[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Bitcode / Reader / BitcodeReader.cpp
blob1d1ec988a93d847c6654f65f304726f4ada7bb7f
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
91 using namespace llvm;
93 static cl::opt<bool> PrintSummaryGUIDs(
94 "print-summary-global-ids", cl::init(false), cl::Hidden,
95 cl::desc(
96 "Print the global id for each value when reading the module summary"));
98 static cl::opt<bool> ExpandConstantExprs(
99 "expand-constant-exprs", cl::Hidden,
100 cl::desc(
101 "Expand constant expressions to instructions for testing purposes"));
103 namespace {
105 enum {
106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
109 } // end anonymous namespace
111 static Error error(const Twine &Message) {
112 return make_error<StringError>(
113 Message, make_error_code(BitcodeError::CorruptedBitcode));
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117 if (!Stream.canSkipToPos(4))
118 return createStringError(std::errc::illegal_byte_sequence,
119 "file too small to contain bitcode header");
120 for (unsigned C : {'B', 'C'})
121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122 if (Res.get() != C)
123 return createStringError(std::errc::illegal_byte_sequence,
124 "file doesn't start with bitcode header");
125 } else
126 return Res.takeError();
127 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129 if (Res.get() != C)
130 return createStringError(std::errc::illegal_byte_sequence,
131 "file doesn't start with bitcode header");
132 } else
133 return Res.takeError();
134 return Error::success();
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
141 if (Buffer.getBufferSize() & 3)
142 return error("Invalid bitcode signature");
144 // If we have a wrapper header, parse it and ignore the non-bc file contents.
145 // The magic number is 0x0B17C0DE stored in little endian.
146 if (isBitcodeWrapper(BufPtr, BufEnd))
147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148 return error("Invalid bitcode wrapper header");
150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151 if (Error Err = hasInvalidBitcodeHeader(Stream))
152 return std::move(Err);
154 return std::move(Stream);
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160 StrTy &Result) {
161 if (Idx > Record.size())
162 return true;
164 Result.append(Record.begin() + Idx, Record.end());
165 return false;
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170 for (auto &F : *M) {
171 if (F.isMaterializable())
172 continue;
173 for (auto &I : instructions(F))
174 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182 return std::move(Err);
184 // Read all the records.
185 SmallVector<uint64_t, 64> Record;
187 std::string ProducerIdentification;
189 while (true) {
190 BitstreamEntry Entry;
191 if (Error E = Stream.advance().moveInto(Entry))
192 return std::move(E);
194 switch (Entry.Kind) {
195 default:
196 case BitstreamEntry::Error:
197 return error("Malformed block");
198 case BitstreamEntry::EndBlock:
199 return ProducerIdentification;
200 case BitstreamEntry::Record:
201 // The interesting case.
202 break;
205 // Read a record.
206 Record.clear();
207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208 if (!MaybeBitCode)
209 return MaybeBitCode.takeError();
210 switch (MaybeBitCode.get()) {
211 default: // Default behavior: reject
212 return error("Invalid value");
213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214 convertToString(Record, 0, ProducerIdentification);
215 break;
216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217 unsigned epoch = (unsigned)Record[0];
218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219 return error(
220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229 // We expect a number of well-defined blocks, though we don't necessarily
230 // need to understand them all.
231 while (true) {
232 if (Stream.AtEndOfStream())
233 return "";
235 BitstreamEntry Entry;
236 if (Error E = Stream.advance().moveInto(Entry))
237 return std::move(E);
239 switch (Entry.Kind) {
240 case BitstreamEntry::EndBlock:
241 case BitstreamEntry::Error:
242 return error("Malformed block");
244 case BitstreamEntry::SubBlock:
245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246 return readIdentificationBlock(Stream);
248 // Ignore other sub-blocks.
249 if (Error Err = Stream.SkipBlock())
250 return std::move(Err);
251 continue;
252 case BitstreamEntry::Record:
253 if (Error E = Stream.skipRecord(Entry.ID).takeError())
254 return std::move(E);
255 continue;
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262 return std::move(Err);
264 SmallVector<uint64_t, 64> Record;
265 // Read all the records for this module.
267 while (true) {
268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269 if (!MaybeEntry)
270 return MaybeEntry.takeError();
271 BitstreamEntry Entry = MaybeEntry.get();
273 switch (Entry.Kind) {
274 case BitstreamEntry::SubBlock: // Handled for us already.
275 case BitstreamEntry::Error:
276 return error("Malformed block");
277 case BitstreamEntry::EndBlock:
278 return false;
279 case BitstreamEntry::Record:
280 // The interesting case.
281 break;
284 // Read a record.
285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286 if (!MaybeRecord)
287 return MaybeRecord.takeError();
288 switch (MaybeRecord.get()) {
289 default:
290 break; // Default behavior, ignore unknown content.
291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292 std::string S;
293 if (convertToString(Record, 0, S))
294 return error("Invalid section name record");
295 // Check for the i386 and other (x86_64, ARM) conventions
296 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297 S.find("__OBJC,__category") != std::string::npos)
298 return true;
299 break;
302 Record.clear();
304 llvm_unreachable("Exit infinite loop");
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308 // We expect a number of well-defined blocks, though we don't necessarily
309 // need to understand them all.
310 while (true) {
311 BitstreamEntry Entry;
312 if (Error E = Stream.advance().moveInto(Entry))
313 return std::move(E);
315 switch (Entry.Kind) {
316 case BitstreamEntry::Error:
317 return error("Malformed block");
318 case BitstreamEntry::EndBlock:
319 return false;
321 case BitstreamEntry::SubBlock:
322 if (Entry.ID == bitc::MODULE_BLOCK_ID)
323 return hasObjCCategoryInModule(Stream);
325 // Ignore other sub-blocks.
326 if (Error Err = Stream.SkipBlock())
327 return std::move(Err);
328 continue;
330 case BitstreamEntry::Record:
331 if (Error E = Stream.skipRecord(Entry.ID).takeError())
332 return std::move(E);
333 continue;
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340 return std::move(Err);
342 SmallVector<uint64_t, 64> Record;
344 std::string Triple;
346 // Read all the records for this module.
347 while (true) {
348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349 if (!MaybeEntry)
350 return MaybeEntry.takeError();
351 BitstreamEntry Entry = MaybeEntry.get();
353 switch (Entry.Kind) {
354 case BitstreamEntry::SubBlock: // Handled for us already.
355 case BitstreamEntry::Error:
356 return error("Malformed block");
357 case BitstreamEntry::EndBlock:
358 return Triple;
359 case BitstreamEntry::Record:
360 // The interesting case.
361 break;
364 // Read a record.
365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366 if (!MaybeRecord)
367 return MaybeRecord.takeError();
368 switch (MaybeRecord.get()) {
369 default: break; // Default behavior, ignore unknown content.
370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
371 std::string S;
372 if (convertToString(Record, 0, S))
373 return error("Invalid triple record");
374 Triple = S;
375 break;
378 Record.clear();
380 llvm_unreachable("Exit infinite loop");
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384 // We expect a number of well-defined blocks, though we don't necessarily
385 // need to understand them all.
386 while (true) {
387 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388 if (!MaybeEntry)
389 return MaybeEntry.takeError();
390 BitstreamEntry Entry = MaybeEntry.get();
392 switch (Entry.Kind) {
393 case BitstreamEntry::Error:
394 return error("Malformed block");
395 case BitstreamEntry::EndBlock:
396 return "";
398 case BitstreamEntry::SubBlock:
399 if (Entry.ID == bitc::MODULE_BLOCK_ID)
400 return readModuleTriple(Stream);
402 // Ignore other sub-blocks.
403 if (Error Err = Stream.SkipBlock())
404 return std::move(Err);
405 continue;
407 case BitstreamEntry::Record:
408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409 continue;
410 else
411 return Skipped.takeError();
416 namespace {
418 class BitcodeReaderBase {
419 protected:
420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421 : Stream(std::move(Stream)), Strtab(Strtab) {
422 this->Stream.setBlockInfo(&BlockInfo);
425 BitstreamBlockInfo BlockInfo;
426 BitstreamCursor Stream;
427 StringRef Strtab;
429 /// In version 2 of the bitcode we store names of global values and comdats in
430 /// a string table rather than in the VST.
