isSamplerT() &&
2141 !PointeeType
.hasAddressSpace())
2142 PointeeType
= S
.getASTContext().getAddrSpaceQualType(
2143 PointeeType
, S
.getASTContext().getDefaultOpenCLPointeeAddrSpace());
2147 /// Build a pointer type.
2149 /// \param T The type to which we'll be building a pointer.
2151 /// \param Loc The location of the entity whose type involves this
2152 /// pointer type or, if there is no such entity, the location of the
2153 /// type that will have pointer type.
2155 /// \param Entity The name of the entity that involves the pointer
2158 /// \returns A suitable pointer type, if there are no
2159 /// errors. Otherwise, returns a NULL type.
2160 QualType
Sema::BuildPointerType(QualType T
,
2161 SourceLocation Loc
, DeclarationName Entity
) {
2162 if (T
->isReferenceType()) {
2163 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2164 Diag(Loc
, diag::err_illegal_decl_pointer_to_reference
)
2165 << getPrintableNameForEntity(Entity
) << T
;
2169 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
2170 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2172 Diag(Loc
, diag::err_opencl_function_pointer
) << /*pointer*/ 0;
2176 if (getLangOpts().HLSL
&& Loc
.isValid()) {
2177 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 0;
2181 if (checkQualifiedFunction(*this, T
, Loc
, QFK_Pointer
))
2184 assert(!T
->isObjCObjectType() && "Should build ObjCObjectPointerType");
2186 // In ARC, it is forbidden to build pointers to unqualified pointers.
2187 if (getLangOpts().ObjCAutoRefCount
)
2188 T
= inferARCLifetimeForPointee(*this, T
, Loc
, /*reference*/ false);
2190 if (getLangOpts().OpenCL
)
2191 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
2193 // Build the pointer type.
2194 return Context
.getPointerType(T
);
2197 /// Build a reference type.
2199 /// \param T The type to which we'll be building a reference.
2201 /// \param Loc The location of the entity whose type involves this
2202 /// reference type or, if there is no such entity, the location of the
2203 /// type that will have reference type.
2205 /// \param Entity The name of the entity that involves the reference
2208 /// \returns A suitable reference type, if there are no
2209 /// errors. Otherwise, returns a NULL type.
2210 QualType
Sema::BuildReferenceType(QualType T
, bool SpelledAsLValue
,
2212 DeclarationName Entity
) {
2213 assert(Context
.getCanonicalType(T
) != Context
.OverloadTy
&&
2214 "Unresolved overloaded function type");
2216 // C++0x [dcl.ref]p6:
2217 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2218 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2219 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2220 // the type "lvalue reference to T", while an attempt to create the type
2221 // "rvalue reference to cv TR" creates the type TR.
2222 bool LValueRef
= SpelledAsLValue
|| T
->getAs
<LValueReferenceType
>();
2224 // C++ [dcl.ref]p4: There shall be no references to references.
2226 // According to C++ DR 106, references to references are only
2227 // diagnosed when they are written directly (e.g., "int & &"),
2228 // but not when they happen via a typedef:
2230 // typedef int& intref;
2231 // typedef intref& intref2;
2233 // Parser::ParseDeclaratorInternal diagnoses the case where
2234 // references are written directly; here, we handle the
2235 // collapsing of references-to-references as described in C++0x.
2236 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2239 // A declarator that specifies the type "reference to cv void"
2241 if (T
->isVoidType()) {
2242 Diag(Loc
, diag::err_reference_to_void
);
2246 if (getLangOpts().HLSL
&& Loc
.isValid()) {
2247 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 1;
2251 if (checkQualifiedFunction(*this, T
, Loc
, QFK_Reference
))
2254 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
2255 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
2257 Diag(Loc
, diag::err_opencl_function_pointer
) << /*reference*/ 1;
2261 // In ARC, it is forbidden to build references to unqualified pointers.
2262 if (getLangOpts().ObjCAutoRefCount
)
2263 T
= inferARCLifetimeForPointee(*this, T
, Loc
, /*reference*/ true);
2265 if (getLangOpts().OpenCL
)
2266 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
2268 // Handle restrict on references.
2270 return Context
.getLValueReferenceType(T
, SpelledAsLValue
);
2271 return Context
.getRValueReferenceType(T
);
2274 /// Build a Read-only Pipe type.
2276 /// \param T The type to which we'll be building a Pipe.
2278 /// \param Loc We do not use it for now.
2280 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2282 QualType
Sema::BuildReadPipeType(QualType T
, SourceLocation Loc
) {
2283 return Context
.getReadPipeType(T
);
2286 /// Build a Write-only Pipe type.
2288 /// \param T The type to which we'll be building a Pipe.
2290 /// \param Loc We do not use it for now.
2292 /// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2294 QualType
Sema::BuildWritePipeType(QualType T
, SourceLocation Loc
) {
2295 return Context
.getWritePipeType(T
);
2298 /// Build a bit-precise integer type.
2300 /// \param IsUnsigned Boolean representing the signedness of the type.
2302 /// \param BitWidth Size of this int type in bits, or an expression representing
2305 /// \param Loc Location of the keyword.
2306 QualType
Sema::BuildBitIntType(bool IsUnsigned
, Expr
*BitWidth
,
2307 SourceLocation Loc
) {
2308 if (BitWidth
->isInstantiationDependent())
2309 return Context
.getDependentBitIntType(IsUnsigned
, BitWidth
);
2311 llvm::APSInt
Bits(32);
2313 VerifyIntegerConstantExpression(BitWidth
, &Bits
, /*FIXME*/ AllowFold
);
2315 if (ICE
.isInvalid())
2318 size_t NumBits
= Bits
.getZExtValue();
2319 if (!IsUnsigned
&& NumBits
< 2) {
2320 Diag(Loc
, diag::err_bit_int_bad_size
) << 0;
2324 if (IsUnsigned
&& NumBits
< 1) {
2325 Diag(Loc
, diag::err_bit_int_bad_size
) << 1;
2329 const TargetInfo
&TI
= getASTContext().getTargetInfo();
2330 if (NumBits
> TI
.getMaxBitIntWidth()) {
2331 Diag(Loc
, diag::err_bit_int_max_size
)
2332 << IsUnsigned
<< static_cast<uint64_t>(TI
.getMaxBitIntWidth());
2336 return Context
.getBitIntType(IsUnsigned
, NumBits
);
2339 /// Check whether the specified array bound can be evaluated using the relevant
2340 /// language rules. If so, returns the possibly-converted expression and sets
2341 /// SizeVal to the size. If not, but the expression might be a VLA bound,
2342 /// returns ExprResult(). Otherwise, produces a diagnostic and returns
2344 static ExprResult
checkArraySize(Sema
&S
, Expr
*&ArraySize
,
2345 llvm::APSInt
&SizeVal
, unsigned VLADiag
,
2347 if (S
.getLangOpts().CPlusPlus14
&&
2349 !ArraySize
->getType()->isIntegralOrUnscopedEnumerationType())) {
2350 // C++14 [dcl.array]p1:
2351 // The constant-expression shall be a converted constant expression of
2352 // type std::size_t.
2354 // Don't apply this rule if we might be forming a VLA: in that case, we
2355 // allow non-constant expressions and constant-folding. We only need to use
2356 // the converted constant expression rules (to properly convert the source)
2357 // when the source expression is of class type.
2358 return S
.CheckConvertedConstantExpression(
2359 ArraySize
, S
.Context
.getSizeType(), SizeVal
, Sema::CCEK_ArrayBound
);
2362 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2363 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2364 class VLADiagnoser
: public Sema::VerifyICEDiagnoser
{
2370 VLADiagnoser(unsigned VLADiag
, bool VLAIsError
)
2371 : VLADiag(VLADiag
), VLAIsError(VLAIsError
) {}
2373 Sema::SemaDiagnosticBuilder
diagnoseNotICEType(Sema
&S
, SourceLocation Loc
,
2374 QualType T
) override
{
2375 return S
.Diag(Loc
, diag::err_array_size_non_int
) << T
;
2378 Sema::SemaDiagnosticBuilder
diagnoseNotICE(Sema
&S
,
2379 SourceLocation Loc
) override
{
2380 IsVLA
= !VLAIsError
;
2381 return S
.Diag(Loc
, VLADiag
);
2384 Sema::SemaDiagnosticBuilder
diagnoseFold(Sema
&S
,
2385 SourceLocation Loc
) override
{
2386 return S
.Diag(Loc
, diag::ext_vla_folded_to_constant
);
2388 } Diagnoser(VLADiag
, VLAIsError
);
2391 S
.VerifyIntegerConstantExpression(ArraySize
, &SizeVal
, Diagnoser
);
2392 if (Diagnoser
.IsVLA
)
2393 return ExprResult();
2397 /// Build an array type.
2399 /// \param T The type of each element in the array.
2401 /// \param ASM C99 array size modifier (e.g., '*', 'static').
2403 /// \param ArraySize Expression describing the size of the array.
2405 /// \param Brackets The range from the opening '[' to the closing ']'.
2407 /// \param Entity The name of the entity that involves the array
2410 /// \returns A suitable array type, if there are no errors. Otherwise,
2411 /// returns a NULL type.
2412 QualType
Sema::BuildArrayType(QualType T
, ArrayType::ArraySizeModifier ASM
,
2413 Expr
*ArraySize
, unsigned Quals
,
2414 SourceRange Brackets
, DeclarationName Entity
) {
2416 SourceLocation Loc
= Brackets
.getBegin();
2417 if (getLangOpts().CPlusPlus
) {
2418 // C++ [dcl.array]p1:
2419 // T is called the array element type; this type shall not be a reference
2420 // type, the (possibly cv-qualified) type void, a function type or an
2421 // abstract class type.
2423 // C++ [dcl.array]p3:
2424 // When several "array of" specifications are adjacent, [...] only the
2425 // first of the constant expressions that specify the bounds of the arrays
2428 // Note: function types are handled in the common path with C.
2429 if (T
->isReferenceType()) {
2430 Diag(Loc
, diag::err_illegal_decl_array_of_references
)
2431 << getPrintableNameForEntity(Entity
) << T
;
2435 if (T
->isVoidType() || T
->isIncompleteArrayType()) {
2436 Diag(Loc
, diag::err_array_incomplete_or_sizeless_type
) << 0 << T
;
2440 if (RequireNonAbstractType(Brackets
.getBegin(), T
,
2441 diag::err_array_of_abstract_type
))
2444 // Mentioning a member pointer type for an array type causes us to lock in
2445 // an inheritance model, even if it's inside an unused typedef.
2446 if (Context
.getTargetInfo().getCXXABI().isMicrosoft())
2447 if (const MemberPointerType
*MPTy
= T
->getAs
<MemberPointerType
>())
2448 if (!MPTy
->getClass()->isDependentType())
2449 (void)isCompleteType(Loc
, T
);
2452 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2453 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2454 if (RequireCompleteSizedType(Loc
, T
,
2455 diag::err_array_incomplete_or_sizeless_type
))
2459 if (T
->isSizelessType()) {
2460 Diag(Loc
, diag::err_array_incomplete_or_sizeless_type
) << 1 << T
;
2464 if (T
->isFunctionType()) {
2465 Diag(Loc
, diag::err_illegal_decl_array_of_functions
)
2466 << getPrintableNameForEntity(Entity
) << T
;
2470 if (const RecordType
*EltTy
= T
->getAs
<RecordType
>()) {
2471 // If the element type is a struct or union that contains a variadic
2472 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2473 if (EltTy
->getDecl()->hasFlexibleArrayMember())
2474 Diag(Loc
, diag::ext_flexible_array_in_array
) << T
;
2475 } else if (T
->isObjCObjectType()) {
2476 Diag(Loc
, diag::err_objc_array_of_interfaces
) << T
;
2480 // Do placeholder conversions on the array size expression.
2481 if (ArraySize
&& ArraySize
->hasPlaceholderType()) {
2482 ExprResult Result
= CheckPlaceholderExpr(ArraySize
);
2483 if (Result
.isInvalid()) return QualType();
2484 ArraySize
= Result
.get();
2487 // Do lvalue-to-rvalue conversions on the array size expression.
2488 if (ArraySize
&& !ArraySize
->isPRValue()) {
2489 ExprResult Result
= DefaultLvalueConversion(ArraySize
);
2490 if (Result
.isInvalid())
2493 ArraySize
= Result
.get();
2496 // C99 6.7.5.2p1: The size expression shall have integer type.
2497 // C++11 allows contextual conversions to such types.
2498 if (!getLangOpts().CPlusPlus11
&&
2499 ArraySize
&& !ArraySize
->isTypeDependent() &&
2500 !ArraySize
->getType()->isIntegralOrUnscopedEnumerationType()) {
2501 Diag(ArraySize
->getBeginLoc(), diag::err_array_size_non_int
)
2502 << ArraySize
->getType() << ArraySize
->getSourceRange();
2506 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2509 if (getLangOpts().OpenCL
) {
2510 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2511 VLADiag
= diag::err_opencl_vla
;
2513 } else if (getLangOpts().C99
) {
2514 VLADiag
= diag::warn_vla_used
;
2516 } else if (isSFINAEContext()) {
2517 VLADiag
= diag::err_vla_in_sfinae
;
2519 } else if (getLangOpts().OpenMP
&& isInOpenMPTaskUntiedContext()) {
2520 VLADiag
= diag::err_openmp_vla_in_task_untied
;
2523 VLADiag
= diag::ext_vla
;
2527 llvm::APSInt
ConstVal(Context
.getTypeSize(Context
.getSizeType()));
2529 if (ASM
== ArrayType::Star
) {
2534 T
= Context
.getVariableArrayType(T
, nullptr, ASM
, Quals
, Brackets
);
2536 T
= Context
.getIncompleteArrayType(T
, ASM
, Quals
);
2538 } else if (ArraySize
->isTypeDependent() || ArraySize
->isValueDependent()) {
2539 T
= Context
.getDependentSizedArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2542 checkArraySize(*this, ArraySize
, ConstVal
, VLADiag
, VLAIsError
);
2546 if (!R
.isUsable()) {
2547 // C99: an array with a non-ICE size is a VLA. We accept any expression
2548 // that we can fold to a non-zero positive value as a non-VLA as an
2550 T
= Context
.getVariableArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2551 } else if (!T
->isDependentType() && !T
->isIncompleteType() &&
2552 !T
->isConstantSizeType()) {
2553 // C99: an array with an element type that has a non-constant-size is a
2555 // FIXME: Add a note to explain why this isn't a VLA.
2559 T
= Context
.getVariableArrayType(T
, ArraySize
, ASM
, Quals
, Brackets
);
2561 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2562 // have a value greater than zero.
2563 // In C++, this follows from narrowing conversions being disallowed.
2564 if (ConstVal
.isSigned() && ConstVal
.isNegative()) {
2566 Diag(ArraySize
->getBeginLoc(), diag::err_decl_negative_array_size
)
2567 << getPrintableNameForEntity(Entity
)
2568 << ArraySize
->getSourceRange();
2570 Diag(ArraySize
->getBeginLoc(),
2571 diag::err_typecheck_negative_array_size
)
2572 << ArraySize
->getSourceRange();
2575 if (ConstVal
== 0) {
2576 // GCC accepts zero sized static arrays. We allow them when
2577 // we're not in a SFINAE context.
2578 Diag(ArraySize
->getBeginLoc(),
2579 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2580 : diag::ext_typecheck_zero_array_size
)
2581 << 0 << ArraySize
->getSourceRange();
2584 // Is the array too large?
2585 unsigned ActiveSizeBits
=
2586 (!T
->isDependentType() && !T
->isVariablyModifiedType() &&
2587 !T
->isIncompleteType() && !T
->isUndeducedType())
2588 ? ConstantArrayType::getNumAddressingBits(Context
, T
, ConstVal
)
2589 : ConstVal
.getActiveBits();
2590 if (ActiveSizeBits
> ConstantArrayType::getMaxSizeBits(Context
)) {
2591 Diag(ArraySize
->getBeginLoc(), diag::err_array_too_large
)
2592 << toString(ConstVal
, 10) << ArraySize
->getSourceRange();
2596 T
= Context
.getConstantArrayType(T
, ConstVal
, ArraySize
, ASM
, Quals
);
2600 if (T
->isVariableArrayType() && !Context
.getTargetInfo().isVLASupported()) {
2601 // CUDA device code and some other targets don't support VLAs.
2602 targetDiag(Loc
, (getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
)
2603 ? diag::err_cuda_vla
2604 : diag::err_vla_unsupported
)
2605 << ((getLangOpts().CUDA
&& getLangOpts().CUDAIsDevice
)
2606 ? CurrentCUDATarget()
2607 : CFT_InvalidTarget
);
2610 // If this is not C99, diagnose array size modifiers on non-VLAs.
2611 if (!getLangOpts().C99
&& !T
->isVariableArrayType() &&
2612 (ASM
!= ArrayType::Normal
|| Quals
!= 0)) {
2613 Diag(Loc
, getLangOpts().CPlusPlus
? diag::err_c99_array_usage_cxx
2614 : diag::ext_c99_array_usage
)
2618 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2619 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2620 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2621 if (getLangOpts().OpenCL
) {
2622 const QualType ArrType
= Context
.getBaseElementType(T
);
2623 if (ArrType
->isBlockPointerType() || ArrType
->isPipeType() ||
2624 ArrType
->isSamplerT() || ArrType
->isImageType()) {
2625 Diag(Loc
, diag::err_opencl_invalid_type_array
) << ArrType
;
2633 QualType
Sema::BuildVectorType(QualType CurType
, Expr
*SizeExpr
,
2634 SourceLocation AttrLoc
) {
2635 // The base type must be integer (not Boolean or enumeration) or float, and
2636 // can't already be a vector.
2637 if ((!CurType
->isDependentType() &&
2638 (!CurType
->isBuiltinType() || CurType
->isBooleanType() ||
2639 (!CurType
->isIntegerType() && !CurType
->isRealFloatingType())) &&
2640 !CurType
->isBitIntType()) ||
2641 CurType
->isArrayType()) {
2642 Diag(AttrLoc
, diag::err_attribute_invalid_vector_type
) << CurType
;
2645 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2646 if (CurType
->isBitIntType()) {
2647 unsigned NumBits
= CurType
->getAs
<BitIntType
>()->getNumBits();
2648 if (!llvm::isPowerOf2_32(NumBits
) || NumBits
< 8) {
2649 Diag(AttrLoc
, diag::err_attribute_invalid_bitint_vector_type
)
2655 if (SizeExpr
->isTypeDependent() || SizeExpr
->isValueDependent())
2656 return Context
.getDependentVectorType(CurType
, SizeExpr
, AttrLoc
,
2657 VectorType::GenericVector
);
2659 Optional
<llvm::APSInt
> VecSize
= SizeExpr
->getIntegerConstantExpr(Context
);
2661 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2662 << "vector_size" << AANT_ArgumentIntegerConstant
2663 << SizeExpr
->getSourceRange();
2667 if (CurType
->isDependentType())
2668 return Context
.getDependentVectorType(CurType
, SizeExpr
, AttrLoc
,
2669 VectorType::GenericVector
);
2671 // vecSize is specified in bytes - convert to bits.
2672 if (!VecSize
->isIntN(61)) {
2673 // Bit size will overflow uint64.
2674 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2675 << SizeExpr
->getSourceRange() << "vector";
2678 uint64_t VectorSizeBits
= VecSize
->getZExtValue() * 8;
2679 unsigned TypeSize
= static_cast<unsigned>(Context
.getTypeSize(CurType
));
2681 if (VectorSizeBits
== 0) {
2682 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2683 << SizeExpr
->getSourceRange() << "vector";
2687 if (!TypeSize
|| VectorSizeBits
% TypeSize
) {
2688 Diag(AttrLoc
, diag::err_attribute_invalid_size
)
2689 << SizeExpr
->getSourceRange();
2693 if (VectorSizeBits
/ TypeSize
> std::numeric_limits
<uint32_t>::max()) {
2694 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2695 << SizeExpr
->getSourceRange() << "vector";
2699 return Context
.getVectorType(CurType
, VectorSizeBits
/ TypeSize
,
2700 VectorType::GenericVector
);
2703 /// Build an ext-vector type.
2705 /// Run the required checks for the extended vector type.
2706 QualType
Sema::BuildExtVectorType(QualType T
, Expr
*ArraySize
,
2707 SourceLocation AttrLoc
) {
2708 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2709 // in conjunction with complex types (pointers, arrays, functions, etc.).
2711 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2712 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2713 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2714 // of bool aren't allowed.
2716 // We explictly allow bool elements in ext_vector_type for C/C++.
2717 bool IsNoBoolVecLang
= getLangOpts().OpenCL
|| getLangOpts().OpenCLCPlusPlus
;
2718 if ((!T
->isDependentType() && !T
->isIntegerType() &&
2719 !T
->isRealFloatingType()) ||
2720 (IsNoBoolVecLang
&& T
->isBooleanType())) {
2721 Diag(AttrLoc
, diag::err_attribute_invalid_vector_type
) << T
;
2725 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2726 if (T
->isBitIntType()) {
2727 unsigned NumBits
= T
->getAs
<BitIntType
>()->getNumBits();
2728 if (!llvm::isPowerOf2_32(NumBits
) || NumBits
< 8) {
2729 Diag(AttrLoc
, diag::err_attribute_invalid_bitint_vector_type
)
2735 if (!ArraySize
->isTypeDependent() && !ArraySize
->isValueDependent()) {
2736 Optional
<llvm::APSInt
> vecSize
= ArraySize
->getIntegerConstantExpr(Context
);
2738 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2739 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2740 << ArraySize
->getSourceRange();
2744 if (!vecSize
->isIntN(32)) {
2745 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2746 << ArraySize
->getSourceRange() << "vector";
2749 // Unlike gcc's vector_size attribute, the size is specified as the
2750 // number of elements, not the number of bytes.
2751 unsigned vectorSize
= static_cast<unsigned>(vecSize
->getZExtValue());
2753 if (vectorSize
== 0) {
2754 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2755 << ArraySize
->getSourceRange() << "vector";
2759 return Context
.getExtVectorType(T
, vectorSize
);
2762 return Context
.getDependentSizedExtVectorType(T
, ArraySize
, AttrLoc
);
2765 QualType
Sema::BuildMatrixType(QualType ElementTy
, Expr
*NumRows
, Expr
*NumCols
,
2766 SourceLocation AttrLoc
) {
2767 assert(Context
.getLangOpts().MatrixTypes
&&
2768 "Should never build a matrix type when it is disabled");
2770 // Check element type, if it is not dependent.
2771 if (!ElementTy
->isDependentType() &&
2772 !MatrixType::isValidElementType(ElementTy
)) {
2773 Diag(AttrLoc
, diag::err_attribute_invalid_matrix_type
) << ElementTy
;
2777 if (NumRows
->isTypeDependent() || NumCols
->isTypeDependent() ||
2778 NumRows
->isValueDependent() || NumCols
->isValueDependent())
2779 return Context
.getDependentSizedMatrixType(ElementTy
, NumRows
, NumCols
,
2782 Optional
<llvm::APSInt
> ValueRows
= NumRows
->getIntegerConstantExpr(Context
);
2783 Optional
<llvm::APSInt
> ValueColumns
=
2784 NumCols
->getIntegerConstantExpr(Context
);
2786 auto const RowRange
= NumRows
->getSourceRange();
2787 auto const ColRange
= NumCols
->getSourceRange();
2789 // Both are row and column expressions are invalid.
2790 if (!ValueRows
&& !ValueColumns
) {
2791 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2792 << "matrix_type" << AANT_ArgumentIntegerConstant
<< RowRange
2797 // Only the row expression is invalid.
2799 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2800 << "matrix_type" << AANT_ArgumentIntegerConstant
<< RowRange
;
2804 // Only the column expression is invalid.
2805 if (!ValueColumns
) {
2806 Diag(AttrLoc
, diag::err_attribute_argument_type
)
2807 << "matrix_type" << AANT_ArgumentIntegerConstant
<< ColRange
;
2811 // Check the matrix dimensions.
2812 unsigned MatrixRows
= static_cast<unsigned>(ValueRows
->getZExtValue());
2813 unsigned MatrixColumns
= static_cast<unsigned>(ValueColumns
->getZExtValue());
2814 if (MatrixRows
== 0 && MatrixColumns
== 0) {
2815 Diag(AttrLoc
, diag::err_attribute_zero_size
)
2816 << "matrix" << RowRange
<< ColRange
;
2819 if (MatrixRows
== 0) {
2820 Diag(AttrLoc
, diag::err_attribute_zero_size
) << "matrix" << RowRange
;
2823 if (MatrixColumns
== 0) {
2824 Diag(AttrLoc
, diag::err_attribute_zero_size
) << "matrix" << ColRange
;
2827 if (!ConstantMatrixType::isDimensionValid(MatrixRows
)) {
2828 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2829 << RowRange
<< "matrix row";
2832 if (!ConstantMatrixType::isDimensionValid(MatrixColumns
)) {
2833 Diag(AttrLoc
, diag::err_attribute_size_too_large
)
2834 << ColRange
<< "matrix column";
2837 return Context
.getConstantMatrixType(ElementTy
, MatrixRows
, MatrixColumns
);
2840 bool Sema::CheckFunctionReturnType(QualType T
, SourceLocation Loc
) {
2841 if (T
->isArrayType() || T
->isFunctionType()) {
2842 Diag(Loc
, diag::err_func_returning_array_function
)
2843 << T
->isFunctionType() << T
;
2847 // Functions cannot return half FP.
2848 if (T
->isHalfType() && !getLangOpts().HalfArgsAndReturns
) {
2849 Diag(Loc
, diag::err_parameters_retval_cannot_have_fp16_type
) << 1 <<
2850 FixItHint::CreateInsertion(Loc
, "*");
2854 // Methods cannot return interface types. All ObjC objects are
2855 // passed by reference.
2856 if (T
->isObjCObjectType()) {
2857 Diag(Loc
, diag::err_object_cannot_be_passed_returned_by_value
)
2858 << 0 << T
<< FixItHint::CreateInsertion(Loc
, "*");
2862 if (T
.hasNonTrivialToPrimitiveDestructCUnion() ||
2863 T
.hasNonTrivialToPrimitiveCopyCUnion())
2864 checkNonTrivialCUnion(T
, Loc
, NTCUC_FunctionReturn
,
2865 NTCUK_Destruct
|NTCUK_Copy
);
2867 // C++2a [dcl.fct]p12:
2868 // A volatile-qualified return type is deprecated
2869 if (T
.isVolatileQualified() && getLangOpts().CPlusPlus20
)
2870 Diag(Loc
, diag::warn_deprecated_volatile_return
) << T
;
2875 /// Check the extended parameter information. Most of the necessary
2876 /// checking should occur when applying the parameter attribute; the
2877 /// only other checks required are positional restrictions.
2878 static void checkExtParameterInfos(Sema
&S
, ArrayRef
<QualType
> paramTypes
,
2879 const FunctionProtoType::ExtProtoInfo
&EPI
,
2880 llvm::function_ref
<SourceLocation(unsigned)> getParamLoc
) {
2881 assert(EPI
.ExtParameterInfos
&& "shouldn't get here without param infos");
2883 bool emittedError
= false;
2884 auto actualCC
= EPI
.ExtInfo
.getCC();
2885 enum class RequiredCC
{ OnlySwift
, SwiftOrSwiftAsync
};
2886 auto checkCompatible
= [&](unsigned paramIndex
, RequiredCC required
) {
2888 (required
== RequiredCC::OnlySwift
)
2889 ? (actualCC
== CC_Swift
)
2890 : (actualCC
== CC_Swift
|| actualCC
== CC_SwiftAsync
);
2891 if (isCompatible
|| emittedError
)
2893 S
.Diag(getParamLoc(paramIndex
), diag::err_swift_param_attr_not_swiftcall
)
2894 << getParameterABISpelling(EPI
.ExtParameterInfos
[paramIndex
].getABI())
2895 << (required
== RequiredCC::OnlySwift
);
2896 emittedError
= true;
2898 for (size_t paramIndex
= 0, numParams
= paramTypes
.size();
2899 paramIndex
!= numParams
; ++paramIndex
) {
2900 switch (EPI
.ExtParameterInfos
[paramIndex
].getABI()) {
2901 // Nothing interesting to check for orindary-ABI parameters.
2902 case ParameterABI::Ordinary
:
2905 // swift_indirect_result parameters must be a prefix of the function
2907 case ParameterABI::SwiftIndirectResult
:
2908 checkCompatible(paramIndex
, RequiredCC::SwiftOrSwiftAsync
);
2909 if (paramIndex
!= 0 &&
2910 EPI
.ExtParameterInfos
[paramIndex
- 1].getABI()
2911 != ParameterABI::SwiftIndirectResult
) {
2912 S
.Diag(getParamLoc(paramIndex
),
2913 diag::err_swift_indirect_result_not_first
);
2917 case ParameterABI::SwiftContext
:
2918 checkCompatible(paramIndex
, RequiredCC::SwiftOrSwiftAsync
);
2921 // SwiftAsyncContext is not limited to swiftasynccall functions.
2922 case ParameterABI::SwiftAsyncContext
:
2925 // swift_error parameters must be preceded by a swift_context parameter.
2926 case ParameterABI::SwiftErrorResult
:
2927 checkCompatible(paramIndex
, RequiredCC::OnlySwift
);
2928 if (paramIndex
== 0 ||
2929 EPI
.ExtParameterInfos
[paramIndex
- 1].getABI() !=
2930 ParameterABI::SwiftContext
) {
2931 S
.Diag(getParamLoc(paramIndex
),
2932 diag::err_swift_error_result_not_after_swift_context
);
2936 llvm_unreachable("bad ABI kind");
2940 QualType
Sema::BuildFunctionType(QualType T
,
2941 MutableArrayRef
<QualType
> ParamTypes
,
2942 SourceLocation Loc
, DeclarationName Entity
,
2943 const FunctionProtoType::ExtProtoInfo
&EPI
) {
2944 bool Invalid
= false;
2946 Invalid
|= CheckFunctionReturnType(T
, Loc
);
2948 for (unsigned Idx
= 0, Cnt
= ParamTypes
.size(); Idx
< Cnt
; ++Idx
) {
2949 // FIXME: Loc is too inprecise here, should use proper locations for args.
2950 QualType ParamType
= Context
.getAdjustedParameterType(ParamTypes
[Idx
]);
2951 if (ParamType
->isVoidType()) {
2952 Diag(Loc
, diag::err_param_with_void_type
);
2954 } else if (ParamType
->isHalfType() && !getLangOpts().HalfArgsAndReturns
) {
2955 // Disallow half FP arguments.
2956 Diag(Loc
, diag::err_parameters_retval_cannot_have_fp16_type
) << 0 <<
2957 FixItHint::CreateInsertion(Loc
, "*");
2961 // C++2a [dcl.fct]p4:
2962 // A parameter with volatile-qualified type is deprecated
2963 if (ParamType
.isVolatileQualified() && getLangOpts().CPlusPlus20
)
2964 Diag(Loc
, diag::warn_deprecated_volatile_param
) << ParamType
;
2966 ParamTypes
[Idx
] = ParamType
;
2969 if (EPI
.ExtParameterInfos
) {
2970 checkExtParameterInfos(*this, ParamTypes
, EPI
,
2971 [=](unsigned i
) { return Loc
; });
2974 if (EPI
.ExtInfo
.getProducesResult()) {
2975 // This is just a warning, so we can't fail to build if we see it.
2976 checkNSReturnsRetainedReturnType(Loc
, T
);
2982 return Context
.getFunctionType(T
, ParamTypes
, EPI
);
2985 /// Build a member pointer type \c T Class::*.
2987 /// \param T the type to which the member pointer refers.
2988 /// \param Class the class type into which the member pointer points.
2989 /// \param Loc the location where this type begins
2990 /// \param Entity the name of the entity that will have this member pointer type
2992 /// \returns a member pointer type, if successful, or a NULL type if there was
2994 QualType
Sema::BuildMemberPointerType(QualType T
, QualType Class
,
2996 DeclarationName Entity
) {
2997 // Verify that we're not building a pointer to pointer to function with
2998 // exception specification.
2999 if (CheckDistantExceptionSpec(T
)) {
3000 Diag(Loc
, diag::err_distant_exception_spec
);
3004 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
3005 // with reference type, or "cv void."
3006 if (T
->isReferenceType()) {
3007 Diag(Loc
, diag::err_illegal_decl_mempointer_to_reference
)
3008 << getPrintableNameForEntity(Entity
) << T
;
3012 if (T
->isVoidType()) {
3013 Diag(Loc
, diag::err_illegal_decl_mempointer_to_void
)
3014 << getPrintableNameForEntity(Entity
);
3018 if (!Class
->isDependentType() && !Class
->isRecordType()) {
3019 Diag(Loc
, diag::err_mempointer_in_nonclass_type
) << Class
;
3023 if (T
->isFunctionType() && getLangOpts().OpenCL
&&
3024 !getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
3026 Diag(Loc
, diag::err_opencl_function_pointer
) << /*pointer*/ 0;
3030 if (getLangOpts().HLSL
&& Loc
.isValid()) {
3031 Diag(Loc
, diag::err_hlsl_pointers_unsupported
) << 0;
3035 // Adjust the default free function calling convention to the default method
3036 // calling convention.
3038 (Entity
.getNameKind() == DeclarationName::CXXConstructorName
) ||
3039 (Entity
.getNameKind() == DeclarationName::CXXDestructorName
);
3040 if (T
->isFunctionType())
3041 adjustMemberFunctionCC(T
, /*IsStatic=*/false, IsCtorOrDtor
, Loc
);
3043 return Context
.getMemberPointerType(T
, Class
.getTypePtr());
3046 /// Build a block pointer type.
3048 /// \param T The type to which we'll be building a block pointer.
3050 /// \param Loc The source location, used for diagnostics.
3052 /// \param Entity The name of the entity that involves the block pointer
3055 /// \returns A suitable block pointer type, if there are no
3056 /// errors. Otherwise, returns a NULL type.
3057 QualType
Sema::BuildBlockPointerType(QualType T
,
3059 DeclarationName Entity
) {
3060 if (!T
->isFunctionType()) {
3061 Diag(Loc
, diag::err_nonfunction_block_type
);
3065 if (checkQualifiedFunction(*this, T
, Loc
, QFK_BlockPointer
))
3068 if (getLangOpts().OpenCL
)
3069 T
= deduceOpenCLPointeeAddrSpace(*this, T
);
3071 return Context
.getBlockPointerType(T
);
3074 QualType
Sema::GetTypeFromParser(ParsedType Ty
, TypeSourceInfo
**TInfo
) {
3075 QualType QT
= Ty
.get();
3077 if (TInfo
) *TInfo
= nullptr;
3081 TypeSourceInfo
*DI
= nullptr;
3082 if (const LocInfoType
*LIT
= dyn_cast
<LocInfoType
>(QT
)) {
3083 QT
= LIT
->getType();
3084 DI
= LIT
->getTypeSourceInfo();
3087 if (TInfo
) *TInfo
= DI
;
3091 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState
&state
,
3092 Qualifiers::ObjCLifetime ownership
,
3093 unsigned chunkIndex
);
3095 /// Given that this is the declaration of a parameter under ARC,
3096 /// attempt to infer attributes and such for pointer-to-whatever
3098 static void inferARCWriteback(TypeProcessingState
&state
,
3099 QualType
&declSpecType
) {
3100 Sema
&S
= state
.getSema();
3101 Declarator
&declarator
= state
.getDeclarator();
3103 // TODO: should we care about decl qualifiers?
3105 // Check whether the declarator has the expected form. We walk
3106 // from the inside out in order to make the block logic work.
3107 unsigned outermostPointerIndex
= 0;
3108 bool isBlockPointer
= false;
3109 unsigned numPointers
= 0;
3110 for (unsigned i
= 0, e
= declarator
.getNumTypeObjects(); i
!= e
; ++i
) {
3111 unsigned chunkIndex
= i
;
3112 DeclaratorChunk
&chunk
= declarator
.getTypeObject(chunkIndex
);
3113 switch (chunk
.Kind
) {
3114 case DeclaratorChunk::Paren
:
3118 case DeclaratorChunk::Reference
:
3119 case DeclaratorChunk::Pointer
:
3120 // Count the number of pointers. Treat references
3121 // interchangeably as pointers; if they're mis-ordered, normal
3122 // type building will discover that.
3123 outermostPointerIndex
= chunkIndex
;
3127 case DeclaratorChunk::BlockPointer
:
3128 // If we have a pointer to block pointer, that's an acceptable
3129 // indirect reference; anything else is not an application of
3131 if (numPointers
!= 1) return;
3133 outermostPointerIndex
= chunkIndex
;
3134 isBlockPointer
= true;
3136 // We don't care about pointer structure in return values here.
3139 case DeclaratorChunk::Array
: // suppress if written (id[])?
3140 case DeclaratorChunk::Function
:
3141 case DeclaratorChunk::MemberPointer
:
3142 case DeclaratorChunk::Pipe
:
3148 // If we have *one* pointer, then we want to throw the qualifier on
3149 // the declaration-specifiers, which means that it needs to be a
3150 // retainable object type.