431 bool UseStrtab = false;
433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 /// If this module uses a string table, pop the reference to the string table
436 /// and return the referenced string and the rest of the record. Otherwise
437 /// just return the record itself.
438 std::pair<StringRef, ArrayRef<uint64_t>>
439 readNameFromStrtab(ArrayRef<uint64_t> Record);
441 Error readBlockInfo();
443 // Contains an arbitrary and optional string identifying the bitcode producer
444 std::string ProducerIdentification;
446 Error error(const Twine &Message);
449 } // end anonymous namespace
451 Error BitcodeReaderBase::error(const Twine &Message) {
452 std::string FullMsg = Message.str();
453 if (!ProducerIdentification.empty())
454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455 LLVM_VERSION_STRING "')";
456 return ::error(FullMsg);
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461 if (Record.empty())
462 return error("Invalid version record");
463 unsigned ModuleVersion = Record[0];
464 if (ModuleVersion > 2)
465 return error("Invalid value");
466 UseStrtab = ModuleVersion >= 2;
467 return ModuleVersion;
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472 if (!UseStrtab)
473 return {"", Record};
474 // Invalid reference. Let the caller complain about the record being empty.
475 if (Record[0] + Record[1] > Strtab.size())
476 return {"", {}};
477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
480 namespace {
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489 TrailingObjects<BitcodeConstant, unsigned> {
490 friend TrailingObjects;
492 // Value subclass ID: Pick largest possible value to avoid any clashes.
493 static constexpr uint8_t SubclassID = 255;
495 public:
496 // Opcodes used for non-expressions. This includes constant aggregates
497 // (struct, array, vector) that might need expansion, as well as non-leaf
498 // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499 // but still go through BitcodeConstant to avoid different uselist orders
500 // between the two cases.
501 static constexpr uint8_t ConstantStructOpcode = 255;
502 static constexpr uint8_t ConstantArrayOpcode = 254;
503 static constexpr uint8_t ConstantVectorOpcode = 253;
504 static constexpr uint8_t NoCFIOpcode = 252;
505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506 static constexpr uint8_t BlockAddressOpcode = 250;
507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
509 // Separate struct to make passing different number of parameters to
510 // BitcodeConstant::create() more convenient.
511 struct ExtraInfo {
512 uint8_t Opcode;
513 uint8_t Flags;
514 unsigned Extra;
515 Type *SrcElemTy;
517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518 Type *SrcElemTy = nullptr)
519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
522 uint8_t Opcode;
523 uint8_t Flags;
524 unsigned NumOperands;
525 unsigned Extra; // GEP inrange index or blockaddress BB id.
526 Type *SrcElemTy; // GEP source element type.
528 private:
529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531 NumOperands(OpIDs.size()), Extra(Info.Extra),
532 SrcElemTy(Info.SrcElemTy) {
533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534 getTrailingObjects<unsigned>());
537 BitcodeConstant &operator=(const BitcodeConstant &) = delete;
539 public:
540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541 const ExtraInfo &Info,
542 ArrayRef<unsigned> OpIDs) {
543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544 alignof(BitcodeConstant));
545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
550 ArrayRef<unsigned> getOperandIDs() const {
551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
554 std::optional<unsigned> getInRangeIndex() const {
555 assert(Opcode == Instruction::GetElementPtr);
556 if (Extra == (unsigned)-1)
557 return std::nullopt;
558 return Extra;
561 const char *getOpcodeName() const {
562 return Instruction::getOpcodeName(Opcode);
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567 LLVMContext &Context;
568 Module *TheModule = nullptr;
569 // Next offset to start scanning for lazy parsing of function bodies.
570 uint64_t NextUnreadBit = 0;
571 // Last function offset found in the VST.
572 uint64_t LastFunctionBlockBit = 0;
573 bool SeenValueSymbolTable = false;
574 uint64_t VSTOffset = 0;
576 std::vector<std::string> SectionTable;
577 std::vector<std::string> GCTable;
579 std::vector<Type *> TypeList;
580 /// Track type IDs of contained types. Order is the same as the contained
581 /// types of a Type*. This is used during upgrades of typed pointer IR in
582 /// opaque pointer mode.
583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584 /// In some cases, we need to create a type ID for a type that was not
585 /// explicitly encoded in the bitcode, or we don't know about at the current
586 /// point. For example, a global may explicitly encode the value type ID, but
587 /// not have a type ID for the pointer to value type, for which we create a
588 /// virtual type ID instead. This map stores the new type ID that was created
589 /// for the given pair of Type and contained type ID.
590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591 DenseMap<Function *, unsigned> FunctionTypeIDs;
592 /// Allocator for BitcodeConstants. This should come before ValueList,
593 /// because the ValueList might hold ValueHandles to these constants, so
594 /// ValueList must be destroyed before Alloc.
595 BumpPtrAllocator Alloc;
596 BitcodeReaderValueList ValueList;
597 std::optional<MetadataLoader> MDLoader;
598 std::vector<Comdat *> ComdatList;
599 DenseSet<GlobalObject *> ImplicitComdatObjects;
600 SmallVector<Instruction *, 64> InstructionList;
602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
605 struct FunctionOperandInfo {
606 Function *F;
607 unsigned PersonalityFn;
608 unsigned Prefix;
609 unsigned Prologue;
611 std::vector<FunctionOperandInfo> FunctionOperands;
613 /// The set of attributes by index. Index zero in the file is for null, and
614 /// is thus not represented here. As such all indices are off by one.
615 std::vector<AttributeList> MAttributes;
617 /// The set of attribute groups.
618 std::map<unsigned, AttributeList> MAttributeGroups;
620 /// While parsing a function body, this is a list of the basic blocks for the
621 /// function.
622 std::vector<BasicBlock*> FunctionBBs;
624 // When reading the module header, this list is populated with functions that
625 // have bodies later in the file.
626 std::vector<Function*> FunctionsWithBodies;
628 // When intrinsic functions are encountered which require upgrading they are
629 // stored here with their replacement function.
630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631 UpdatedIntrinsicMap UpgradedIntrinsics;
633 // Several operations happen after the module header has been read, but
634 // before function bodies are processed. This keeps track of whether
635 // we've done this yet.
636 bool SeenFirstFunctionBody = false;
638 /// When function bodies are initially scanned, this map contains info about
639 /// where to find deferred function body in the stream.
640 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
642 /// When Metadata block is initially scanned when parsing the module, we may
643 /// choose to defer parsing of the metadata. This vector contains info about
644 /// which Metadata blocks are deferred.
645 std::vector<uint64_t> DeferredMetadataInfo;
647 /// These are basic blocks forward-referenced by block addresses. They are
648 /// inserted lazily into functions when they're loaded. The basic block ID is
649 /// its index into the vector.
650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651 std::deque<Function *> BasicBlockFwdRefQueue;
653 /// These are Functions that contain BlockAddresses which refer a different
654 /// Function. When parsing the different Function, queue Functions that refer
655 /// to the different Function. Those Functions must be materialized in order
656 /// to resolve their BlockAddress constants before the different Function
657 /// gets moved into another Module.
658 std::vector<Function *> BackwardRefFunctions;
660 /// Indicates that we are using a new encoding for instruction operands where
661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662 /// instruction number, for a more compact encoding. Some instruction
663 /// operands are not relative to the instruction ID: basic block numbers, and
664 /// types. Once the old style function blocks have been phased out, we would
665 /// not need this flag.
666 bool UseRelativeIDs = false;
668 /// True if all functions will be materialized, negating the need to process
669 /// (e.g.) blockaddress forward references.
670 bool WillMaterializeAllForwardRefs = false;
672 bool StripDebugInfo = false;
673 TBAAVerifier TBAAVerifyHelper;
675 std::vector<std::string> BundleTags;
676 SmallVector<SyncScope::ID, 8> SSIDs;
678 std::optional<ValueTypeCallbackTy> ValueTypeCallback;
680 public:
681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682 StringRef ProducerIdentification, LLVMContext &Context);
684 Error materializeForwardReferencedFunctions();
686 Error materialize(GlobalValue *GV) override;
687 Error materializeModule() override;
688 std::vector<StructType *> getIdentifiedStructTypes() const override;
690 /// Main interface to parsing a bitcode buffer.
691 /// \returns true if an error occurred.
692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693 bool IsImporting, ParserCallbacks Callbacks = {});
695 static uint64_t decodeSignRotatedValue(uint64_t V);
697 /// Materialize any deferred Metadata block.
698 Error materializeMetadata() override;
700 void setStripDebugInfo() override;
702 private:
703 std::vector<StructType *> IdentifiedStructTypes;
704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705 StructType *createIdentifiedStructType(LLVMContext &Context);
707 static constexpr unsigned InvalidTypeID = ~0u;
709 Type *getTypeByID(unsigned ID);
710 Type *getPtrElementTypeByID(unsigned ID);
711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
714 void callValueTypeCallback(Value *F, unsigned TypeID);
715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716 Expected<Constant *> getValueForInitializer(unsigned ID);
718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719 BasicBlock *ConstExprInsertBB) {
720 if (Ty && Ty->isMetadataTy())
721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
725 Metadata *getFnMetadataByID(unsigned ID) {
726 return MDLoader->getMetadataFwdRefOrLoad(ID);
729 BasicBlock *getBasicBlock(unsigned ID) const {
730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731 return FunctionBBs[ID];
734 AttributeList getAttributes(unsigned i) const {
735 if (i-1 < MAttributes.size())
736 return MAttributes[i-1];
737 return AttributeList();
740 /// Read a value/type pair out of the specified record from slot 'Slot'.
741 /// Increment Slot past the number of slots used in the record. Return true on
742 /// failure.
743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744 unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745 BasicBlock *ConstExprInsertBB) {
746 if (Slot == Record.size()) return true;
747 unsigned ValNo = (unsigned)Record[Slot++];
748 // Adjust the ValNo, if it was encoded relative to the InstNum.
749 if (UseRelativeIDs)
750 ValNo = InstNum - ValNo;
751 if (ValNo < InstNum) {
752 // If this is not a forward reference, just return the value we already
753 // have.
754 TypeID = ValueList.getTypeID(ValNo);
755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757 "Incorrect type ID stored for value");
758 return ResVal == nullptr;
760 if (Slot == Record.size())
761 return true;
763 TypeID = (unsigned)Record[Slot++];
764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765 ConstExprInsertBB);
766 return ResVal == nullptr;
769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770 /// past the number of slots used by the value in the record. Return true if
771 /// there is an error.
772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774 BasicBlock *ConstExprInsertBB) {
775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776 return true;
777 // All values currently take a single record slot.
778 ++Slot;
779 return false;
782 /// Like popValue, but does not increment the Slot number.
783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785 BasicBlock *ConstExprInsertBB) {
786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787 return ResVal == nullptr;
790 /// Version of getValue that returns ResVal directly, or 0 if there is an
791 /// error.
792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793 unsigned InstNum, Type *Ty, unsigned TyID,
794 BasicBlock *ConstExprInsertBB) {
795 if (Slot == Record.size()) return nullptr;
796 unsigned ValNo = (unsigned)Record[Slot];
797 // Adjust the ValNo, if it was encoded relative to the InstNum.
798 if (UseRelativeIDs)
799 ValNo = InstNum - ValNo;
800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
803 /// Like getValue, but decodes signed VBRs.
804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805 unsigned InstNum, Type *Ty, unsigned TyID,
806 BasicBlock *ConstExprInsertBB) {
807 if (Slot == Record.size()) return nullptr;
808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809 // Adjust the ValNo, if it was encoded relative to the InstNum.
810 if (UseRelativeIDs)
811 ValNo = InstNum - ValNo;
812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816 /// corresponding argument's pointee type. Also upgrades intrinsics that now
817 /// require an elementtype attribute.
818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
820 /// Converts alignment exponent (i.e. power of two (or zero)) to the
821 /// corresponding alignment to use. If alignment is too large, returns
822 /// a corresponding error code.
823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826 ParserCallbacks Callbacks = {});
828 Error parseComdatRecord(ArrayRef<uint64_t> Record);
829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832 ArrayRef<uint64_t> Record);
834 Error parseAttributeBlock();
835 Error parseAttributeGroupBlock();
836 Error parseTypeTable();
837 Error parseTypeTableBody();
838 Error parseOperandBundleTags();
839 Error parseSyncScopeNames();
841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842 unsigned NameIndex, Triple &TT);
843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844 ArrayRef<uint64_t> Record);
845 Error parseValueSymbolTable(uint64_t Offset = 0);
846 Error parseGlobalValueSymbolTable();
847 Error parseConstants();
848 Error rememberAndSkipFunctionBodies();
849 Error rememberAndSkipFunctionBody();
850 /// Save the positions of the Metadata blocks and skip parsing the blocks.
851 Error rememberAndSkipMetadata();
852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853 Error parseFunctionBody(Function *F);
854 Error globalCleanup();
855 Error resolveGlobalAndIndirectSymbolInits();
856 Error parseUseLists();
857 Error findFunctionInStream(
858 Function *F,
859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
861 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867 /// The module index built during parsing.
868 ModuleSummaryIndex &TheIndex;
870 /// Indicates whether we have encountered a global value summary section
871 /// yet during parsing.
872 bool SeenGlobalValSummary = false;
874 /// Indicates whether we have already parsed the VST, used for error checking.
875 bool SeenValueSymbolTable = false;
877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878 /// Used to enable on-demand parsing of the VST.
879 uint64_t VSTOffset = 0;
881 // Map to save ValueId to ValueInfo association that was recorded in the
882 // ValueSymbolTable. It is used after the VST is parsed to convert
883 // call graph edges read from the function summary from referencing
884 // callees by their ValueId to using the ValueInfo instead, which is how
885 // they are recorded in the summary index being built.
886 // We save a GUID which refers to the same global as the ValueInfo, but
887 // ignoring the linkage, i.e. for values other than local linkage they are
888 // identical (this is the second tuple member).
889 // The third tuple member is the real GUID of the ValueInfo.
890 DenseMap<unsigned,
891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892 ValueIdToValueInfoMap;
894 /// Map populated during module path string table parsing, from the
895 /// module ID to a string reference owned by the index's module
896 /// path string table, used to correlate with combined index
897 /// summary records.
898 DenseMap<uint64_t, StringRef> ModuleIdMap;
900 /// Original source file name recorded in a bitcode record.
901 std::string SourceFileName;
903 /// The string identifier given to this module by the client, normally the
904 /// path to the bitcode file.
905 StringRef ModulePath;
907 /// Callback to ask whether a symbol is the prevailing copy when invoked
908 /// during combined index building.
909 std::function<bool(GlobalValue::GUID)> IsPrevailing;
911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack
912 /// ids from the lists in the callsite and alloc entries to the index.
913 std::vector<uint64_t> StackIds;
915 public:
916 ModuleSummaryIndexBitcodeReader(
917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
918 StringRef ModulePath,
919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
921 Error parseModule();
923 private:
924 void setValueGUID(uint64_t ValueID, StringRef ValueName,
925 GlobalValue::LinkageTypes Linkage,
926 StringRef SourceFileName);
927 Error parseValueSymbolTable(
928 uint64_t Offset,
929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
932 bool IsOldProfileFormat,
933 bool HasProfile,
934 bool HasRelBF);
935 Error parseEntireSummary(unsigned ID);
936 Error parseModuleStringTable();
937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
939 TypeIdCompatibleVtableInfo &TypeId);
940 std::vector<FunctionSummary::ParamAccess>
941 parseParamAccesses(ArrayRef<uint64_t> Record);
943 template <bool AllowNullValueInfo = false>
944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
945 getValueInfoFromValueId(unsigned ValueId);
947 void addThisModule();
948 ModuleSummaryIndex::ModuleInfo *getThisModule();
951 } // end anonymous namespace
953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
954 Error Err) {
955 if (Err) {
956 std::error_code EC;
957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
958 EC = EIB.convertToErrorCode();
959 Ctx.emitError(EIB.message());
961 return EC;
963 return std::error_code();
966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
967 StringRef ProducerIdentification,
968 LLVMContext &Context)
969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
970 ValueList(this->Stream.SizeInBytes(),
971 [this](unsigned ValID, BasicBlock *InsertBB) {
972 return materializeValue(ValID, InsertBB);
973 }) {
974 this->ProducerIdentification = std::string(ProducerIdentification);
977 Error BitcodeReader::materializeForwardReferencedFunctions() {
978 if (WillMaterializeAllForwardRefs)
979 return Error::success();
981 // Prevent recursion.