3151 if (numPointers
== 1) {
3152 // If it's not a retainable object type, the rule doesn't apply.
3153 if (!declSpecType
->isObjCRetainableType()) return;
3155 // If it already has lifetime, don't do anything.
3156 if (declSpecType
.getObjCLifetime()) return;
3158 // Otherwise, modify the type in-place.
3161 if (declSpecType
->isObjCARCImplicitlyUnretainedType())
3162 qs
.addObjCLifetime(Qualifiers::OCL_ExplicitNone
);
3164 qs
.addObjCLifetime(Qualifiers::OCL_Autoreleasing
);
3165 declSpecType
= S
.Context
.getQualifiedType(declSpecType
, qs
);
3167 // If we have *two* pointers, then we want to throw the qualifier on
3168 // the outermost pointer.
3169 } else if (numPointers
== 2) {
3170 // If we don't have a block pointer, we need to check whether the
3171 // declaration-specifiers gave us something that will turn into a
3172 // retainable object pointer after we slap the first pointer on it.
3173 if (!isBlockPointer
&& !declSpecType
->isObjCObjectType())
3176 // Look for an explicit lifetime attribute there.
3177 DeclaratorChunk
&chunk
= declarator
.getTypeObject(outermostPointerIndex
);
3178 if (chunk
.Kind
!= DeclaratorChunk::Pointer
&&
3179 chunk
.Kind
!= DeclaratorChunk::BlockPointer
)
3181 for (const ParsedAttr
&AL
: chunk
.getAttrs())
3182 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
)
3185 transferARCOwnershipToDeclaratorChunk(state
, Qualifiers::OCL_Autoreleasing
,
3186 outermostPointerIndex
);
3188 // Any other number of pointers/references does not trigger the rule.
3191 // TODO: mark whether we did this inference?
3194 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID
, unsigned Quals
,
3195 SourceLocation FallbackLoc
,
3196 SourceLocation ConstQualLoc
,
3197 SourceLocation VolatileQualLoc
,
3198 SourceLocation RestrictQualLoc
,
3199 SourceLocation AtomicQualLoc
,
3200 SourceLocation UnalignedQualLoc
) {
3208 } const QualKinds
[5] = {
3209 { "const", DeclSpec::TQ_const
, ConstQualLoc
},
3210 { "volatile", DeclSpec::TQ_volatile
, VolatileQualLoc
},
3211 { "restrict", DeclSpec::TQ_restrict
, RestrictQualLoc
},
3212 { "__unaligned", DeclSpec::TQ_unaligned
, UnalignedQualLoc
},
3213 { "_Atomic", DeclSpec::TQ_atomic
, AtomicQualLoc
}
3216 SmallString
<32> QualStr
;
3217 unsigned NumQuals
= 0;
3219 FixItHint FixIts
[5];
3221 // Build a string naming the redundant qualifiers.
3222 for (auto &E
: QualKinds
) {
3223 if (Quals
& E
.Mask
) {
3224 if (!QualStr
.empty()) QualStr
+= ' ';
3227 // If we have a location for the qualifier, offer a fixit.
3228 SourceLocation QualLoc
= E
.Loc
;
3229 if (QualLoc
.isValid()) {
3230 FixIts
[NumQuals
] = FixItHint::CreateRemoval(QualLoc
);
3231 if (Loc
.isInvalid() ||
3232 getSourceManager().isBeforeInTranslationUnit(QualLoc
, Loc
))
3240 Diag(Loc
.isInvalid() ? FallbackLoc
: Loc
, DiagID
)
3241 << QualStr
<< NumQuals
<< FixIts
[0] << FixIts
[1] << FixIts
[2] << FixIts
[3];
3244 // Diagnose pointless type qualifiers on the return type of a function.
3245 static void diagnoseRedundantReturnTypeQualifiers(Sema
&S
, QualType RetTy
,
3247 unsigned FunctionChunkIndex
) {
3248 const DeclaratorChunk::FunctionTypeInfo
&FTI
=
3249 D
.getTypeObject(FunctionChunkIndex
).Fun
;
3250 if (FTI
.hasTrailingReturnType()) {
3251 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3252 RetTy
.getLocalCVRQualifiers(),
3253 FTI
.getTrailingReturnTypeLoc());
3257 for (unsigned OuterChunkIndex
= FunctionChunkIndex
+ 1,
3258 End
= D
.getNumTypeObjects();
3259 OuterChunkIndex
!= End
; ++OuterChunkIndex
) {
3260 DeclaratorChunk
&OuterChunk
= D
.getTypeObject(OuterChunkIndex
);
3261 switch (OuterChunk
.Kind
) {
3262 case DeclaratorChunk::Paren
:
3265 case DeclaratorChunk::Pointer
: {
3266 DeclaratorChunk::PointerTypeInfo
&PTI
= OuterChunk
.Ptr
;
3267 S
.diagnoseIgnoredQualifiers(
3268 diag::warn_qual_return_type
,
3272 PTI
.VolatileQualLoc
,
3273 PTI
.RestrictQualLoc
,
3275 PTI
.UnalignedQualLoc
);
3279 case DeclaratorChunk::Function
:
3280 case DeclaratorChunk::BlockPointer
:
3281 case DeclaratorChunk::Reference
:
3282 case DeclaratorChunk::Array
:
3283 case DeclaratorChunk::MemberPointer
:
3284 case DeclaratorChunk::Pipe
:
3285 // FIXME: We can't currently provide an accurate source location and a
3286 // fix-it hint for these.
3287 unsigned AtomicQual
= RetTy
->isAtomicType() ? DeclSpec::TQ_atomic
: 0;
3288 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3289 RetTy
.getCVRQualifiers() | AtomicQual
,
3290 D
.getIdentifierLoc());
3294 llvm_unreachable("unknown declarator chunk kind");
3297 // If the qualifiers come from a conversion function type, don't diagnose
3298 // them -- they're not necessarily redundant, since such a conversion
3299 // operator can be explicitly called as "x.operator const int()".
3300 if (D
.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId
)
3303 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3304 // which are present there.
3305 S
.diagnoseIgnoredQualifiers(diag::warn_qual_return_type
,
3306 D
.getDeclSpec().getTypeQualifiers(),
3307 D
.getIdentifierLoc(),
3308 D
.getDeclSpec().getConstSpecLoc(),
3309 D
.getDeclSpec().getVolatileSpecLoc(),
3310 D
.getDeclSpec().getRestrictSpecLoc(),
3311 D
.getDeclSpec().getAtomicSpecLoc(),
3312 D
.getDeclSpec().getUnalignedSpecLoc());
3315 static std::pair
<QualType
, TypeSourceInfo
*>
3316 InventTemplateParameter(TypeProcessingState
&state
, QualType T
,
3317 TypeSourceInfo
*TrailingTSI
, AutoType
*Auto
,
3318 InventedTemplateParameterInfo
&Info
) {
3319 Sema
&S
= state
.getSema();
3320 Declarator
&D
= state
.getDeclarator();
3322 const unsigned TemplateParameterDepth
= Info
.AutoTemplateParameterDepth
;
3323 const unsigned AutoParameterPosition
= Info
.TemplateParams
.size();
3324 const bool IsParameterPack
= D
.hasEllipsis();
3326 // If auto is mentioned in a lambda parameter or abbreviated function
3327 // template context, convert it to a template parameter type.
3329 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3330 // template parameter type. Template parameters are temporarily added
3331 // to the TU until the associated TemplateDecl is created.
3332 TemplateTypeParmDecl
*InventedTemplateParam
=
3333 TemplateTypeParmDecl::Create(
3334 S
.Context
, S
.Context
.getTranslationUnitDecl(),
3335 /*KeyLoc=*/D
.getDeclSpec().getTypeSpecTypeLoc(),
3336 /*NameLoc=*/D
.getIdentifierLoc(),
3337 TemplateParameterDepth
, AutoParameterPosition
,
3338 S
.InventAbbreviatedTemplateParameterTypeName(
3339 D
.getIdentifier(), AutoParameterPosition
), false,
3340 IsParameterPack
, /*HasTypeConstraint=*/Auto
->isConstrained());
3341 InventedTemplateParam
->setImplicit();
3342 Info
.TemplateParams
.push_back(InventedTemplateParam
);
3344 // Attach type constraints to the new parameter.
3345 if (Auto
->isConstrained()) {
3347 // The 'auto' appears in a trailing return type we've already built;
3348 // extract its type constraints to attach to the template parameter.
3349 AutoTypeLoc AutoLoc
= TrailingTSI
->getTypeLoc().getContainedAutoTypeLoc();
3350 TemplateArgumentListInfo
TAL(AutoLoc
.getLAngleLoc(), AutoLoc
.getRAngleLoc());
3351 bool Invalid
= false;
3352 for (unsigned Idx
= 0; Idx
< AutoLoc
.getNumArgs(); ++Idx
) {
3353 if (D
.getEllipsisLoc().isInvalid() && !Invalid
&&
3354 S
.DiagnoseUnexpandedParameterPack(AutoLoc
.getArgLoc(Idx
),
3355 Sema::UPPC_TypeConstraint
))
3357 TAL
.addArgument(AutoLoc
.getArgLoc(Idx
));
3361 S
.AttachTypeConstraint(
3362 AutoLoc
.getNestedNameSpecifierLoc(), AutoLoc
.getConceptNameInfo(),
3363 AutoLoc
.getNamedConcept(),
3364 AutoLoc
.hasExplicitTemplateArgs() ? &TAL
: nullptr,
3365 InventedTemplateParam
, D
.getEllipsisLoc());
3368 // The 'auto' appears in the decl-specifiers; we've not finished forming
3369 // TypeSourceInfo for it yet.
3370 TemplateIdAnnotation
*TemplateId
= D
.getDeclSpec().getRepAsTemplateId();
3371 TemplateArgumentListInfo TemplateArgsInfo
;
3372 bool Invalid
= false;
3373 if (TemplateId
->LAngleLoc
.isValid()) {
3374 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
3375 TemplateId
->NumArgs
);
3376 S
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
3378 if (D
.getEllipsisLoc().isInvalid()) {
3379 for (TemplateArgumentLoc Arg
: TemplateArgsInfo
.arguments()) {
3380 if (S
.DiagnoseUnexpandedParameterPack(Arg
,
3381 Sema::UPPC_TypeConstraint
)) {
3389 S
.AttachTypeConstraint(
3390 D
.getDeclSpec().getTypeSpecScope().getWithLocInContext(S
.Context
),
3391 DeclarationNameInfo(DeclarationName(TemplateId
->Name
),
3392 TemplateId
->TemplateNameLoc
),
3393 cast
<ConceptDecl
>(TemplateId
->Template
.get().getAsTemplateDecl()),
3394 TemplateId
->LAngleLoc
.isValid() ? &TemplateArgsInfo
: nullptr,
3395 InventedTemplateParam
, D
.getEllipsisLoc());
3400 // Replace the 'auto' in the function parameter with this invented
3401 // template type parameter.
3402 // FIXME: Retain some type sugar to indicate that this was written
3404 QualType
Replacement(InventedTemplateParam
->getTypeForDecl(), 0);
3405 QualType NewT
= state
.ReplaceAutoType(T
, Replacement
);
3406 TypeSourceInfo
*NewTSI
=
3407 TrailingTSI
? S
.ReplaceAutoTypeSourceInfo(TrailingTSI
, Replacement
)
3409 return {NewT
, NewTSI
};
3412 static TypeSourceInfo
*
3413 GetTypeSourceInfoForDeclarator(TypeProcessingState
&State
,
3414 QualType T
, TypeSourceInfo
*ReturnTypeInfo
);
3416 static QualType
GetDeclSpecTypeForDeclarator(TypeProcessingState
&state
,
3417 TypeSourceInfo
*&ReturnTypeInfo
) {
3418 Sema
&SemaRef
= state
.getSema();
3419 Declarator
&D
= state
.getDeclarator();
3421 ReturnTypeInfo
= nullptr;
3423 // The TagDecl owned by the DeclSpec.
3424 TagDecl
*OwnedTagDecl
= nullptr;
3426 switch (D
.getName().getKind()) {
3427 case UnqualifiedIdKind::IK_ImplicitSelfParam
:
3428 case UnqualifiedIdKind::IK_OperatorFunctionId
:
3429 case UnqualifiedIdKind::IK_Identifier
:
3430 case UnqualifiedIdKind::IK_LiteralOperatorId
:
3431 case UnqualifiedIdKind::IK_TemplateId
:
3432 T
= ConvertDeclSpecToType(state
);
3434 if (!D
.isInvalidType() && D
.getDeclSpec().isTypeSpecOwned()) {
3435 OwnedTagDecl
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
3436 // Owned declaration is embedded in declarator.
3437 OwnedTagDecl
->setEmbeddedInDeclarator(true);
3441 case UnqualifiedIdKind::IK_ConstructorName
:
3442 case UnqualifiedIdKind::IK_ConstructorTemplateId
:
3443 case UnqualifiedIdKind::IK_DestructorName
:
3444 // Constructors and destructors don't have return types. Use
3446 T
= SemaRef
.Context
.VoidTy
;
3447 processTypeAttrs(state
, T
, TAL_DeclSpec
,
3448 D
.getMutableDeclSpec().getAttributes());
3451 case UnqualifiedIdKind::IK_DeductionGuideName
:
3452 // Deduction guides have a trailing return type and no type in their
3453 // decl-specifier sequence. Use a placeholder return type for now.
3454 T
= SemaRef
.Context
.DependentTy
;
3457 case UnqualifiedIdKind::IK_ConversionFunctionId
:
3458 // The result type of a conversion function is the type that it
3460 T
= SemaRef
.GetTypeFromParser(D
.getName().ConversionFunctionId
,
3465 // Note: We don't need to distribute declaration attributes (i.e.
3466 // D.getDeclarationAttributes()) because those are always C++11 attributes,
3467 // and those don't get distributed.
3468 distributeTypeAttrsFromDeclarator(state
, T
);
3470 // Find the deduced type in this type. Look in the trailing return type if we
3471 // have one, otherwise in the DeclSpec type.
3472 // FIXME: The standard wording doesn't currently describe this.
3473 DeducedType
*Deduced
= T
->getContainedDeducedType();
3474 bool DeducedIsTrailingReturnType
= false;
3475 if (Deduced
&& isa
<AutoType
>(Deduced
) && D
.hasTrailingReturnType()) {
3476 QualType T
= SemaRef
.GetTypeFromParser(D
.getTrailingReturnType());
3477 Deduced
= T
.isNull() ? nullptr : T
->getContainedDeducedType();
3478 DeducedIsTrailingReturnType
= true;
3481 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3483 AutoType
*Auto
= dyn_cast
<AutoType
>(Deduced
);
3486 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3487 // class template argument deduction)?
3488 bool IsCXXAutoType
=
3489 (Auto
&& Auto
->getKeyword() != AutoTypeKeyword::GNUAutoType
);
3490 bool IsDeducedReturnType
= false;
3492 switch (D
.getContext()) {
3493 case DeclaratorContext::LambdaExpr
:
3494 // Declared return type of a lambda-declarator is implicit and is always
3497 case DeclaratorContext::ObjCParameter
:
3498 case DeclaratorContext::ObjCResult
:
3501 case DeclaratorContext::RequiresExpr
:
3504 case DeclaratorContext::Prototype
:
3505 case DeclaratorContext::LambdaExprParameter
: {
3506 InventedTemplateParameterInfo
*Info
= nullptr;
3507 if (D
.getContext() == DeclaratorContext::Prototype
) {
3508 // With concepts we allow 'auto' in function parameters.
3509 if (!SemaRef
.getLangOpts().CPlusPlus20
|| !Auto
||
3510 Auto
->getKeyword() != AutoTypeKeyword::Auto
) {
3513 } else if (!SemaRef
.getCurScope()->isFunctionDeclarationScope()) {
3518 Info
= &SemaRef
.InventedParameterInfos
.back();
3520 // In C++14, generic lambdas allow 'auto' in their parameters.
3521 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !Auto
||
3522 Auto
->getKeyword() != AutoTypeKeyword::Auto
) {
3526 Info
= SemaRef
.getCurLambda();
3527 assert(Info
&& "No LambdaScopeInfo on the stack!");
3530 // We'll deal with inventing template parameters for 'auto' in trailing
3531 // return types when we pick up the trailing return type when processing
3532 // the function chunk.
3533 if (!DeducedIsTrailingReturnType
)
3534 T
= InventTemplateParameter(state
, T
, nullptr, Auto
, *Info
).first
;
3537 case DeclaratorContext::Member
: {
3538 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static
||
3539 D
.isFunctionDeclarator())
3541 bool Cxx
= SemaRef
.getLangOpts().CPlusPlus
;
3542 if (isa
<ObjCContainerDecl
>(SemaRef
.CurContext
)) {
3543 Error
= 6; // Interface member.
3545 switch (cast
<TagDecl
>(SemaRef
.CurContext
)->getTagKind()) {
3546 case TTK_Enum
: llvm_unreachable("unhandled tag kind");
3547 case TTK_Struct
: Error
= Cxx
? 1 : 2; /* Struct member */ break;
3548 case TTK_Union
: Error
= Cxx
? 3 : 4; /* Union member */ break;
3549 case TTK_Class
: Error
= 5; /* Class member */ break;
3550 case TTK_Interface
: Error
= 6; /* Interface member */ break;
3553 if (D
.getDeclSpec().isFriendSpecified())
3554 Error
= 20; // Friend type
3557 case DeclaratorContext::CXXCatch
:
3558 case DeclaratorContext::ObjCCatch
:
3559 Error
= 7; // Exception declaration
3561 case DeclaratorContext::TemplateParam
:
3562 if (isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3563 !SemaRef
.getLangOpts().CPlusPlus20
)
3564 Error
= 19; // Template parameter (until C++20)
3565 else if (!SemaRef
.getLangOpts().CPlusPlus17
)
3566 Error
= 8; // Template parameter (until C++17)
3568 case DeclaratorContext::BlockLiteral
:
3569 Error
= 9; // Block literal
3571 case DeclaratorContext::TemplateArg
:
3572 // Within a template argument list, a deduced template specialization
3573 // type will be reinterpreted as a template template argument.
3574 if (isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3575 !D
.getNumTypeObjects() &&
3576 D
.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier
)
3579 case DeclaratorContext::TemplateTypeArg
:
3580 Error
= 10; // Template type argument
3582 case DeclaratorContext::AliasDecl
:
3583 case DeclaratorContext::AliasTemplate
:
3584 Error
= 12; // Type alias
3586 case DeclaratorContext::TrailingReturn
:
3587 case DeclaratorContext::TrailingReturnVar
:
3588 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !IsCXXAutoType
)
3589 Error
= 13; // Function return type
3590 IsDeducedReturnType
= true;
3592 case DeclaratorContext::ConversionId
:
3593 if (!SemaRef
.getLangOpts().CPlusPlus14
|| !IsCXXAutoType
)
3594 Error
= 14; // conversion-type-id
3595 IsDeducedReturnType
= true;
3597 case DeclaratorContext::FunctionalCast
:
3598 if (isa
<DeducedTemplateSpecializationType
>(Deduced
))
3600 if (SemaRef
.getLangOpts().CPlusPlus2b
&& IsCXXAutoType
&&
3601 !Auto
->isDecltypeAuto())
3604 case DeclaratorContext::TypeName
:
3605 case DeclaratorContext::Association
:
3606 Error
= 15; // Generic
3608 case DeclaratorContext::File
:
3609 case DeclaratorContext::Block
:
3610 case DeclaratorContext::ForInit
:
3611 case DeclaratorContext::SelectionInit
:
3612 case DeclaratorContext::Condition
:
3613 // FIXME: P0091R3 (erroneously) does not permit class template argument
3614 // deduction in conditions, for-init-statements, and other declarations
3615 // that are not simple-declarations.
3617 case DeclaratorContext::CXXNew
:
3618 // FIXME: P0091R3 does not permit class template argument deduction here,
3619 // but we follow GCC and allow it anyway.
3620 if (!IsCXXAutoType
&& !isa
<DeducedTemplateSpecializationType
>(Deduced
))
3621 Error
= 17; // 'new' type
3623 case DeclaratorContext::KNRTypeList
:
3624 Error
= 18; // K&R function parameter
3628 if (D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
)
3631 // In Objective-C it is an error to use 'auto' on a function declarator
3632 // (and everywhere for '__auto_type').
3633 if (D
.isFunctionDeclarator() &&
3634 (!SemaRef
.getLangOpts().CPlusPlus11
|| !IsCXXAutoType
))
3637 SourceRange AutoRange
= D
.getDeclSpec().getTypeSpecTypeLoc();
3638 if (D
.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId
)
3639 AutoRange
= D
.getName().getSourceRange();
3644 switch (Auto
->getKeyword()) {
3645 case AutoTypeKeyword::Auto
: Kind
= 0; break;
3646 case AutoTypeKeyword::DecltypeAuto
: Kind
= 1; break;
3647 case AutoTypeKeyword::GNUAutoType
: Kind
= 2; break;
3650 assert(isa
<DeducedTemplateSpecializationType
>(Deduced
) &&
3651 "unknown auto type");
3655 auto *DTST
= dyn_cast
<DeducedTemplateSpecializationType
>(Deduced
);
3656 TemplateName TN
= DTST
? DTST
->getTemplateName() : TemplateName();
3658 SemaRef
.Diag(AutoRange
.getBegin(), diag::err_auto_not_allowed
)
3659 << Kind
<< Error
<< (int)SemaRef
.getTemplateNameKindForDiagnostics(TN
)
3660 << QualType(Deduced
, 0) << AutoRange
;
3661 if (auto *TD
= TN
.getAsTemplateDecl())
3662 SemaRef
.Diag(TD
->getLocation(), diag::note_template_decl_here
);
3664 T
= SemaRef
.Context
.IntTy
;
3665 D
.setInvalidType(true);
3666 } else if (Auto
&& D
.getContext() != DeclaratorContext::LambdaExpr
) {
3667 // If there was a trailing return type, we already got
3668 // warn_cxx98_compat_trailing_return_type in the parser.
3669 SemaRef
.Diag(AutoRange
.getBegin(),
3670 D
.getContext() == DeclaratorContext::LambdaExprParameter
3671 ? diag::warn_cxx11_compat_generic_lambda
3672 : IsDeducedReturnType
3673 ? diag::warn_cxx11_compat_deduced_return_type
3674 : diag::warn_cxx98_compat_auto_type_specifier
)
3679 if (SemaRef
.getLangOpts().CPlusPlus
&&
3680 OwnedTagDecl
&& OwnedTagDecl
->isCompleteDefinition()) {
3681 // Check the contexts where C++ forbids the declaration of a new class
3682 // or enumeration in a type-specifier-seq.
3683 unsigned DiagID
= 0;
3684 switch (D
.getContext()) {
3685 case DeclaratorContext::TrailingReturn
:
3686 case DeclaratorContext::TrailingReturnVar
:
3687 // Class and enumeration definitions are syntactically not allowed in
3688 // trailing return types.
3689 llvm_unreachable("parser should not have allowed this");
3691 case DeclaratorContext::File
:
3692 case DeclaratorContext::Member
:
3693 case DeclaratorContext::Block
:
3694 case DeclaratorContext::ForInit
:
3695 case DeclaratorContext::SelectionInit
:
3696 case DeclaratorContext::BlockLiteral
:
3697 case DeclaratorContext::LambdaExpr
:
3698 // C++11 [dcl.type]p3:
3699 // A type-specifier-seq shall not define a class or enumeration unless
3700 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3701 // the declaration of a template-declaration.
3702 case DeclaratorContext::AliasDecl
:
3704 case DeclaratorContext::AliasTemplate
:
3705 DiagID
= diag::err_type_defined_in_alias_template
;
3707 case DeclaratorContext::TypeName
:
3708 case DeclaratorContext::FunctionalCast
:
3709 case DeclaratorContext::ConversionId
:
3710 case DeclaratorContext::TemplateParam
:
3711 case DeclaratorContext::CXXNew
:
3712 case DeclaratorContext::CXXCatch
:
3713 case DeclaratorContext::ObjCCatch
:
3714 case DeclaratorContext::TemplateArg
:
3715 case DeclaratorContext::TemplateTypeArg
:
3716 case DeclaratorContext::Association
:
3717 DiagID
= diag::err_type_defined_in_type_specifier
;
3719 case DeclaratorContext::Prototype
:
3720 case DeclaratorContext::LambdaExprParameter
:
3721 case DeclaratorContext::ObjCParameter
:
3722 case DeclaratorContext::ObjCResult
:
3723 case DeclaratorContext::KNRTypeList
:
3724 case DeclaratorContext::RequiresExpr
:
3726 // Types shall not be defined in return or parameter types.
3727 DiagID
= diag::err_type_defined_in_param_type
;
3729 case DeclaratorContext::Condition
:
3731 // The type-specifier-seq shall not contain typedef and shall not declare
3732 // a new class or enumeration.
3733 DiagID
= diag::err_type_defined_in_condition
;
3738 SemaRef
.Diag(OwnedTagDecl
->getLocation(), DiagID
)
3739 << SemaRef
.Context
.getTypeDeclType(OwnedTagDecl
);
3740 D
.setInvalidType(true);
3744 assert(!T
.isNull() && "This function should not return a null type");
3748 /// Produce an appropriate diagnostic for an ambiguity between a function
3749 /// declarator and a C++ direct-initializer.
3750 static void warnAboutAmbiguousFunction(Sema
&S
, Declarator
&D
,
3751 DeclaratorChunk
&DeclType
, QualType RT
) {
3752 const DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
3753 assert(FTI
.isAmbiguous
&& "no direct-initializer / function ambiguity");
3755 // If the return type is void there is no ambiguity.
3756 if (RT
->isVoidType())
3759 // An initializer for a non-class type can have at most one argument.
3760 if (!RT
->isRecordType() && FTI
.NumParams
> 1)
3763 // An initializer for a reference must have exactly one argument.
3764 if (RT
->isReferenceType() && FTI
.NumParams
!= 1)
3767 // Only warn if this declarator is declaring a function at block scope, and
3768 // doesn't have a storage class (such as 'extern') specified.
3769 if (!D
.isFunctionDeclarator() ||
3770 D
.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration
||
3771 !S
.CurContext
->isFunctionOrMethod() ||
3772 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified
)
3775 // Inside a condition, a direct initializer is not permitted. We allow one to
3776 // be parsed in order to give better diagnostics in condition parsing.
3777 if (D
.getContext() == DeclaratorContext::Condition
)
3780 SourceRange
ParenRange(DeclType
.Loc
, DeclType
.EndLoc
);
3782 S
.Diag(DeclType
.Loc
,
3783 FTI
.NumParams
? diag::warn_parens_disambiguated_as_function_declaration
3784 : diag::warn_empty_parens_are_function_decl
)
3787 // If the declaration looks like:
3790 // and name lookup finds a function named 'f', then the ',' was
3791 // probably intended to be a ';'.
3792 if (!D
.isFirstDeclarator() && D
.getIdentifier()) {
3793 FullSourceLoc
Comma(D
.getCommaLoc(), S
.SourceMgr
);
3794 FullSourceLoc
Name(D
.getIdentifierLoc(), S
.SourceMgr
);
3795 if (Comma
.getFileID() != Name
.getFileID() ||
3796 Comma
.getSpellingLineNumber() != Name
.getSpellingLineNumber()) {
3797 LookupResult
Result(S
, D
.getIdentifier(), SourceLocation(),
3798 Sema::LookupOrdinaryName
);
3799 if (S
.LookupName(Result
, S
.getCurScope()))
3800 S
.Diag(D
.getCommaLoc(), diag::note_empty_parens_function_call
)
3801 << FixItHint::CreateReplacement(D
.getCommaLoc(), ";")
3802 << D
.getIdentifier();
3803 Result
.suppressDiagnostics();
3807 if (FTI
.NumParams
> 0) {
3808 // For a declaration with parameters, eg. "T var(T());", suggest adding
3809 // parens around the first parameter to turn the declaration into a
3810 // variable declaration.
3811 SourceRange Range
= FTI
.Params
[0].Param
->getSourceRange();
3812 SourceLocation B
= Range
.getBegin();
3813 SourceLocation E
= S
.getLocForEndOfToken(Range
.getEnd());
3814 // FIXME: Maybe we should suggest adding braces instead of parens
3815 // in C++11 for classes that don't have an initializer_list constructor.
3816 S
.Diag(B
, diag::note_additional_parens_for_variable_declaration
)
3817 << FixItHint::CreateInsertion(B
, "(")
3818 << FixItHint::CreateInsertion(E
, ")");
3820 // For a declaration without parameters, eg. "T var();", suggest replacing
3821 // the parens with an initializer to turn the declaration into a variable
3823 const CXXRecordDecl
*RD
= RT
->getAsCXXRecordDecl();
3825 // Empty parens mean value-initialization, and no parens mean
3826 // default initialization. These are equivalent if the default
3827 // constructor is user-provided or if zero-initialization is a
3829 if (RD
&& RD
->hasDefinition() &&
3830 (RD
->isEmpty() || RD
->hasUserProvidedDefaultConstructor()))
3831 S
.Diag(DeclType
.Loc
, diag::note_empty_parens_default_ctor
)
3832 << FixItHint::CreateRemoval(ParenRange
);
3835 S
.getFixItZeroInitializerForType(RT
, ParenRange
.getBegin());
3836 if (Init
.empty() && S
.LangOpts
.CPlusPlus11
)
3839 S
.Diag(DeclType
.Loc
, diag::note_empty_parens_zero_initialize
)
3840 << FixItHint::CreateReplacement(ParenRange
, Init
);
3845 /// Produce an appropriate diagnostic for a declarator with top-level
3847 static void warnAboutRedundantParens(Sema
&S
, Declarator
&D
, QualType T
) {
3848 DeclaratorChunk
&Paren
= D
.getTypeObject(D
.getNumTypeObjects() - 1);
3849 assert(Paren
.Kind
== DeclaratorChunk::Paren
&&
3850 "do not have redundant top-level parentheses");
3852 // This is a syntactic check; we're not interested in cases that arise
3853 // during template instantiation.
3854 if (S
.inTemplateInstantiation())
3857 // Check whether this could be intended to be a construction of a temporary
3858 // object in C++ via a function-style cast.
3859 bool CouldBeTemporaryObject
=
3860 S
.getLangOpts().CPlusPlus
&& D
.isExpressionContext() &&
3861 !D
.isInvalidType() && D
.getIdentifier() &&
3862 D
.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier
&&
3863 (T
->isRecordType() || T
->isDependentType()) &&
3864 D
.getDeclSpec().getTypeQualifiers() == 0 && D
.isFirstDeclarator();
3866 bool StartsWithDeclaratorId
= true;
3867 for (auto &C
: D
.type_objects()) {
3869 case DeclaratorChunk::Paren
:
3873 case DeclaratorChunk::Pointer
:
3874 StartsWithDeclaratorId
= false;
3877 case DeclaratorChunk::Array
:
3879 CouldBeTemporaryObject
= false;
3882 case DeclaratorChunk::Reference
:
3883 // FIXME: Suppress the warning here if there is no initializer; we're
3884 // going to give an error anyway.
3885 // We assume that something like 'T (&x) = y;' is highly likely to not
3886 // be intended to be a temporary object.
3887 CouldBeTemporaryObject
= false;
3888 StartsWithDeclaratorId
= false;
3891 case DeclaratorChunk::Function
:
3892 // In a new-type-id, function chunks require parentheses.
3893 if (D
.getContext() == DeclaratorContext::CXXNew
)
3895 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
3896 // redundant-parens warning, but we don't know whether the function
3897 // chunk was syntactically valid as an expression here.
3898 CouldBeTemporaryObject
= false;
3901 case DeclaratorChunk::BlockPointer
:
3902 case DeclaratorChunk::MemberPointer
:
3903 case DeclaratorChunk::Pipe
:
3904 // These cannot appear in expressions.
3905 CouldBeTemporaryObject
= false;
3906 StartsWithDeclaratorId
= false;
3911 // FIXME: If there is an initializer, assume that this is not intended to be
3912 // a construction of a temporary object.
3914 // Check whether the name has already been declared; if not, this is not a
3915 // function-style cast.
3916 if (CouldBeTemporaryObject
) {
3917 LookupResult
Result(S
, D
.getIdentifier(), SourceLocation(),
3918 Sema::LookupOrdinaryName
);
3919 if (!S
.LookupName(Result
, S
.getCurScope()))
3920 CouldBeTemporaryObject
= false;
3921 Result
.suppressDiagnostics();
3924 SourceRange
ParenRange(Paren
.Loc
, Paren
.EndLoc
);
3926 if (!CouldBeTemporaryObject
) {
3927 // If we have A (::B), the parentheses affect the meaning of the program.
3928 // Suppress the warning in that case. Don't bother looking at the DeclSpec
3929 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
3930 // formally unambiguous.
3931 if (StartsWithDeclaratorId
&& D
.getCXXScopeSpec().isValid()) {
3932 for (NestedNameSpecifier
*NNS
= D
.getCXXScopeSpec().getScopeRep(); NNS
;
3933 NNS
= NNS
->getPrefix()) {
3934 if (NNS
->getKind() == NestedNameSpecifier::Global
)
3939 S
.Diag(Paren
.Loc
, diag::warn_redundant_parens_around_declarator
)
3940 << ParenRange
<< FixItHint::CreateRemoval(Paren
.Loc
)
3941 << FixItHint::CreateRemoval(Paren
.EndLoc
);
3945 S
.Diag(Paren
.Loc
, diag::warn_parens_disambiguated_as_variable_declaration
)
3946 << ParenRange
<< D
.getIdentifier();
3947 auto *RD
= T
->getAsCXXRecordDecl();
3948 if (!RD
|| !RD
->hasDefinition() || RD
->hasNonTrivialDestructor())
3949 S
.Diag(Paren
.Loc
, diag::note_raii_guard_add_name
)
3950 << FixItHint::CreateInsertion(Paren
.Loc
, " varname") << T
3951 << D
.getIdentifier();
3952 // FIXME: A cast to void is probably a better suggestion in cases where it's
3953 // valid (when there is no initializer and we're not in a condition).
3954 S
.Diag(D
.getBeginLoc(), diag::note_function_style_cast_add_parentheses
)
3955 << FixItHint::CreateInsertion(D
.getBeginLoc(), "(")
3956 << FixItHint::CreateInsertion(S
.getLocForEndOfToken(D
.getEndLoc()), ")");
3957 S
.Diag(Paren
.Loc
, diag::note_remove_parens_for_variable_declaration
)
3958 << FixItHint::CreateRemoval(Paren
.Loc
)
3959 << FixItHint::CreateRemoval(Paren
.EndLoc
);
3962 /// Helper for figuring out the default CC for a function declarator type. If
3963 /// this is the outermost chunk, then we can determine the CC from the
3964 /// declarator context. If not, then this could be either a member function
3965 /// type or normal function type.
3966 static CallingConv
getCCForDeclaratorChunk(
3967 Sema
&S
, Declarator
&D
, const ParsedAttributesView
&AttrList
,
3968 const DeclaratorChunk::FunctionTypeInfo
&FTI
, unsigned ChunkIndex
) {
3969 assert(D
.getTypeObject(ChunkIndex
).Kind
== DeclaratorChunk::Function
);
3971 // Check for an explicit CC attribute.
3972 for (const ParsedAttr
&AL
: AttrList
) {
3973 switch (AL
.getKind()) {
3974 CALLING_CONV_ATTRS_CASELIST
: {
3975 // Ignore attributes that don't validate or can't apply to the
3976 // function type. We'll diagnose the failure to apply them in
3977 // handleFunctionTypeAttr.
3979 if (!S
.CheckCallingConvAttr(AL
, CC
) &&
3980 (!FTI
.isVariadic
|| supportsVariadicCall(CC
))) {
3991 bool IsCXXInstanceMethod
= false;
3993 if (S
.getLangOpts().CPlusPlus
) {
3994 // Look inwards through parentheses to see if this chunk will form a
3995 // member pointer type or if we're the declarator. Any type attributes
3996 // between here and there will override the CC we choose here.
3997 unsigned I
= ChunkIndex
;
3998 bool FoundNonParen
= false;
3999 while (I
&& !FoundNonParen
) {
4001 if (D
.getTypeObject(I
).Kind
!= DeclaratorChunk::Paren
)
4002 FoundNonParen
= true;
4005 if (FoundNonParen
) {
4006 // If we're not the declarator, we're a regular function type unless we're
4007 // in a member pointer.
4008 IsCXXInstanceMethod
=
4009 D
.getTypeObject(I
).Kind
== DeclaratorChunk::MemberPointer
;
4010 } else if (D
.getContext() == DeclaratorContext::LambdaExpr
) {
4011 // This can only be a call operator for a lambda, which is an instance
4013 IsCXXInstanceMethod
= true;
4015 // We're the innermost decl chunk, so must be a function declarator.
4016 assert(D
.isFunctionDeclarator());
4018 // If we're inside a record, we're declaring a method, but it could be
4019 // explicitly or implicitly static.