982 WillMaterializeAllForwardRefs = true;
984 while (!BasicBlockFwdRefQueue.empty()) {
985 Function *F = BasicBlockFwdRefQueue.front();
986 BasicBlockFwdRefQueue.pop_front();
987 assert(F && "Expected valid function");
988 if (!BasicBlockFwdRefs.count(F))
989 // Already materialized.
990 continue;
992 // Check for a function that isn't materializable to prevent an infinite
993 // loop. When parsing a blockaddress stored in a global variable, there
994 // isn't a trivial way to check if a function will have a body without a
995 // linear search through FunctionsWithBodies, so just check it here.
996 if (!F->isMaterializable())
997 return error("Never resolved function from blockaddress");
999 // Try to materialize F.
1000 if (Error Err = materialize(F))
1001 return Err;
1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1005 for (Function *F : BackwardRefFunctions)
1006 if (Error Err = materialize(F))
1007 return Err;
1008 BackwardRefFunctions.clear();
1010 // Reset state.
1011 WillMaterializeAllForwardRefs = false;
1012 return Error::success();
1015 //===----------------------------------------------------------------------===//
1016 // Helper functions to implement forward reference resolution, etc.
1017 //===----------------------------------------------------------------------===//
1019 static bool hasImplicitComdat(size_t Val) {
1020 switch (Val) {
1021 default:
1022 return false;
1023 case 1: // Old WeakAnyLinkage
1024 case 4: // Old LinkOnceAnyLinkage
1025 case 10: // Old WeakODRLinkage
1026 case 11: // Old LinkOnceODRLinkage
1027 return true;
1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1032 switch (Val) {
1033 default: // Map unknown/new linkages to external
1034 case 0:
1035 return GlobalValue::ExternalLinkage;
1036 case 2:
1037 return GlobalValue::AppendingLinkage;
1038 case 3:
1039 return GlobalValue::InternalLinkage;
1040 case 5:
1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1042 case 6:
1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1044 case 7:
1045 return GlobalValue::ExternalWeakLinkage;
1046 case 8:
1047 return GlobalValue::CommonLinkage;
1048 case 9:
1049 return GlobalValue::PrivateLinkage;
1050 case 12:
1051 return GlobalValue::AvailableExternallyLinkage;
1052 case 13:
1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1054 case 14:
1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1056 case 15:
1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1058 case 1: // Old value with implicit comdat.
1059 case 16:
1060 return GlobalValue::WeakAnyLinkage;
1061 case 10: // Old value with implicit comdat.
1062 case 17:
1063 return GlobalValue::WeakODRLinkage;
1064 case 4: // Old value with implicit comdat.
1065 case 18:
1066 return GlobalValue::LinkOnceAnyLinkage;
1067 case 11: // Old value with implicit comdat.
1068 case 19:
1069 return GlobalValue::LinkOnceODRLinkage;
1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1074 FunctionSummary::FFlags Flags;
1075 Flags.ReadNone = RawFlags & 0x1;
1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1079 Flags.NoInline = (RawFlags >> 4) & 0x1;
1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1082 Flags.MayThrow = (RawFlags >> 7) & 0x1;
1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1085 return Flags;
1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1091 // visibility: [8, 10).
1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1093 uint64_t Version) {
1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1095 // like getDecodedLinkage() above. Any future change to the linkage enum and
1096 // to getDecodedLinkage() will need to be taken into account here as above.
1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1099 RawFlags = RawFlags >> 4;
1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1101 // The Live flag wasn't introduced until version 3. For dead stripping
1102 // to work correctly on earlier versions, we must conservatively treat all
1103 // values as live.
1104 bool Live = (RawFlags & 0x2) || Version < 3;
1105 bool Local = (RawFlags & 0x4);
1106 bool AutoHide = (RawFlags & 0x8);
1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1109 Live, Local, AutoHide);
1112 // Decode the flags for GlobalVariable in the summary
1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1114 return GlobalVarSummary::GVarFlags(
1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1116 (RawFlags & 0x4) ? true : false,
1117 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1121 switch (Val) {
1122 default: // Map unknown visibilities to default.
1123 case 0: return GlobalValue::DefaultVisibility;
1124 case 1: return GlobalValue::HiddenVisibility;
1125 case 2: return GlobalValue::ProtectedVisibility;
1129 static GlobalValue::DLLStorageClassTypes
1130 getDecodedDLLStorageClass(unsigned Val) {
1131 switch (Val) {
1132 default: // Map unknown values to default.
1133 case 0: return GlobalValue::DefaultStorageClass;
1134 case 1: return GlobalValue::DLLImportStorageClass;
1135 case 2: return GlobalValue::DLLExportStorageClass;
1139 static bool getDecodedDSOLocal(unsigned Val) {
1140 switch(Val) {
1141 default: // Map unknown values to preemptable.
1142 case 0: return false;
1143 case 1: return true;
1147 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1148 switch (Val) {
1149 case 0: return GlobalVariable::NotThreadLocal;
1150 default: // Map unknown non-zero value to general dynamic.
1151 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1152 case 2: return GlobalVariable::LocalDynamicTLSModel;
1153 case 3: return GlobalVariable::InitialExecTLSModel;
1154 case 4: return GlobalVariable::LocalExecTLSModel;
1158 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1159 switch (Val) {
1160 default: // Map unknown to UnnamedAddr::None.
1161 case 0: return GlobalVariable::UnnamedAddr::None;
1162 case 1: return GlobalVariable::UnnamedAddr::Global;
1163 case 2: return GlobalVariable::UnnamedAddr::Local;
1167 static int getDecodedCastOpcode(unsigned Val) {
1168 switch (Val) {
1169 default: return -1;
1170 case bitc::CAST_TRUNC : return Instruction::Trunc;
1171 case bitc::CAST_ZEXT : return Instruction::ZExt;
1172 case bitc::CAST_SEXT : return Instruction::SExt;
1173 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1174 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1175 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1176 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1177 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1178 case bitc::CAST_FPEXT : return Instruction::FPExt;
1179 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1180 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1181 case bitc::CAST_BITCAST : return Instruction::BitCast;
1182 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1186 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1187 bool IsFP = Ty->isFPOrFPVectorTy();
1188 // UnOps are only valid for int/fp or vector of int/fp types
1189 if (!IsFP && !Ty->isIntOrIntVectorTy())
1190 return -1;
1192 switch (Val) {
1193 default:
1194 return -1;
1195 case bitc::UNOP_FNEG:
1196 return IsFP ? Instruction::FNeg : -1;
1200 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1201 bool IsFP = Ty->isFPOrFPVectorTy();
1202 // BinOps are only valid for int/fp or vector of int/fp types
1203 if (!IsFP && !Ty->isIntOrIntVectorTy())
1204 return -1;
1206 switch (Val) {
1207 default:
1208 return -1;
1209 case bitc::BINOP_ADD:
1210 return IsFP ? Instruction::FAdd : Instruction::Add;
1211 case bitc::BINOP_SUB:
1212 return IsFP ? Instruction::FSub : Instruction::Sub;
1213 case bitc::BINOP_MUL:
1214 return IsFP ? Instruction::FMul : Instruction::Mul;
1215 case bitc::BINOP_UDIV:
1216 return IsFP ? -1 : Instruction::UDiv;
1217 case bitc::BINOP_SDIV:
1218 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1219 case bitc::BINOP_UREM:
1220 return IsFP ? -1 : Instruction::URem;
1221 case bitc::BINOP_SREM:
1222 return IsFP ? Instruction::FRem : Instruction::SRem;
1223 case bitc::BINOP_SHL:
1224 return IsFP ? -1 : Instruction::Shl;
1225 case bitc::BINOP_LSHR:
1226 return IsFP ? -1 : Instruction::LShr;
1227 case bitc::BINOP_ASHR:
1228 return IsFP ? -1 : Instruction::AShr;
1229 case bitc::BINOP_AND:
1230 return IsFP ? -1 : Instruction::And;
1231 case bitc::BINOP_OR:
1232 return IsFP ? -1 : Instruction::Or;
1233 case bitc::BINOP_XOR:
1234 return IsFP ? -1 : Instruction::Xor;
1238 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1239 switch (Val) {
1240 default: return AtomicRMWInst::BAD_BINOP;
1241 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1242 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1243 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1244 case bitc::RMW_AND: return AtomicRMWInst::And;
1245 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1246 case bitc::RMW_OR: return AtomicRMWInst::Or;
1247 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1248 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1249 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1250 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1251 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1252 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1253 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1254 case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1255 case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1256 case bitc::RMW_UINC_WRAP:
1257 return AtomicRMWInst::UIncWrap;
1258 case bitc::RMW_UDEC_WRAP:
1259 return AtomicRMWInst::UDecWrap;
1263 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1264 switch (Val) {
1265 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1266 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1267 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1268 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1269 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1270 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1271 default: // Map unknown orderings to sequentially-consistent.
1272 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1277 switch (Val) {
1278 default: // Map unknown selection kinds to any.
1279 case bitc::COMDAT_SELECTION_KIND_ANY:
1280 return Comdat::Any;
1281 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1282 return Comdat::ExactMatch;
1283 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1284 return Comdat::Largest;
1285 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1286 return Comdat::NoDeduplicate;
1287 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1288 return Comdat::SameSize;
1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1293 FastMathFlags FMF;
1294 if (0 != (Val & bitc::UnsafeAlgebra))
1295 FMF.setFast();
1296 if (0 != (Val & bitc::AllowReassoc))
1297 FMF.setAllowReassoc();
1298 if (0 != (Val & bitc::NoNaNs))
1299 FMF.setNoNaNs();
1300 if (0 != (Val & bitc::NoInfs))
1301 FMF.setNoInfs();
1302 if (0 != (Val & bitc::NoSignedZeros))
1303 FMF.setNoSignedZeros();
1304 if (0 != (Val & bitc::AllowReciprocal))
1305 FMF.setAllowReciprocal();
1306 if (0 != (Val & bitc::AllowContract))
1307 FMF.setAllowContract(true);
1308 if (0 != (Val & bitc::ApproxFunc))
1309 FMF.setApproxFunc();
1310 return FMF;
1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1314 // A GlobalValue with local linkage cannot have a DLL storage class.
1315 if (GV->hasLocalLinkage())
1316 return;
1317 switch (Val) {
1318 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1319 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1323 Type *BitcodeReader::getTypeByID(unsigned ID) {
1324 // The type table size is always specified correctly.
1325 if (ID >= TypeList.size())
1326 return nullptr;
1328 if (Type *Ty = TypeList[ID])
1329 return Ty;
1331 // If we have a forward reference, the only possible case is when it is to a
1332 // named struct. Just create a placeholder for now.
1333 return TypeList[ID] = createIdentifiedStructType(Context);
1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1337 auto It = ContainedTypeIDs.find(ID);
1338 if (It == ContainedTypeIDs.end())
1339 return InvalidTypeID;
1341 if (Idx >= It->second.size())
1342 return InvalidTypeID;
1344 return It->second[Idx];
1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1348 if (ID >= TypeList.size())
1349 return nullptr;
1351 Type *Ty = TypeList[ID];
1352 if (!Ty->isPointerTy())
1353 return nullptr;
1355 return getTypeByID(getContainedTypeID(ID, 0));
1358 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1359 ArrayRef<unsigned> ChildTypeIDs) {
1360 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1361 auto CacheKey = std::make_pair(Ty, ChildTypeID);
1362 auto It = VirtualTypeIDs.find(CacheKey);
1363 if (It != VirtualTypeIDs.end()) {
1364 // The cmpxchg return value is the only place we need more than one
1365 // contained type ID, however the second one will always be the same (i1),
1366 // so we don't need to include it in the cache key. This asserts that the
1367 // contained types are indeed as expected and there are no collisions.
1368 assert((ChildTypeIDs.empty() ||
1369 ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1370 "Incorrect cached contained type IDs");
1371 return It->second;
1374 unsigned TypeID = TypeList.size();
1375 TypeList.push_back(Ty);
1376 if (!ChildTypeIDs.empty())
1377 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1378 VirtualTypeIDs.insert({CacheKey, TypeID});
1379 return TypeID;
1382 static bool isConstExprSupported(const BitcodeConstant *BC) {
1383 uint8_t Opcode = BC->Opcode;
1385 // These are not real constant expressions, always consider them supported.
1386 if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1387 return true;
1389 // If -expand-constant-exprs is set, we want to consider all expressions
1390 // as unsupported.
1391 if (ExpandConstantExprs)
1392 return false;
1394 if (Instruction::isBinaryOp(Opcode))
1395 return ConstantExpr::isSupportedBinOp(Opcode);
1397 if (Opcode == Instruction::GetElementPtr)
1398 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1400 switch (Opcode) {
1401 case Instruction::FNeg:
1402 case Instruction::Select:
1403 return false;
1404 default:
1405 return true;
1409 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1410 BasicBlock *InsertBB) {
1411 // Quickly handle the case where there is no BitcodeConstant to resolve.
1412 if (StartValID < ValueList.size() && ValueList[StartValID] &&
1413 !isa<BitcodeConstant>(ValueList[StartValID]))
1414 return ValueList[StartValID];
1416 SmallDenseMap<unsigned, Value *> MaterializedValues;
1417 SmallVector<unsigned> Worklist;
1418 Worklist.push_back(StartValID);
1419 while (!Worklist.empty()) {
1420 unsigned ValID = Worklist.back();
1421 if (MaterializedValues.count(ValID)) {
1422 // Duplicate expression that was already handled.
1423 Worklist.pop_back();
1424 continue;
1427 if (ValID >= ValueList.size() || !ValueList[ValID])
1428 return error("Invalid value ID");
1430 Value *V = ValueList[ValID];
1431 auto *BC = dyn_cast<BitcodeConstant>(V);
1432 if (!BC) {
1433 MaterializedValues.insert({ValID, V});
1434 Worklist.pop_back();
1435 continue;
1438 // Iterate in reverse, so values will get popped from the worklist in
1439 // expected order.
1440 SmallVector<Value *> Ops;
1441 for (unsigned OpID : reverse(BC->getOperandIDs())) {
1442 auto It = MaterializedValues.find(OpID);
1443 if (It != MaterializedValues.end())
1444 Ops.push_back(It->second);
1445 else
1446 Worklist.push_back(OpID);
1449 // Some expressions have not been resolved yet, handle them first and then
1450 // revisit this one.
1451 if (Ops.size() != BC->getOperandIDs().size())
1452 continue;
1453 std::reverse(Ops.begin(), Ops.end());
1455 SmallVector<Constant *> ConstOps;
1456 for (Value *Op : Ops)
1457 if (auto *C = dyn_cast<Constant>(Op))
1458 ConstOps.push_back(C);
1460 // Materialize as constant expression if possible.