4020 IsCXXInstanceMethod
=
4021 D
.isFirstDeclarationOfMember() &&
4022 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&&
4023 !D
.isStaticMember();
4027 CallingConv CC
= S
.Context
.getDefaultCallingConvention(FTI
.isVariadic
,
4028 IsCXXInstanceMethod
);
4030 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
4031 // and AMDGPU targets, hence it cannot be treated as a calling
4032 // convention attribute. This is the simplest place to infer
4033 // calling convention for OpenCL kernels.
4034 if (S
.getLangOpts().OpenCL
) {
4035 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
4036 if (AL
.getKind() == ParsedAttr::AT_OpenCLKernel
) {
4037 CC
= CC_OpenCLKernel
;
4041 } else if (S
.getLangOpts().CUDA
) {
4042 // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
4043 // sure the kernels will be marked with the right calling convention so that
4044 // they will be visible by the APIs that ingest SPIR-V.
4045 llvm::Triple Triple
= S
.Context
.getTargetInfo().getTriple();
4046 if (Triple
.getArch() == llvm::Triple::spirv32
||
4047 Triple
.getArch() == llvm::Triple::spirv64
) {
4048 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
4049 if (AL
.getKind() == ParsedAttr::AT_CUDAGlobal
) {
4050 CC
= CC_OpenCLKernel
;
4061 /// A simple notion of pointer kinds, which matches up with the various
4062 /// pointer declarators.
4063 enum class SimplePointerKind
{
4069 } // end anonymous namespace
4071 IdentifierInfo
*Sema::getNullabilityKeyword(NullabilityKind nullability
) {
4072 switch (nullability
) {
4073 case NullabilityKind::NonNull
:
4074 if (!Ident__Nonnull
)
4075 Ident__Nonnull
= PP
.getIdentifierInfo("_Nonnull");
4076 return Ident__Nonnull
;
4078 case NullabilityKind::Nullable
:
4079 if (!Ident__Nullable
)
4080 Ident__Nullable
= PP
.getIdentifierInfo("_Nullable");
4081 return Ident__Nullable
;
4083 case NullabilityKind::NullableResult
:
4084 if (!Ident__Nullable_result
)
4085 Ident__Nullable_result
= PP
.getIdentifierInfo("_Nullable_result");
4086 return Ident__Nullable_result
;
4088 case NullabilityKind::Unspecified
:
4089 if (!Ident__Null_unspecified
)
4090 Ident__Null_unspecified
= PP
.getIdentifierInfo("_Null_unspecified");
4091 return Ident__Null_unspecified
;
4093 llvm_unreachable("Unknown nullability kind.");
4096 /// Retrieve the identifier "NSError".
4097 IdentifierInfo
*Sema::getNSErrorIdent() {
4099 Ident_NSError
= PP
.getIdentifierInfo("NSError");
4101 return Ident_NSError
;
4104 /// Check whether there is a nullability attribute of any kind in the given
4106 static bool hasNullabilityAttr(const ParsedAttributesView
&attrs
) {
4107 for (const ParsedAttr
&AL
: attrs
) {
4108 if (AL
.getKind() == ParsedAttr::AT_TypeNonNull
||
4109 AL
.getKind() == ParsedAttr::AT_TypeNullable
||
4110 AL
.getKind() == ParsedAttr::AT_TypeNullableResult
||
4111 AL
.getKind() == ParsedAttr::AT_TypeNullUnspecified
)
4119 /// Describes the kind of a pointer a declarator describes.
4120 enum class PointerDeclaratorKind
{
4123 // Single-level pointer.
4125 // Multi-level pointer (of any pointer kind).
4128 MaybePointerToCFRef
,
4132 NSErrorPointerPointer
,
4135 /// Describes a declarator chunk wrapping a pointer that marks inference as
4137 // These values must be kept in sync with diagnostics.
4138 enum class PointerWrappingDeclaratorKind
{
4139 /// Pointer is top-level.
4141 /// Pointer is an array element.
4143 /// Pointer is the referent type of a C++ reference.
4146 } // end anonymous namespace
4148 /// Classify the given declarator, whose type-specified is \c type, based on
4149 /// what kind of pointer it refers to.
4151 /// This is used to determine the default nullability.
4152 static PointerDeclaratorKind
4153 classifyPointerDeclarator(Sema
&S
, QualType type
, Declarator
&declarator
,
4154 PointerWrappingDeclaratorKind
&wrappingKind
) {
4155 unsigned numNormalPointers
= 0;
4157 // For any dependent type, we consider it a non-pointer.
4158 if (type
->isDependentType())
4159 return PointerDeclaratorKind::NonPointer
;
4161 // Look through the declarator chunks to identify pointers.
4162 for (unsigned i
= 0, n
= declarator
.getNumTypeObjects(); i
!= n
; ++i
) {
4163 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
);
4164 switch (chunk
.Kind
) {
4165 case DeclaratorChunk::Array
:
4166 if (numNormalPointers
== 0)
4167 wrappingKind
= PointerWrappingDeclaratorKind::Array
;
4170 case DeclaratorChunk::Function
:
4171 case DeclaratorChunk::Pipe
:
4174 case DeclaratorChunk::BlockPointer
:
4175 case DeclaratorChunk::MemberPointer
:
4176 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4177 : PointerDeclaratorKind::SingleLevelPointer
;
4179 case DeclaratorChunk::Paren
:
4182 case DeclaratorChunk::Reference
:
4183 if (numNormalPointers
== 0)
4184 wrappingKind
= PointerWrappingDeclaratorKind::Reference
;
4187 case DeclaratorChunk::Pointer
:
4188 ++numNormalPointers
;
4189 if (numNormalPointers
> 2)
4190 return PointerDeclaratorKind::MultiLevelPointer
;
4195 // Then, dig into the type specifier itself.
4196 unsigned numTypeSpecifierPointers
= 0;
4198 // Decompose normal pointers.
4199 if (auto ptrType
= type
->getAs
<PointerType
>()) {
4200 ++numNormalPointers
;
4202 if (numNormalPointers
> 2)
4203 return PointerDeclaratorKind::MultiLevelPointer
;
4205 type
= ptrType
->getPointeeType();
4206 ++numTypeSpecifierPointers
;
4210 // Decompose block pointers.
4211 if (type
->getAs
<BlockPointerType
>()) {
4212 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4213 : PointerDeclaratorKind::SingleLevelPointer
;
4216 // Decompose member pointers.
4217 if (type
->getAs
<MemberPointerType
>()) {
4218 return numNormalPointers
> 0 ? PointerDeclaratorKind::MultiLevelPointer
4219 : PointerDeclaratorKind::SingleLevelPointer
;
4222 // Look at Objective-C object pointers.
4223 if (auto objcObjectPtr
= type
->getAs
<ObjCObjectPointerType
>()) {
4224 ++numNormalPointers
;
4225 ++numTypeSpecifierPointers
;
4227 // If this is NSError**, report that.
4228 if (auto objcClassDecl
= objcObjectPtr
->getInterfaceDecl()) {
4229 if (objcClassDecl
->getIdentifier() == S
.getNSErrorIdent() &&
4230 numNormalPointers
== 2 && numTypeSpecifierPointers
< 2) {
4231 return PointerDeclaratorKind::NSErrorPointerPointer
;
4238 // Look at Objective-C class types.
4239 if (auto objcClass
= type
->getAs
<ObjCInterfaceType
>()) {
4240 if (objcClass
->getInterface()->getIdentifier() == S
.getNSErrorIdent()) {
4241 if (numNormalPointers
== 2 && numTypeSpecifierPointers
< 2)
4242 return PointerDeclaratorKind::NSErrorPointerPointer
;
4248 // If at this point we haven't seen a pointer, we won't see one.
4249 if (numNormalPointers
== 0)
4250 return PointerDeclaratorKind::NonPointer
;
4252 if (auto recordType
= type
->getAs
<RecordType
>()) {
4253 RecordDecl
*recordDecl
= recordType
->getDecl();
4255 // If this is CFErrorRef*, report it as such.
4256 if (numNormalPointers
== 2 && numTypeSpecifierPointers
< 2 &&
4257 S
.isCFError(recordDecl
)) {
4258 return PointerDeclaratorKind::CFErrorRefPointer
;
4266 switch (numNormalPointers
) {
4268 return PointerDeclaratorKind::NonPointer
;
4271 return PointerDeclaratorKind::SingleLevelPointer
;
4274 return PointerDeclaratorKind::MaybePointerToCFRef
;
4277 return PointerDeclaratorKind::MultiLevelPointer
;
4281 bool Sema::isCFError(RecordDecl
*RD
) {
4282 // If we already know about CFError, test it directly.
4284 return CFError
== RD
;
4286 // Check whether this is CFError, which we identify based on its bridge to
4287 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4288 // declared with "objc_bridge_mutable", so look for either one of the two
4290 if (RD
->getTagKind() == TTK_Struct
) {
4291 IdentifierInfo
*bridgedType
= nullptr;
4292 if (auto bridgeAttr
= RD
->getAttr
<ObjCBridgeAttr
>())
4293 bridgedType
= bridgeAttr
->getBridgedType();
4294 else if (auto bridgeAttr
= RD
->getAttr
<ObjCBridgeMutableAttr
>())
4295 bridgedType
= bridgeAttr
->getBridgedType();
4297 if (bridgedType
== getNSErrorIdent()) {
4306 static FileID
getNullabilityCompletenessCheckFileID(Sema
&S
,
4307 SourceLocation loc
) {
4308 // If we're anywhere in a function, method, or closure context, don't perform
4309 // completeness checks.
4310 for (DeclContext
*ctx
= S
.CurContext
; ctx
; ctx
= ctx
->getParent()) {
4311 if (ctx
->isFunctionOrMethod())
4314 if (ctx
->isFileContext())
4318 // We only care about the expansion location.
4319 loc
= S
.SourceMgr
.getExpansionLoc(loc
);
4320 FileID file
= S
.SourceMgr
.getFileID(loc
);
4321 if (file
.isInvalid())
4324 // Retrieve file information.
4325 bool invalid
= false;
4326 const SrcMgr::SLocEntry
&sloc
= S
.SourceMgr
.getSLocEntry(file
, &invalid
);
4327 if (invalid
|| !sloc
.isFile())
4330 // We don't want to perform completeness checks on the main file or in
4332 const SrcMgr::FileInfo
&fileInfo
= sloc
.getFile();
4333 if (fileInfo
.getIncludeLoc().isInvalid())
4335 if (fileInfo
.getFileCharacteristic() != SrcMgr::C_User
&&
4336 S
.Diags
.getSuppressSystemWarnings()) {
4343 /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4344 /// taking into account whitespace before and after.
4345 template <typename DiagBuilderT
>
4346 static void fixItNullability(Sema
&S
, DiagBuilderT
&Diag
,
4347 SourceLocation PointerLoc
,
4348 NullabilityKind Nullability
) {
4349 assert(PointerLoc
.isValid());
4350 if (PointerLoc
.isMacroID())
4353 SourceLocation FixItLoc
= S
.getLocForEndOfToken(PointerLoc
);
4354 if (!FixItLoc
.isValid() || FixItLoc
== PointerLoc
)
4357 const char *NextChar
= S
.SourceMgr
.getCharacterData(FixItLoc
);
4361 SmallString
<32> InsertionTextBuf
{" "};
4362 InsertionTextBuf
+= getNullabilitySpelling(Nullability
);
4363 InsertionTextBuf
+= " ";
4364 StringRef InsertionText
= InsertionTextBuf
.str();
4366 if (isWhitespace(*NextChar
)) {
4367 InsertionText
= InsertionText
.drop_back();
4368 } else if (NextChar
[-1] == '[') {
4369 if (NextChar
[0] == ']')
4370 InsertionText
= InsertionText
.drop_back().drop_front();
4372 InsertionText
= InsertionText
.drop_front();
4373 } else if (!isAsciiIdentifierContinue(NextChar
[0], /*allow dollar*/ true) &&
4374 !isAsciiIdentifierContinue(NextChar
[-1], /*allow dollar*/ true)) {
4375 InsertionText
= InsertionText
.drop_back().drop_front();
4378 Diag
<< FixItHint::CreateInsertion(FixItLoc
, InsertionText
);
4381 static void emitNullabilityConsistencyWarning(Sema
&S
,
4382 SimplePointerKind PointerKind
,
4383 SourceLocation PointerLoc
,
4384 SourceLocation PointerEndLoc
) {
4385 assert(PointerLoc
.isValid());
4387 if (PointerKind
== SimplePointerKind::Array
) {
4388 S
.Diag(PointerLoc
, diag::warn_nullability_missing_array
);
4390 S
.Diag(PointerLoc
, diag::warn_nullability_missing
)
4391 << static_cast<unsigned>(PointerKind
);
4394 auto FixItLoc
= PointerEndLoc
.isValid() ? PointerEndLoc
: PointerLoc
;
4395 if (FixItLoc
.isMacroID())
4398 auto addFixIt
= [&](NullabilityKind Nullability
) {
4399 auto Diag
= S
.Diag(FixItLoc
, diag::note_nullability_fix_it
);
4400 Diag
<< static_cast<unsigned>(Nullability
);
4401 Diag
<< static_cast<unsigned>(PointerKind
);
4402 fixItNullability(S
, Diag
, FixItLoc
, Nullability
);
4404 addFixIt(NullabilityKind::Nullable
);
4405 addFixIt(NullabilityKind::NonNull
);
4408 /// Complains about missing nullability if the file containing \p pointerLoc
4409 /// has other uses of nullability (either the keywords or the \c assume_nonnull
4412 /// If the file has \e not seen other uses of nullability, this particular
4413 /// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4415 checkNullabilityConsistency(Sema
&S
, SimplePointerKind pointerKind
,
4416 SourceLocation pointerLoc
,
4417 SourceLocation pointerEndLoc
= SourceLocation()) {
4418 // Determine which file we're performing consistency checking for.
4419 FileID file
= getNullabilityCompletenessCheckFileID(S
, pointerLoc
);
4420 if (file
.isInvalid())
4423 // If we haven't seen any type nullability in this file, we won't warn now
4425 FileNullability
&fileNullability
= S
.NullabilityMap
[file
];
4426 if (!fileNullability
.SawTypeNullability
) {
4427 // If this is the first pointer declarator in the file, and the appropriate
4428 // warning is on, record it in case we need to diagnose it retroactively.
4429 diag::kind diagKind
;
4430 if (pointerKind
== SimplePointerKind::Array
)
4431 diagKind
= diag::warn_nullability_missing_array
;
4433 diagKind
= diag::warn_nullability_missing
;
4435 if (fileNullability
.PointerLoc
.isInvalid() &&
4436 !S
.Context
.getDiagnostics().isIgnored(diagKind
, pointerLoc
)) {
4437 fileNullability
.PointerLoc
= pointerLoc
;
4438 fileNullability
.PointerEndLoc
= pointerEndLoc
;
4439 fileNullability
.PointerKind
= static_cast<unsigned>(pointerKind
);
4445 // Complain about missing nullability.
4446 emitNullabilityConsistencyWarning(S
, pointerKind
, pointerLoc
, pointerEndLoc
);
4449 /// Marks that a nullability feature has been used in the file containing
4452 /// If this file already had pointer types in it that were missing nullability,
4453 /// the first such instance is retroactively diagnosed.
4455 /// \sa checkNullabilityConsistency
4456 static void recordNullabilitySeen(Sema
&S
, SourceLocation loc
) {
4457 FileID file
= getNullabilityCompletenessCheckFileID(S
, loc
);
4458 if (file
.isInvalid())
4461 FileNullability
&fileNullability
= S
.NullabilityMap
[file
];
4462 if (fileNullability
.SawTypeNullability
)
4464 fileNullability
.SawTypeNullability
= true;
4466 // If we haven't seen any type nullability before, now we have. Retroactively
4467 // diagnose the first unannotated pointer, if there was one.
4468 if (fileNullability
.PointerLoc
.isInvalid())
4471 auto kind
= static_cast<SimplePointerKind
>(fileNullability
.PointerKind
);
4472 emitNullabilityConsistencyWarning(S
, kind
, fileNullability
.PointerLoc
,
4473 fileNullability
.PointerEndLoc
);
4476 /// Returns true if any of the declarator chunks before \p endIndex include a
4477 /// level of indirection: array, pointer, reference, or pointer-to-member.
4479 /// Because declarator chunks are stored in outer-to-inner order, testing
4480 /// every chunk before \p endIndex is testing all chunks that embed the current
4481 /// chunk as part of their type.
4483 /// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4484 /// end index, in which case all chunks are tested.
4485 static bool hasOuterPointerLikeChunk(const Declarator
&D
, unsigned endIndex
) {
4486 unsigned i
= endIndex
;
4488 // Walk outwards along the declarator chunks.
4490 const DeclaratorChunk
&DC
= D
.getTypeObject(i
);
4492 case DeclaratorChunk::Paren
:
4494 case DeclaratorChunk::Array
:
4495 case DeclaratorChunk::Pointer
:
4496 case DeclaratorChunk::Reference
:
4497 case DeclaratorChunk::MemberPointer
:
4499 case DeclaratorChunk::Function
:
4500 case DeclaratorChunk::BlockPointer
:
4501 case DeclaratorChunk::Pipe
:
4502 // These are invalid anyway, so just ignore.
4509 static bool IsNoDerefableChunk(DeclaratorChunk Chunk
) {
4510 return (Chunk
.Kind
== DeclaratorChunk::Pointer
||
4511 Chunk
.Kind
== DeclaratorChunk::Array
);
4514 template<typename AttrT
>
4515 static AttrT
*createSimpleAttr(ASTContext
&Ctx
, ParsedAttr
&AL
) {
4516 AL
.setUsedAsTypeAttr();
4517 return ::new (Ctx
) AttrT(Ctx
, AL
);
4520 static Attr
*createNullabilityAttr(ASTContext
&Ctx
, ParsedAttr
&Attr
,
4521 NullabilityKind NK
) {
4523 case NullabilityKind::NonNull
:
4524 return createSimpleAttr
<TypeNonNullAttr
>(Ctx
, Attr
);
4526 case NullabilityKind::Nullable
:
4527 return createSimpleAttr
<TypeNullableAttr
>(Ctx
, Attr
);
4529 case NullabilityKind::NullableResult
:
4530 return createSimpleAttr
<TypeNullableResultAttr
>(Ctx
, Attr
);
4532 case NullabilityKind::Unspecified
:
4533 return createSimpleAttr
<TypeNullUnspecifiedAttr
>(Ctx
, Attr
);
4535 llvm_unreachable("unknown NullabilityKind");
4538 // Diagnose whether this is a case with the multiple addr spaces.
4539 // Returns true if this is an invalid case.
4540 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4541 // by qualifiers for two or more different address spaces."
4542 static bool DiagnoseMultipleAddrSpaceAttributes(Sema
&S
, LangAS ASOld
,
4544 SourceLocation AttrLoc
) {
4545 if (ASOld
!= LangAS::Default
) {
4546 if (ASOld
!= ASNew
) {
4547 S
.Diag(AttrLoc
, diag::err_attribute_address_multiple_qualifiers
);
4550 // Emit a warning if they are identical; it's likely unintended.
4552 diag::warn_attribute_address_multiple_identical_qualifiers
);
4557 static TypeSourceInfo
*GetFullTypeForDeclarator(TypeProcessingState
&state
,
4558 QualType declSpecType
,
4559 TypeSourceInfo
*TInfo
) {
4560 // The TypeSourceInfo that this function returns will not be a null type.
4561 // If there is an error, this function will fill in a dummy type as fallback.
4562 QualType T
= declSpecType
;
4563 Declarator
&D
= state
.getDeclarator();
4564 Sema
&S
= state
.getSema();
4565 ASTContext
&Context
= S
.Context
;
4566 const LangOptions
&LangOpts
= S
.getLangOpts();
4568 // The name we're declaring, if any.
4569 DeclarationName Name
;
4570 if (D
.getIdentifier())
4571 Name
= D
.getIdentifier();
4573 // Does this declaration declare a typedef-name?
4574 bool IsTypedefName
=
4575 D
.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef
||
4576 D
.getContext() == DeclaratorContext::AliasDecl
||
4577 D
.getContext() == DeclaratorContext::AliasTemplate
;
4579 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4580 bool IsQualifiedFunction
= T
->isFunctionProtoType() &&
4581 (!T
->castAs
<FunctionProtoType
>()->getMethodQuals().empty() ||
4582 T
->castAs
<FunctionProtoType
>()->getRefQualifier() != RQ_None
);
4584 // If T is 'decltype(auto)', the only declarators we can have are parens
4585 // and at most one function declarator if this is a function declaration.
4586 // If T is a deduced class template specialization type, we can have no
4587 // declarator chunks at all.
4588 if (auto *DT
= T
->getAs
<DeducedType
>()) {
4589 const AutoType
*AT
= T
->getAs
<AutoType
>();
4590 bool IsClassTemplateDeduction
= isa
<DeducedTemplateSpecializationType
>(DT
);
4591 if ((AT
&& AT
->isDecltypeAuto()) || IsClassTemplateDeduction
) {
4592 for (unsigned I
= 0, E
= D
.getNumTypeObjects(); I
!= E
; ++I
) {
4593 unsigned Index
= E
- I
- 1;
4594 DeclaratorChunk
&DeclChunk
= D
.getTypeObject(Index
);
4595 unsigned DiagId
= IsClassTemplateDeduction
4596 ? diag::err_deduced_class_template_compound_type
4597 : diag::err_decltype_auto_compound_type
;
4598 unsigned DiagKind
= 0;
4599 switch (DeclChunk
.Kind
) {
4600 case DeclaratorChunk::Paren
:
4601 // FIXME: Rejecting this is a little silly.
4602 if (IsClassTemplateDeduction
) {
4607 case DeclaratorChunk::Function
: {
4608 if (IsClassTemplateDeduction
) {
4613 if (D
.isFunctionDeclarationContext() &&
4614 D
.isFunctionDeclarator(FnIndex
) && FnIndex
== Index
)
4616 DiagId
= diag::err_decltype_auto_function_declarator_not_declaration
;
4619 case DeclaratorChunk::Pointer
:
4620 case DeclaratorChunk::BlockPointer
:
4621 case DeclaratorChunk::MemberPointer
:
4624 case DeclaratorChunk::Reference
:
4627 case DeclaratorChunk::Array
:
4630 case DeclaratorChunk::Pipe
:
4634 S
.Diag(DeclChunk
.Loc
, DiagId
) << DiagKind
;
4635 D
.setInvalidType(true);
4641 // Determine whether we should infer _Nonnull on pointer types.
4642 Optional
<NullabilityKind
> inferNullability
;
4643 bool inferNullabilityCS
= false;
4644 bool inferNullabilityInnerOnly
= false;
4645 bool inferNullabilityInnerOnlyComplete
= false;
4647 // Are we in an assume-nonnull region?
4648 bool inAssumeNonNullRegion
= false;
4649 SourceLocation assumeNonNullLoc
= S
.PP
.getPragmaAssumeNonNullLoc();
4650 if (assumeNonNullLoc
.isValid()) {
4651 inAssumeNonNullRegion
= true;
4652 recordNullabilitySeen(S
, assumeNonNullLoc
);
4655 // Whether to complain about missing nullability specifiers or not.
4659 /// Complain on the inner pointers (but not the outermost
4662 /// Complain about any pointers that don't have nullability
4663 /// specified or inferred.
4665 } complainAboutMissingNullability
= CAMN_No
;
4666 unsigned NumPointersRemaining
= 0;
4667 auto complainAboutInferringWithinChunk
= PointerWrappingDeclaratorKind::None
;
4669 if (IsTypedefName
) {
4670 // For typedefs, we do not infer any nullability (the default),
4671 // and we only complain about missing nullability specifiers on
4673 complainAboutMissingNullability
= CAMN_InnerPointers
;
4675 if (T
->canHaveNullability(/*ResultIfUnknown*/false) &&
4676 !T
->getNullability(S
.Context
)) {
4677 // Note that we allow but don't require nullability on dependent types.
4678 ++NumPointersRemaining
;
4681 for (unsigned i
= 0, n
= D
.getNumTypeObjects(); i
!= n
; ++i
) {
4682 DeclaratorChunk
&chunk
= D
.getTypeObject(i
);
4683 switch (chunk
.Kind
) {
4684 case DeclaratorChunk::Array
:
4685 case DeclaratorChunk::Function
:
4686 case DeclaratorChunk::Pipe
:
4689 case DeclaratorChunk::BlockPointer
:
4690 case DeclaratorChunk::MemberPointer
:
4691 ++NumPointersRemaining
;
4694 case DeclaratorChunk::Paren
:
4695 case DeclaratorChunk::Reference
:
4698 case DeclaratorChunk::Pointer
:
4699 ++NumPointersRemaining
;
4704 bool isFunctionOrMethod
= false;
4705 switch (auto context
= state
.getDeclarator().getContext()) {
4706 case DeclaratorContext::ObjCParameter
:
4707 case DeclaratorContext::ObjCResult
:
4708 case DeclaratorContext::Prototype
:
4709 case DeclaratorContext::TrailingReturn
:
4710 case DeclaratorContext::TrailingReturnVar
:
4711 isFunctionOrMethod
= true;
4714 case DeclaratorContext::Member
:
4715 if (state
.getDeclarator().isObjCIvar() && !isFunctionOrMethod
) {
4716 complainAboutMissingNullability
= CAMN_No
;
4720 // Weak properties are inferred to be nullable.
4721 if (state
.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion
) {
4722 inferNullability
= NullabilityKind::Nullable
;
4728 case DeclaratorContext::File
:
4729 case DeclaratorContext::KNRTypeList
: {
4730 complainAboutMissingNullability
= CAMN_Yes
;
4732 // Nullability inference depends on the type and declarator.
4733 auto wrappingKind
= PointerWrappingDeclaratorKind::None
;
4734 switch (classifyPointerDeclarator(S
, T
, D
, wrappingKind
)) {
4735 case PointerDeclaratorKind::NonPointer
:
4736 case PointerDeclaratorKind::MultiLevelPointer
:
4737 // Cannot infer nullability.
4740 case PointerDeclaratorKind::SingleLevelPointer
:
4741 // Infer _Nonnull if we are in an assumes-nonnull region.
4742 if (inAssumeNonNullRegion
) {
4743 complainAboutInferringWithinChunk
= wrappingKind
;
4744 inferNullability
= NullabilityKind::NonNull
;
4745 inferNullabilityCS
= (context
== DeclaratorContext::ObjCParameter
||
4746 context
== DeclaratorContext::ObjCResult
);
4750 case PointerDeclaratorKind::CFErrorRefPointer
:
4751 case PointerDeclaratorKind::NSErrorPointerPointer
:
4752 // Within a function or method signature, infer _Nullable at both
4754 if (isFunctionOrMethod
&& inAssumeNonNullRegion
)
4755 inferNullability
= NullabilityKind::Nullable
;
4758 case PointerDeclaratorKind::MaybePointerToCFRef
:
4759 if (isFunctionOrMethod
) {
4760 // On pointer-to-pointer parameters marked cf_returns_retained or
4761 // cf_returns_not_retained, if the outer pointer is explicit then
4762 // infer the inner pointer as _Nullable.
4763 auto hasCFReturnsAttr
=
4764 [](const ParsedAttributesView
&AttrList
) -> bool {
4765 return AttrList
.hasAttribute(ParsedAttr::AT_CFReturnsRetained
) ||
4766 AttrList
.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained
);
4768 if (const auto *InnermostChunk
= D
.getInnermostNonParenChunk()) {
4769 if (hasCFReturnsAttr(D
.getDeclarationAttributes()) ||
4770 hasCFReturnsAttr(D
.getAttributes()) ||
4771 hasCFReturnsAttr(InnermostChunk
->getAttrs()) ||
4772 hasCFReturnsAttr(D
.getDeclSpec().getAttributes())) {
4773 inferNullability
= NullabilityKind::Nullable
;
4774 inferNullabilityInnerOnly
= true;
4783 case DeclaratorContext::ConversionId
:
4784 complainAboutMissingNullability
= CAMN_Yes
;
4787 case DeclaratorContext::AliasDecl
:
4788 case DeclaratorContext::AliasTemplate
:
4789 case DeclaratorContext::Block
:
4790 case DeclaratorContext::BlockLiteral
:
4791 case DeclaratorContext::Condition
:
4792 case DeclaratorContext::CXXCatch
:
4793 case DeclaratorContext::CXXNew
:
4794 case DeclaratorContext::ForInit
:
4795 case DeclaratorContext::SelectionInit
:
4796 case DeclaratorContext::LambdaExpr
:
4797 case DeclaratorContext::LambdaExprParameter
:
4798 case DeclaratorContext::ObjCCatch
:
4799 case DeclaratorContext::TemplateParam
:
4800 case DeclaratorContext::TemplateArg
:
4801 case DeclaratorContext::TemplateTypeArg
:
4802 case DeclaratorContext::TypeName
:
4803 case DeclaratorContext::FunctionalCast
:
4804 case DeclaratorContext::RequiresExpr
:
4805 case DeclaratorContext::Association
:
4806 // Don't infer in these contexts.
4811 // Local function that returns true if its argument looks like a va_list.
4812 auto isVaList
= [&S
](QualType T
) -> bool {
4813 auto *typedefTy
= T
->getAs
<TypedefType
>();
4816 TypedefDecl
*vaListTypedef
= S
.Context
.getBuiltinVaListDecl();
4818 if (typedefTy
->getDecl() == vaListTypedef
)
4820 if (auto *name
= typedefTy
->getDecl()->getIdentifier())
4821 if (name
->isStr("va_list"))
4823 typedefTy
= typedefTy
->desugar()->getAs
<TypedefType
>();
4824 } while (typedefTy
);
4828 // Local function that checks the nullability for a given pointer declarator.
4829 // Returns true if _Nonnull was inferred.
4830 auto inferPointerNullability
=
4831 [&](SimplePointerKind pointerKind
, SourceLocation pointerLoc
,
4832 SourceLocation pointerEndLoc
,
4833 ParsedAttributesView
&attrs
, AttributePool
&Pool
) -> ParsedAttr
* {
4834 // We've seen a pointer.
4835 if (NumPointersRemaining
> 0)
4836 --NumPointersRemaining
;
4838 // If a nullability attribute is present, there's nothing to do.
4839 if (hasNullabilityAttr(attrs
))
4842 // If we're supposed to infer nullability, do so now.
4843 if (inferNullability
&& !inferNullabilityInnerOnlyComplete
) {
4844 ParsedAttr::Syntax syntax
= inferNullabilityCS
4845 ? ParsedAttr::AS_ContextSensitiveKeyword
4846 : ParsedAttr::AS_Keyword
;
4847 ParsedAttr
*nullabilityAttr
= Pool
.create(
4848 S
.getNullabilityKeyword(*inferNullability
), SourceRange(pointerLoc
),
4849 nullptr, SourceLocation(), nullptr, 0, syntax
);
4851 attrs
.addAtEnd(nullabilityAttr
);
4853 if (inferNullabilityCS
) {
4854 state
.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
4855 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability
);
4858 if (pointerLoc
.isValid() &&
4859 complainAboutInferringWithinChunk
!=
4860 PointerWrappingDeclaratorKind::None
) {
4862 S
.Diag(pointerLoc
, diag::warn_nullability_inferred_on_nested_type
);
4863 Diag
<< static_cast<int>(complainAboutInferringWithinChunk
);
4864 fixItNullability(S
, Diag
, pointerLoc
, NullabilityKind::NonNull
);
4867 if (inferNullabilityInnerOnly
)
4868 inferNullabilityInnerOnlyComplete
= true;
4869 return nullabilityAttr
;
4872 // If we're supposed to complain about missing nullability, do so
4873 // now if it's truly missing.
4874 switch (complainAboutMissingNullability
) {
4878 case CAMN_InnerPointers
:
4879 if (NumPointersRemaining
== 0)
4884 checkNullabilityConsistency(S
, pointerKind
, pointerLoc
, pointerEndLoc
);
4889 // If the type itself could have nullability but does not, infer pointer
4890 // nullability and perform consistency checking.
4891 if (S
.CodeSynthesisContexts
.empty()) {
4892 if (T
->canHaveNullability(/*ResultIfUnknown*/false) &&
4893 !T
->getNullability(S
.Context
)) {
4895 // Record that we've seen a pointer, but do nothing else.
4896 if (NumPointersRemaining
> 0)
4897 --NumPointersRemaining
;
4899 SimplePointerKind pointerKind
= SimplePointerKind::Pointer
;
4900 if (T
->isBlockPointerType())
4901 pointerKind
= SimplePointerKind::BlockPointer
;
4902 else if (T
->isMemberPointerType())
4903 pointerKind
= SimplePointerKind::MemberPointer
;
4905 if (auto *attr
= inferPointerNullability(
4906 pointerKind
, D
.getDeclSpec().getTypeSpecTypeLoc(),
4907 D
.getDeclSpec().getEndLoc(),
4908 D
.getMutableDeclSpec().getAttributes(),
4909 D
.getMutableDeclSpec().getAttributePool())) {
4910 T
= state
.getAttributedType(
4911 createNullabilityAttr(Context
, *attr
, *inferNullability
), T
, T
);
4916 if (complainAboutMissingNullability
== CAMN_Yes
&&
4917 T
->isArrayType() && !T
->getNullability(S
.Context
) && !isVaList(T
) &&
4918 D
.isPrototypeContext() &&
4919 !hasOuterPointerLikeChunk(D
, D
.getNumTypeObjects())) {
4920 checkNullabilityConsistency(S
, SimplePointerKind::Array
,
4921 D
.getDeclSpec().getTypeSpecTypeLoc());
4925 bool ExpectNoDerefChunk
=
4926 state
.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref
);
4928 // Walk the DeclTypeInfo, building the recursive type as we go.
4929 // DeclTypeInfos are ordered from the identifier out, which is
4930 // opposite of what we want :).
4931 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
4932 unsigned chunkIndex
= e
- i
- 1;
4933 state
.setCurrentChunkIndex(chunkIndex
);
4934 DeclaratorChunk
&DeclType
= D
.getTypeObject(chunkIndex
);
4935 IsQualifiedFunction
&= DeclType
.Kind
== DeclaratorChunk::Paren
;
4936 switch (DeclType
.Kind
) {
4937 case DeclaratorChunk::Paren
:
4939 warnAboutRedundantParens(S
, D
, T
);
4940 T
= S
.BuildParenType(T
);
4942 case DeclaratorChunk::BlockPointer
:
4943 // If blocks are disabled, emit an error.
4944 if (!LangOpts
.Blocks
)
4945 S
.Diag(DeclType
.Loc
, diag::err_blocks_disable
) << LangOpts
.OpenCL
;
4947 // Handle pointer nullability.
4948 inferPointerNullability(SimplePointerKind::BlockPointer
, DeclType
.Loc
,
4949 DeclType
.EndLoc
, DeclType
.getAttrs(),
4950 state
.getDeclarator().getAttributePool());
4952 T
= S
.BuildBlockPointerType(T
, D
.getIdentifierLoc(), Name
);
4953 if (DeclType
.Cls
.TypeQuals
|| LangOpts
.OpenCL
) {
4954 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
4955 // qualified with const.
4956 if (LangOpts
.OpenCL
)
4957 DeclType
.Cls
.TypeQuals
|= DeclSpec::TQ_const
;
4958 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Cls
.TypeQuals
);
4961 case DeclaratorChunk::Pointer
:
4962 // Verify that we're not building a pointer to pointer to function with
4963 // exception specification.
4964 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
4965 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
4966 D
.setInvalidType(true);
4967 // Build the type anyway.
4970 // Handle pointer nullability
4971 inferPointerNullability(SimplePointerKind::Pointer
, DeclType
.Loc
,
4972 DeclType
.EndLoc
, DeclType
.getAttrs(),
4973 state
.getDeclarator().getAttributePool());
4975 if (LangOpts
.ObjC
&& T
->getAs
<ObjCObjectType
>()) {
4976 T
= Context
.getObjCObjectPointerType(T
);
4977 if (DeclType
.Ptr
.TypeQuals
)
4978 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Ptr
.TypeQuals
);
4982 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
4983 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
4984 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
4985 if (LangOpts
.OpenCL
) {
4986 if (T
->isImageType() || T
->isSamplerT() || T
->isPipeType() ||
4987 T
->isBlockPointerType()) {
4988 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_pointer_to_type
) << T
;
4989 D
.setInvalidType(true);
4993 T
= S
.BuildPointerType(T
, DeclType
.Loc
, Name
);
4994 if (DeclType
.Ptr
.TypeQuals
)
4995 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Ptr
.TypeQuals
);
4997 case DeclaratorChunk::Reference
: {
4998 // Verify that we're not building a reference to pointer to function with
4999 // exception specification.
5000 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5001 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5002 D
.setInvalidType(true);
5003 // Build the type anyway.
5005 T
= S
.BuildReferenceType(T
, DeclType
.Ref
.LValueRef
, DeclType
.Loc
, Name
);
5007 if (DeclType
.Ref
.HasRestrict
)
5008 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, Qualifiers::Restrict
);
5011 case DeclaratorChunk::Array
: {
5012 // Verify that we're not building an array of pointers to function with
5013 // exception specification.
5014 if (LangOpts
.CPlusPlus
&& S
.CheckDistantExceptionSpec(T
)) {
5015 S
.Diag(D
.getIdentifierLoc(), diag::err_distant_exception_spec
);
5016 D
.setInvalidType(true);
5017 // Build the type anyway.
5019 DeclaratorChunk::ArrayTypeInfo
&ATI
= DeclType
.Arr
;
5020 Expr
*ArraySize
= static_cast<Expr
*>(ATI
.NumElts
);
5021 ArrayType::ArraySizeModifier ASM
;
5023 ASM
= ArrayType::Star
;
5024 else if (ATI
.hasStatic
)
5025 ASM
= ArrayType::Static
;
5027 ASM
= ArrayType::Normal
;
5028 if (ASM
== ArrayType::Star
&& !D
.isPrototypeContext()) {
5029 // FIXME: This check isn't quite right: it allows star in prototypes
5030 // for function definitions, and disallows some edge cases detailed
5031 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
5032 S
.Diag(DeclType
.Loc
, diag::err_array_star_outside_prototype
);
5033 ASM
= ArrayType::Normal
;
5034 D
.setInvalidType(true);
5037 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
5038 // shall appear only in a declaration of a function parameter with an
5040 if (ASM
== ArrayType::Static
|| ATI
.TypeQuals
) {
5041 if (!(D
.isPrototypeContext() ||
5042 D
.getContext() == DeclaratorContext::KNRTypeList
)) {
5043 S
.Diag(DeclType
.Loc
, diag::err_array_static_outside_prototype
) <<
5044 (ASM
== ArrayType::Static
? "'static'" : "type qualifier");
5045 // Remove the 'static' and the type qualifiers.
5046 if (ASM
== ArrayType::Static
)
5047 ASM
= ArrayType::Normal
;
5049 D
.setInvalidType(true);
5052 // C99 6.7.5.2p1: ... and then only in the outermost array type
5054 if (hasOuterPointerLikeChunk(D
, chunkIndex
)) {
5055 S
.Diag(DeclType
.Loc
, diag::err_array_static_not_outermost
) <<
5056 (ASM
== ArrayType::Static
? "'static'" : "type qualifier");
5057 if (ASM
== ArrayType::Static
)
5058 ASM
= ArrayType::Normal
;
5060 D
.setInvalidType(true);
5063 const AutoType
*AT
= T
->getContainedAutoType();
5064 // Allow arrays of auto if we are a generic lambda parameter.
5065 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
5066 if (AT
&& D
.getContext() != DeclaratorContext::LambdaExprParameter
) {
5067 // We've already diagnosed this for decltype(auto).
5068 if (!AT
->isDecltypeAuto())
5069 S
.Diag(DeclType
.Loc
, diag::err_illegal_decl_array_of_auto
)
5070 << getPrintableNameForEntity(Name
) << T
;
5075 // Array parameters can be marked nullable as well, although it's not
5076 // necessary if they're marked 'static'.
5077 if (complainAboutMissingNullability
== CAMN_Yes
&&
5078 !hasNullabilityAttr(DeclType
.getAttrs()) &&
5079 ASM
!= ArrayType::Static
&&
5080 D
.isPrototypeContext() &&
5081 !hasOuterPointerLikeChunk(D
, chunkIndex
)) {
5082 checkNullabilityConsistency(S
, SimplePointerKind::Array
, DeclType
.Loc
);
5085 T
= S
.BuildArrayType(T
, ASM
, ArraySize
, ATI
.TypeQuals
,
5086 SourceRange(DeclType
.Loc
, DeclType
.EndLoc
), Name
);
5089 case DeclaratorChunk::Function
: {
5090 // If the function declarator has a prototype (i.e. it is not () and
5091 // does not have a K&R-style identifier list), then the arguments are part
5092 // of the type, otherwise the argument list is ().
5093 DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
5094 IsQualifiedFunction
=
5095 FTI
.hasMethodTypeQualifiers() || FTI
.hasRefQualifier();
5097 // Check for auto functions and trailing return type and adjust the
5098 // return type accordingly.
5099 if (!D
.isInvalidType()) {
5100 // trailing-return-type is only required if we're declaring a function,
5101 // and not, for instance, a pointer to a function.
5102 if (D
.getDeclSpec().hasAutoTypeSpec() &&
5103 !FTI
.hasTrailingReturnType() && chunkIndex
== 0) {
5104 if (!S
.getLangOpts().CPlusPlus14
) {
5105 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5106 D
.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
5107 ? diag::err_auto_missing_trailing_return
5108 : diag::err_deduced_return_type
);
5110 D
.setInvalidType(true);
5112 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5113 diag::warn_cxx11_compat_deduced_return_type
);
5115 } else if (FTI
.hasTrailingReturnType()) {
5116 // T must be exactly 'auto' at this point. See CWG issue 681.
5117 if (isa
<ParenType
>(T
)) {
5118 S
.Diag(D
.getBeginLoc(), diag::err_trailing_return_in_parens
)
5119 << T
<< D
.getSourceRange();
5120 D
.setInvalidType(true);
5121 } else if (D
.getName().getKind() ==
5122 UnqualifiedIdKind::IK_DeductionGuideName
) {
5123 if (T
!= Context
.DependentTy
) {
5124 S
.Diag(D
.getDeclSpec().getBeginLoc(),
5125 diag::err_deduction_guide_with_complex_decl
)
5126 << D
.getSourceRange();
5127 D
.setInvalidType(true);
5129 } else if (D
.getContext() != DeclaratorContext::LambdaExpr
&&
5130 (T
.hasQualifiers() || !isa
<AutoType
>(T
) ||
5131 cast
<AutoType
>(T
)->getKeyword() !=
5132 AutoTypeKeyword::Auto
||
5133 cast
<AutoType
>(T
)->isConstrained())) {
5134 S
.Diag(D
.getDeclSpec().getTypeSpecTypeLoc(),
5135 diag::err_trailing_return_without_auto
)
5136 << T
<< D
.getDeclSpec().getSourceRange();
5137 D
.setInvalidType(true);
5139 T
= S
.GetTypeFromParser(FTI
.getTrailingReturnType(), &TInfo
);
5141 // An error occurred parsing the trailing return type.
5143 D
.setInvalidType(true);
5144 } else if (AutoType
*Auto
= T
->getContainedAutoType()) {
5145 // If the trailing return type contains an `auto`, we may need to
5146 // invent a template parameter for it, for cases like
5147 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5148 InventedTemplateParameterInfo
*InventedParamInfo
= nullptr;
5149 if (D
.getContext() == DeclaratorContext::Prototype
)
5150 InventedParamInfo
= &S
.InventedParameterInfos
.back();
5151 else if (D
.getContext() == DeclaratorContext::LambdaExprParameter
)
5152 InventedParamInfo
= S
.getCurLambda();
5153 if (InventedParamInfo
) {
5154 std::tie(T
, TInfo
) = InventTemplateParameter(
5155 state
, T
, TInfo
, Auto
, *InventedParamInfo
);
5159 // This function type is not the type of the entity being declared,
5160 // so checking the 'auto' is not the responsibility of this chunk.
5164 // C99 6.7.5.3p1: The return type may not be a function or array type.
5165 // For conversion functions, we'll diagnose this particular error later.
5166 if (!D
.isInvalidType() && (T
->isArrayType() || T
->isFunctionType()) &&
5167 (D
.getName().getKind() !=
5168 UnqualifiedIdKind::IK_ConversionFunctionId
)) {
5169 unsigned diagID
= diag::err_func_returning_array_function
;
5170 // Last processing chunk in block context means this function chunk
5171 // represents the block.
5172 if (chunkIndex
== 0 &&
5173 D
.getContext() == DeclaratorContext::BlockLiteral
)
5174 diagID
= diag::err_block_returning_array_function
;
5175 S
.Diag(DeclType
.Loc
, diagID
) << T
->isFunctionType() << T
;
5177 D
.setInvalidType(true);
5180 // Do not allow returning half FP value.
5181 // FIXME: This really should be in BuildFunctionType.
5182 if (T
->isHalfType()) {
5183 if (S
.getLangOpts().OpenCL
) {
5184 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5186 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_invalid_return
)
5187 << T
<< 0 /*pointer hint*/;
5188 D
.setInvalidType(true);
5190 } else if (!S
.getLangOpts().HalfArgsAndReturns
) {
5191 S
.Diag(D
.getIdentifierLoc(),
5192 diag::err_parameters_retval_cannot_have_fp16_type
) << 1;
5193 D
.setInvalidType(true);
5197 if (LangOpts
.OpenCL
) {
5198 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5200 if (T
->isBlockPointerType() || T
->isImageType() || T
->isSamplerT() ||
5202 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_invalid_return
)
5203 << T
<< 1 /*hint off*/;
5204 D
.setInvalidType(true);
5206 // OpenCL doesn't support variadic functions and blocks
5207 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5208 // We also allow here any toolchain reserved identifiers.
5209 if (FTI
.isVariadic
&&
5210 !S
.getOpenCLOptions().isAvailableOption(
5211 "__cl_clang_variadic_functions", S
.getLangOpts()) &&
5212 !(D
.getIdentifier() &&
5213 ((D
.getIdentifier()->getName() == "printf" &&
5214 LangOpts
.getOpenCLCompatibleVersion() >= 120) ||
5215 D
.getIdentifier()->getName().startswith("__")))) {
5216 S
.Diag(D
.getIdentifierLoc(), diag::err_opencl_variadic_function
);
5217 D
.setInvalidType(true);
5221 // Methods cannot return interface types. All ObjC objects are
5222 // passed by reference.
5223 if (T
->isObjCObjectType()) {
5224 SourceLocation DiagLoc
, FixitLoc
;
5226 DiagLoc
= TInfo
->getTypeLoc().getBeginLoc();
5227 FixitLoc
= S
.getLocForEndOfToken(TInfo
->getTypeLoc().getEndLoc());
5229 DiagLoc
= D
.getDeclSpec().getTypeSpecTypeLoc();
5230 FixitLoc
= S
.getLocForEndOfToken(D
.getDeclSpec().getEndLoc());
5232 S
.Diag(DiagLoc
, diag::err_object_cannot_be_passed_returned_by_value
)
5234 << FixItHint::CreateInsertion(FixitLoc
, "*");
5236 T
= Context
.getObjCObjectPointerType(T
);
5239 TLB
.pushFullCopy(TInfo
->getTypeLoc());
5240 ObjCObjectPointerTypeLoc TLoc
= TLB
.push
<ObjCObjectPointerTypeLoc
>(T
);
5241 TLoc
.setStarLoc(FixitLoc
);
5242 TInfo
= TLB
.getTypeSourceInfo(Context
, T
);
5245 D
.setInvalidType(true);
5248 // cv-qualifiers on return types are pointless except when the type is a
5249 // class type in C++.
5250 if ((T
.getCVRQualifiers() || T
->isAtomicType()) &&
5251 !(S
.getLangOpts().CPlusPlus
&&
5252 (T
->isDependentType() || T
->isRecordType()))) {
5253 if (T
->isVoidType() && !S
.getLangOpts().CPlusPlus
&&
5254 D
.getFunctionDefinitionKind() ==
5255 FunctionDefinitionKind::Definition
) {
5256 // [6.9.1/3] qualified void return is invalid on a C
5257 // function definition. Apparently ok on declarations and
5258 // in C++ though (!)
5259 S
.Diag(DeclType
.Loc
, diag::err_func_returning_qualified_void
) << T
;
5261 diagnoseRedundantReturnTypeQualifiers(S
, T
, D
, chunkIndex
);
5263 // C++2a [dcl.fct]p12:
5264 // A volatile-qualified return type is deprecated
5265 if (T
.isVolatileQualified() && S
.getLangOpts().CPlusPlus20
)
5266 S
.Diag(DeclType
.Loc
, diag::warn_deprecated_volatile_return
) << T
;
5269 // Objective-C ARC ownership qualifiers are ignored on the function
5270 // return type (by type canonicalization). Complain if this attribute
5271 // was written here.
5272 if (T
.getQualifiers().hasObjCLifetime()) {
5273 SourceLocation AttrLoc
;
5274 if (chunkIndex
+ 1 < D
.getNumTypeObjects()) {
5275 DeclaratorChunk ReturnTypeChunk
= D
.getTypeObject(chunkIndex
+ 1);
5276 for (const ParsedAttr
&AL
: ReturnTypeChunk
.getAttrs()) {
5277 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
5278 AttrLoc
= AL
.getLoc();
5283 if (AttrLoc
.isInvalid()) {
5284 for (const ParsedAttr
&AL
: D
.getDeclSpec().getAttributes()) {
5285 if (AL
.getKind() == ParsedAttr::AT_ObjCOwnership
) {
5286 AttrLoc
= AL
.getLoc();
5292 if (AttrLoc
.isValid()) {
5293 // The ownership attributes are almost always written via
5295 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5296 if (AttrLoc
.isMacroID())
5298 S
.SourceMgr
.getImmediateExpansionRange(AttrLoc
).getBegin();
5300 S
.Diag(AttrLoc
, diag::warn_arc_lifetime_result_type
)
5301 << T
.getQualifiers().getObjCLifetime();
5305 if (LangOpts
.CPlusPlus
&& D
.getDeclSpec().hasTagDefinition()) {
5307 // Types shall not be defined in return or parameter types.
5308 TagDecl
*Tag
= cast
<TagDecl
>(D
.getDeclSpec().getRepAsDecl());
5309 S
.Diag(Tag
->getLocation(), diag::err_type_defined_in_result_type
)
5310 << Context
.getTypeDeclType(Tag
);
5313 // Exception specs are not allowed in typedefs. Complain, but add it
5315 if (IsTypedefName
&& FTI
.getExceptionSpecType() && !LangOpts
.CPlusPlus17
)
5316 S
.Diag(FTI
.getExceptionSpecLocBeg(),
5317 diag::err_exception_spec_in_typedef
)
5318 << (D
.getContext() == DeclaratorContext::AliasDecl
||
5319 D
.getContext() == DeclaratorContext::AliasTemplate
);
5321 // If we see "T var();" or "T var(T());" at block scope, it is probably
5322 // an attempt to initialize a variable, not a function declaration.
5323 if (FTI
.isAmbiguous
)
5324 warnAboutAmbiguousFunction(S
, D
, DeclType
, T
);
5326 FunctionType::ExtInfo
EI(
5327 getCCForDeclaratorChunk(S
, D
, DeclType
.getAttrs(), FTI
, chunkIndex
));
5329 // OpenCL disallows functions without a prototype, but it doesn't enforce
5330 // strict prototypes as in C2x because it allows a function definition to
5331 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5332 if (!FTI
.NumParams
&& !FTI
.isVariadic
&&
5333 !LangOpts
.requiresStrictPrototypes() && !LangOpts
.OpenCL
) {
5334 // Simple void foo(), where the incoming T is the result type.
5335 T
= Context
.getFunctionNoProtoType(T
, EI
);
5337 // We allow a zero-parameter variadic function in C if the
5338 // function is marked with the "overloadable" attribute. Scan
5339 // for this attribute now.
5340 if (!FTI
.NumParams
&& FTI
.isVariadic
&& !LangOpts
.CPlusPlus
)
5341 if (!D
.getDeclarationAttributes().hasAttribute(
5342 ParsedAttr::AT_Overloadable
) &&
5343 !D
.getAttributes().hasAttribute(ParsedAttr::AT_Overloadable
) &&
5344 !D
.getDeclSpec().getAttributes().hasAttribute(
5345 ParsedAttr::AT_Overloadable
))
5346 S
.Diag(FTI
.getEllipsisLoc(), diag::err_ellipsis_first_param
);
5348 if (FTI
.NumParams
&& FTI
.Params
[0].Param
== nullptr) {
5349 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5351 S
.Diag(FTI
.Params
[0].IdentLoc
,
5352 diag::err_ident_list_in_fn_declaration
);
5353 D
.setInvalidType(true);
5354 // Recover by creating a K&R-style function type, if possible.
5355 T
= (!LangOpts
.requiresStrictPrototypes() && !LangOpts
.OpenCL
)
5356 ? Context
.getFunctionNoProtoType(T
, EI
)
5361 FunctionProtoType::ExtProtoInfo EPI
;
5363 EPI
.Variadic
= FTI
.isVariadic
;
5364 EPI
.EllipsisLoc
= FTI
.getEllipsisLoc();
5365 EPI
.HasTrailingReturn
= FTI
.hasTrailingReturnType();
5366 EPI
.TypeQuals
.addCVRUQualifiers(
5367 FTI
.MethodQualifiers
? FTI
.MethodQualifiers
->getTypeQualifiers()
5369 EPI
.RefQualifier
= !FTI
.hasRefQualifier()? RQ_None
5370 : FTI
.RefQualifierIsLValueRef
? RQ_LValue
5373 // Otherwise, we have a function with a parameter list that is
5374 // potentially variadic.
5375 SmallVector
<QualType
, 16> ParamTys
;
5376 ParamTys
.reserve(FTI
.NumParams
);
5378 SmallVector
<FunctionProtoType::ExtParameterInfo
, 16>
5379 ExtParameterInfos(FTI
.NumParams
);
5380 bool HasAnyInterestingExtParameterInfos
= false;
5382 for (unsigned i
= 0, e
= FTI
.NumParams
; i
!= e
; ++i
) {
5383 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
5384 QualType ParamTy
= Param
->getType();
5385 assert(!ParamTy
.isNull() && "Couldn't parse type?");
5387 // Look for 'void'. void is allowed only as a single parameter to a
5388 // function with no other parameters (C99 6.7.5.3p10). We record
5389 // int(void) as a FunctionProtoType with an empty parameter list.
5390 if (ParamTy
->isVoidType()) {
5391 // If this is something like 'float(int, void)', reject it. 'void'
5392 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5393 // have parameters of incomplete type.
5394 if (FTI
.NumParams
!= 1 || FTI
.isVariadic
) {
5395 S
.Diag(FTI
.Params
[i
].IdentLoc
, diag::err_void_only_param
);
5396 ParamTy
= Context
.IntTy
;
5397 Param
->setType(ParamTy
);
5398 } else if (FTI
.Params
[i
].Ident
) {
5399 // Reject, but continue to parse 'int(void abc)'.
5400 S
.Diag(FTI
.Params
[i
].IdentLoc
, diag::err_param_with_void_type
);
5401 ParamTy
= Context
.IntTy
;
5402 Param
->setType(ParamTy
);
5404 // Reject, but continue to parse 'float(const void)'.
5405 if (ParamTy
.hasQualifiers())
5406 S
.Diag(DeclType
.Loc
, diag::err_void_param_qualified
);
5408 // Do not add 'void' to the list.
5411 } else if (ParamTy
->isHalfType()) {
5412 // Disallow half FP parameters.
5413 // FIXME: This really should be in BuildFunctionType.
5414 if (S
.getLangOpts().OpenCL
) {
5415 if (!S
.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
5417 S
.Diag(Param
->getLocation(), diag::err_opencl_invalid_param
)
5420 Param
->setInvalidDecl();
5422 } else if (!S
.getLangOpts().HalfArgsAndReturns
) {
5423 S
.Diag(Param
->getLocation(),
5424 diag::err_parameters_retval_cannot_have_fp16_type
) << 0;
5427 } else if (!FTI
.hasPrototype
) {
5428 if (ParamTy
->isPromotableIntegerType()) {
5429 ParamTy
= Context
.getPromotedIntegerType(ParamTy
);
5430 Param
->setKNRPromoted(true);
5431 } else if (const BuiltinType
* BTy
= ParamTy
->getAs
<BuiltinType
>()) {
5432 if (BTy
->getKind() == BuiltinType::Float
) {
5433 ParamTy
= Context
.DoubleTy
;
5434 Param
->setKNRPromoted(true);
5437 } else if (S
.getLangOpts().OpenCL
&& ParamTy
->isBlockPointerType()) {
5438 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5439 S
.Diag(Param
->getLocation(), diag::err_opencl_invalid_param
)
5440 << ParamTy
<< 1 /*hint off*/;
5444 if (LangOpts
.ObjCAutoRefCount
&& Param
->hasAttr
<NSConsumedAttr
>()) {
5445 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withIsConsumed(true);
5446 HasAnyInterestingExtParameterInfos
= true;
5449 if (auto attr
= Param
->getAttr
<ParameterABIAttr
>()) {
5450 ExtParameterInfos
[i
] =
5451 ExtParameterInfos
[i
].withABI(attr
->getABI());
5452 HasAnyInterestingExtParameterInfos
= true;
5455 if (Param
->hasAttr
<PassObjectSizeAttr
>()) {
5456 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withHasPassObjectSize();
5457 HasAnyInterestingExtParameterInfos
= true;
5460 if (Param
->hasAttr
<NoEscapeAttr
>()) {
5461 ExtParameterInfos
[i
] = ExtParameterInfos
[i
].withIsNoEscape(true);
5462 HasAnyInterestingExtParameterInfos
= true;
5465 ParamTys
.push_back(ParamTy
);
5468 if (HasAnyInterestingExtParameterInfos
) {
5469 EPI
.ExtParameterInfos
= ExtParameterInfos
.data();
5470 checkExtParameterInfos(S
, ParamTys
, EPI
,
5471 [&](unsigned i
) { return FTI
.Params
[i
].Param
->getLocation(); });
5474 SmallVector
<QualType
, 4> Exceptions
;
5475 SmallVector
<ParsedType
, 2> DynamicExceptions
;
5476 SmallVector
<SourceRange
, 2> DynamicExceptionRanges
;
5477 Expr
*NoexceptExpr
= nullptr;
5479 if (FTI
.getExceptionSpecType() == EST_Dynamic
) {
5480 // FIXME: It's rather inefficient to have to split into two vectors
5482 unsigned N
= FTI
.getNumExceptions();
5483 DynamicExceptions
.reserve(N
);
5484 DynamicExceptionRanges
.reserve(N
);
5485 for (unsigned I
= 0; I
!= N
; ++I
) {
5486 DynamicExceptions
.push_back(FTI
.Exceptions
[I
].Ty
);
5487 DynamicExceptionRanges
.push_back(FTI
.Exceptions
[I
].Range
);
5489 } else if (isComputedNoexcept(FTI
.getExceptionSpecType())) {
5490 NoexceptExpr
= FTI
.NoexceptExpr
;
5493 S
.checkExceptionSpecification(D
.isFunctionDeclarationContext(),
5494 FTI
.getExceptionSpecType(),
5496 DynamicExceptionRanges
,
5501 // FIXME: Set address space from attrs for C++ mode here.
5502 // OpenCLCPlusPlus: A class member function has an address space.
5503 auto IsClassMember
= [&]() {
5504 return (!state
.getDeclarator().getCXXScopeSpec().isEmpty() &&
5505 state
.getDeclarator()
5508 ->getKind() == NestedNameSpecifier::TypeSpec
) ||
5509 state
.getDeclarator().getContext() ==
5510 DeclaratorContext::Member
||
5511 state
.getDeclarator().getContext() ==
5512 DeclaratorContext::LambdaExpr
;
5515 if (state
.getSema().getLangOpts().OpenCLCPlusPlus
&& IsClassMember()) {
5516 LangAS ASIdx
= LangAS::Default
;
5517 // Take address space attr if any and mark as invalid to avoid adding
5518 // them later while creating QualType.
5519 if (FTI
.MethodQualifiers
)
5520 for (ParsedAttr
&attr
: FTI
.MethodQualifiers
->getAttributes()) {
5521 LangAS ASIdxNew
= attr
.asOpenCLLangAS();
5522 if (DiagnoseMultipleAddrSpaceAttributes(S
, ASIdx
, ASIdxNew
,
5524 D
.setInvalidType(true);
5528 // If a class member function's address space is not set, set it to
5531 (ASIdx
== LangAS::Default
? S
.getDefaultCXXMethodAddrSpace()
5533 EPI
.TypeQuals
.addAddressSpace(AS
);
5535 T
= Context
.getFunctionType(T
, ParamTys
, EPI
);
5539 case DeclaratorChunk::MemberPointer
: {
5540 // The scope spec must refer to a class, or be dependent.
5541 CXXScopeSpec
&SS
= DeclType
.Mem
.Scope();
5544 // Handle pointer nullability.
5545 inferPointerNullability(SimplePointerKind::MemberPointer
, DeclType
.Loc
,
5546 DeclType
.EndLoc
, DeclType
.getAttrs(),
5547 state
.getDeclarator().getAttributePool());
5549 if (SS
.isInvalid()) {
5550 // Avoid emitting extra errors if we already errored on the scope.
5551 D
.setInvalidType(true);
5552 } else if (S
.isDependentScopeSpecifier(SS
) ||
5553 isa_and_nonnull
<CXXRecordDecl
>(S
.computeDeclContext(SS
))) {
5554 NestedNameSpecifier
*NNS
= SS
.getScopeRep();
5555 NestedNameSpecifier
*NNSPrefix
= NNS
->getPrefix();
5556 switch (NNS
->getKind()) {
5557 case NestedNameSpecifier::Identifier
:
5558 ClsType
= Context
.getDependentNameType(ETK_None
, NNSPrefix
,
5559 NNS
->getAsIdentifier());
5562 case NestedNameSpecifier::Namespace
:
5563 case NestedNameSpecifier::NamespaceAlias
:
5564 case NestedNameSpecifier::Global
:
5565 case NestedNameSpecifier::Super
:
5566 llvm_unreachable("Nested-name-specifier must name a type");
5568 case NestedNameSpecifier::TypeSpec
:
5569 case NestedNameSpecifier::TypeSpecWithTemplate
:
5570 ClsType
= QualType(NNS
->getAsType(), 0);
5571 // Note: if the NNS has a prefix and ClsType is a nondependent
5572 // TemplateSpecializationType, then the NNS prefix is NOT included
5573 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5574 // NOTE: in particular, no wrap occurs if ClsType already is an
5575 // Elaborated, DependentName, or DependentTemplateSpecialization.
5576 if (isa
<TemplateSpecializationType
>(NNS
->getAsType()))
5577 ClsType
= Context
.getElaboratedType(ETK_None
, NNSPrefix
, ClsType
);
5581 S
.Diag(DeclType
.Mem
.Scope().getBeginLoc(),
5582 diag::err_illegal_decl_mempointer_in_nonclass
)
5583 << (D
.getIdentifier() ? D
.getIdentifier()->getName() : "type name")
5584 << DeclType
.Mem
.Scope().getRange();
5585 D
.setInvalidType(true);
5588 if (!ClsType
.isNull())
5589 T
= S
.BuildMemberPointerType(T
, ClsType
, DeclType
.Loc
,
5593 D
.setInvalidType(true);
5594 } else if (DeclType
.Mem
.TypeQuals
) {
5595 T
= S
.BuildQualifiedType(T
, DeclType
.Loc
, DeclType
.Mem
.TypeQuals
);
5600 case DeclaratorChunk::Pipe
: {
5601 T
= S
.BuildReadPipeType(T
, DeclType
.Loc
);
5602 processTypeAttrs(state
, T
, TAL_DeclSpec
,
5603 D
.getMutableDeclSpec().getAttributes());
5609 D
.setInvalidType(true);
5613 // See if there are any attributes on this declarator chunk.
5614 processTypeAttrs(state
, T
, TAL_DeclChunk
, DeclType
.getAttrs());
5616 if (DeclType
.Kind
!= DeclaratorChunk::Paren
) {
5617 if (ExpectNoDerefChunk
&& !IsNoDerefableChunk(DeclType
))
5618 S
.Diag(DeclType
.Loc
, diag::warn_noderef_on_non_pointer_or_array
);
5620 ExpectNoDerefChunk
= state
.didParseNoDeref();
5624 if (ExpectNoDerefChunk
)
5625 S
.Diag(state
.getDeclarator().getBeginLoc(),
5626 diag::warn_noderef_on_non_pointer_or_array
);
5628 // GNU warning -Wstrict-prototypes
5629 // Warn if a function declaration or definition is without a prototype.
5630 // This warning is issued for all kinds of unprototyped function
5631 // declarations (i.e. function type typedef, function pointer etc.)
5633 // The empty list in a function declarator that is not part of a definition
5634 // of that function specifies that no information about the number or types
5635 // of the parameters is supplied.
5636 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5637 // function declarations whose behavior changes in C2x.
5638 if (!LangOpts
.requiresStrictPrototypes()) {
5639 bool IsBlock
= false;
5640 for (const DeclaratorChunk
&DeclType
: D
.type_objects()) {
5641 switch (DeclType
.Kind
) {
5642 case DeclaratorChunk::BlockPointer
:
5645 case DeclaratorChunk::Function
: {
5646 const DeclaratorChunk::FunctionTypeInfo
&FTI
= DeclType
.Fun
;
5647 // We suppress the warning when there's no LParen location, as this
5648 // indicates the declaration was an implicit declaration, which gets
5649 // warned about separately via -Wimplicit-function-declaration. We also
5650 // suppress the warning when we know the function has a prototype.
5651 if (!FTI
.hasPrototype
&& FTI
.NumParams
== 0 && !FTI
.isVariadic
&&
5652 FTI
.getLParenLoc().isValid())
5653 S
.Diag(DeclType
.Loc
, diag::warn_strict_prototypes
)
5655 << FixItHint::CreateInsertion(FTI
.getRParenLoc(), "void");
5665 assert(!T
.isNull() && "T must not be null after this point");
5667 if (LangOpts
.CPlusPlus
&& T
->isFunctionType()) {
5668 const FunctionProtoType
*FnTy
= T
->getAs
<FunctionProtoType
>();
5669 assert(FnTy
&& "Why oh why is there not a FunctionProtoType here?");
5672 // A cv-qualifier-seq shall only be part of the function type
5673 // for a nonstatic member function, the function type to which a pointer
5674 // to member refers, or the top-level function type of a function typedef
5677 // Core issue 547 also allows cv-qualifiers on function types that are
5678 // top-level template type arguments.
5679 enum { NonMember
, Member
, DeductionGuide
} Kind
= NonMember
;
5680 if (D
.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName
)
5681 Kind
= DeductionGuide
;
5682 else if (!D
.getCXXScopeSpec().isSet()) {
5683 if ((D
.getContext() == DeclaratorContext::Member
||
5684 D
.getContext() == DeclaratorContext::LambdaExpr
) &&
5685 !D
.getDeclSpec().isFriendSpecified())
5688 DeclContext
*DC
= S
.computeDeclContext(D
.getCXXScopeSpec());
5689 if (!DC
|| DC
->isRecord())
5693 // C++11 [dcl.fct]p6 (w/DR1417):
5694 // An attempt to specify a function type with a cv-qualifier-seq or a
5695 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5696 // - the function type for a non-static member function,
5697 // - the function type to which a pointer to member refers,
5698 // - the top-level function type of a function typedef declaration or
5699 // alias-declaration,
5700 // - the type-id in the default argument of a type-parameter, or
5701 // - the type-id of a template-argument for a type-parameter
5703 // FIXME: Checking this here is insufficient. We accept-invalid on:
5705 // template<typename T> struct S { void f(T); };
5706 // S<int() const> s;
5708 // ... for instance.
5709 if (IsQualifiedFunction
&&
5711 D
.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static
) &&
5712 !IsTypedefName
&& D
.getContext() != DeclaratorContext::TemplateArg
&&
5713 D
.getContext() != DeclaratorContext::TemplateTypeArg
) {
5714 SourceLocation Loc
= D
.getBeginLoc();
5715 SourceRange RemovalRange
;
5717 if (D
.isFunctionDeclarator(I
)) {
5718 SmallVector
<SourceLocation
, 4> RemovalLocs
;
5719 const DeclaratorChunk
&Chunk
= D
.getTypeObject(I
);
5720 assert(Chunk
.Kind
== DeclaratorChunk::Function
);
5722 if (Chunk
.Fun
.hasRefQualifier())
5723 RemovalLocs
.push_back(Chunk
.Fun
.getRefQualifierLoc());
5725 if (Chunk
.Fun
.hasMethodTypeQualifiers())
5726 Chunk
.Fun
.MethodQualifiers
->forEachQualifier(
5727 [&](DeclSpec::TQ TypeQual
, StringRef QualName
,
5728 SourceLocation SL
) { RemovalLocs
.push_back(SL
); });
5730 if (!RemovalLocs
.empty()) {
5731 llvm::sort(RemovalLocs
,
5732 BeforeThanCompare
<SourceLocation
>(S
.getSourceManager()));
5733 RemovalRange
= SourceRange(RemovalLocs
.front(), RemovalLocs
.back());
5734 Loc
= RemovalLocs
.front();
5738 S
.Diag(Loc
, diag::err_invalid_qualified_function_type
)
5739 << Kind
<< D
.isFunctionDeclarator() << T
5740 << getFunctionQualifiersAsString(FnTy
)
5741 << FixItHint::CreateRemoval(RemovalRange
);
5743 // Strip the cv-qualifiers and ref-qualifiers from the type.
5744 FunctionProtoType::ExtProtoInfo EPI
= FnTy
->getExtProtoInfo();
5745 EPI
.TypeQuals
.removeCVRQualifiers();
5746 EPI
.RefQualifier
= RQ_None
;
5748 T
= Context
.getFunctionType(FnTy
->getReturnType(), FnTy
->getParamTypes(),
5750 // Rebuild any parens around the identifier in the function type.
5751 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
5752 if (D
.getTypeObject(i
).Kind
!= DeclaratorChunk::Paren
)
5754 T
= S
.BuildParenType(T
);
5759 // Apply any undistributed attributes from the declaration or declarator.
5760 ParsedAttributesView NonSlidingAttrs
;
5761 for (ParsedAttr
&AL
: D
.getDeclarationAttributes()) {
5762 if (!AL
.slidesFromDeclToDeclSpecLegacyBehavior()) {
5763 NonSlidingAttrs
.addAtEnd(&AL
);
5766 processTypeAttrs(state
, T
, TAL_DeclName
, NonSlidingAttrs
);
5767 processTypeAttrs(state
, T
, TAL_DeclName
, D
.getAttributes());
5769 // Diagnose any ignored type attributes.
5770 state
.diagnoseIgnoredTypeAttrs(T
);
5772 // C++0x [dcl.constexpr]p9:
5773 // A constexpr specifier used in an object declaration declares the object
5775 if (D
.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr
&&
5779 // C++2a [dcl.fct]p4:
5780 // A parameter with volatile-qualified type is deprecated
5781 if (T
.isVolatileQualified() && S
.getLangOpts().CPlusPlus20
&&
5782 (D
.getContext() == DeclaratorContext::Prototype
||
5783 D
.getContext() == DeclaratorContext::LambdaExprParameter
))
5784 S
.Diag(D
.getIdentifierLoc(), diag::warn_deprecated_volatile_param
) << T
;
5786 // If there was an ellipsis in the declarator, the declaration declares a
5787 // parameter pack whose type may be a pack expansion type.
5788 if (D
.hasEllipsis()) {
5789 // C++0x [dcl.fct]p13:
5790 // A declarator-id or abstract-declarator containing an ellipsis shall
5791 // only be used in a parameter-declaration. Such a parameter-declaration
5792 // is a parameter pack (14.5.3). [...]
5793 switch (D
.getContext()) {
5794 case DeclaratorContext::Prototype
:
5795 case DeclaratorContext::LambdaExprParameter
:
5796 case DeclaratorContext::RequiresExpr
:
5797 // C++0x [dcl.fct]p13:
5798 // [...] When it is part of a parameter-declaration-clause, the
5799 // parameter pack is a function parameter pack (14.5.3). The type T
5800 // of the declarator-id of the function parameter pack shall contain
5801 // a template parameter pack; each template parameter pack in T is
5802 // expanded by the function parameter pack.
5804 // We represent function parameter packs as function parameters whose
5805 // type is a pack expansion.
5806 if (!T
->containsUnexpandedParameterPack() &&
5807 (!LangOpts
.CPlusPlus20
|| !T
->getContainedAutoType())) {
5808 S
.Diag(D
.getEllipsisLoc(),
5809 diag::err_function_parameter_pack_without_parameter_packs
)
5810 << T
<< D
.getSourceRange();
5811 D
.setEllipsisLoc(SourceLocation());
5813 T
= Context
.getPackExpansionType(T
, None
, /*ExpectPackInType=*/false);
5816 case DeclaratorContext::TemplateParam
:
5817 // C++0x [temp.param]p15:
5818 // If a template-parameter is a [...] is a parameter-declaration that
5819 // declares a parameter pack (8.3.5), then the template-parameter is a
5820 // template parameter pack (14.5.3).
5822 // Note: core issue 778 clarifies that, if there are any unexpanded
5823 // parameter packs in the type of the non-type template parameter, then
5824 // it expands those parameter packs.
5825 if (T
->containsUnexpandedParameterPack())
5826 T
= Context
.getPackExpansionType(T
, None
);
5828 S
.Diag(D
.getEllipsisLoc(),
5829 LangOpts
.CPlusPlus11
5830 ? diag::warn_cxx98_compat_variadic_templates
5831 : diag::ext_variadic_templates
);
5834 case DeclaratorContext::File
:
5835 case DeclaratorContext::KNRTypeList
:
5836 case DeclaratorContext::ObjCParameter
: // FIXME: special diagnostic here?
5837 case DeclaratorContext::ObjCResult
: // FIXME: special diagnostic here?