1461 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1462 Constant *C;
1463 if (Instruction::isCast(BC->Opcode)) {
1464 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1465 if (!C)
1466 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1467 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1468 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1469 } else {
1470 switch (BC->Opcode) {
1471 case BitcodeConstant::NoCFIOpcode: {
1472 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1473 if (!GV)
1474 return error("no_cfi operand must be GlobalValue");
1475 C = NoCFIValue::get(GV);
1476 break;
1478 case BitcodeConstant::DSOLocalEquivalentOpcode: {
1479 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1480 if (!GV)
1481 return error("dso_local operand must be GlobalValue");
1482 C = DSOLocalEquivalent::get(GV);
1483 break;
1485 case BitcodeConstant::BlockAddressOpcode: {
1486 Function *Fn = dyn_cast<Function>(ConstOps[0]);
1487 if (!Fn)
1488 return error("blockaddress operand must be a function");
1490 // If the function is already parsed we can insert the block address
1491 // right away.
1492 BasicBlock *BB;
1493 unsigned BBID = BC->Extra;
1494 if (!BBID)
1495 // Invalid reference to entry block.
1496 return error("Invalid ID");
1497 if (!Fn->empty()) {
1498 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1499 for (size_t I = 0, E = BBID; I != E; ++I) {
1500 if (BBI == BBE)
1501 return error("Invalid ID");
1502 ++BBI;
1504 BB = &*BBI;
1505 } else {
1506 // Otherwise insert a placeholder and remember it so it can be
1507 // inserted when the function is parsed.
1508 auto &FwdBBs = BasicBlockFwdRefs[Fn];
1509 if (FwdBBs.empty())
1510 BasicBlockFwdRefQueue.push_back(Fn);
1511 if (FwdBBs.size() < BBID + 1)
1512 FwdBBs.resize(BBID + 1);
1513 if (!FwdBBs[BBID])
1514 FwdBBs[BBID] = BasicBlock::Create(Context);
1515 BB = FwdBBs[BBID];
1517 C = BlockAddress::get(Fn, BB);
1518 break;
1520 case BitcodeConstant::ConstantStructOpcode:
1521 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1522 break;
1523 case BitcodeConstant::ConstantArrayOpcode:
1524 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1525 break;
1526 case BitcodeConstant::ConstantVectorOpcode:
1527 C = ConstantVector::get(ConstOps);
1528 break;
1529 case Instruction::ICmp:
1530 case Instruction::FCmp:
1531 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1532 break;
1533 case Instruction::GetElementPtr:
1534 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1535 ArrayRef(ConstOps).drop_front(),
1536 BC->Flags, BC->getInRangeIndex());
1537 break;
1538 case Instruction::ExtractElement:
1539 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1540 break;
1541 case Instruction::InsertElement:
1542 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1543 ConstOps[2]);
1544 break;
1545 case Instruction::ShuffleVector: {
1546 SmallVector<int, 16> Mask;
1547 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1548 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1549 break;
1551 default:
1552 llvm_unreachable("Unhandled bitcode constant");
1556 // Cache resolved constant.
1557 ValueList.replaceValueWithoutRAUW(ValID, C);
1558 MaterializedValues.insert({ValID, C});
1559 Worklist.pop_back();
1560 continue;
1563 if (!InsertBB)
1564 return error(Twine("Value referenced by initializer is an unsupported "
1565 "constant expression of type ") +
1566 BC->getOpcodeName());
1568 // Materialize as instructions if necessary.
1569 Instruction *I;
1570 if (Instruction::isCast(BC->Opcode)) {
1571 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1572 BC->getType(), "constexpr", InsertBB);
1573 } else if (Instruction::isUnaryOp(BC->Opcode)) {
1574 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1575 "constexpr", InsertBB);
1576 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1577 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1578 Ops[1], "constexpr", InsertBB);
1579 if (isa<OverflowingBinaryOperator>(I)) {
1580 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1581 I->setHasNoSignedWrap();
1582 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1583 I->setHasNoUnsignedWrap();
1585 if (isa<PossiblyExactOperator>(I) &&
1586 (BC->Flags & PossiblyExactOperator::IsExact))
1587 I->setIsExact();
1588 } else {
1589 switch (BC->Opcode) {
1590 case BitcodeConstant::ConstantVectorOpcode: {
1591 Type *IdxTy = Type::getInt32Ty(BC->getContext());
1592 Value *V = PoisonValue::get(BC->getType());
1593 for (auto Pair : enumerate(Ops)) {
1594 Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1595 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1596 InsertBB);
1598 I = cast<Instruction>(V);
1599 break;
1601 case BitcodeConstant::ConstantStructOpcode:
1602 case BitcodeConstant::ConstantArrayOpcode: {
1603 Value *V = PoisonValue::get(BC->getType());
1604 for (auto Pair : enumerate(Ops))
1605 V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1606 "constexpr.ins", InsertBB);
1607 I = cast<Instruction>(V);
1608 break;
1610 case Instruction::ICmp:
1611 case Instruction::FCmp:
1612 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1613 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1614 "constexpr", InsertBB);
1615 break;
1616 case Instruction::GetElementPtr:
1617 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1618 ArrayRef(Ops).drop_front(), "constexpr",
1619 InsertBB);
1620 if (BC->Flags)
1621 cast<GetElementPtrInst>(I)->setIsInBounds();
1622 break;
1623 case Instruction::Select:
1624 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1625 break;
1626 case Instruction::ExtractElement:
1627 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1628 break;
1629 case Instruction::InsertElement:
1630 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1631 InsertBB);
1632 break;
1633 case Instruction::ShuffleVector:
1634 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1635 InsertBB);
1636 break;
1637 default:
1638 llvm_unreachable("Unhandled bitcode constant");
1642 MaterializedValues.insert({ValID, I});
1643 Worklist.pop_back();
1646 return MaterializedValues[StartValID];
1649 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1650 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1651 if (!MaybeV)
1652 return MaybeV.takeError();
1654 // Result must be Constant if InsertBB is nullptr.
1655 return cast<Constant>(MaybeV.get());
1658 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1659 StringRef Name) {
1660 auto *Ret = StructType::create(Context, Name);
1661 IdentifiedStructTypes.push_back(Ret);
1662 return Ret;
1665 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1666 auto *Ret = StructType::create(Context);
1667 IdentifiedStructTypes.push_back(Ret);
1668 return Ret;
1671 //===----------------------------------------------------------------------===//
1672 // Functions for parsing blocks from the bitcode file
1673 //===----------------------------------------------------------------------===//
1675 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1676 switch (Val) {
1677 case Attribute::EndAttrKinds:
1678 case Attribute::EmptyKey:
1679 case Attribute::TombstoneKey:
1680 llvm_unreachable("Synthetic enumerators which should never get here");
1682 case Attribute::None: return 0;
1683 case Attribute::ZExt: return 1 << 0;
1684 case Attribute::SExt: return 1 << 1;
1685 case Attribute::NoReturn: return 1 << 2;
1686 case Attribute::InReg: return 1 << 3;
1687 case Attribute::StructRet: return 1 << 4;
1688 case Attribute::NoUnwind: return 1 << 5;
1689 case Attribute::NoAlias: return 1 << 6;
1690 case Attribute::ByVal: return 1 << 7;
1691 case Attribute::Nest: return 1 << 8;
1692 case Attribute::ReadNone: return 1 << 9;
1693 case Attribute::ReadOnly: return 1 << 10;
1694 case Attribute::NoInline: return 1 << 11;
1695 case Attribute::AlwaysInline: return 1 << 12;
1696 case Attribute::OptimizeForSize: return 1 << 13;
1697 case Attribute::StackProtect: return 1 << 14;
1698 case Attribute::StackProtectReq: return 1 << 15;
1699 case Attribute::Alignment: return 31 << 16;
1700 case Attribute::NoCapture: return 1 << 21;
1701 case Attribute::NoRedZone: return 1 << 22;
1702 case Attribute::NoImplicitFloat: return 1 << 23;
1703 case Attribute::Naked: return 1 << 24;
1704 case Attribute::InlineHint: return 1 << 25;
1705 case Attribute::StackAlignment: return 7 << 26;
1706 case Attribute::ReturnsTwice: return 1 << 29;
1707 case Attribute::UWTable: return 1 << 30;
1708 case Attribute::NonLazyBind: return 1U << 31;
1709 case Attribute::SanitizeAddress: return 1ULL << 32;
1710 case Attribute::MinSize: return 1ULL << 33;
1711 case Attribute::NoDuplicate: return 1ULL << 34;
1712 case Attribute::StackProtectStrong: return 1ULL << 35;
1713 case Attribute::SanitizeThread: return 1ULL << 36;
1714 case Attribute::SanitizeMemory: return 1ULL << 37;
1715 case Attribute::NoBuiltin: return 1ULL << 38;
1716 case Attribute::Returned: return 1ULL << 39;
1717 case Attribute::Cold: return 1ULL << 40;
1718 case Attribute::Builtin: return 1ULL << 41;
1719 case Attribute::OptimizeNone: return 1ULL << 42;
1720 case Attribute::InAlloca: return 1ULL << 43;
1721 case Attribute::NonNull: return 1ULL << 44;
1722 case Attribute::JumpTable: return 1ULL << 45;
1723 case Attribute::Convergent: return 1ULL << 46;
1724 case Attribute::SafeStack: return 1ULL << 47;
1725 case Attribute::NoRecurse: return 1ULL << 48;
1726 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1727 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1728 case Attribute::SwiftSelf: return 1ULL << 51;
1729 case Attribute::SwiftError: return 1ULL << 52;
1730 case Attribute::WriteOnly: return 1ULL << 53;
1731 case Attribute::Speculatable: return 1ULL << 54;
1732 case Attribute::StrictFP: return 1ULL << 55;
1733 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1734 case Attribute::NoCfCheck: return 1ULL << 57;
1735 case Attribute::OptForFuzzing: return 1ULL << 58;
1736 case Attribute::ShadowCallStack: return 1ULL << 59;
1737 case Attribute::SpeculativeLoadHardening:
1738 return 1ULL << 60;
1739 case Attribute::ImmArg:
1740 return 1ULL << 61;
1741 case Attribute::WillReturn:
1742 return 1ULL << 62;
1743 case Attribute::NoFree:
1744 return 1ULL << 63;
1745 default:
1746 // Other attributes are not supported in the raw format,
1747 // as we ran out of space.