5838 case DeclaratorContext::TypeName
:
5839 case DeclaratorContext::FunctionalCast
:
5840 case DeclaratorContext::CXXNew
:
5841 case DeclaratorContext::AliasDecl
:
5842 case DeclaratorContext::AliasTemplate
:
5843 case DeclaratorContext::Member
:
5844 case DeclaratorContext::Block
:
5845 case DeclaratorContext::ForInit
:
5846 case DeclaratorContext::SelectionInit
:
5847 case DeclaratorContext::Condition
:
5848 case DeclaratorContext::CXXCatch
:
5849 case DeclaratorContext::ObjCCatch
:
5850 case DeclaratorContext::BlockLiteral
:
5851 case DeclaratorContext::LambdaExpr
:
5852 case DeclaratorContext::ConversionId
:
5853 case DeclaratorContext::TrailingReturn
:
5854 case DeclaratorContext::TrailingReturnVar
:
5855 case DeclaratorContext::TemplateArg
:
5856 case DeclaratorContext::TemplateTypeArg
:
5857 case DeclaratorContext::Association
:
5858 // FIXME: We may want to allow parameter packs in block-literal contexts
5860 S
.Diag(D
.getEllipsisLoc(),
5861 diag::err_ellipsis_in_declarator_not_parameter
);
5862 D
.setEllipsisLoc(SourceLocation());
5867 assert(!T
.isNull() && "T must not be null at the end of this function");
5868 if (D
.isInvalidType())
5869 return Context
.getTrivialTypeSourceInfo(T
);
5871 return GetTypeSourceInfoForDeclarator(state
, T
, TInfo
);
5874 /// GetTypeForDeclarator - Convert the type for the specified
5875 /// declarator to Type instances.
5877 /// The result of this call will never be null, but the associated
5878 /// type may be a null type if there's an unrecoverable error.
5879 TypeSourceInfo
*Sema::GetTypeForDeclarator(Declarator
&D
, Scope
*S
) {
5880 // Determine the type of the declarator. Not all forms of declarator
5883 TypeProcessingState
state(*this, D
);
5885 TypeSourceInfo
*ReturnTypeInfo
= nullptr;
5886 QualType T
= GetDeclSpecTypeForDeclarator(state
, ReturnTypeInfo
);
5887 if (D
.isPrototypeContext() && getLangOpts().ObjCAutoRefCount
)
5888 inferARCWriteback(state
, T
);
5890 return GetFullTypeForDeclarator(state
, T
, ReturnTypeInfo
);
5893 static void transferARCOwnershipToDeclSpec(Sema
&S
,
5894 QualType
&declSpecTy
,
5895 Qualifiers::ObjCLifetime ownership
) {
5896 if (declSpecTy
->isObjCRetainableType() &&
5897 declSpecTy
.getObjCLifetime() == Qualifiers::OCL_None
) {
5899 qs
.addObjCLifetime(ownership
);
5900 declSpecTy
= S
.Context
.getQualifiedType(declSpecTy
, qs
);
5904 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState
&state
,
5905 Qualifiers::ObjCLifetime ownership
,
5906 unsigned chunkIndex
) {
5907 Sema
&S
= state
.getSema();
5908 Declarator
&D
= state
.getDeclarator();
5910 // Look for an explicit lifetime attribute.
5911 DeclaratorChunk
&chunk
= D
.getTypeObject(chunkIndex
);
5912 if (chunk
.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership
))
5915 const char *attrStr
= nullptr;
5916 switch (ownership
) {
5917 case Qualifiers::OCL_None
: llvm_unreachable("no ownership!");
5918 case Qualifiers::OCL_ExplicitNone
: attrStr
= "none"; break;
5919 case Qualifiers::OCL_Strong
: attrStr
= "strong"; break;
5920 case Qualifiers::OCL_Weak
: attrStr
= "weak"; break;
5921 case Qualifiers::OCL_Autoreleasing
: attrStr
= "autoreleasing"; break;
5924 IdentifierLoc
*Arg
= new (S
.Context
) IdentifierLoc
;
5925 Arg
->Ident
= &S
.Context
.Idents
.get(attrStr
);
5926 Arg
->Loc
= SourceLocation();
5928 ArgsUnion
Args(Arg
);
5930 // If there wasn't one, add one (with an invalid source location
5931 // so that we don't make an AttributedType for it).
5932 ParsedAttr
*attr
= D
.getAttributePool().create(
5933 &S
.Context
.Idents
.get("objc_ownership"), SourceLocation(),
5934 /*scope*/ nullptr, SourceLocation(),
5935 /*args*/ &Args
, 1, ParsedAttr::AS_GNU
);
5936 chunk
.getAttrs().addAtEnd(attr
);
5937 // TODO: mark whether we did this inference?
5940 /// Used for transferring ownership in casts resulting in l-values.
5941 static void transferARCOwnership(TypeProcessingState
&state
,
5942 QualType
&declSpecTy
,
5943 Qualifiers::ObjCLifetime ownership
) {
5944 Sema
&S
= state
.getSema();
5945 Declarator
&D
= state
.getDeclarator();
5948 bool hasIndirection
= false;
5949 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
5950 DeclaratorChunk
&chunk
= D
.getTypeObject(i
);
5951 switch (chunk
.Kind
) {
5952 case DeclaratorChunk::Paren
:
5956 case DeclaratorChunk::Array
:
5957 case DeclaratorChunk::Reference
:
5958 case DeclaratorChunk::Pointer
:
5960 hasIndirection
= true;
5964 case DeclaratorChunk::BlockPointer
:
5966 transferARCOwnershipToDeclaratorChunk(state
, ownership
, i
);
5969 case DeclaratorChunk::Function
:
5970 case DeclaratorChunk::MemberPointer
:
5971 case DeclaratorChunk::Pipe
:
5979 DeclaratorChunk
&chunk
= D
.getTypeObject(inner
);
5980 if (chunk
.Kind
== DeclaratorChunk::Pointer
) {
5981 if (declSpecTy
->isObjCRetainableType())
5982 return transferARCOwnershipToDeclSpec(S
, declSpecTy
, ownership
);
5983 if (declSpecTy
->isObjCObjectType() && hasIndirection
)
5984 return transferARCOwnershipToDeclaratorChunk(state
, ownership
, inner
);
5986 assert(chunk
.Kind
== DeclaratorChunk::Array
||
5987 chunk
.Kind
== DeclaratorChunk::Reference
);
5988 return transferARCOwnershipToDeclSpec(S
, declSpecTy
, ownership
);
5992 TypeSourceInfo
*Sema::GetTypeForDeclaratorCast(Declarator
&D
, QualType FromTy
) {
5993 TypeProcessingState
state(*this, D
);
5995 TypeSourceInfo
*ReturnTypeInfo
= nullptr;
5996 QualType declSpecTy
= GetDeclSpecTypeForDeclarator(state
, ReturnTypeInfo
);
5998 if (getLangOpts().ObjC
) {
5999 Qualifiers::ObjCLifetime ownership
= Context
.getInnerObjCOwnership(FromTy
);
6000 if (ownership
!= Qualifiers::OCL_None
)
6001 transferARCOwnership(state
, declSpecTy
, ownership
);
6004 return GetFullTypeForDeclarator(state
, declSpecTy
, ReturnTypeInfo
);
6007 static void fillAttributedTypeLoc(AttributedTypeLoc TL
,
6008 TypeProcessingState
&State
) {
6009 TL
.setAttr(State
.takeAttrForAttributedType(TL
.getTypePtr()));
6013 class TypeSpecLocFiller
: public TypeLocVisitor
<TypeSpecLocFiller
> {
6015 ASTContext
&Context
;
6016 TypeProcessingState
&State
;
6020 TypeSpecLocFiller(Sema
&S
, ASTContext
&Context
, TypeProcessingState
&State
,
6022 : SemaRef(S
), Context(Context
), State(State
), DS(DS
) {}
6024 void VisitAttributedTypeLoc(AttributedTypeLoc TL
) {
6025 Visit(TL
.getModifiedLoc());
6026 fillAttributedTypeLoc(TL
, State
);
6028 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL
) {
6029 Visit(TL
.getWrappedLoc());
6031 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL
) {
6032 Visit(TL
.getInnerLoc());
6034 State
.getExpansionLocForMacroQualifiedType(TL
.getTypePtr()));
6036 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL
) {
6037 Visit(TL
.getUnqualifiedLoc());
6039 // Allow to fill pointee's type locations, e.g.,
6040 // int __attr * __attr * __attr *p;
6041 void VisitPointerTypeLoc(PointerTypeLoc TL
) { Visit(TL
.getNextTypeLoc()); }
6042 void VisitTypedefTypeLoc(TypedefTypeLoc TL
) {
6043 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6045 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL
) {
6046 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6047 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
6048 // addition field. What we have is good enough for display of location
6049 // of 'fixit' on interface name.
6050 TL
.setNameEndLoc(DS
.getEndLoc());
6052 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL
) {
6053 TypeSourceInfo
*RepTInfo
= nullptr;
6054 Sema::GetTypeFromParser(DS
.getRepAsType(), &RepTInfo
);
6055 TL
.copy(RepTInfo
->getTypeLoc());
6057 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL
) {
6058 TypeSourceInfo
*RepTInfo
= nullptr;
6059 Sema::GetTypeFromParser(DS
.getRepAsType(), &RepTInfo
);
6060 TL
.copy(RepTInfo
->getTypeLoc());
6062 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL
) {
6063 TypeSourceInfo
*TInfo
= nullptr;
6064 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6066 // If we got no declarator info from previous Sema routines,
6067 // just fill with the typespec loc.
6069 TL
.initialize(Context
, DS
.getTypeSpecTypeNameLoc());
6073 TypeLoc OldTL
= TInfo
->getTypeLoc();
6074 if (TInfo
->getType()->getAs
<ElaboratedType
>()) {
6075 ElaboratedTypeLoc ElabTL
= OldTL
.castAs
<ElaboratedTypeLoc
>();
6076 TemplateSpecializationTypeLoc NamedTL
= ElabTL
.getNamedTypeLoc()
6077 .castAs
<TemplateSpecializationTypeLoc
>();
6080 TL
.copy(OldTL
.castAs
<TemplateSpecializationTypeLoc
>());
6081 assert(TL
.getRAngleLoc() == OldTL
.castAs
<TemplateSpecializationTypeLoc
>().getRAngleLoc());
6085 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL
) {
6086 assert(DS
.getTypeSpecType() == DeclSpec::TST_typeofExpr
);
6087 TL
.setTypeofLoc(DS
.getTypeSpecTypeLoc());
6088 TL
.setParensRange(DS
.getTypeofParensRange());
6090 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL
) {
6091 assert(DS
.getTypeSpecType() == DeclSpec::TST_typeofType
);
6092 TL
.setTypeofLoc(DS
.getTypeSpecTypeLoc());
6093 TL
.setParensRange(DS
.getTypeofParensRange());
6094 assert(DS
.getRepAsType());
6095 TypeSourceInfo
*TInfo
= nullptr;
6096 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6097 TL
.setUnderlyingTInfo(TInfo
);
6099 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL
) {
6100 assert(DS
.getTypeSpecType() == DeclSpec::TST_decltype
);
6101 TL
.setDecltypeLoc(DS
.getTypeSpecTypeLoc());
6102 TL
.setRParenLoc(DS
.getTypeofParensRange().getEnd());
6104 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL
) {
6105 assert(DS
.isTransformTypeTrait(DS
.getTypeSpecType()));
6106 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6107 TL
.setParensRange(DS
.getTypeofParensRange());
6108 assert(DS
.getRepAsType());
6109 TypeSourceInfo
*TInfo
= nullptr;
6110 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6111 TL
.setUnderlyingTInfo(TInfo
);
6113 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL
) {
6114 // By default, use the source location of the type specifier.
6115 TL
.setBuiltinLoc(DS
.getTypeSpecTypeLoc());
6116 if (TL
.needsExtraLocalData()) {
6117 // Set info for the written builtin specifiers.
6118 TL
.getWrittenBuiltinSpecs() = DS
.getWrittenBuiltinSpecs();
6119 // Try to have a meaningful source location.
6120 if (TL
.getWrittenSignSpec() != TypeSpecifierSign::Unspecified
)
6121 TL
.expandBuiltinRange(DS
.getTypeSpecSignLoc());
6122 if (TL
.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified
)
6123 TL
.expandBuiltinRange(DS
.getTypeSpecWidthRange());
6126 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL
) {
6127 if (DS
.getTypeSpecType() == TST_typename
) {
6128 TypeSourceInfo
*TInfo
= nullptr;
6129 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6131 if (auto ETL
= TInfo
->getTypeLoc().getAs
<ElaboratedTypeLoc
>()) {
6136 const ElaboratedType
*T
= TL
.getTypePtr();
6137 TL
.setElaboratedKeywordLoc(T
->getKeyword() != ETK_None
6138 ? DS
.getTypeSpecTypeLoc()
6139 : SourceLocation());
6140 const CXXScopeSpec
& SS
= DS
.getTypeSpecScope();
6141 TL
.setQualifierLoc(SS
.getWithLocInContext(Context
));
6142 Visit(TL
.getNextTypeLoc().getUnqualifiedLoc());
6144 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL
) {
6145 assert(DS
.getTypeSpecType() == TST_typename
);
6146 TypeSourceInfo
*TInfo
= nullptr;
6147 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6149 TL
.copy(TInfo
->getTypeLoc().castAs
<DependentNameTypeLoc
>());
6151 void VisitDependentTemplateSpecializationTypeLoc(
6152 DependentTemplateSpecializationTypeLoc TL
) {
6153 assert(DS
.getTypeSpecType() == TST_typename
);
6154 TypeSourceInfo
*TInfo
= nullptr;
6155 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6158 TInfo
->getTypeLoc().castAs
<DependentTemplateSpecializationTypeLoc
>());
6160 void VisitAutoTypeLoc(AutoTypeLoc TL
) {
6161 assert(DS
.getTypeSpecType() == TST_auto
||
6162 DS
.getTypeSpecType() == TST_decltype_auto
||
6163 DS
.getTypeSpecType() == TST_auto_type
||
6164 DS
.getTypeSpecType() == TST_unspecified
);
6165 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6166 if (DS
.getTypeSpecType() == TST_decltype_auto
)
6167 TL
.setRParenLoc(DS
.getTypeofParensRange().getEnd());
6168 if (!DS
.isConstrainedAuto())
6170 TemplateIdAnnotation
*TemplateId
= DS
.getRepAsTemplateId();
6173 if (DS
.getTypeSpecScope().isNotEmpty())
6174 TL
.setNestedNameSpecifierLoc(
6175 DS
.getTypeSpecScope().getWithLocInContext(Context
));
6177 TL
.setNestedNameSpecifierLoc(NestedNameSpecifierLoc());
6178 TL
.setTemplateKWLoc(TemplateId
->TemplateKWLoc
);
6179 TL
.setConceptNameLoc(TemplateId
->TemplateNameLoc
);
6180 TL
.setFoundDecl(nullptr);
6181 TL
.setLAngleLoc(TemplateId
->LAngleLoc
);
6182 TL
.setRAngleLoc(TemplateId
->RAngleLoc
);
6183 if (TemplateId
->NumArgs
== 0)
6185 TemplateArgumentListInfo TemplateArgsInfo
;
6186 ASTTemplateArgsPtr
TemplateArgsPtr(TemplateId
->getTemplateArgs(),
6187 TemplateId
->NumArgs
);
6188 SemaRef
.translateTemplateArguments(TemplateArgsPtr
, TemplateArgsInfo
);
6189 for (unsigned I
= 0; I
< TemplateId
->NumArgs
; ++I
)
6190 TL
.setArgLocInfo(I
, TemplateArgsInfo
.arguments()[I
].getLocInfo());
6192 void VisitTagTypeLoc(TagTypeLoc TL
) {
6193 TL
.setNameLoc(DS
.getTypeSpecTypeNameLoc());
6195 void VisitAtomicTypeLoc(AtomicTypeLoc TL
) {
6196 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6197 // or an _Atomic qualifier.
6198 if (DS
.getTypeSpecType() == DeclSpec::TST_atomic
) {
6199 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6200 TL
.setParensRange(DS
.getTypeofParensRange());
6202 TypeSourceInfo
*TInfo
= nullptr;
6203 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6205 TL
.getValueLoc().initializeFullCopy(TInfo
->getTypeLoc());
6207 TL
.setKWLoc(DS
.getAtomicSpecLoc());
6208 // No parens, to indicate this was spelled as an _Atomic qualifier.
6209 TL
.setParensRange(SourceRange());
6210 Visit(TL
.getValueLoc());
6214 void VisitPipeTypeLoc(PipeTypeLoc TL
) {
6215 TL
.setKWLoc(DS
.getTypeSpecTypeLoc());
6217 TypeSourceInfo
*TInfo
= nullptr;
6218 Sema::GetTypeFromParser(DS
.getRepAsType(), &TInfo
);
6219 TL
.getValueLoc().initializeFullCopy(TInfo
->getTypeLoc());
6222 void VisitExtIntTypeLoc(BitIntTypeLoc TL
) {
6223 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6226 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL
) {
6227 TL
.setNameLoc(DS
.getTypeSpecTypeLoc());
6230 void VisitTypeLoc(TypeLoc TL
) {
6231 // FIXME: add other typespec types and change this to an assert.
6232 TL
.initialize(Context
, DS
.getTypeSpecTypeLoc());
6236 class DeclaratorLocFiller
: public TypeLocVisitor
<DeclaratorLocFiller
> {
6237 ASTContext
&Context
;
6238 TypeProcessingState
&State
;
6239 const DeclaratorChunk
&Chunk
;
6242 DeclaratorLocFiller(ASTContext
&Context
, TypeProcessingState
&State
,
6243 const DeclaratorChunk
&Chunk
)
6244 : Context(Context
), State(State
), Chunk(Chunk
) {}
6246 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL
) {
6247 llvm_unreachable("qualified type locs not expected here!");
6249 void VisitDecayedTypeLoc(DecayedTypeLoc TL
) {
6250 llvm_unreachable("decayed type locs not expected here!");
6253 void VisitAttributedTypeLoc(AttributedTypeLoc TL
) {
6254 fillAttributedTypeLoc(TL
, State
);
6256 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL
) {
6259 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL
) {
6262 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL
) {
6263 assert(Chunk
.Kind
== DeclaratorChunk::BlockPointer
);
6264 TL
.setCaretLoc(Chunk
.Loc
);
6266 void VisitPointerTypeLoc(PointerTypeLoc TL
) {
6267 assert(Chunk
.Kind
== DeclaratorChunk::Pointer
);
6268 TL
.setStarLoc(Chunk
.Loc
);
6270 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL
) {
6271 assert(Chunk
.Kind
== DeclaratorChunk::Pointer
);
6272 TL
.setStarLoc(Chunk
.Loc
);
6274 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL
) {
6275 assert(Chunk
.Kind
== DeclaratorChunk::MemberPointer
);
6276 const CXXScopeSpec
& SS
= Chunk
.Mem
.Scope();
6277 NestedNameSpecifierLoc NNSLoc
= SS
.getWithLocInContext(Context
);
6279 const Type
* ClsTy
= TL
.getClass();
6280 QualType ClsQT
= QualType(ClsTy
, 0);
6281 TypeSourceInfo
*ClsTInfo
= Context
.CreateTypeSourceInfo(ClsQT
, 0);
6282 // Now copy source location info into the type loc component.
6283 TypeLoc ClsTL
= ClsTInfo
->getTypeLoc();
6284 switch (NNSLoc
.getNestedNameSpecifier()->getKind()) {
6285 case NestedNameSpecifier::Identifier
:
6286 assert(isa
<DependentNameType
>(ClsTy
) && "Unexpected TypeLoc");
6288 DependentNameTypeLoc DNTLoc
= ClsTL
.castAs
<DependentNameTypeLoc
>();
6289 DNTLoc
.setElaboratedKeywordLoc(SourceLocation());
6290 DNTLoc
.setQualifierLoc(NNSLoc
.getPrefix());
6291 DNTLoc
.setNameLoc(NNSLoc
.getLocalBeginLoc());
6295 case NestedNameSpecifier::TypeSpec
:
6296 case NestedNameSpecifier::TypeSpecWithTemplate
:
6297 if (isa
<ElaboratedType
>(ClsTy
)) {
6298 ElaboratedTypeLoc ETLoc
= ClsTL
.castAs
<ElaboratedTypeLoc
>();
6299 ETLoc
.setElaboratedKeywordLoc(SourceLocation());
6300 ETLoc
.setQualifierLoc(NNSLoc
.getPrefix());
6301 TypeLoc NamedTL
= ETLoc
.getNamedTypeLoc();
6302 NamedTL
.initializeFullCopy(NNSLoc
.getTypeLoc());
6304 ClsTL
.initializeFullCopy(NNSLoc
.getTypeLoc());
6308 case NestedNameSpecifier::Namespace
:
6309 case NestedNameSpecifier::NamespaceAlias
:
6310 case NestedNameSpecifier::Global
:
6311 case NestedNameSpecifier::Super
:
6312 llvm_unreachable("Nested-name-specifier must name a type");
6315 // Finally fill in MemberPointerLocInfo fields.
6316 TL
.setStarLoc(Chunk
.Mem
.StarLoc
);
6317 TL
.setClassTInfo(ClsTInfo
);
6319 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL
) {
6320 assert(Chunk
.Kind
== DeclaratorChunk::Reference
);
6321 // 'Amp' is misleading: this might have been originally
6322 /// spelled with AmpAmp.
6323 TL
.setAmpLoc(Chunk
.Loc
);
6325 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL
) {
6326 assert(Chunk
.Kind
== DeclaratorChunk::Reference
);
6327 assert(!Chunk
.Ref
.LValueRef
);
6328 TL
.setAmpAmpLoc(Chunk
.Loc
);
6330 void VisitArrayTypeLoc(ArrayTypeLoc TL
) {
6331 assert(Chunk
.Kind
== DeclaratorChunk::Array
);
6332 TL
.setLBracketLoc(Chunk
.Loc
);
6333 TL
.setRBracketLoc(Chunk
.EndLoc
);
6334 TL
.setSizeExpr(static_cast<Expr
*>(Chunk
.Arr
.NumElts
));
6336 void VisitFunctionTypeLoc(FunctionTypeLoc TL
) {
6337 assert(Chunk
.Kind
== DeclaratorChunk::Function
);
6338 TL
.setLocalRangeBegin(Chunk
.Loc
);
6339 TL
.setLocalRangeEnd(Chunk
.EndLoc
);
6341 const DeclaratorChunk::FunctionTypeInfo
&FTI
= Chunk
.Fun
;
6342 TL
.setLParenLoc(FTI
.getLParenLoc());
6343 TL
.setRParenLoc(FTI
.getRParenLoc());
6344 for (unsigned i
= 0, e
= TL
.getNumParams(), tpi
= 0; i
!= e
; ++i
) {
6345 ParmVarDecl
*Param
= cast
<ParmVarDecl
>(FTI
.Params
[i
].Param
);
6346 TL
.setParam(tpi
++, Param
);
6348 TL
.setExceptionSpecRange(FTI
.getExceptionSpecRange());
6350 void VisitParenTypeLoc(ParenTypeLoc TL
) {
6351 assert(Chunk
.Kind
== DeclaratorChunk::Paren
);
6352 TL
.setLParenLoc(Chunk
.Loc
);
6353 TL
.setRParenLoc(Chunk
.EndLoc
);
6355 void VisitPipeTypeLoc(PipeTypeLoc TL
) {
6356 assert(Chunk
.Kind
== DeclaratorChunk::Pipe
);
6357 TL
.setKWLoc(Chunk
.Loc
);
6359 void VisitBitIntTypeLoc(BitIntTypeLoc TL
) {
6360 TL
.setNameLoc(Chunk
.Loc
);
6362 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL
) {
6363 TL
.setExpansionLoc(Chunk
.Loc
);
6365 void VisitVectorTypeLoc(VectorTypeLoc TL
) { TL
.setNameLoc(Chunk
.Loc
); }
6366 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL
) {
6367 TL
.setNameLoc(Chunk
.Loc
);
6369 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL
) {
6370 TL
.setNameLoc(Chunk
.Loc
);
6373 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL
) {
6374 TL
.setNameLoc(Chunk
.Loc
);
6377 void VisitTypeLoc(TypeLoc TL
) {
6378 llvm_unreachable("unsupported TypeLoc kind in declarator!");
6381 } // end anonymous namespace
6383 static void fillAtomicQualLoc(AtomicTypeLoc ATL
, const DeclaratorChunk
&Chunk
) {
6385 switch (Chunk
.Kind
) {
6386 case DeclaratorChunk::Function
:
6387 case DeclaratorChunk::Array
:
6388 case DeclaratorChunk::Paren
:
6389 case DeclaratorChunk::Pipe
:
6390 llvm_unreachable("cannot be _Atomic qualified");
6392 case DeclaratorChunk::Pointer
:
6393 Loc
= Chunk
.Ptr
.AtomicQualLoc
;
6396 case DeclaratorChunk::BlockPointer
:
6397 case DeclaratorChunk::Reference
:
6398 case DeclaratorChunk::MemberPointer
:
6399 // FIXME: Provide a source location for the _Atomic keyword.
6404 ATL
.setParensRange(SourceRange());
6408 fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL
,
6409 const ParsedAttributesView
&Attrs
) {
6410 for (const ParsedAttr
&AL
: Attrs
) {
6411 if (AL
.getKind() == ParsedAttr::AT_AddressSpace
) {
6412 DASTL
.setAttrNameLoc(AL
.getLoc());
6413 DASTL
.setAttrExprOperand(AL
.getArgAsExpr(0));
6414 DASTL
.setAttrOperandParensRange(SourceRange());
6420 "no address_space attribute found at the expected location!");
6423 static void fillMatrixTypeLoc(MatrixTypeLoc MTL
,
6424 const ParsedAttributesView
&Attrs
) {
6425 for (const ParsedAttr
&AL
: Attrs
) {
6426 if (AL
.getKind() == ParsedAttr::AT_MatrixType
) {
6427 MTL
.setAttrNameLoc(AL
.getLoc());
6428 MTL
.setAttrRowOperand(AL
.getArgAsExpr(0));
6429 MTL
.setAttrColumnOperand(AL
.getArgAsExpr(1));
6430 MTL
.setAttrOperandParensRange(SourceRange());
6435 llvm_unreachable("no matrix_type attribute found at the expected location!");
6438 /// Create and instantiate a TypeSourceInfo with type source information.
6440 /// \param T QualType referring to the type as written in source code.
6442 /// \param ReturnTypeInfo For declarators whose return type does not show
6443 /// up in the normal place in the declaration specifiers (such as a C++
6444 /// conversion function), this pointer will refer to a type source information
6445 /// for that return type.
6446 static TypeSourceInfo
*
6447 GetTypeSourceInfoForDeclarator(TypeProcessingState
&State
,
6448 QualType T
, TypeSourceInfo
*ReturnTypeInfo
) {
6449 Sema
&S
= State
.getSema();
6450 Declarator
&D
= State
.getDeclarator();
6452 TypeSourceInfo
*TInfo
= S
.Context
.CreateTypeSourceInfo(T
);
6453 UnqualTypeLoc CurrTL
= TInfo
->getTypeLoc().getUnqualifiedLoc();
6455 // Handle parameter packs whose type is a pack expansion.
6456 if (isa
<PackExpansionType
>(T
)) {
6457 CurrTL
.castAs
<PackExpansionTypeLoc
>().setEllipsisLoc(D
.getEllipsisLoc());
6458 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6461 for (unsigned i
= 0, e
= D
.getNumTypeObjects(); i
!= e
; ++i
) {
6462 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6463 // declarator chunk.
6464 if (AtomicTypeLoc ATL
= CurrTL
.getAs
<AtomicTypeLoc
>()) {
6465 fillAtomicQualLoc(ATL
, D
.getTypeObject(i
));
6466 CurrTL
= ATL
.getValueLoc().getUnqualifiedLoc();
6469 while (MacroQualifiedTypeLoc TL
= CurrTL
.getAs
<MacroQualifiedTypeLoc
>()) {
6471 State
.getExpansionLocForMacroQualifiedType(TL
.getTypePtr()));
6472 CurrTL
= TL
.getNextTypeLoc().getUnqualifiedLoc();
6475 while (AttributedTypeLoc TL
= CurrTL
.getAs
<AttributedTypeLoc
>()) {
6476 fillAttributedTypeLoc(TL
, State
);
6477 CurrTL
= TL
.getNextTypeLoc().getUnqualifiedLoc();
6480 while (DependentAddressSpaceTypeLoc TL
=
6481 CurrTL
.getAs
<DependentAddressSpaceTypeLoc
>()) {
6482 fillDependentAddressSpaceTypeLoc(TL
, D
.getTypeObject(i
).getAttrs());
6483 CurrTL
= TL
.getPointeeTypeLoc().getUnqualifiedLoc();
6486 if (MatrixTypeLoc TL
= CurrTL
.getAs
<MatrixTypeLoc
>())
6487 fillMatrixTypeLoc(TL
, D
.getTypeObject(i
).getAttrs());
6489 // FIXME: Ordering here?
6490 while (AdjustedTypeLoc TL
= CurrTL
.getAs
<AdjustedTypeLoc
>())
6491 CurrTL
= TL
.getNextTypeLoc().getUnqualifiedLoc();
6493 DeclaratorLocFiller(S
.Context
, State
, D
.getTypeObject(i
)).Visit(CurrTL
);
6494 CurrTL
= CurrTL
.getNextTypeLoc().getUnqualifiedLoc();
6497 // If we have different source information for the return type, use
6498 // that. This really only applies to C++ conversion functions.
6499 if (ReturnTypeInfo
) {
6500 TypeLoc TL
= ReturnTypeInfo
->getTypeLoc();
6501 assert(TL
.getFullDataSize() == CurrTL
.getFullDataSize());
6502 memcpy(CurrTL
.getOpaqueData(), TL
.getOpaqueData(), TL
.getFullDataSize());
6504 TypeSpecLocFiller(S
, S
.Context
, State
, D
.getDeclSpec()).Visit(CurrTL
);
6510 /// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6511 ParsedType
Sema::CreateParsedType(QualType T
, TypeSourceInfo
*TInfo
) {
6512 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6513 // and Sema during declaration parsing. Try deallocating/caching them when
6514 // it's appropriate, instead of allocating them and keeping them around.
6515 LocInfoType
*LocT
= (LocInfoType
*)BumpAlloc
.Allocate(sizeof(LocInfoType
),
6517 new (LocT
) LocInfoType(T
, TInfo
);
6518 assert(LocT
->getTypeClass() != T
->getTypeClass() &&
6519 "LocInfoType's TypeClass conflicts with an existing Type class");
6520 return ParsedType::make(QualType(LocT
, 0));
6523 void LocInfoType::getAsStringInternal(std::string
&Str
,
6524 const PrintingPolicy
&Policy
) const {
6525 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6526 " was used directly instead of getting the QualType through"
6527 " GetTypeFromParser");
6530 TypeResult
Sema::ActOnTypeName(Scope
*S
, Declarator
&D
) {
6531 // C99 6.7.6: Type names have no identifier. This is already validated by
6533 assert(D
.getIdentifier() == nullptr &&
6534 "Type name should have no identifier!");
6536 TypeSourceInfo
*TInfo
= GetTypeForDeclarator(D
, S
);
6537 QualType T
= TInfo
->getType();
6538 if (D
.isInvalidType())
6541 // Make sure there are no unused decl attributes on the declarator.
6542 // We don't want to do this for ObjC parameters because we're going
6543 // to apply them to the actual parameter declaration.
6544 // Likewise, we don't want to do this for alias declarations, because
6545 // we are actually going to build a declaration from this eventually.
6546 if (D
.getContext() != DeclaratorContext::ObjCParameter
&&
6547 D
.getContext() != DeclaratorContext::AliasDecl
&&
6548 D
.getContext() != DeclaratorContext::AliasTemplate
)
6549 checkUnusedDeclAttributes(D
);
6551 if (getLangOpts().CPlusPlus
) {
6552 // Check that there are no default arguments (C++ only).
6553 CheckExtraCXXDefaultArguments(D
);
6556 return CreateParsedType(T
, TInfo
);
6559 ParsedType
Sema::ActOnObjCInstanceType(SourceLocation Loc
) {
6560 QualType T
= Context
.getObjCInstanceType();
6561 TypeSourceInfo
*TInfo
= Context
.getTrivialTypeSourceInfo(T
, Loc
);
6562 return CreateParsedType(T
, TInfo
);
6565 //===----------------------------------------------------------------------===//
6566 // Type Attribute Processing
6567 //===----------------------------------------------------------------------===//
6569 /// Build an AddressSpace index from a constant expression and diagnose any
6570 /// errors related to invalid address_spaces. Returns true on successfully
6571 /// building an AddressSpace index.
6572 static bool BuildAddressSpaceIndex(Sema
&S
, LangAS
&ASIdx
,
6573 const Expr
*AddrSpace
,
6574 SourceLocation AttrLoc
) {
6575 if (!AddrSpace
->isValueDependent()) {
6576 Optional
<llvm::APSInt
> OptAddrSpace
=
6577 AddrSpace
->getIntegerConstantExpr(S
.Context
);
6578 if (!OptAddrSpace
) {
6579 S
.Diag(AttrLoc
, diag::err_attribute_argument_type
)
6580 << "'address_space'" << AANT_ArgumentIntegerConstant
6581 << AddrSpace
->getSourceRange();
6584 llvm::APSInt
&addrSpace
= *OptAddrSpace
;
6587 if (addrSpace
.isSigned()) {
6588 if (addrSpace
.isNegative()) {
6589 S
.Diag(AttrLoc
, diag::err_attribute_address_space_negative
)
6590 << AddrSpace
->getSourceRange();
6593 addrSpace
.setIsSigned(false);
6596 llvm::APSInt
max(addrSpace
.getBitWidth());
6598 Qualifiers::MaxAddressSpace
- (unsigned)LangAS::FirstTargetAddressSpace
;
6600 if (addrSpace
> max
) {
6601 S
.Diag(AttrLoc
, diag::err_attribute_address_space_too_high
)
6602 << (unsigned)max
.getZExtValue() << AddrSpace
->getSourceRange();
6607 getLangASFromTargetAS(static_cast<unsigned>(addrSpace
.getZExtValue()));
6611 // Default value for DependentAddressSpaceTypes
6612 ASIdx
= LangAS::Default
;
6616 /// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6617 /// is uninstantiated. If instantiated it will apply the appropriate address
6618 /// space to the type. This function allows dependent template variables to be
6619 /// used in conjunction with the address_space attribute
6620 QualType
Sema::BuildAddressSpaceAttr(QualType
&T
, LangAS ASIdx
, Expr
*AddrSpace
,
6621 SourceLocation AttrLoc
) {
6622 if (!AddrSpace
->isValueDependent()) {
6623 if (DiagnoseMultipleAddrSpaceAttributes(*this, T
.getAddressSpace(), ASIdx
,
6627 return Context
.getAddrSpaceQualType(T
, ASIdx
);
6630 // A check with similar intentions as checking if a type already has an
6631 // address space except for on a dependent types, basically if the
6632 // current type is already a DependentAddressSpaceType then its already
6633 // lined up to have another address space on it and we can't have
6634 // multiple address spaces on the one pointer indirection
6635 if (T
->getAs
<DependentAddressSpaceType
>()) {
6636 Diag(AttrLoc
, diag::err_attribute_address_multiple_qualifiers
);
6640 return Context
.getDependentAddressSpaceType(T
, AddrSpace
, AttrLoc
);
6643 QualType
Sema::BuildAddressSpaceAttr(QualType
&T
, Expr
*AddrSpace
,
6644 SourceLocation AttrLoc
) {
6646 if (!BuildAddressSpaceIndex(*this, ASIdx
, AddrSpace
, AttrLoc
))
6648 return BuildAddressSpaceAttr(T
, ASIdx
, AddrSpace
, AttrLoc
);
6651 static void HandleBTFTypeTagAttribute(QualType
&Type
, const ParsedAttr
&Attr
,
6652 TypeProcessingState
&State
) {
6653 Sema
&S
= State
.getSema();
6655 // Check the number of attribute arguments.
6656 if (Attr
.getNumArgs() != 1) {
6657 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
6663 // Ensure the argument is a string.
6664 auto *StrLiteral
= dyn_cast
<StringLiteral
>(Attr
.getArgAsExpr(0));
6666 S
.Diag(Attr
.getLoc(), diag::err_attribute_argument_type
)
6667 << Attr
<< AANT_ArgumentString
;
6672 ASTContext
&Ctx
= S
.Context
;
6673 StringRef BTFTypeTag
= StrLiteral
->getString();
6674 Type
= State
.getBTFTagAttributedType(
6675 ::new (Ctx
) BTFTypeTagAttr(Ctx
, Attr
, BTFTypeTag
), Type
);
6678 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6679 /// specified type. The attribute contains 1 argument, the id of the address
6680 /// space for the type.
6681 static void HandleAddressSpaceTypeAttribute(QualType
&Type
,
6682 const ParsedAttr
&Attr
,
6683 TypeProcessingState
&State
) {
6684 Sema
&S
= State
.getSema();
6686 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6687 // qualified by an address-space qualifier."
6688 if (Type
->isFunctionType()) {
6689 S
.Diag(Attr
.getLoc(), diag::err_attribute_address_function_type
);
6695 if (Attr
.getKind() == ParsedAttr::AT_AddressSpace
) {
6697 // Check the attribute arguments.
6698 if (Attr
.getNumArgs() != 1) {
6699 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
6705 Expr
*ASArgExpr
= static_cast<Expr
*>(Attr
.getArgAsExpr(0));
6707 if (!BuildAddressSpaceIndex(S
, ASIdx
, ASArgExpr
, Attr
.getLoc())) {
6712 ASTContext
&Ctx
= S
.Context
;
6714 ::new (Ctx
) AddressSpaceAttr(Ctx
, Attr
, static_cast<unsigned>(ASIdx
));
6716 // If the expression is not value dependent (not templated), then we can
6717 // apply the address space qualifiers just to the equivalent type.
6718 // Otherwise, we make an AttributedType with the modified and equivalent
6719 // type the same, and wrap it in a DependentAddressSpaceType. When this
6720 // dependent type is resolved, the qualifier is added to the equivalent type
6723 if (!ASArgExpr
->isValueDependent()) {
6724 QualType EquivType
=
6725 S
.BuildAddressSpaceAttr(Type
, ASIdx
, ASArgExpr
, Attr
.getLoc());
6726 if (EquivType
.isNull()) {
6730 T
= State
.getAttributedType(ASAttr
, Type
, EquivType
);
6732 T
= State
.getAttributedType(ASAttr
, Type
, Type
);
6733 T
= S
.BuildAddressSpaceAttr(T
, ASIdx
, ASArgExpr
, Attr
.getLoc());
6741 // The keyword-based type attributes imply which address space to use.
6742 ASIdx
= S
.getLangOpts().SYCLIsDevice
? Attr
.asSYCLLangAS()
6743 : Attr
.asOpenCLLangAS();
6745 if (ASIdx
== LangAS::Default
)
6746 llvm_unreachable("Invalid address space");
6748 if (DiagnoseMultipleAddrSpaceAttributes(S
, Type
.getAddressSpace(), ASIdx
,
6754 Type
= S
.Context
.getAddrSpaceQualType(Type
, ASIdx
);
6758 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
6759 /// attribute on the specified type.
6761 /// Returns 'true' if the attribute was handled.
6762 static bool handleObjCOwnershipTypeAttr(TypeProcessingState
&state
,
6763 ParsedAttr
&attr
, QualType
&type
) {
6764 bool NonObjCPointer
= false;
6766 if (!type
->isDependentType() && !type
->isUndeducedType()) {
6767 if (const PointerType
*ptr
= type
->getAs
<PointerType
>()) {
6768 QualType pointee
= ptr
->getPointeeType();
6769 if (pointee
->isObjCRetainableType() || pointee
->isPointerType())
6771 // It is important not to lose the source info that there was an attribute
6772 // applied to non-objc pointer. We will create an attributed type but
6773 // its type will be the same as the original type.
6774 NonObjCPointer
= true;
6775 } else if (!type
->isObjCRetainableType()) {
6779 // Don't accept an ownership attribute in the declspec if it would
6780 // just be the return type of a block pointer.
6781 if (state
.isProcessingDeclSpec()) {
6782 Declarator
&D
= state
.getDeclarator();
6783 if (maybeMovePastReturnType(D
, D
.getNumTypeObjects(),
6784 /*onlyBlockPointers=*/true))
6789 Sema
&S
= state
.getSema();
6790 SourceLocation AttrLoc
= attr
.getLoc();
6791 if (AttrLoc
.isMacroID())
6793 S
.getSourceManager().getImmediateExpansionRange(AttrLoc
).getBegin();
6795 if (!attr
.isArgIdent(0)) {
6796 S
.Diag(AttrLoc
, diag::err_attribute_argument_type
) << attr
6797 << AANT_ArgumentString
;
6802 IdentifierInfo
*II
= attr
.getArgAsIdent(0)->Ident
;
6803 Qualifiers::ObjCLifetime lifetime
;
6804 if (II
->isStr("none"))
6805 lifetime
= Qualifiers::OCL_ExplicitNone
;
6806 else if (II
->isStr("strong"))
6807 lifetime
= Qualifiers::OCL_Strong
;
6808 else if (II
->isStr("weak"))
6809 lifetime
= Qualifiers::OCL_Weak
;
6810 else if (II
->isStr("autoreleasing"))
6811 lifetime
= Qualifiers::OCL_Autoreleasing
;
6813 S
.Diag(AttrLoc
, diag::warn_attribute_type_not_supported
) << attr
<< II
;
6818 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
6819 // outside of ARC mode.
6820 if (!S
.getLangOpts().ObjCAutoRefCount
&&
6821 lifetime
!= Qualifiers::OCL_Weak
&&
6822 lifetime
!= Qualifiers::OCL_ExplicitNone
) {
6826 SplitQualType underlyingType
= type
.split();
6828 // Check for redundant/conflicting ownership qualifiers.
6829 if (Qualifiers::ObjCLifetime previousLifetime
6830 = type
.getQualifiers().getObjCLifetime()) {
6831 // If it's written directly, that's an error.
6832 if (S
.Context
.hasDirectOwnershipQualifier(type
)) {
6833 S
.Diag(AttrLoc
, diag::err_attr_objc_ownership_redundant
)
6838 // Otherwise, if the qualifiers actually conflict, pull sugar off
6839 // and remove the ObjCLifetime qualifiers.
6840 if (previousLifetime
!= lifetime
) {
6841 // It's possible to have multiple local ObjCLifetime qualifiers. We
6842 // can't stop after we reach a type that is directly qualified.
6843 const Type
*prevTy
= nullptr;
6844 while (!prevTy
|| prevTy
!= underlyingType
.Ty
) {
6845 prevTy
= underlyingType
.Ty
;
6846 underlyingType
= underlyingType
.getSingleStepDesugaredType();
6848 underlyingType
.Quals
.removeObjCLifetime();
6852 underlyingType
.Quals
.addObjCLifetime(lifetime
);
6854 if (NonObjCPointer
) {
6855 StringRef name
= attr
.getAttrName()->getName();
6857 case Qualifiers::OCL_None
:
6858 case Qualifiers::OCL_ExplicitNone
:
6860 case Qualifiers::OCL_Strong
: name
= "__strong"; break;
6861 case Qualifiers::OCL_Weak
: name
= "__weak"; break;
6862 case Qualifiers::OCL_Autoreleasing
: name
= "__autoreleasing"; break;
6864 S
.Diag(AttrLoc
, diag::warn_type_attribute_wrong_type
) << name
6865 << TDS_ObjCObjOrBlock
<< type
;
6868 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
6869 // because having both 'T' and '__unsafe_unretained T' exist in the type
6870 // system causes unfortunate widespread consistency problems. (For example,
6871 // they're not considered compatible types, and we mangle them identicially
6872 // as template arguments.) These problems are all individually fixable,
6873 // but it's easier to just not add the qualifier and instead sniff it out
6874 // in specific places using isObjCInertUnsafeUnretainedType().
6876 // Doing this does means we miss some trivial consistency checks that
6877 // would've triggered in ARC, but that's better than trying to solve all
6878 // the coexistence problems with __unsafe_unretained.
6879 if (!S
.getLangOpts().ObjCAutoRefCount
&&
6880 lifetime
== Qualifiers::OCL_ExplicitNone
) {
6881 type
= state
.getAttributedType(
6882 createSimpleAttr
<ObjCInertUnsafeUnretainedAttr
>(S
.Context
, attr
),
6887 QualType origType
= type
;
6888 if (!NonObjCPointer
)
6889 type
= S
.Context
.getQualifiedType(underlyingType
);
6891 // If we have a valid source location for the attribute, use an
6892 // AttributedType instead.
6893 if (AttrLoc
.isValid()) {
6894 type
= state
.getAttributedType(::new (S
.Context
)
6895 ObjCOwnershipAttr(S
.Context
, attr
, II
),
6899 auto diagnoseOrDelay
= [](Sema
&S
, SourceLocation loc
,
6900 unsigned diagnostic
, QualType type
) {
6901 if (S
.DelayedDiagnostics
.shouldDelayDiagnostics()) {
6902 S
.DelayedDiagnostics
.add(
6903 sema::DelayedDiagnostic::makeForbiddenType(
6904 S
.getSourceManager().getExpansionLoc(loc
),
6905 diagnostic
, type
, /*ignored*/ 0));
6907 S
.Diag(loc
, diagnostic
);
6911 // Sometimes, __weak isn't allowed.
6912 if (lifetime
== Qualifiers::OCL_Weak
&&
6913 !S
.getLangOpts().ObjCWeak
&& !NonObjCPointer
) {
6915 // Use a specialized diagnostic if the runtime just doesn't support them.
6916 unsigned diagnostic
=
6917 (S
.getLangOpts().ObjCWeakRuntime
? diag::err_arc_weak_disabled
6918 : diag::err_arc_weak_no_runtime
);
6920 // In any case, delay the diagnostic until we know what we're parsing.
6921 diagnoseOrDelay(S
, AttrLoc
, diagnostic
, type
);
6927 // Forbid __weak for class objects marked as
6928 // objc_arc_weak_reference_unavailable
6929 if (lifetime
== Qualifiers::OCL_Weak
) {
6930 if (const ObjCObjectPointerType
*ObjT
=
6931 type
->getAs
<ObjCObjectPointerType
>()) {
6932 if (ObjCInterfaceDecl
*Class
= ObjT
->getInterfaceDecl()) {
6933 if (Class
->isArcWeakrefUnavailable()) {
6934 S
.Diag(AttrLoc
, diag::err_arc_unsupported_weak_class
);
6935 S
.Diag(ObjT
->getInterfaceDecl()->getLocation(),
6936 diag::note_class_declared
);
6945 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
6946 /// attribute on the specified type. Returns true to indicate that
6947 /// the attribute was handled, false to indicate that the type does
6948 /// not permit the attribute.
6949 static bool handleObjCGCTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
6951 Sema
&S
= state
.getSema();
6953 // Delay if this isn't some kind of pointer.
6954 if (!type
->isPointerType() &&
6955 !type
->isObjCObjectPointerType() &&
6956 !type
->isBlockPointerType())
6959 if (type
.getObjCGCAttr() != Qualifiers::GCNone
) {
6960 S
.Diag(attr
.getLoc(), diag::err_attribute_multiple_objc_gc
);
6965 // Check the attribute arguments.
6966 if (!attr
.isArgIdent(0)) {
6967 S
.Diag(attr
.getLoc(), diag::err_attribute_argument_type
)
6968 << attr
<< AANT_ArgumentString
;
6972 Qualifiers::GC GCAttr
;
6973 if (attr
.getNumArgs() > 1) {
6974 S
.Diag(attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << attr
6980 IdentifierInfo
*II
= attr
.getArgAsIdent(0)->Ident
;
6981 if (II
->isStr("weak"))
6982 GCAttr
= Qualifiers::Weak
;
6983 else if (II
->isStr("strong"))
6984 GCAttr
= Qualifiers::Strong
;
6986 S
.Diag(attr
.getLoc(), diag::warn_attribute_type_not_supported
)
6992 QualType origType
= type
;
6993 type
= S
.Context
.getObjCGCQualType(origType
, GCAttr
);
6995 // Make an attributed type to preserve the source information.
6996 if (attr
.getLoc().isValid())
6997 type
= state
.getAttributedType(
6998 ::new (S
.Context
) ObjCGCAttr(S
.Context
, attr
, II
), origType
, type
);
7004 /// A helper class to unwrap a type down to a function for the
7005 /// purposes of applying attributes there.
7008 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
7009 /// if (unwrapped.isFunctionType()) {
7010 /// const FunctionType *fn = unwrapped.get();
7011 /// // change fn somehow
7012 /// T = unwrapped.wrap(fn);
7014 struct FunctionTypeUnwrapper
{
7028 const FunctionType
*Fn
;
7029 SmallVector
<unsigned char /*WrapKind*/, 8> Stack
;
7031 FunctionTypeUnwrapper(Sema
&S
, QualType T
) : Original(T
) {
7033 const Type
*Ty
= T
.getTypePtr();
7034 if (isa
<FunctionType
>(Ty
)) {
7035 Fn
= cast
<FunctionType
>(Ty
);
7037 } else if (isa
<ParenType
>(Ty
)) {
7038 T
= cast
<ParenType
>(Ty
)->getInnerType();
7039 Stack
.push_back(Parens
);
7040 } else if (isa
<ConstantArrayType
>(Ty
) || isa
<VariableArrayType
>(Ty
) ||
7041 isa
<IncompleteArrayType
>(Ty
)) {
7042 T
= cast
<ArrayType
>(Ty
)->getElementType();
7043 Stack
.push_back(Array
);
7044 } else if (isa
<PointerType
>(Ty
)) {
7045 T
= cast
<PointerType
>(Ty
)->getPointeeType();
7046 Stack
.push_back(Pointer
);
7047 } else if (isa
<BlockPointerType
>(Ty
)) {
7048 T
= cast
<BlockPointerType
>(Ty
)->getPointeeType();
7049 Stack
.push_back(BlockPointer
);
7050 } else if (isa
<MemberPointerType
>(Ty
)) {
7051 T
= cast
<MemberPointerType
>(Ty
)->getPointeeType();
7052 Stack
.push_back(MemberPointer
);
7053 } else if (isa
<ReferenceType
>(Ty
)) {
7054 T
= cast
<ReferenceType
>(Ty
)->getPointeeType();
7055 Stack
.push_back(Reference
);
7056 } else if (isa
<AttributedType
>(Ty
)) {
7057 T
= cast
<AttributedType
>(Ty
)->getEquivalentType();
7058 Stack
.push_back(Attributed
);
7059 } else if (isa
<MacroQualifiedType
>(Ty
)) {
7060 T
= cast
<MacroQualifiedType
>(Ty
)->getUnderlyingType();
7061 Stack
.push_back(MacroQualified
);
7063 const Type
*DTy
= Ty
->getUnqualifiedDesugaredType();
7069 T
= QualType(DTy
, 0);
7070 Stack
.push_back(Desugar
);
7075 bool isFunctionType() const { return (Fn
!= nullptr); }
7076 const FunctionType
*get() const { return Fn
; }
7078 QualType
wrap(Sema
&S
, const FunctionType
*New
) {
7079 // If T wasn't modified from the unwrapped type, do nothing.
7080 if (New
== get()) return Original
;
7083 return wrap(S
.Context
, Original
, 0);
7087 QualType
wrap(ASTContext
&C
, QualType Old
, unsigned I
) {
7088 if (I
== Stack
.size())
7089 return C
.getQualifiedType(Fn
, Old
.getQualifiers());
7091 // Build up the inner type, applying the qualifiers from the old
7092 // type to the new type.
7093 SplitQualType SplitOld
= Old
.split();
7095 // As a special case, tail-recurse if there are no qualifiers.
7096 if (SplitOld
.Quals
.empty())
7097 return wrap(C
, SplitOld
.Ty
, I
);
7098 return C
.getQualifiedType(wrap(C
, SplitOld
.Ty
, I
), SplitOld
.Quals
);
7101 QualType
wrap(ASTContext
&C
, const Type
*Old
, unsigned I
) {
7102 if (I
== Stack
.size()) return QualType(Fn
, 0);
7104 switch (static_cast<WrapKind
>(Stack
[I
++])) {
7106 // This is the point at which we potentially lose source
7108 return wrap(C
, Old
->getUnqualifiedDesugaredType(), I
);
7111 return wrap(C
, cast
<AttributedType
>(Old
)->getEquivalentType(), I
);
7114 QualType New
= wrap(C
, cast
<ParenType
>(Old
)->getInnerType(), I
);
7115 return C
.getParenType(New
);
7118 case MacroQualified
:
7119 return wrap(C
, cast
<MacroQualifiedType
>(Old
)->getUnderlyingType(), I
);
7122 if (const auto *CAT
= dyn_cast
<ConstantArrayType
>(Old
)) {
7123 QualType New
= wrap(C
, CAT
->getElementType(), I
);
7124 return C
.getConstantArrayType(New
, CAT
->getSize(), CAT
->getSizeExpr(),
7125 CAT
->getSizeModifier(),
7126 CAT
->getIndexTypeCVRQualifiers());
7129 if (const auto *VAT
= dyn_cast
<VariableArrayType
>(Old
)) {
7130 QualType New
= wrap(C
, VAT
->getElementType(), I
);
7131 return C
.getVariableArrayType(
7132 New
, VAT
->getSizeExpr(), VAT
->getSizeModifier(),
7133 VAT
->getIndexTypeCVRQualifiers(), VAT
->getBracketsRange());
7136 const auto *IAT
= cast
<IncompleteArrayType
>(Old
);
7137 QualType New
= wrap(C
, IAT
->getElementType(), I
);
7138 return C
.getIncompleteArrayType(New
, IAT
->getSizeModifier(),
7139 IAT
->getIndexTypeCVRQualifiers());
7143 QualType New
= wrap(C
, cast
<PointerType
>(Old
)->getPointeeType(), I
);
7144 return C
.getPointerType(New
);
7147 case BlockPointer
: {
7148 QualType New
= wrap(C
, cast
<BlockPointerType
>(Old
)->getPointeeType(),I
);
7149 return C
.getBlockPointerType(New
);
7152 case MemberPointer
: {
7153 const MemberPointerType
*OldMPT
= cast
<MemberPointerType
>(Old
);
7154 QualType New
= wrap(C
, OldMPT
->getPointeeType(), I
);
7155 return C
.getMemberPointerType(New
, OldMPT
->getClass());
7159 const ReferenceType
*OldRef
= cast
<ReferenceType
>(Old
);
7160 QualType New
= wrap(C
, OldRef
->getPointeeType(), I
);
7161 if (isa
<LValueReferenceType
>(OldRef
))
7162 return C
.getLValueReferenceType(New
, OldRef
->isSpelledAsLValue());
7164 return C
.getRValueReferenceType(New
);
7168 llvm_unreachable("unknown wrapping kind");
7171 } // end anonymous namespace
7173 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState
&State
,
7174 ParsedAttr
&PAttr
, QualType
&Type
) {
7175 Sema
&S
= State
.getSema();
7178 switch (PAttr
.getKind()) {
7179 default: llvm_unreachable("Unknown attribute kind");
7180 case ParsedAttr::AT_Ptr32
:
7181 A
= createSimpleAttr
<Ptr32Attr
>(S
.Context
, PAttr
);
7183 case ParsedAttr::AT_Ptr64
:
7184 A
= createSimpleAttr
<Ptr64Attr
>(S
.Context
, PAttr
);
7186 case ParsedAttr::AT_SPtr
:
7187 A
= createSimpleAttr
<SPtrAttr
>(S
.Context
, PAttr
);
7189 case ParsedAttr::AT_UPtr
:
7190 A
= createSimpleAttr
<UPtrAttr
>(S
.Context
, PAttr
);
7194 std::bitset
<attr::LastAttr
> Attrs
;
7195 QualType Desugared
= Type
;
7197 if (const TypedefType
*TT
= dyn_cast
<TypedefType
>(Desugared
)) {
7198 Desugared
= TT
->desugar();
7200 } else if (const ElaboratedType
*ET
= dyn_cast
<ElaboratedType
>(Desugared
)) {
7201 Desugared
= ET
->desugar();
7204 const AttributedType
*AT
= dyn_cast
<AttributedType
>(Desugared
);
7207 Attrs
[AT
->getAttrKind()] = true;
7208 Desugared
= AT
->getModifiedType();
7211 // You cannot specify duplicate type attributes, so if the attribute has
7212 // already been applied, flag it.
7213 attr::Kind NewAttrKind
= A
->getKind();
7214 if (Attrs
[NewAttrKind
]) {
7215 S
.Diag(PAttr
.getLoc(), diag::warn_duplicate_attribute_exact
) << PAttr
;
7218 Attrs
[NewAttrKind
] = true;
7220 // You cannot have both __sptr and __uptr on the same type, nor can you
7221 // have __ptr32 and __ptr64.
7222 if (Attrs
[attr::Ptr32
] && Attrs
[attr::Ptr64
]) {
7223 S
.Diag(PAttr
.getLoc(), diag::err_attributes_are_not_compatible
)
7227 } else if (Attrs
[attr::SPtr
] && Attrs
[attr::UPtr
]) {
7228 S
.Diag(PAttr
.getLoc(), diag::err_attributes_are_not_compatible
)
7234 // Check the raw (i.e., desugared) Canonical type to see if it
7235 // is a pointer type.
7236 if (!isa
<PointerType
>(Desugared
)) {
7237 // Pointer type qualifiers can only operate on pointer types, but not
7238 // pointer-to-member types.
7239 if (Type
->isMemberPointerType())
7240 S
.Diag(PAttr
.getLoc(), diag::err_attribute_no_member_pointers
) << PAttr
;
7242 S
.Diag(PAttr
.getLoc(), diag::err_attribute_pointers_only
) << PAttr
<< 0;
7246 // Add address space to type based on its attributes.
7247 LangAS ASIdx
= LangAS::Default
;
7248 uint64_t PtrWidth
= S
.Context
.getTargetInfo().getPointerWidth(0);
7249 if (PtrWidth
== 32) {
7250 if (Attrs
[attr::Ptr64
])
7251 ASIdx
= LangAS::ptr64
;
7252 else if (Attrs
[attr::UPtr
])
7253 ASIdx
= LangAS::ptr32_uptr
;
7254 } else if (PtrWidth
== 64 && Attrs
[attr::Ptr32
]) {
7255 if (Attrs
[attr::UPtr
])
7256 ASIdx
= LangAS::ptr32_uptr
;
7258 ASIdx
= LangAS::ptr32_sptr
;
7261 QualType Pointee
= Type
->getPointeeType();
7262 if (ASIdx
!= LangAS::Default
)
7263 Pointee
= S
.Context
.getAddrSpaceQualType(
7264 S
.Context
.removeAddrSpaceQualType(Pointee
), ASIdx
);
7265 Type
= State
.getAttributedType(A
, Type
, S
.Context
.getPointerType(Pointee
));
7269 /// Map a nullability attribute kind to a nullability kind.
7270 static NullabilityKind
mapNullabilityAttrKind(ParsedAttr::Kind kind
) {
7272 case ParsedAttr::AT_TypeNonNull
:
7273 return NullabilityKind::NonNull
;
7275 case ParsedAttr::AT_TypeNullable
:
7276 return NullabilityKind::Nullable
;
7278 case ParsedAttr::AT_TypeNullableResult
:
7279 return NullabilityKind::NullableResult
;
7281 case ParsedAttr::AT_TypeNullUnspecified
:
7282 return NullabilityKind::Unspecified
;
7285 llvm_unreachable("not a nullability attribute kind");
7289 /// Applies a nullability type specifier to the given type, if possible.
7291 /// \param state The type processing state.
7293 /// \param type The type to which the nullability specifier will be
7294 /// added. On success, this type will be updated appropriately.
7296 /// \param attr The attribute as written on the type.
7298 /// \param allowOnArrayType Whether to accept nullability specifiers on an
7299 /// array type (e.g., because it will decay to a pointer).
7301 /// \returns true if a problem has been diagnosed, false on success.
7302 static bool checkNullabilityTypeSpecifier(TypeProcessingState
&state
,
7305 bool allowOnArrayType
) {
7306 Sema
&S
= state
.getSema();
7308 NullabilityKind nullability
= mapNullabilityAttrKind(attr
.getKind());
7309 SourceLocation nullabilityLoc
= attr
.getLoc();
7310 bool isContextSensitive
= attr
.isContextSensitiveKeywordAttribute();
7312 recordNullabilitySeen(S
, nullabilityLoc
);
7314 // Check for existing nullability attributes on the type.
7315 QualType desugared
= type
;
7316 while (auto attributed
= dyn_cast
<AttributedType
>(desugared
.getTypePtr())) {
7317 // Check whether there is already a null
7318 if (auto existingNullability
= attributed
->getImmediateNullability()) {
7319 // Duplicated nullability.
7320 if (nullability
== *existingNullability
) {
7321 S
.Diag(nullabilityLoc
, diag::warn_nullability_duplicate
)
7322 << DiagNullabilityKind(nullability
, isContextSensitive
)
7323 << FixItHint::CreateRemoval(nullabilityLoc
);
7328 // Conflicting nullability.
7329 S
.Diag(nullabilityLoc
, diag::err_nullability_conflicting
)
7330 << DiagNullabilityKind(nullability
, isContextSensitive
)
7331 << DiagNullabilityKind(*existingNullability
, false);
7335 desugared
= attributed
->getModifiedType();
7338 // If there is already a different nullability specifier, complain.
7339 // This (unlike the code above) looks through typedefs that might
7340 // have nullability specifiers on them, which means we cannot
7341 // provide a useful Fix-It.
7342 if (auto existingNullability
= desugared
->getNullability(S
.Context
)) {
7343 if (nullability
!= *existingNullability
) {
7344 S
.Diag(nullabilityLoc
, diag::err_nullability_conflicting
)
7345 << DiagNullabilityKind(nullability
, isContextSensitive
)
7346 << DiagNullabilityKind(*existingNullability
, false);
7348 // Try to find the typedef with the existing nullability specifier.
7349 if (auto typedefType
= desugared
->getAs
<TypedefType
>()) {
7350 TypedefNameDecl
*typedefDecl
= typedefType
->getDecl();
7351 QualType underlyingType
= typedefDecl
->getUnderlyingType();
7352 if (auto typedefNullability
7353 = AttributedType::stripOuterNullability(underlyingType
)) {
7354 if (*typedefNullability
== *existingNullability
) {
7355 S
.Diag(typedefDecl
->getLocation(), diag::note_nullability_here
)
7356 << DiagNullabilityKind(*existingNullability
, false);
7365 // If this definitely isn't a pointer type, reject the specifier.
7366 if (!desugared
->canHaveNullability() &&
7367 !(allowOnArrayType
&& desugared
->isArrayType())) {
7368 S
.Diag(nullabilityLoc
, diag::err_nullability_nonpointer
)
7369 << DiagNullabilityKind(nullability
, isContextSensitive
) << type
;
7373 // For the context-sensitive keywords/Objective-C property
7374 // attributes, require that the type be a single-level pointer.
7375 if (isContextSensitive
) {
7376 // Make sure that the pointee isn't itself a pointer type.
7377 const Type
*pointeeType
= nullptr;
7378 if (desugared
->isArrayType())
7379 pointeeType
= desugared
->getArrayElementTypeNoTypeQual();
7380 else if (desugared
->isAnyPointerType())
7381 pointeeType
= desugared
->getPointeeType().getTypePtr();
7383 if (pointeeType
&& (pointeeType
->isAnyPointerType() ||
7384 pointeeType
->isObjCObjectPointerType() ||
7385 pointeeType
->isMemberPointerType())) {
7386 S
.Diag(nullabilityLoc
, diag::err_nullability_cs_multilevel
)
7387 << DiagNullabilityKind(nullability
, true)
7389 S
.Diag(nullabilityLoc
, diag::note_nullability_type_specifier
)
7390 << DiagNullabilityKind(nullability
, false)
7392 << FixItHint::CreateReplacement(nullabilityLoc
,
7393 getNullabilitySpelling(nullability
));
7398 // Form the attributed type.
7399 type
= state
.getAttributedType(
7400 createNullabilityAttr(S
.Context
, attr
, nullability
), type
, type
);
7404 /// Check the application of the Objective-C '__kindof' qualifier to
7406 static bool checkObjCKindOfType(TypeProcessingState
&state
, QualType
&type
,
7408 Sema
&S
= state
.getSema();
7410 if (isa
<ObjCTypeParamType
>(type
)) {
7411 // Build the attributed type to record where __kindof occurred.
7412 type
= state
.getAttributedType(
7413 createSimpleAttr
<ObjCKindOfAttr
>(S
.Context
, attr
), type
, type
);
7417 // Find out if it's an Objective-C object or object pointer type;
7418 const ObjCObjectPointerType
*ptrType
= type
->getAs
<ObjCObjectPointerType
>();
7419 const ObjCObjectType
*objType
= ptrType
? ptrType
->getObjectType()
7420 : type
->getAs
<ObjCObjectType
>();
7422 // If not, we can't apply __kindof.
7424 // FIXME: Handle dependent types that aren't yet object types.
7425 S
.Diag(attr
.getLoc(), diag::err_objc_kindof_nonobject
)
7430 // Rebuild the "equivalent" type, which pushes __kindof down into
7432 // There is no need to apply kindof on an unqualified id type.
7433 QualType equivType
= S
.Context
.getObjCObjectType(
7434 objType
->getBaseType(), objType
->getTypeArgsAsWritten(),
7435 objType
->getProtocols(),
7436 /*isKindOf=*/objType
->isObjCUnqualifiedId() ? false : true);
7438 // If we started with an object pointer type, rebuild it.
7440 equivType
= S
.Context
.getObjCObjectPointerType(equivType
);
7441 if (auto nullability
= type
->getNullability(S
.Context
)) {
7442 // We create a nullability attribute from the __kindof attribute.
7443 // Make sure that will make sense.
7444 assert(attr
.getAttributeSpellingListIndex() == 0 &&
7445 "multiple spellings for __kindof?");
7446 Attr
*A
= createNullabilityAttr(S
.Context
, attr
, *nullability
);
7447 A
->setImplicit(true);
7448 equivType
= state
.getAttributedType(A
, equivType
, equivType
);
7452 // Build the attributed type to record where __kindof occurred.
7453 type
= state
.getAttributedType(
7454 createSimpleAttr
<ObjCKindOfAttr
>(S
.Context
, attr
), type
, equivType
);
7458 /// Distribute a nullability type attribute that cannot be applied to
7459 /// the type specifier to a pointer, block pointer, or member pointer
7460 /// declarator, complaining if necessary.
7462 /// \returns true if the nullability annotation was distributed, false
7464 static bool distributeNullabilityTypeAttr(TypeProcessingState
&state
,
7465 QualType type
, ParsedAttr
&attr
) {
7466 Declarator
&declarator
= state
.getDeclarator();
7468 /// Attempt to move the attribute to the specified chunk.
7469 auto moveToChunk
= [&](DeclaratorChunk
&chunk
, bool inFunction
) -> bool {
7470 // If there is already a nullability attribute there, don't add
7472 if (hasNullabilityAttr(chunk
.getAttrs()))
7475 // Complain about the nullability qualifier being in the wrong
7482 PK_MemberFunctionPointer
,
7484 = chunk
.Kind
== DeclaratorChunk::Pointer
? (inFunction
? PK_FunctionPointer
7486 : chunk
.Kind
== DeclaratorChunk::BlockPointer
? PK_BlockPointer
7487 : inFunction
? PK_MemberFunctionPointer
: PK_MemberPointer
;
7489 auto diag
= state
.getSema().Diag(attr
.getLoc(),
7490 diag::warn_nullability_declspec
)
7491 << DiagNullabilityKind(mapNullabilityAttrKind(attr
.getKind()),
7492 attr
.isContextSensitiveKeywordAttribute())
7494 << static_cast<unsigned>(pointerKind
);
7496 // FIXME: MemberPointer chunks don't carry the location of the *.
7497 if (chunk
.Kind
!= DeclaratorChunk::MemberPointer
) {
7498 diag
<< FixItHint::CreateRemoval(attr
.getLoc())
7499 << FixItHint::CreateInsertion(
7500 state
.getSema().getPreprocessor().getLocForEndOfToken(
7502 " " + attr
.getAttrName()->getName().str() + " ");
7505 moveAttrFromListToList(attr
, state
.getCurrentAttributes(),
7510 // Move it to the outermost pointer, member pointer, or block
7511 // pointer declarator.
7512 for (unsigned i
= state
.getCurrentChunkIndex(); i
!= 0; --i
) {
7513 DeclaratorChunk
&chunk
= declarator
.getTypeObject(i
-1);
7514 switch (chunk
.Kind
) {
7515 case DeclaratorChunk::Pointer
:
7516 case DeclaratorChunk::BlockPointer
:
7517 case DeclaratorChunk::MemberPointer
:
7518 return moveToChunk(chunk
, false);
7520 case DeclaratorChunk::Paren
:
7521 case DeclaratorChunk::Array
:
7524 case DeclaratorChunk::Function
:
7525 // Try to move past the return type to a function/block/member
7526 // function pointer.
7527 if (DeclaratorChunk
*dest
= maybeMovePastReturnType(
7529 /*onlyBlockPointers=*/false)) {
7530 return moveToChunk(*dest
, true);
7535 // Don't walk through these.
7536 case DeclaratorChunk::Reference
:
7537 case DeclaratorChunk::Pipe
:
7545 static Attr
*getCCTypeAttr(ASTContext
&Ctx
, ParsedAttr
&Attr
) {
7546 assert(!Attr
.isInvalid());
7547 switch (Attr
.getKind()) {
7549 llvm_unreachable("not a calling convention attribute");
7550 case ParsedAttr::AT_CDecl
:
7551 return createSimpleAttr
<CDeclAttr
>(Ctx
, Attr
);
7552 case ParsedAttr::AT_FastCall
:
7553 return createSimpleAttr
<FastCallAttr
>(Ctx
, Attr
);
7554 case ParsedAttr::AT_StdCall
:
7555 return createSimpleAttr
<StdCallAttr
>(Ctx
, Attr
);
7556 case ParsedAttr::AT_ThisCall
:
7557 return createSimpleAttr
<ThisCallAttr
>(Ctx
, Attr
);
7558 case ParsedAttr::AT_RegCall
:
7559 return createSimpleAttr
<RegCallAttr
>(Ctx
, Attr
);
7560 case ParsedAttr::AT_Pascal
:
7561 return createSimpleAttr
<PascalAttr
>(Ctx
, Attr
);
7562 case ParsedAttr::AT_SwiftCall
:
7563 return createSimpleAttr
<SwiftCallAttr
>(Ctx
, Attr
);
7564 case ParsedAttr::AT_SwiftAsyncCall
:
7565 return createSimpleAttr
<SwiftAsyncCallAttr
>(Ctx
, Attr
);
7566 case ParsedAttr::AT_VectorCall
:
7567 return createSimpleAttr
<VectorCallAttr
>(Ctx
, Attr
);
7568 case ParsedAttr::AT_AArch64VectorPcs
:
7569 return createSimpleAttr
<AArch64VectorPcsAttr
>(Ctx
, Attr
);
7570 case ParsedAttr::AT_AArch64SVEPcs
:
7571 return createSimpleAttr
<AArch64SVEPcsAttr
>(Ctx
, Attr
);
7572 case ParsedAttr::AT_AMDGPUKernelCall
:
7573 return createSimpleAttr
<AMDGPUKernelCallAttr
>(Ctx
, Attr
);
7574 case ParsedAttr::AT_Pcs
: {
7575 // The attribute may have had a fixit applied where we treated an
7576 // identifier as a string literal. The contents of the string are valid,
7577 // but the form may not be.
7579 if (Attr
.isArgExpr(0))
7580 Str
= cast
<StringLiteral
>(Attr
.getArgAsExpr(0))->getString();
7582 Str
= Attr
.getArgAsIdent(0)->Ident
->getName();
7583 PcsAttr::PCSType Type
;
7584 if (!PcsAttr::ConvertStrToPCSType(Str
, Type
))
7585 llvm_unreachable("already validated the attribute");
7586 return ::new (Ctx
) PcsAttr(Ctx
, Attr
, Type
);
7588 case ParsedAttr::AT_IntelOclBicc
:
7589 return createSimpleAttr
<IntelOclBiccAttr
>(Ctx
, Attr
);
7590 case ParsedAttr::AT_MSABI
:
7591 return createSimpleAttr
<MSABIAttr
>(Ctx
, Attr
);
7592 case ParsedAttr::AT_SysVABI
:
7593 return createSimpleAttr
<SysVABIAttr
>(Ctx
, Attr
);
7594 case ParsedAttr::AT_PreserveMost
:
7595 return createSimpleAttr
<PreserveMostAttr
>(Ctx
, Attr
);
7596 case ParsedAttr::AT_PreserveAll
:
7597 return createSimpleAttr
<PreserveAllAttr
>(Ctx
, Attr
);
7599 llvm_unreachable("unexpected attribute kind!");
7602 /// Process an individual function attribute. Returns true to
7603 /// indicate that the attribute was handled, false if it wasn't.
7604 static bool handleFunctionTypeAttr(TypeProcessingState
&state
, ParsedAttr
&attr
,
7606 Sema
&S
= state
.getSema();
7608 FunctionTypeUnwrapper
unwrapped(S
, type
);
7610 if (attr
.getKind() == ParsedAttr::AT_NoReturn
) {
7611 if (S
.CheckAttrNoArgs(attr
))
7614 // Delay if this is not a function type.
7615 if (!unwrapped
.isFunctionType())
7618 // Otherwise we can process right away.
7619 FunctionType::ExtInfo EI
= unwrapped
.get()->getExtInfo().withNoReturn(true);
7620 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7624 if (attr
.getKind() == ParsedAttr::AT_CmseNSCall
) {
7625 // Delay if this is not a function type.
7626 if (!unwrapped
.isFunctionType())
7629 // Ignore if we don't have CMSE enabled.