1748 return 0;
1750 llvm_unreachable("Unsupported attribute type");
1753 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1754 if (!Val) return;
1756 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1757 I = Attribute::AttrKind(I + 1)) {
1758 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1759 if (I == Attribute::Alignment)
1760 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1761 else if (I == Attribute::StackAlignment)
1762 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1763 else if (Attribute::isTypeAttrKind(I))
1764 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1765 else
1766 B.addAttribute(I);
1771 /// This fills an AttrBuilder object with the LLVM attributes that have
1772 /// been decoded from the given integer. This function must stay in sync with
1773 /// 'encodeLLVMAttributesForBitcode'.
1774 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1775 uint64_t EncodedAttrs,
1776 uint64_t AttrIdx) {
1777 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1778 // the bits above 31 down by 11 bits.
1779 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1780 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1781 "Alignment must be a power of two.");
1783 if (Alignment)
1784 B.addAlignmentAttr(Alignment);
1786 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1787 (EncodedAttrs & 0xffff);
1789 if (AttrIdx == AttributeList::FunctionIndex) {
1790 // Upgrade old memory attributes.
1791 MemoryEffects ME = MemoryEffects::unknown();
1792 if (Attrs & (1ULL << 9)) {
1793 // ReadNone
1794 Attrs &= ~(1ULL << 9);
1795 ME &= MemoryEffects::none();
1797 if (Attrs & (1ULL << 10)) {
1798 // ReadOnly
1799 Attrs &= ~(1ULL << 10);
1800 ME &= MemoryEffects::readOnly();
1802 if (Attrs & (1ULL << 49)) {
1803 // InaccessibleMemOnly
1804 Attrs &= ~(1ULL << 49);
1805 ME &= MemoryEffects::inaccessibleMemOnly();
1807 if (Attrs & (1ULL << 50)) {
1808 // InaccessibleMemOrArgMemOnly
1809 Attrs &= ~(1ULL << 50);
1810 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1812 if (Attrs & (1ULL << 53)) {
1813 // WriteOnly
1814 Attrs &= ~(1ULL << 53);
1815 ME &= MemoryEffects::writeOnly();
1817 if (ME != MemoryEffects::unknown())
1818 B.addMemoryAttr(ME);
1821 addRawAttributeValue(B, Attrs);
1824 Error BitcodeReader::parseAttributeBlock() {
1825 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1826 return Err;
1828 if (!MAttributes.empty())
1829 return error("Invalid multiple blocks");
1831 SmallVector<uint64_t, 64> Record;
1833 SmallVector<AttributeList, 8> Attrs;
1835 // Read all the records.
1836 while (true) {
1837 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1838 if (!MaybeEntry)
1839 return MaybeEntry.takeError();
1840 BitstreamEntry Entry = MaybeEntry.get();
1842 switch (Entry.Kind) {
1843 case BitstreamEntry::SubBlock: // Handled for us already.
1844 case BitstreamEntry::Error:
1845 return error("Malformed block");
1846 case BitstreamEntry::EndBlock:
1847 return Error::success();
1848 case BitstreamEntry::Record:
1849 // The interesting case.
1850 break;
1853 // Read a record.
1854 Record.clear();
1855 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1856 if (!MaybeRecord)
1857 return MaybeRecord.takeError();
1858 switch (MaybeRecord.get()) {
1859 default: // Default behavior: ignore.
1860 break;
1861 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1862 // Deprecated, but still needed to read old bitcode files.
1863 if (Record.size() & 1)
1864 return error("Invalid parameter attribute record");
1866 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1867 AttrBuilder B(Context);
1868 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1869 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1872 MAttributes.push_back(AttributeList::get(Context, Attrs));
1873 Attrs.clear();
1874 break;
1875 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1876 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1877 Attrs.push_back(MAttributeGroups[Record[i]]);
1879 MAttributes.push_back(AttributeList::get(Context, Attrs));
1880 Attrs.clear();
1881 break;
1886 // Returns Attribute::None on unrecognized codes.