7630 if (!S
.getLangOpts().Cmse
) {
7631 S
.Diag(attr
.getLoc(), diag::warn_attribute_ignored
) << attr
;
7636 // Otherwise we can process right away.
7637 FunctionType::ExtInfo EI
=
7638 unwrapped
.get()->getExtInfo().withCmseNSCall(true);
7639 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7643 // ns_returns_retained is not always a type attribute, but if we got
7644 // here, we're treating it as one right now.
7645 if (attr
.getKind() == ParsedAttr::AT_NSReturnsRetained
) {
7646 if (attr
.getNumArgs()) return true;
7648 // Delay if this is not a function type.
7649 if (!unwrapped
.isFunctionType())
7652 // Check whether the return type is reasonable.
7653 if (S
.checkNSReturnsRetainedReturnType(attr
.getLoc(),
7654 unwrapped
.get()->getReturnType()))
7657 // Only actually change the underlying type in ARC builds.
7658 QualType origType
= type
;
7659 if (state
.getSema().getLangOpts().ObjCAutoRefCount
) {
7660 FunctionType::ExtInfo EI
7661 = unwrapped
.get()->getExtInfo().withProducesResult(true);
7662 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7664 type
= state
.getAttributedType(
7665 createSimpleAttr
<NSReturnsRetainedAttr
>(S
.Context
, attr
),
7670 if (attr
.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters
) {
7671 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
7674 // Delay if this is not a function type.
7675 if (!unwrapped
.isFunctionType())
7678 FunctionType::ExtInfo EI
=
7679 unwrapped
.get()->getExtInfo().withNoCallerSavedRegs(true);
7680 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7684 if (attr
.getKind() == ParsedAttr::AT_AnyX86NoCfCheck
) {
7685 if (!S
.getLangOpts().CFProtectionBranch
) {
7686 S
.Diag(attr
.getLoc(), diag::warn_nocf_check_attribute_ignored
);
7691 if (S
.CheckAttrTarget(attr
) || S
.CheckAttrNoArgs(attr
))
7694 // If this is not a function type, warning will be asserted by subject
7696 if (!unwrapped
.isFunctionType())
7699 FunctionType::ExtInfo EI
=
7700 unwrapped
.get()->getExtInfo().withNoCfCheck(true);
7701 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7705 if (attr
.getKind() == ParsedAttr::AT_Regparm
) {
7707 if (S
.CheckRegparmAttr(attr
, value
))
7710 // Delay if this is not a function type.
7711 if (!unwrapped
.isFunctionType())
7714 // Diagnose regparm with fastcall.
7715 const FunctionType
*fn
= unwrapped
.get();
7716 CallingConv CC
= fn
->getCallConv();
7717 if (CC
== CC_X86FastCall
) {
7718 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
7719 << FunctionType::getNameForCallConv(CC
)
7725 FunctionType::ExtInfo EI
=
7726 unwrapped
.get()->getExtInfo().withRegParm(value
);
7727 type
= unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7731 if (attr
.getKind() == ParsedAttr::AT_NoThrow
) {
7732 // Delay if this is not a function type.
7733 if (!unwrapped
.isFunctionType())
7736 if (S
.CheckAttrNoArgs(attr
)) {
7741 // Otherwise we can process right away.
7742 auto *Proto
= unwrapped
.get()->castAs
<FunctionProtoType
>();
7744 // MSVC ignores nothrow if it is in conflict with an explicit exception
7746 if (Proto
->hasExceptionSpec()) {
7747 switch (Proto
->getExceptionSpecType()) {
7749 llvm_unreachable("This doesn't have an exception spec!");
7751 case EST_DynamicNone
:
7752 case EST_BasicNoexcept
:
7753 case EST_NoexceptTrue
:
7755 // Exception spec doesn't conflict with nothrow, so don't warn.
7758 case EST_Uninstantiated
:
7759 case EST_DependentNoexcept
:
7760 case EST_Unevaluated
:
7761 // We don't have enough information to properly determine if there is a
7762 // conflict, so suppress the warning.
7766 case EST_NoexceptFalse
:
7767 S
.Diag(attr
.getLoc(), diag::warn_nothrow_attribute_ignored
);
7773 type
= unwrapped
.wrap(
7775 .getFunctionTypeWithExceptionSpec(
7777 FunctionProtoType::ExceptionSpecInfo
{EST_NoThrow
})
7778 ->getAs
<FunctionType
>());
7782 // Delay if the type didn't work out to a function.
7783 if (!unwrapped
.isFunctionType()) return false;
7785 // Otherwise, a calling convention.
7787 if (S
.CheckCallingConvAttr(attr
, CC
))
7790 const FunctionType
*fn
= unwrapped
.get();
7791 CallingConv CCOld
= fn
->getCallConv();
7792 Attr
*CCAttr
= getCCTypeAttr(S
.Context
, attr
);
7795 // Error out on when there's already an attribute on the type
7796 // and the CCs don't match.
7797 if (S
.getCallingConvAttributedType(type
)) {
7798 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
7799 << FunctionType::getNameForCallConv(CC
)
7800 << FunctionType::getNameForCallConv(CCOld
);
7806 // Diagnose use of variadic functions with calling conventions that
7807 // don't support them (e.g. because they're callee-cleanup).
7808 // We delay warning about this on unprototyped function declarations
7809 // until after redeclaration checking, just in case we pick up a
7810 // prototype that way. And apparently we also "delay" warning about
7811 // unprototyped function types in general, despite not necessarily having
7812 // much ability to diagnose it later.
7813 if (!supportsVariadicCall(CC
)) {
7814 const FunctionProtoType
*FnP
= dyn_cast
<FunctionProtoType
>(fn
);
7815 if (FnP
&& FnP
->isVariadic()) {
7816 // stdcall and fastcall are ignored with a warning for GCC and MS
7818 if (CC
== CC_X86StdCall
|| CC
== CC_X86FastCall
)
7819 return S
.Diag(attr
.getLoc(), diag::warn_cconv_unsupported
)
7820 << FunctionType::getNameForCallConv(CC
)
7821 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction
;
7824 return S
.Diag(attr
.getLoc(), diag::err_cconv_varargs
)
7825 << FunctionType::getNameForCallConv(CC
);
7829 // Also diagnose fastcall with regparm.
7830 if (CC
== CC_X86FastCall
&& fn
->getHasRegParm()) {
7831 S
.Diag(attr
.getLoc(), diag::err_attributes_are_not_compatible
)
7832 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall
);
7837 // Modify the CC from the wrapped function type, wrap it all back, and then
7838 // wrap the whole thing in an AttributedType as written. The modified type
7839 // might have a different CC if we ignored the attribute.
7840 QualType Equivalent
;
7844 auto EI
= unwrapped
.get()->getExtInfo().withCallingConv(CC
);
7846 unwrapped
.wrap(S
, S
.Context
.adjustFunctionType(unwrapped
.get(), EI
));
7848 type
= state
.getAttributedType(CCAttr
, type
, Equivalent
);
7852 bool Sema::hasExplicitCallingConv(QualType T
) {
7853 const AttributedType
*AT
;
7855 // Stop if we'd be stripping off a typedef sugar node to reach the
7857 while ((AT
= T
->getAs
<AttributedType
>()) &&
7858 AT
->getAs
<TypedefType
>() == T
->getAs
<TypedefType
>()) {
7859 if (AT
->isCallingConv())
7861 T
= AT
->getModifiedType();
7866 void Sema::adjustMemberFunctionCC(QualType
&T
, bool IsStatic
, bool IsCtorOrDtor
,
7867 SourceLocation Loc
) {
7868 FunctionTypeUnwrapper
Unwrapped(*this, T
);
7869 const FunctionType
*FT
= Unwrapped
.get();
7870 bool IsVariadic
= (isa
<FunctionProtoType
>(FT
) &&
7871 cast
<FunctionProtoType
>(FT
)->isVariadic());
7872 CallingConv CurCC
= FT
->getCallConv();
7873 CallingConv ToCC
= Context
.getDefaultCallingConvention(IsVariadic
, !IsStatic
);
7878 // MS compiler ignores explicit calling convention attributes on structors. We
7879 // should do the same.
7880 if (Context
.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor
) {
7881 // Issue a warning on ignored calling convention -- except of __stdcall.
7882 // Again, this is what MS compiler does.
7883 if (CurCC
!= CC_X86StdCall
)
7884 Diag(Loc
, diag::warn_cconv_unsupported
)
7885 << FunctionType::getNameForCallConv(CurCC
)
7886 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor
;
7887 // Default adjustment.
7889 // Only adjust types with the default convention. For example, on Windows
7890 // we should adjust a __cdecl type to __thiscall for instance methods, and a
7891 // __thiscall type to __cdecl for static methods.
7892 CallingConv DefaultCC
=
7893 Context
.getDefaultCallingConvention(IsVariadic
, IsStatic
);
7895 if (CurCC
!= DefaultCC
|| DefaultCC
== ToCC
)
7898 if (hasExplicitCallingConv(T
))
7902 FT
= Context
.adjustFunctionType(FT
, FT
->getExtInfo().withCallingConv(ToCC
));
7903 QualType Wrapped
= Unwrapped
.wrap(*this, FT
);
7904 T
= Context
.getAdjustedType(T
, Wrapped
);
7907 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
7908 /// and float scalars, although arrays, pointers, and function return values are
7909 /// allowed in conjunction with this construct. Aggregates with this attribute
7910 /// are invalid, even if they are of the same size as a corresponding scalar.
7911 /// The raw attribute should contain precisely 1 argument, the vector size for
7912 /// the variable, measured in bytes. If curType and rawAttr are well formed,
7913 /// this routine will return a new vector type.
7914 static void HandleVectorSizeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
7916 // Check the attribute arguments.
7917 if (Attr
.getNumArgs() != 1) {
7918 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
7924 Expr
*SizeExpr
= Attr
.getArgAsExpr(0);
7925 QualType T
= S
.BuildVectorType(CurType
, SizeExpr
, Attr
.getLoc());
7932 /// Process the OpenCL-like ext_vector_type attribute when it occurs on
7934 static void HandleExtVectorTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
7936 // check the attribute arguments.
7937 if (Attr
.getNumArgs() != 1) {
7938 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
7943 Expr
*SizeExpr
= Attr
.getArgAsExpr(0);
7944 QualType T
= S
.BuildExtVectorType(CurType
, SizeExpr
, Attr
.getLoc());
7949 static bool isPermittedNeonBaseType(QualType
&Ty
,
7950 VectorType::VectorKind VecKind
, Sema
&S
) {
7951 const BuiltinType
*BTy
= Ty
->getAs
<BuiltinType
>();
7955 llvm::Triple Triple
= S
.Context
.getTargetInfo().getTriple();
7957 // Signed poly is mathematically wrong, but has been baked into some ABIs by
7959 bool IsPolyUnsigned
= Triple
.getArch() == llvm::Triple::aarch64
||
7960 Triple
.getArch() == llvm::Triple::aarch64_32
||
7961 Triple
.getArch() == llvm::Triple::aarch64_be
;
7962 if (VecKind
== VectorType::NeonPolyVector
) {
7963 if (IsPolyUnsigned
) {
7964 // AArch64 polynomial vectors are unsigned.
7965 return BTy
->getKind() == BuiltinType::UChar
||
7966 BTy
->getKind() == BuiltinType::UShort
||
7967 BTy
->getKind() == BuiltinType::ULong
||
7968 BTy
->getKind() == BuiltinType::ULongLong
;
7970 // AArch32 polynomial vectors are signed.
7971 return BTy
->getKind() == BuiltinType::SChar
||
7972 BTy
->getKind() == BuiltinType::Short
||
7973 BTy
->getKind() == BuiltinType::LongLong
;
7977 // Non-polynomial vector types: the usual suspects are allowed, as well as
7978 // float64_t on AArch64.
7979 if ((Triple
.isArch64Bit() || Triple
.getArch() == llvm::Triple::aarch64_32
) &&
7980 BTy
->getKind() == BuiltinType::Double
)
7983 return BTy
->getKind() == BuiltinType::SChar
||
7984 BTy
->getKind() == BuiltinType::UChar
||
7985 BTy
->getKind() == BuiltinType::Short
||
7986 BTy
->getKind() == BuiltinType::UShort
||
7987 BTy
->getKind() == BuiltinType::Int
||
7988 BTy
->getKind() == BuiltinType::UInt
||
7989 BTy
->getKind() == BuiltinType::Long
||
7990 BTy
->getKind() == BuiltinType::ULong
||
7991 BTy
->getKind() == BuiltinType::LongLong
||
7992 BTy
->getKind() == BuiltinType::ULongLong
||
7993 BTy
->getKind() == BuiltinType::Float
||
7994 BTy
->getKind() == BuiltinType::Half
||
7995 BTy
->getKind() == BuiltinType::BFloat16
;
7998 static bool verifyValidIntegerConstantExpr(Sema
&S
, const ParsedAttr
&Attr
,
7999 llvm::APSInt
&Result
) {
8000 const auto *AttrExpr
= Attr
.getArgAsExpr(0);
8001 if (!AttrExpr
->isTypeDependent()) {
8002 if (Optional
<llvm::APSInt
> Res
=
8003 AttrExpr
->getIntegerConstantExpr(S
.Context
)) {
8008 S
.Diag(Attr
.getLoc(), diag::err_attribute_argument_type
)
8009 << Attr
<< AANT_ArgumentIntegerConstant
<< AttrExpr
->getSourceRange();
8014 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8015 /// "neon_polyvector_type" attributes are used to create vector types that
8016 /// are mangled according to ARM's ABI. Otherwise, these types are identical
8017 /// to those created with the "vector_size" attribute. Unlike "vector_size"
8018 /// the argument to these Neon attributes is the number of vector elements,
8019 /// not the vector size in bytes. The vector width and element type must
8020 /// match one of the standard Neon vector types.
8021 static void HandleNeonVectorTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8022 Sema
&S
, VectorType::VectorKind VecKind
) {
8023 // Target must have NEON (or MVE, whose vectors are similar enough
8024 // not to need a separate attribute)
8025 if (!S
.Context
.getTargetInfo().hasFeature("neon") &&
8026 !S
.Context
.getTargetInfo().hasFeature("mve")) {
8027 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
)
8028 << Attr
<< "'neon' or 'mve'";
8032 // Check the attribute arguments.
8033 if (Attr
.getNumArgs() != 1) {
8034 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
) << Attr
8039 // The number of elements must be an ICE.
8040 llvm::APSInt
numEltsInt(32);
8041 if (!verifyValidIntegerConstantExpr(S
, Attr
, numEltsInt
))
8044 // Only certain element types are supported for Neon vectors.
8045 if (!isPermittedNeonBaseType(CurType
, VecKind
, S
)) {
8046 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_vector_type
) << CurType
;
8051 // The total size of the vector must be 64 or 128 bits.
8052 unsigned typeSize
= static_cast<unsigned>(S
.Context
.getTypeSize(CurType
));
8053 unsigned numElts
= static_cast<unsigned>(numEltsInt
.getZExtValue());
8054 unsigned vecSize
= typeSize
* numElts
;
8055 if (vecSize
!= 64 && vecSize
!= 128) {
8056 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_neon_vector_size
) << CurType
;
8061 CurType
= S
.Context
.getVectorType(CurType
, numElts
, VecKind
);
8064 /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8065 /// used to create fixed-length versions of sizeless SVE types defined by
8066 /// the ACLE, such as svint32_t and svbool_t.
8067 static void HandleArmSveVectorBitsTypeAttr(QualType
&CurType
, ParsedAttr
&Attr
,
8069 // Target must have SVE.
8070 if (!S
.Context
.getTargetInfo().hasFeature("sve")) {
8071 S
.Diag(Attr
.getLoc(), diag::err_attribute_unsupported
) << Attr
<< "'sve'";
8076 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8077 // if <bits>+ syntax is used.
8078 if (!S
.getLangOpts().VScaleMin
||
8079 S
.getLangOpts().VScaleMin
!= S
.getLangOpts().VScaleMax
) {
8080 S
.Diag(Attr
.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported
)
8086 // Check the attribute arguments.
8087 if (Attr
.getNumArgs() != 1) {
8088 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8094 // The vector size must be an integer constant expression.
8095 llvm::APSInt
SveVectorSizeInBits(32);
8096 if (!verifyValidIntegerConstantExpr(S
, Attr
, SveVectorSizeInBits
))
8099 unsigned VecSize
= static_cast<unsigned>(SveVectorSizeInBits
.getZExtValue());
8101 // The attribute vector size must match -msve-vector-bits.
8102 if (VecSize
!= S
.getLangOpts().VScaleMin
* 128) {
8103 S
.Diag(Attr
.getLoc(), diag::err_attribute_bad_sve_vector_size
)
8104 << VecSize
<< S
.getLangOpts().VScaleMin
* 128;
8109 // Attribute can only be attached to a single SVE vector or predicate type.
8110 if (!CurType
->isVLSTBuiltinType()) {
8111 S
.Diag(Attr
.getLoc(), diag::err_attribute_invalid_sve_type
)
8117 const auto *BT
= CurType
->castAs
<BuiltinType
>();
8119 QualType EltType
= CurType
->getSveEltType(S
.Context
);
8120 unsigned TypeSize
= S
.Context
.getTypeSize(EltType
);
8121 VectorType::VectorKind VecKind
= VectorType::SveFixedLengthDataVector
;
8122 if (BT
->getKind() == BuiltinType::SveBool
) {
8123 // Predicates are represented as i8.
8124 VecSize
/= S
.Context
.getCharWidth() * S
.Context
.getCharWidth();
8125 VecKind
= VectorType::SveFixedLengthPredicateVector
;
8127 VecSize
/= TypeSize
;
8128 CurType
= S
.Context
.getVectorType(EltType
, VecSize
, VecKind
);
8131 static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState
&State
,
8134 const VectorType
*VT
= dyn_cast
<VectorType
>(CurType
);
8135 if (!VT
|| VT
->getVectorKind() != VectorType::NeonVector
) {
8136 State
.getSema().Diag(Attr
.getLoc(),
8137 diag::err_attribute_arm_mve_polymorphism
);
8143 State
.getAttributedType(createSimpleAttr
<ArmMveStrictPolymorphismAttr
>(
8144 State
.getSema().Context
, Attr
),
8148 /// Handle OpenCL Access Qualifier Attribute.
8149 static void HandleOpenCLAccessAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8151 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8152 if (!(CurType
->isImageType() || CurType
->isPipeType())) {
8153 S
.Diag(Attr
.getLoc(), diag::err_opencl_invalid_access_qualifier
);
8158 if (const TypedefType
* TypedefTy
= CurType
->getAs
<TypedefType
>()) {
8159 QualType BaseTy
= TypedefTy
->desugar();
8161 std::string PrevAccessQual
;
8162 if (BaseTy
->isPipeType()) {
8163 if (TypedefTy
->getDecl()->hasAttr
<OpenCLAccessAttr
>()) {
8164 OpenCLAccessAttr
*Attr
=
8165 TypedefTy
->getDecl()->getAttr
<OpenCLAccessAttr
>();
8166 PrevAccessQual
= Attr
->getSpelling();
8168 PrevAccessQual
= "read_only";
8170 } else if (const BuiltinType
* ImgType
= BaseTy
->getAs
<BuiltinType
>()) {
8172 switch (ImgType
->getKind()) {
8173 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8174 case BuiltinType::Id: \
8175 PrevAccessQual = #Access; \
8177 #include "clang/Basic/OpenCLImageTypes.def"
8179 llvm_unreachable("Unable to find corresponding image type.");
8182 llvm_unreachable("unexpected type");
8184 StringRef AttrName
= Attr
.getAttrName()->getName();
8185 if (PrevAccessQual
== AttrName
.ltrim("_")) {
8186 // Duplicated qualifiers
8187 S
.Diag(Attr
.getLoc(), diag::warn_duplicate_declspec
)
8188 << AttrName
<< Attr
.getRange();
8190 // Contradicting qualifiers
8191 S
.Diag(Attr
.getLoc(), diag::err_opencl_multiple_access_qualifiers
);
8194 S
.Diag(TypedefTy
->getDecl()->getBeginLoc(),
8195 diag::note_opencl_typedef_access_qualifier
) << PrevAccessQual
;
8196 } else if (CurType
->isPipeType()) {
8197 if (Attr
.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only
) {
8198 QualType ElemType
= CurType
->castAs
<PipeType
>()->getElementType();
8199 CurType
= S
.Context
.getWritePipeType(ElemType
);
8204 /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8205 static void HandleMatrixTypeAttr(QualType
&CurType
, const ParsedAttr
&Attr
,
8207 if (!S
.getLangOpts().MatrixTypes
) {
8208 S
.Diag(Attr
.getLoc(), diag::err_builtin_matrix_disabled
);
8212 if (Attr
.getNumArgs() != 2) {
8213 S
.Diag(Attr
.getLoc(), diag::err_attribute_wrong_number_arguments
)
8218 Expr
*RowsExpr
= Attr
.getArgAsExpr(0);
8219 Expr
*ColsExpr
= Attr
.getArgAsExpr(1);
8220 QualType T
= S
.BuildMatrixType(CurType
, RowsExpr
, ColsExpr
, Attr
.getLoc());
8225 static void HandleAnnotateTypeAttr(TypeProcessingState
&State
,
8226 QualType
&CurType
, const ParsedAttr
&PA
) {
8227 Sema
&S
= State
.getSema();
8229 if (PA
.getNumArgs() < 1) {
8230 S
.Diag(PA
.getLoc(), diag::err_attribute_too_few_arguments
) << PA
<< 1;
8234 // Make sure that there is a string literal as the annotation's first
8237 if (!S
.checkStringLiteralArgumentAttr(PA
, 0, Str
))
8240 llvm::SmallVector
<Expr
*, 4> Args
;
8241 Args
.reserve(PA
.getNumArgs() - 1);
8242 for (unsigned Idx
= 1; Idx
< PA
.getNumArgs(); Idx
++) {
8243 assert(!PA
.isArgIdent(Idx
));
8244 Args
.push_back(PA
.getArgAsExpr(Idx
));
8246 if (!S
.ConstantFoldAttrArgs(PA
, Args
))
8248 auto *AnnotateTypeAttr
=
8249 AnnotateTypeAttr::Create(S
.Context
, Str
, Args
.data(), Args
.size(), PA
);
8250 CurType
= State
.getAttributedType(AnnotateTypeAttr
, CurType
, CurType
);
8253 static void HandleLifetimeBoundAttr(TypeProcessingState
&State
,
8256 if (State
.getDeclarator().isDeclarationOfFunction()) {
8257 CurType
= State
.getAttributedType(
8258 createSimpleAttr
<LifetimeBoundAttr
>(State
.getSema().Context
, Attr
),
8263 static void processTypeAttrs(TypeProcessingState
&state
, QualType
&type
,
8264 TypeAttrLocation TAL
,
8265 const ParsedAttributesView
&attrs
) {
8267 state
.setParsedNoDeref(false);
8271 // Scan through and apply attributes to this type where it makes sense. Some
8272 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8273 // type, but others can be present in the type specifiers even though they
8274 // apply to the decl. Here we apply type attributes and ignore the rest.
8276 // This loop modifies the list pretty frequently, but we still need to make
8277 // sure we visit every element once. Copy the attributes list, and iterate
8279 ParsedAttributesView AttrsCopy
{attrs
};
8280 for (ParsedAttr
&attr
: AttrsCopy
) {
8282 // Skip attributes that were marked to be invalid.
8283 if (attr
.isInvalid())
8286 if (attr
.isStandardAttributeSyntax()) {
8287 // [[gnu::...]] attributes are treated as declaration attributes, so may
8288 // not appertain to a DeclaratorChunk. If we handle them as type
8289 // attributes, accept them in that position and diagnose the GCC
8291 if (attr
.isGNUScope()) {
8292 bool IsTypeAttr
= attr
.isTypeAttr();
8293 if (TAL
== TAL_DeclChunk
) {
8294 state
.getSema().Diag(attr
.getLoc(),
8296 ? diag::warn_gcc_ignores_type_attr
8297 : diag::warn_cxx11_gnu_attribute_on_type
)
8302 } else if (TAL
!= TAL_DeclSpec
&& TAL
!= TAL_DeclChunk
&&
8303 !attr
.isTypeAttr()) {
8304 // Otherwise, only consider type processing for a C++11 attribute if
8305 // - it has actually been applied to a type (decl-specifier-seq or
8306 // declarator chunk), or
8307 // - it is a type attribute, irrespective of where it was applied (so
8308 // that we can support the legacy behavior of some type attributes
8309 // that can be applied to the declaration name).
8314 // If this is an attribute we can handle, do so now,
8315 // otherwise, add it to the FnAttrs list for rechaining.
8316 switch (attr
.getKind()) {
8318 // A [[]] attribute on a declarator chunk must appertain to a type.
8319 if (attr
.isStandardAttributeSyntax() && TAL
== TAL_DeclChunk
) {
8320 state
.getSema().Diag(attr
.getLoc(), diag::err_attribute_not_type_attr
)
8322 attr
.setUsedAsTypeAttr();
8326 case ParsedAttr::UnknownAttribute
:
8327 if (attr
.isStandardAttributeSyntax()) {
8328 state
.getSema().Diag(attr
.getLoc(),
8329 diag::warn_unknown_attribute_ignored
)
8330 << attr
<< attr
.getRange();
8331 // Mark the attribute as invalid so we don't emit the same diagnostic
8337 case ParsedAttr::IgnoredAttribute
:
8340 case ParsedAttr::AT_BTFTypeTag
:
8341 HandleBTFTypeTagAttribute(type
, attr
, state
);
8342 attr
.setUsedAsTypeAttr();
8345 case ParsedAttr::AT_MayAlias
:
8346 // FIXME: This attribute needs to actually be handled, but if we ignore
8347 // it it breaks large amounts of Linux software.
8348 attr
.setUsedAsTypeAttr();
8350 case ParsedAttr::AT_OpenCLPrivateAddressSpace
:
8351 case ParsedAttr::AT_OpenCLGlobalAddressSpace
:
8352 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace
:
8353 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace
:
8354 case ParsedAttr::AT_OpenCLLocalAddressSpace
:
8355 case ParsedAttr::AT_OpenCLConstantAddressSpace
:
8356 case ParsedAttr::AT_OpenCLGenericAddressSpace
:
8357 case ParsedAttr::AT_AddressSpace
:
8358 HandleAddressSpaceTypeAttribute(type
, attr
, state
);
8359 attr
.setUsedAsTypeAttr();
8361 OBJC_POINTER_TYPE_ATTRS_CASELIST
:
8362 if (!handleObjCPointerTypeAttr(state
, attr
, type
))
8363 distributeObjCPointerTypeAttr(state
, attr
, type
);
8364 attr
.setUsedAsTypeAttr();
8366 case ParsedAttr::AT_VectorSize
:
8367 HandleVectorSizeAttr(type
, attr
, state
.getSema());
8368 attr
.setUsedAsTypeAttr();
8370 case ParsedAttr::AT_ExtVectorType
:
8371 HandleExtVectorTypeAttr(type
, attr
, state
.getSema());
8372 attr
.setUsedAsTypeAttr();
8374 case ParsedAttr::AT_NeonVectorType
:
8375 HandleNeonVectorTypeAttr(type
, attr
, state
.getSema(),
8376 VectorType::NeonVector
);
8377 attr
.setUsedAsTypeAttr();
8379 case ParsedAttr::AT_NeonPolyVectorType
:
8380 HandleNeonVectorTypeAttr(type
, attr
, state
.getSema(),
8381 VectorType::NeonPolyVector
);
8382 attr
.setUsedAsTypeAttr();
8384 case ParsedAttr::AT_ArmSveVectorBits
:
8385 HandleArmSveVectorBitsTypeAttr(type
, attr
, state
.getSema());
8386 attr
.setUsedAsTypeAttr();
8388 case ParsedAttr::AT_ArmMveStrictPolymorphism
: {
8389 HandleArmMveStrictPolymorphismAttr(state
, type
, attr
);
8390 attr
.setUsedAsTypeAttr();
8393 case ParsedAttr::AT_OpenCLAccess
:
8394 HandleOpenCLAccessAttr(type
, attr
, state
.getSema());
8395 attr
.setUsedAsTypeAttr();
8397 case ParsedAttr::AT_LifetimeBound
:
8398 if (TAL
== TAL_DeclChunk
)
8399 HandleLifetimeBoundAttr(state
, type
, attr
);
8402 case ParsedAttr::AT_NoDeref
: {
8403 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8404 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8405 // For the time being, we simply emit a warning that the attribute is
8407 if (attr
.isStandardAttributeSyntax()) {
8408 state
.getSema().Diag(attr
.getLoc(), diag::warn_attribute_ignored
)
8412 ASTContext
&Ctx
= state
.getSema().Context
;
8413 type
= state
.getAttributedType(createSimpleAttr
<NoDerefAttr
>(Ctx
, attr
),
8415 attr
.setUsedAsTypeAttr();
8416 state
.setParsedNoDeref(true);
8420 case ParsedAttr::AT_MatrixType
:
8421 HandleMatrixTypeAttr(type
, attr
, state
.getSema());
8422 attr
.setUsedAsTypeAttr();
8425 MS_TYPE_ATTRS_CASELIST
:
8426 if (!handleMSPointerTypeQualifierAttr(state
, attr
, type
))
8427 attr
.setUsedAsTypeAttr();
8431 NULLABILITY_TYPE_ATTRS_CASELIST
:
8432 // Either add nullability here or try to distribute it. We
8433 // don't want to distribute the nullability specifier past any
8434 // dependent type, because that complicates the user model.
8435 if (type
->canHaveNullability() || type
->isDependentType() ||
8436 type
->isArrayType() ||
8437 !distributeNullabilityTypeAttr(state
, type
, attr
)) {
8439 if (TAL
== TAL_DeclChunk
)
8440 endIndex
= state
.getCurrentChunkIndex();
8442 endIndex
= state
.getDeclarator().getNumTypeObjects();
8443 bool allowOnArrayType
=
8444 state
.getDeclarator().isPrototypeContext() &&
8445 !hasOuterPointerLikeChunk(state
.getDeclarator(), endIndex
);
8446 if (checkNullabilityTypeSpecifier(
8450 allowOnArrayType
)) {
8454 attr
.setUsedAsTypeAttr();
8458 case ParsedAttr::AT_ObjCKindOf
:
8459 // '__kindof' must be part of the decl-specifiers.
8466 state
.getSema().Diag(attr
.getLoc(),
8467 diag::err_objc_kindof_wrong_position
)
8468 << FixItHint::CreateRemoval(attr
.getLoc())
8469 << FixItHint::CreateInsertion(
8470 state
.getDeclarator().getDeclSpec().getBeginLoc(),
8475 // Apply it regardless.
8476 if (checkObjCKindOfType(state
, type
, attr
))
8480 case ParsedAttr::AT_NoThrow
:
8481 // Exception Specifications aren't generally supported in C mode throughout
8482 // clang, so revert to attribute-based handling for C.
8483 if (!state
.getSema().getLangOpts().CPlusPlus
)
8486 FUNCTION_TYPE_ATTRS_CASELIST
:
8487 attr
.setUsedAsTypeAttr();
8489 // Attributes with standard syntax have strict rules for what they
8490 // appertain to and hence should not use the "distribution" logic below.
8491 if (attr
.isStandardAttributeSyntax()) {
8492 if (!handleFunctionTypeAttr(state
, attr
, type
)) {
8493 diagnoseBadTypeAttribute(state
.getSema(), attr
, type
);
8499 // Never process function type attributes as part of the
8500 // declaration-specifiers.
8501 if (TAL
== TAL_DeclSpec
)
8502 distributeFunctionTypeAttrFromDeclSpec(state
, attr
, type
);
8504 // Otherwise, handle the possible delays.
8505 else if (!handleFunctionTypeAttr(state
, attr
, type
))
8506 distributeFunctionTypeAttr(state
, attr
, type
);
8508 case ParsedAttr::AT_AcquireHandle
: {
8509 if (!type
->isFunctionType())
8512 if (attr
.getNumArgs() != 1) {
8513 state
.getSema().Diag(attr
.getLoc(),
8514 diag::err_attribute_wrong_number_arguments
)
8520 StringRef HandleType
;
8521 if (!state
.getSema().checkStringLiteralArgumentAttr(attr
, 0, HandleType
))
8523 type
= state
.getAttributedType(
8524 AcquireHandleAttr::Create(state
.getSema().Context
, HandleType
, attr
),
8526 attr
.setUsedAsTypeAttr();
8529 case ParsedAttr::AT_AnnotateType
: {
8530 HandleAnnotateTypeAttr(state
, type
, attr
);
8531 attr
.setUsedAsTypeAttr();
8536 // Handle attributes that are defined in a macro. We do not want this to be
8537 // applied to ObjC builtin attributes.
8538 if (isa
<AttributedType
>(type
) && attr
.hasMacroIdentifier() &&
8539 !type
.getQualifiers().hasObjCLifetime() &&
8540 !type
.getQualifiers().hasObjCGCAttr() &&
8541 attr
.getKind() != ParsedAttr::AT_ObjCGC
&&
8542 attr
.getKind() != ParsedAttr::AT_ObjCOwnership
) {
8543 const IdentifierInfo
*MacroII
= attr
.getMacroIdentifier();
8544 type
= state
.getSema().Context
.getMacroQualifiedType(type
, MacroII
);
8545 state
.setExpansionLocForMacroQualifiedType(
8546 cast
<MacroQualifiedType
>(type
.getTypePtr()),
8547 attr
.getMacroExpansionLoc());
8552 void Sema::completeExprArrayBound(Expr
*E
) {
8553 if (DeclRefExpr
*DRE
= dyn_cast
<DeclRefExpr
>(E
->IgnoreParens())) {
8554 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(DRE
->getDecl())) {
8555 if (isTemplateInstantiation(Var
->getTemplateSpecializationKind())) {
8556 auto *Def
= Var
->getDefinition();
8558 SourceLocation PointOfInstantiation
= E
->getExprLoc();
8559 runWithSufficientStackSpace(PointOfInstantiation
, [&] {
8560 InstantiateVariableDefinition(PointOfInstantiation
, Var
);
8562 Def
= Var
->getDefinition();
8564 // If we don't already have a point of instantiation, and we managed
8565 // to instantiate a definition, this is the point of instantiation.
8566 // Otherwise, we don't request an end-of-TU instantiation, so this is
8567 // not a point of instantiation.
8568 // FIXME: Is this really the right behavior?
8569 if (Var
->getPointOfInstantiation().isInvalid() && Def
) {
8570 assert(Var
->getTemplateSpecializationKind() ==
8571 TSK_ImplicitInstantiation
&&
8572 "explicit instantiation with no point of instantiation");
8573 Var
->setTemplateSpecializationKind(
8574 Var
->getTemplateSpecializationKind(), PointOfInstantiation
);
8578 // Update the type to the definition's type both here and within the
8582 QualType T
= Def
->getType();
8584 // FIXME: Update the type on all intervening expressions.
8588 // We still go on to try to complete the type independently, as it
8589 // may also require instantiations or diagnostics if it remains
8596 QualType
Sema::getCompletedType(Expr
*E
) {
8597 // Incomplete array types may be completed by the initializer attached to
8598 // their definitions. For static data members of class templates and for
8599 // variable templates, we need to instantiate the definition to get this
8600 // initializer and complete the type.
8601 if (E
->getType()->isIncompleteArrayType())
8602 completeExprArrayBound(E
);
8604 // FIXME: Are there other cases which require instantiating something other
8605 // than the type to complete the type of an expression?
8607 return E
->getType();
8610 /// Ensure that the type of the given expression is complete.
8612 /// This routine checks whether the expression \p E has a complete type. If the
8613 /// expression refers to an instantiable construct, that instantiation is
8614 /// performed as needed to complete its type. Furthermore
8615 /// Sema::RequireCompleteType is called for the expression's type (or in the
8616 /// case of a reference type, the referred-to type).
8618 /// \param E The expression whose type is required to be complete.
8619 /// \param Kind Selects which completeness rules should be applied.
8620 /// \param Diagnoser The object that will emit a diagnostic if the type is
8623 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
8625 bool Sema::RequireCompleteExprType(Expr
*E
, CompleteTypeKind Kind
,
8626 TypeDiagnoser
&Diagnoser
) {
8627 return RequireCompleteType(E
->getExprLoc(), getCompletedType(E
), Kind
,
8631 bool Sema::RequireCompleteExprType(Expr
*E
, unsigned DiagID
) {
8632 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
8633 return RequireCompleteExprType(E
, CompleteTypeKind::Default
, Diagnoser
);
8636 /// Ensure that the type T is a complete type.
8638 /// This routine checks whether the type @p T is complete in any
8639 /// context where a complete type is required. If @p T is a complete
8640 /// type, returns false. If @p T is a class template specialization,
8641 /// this routine then attempts to perform class template
8642 /// instantiation. If instantiation fails, or if @p T is incomplete
8643 /// and cannot be completed, issues the diagnostic @p diag (giving it
8644 /// the type @p T) and returns true.
8646 /// @param Loc The location in the source that the incomplete type
8647 /// diagnostic should refer to.
8649 /// @param T The type that this routine is examining for completeness.
8651 /// @param Kind Selects which completeness rules should be applied.
8653 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
8654 /// @c false otherwise.
8655 bool Sema::RequireCompleteType(SourceLocation Loc
, QualType T
,
8656 CompleteTypeKind Kind
,
8657 TypeDiagnoser
&Diagnoser
) {
8658 if (RequireCompleteTypeImpl(Loc
, T
, Kind
, &Diagnoser
))
8660 if (const TagType
*Tag
= T
->getAs
<TagType
>()) {
8661 if (!Tag
->getDecl()->isCompleteDefinitionRequired()) {
8662 Tag
->getDecl()->setCompleteDefinitionRequired();
8663 Consumer
.HandleTagDeclRequiredDefinition(Tag
->getDecl());
8669 bool Sema::hasStructuralCompatLayout(Decl
*D
, Decl
*Suggested
) {
8670 llvm::DenseSet
<std::pair
<Decl
*, Decl
*>> NonEquivalentDecls
;
8674 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
8675 // and isolate from other C++ specific checks.
8676 StructuralEquivalenceContext
Ctx(
8677 D
->getASTContext(), Suggested
->getASTContext(), NonEquivalentDecls
,
8678 StructuralEquivalenceKind::Default
,
8679 false /*StrictTypeSpelling*/, true /*Complain*/,
8680 true /*ErrorOnTagTypeMismatch*/);
8681 return Ctx
.IsEquivalent(D
, Suggested
);
8684 bool Sema::hasAcceptableDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
8685 AcceptableKind Kind
, bool OnlyNeedComplete
) {
8686 // Easy case: if we don't have modules, all declarations are visible.
8687 if (!getLangOpts().Modules
&& !getLangOpts().ModulesLocalVisibility
)
8690 // If this definition was instantiated from a template, map back to the
8691 // pattern from which it was instantiated.
8692 if (isa
<TagDecl
>(D
) && cast
<TagDecl
>(D
)->isBeingDefined()) {
8693 // We're in the middle of defining it; this definition should be treated
8696 } else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(D
)) {
8697 if (auto *Pattern
= RD
->getTemplateInstantiationPattern())
8699 D
= RD
->getDefinition();
8700 } else if (auto *ED
= dyn_cast
<EnumDecl
>(D
)) {
8701 if (auto *Pattern
= ED
->getTemplateInstantiationPattern())
8703 if (OnlyNeedComplete
&& (ED
->isFixed() || getLangOpts().MSVCCompat
)) {
8704 // If the enum has a fixed underlying type, it may have been forward
8705 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
8706 // the enum and assign it the underlying type of `int`. Since we're only
8707 // looking for a complete type (not a definition), any visible declaration
8709 *Suggested
= nullptr;
8710 for (auto *Redecl
: ED
->redecls()) {
8711 if (isAcceptable(Redecl
, Kind
))
8713 if (Redecl
->isThisDeclarationADefinition() ||
8714 (Redecl
->isCanonicalDecl() && !*Suggested
))
8715 *Suggested
= Redecl
;
8720 D
= ED
->getDefinition();
8721 } else if (auto *FD
= dyn_cast
<FunctionDecl
>(D
)) {
8722 if (auto *Pattern
= FD
->getTemplateInstantiationPattern())
8724 D
= FD
->getDefinition();
8725 } else if (auto *VD
= dyn_cast
<VarDecl
>(D
)) {
8726 if (auto *Pattern
= VD
->getTemplateInstantiationPattern())
8728 D
= VD
->getDefinition();
8731 assert(D
&& "missing definition for pattern of instantiated definition");
8735 auto DefinitionIsAcceptable
= [&] {
8736 // The (primary) definition might be in a visible module.
8737 if (isAcceptable(D
, Kind
))
8740 // A visible module might have a merged definition instead.
8741 if (D
->isModulePrivate() ? hasMergedDefinitionInCurrentModule(D
)
8742 : hasVisibleMergedDefinition(D
)) {
8743 if (CodeSynthesisContexts
.empty() &&
8744 !getLangOpts().ModulesLocalVisibility
) {
8745 // Cache the fact that this definition is implicitly visible because
8746 // there is a visible merged definition.
8747 D
->setVisibleDespiteOwningModule();
8755 if (DefinitionIsAcceptable())
8758 // The external source may have additional definitions of this entity that are
8759 // visible, so complete the redeclaration chain now and ask again.
8760 if (auto *Source
= Context
.getExternalSource()) {
8761 Source
->CompleteRedeclChain(D
);
8762 return DefinitionIsAcceptable();
8768 /// Determine whether there is any declaration of \p D that was ever a
8769 /// definition (perhaps before module merging) and is currently visible.
8770 /// \param D The definition of the entity.
8771 /// \param Suggested Filled in with the declaration that should be made visible
8772 /// in order to provide a definition of this entity.
8773 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8774 /// not defined. This only matters for enums with a fixed underlying
8775 /// type, since in all other cases, a type is complete if and only if it
8777 bool Sema::hasVisibleDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
8778 bool OnlyNeedComplete
) {
8779 return hasAcceptableDefinition(D
, Suggested
, Sema::AcceptableKind::Visible
,
8783 /// Determine whether there is any declaration of \p D that was ever a
8784 /// definition (perhaps before module merging) and is currently
8786 /// \param D The definition of the entity.
8787 /// \param Suggested Filled in with the declaration that should be made
8789 /// in order to provide a definition of this entity.
8790 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
8791 /// not defined. This only matters for enums with a fixed underlying
8792 /// type, since in all other cases, a type is complete if and only if it
8794 bool Sema::hasReachableDefinition(NamedDecl
*D
, NamedDecl
**Suggested
,
8795 bool OnlyNeedComplete
) {
8796 return hasAcceptableDefinition(D
, Suggested
, Sema::AcceptableKind::Reachable
,
8800 /// Locks in the inheritance model for the given class and all of its bases.
8801 static void assignInheritanceModel(Sema
&S
, CXXRecordDecl
*RD
) {
8802 RD
= RD
->getMostRecentNonInjectedDecl();
8803 if (!RD
->hasAttr
<MSInheritanceAttr
>()) {
8804 MSInheritanceModel IM
;
8805 bool BestCase
= false;
8806 switch (S
.MSPointerToMemberRepresentationMethod
) {
8807 case LangOptions::PPTMK_BestCase
:
8809 IM
= RD
->calculateInheritanceModel();
8811 case LangOptions::PPTMK_FullGeneralitySingleInheritance
:
8812 IM
= MSInheritanceModel::Single
;
8814 case LangOptions::PPTMK_FullGeneralityMultipleInheritance
:
8815 IM
= MSInheritanceModel::Multiple
;
8817 case LangOptions::PPTMK_FullGeneralityVirtualInheritance
:
8818 IM
= MSInheritanceModel::Unspecified
;
8822 SourceRange Loc
= S
.ImplicitMSInheritanceAttrLoc
.isValid()
8823 ? S
.ImplicitMSInheritanceAttrLoc
8824 : RD
->getSourceRange();
8825 RD
->addAttr(MSInheritanceAttr::CreateImplicit(
8826 S
.getASTContext(), BestCase
, Loc
, AttributeCommonInfo::AS_Microsoft
,
8827 MSInheritanceAttr::Spelling(IM
)));
8828 S
.Consumer
.AssignInheritanceModel(RD
);
8832 /// The implementation of RequireCompleteType
8833 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc
, QualType T
,
8834 CompleteTypeKind Kind
,
8835 TypeDiagnoser
*Diagnoser
) {
8836 // FIXME: Add this assertion to make sure we always get instantiation points.
8837 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
8838 // FIXME: Add this assertion to help us flush out problems with
8839 // checking for dependent types and type-dependent expressions.
8841 // assert(!T->isDependentType() &&
8842 // "Can't ask whether a dependent type is complete");
8844 if (const MemberPointerType
*MPTy
= T
->getAs
<MemberPointerType
>()) {
8845 if (!MPTy
->getClass()->isDependentType()) {
8846 if (getLangOpts().CompleteMemberPointers
&&
8847 !MPTy
->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
8848 RequireCompleteType(Loc
, QualType(MPTy
->getClass(), 0), Kind
,
8849 diag::err_memptr_incomplete
))
8852 // We lock in the inheritance model once somebody has asked us to ensure
8853 // that a pointer-to-member type is complete.
8854 if (Context
.getTargetInfo().getCXXABI().isMicrosoft()) {
8855 (void)isCompleteType(Loc
, QualType(MPTy
->getClass(), 0));
8856 assignInheritanceModel(*this, MPTy
->getMostRecentCXXRecordDecl());
8861 NamedDecl
*Def
= nullptr;
8862 bool AcceptSizeless
= (Kind
== CompleteTypeKind::AcceptSizeless
);
8863 bool Incomplete
= (T
->isIncompleteType(&Def
) ||
8864 (!AcceptSizeless
&& T
->isSizelessBuiltinType()));
8866 // Check that any necessary explicit specializations are visible. For an
8867 // enum, we just need the declaration, so don't check this.
8868 if (Def
&& !isa
<EnumDecl
>(Def
))
8869 checkSpecializationReachability(Loc
, Def
);
8871 // If we have a complete type, we're done.
8873 NamedDecl
*Suggested
= nullptr;
8875 !hasReachableDefinition(Def
, &Suggested
, /*OnlyNeedComplete=*/true)) {
8876 // If the user is going to see an error here, recover by making the
8877 // definition visible.
8878 bool TreatAsComplete
= Diagnoser
&& !isSFINAEContext();
8879 if (Diagnoser
&& Suggested
)
8880 diagnoseMissingImport(Loc
, Suggested
, MissingImportKind::Definition
,
8881 /*Recover*/ TreatAsComplete
);
8882 return !TreatAsComplete
;
8883 } else if (Def
&& !TemplateInstCallbacks
.empty()) {
8884 CodeSynthesisContext TempInst
;
8885 TempInst
.Kind
= CodeSynthesisContext::Memoization
;
8886 TempInst
.Template
= Def
;
8887 TempInst
.Entity
= Def
;
8888 TempInst
.PointOfInstantiation
= Loc
;
8889 atTemplateBegin(TemplateInstCallbacks
, *this, TempInst
);
8890 atTemplateEnd(TemplateInstCallbacks
, *this, TempInst
);
8896 TagDecl
*Tag
= dyn_cast_or_null
<TagDecl
>(Def
);
8897 ObjCInterfaceDecl
*IFace
= dyn_cast_or_null
<ObjCInterfaceDecl
>(Def
);
8899 // Give the external source a chance to provide a definition of the type.
8900 // This is kept separate from completing the redeclaration chain so that
8901 // external sources such as LLDB can avoid synthesizing a type definition
8902 // unless it's actually needed.
8904 // Avoid diagnosing invalid decls as incomplete.
8905 if (Def
->isInvalidDecl())
8908 // Give the external AST source a chance to complete the type.
8909 if (auto *Source
= Context
.getExternalSource()) {
8910 if (Tag
&& Tag
->hasExternalLexicalStorage())
8911 Source
->CompleteType(Tag
);
8912 if (IFace
&& IFace
->hasExternalLexicalStorage())
8913 Source
->CompleteType(IFace
);
8914 // If the external source completed the type, go through the motions
8915 // again to ensure we're allowed to use the completed type.
8916 if (!T
->isIncompleteType())
8917 return RequireCompleteTypeImpl(Loc
, T
, Kind
, Diagnoser
);
8921 // If we have a class template specialization or a class member of a
8922 // class template specialization, or an array with known size of such,
8923 // try to instantiate it.
8924 if (auto *RD
= dyn_cast_or_null
<CXXRecordDecl
>(Tag
)) {
8925 bool Instantiated
= false;
8926 bool Diagnosed
= false;
8927 if (RD
->isDependentContext()) {
8928 // Don't try to instantiate a dependent class (eg, a member template of
8929 // an instantiated class template specialization).
8930 // FIXME: Can this ever happen?
8931 } else if (auto *ClassTemplateSpec
=
8932 dyn_cast
<ClassTemplateSpecializationDecl
>(RD
)) {
8933 if (ClassTemplateSpec
->getSpecializationKind() == TSK_Undeclared
) {
8934 runWithSufficientStackSpace(Loc
, [&] {
8935 Diagnosed
= InstantiateClassTemplateSpecialization(
8936 Loc
, ClassTemplateSpec
, TSK_ImplicitInstantiation
,
8937 /*Complain=*/Diagnoser
);
8939 Instantiated
= true;
8942 CXXRecordDecl
*Pattern
= RD
->getInstantiatedFromMemberClass();
8943 if (!RD
->isBeingDefined() && Pattern
) {
8944 MemberSpecializationInfo
*MSI
= RD
->getMemberSpecializationInfo();
8945 assert(MSI
&& "Missing member specialization information?");
8946 // This record was instantiated from a class within a template.
8947 if (MSI
->getTemplateSpecializationKind() !=
8948 TSK_ExplicitSpecialization
) {
8949 runWithSufficientStackSpace(Loc
, [&] {
8950 Diagnosed
= InstantiateClass(Loc
, RD
, Pattern
,
8951 getTemplateInstantiationArgs(RD
),
8952 TSK_ImplicitInstantiation
,
8953 /*Complain=*/Diagnoser
);
8955 Instantiated
= true;
8961 // Instantiate* might have already complained that the template is not
8962 // defined, if we asked it to.
8963 if (Diagnoser
&& Diagnosed
)
8965 // If we instantiated a definition, check that it's usable, even if
8966 // instantiation produced an error, so that repeated calls to this
8967 // function give consistent answers.
8968 if (!T
->isIncompleteType())
8969 return RequireCompleteTypeImpl(Loc
, T
, Kind
, Diagnoser
);
8973 // FIXME: If we didn't instantiate a definition because of an explicit
8974 // specialization declaration, check that it's visible.
8979 Diagnoser
->diagnose(*this, Loc
, T
);
8981 // If the type was a forward declaration of a class/struct/union
8982 // type, produce a note.
8983 if (Tag
&& !Tag
->isInvalidDecl() && !Tag
->getLocation().isInvalid())
8984 Diag(Tag
->getLocation(),
8985 Tag
->isBeingDefined() ? diag::note_type_being_defined
8986 : diag::note_forward_declaration
)
8987 << Context
.getTagDeclType(Tag
);
8989 // If the Objective-C class was a forward declaration, produce a note.
8990 if (IFace
&& !IFace
->isInvalidDecl() && !IFace
->getLocation().isInvalid())
8991 Diag(IFace
->getLocation(), diag::note_forward_class
);
8993 // If we have external information that we can use to suggest a fix,
8996 ExternalSource
->MaybeDiagnoseMissingCompleteType(Loc
, T
);
9001 bool Sema::RequireCompleteType(SourceLocation Loc
, QualType T
,
9002 CompleteTypeKind Kind
, unsigned DiagID
) {
9003 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
9004 return RequireCompleteType(Loc
, T
, Kind
, Diagnoser
);
9007 /// Get diagnostic %select index for tag kind for
9008 /// literal type diagnostic message.
9009 /// WARNING: Indexes apply to particular diagnostics only!
9011 /// \returns diagnostic %select index.
9012 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag
) {
9014 case TTK_Struct
: return 0;
9015 case TTK_Interface
: return 1;
9016 case TTK_Class
: return 2;
9017 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9021 /// Ensure that the type T is a literal type.
9023 /// This routine checks whether the type @p T is a literal type. If @p T is an
9024 /// incomplete type, an attempt is made to complete it. If @p T is a literal
9025 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
9026 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
9027 /// it the type @p T), along with notes explaining why the type is not a
9028 /// literal type, and returns true.
9030 /// @param Loc The location in the source that the non-literal type
9031 /// diagnostic should refer to.
9033 /// @param T The type that this routine is examining for literalness.
9035 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
9037 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
9038 /// @c false otherwise.
9039 bool Sema::RequireLiteralType(SourceLocation Loc
, QualType T
,
9040 TypeDiagnoser
&Diagnoser
) {
9041 assert(!T
->isDependentType() && "type should not be dependent");
9043 QualType ElemType
= Context
.getBaseElementType(T
);
9044 if ((isCompleteType(Loc
, ElemType
) || ElemType
->isVoidType()) &&
9045 T
->isLiteralType(Context
))
9048 Diagnoser
.diagnose(*this, Loc
, T
);
9050 if (T
->isVariableArrayType())
9053 const RecordType
*RT
= ElemType
->getAs
<RecordType
>();
9057 const CXXRecordDecl
*RD
= cast
<CXXRecordDecl
>(RT
->getDecl());
9059 // A partially-defined class type can't be a literal type, because a literal
9060 // class type must have a trivial destructor (which can't be checked until
9061 // the class definition is complete).
9062 if (RequireCompleteType(Loc
, ElemType
, diag::note_non_literal_incomplete
, T
))
9065 // [expr.prim.lambda]p3:
9066 // This class type is [not] a literal type.
9067 if (RD
->isLambda() && !getLangOpts().CPlusPlus17
) {
9068 Diag(RD
->getLocation(), diag::note_non_literal_lambda
);
9072 // If the class has virtual base classes, then it's not an aggregate, and
9073 // cannot have any constexpr constructors or a trivial default constructor,
9074 // so is non-literal. This is better to diagnose than the resulting absence
9075 // of constexpr constructors.
9076 if (RD
->getNumVBases()) {
9077 Diag(RD
->getLocation(), diag::note_non_literal_virtual_base
)
9078 << getLiteralDiagFromTagKind(RD
->getTagKind()) << RD
->getNumVBases();
9079 for (const auto &I
: RD
->vbases())
9080 Diag(I
.getBeginLoc(), diag::note_constexpr_virtual_base_here
)
9081 << I
.getSourceRange();
9082 } else if (!RD
->isAggregate() && !RD
->hasConstexprNonCopyMoveConstructor() &&
9083 !RD
->hasTrivialDefaultConstructor()) {
9084 Diag(RD
->getLocation(), diag::note_non_literal_no_constexpr_ctors
) << RD
;
9085 } else if (RD
->hasNonLiteralTypeFieldsOrBases()) {
9086 for (const auto &I
: RD
->bases()) {
9087 if (!I
.getType()->isLiteralType(Context
)) {
9088 Diag(I
.getBeginLoc(), diag::note_non_literal_base_class
)
9089 << RD
<< I
.getType() << I
.getSourceRange();
9093 for (const auto *I
: RD
->fields()) {
9094 if (!I
->getType()->isLiteralType(Context
) ||
9095 I
->getType().isVolatileQualified()) {
9096 Diag(I
->getLocation(), diag::note_non_literal_field
)
9097 << RD
<< I
<< I
->getType()
9098 << I
->getType().isVolatileQualified();
9102 } else if (getLangOpts().CPlusPlus20
? !RD
->hasConstexprDestructor()
9103 : !RD
->hasTrivialDestructor()) {
9104 // All fields and bases are of literal types, so have trivial or constexpr
9105 // destructors. If this class's destructor is non-trivial / non-constexpr,
9106 // it must be user-declared.
9107 CXXDestructorDecl
*Dtor
= RD
->getDestructor();
9108 assert(Dtor
&& "class has literal fields and bases but no dtor?");
9112 if (getLangOpts().CPlusPlus20
) {
9113 Diag(Dtor
->getLocation(), diag::note_non_literal_non_constexpr_dtor
)
9116 Diag(Dtor
->getLocation(), Dtor
->isUserProvided()
9117 ? diag::note_non_literal_user_provided_dtor
9118 : diag::note_non_literal_nontrivial_dtor
)
9120 if (!Dtor
->isUserProvided())
9121 SpecialMemberIsTrivial(Dtor
, CXXDestructor
, TAH_IgnoreTrivialABI
,
9129 bool Sema::RequireLiteralType(SourceLocation Loc
, QualType T
, unsigned DiagID
) {
9130 BoundTypeDiagnoser
<> Diagnoser(DiagID
);
9131 return RequireLiteralType(Loc
, T
, Diagnoser
);
9134 /// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
9135 /// by the nested-name-specifier contained in SS, and that is (re)declared by
9136 /// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
9137 QualType
Sema::getElaboratedType(ElaboratedTypeKeyword Keyword
,
9138 const CXXScopeSpec
&SS
, QualType T
,
9139 TagDecl
*OwnedTagDecl
) {
9142 return Context
.getElaboratedType(
9143 Keyword
, SS
.isValid() ? SS
.getScopeRep() : nullptr, T
, OwnedTagDecl
);
9146 QualType
Sema::BuildTypeofExprType(Expr
*E
) {
9147 assert(!E
->hasPlaceholderType() && "unexpected placeholder");
9149 if (!getLangOpts().CPlusPlus
&& E
->refersToBitField())
9150 Diag(E
->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield
) << 2;
9152 if (!E
->isTypeDependent()) {
9153 QualType T
= E
->getType();
9154 if (const TagType
*TT
= T
->getAs
<TagType
>())
9155 DiagnoseUseOfDecl(TT
->getDecl(), E
->getExprLoc());
9157 return Context
.getTypeOfExprType(E
);
9160 /// getDecltypeForExpr - Given an expr, will return the decltype for
9161 /// that expression, according to the rules in C++11
9162 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9163 QualType
Sema::getDecltypeForExpr(Expr
*E
) {
9164 if (E
->isTypeDependent())
9165 return Context
.DependentTy
;
9168 if (auto *ImplCastExpr
= dyn_cast
<ImplicitCastExpr
>(E
))
9169 IDExpr
= ImplCastExpr
->getSubExpr();
9171 // C++11 [dcl.type.simple]p4:
9172 // The type denoted by decltype(e) is defined as follows:
9175 // - if E is an unparenthesized id-expression naming a non-type
9176 // template-parameter (13.2), decltype(E) is the type of the
9177 // template-parameter after performing any necessary type deduction
9178 // Note that this does not pick up the implicit 'const' for a template
9179 // parameter object. This rule makes no difference before C++20 so we apply
9180 // it unconditionally.
9181 if (const auto *SNTTPE
= dyn_cast
<SubstNonTypeTemplateParmExpr
>(IDExpr
))
9182 return SNTTPE
->getParameterType(Context
);
9184 // - if e is an unparenthesized id-expression or an unparenthesized class
9185 // member access (5.2.5), decltype(e) is the type of the entity named
9186 // by e. If there is no such entity, or if e names a set of overloaded
9187 // functions, the program is ill-formed;
9189 // We apply the same rules for Objective-C ivar and property references.
9190 if (const auto *DRE
= dyn_cast
<DeclRefExpr
>(IDExpr
)) {
9191 const ValueDecl
*VD
= DRE
->getDecl();
9192 QualType T
= VD
->getType();
9193 return isa
<TemplateParamObjectDecl
>(VD
) ? T
.getUnqualifiedType() : T
;
9195 if (const auto *ME
= dyn_cast
<MemberExpr
>(IDExpr
)) {
9196 if (const auto *VD
= ME
->getMemberDecl())
9197 if (isa
<FieldDecl
>(VD
) || isa
<VarDecl
>(VD
))
9198 return VD
->getType();
9199 } else if (const auto *IR
= dyn_cast
<ObjCIvarRefExpr
>(IDExpr
)) {
9200 return IR
->getDecl()->getType();
9201 } else if (const auto *PR
= dyn_cast
<ObjCPropertyRefExpr
>(IDExpr
)) {
9202 if (PR
->isExplicitProperty())
9203 return PR
->getExplicitProperty()->getType();
9204 } else if (const auto *PE
= dyn_cast
<PredefinedExpr
>(IDExpr
)) {
9205 return PE
->getType();
9208 // C++11 [expr.lambda.prim]p18:
9209 // Every occurrence of decltype((x)) where x is a possibly
9210 // parenthesized id-expression that names an entity of automatic
9211 // storage duration is treated as if x were transformed into an
9212 // access to a corresponding data member of the closure type that
9213 // would have been declared if x were an odr-use of the denoted
9215 if (getCurLambda() && isa
<ParenExpr
>(IDExpr
)) {
9216 if (auto *DRE
= dyn_cast
<DeclRefExpr
>(IDExpr
->IgnoreParens())) {
9217 if (auto *Var
= dyn_cast
<VarDecl
>(DRE
->getDecl())) {
9218 QualType T
= getCapturedDeclRefType(Var
, DRE
->getLocation());
9220 return Context
.getLValueReferenceType(T
);
9225 return Context
.getReferenceQualifiedType(E
);
9228 QualType
Sema::BuildDecltypeType(Expr
*E
, bool AsUnevaluated
) {
9229 assert(!E
->hasPlaceholderType() && "unexpected placeholder");
9231 if (AsUnevaluated
&& CodeSynthesisContexts
.empty() &&
9232 !E
->isInstantiationDependent() && E
->HasSideEffects(Context
, false)) {
9233 // The expression operand for decltype is in an unevaluated expression
9234 // context, so side effects could result in unintended consequences.
9235 // Exclude instantiation-dependent expressions, because 'decltype' is often
9236 // used to build SFINAE gadgets.
9237 Diag(E
->getExprLoc(), diag::warn_side_effects_unevaluated_context
);
9239 return Context
.getDecltypeType(E
, getDecltypeForExpr(E
));
9242 static QualType
GetEnumUnderlyingType(Sema
&S
, QualType BaseType
,
9243 SourceLocation Loc
) {
9244 assert(BaseType
->isEnumeralType());
9245 EnumDecl
*ED
= BaseType
->castAs
<EnumType
>()->getDecl();
9246 assert(ED
&& "EnumType has no EnumDecl");
9248 S
.DiagnoseUseOfDecl(ED
, Loc
);
9250 QualType Underlying
= ED
->getIntegerType();
9251 assert(!Underlying
.isNull());
9256 QualType
Sema::BuiltinEnumUnderlyingType(QualType BaseType
,
9257 SourceLocation Loc
) {
9258 if (!BaseType
->isEnumeralType()) {
9259 Diag(Loc
, diag::err_only_enums_have_underlying_types
);
9263 // The enum could be incomplete if we're parsing its definition or
9264 // recovering from an error.
9265 NamedDecl
*FwdDecl
= nullptr;
9266 if (BaseType
->isIncompleteType(&FwdDecl
)) {
9267 Diag(Loc
, diag::err_underlying_type_of_incomplete_enum
) << BaseType
;
9268 Diag(FwdDecl
->getLocation(), diag::note_forward_declaration
) << FwdDecl
;
9272 return GetEnumUnderlyingType(*this, BaseType
, Loc
);
9275 QualType
Sema::BuiltinAddPointer(QualType BaseType
, SourceLocation Loc
) {
9276 QualType Pointer
= BaseType
.isReferenceable() || BaseType
->isVoidType()
9277 ? BuildPointerType(BaseType
.getNonReferenceType(), Loc
,
9281 return Pointer
.isNull() ? QualType() : Pointer
;
9284 QualType
Sema::BuiltinRemovePointer(QualType BaseType
, SourceLocation Loc
) {
9285 // We don't want block pointers or ObjectiveC's id type.
9286 if (!BaseType
->isAnyPointerType() || BaseType
->isObjCIdType())
9289 return BaseType
->getPointeeType();
9292 QualType
Sema::BuiltinDecay(QualType BaseType
, SourceLocation Loc
) {
9293 QualType Underlying
= BaseType
.getNonReferenceType();
9294 if (Underlying
->isArrayType())
9295 return Context
.getDecayedType(Underlying
);
9297 if (Underlying
->isFunctionType())
9298 return BuiltinAddPointer(BaseType
, Loc
);
9300 SplitQualType Split
= Underlying
.getSplitUnqualifiedType();
9301 // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9302 // in the same group of qualifiers as 'const' and 'volatile', we're extending
9303 // '__decay(T)' so that it removes all qualifiers.
9304 Split
.Quals
.removeCVRQualifiers();
9305 return Context
.getQualifiedType(Split
);
9308 QualType
Sema::BuiltinAddReference(QualType BaseType
, UTTKind UKind
,
9309 SourceLocation Loc
) {
9310 assert(LangOpts
.CPlusPlus
);
9311 QualType Reference
=
9312 BaseType
.isReferenceable()
9313 ? BuildReferenceType(BaseType
,
9314 UKind
== UnaryTransformType::AddLvalueReference
,
9315 Loc
, DeclarationName())
9317 return Reference
.isNull() ? QualType() : Reference
;
9320 QualType
Sema::BuiltinRemoveExtent(QualType BaseType
, UTTKind UKind
,
9321 SourceLocation Loc
) {
9322 if (UKind
== UnaryTransformType::RemoveAllExtents
)
9323 return Context
.getBaseElementType(BaseType
);
9325 if (const auto *AT
= Context
.getAsArrayType(BaseType
))
9326 return AT
->getElementType();
9331 QualType
Sema::BuiltinRemoveReference(QualType BaseType
, UTTKind UKind
,
9332 SourceLocation Loc
) {
9333 assert(LangOpts
.CPlusPlus
);
9334 QualType T
= BaseType
.getNonReferenceType();
9335 if (UKind
== UTTKind::RemoveCVRef
&&
9336 (T
.isConstQualified() || T
.isVolatileQualified())) {
9338 QualType Unqual
= Context
.getUnqualifiedArrayType(T
, Quals
);
9339 Quals
.removeConst();
9340 Quals
.removeVolatile();
9341 T
= Context
.getQualifiedType(Unqual
, Quals
);
9346 QualType
Sema::BuiltinChangeCVRQualifiers(QualType BaseType
, UTTKind UKind
,
9347 SourceLocation Loc
) {
9348 if ((BaseType
->isReferenceType() && UKind
!= UTTKind::RemoveRestrict
) ||
9349 BaseType
->isFunctionType())
9353 QualType Unqual
= Context
.getUnqualifiedArrayType(BaseType
, Quals
);
9355 if (UKind
== UTTKind::RemoveConst
|| UKind
== UTTKind::RemoveCV
)
9356 Quals
.removeConst();
9357 if (UKind
== UTTKind::RemoveVolatile
|| UKind
== UTTKind::RemoveCV
)
9358 Quals
.removeVolatile();
9359 if (UKind
== UTTKind::RemoveRestrict
)
9360 Quals
.removeRestrict();
9362 return Context
.getQualifiedType(Unqual
, Quals
);
9365 static QualType
ChangeIntegralSignedness(Sema
&S
, QualType BaseType
,
9367 SourceLocation Loc
) {
9368 if (BaseType
->isEnumeralType()) {
9369 QualType Underlying
= GetEnumUnderlyingType(S
, BaseType
, Loc
);
9370 if (auto *BitInt
= dyn_cast
<BitIntType
>(Underlying
)) {
9371 unsigned int Bits
= BitInt
->getNumBits();
9373 return S
.Context
.getBitIntType(!IsMakeSigned
, Bits
);
9375 S
.Diag(Loc
, diag::err_make_signed_integral_only
)
9376 << IsMakeSigned
<< /*_BitInt(1)*/ true << BaseType
<< 1 << Underlying
;
9379 if (Underlying
->isBooleanType()) {
9380 S
.Diag(Loc
, diag::err_make_signed_integral_only
)
9381 << IsMakeSigned
<< /*_BitInt(1)*/ false << BaseType
<< 1
9387 bool Int128Unsupported
= !S
.Context
.getTargetInfo().hasInt128Type();
9388 std::array
<CanQualType
*, 6> AllSignedIntegers
= {
9389 &S
.Context
.SignedCharTy
, &S
.Context
.ShortTy
, &S
.Context
.IntTy
,
9390 &S
.Context
.LongTy
, &S
.Context
.LongLongTy
, &S
.Context
.Int128Ty
};
9391 ArrayRef
<CanQualType
*> AvailableSignedIntegers(
9392 AllSignedIntegers
.data(), AllSignedIntegers
.size() - Int128Unsupported
);
9393 std::array
<CanQualType
*, 6> AllUnsignedIntegers
= {
9394 &S
.Context
.UnsignedCharTy
, &S
.Context
.UnsignedShortTy
,
9395 &S
.Context
.UnsignedIntTy
, &S
.Context
.UnsignedLongTy
,
9396 &S
.Context
.UnsignedLongLongTy
, &S
.Context
.UnsignedInt128Ty
};
9397 ArrayRef
<CanQualType
*> AvailableUnsignedIntegers(AllUnsignedIntegers
.data(),
9398 AllUnsignedIntegers
.size() -
9400 ArrayRef
<CanQualType
*> *Consider
=
9401 IsMakeSigned
? &AvailableSignedIntegers
: &AvailableUnsignedIntegers
;
9403 uint64_t BaseSize
= S
.Context
.getTypeSize(BaseType
);
9405 llvm::find_if(*Consider
, [&S
, BaseSize
](const CanQual
<Type
> *T
) {
9406 return BaseSize
== S
.Context
.getTypeSize(T
->getTypePtr());
9409 assert(Result
!= Consider
->end());
9410 return QualType((*Result
)->getTypePtr(), 0);
9413 QualType
Sema::BuiltinChangeSignedness(QualType BaseType
, UTTKind UKind
,
9414 SourceLocation Loc
) {
9415 bool IsMakeSigned
= UKind
== UnaryTransformType::MakeSigned
;
9416 if ((!BaseType
->isIntegerType() && !BaseType
->isEnumeralType()) ||
9417 BaseType
->isBooleanType() ||
9418 (BaseType
->isBitIntType() &&
9419 BaseType
->getAs
<BitIntType
>()->getNumBits() < 2)) {
9420 Diag(Loc
, diag::err_make_signed_integral_only
)
9421 << IsMakeSigned
<< BaseType
->isBitIntType() << BaseType
<< 0;
9425 bool IsNonIntIntegral
=
9426 BaseType
->isChar16Type() || BaseType
->isChar32Type() ||
9427 BaseType
->isWideCharType() || BaseType
->isEnumeralType();
9429 QualType Underlying
=
9431 ? ChangeIntegralSignedness(*this, BaseType
, IsMakeSigned
, Loc
)
9432 : IsMakeSigned
? Context
.getCorrespondingSignedType(BaseType
)
9433 : Context
.getCorrespondingUnsignedType(BaseType
);
9434 if (Underlying
.isNull())
9436 return Context
.getQualifiedType(Underlying
, BaseType
.getQualifiers());
9439 QualType
Sema::BuildUnaryTransformType(QualType BaseType
, UTTKind UKind
,
9440 SourceLocation Loc
) {
9441 if (BaseType
->isDependentType())
9442 return Context
.getUnaryTransformType(BaseType
, BaseType
, UKind
);
9445 case UnaryTransformType::EnumUnderlyingType
: {
9446 Result
= BuiltinEnumUnderlyingType(BaseType
, Loc
);
9449 case UnaryTransformType::AddPointer
: {
9450 Result
= BuiltinAddPointer(BaseType
, Loc
);
9453 case UnaryTransformType::RemovePointer
: {
9454 Result
= BuiltinRemovePointer(BaseType
, Loc
);
9457 case UnaryTransformType::Decay
: {
9458 Result
= BuiltinDecay(BaseType
, Loc
);
9461 case UnaryTransformType::AddLvalueReference
:
9462 case UnaryTransformType::AddRvalueReference
: {
9463 Result
= BuiltinAddReference(BaseType
, UKind
, Loc
);
9466 case UnaryTransformType::RemoveAllExtents
:
9467 case UnaryTransformType::RemoveExtent
: {
9468 Result
= BuiltinRemoveExtent(BaseType
, UKind
, Loc
);
9471 case UnaryTransformType::RemoveCVRef
:
9472 case UnaryTransformType::RemoveReference
: {
9473 Result
= BuiltinRemoveReference(BaseType
, UKind
, Loc
);
9476 case UnaryTransformType::RemoveConst
:
9477 case UnaryTransformType::RemoveCV
:
9478 case UnaryTransformType::RemoveRestrict
:
9479 case UnaryTransformType::RemoveVolatile
: {
9480 Result
= BuiltinChangeCVRQualifiers(BaseType
, UKind
, Loc
);
9483 case UnaryTransformType::MakeSigned
:
9484 case UnaryTransformType::MakeUnsigned
: {
9485 Result
= BuiltinChangeSignedness(BaseType
, UKind
, Loc
);
9490 return !Result
.isNull()
9491 ? Context
.getUnaryTransformType(BaseType
, Result
, UKind
)
9495 QualType
Sema::BuildAtomicType(QualType T
, SourceLocation Loc
) {
9496 if (!isDependentOrGNUAutoType(T
)) {
9497 // FIXME: It isn't entirely clear whether incomplete atomic types
9498 // are allowed or not; for simplicity, ban them for the moment.
9499 if (RequireCompleteType(Loc
, T
, diag::err_atomic_specifier_bad_type
, 0))
9502 int DisallowedKind
= -1;
9503 if (T
->isArrayType())
9505 else if (T
->isFunctionType())
9507 else if (T
->isReferenceType())
9509 else if (T
->isAtomicType())
9511 else if (T
.hasQualifiers())
9513 else if (T
->isSizelessType())
9515 else if (!T
.isTriviallyCopyableType(Context
))
9516 // Some other non-trivially-copyable type (probably a C++ class)
9518 else if (T
->isBitIntType())
9521 if (DisallowedKind
!= -1) {
9522 Diag(Loc
, diag::err_atomic_specifier_bad_type
) << DisallowedKind
<< T
;
9526 // FIXME: Do we need any handling for ARC here?
9529 // Build the pointer type.
9530 return Context
.getAtomicType(T
);