1887 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1888 switch (Code) {
1889 default:
1890 return Attribute::None;
1891 case bitc::ATTR_KIND_ALIGNMENT:
1892 return Attribute::Alignment;
1893 case bitc::ATTR_KIND_ALWAYS_INLINE:
1894 return Attribute::AlwaysInline;
1895 case bitc::ATTR_KIND_BUILTIN:
1896 return Attribute::Builtin;
1897 case bitc::ATTR_KIND_BY_VAL:
1898 return Attribute::ByVal;
1899 case bitc::ATTR_KIND_IN_ALLOCA:
1900 return Attribute::InAlloca;
1901 case bitc::ATTR_KIND_COLD:
1902 return Attribute::Cold;
1903 case bitc::ATTR_KIND_CONVERGENT:
1904 return Attribute::Convergent;
1905 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1906 return Attribute::DisableSanitizerInstrumentation;
1907 case bitc::ATTR_KIND_ELEMENTTYPE:
1908 return Attribute::ElementType;
1909 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1910 return Attribute::FnRetThunkExtern;
1911 case bitc::ATTR_KIND_INLINE_HINT:
1912 return Attribute::InlineHint;
1913 case bitc::ATTR_KIND_IN_REG:
1914 return Attribute::InReg;
1915 case bitc::ATTR_KIND_JUMP_TABLE:
1916 return Attribute::JumpTable;
1917 case bitc::ATTR_KIND_MEMORY:
1918 return Attribute::Memory;
1919 case bitc::ATTR_KIND_NOFPCLASS:
1920 return Attribute::NoFPClass;
1921 case bitc::ATTR_KIND_MIN_SIZE:
1922 return Attribute::MinSize;
1923 case bitc::ATTR_KIND_NAKED:
1924 return Attribute::Naked;
1925 case bitc::ATTR_KIND_NEST:
1926 return Attribute::Nest;
1927 case bitc::ATTR_KIND_NO_ALIAS:
1928 return Attribute::NoAlias;
1929 case bitc::ATTR_KIND_NO_BUILTIN:
1930 return Attribute::NoBuiltin;
1931 case bitc::ATTR_KIND_NO_CALLBACK:
1932 return Attribute::NoCallback;
1933 case bitc::ATTR_KIND_NO_CAPTURE:
1934 return Attribute::NoCapture;
1935 case bitc::ATTR_KIND_NO_DUPLICATE:
1936 return Attribute::NoDuplicate;
1937 case bitc::ATTR_KIND_NOFREE:
1938 return Attribute::NoFree;
1939 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1940 return Attribute::NoImplicitFloat;
1941 case bitc::ATTR_KIND_NO_INLINE:
1942 return Attribute::NoInline;
1943 case bitc::ATTR_KIND_NO_RECURSE:
1944 return Attribute::NoRecurse;
1945 case bitc::ATTR_KIND_NO_MERGE:
1946 return Attribute::NoMerge;
1947 case bitc::ATTR_KIND_NON_LAZY_BIND:
1948 return Attribute::NonLazyBind;
1949 case bitc::ATTR_KIND_NON_NULL:
1950 return Attribute::NonNull;
1951 case bitc::ATTR_KIND_DEREFERENCEABLE:
1952 return Attribute::Dereferenceable;
1953 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1954 return Attribute::DereferenceableOrNull;
1955 case bitc::ATTR_KIND_ALLOC_ALIGN:
1956 return Attribute::AllocAlign;
1957 case bitc::ATTR_KIND_ALLOC_KIND:
1958 return Attribute::AllocKind;
1959 case bitc::ATTR_KIND_ALLOC_SIZE:
1960 return Attribute::AllocSize;
1961 case bitc::ATTR_KIND_ALLOCATED_POINTER:
1962 return Attribute::AllocatedPointer;
1963 case bitc::ATTR_KIND_NO_RED_ZONE:
1964 return Attribute::NoRedZone;
1965 case bitc::ATTR_KIND_NO_RETURN:
1966 return Attribute::NoReturn;
1967 case bitc::ATTR_KIND_NOSYNC:
1968 return Attribute::NoSync;
1969 case bitc::ATTR_KIND_NOCF_CHECK:
1970 return Attribute::NoCfCheck;
1971 case bitc::ATTR_KIND_NO_PROFILE:
1972 return Attribute::NoProfile;
1973 case bitc::ATTR_KIND_SKIP_PROFILE:
1974 return Attribute::SkipProfile;
1975 case bitc::ATTR_KIND_NO_UNWIND:
1976 return Attribute::NoUnwind;
1977 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1978 return Attribute::NoSanitizeBounds;
1979 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1980 return Attribute::NoSanitizeCoverage;
1981 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1982 return Attribute::NullPointerIsValid;
1983 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1984 return Attribute::OptForFuzzing;
1985 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1986 return Attribute::OptimizeForSize;
1987 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1988 return Attribute::OptimizeNone;
1989 case bitc::ATTR_KIND_READ_NONE:
1990 return Attribute::ReadNone;
1991 case bitc::ATTR_KIND_READ_ONLY:
1992 return Attribute::ReadOnly;
1993 case bitc::ATTR_KIND_RETURNED:
1994 return Attribute::Returned;
1995 case bitc::ATTR_KIND_RETURNS_TWICE:
1996 return Attribute::ReturnsTwice;
1997 case bitc::ATTR_KIND_S_EXT:
1998 return Attribute::SExt;
1999 case bitc::ATTR_KIND_SPECULATABLE:
2000 return Attribute::Speculatable;
2001 case bitc::ATTR_KIND_STACK_ALIGNMENT:
2002 return Attribute::StackAlignment;
2003 case bitc::ATTR_KIND_STACK_PROTECT:
2004 return Attribute::StackProtect;
2005 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2006 return Attribute::StackProtectReq;
2007 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2008 return Attribute::StackProtectStrong;
2009 case bitc::ATTR_KIND_SAFESTACK:
2010 return Attribute::SafeStack;
2011 case bitc::ATTR_KIND_SHADOWCALLSTACK:
2012 return Attribute::ShadowCallStack;
2013 case bitc::ATTR_KIND_STRICT_FP:
2014 return Attribute::StrictFP;
2015 case bitc::ATTR_KIND_STRUCT_RET:
2016 return Attribute::StructRet;
2017 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2018 return Attribute::SanitizeAddress;
2019 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2020 return Attribute::SanitizeHWAddress;
2021 case bitc::ATTR_KIND_SANITIZE_THREAD:
2022 return Attribute::SanitizeThread;
2023 case bitc::ATTR_KIND_SANITIZE_MEMORY:
2024 return Attribute::SanitizeMemory;
2025 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2026 return Attribute::SpeculativeLoadHardening;
2027 case bitc::ATTR_KIND_SWIFT_ERROR:
2028 return Attribute::SwiftError;
2029 case bitc::ATTR_KIND_SWIFT_SELF:
2030 return Attribute::SwiftSelf;
2031 case bitc::ATTR_KIND_SWIFT_ASYNC:
2032 return Attribute::SwiftAsync;
2033 case bitc::ATTR_KIND_UW_TABLE:
2034 return Attribute::UWTable;
2035 case bitc::ATTR_KIND_VSCALE_RANGE:
2036 return Attribute::VScaleRange;
2037 case bitc::ATTR_KIND_WILLRETURN:
2038 return Attribute::WillReturn;
2039 case bitc::ATTR_KIND_WRITEONLY:
2040 return Attribute::WriteOnly;
2041 case bitc::ATTR_KIND_Z_EXT:
2042 return Attribute::ZExt;
2043 case bitc::ATTR_KIND_IMMARG:
2044 return Attribute::ImmArg;
2045 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2046 return Attribute::SanitizeMemTag;
2047 case bitc::ATTR_KIND_PREALLOCATED:
2048 return Attribute::Preallocated;
2049 case bitc::ATTR_KIND_NOUNDEF:
2050 return Attribute::NoUndef;
2051 case bitc::ATTR_KIND_BYREF:
2052 return Attribute::ByRef;
2053 case bitc::ATTR_KIND_MUSTPROGRESS:
2054 return Attribute::MustProgress;
2055 case bitc::ATTR_KIND_HOT:
2056 return Attribute::Hot;
2057 case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2058 return Attribute::PresplitCoroutine;
2062 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2063 MaybeAlign &Alignment) {
2064 // Note: Alignment in bitcode files is incremented by 1, so that zero
2065 // can be used for default alignment.
2066 if (Exponent > Value::MaxAlignmentExponent + 1)
2067 return error("Invalid alignment value");
2068 Alignment = decodeMaybeAlign(Exponent);
2069 return Error::success();
2072 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2073 *Kind = getAttrFromCode(Code);
2074 if (*Kind == Attribute::None)
2075 return error("Unknown attribute kind (" + Twine(Code) + ")");
2076 return Error::success();
2079 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2080 switch (EncodedKind) {
2081 case bitc::ATTR_KIND_READ_NONE:
2082 ME &= MemoryEffects::none();
2083 return true;
2084 case bitc::ATTR_KIND_READ_ONLY:
2085 ME &= MemoryEffects::readOnly();
2086 return true;
2087 case bitc::ATTR_KIND_WRITEONLY:
2088 ME &= MemoryEffects::writeOnly();
2089 return true;
2090 case bitc::ATTR_KIND_ARGMEMONLY:
2091 ME &= MemoryEffects::argMemOnly();
2092 return true;
2093 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2094 ME &= MemoryEffects::inaccessibleMemOnly();
2095 return true;
2096 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2097 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2098 return true;
2099 default:
2100 return false;
2104 Error BitcodeReader::parseAttributeGroupBlock() {
2105 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2106 return Err;
2108 if (!MAttributeGroups.empty())
2109 return error("Invalid multiple blocks");
2111 SmallVector<uint64_t, 64> Record;
2113 // Read all the records.
2114 while (true) {
2115 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2116 if (!MaybeEntry)
2117 return MaybeEntry.takeError();
2118 BitstreamEntry Entry = MaybeEntry.get();
2120 switch (Entry.Kind) {
2121 case BitstreamEntry::SubBlock: // Handled for us already.
2122 case BitstreamEntry::Error:
2123 return error("Malformed block");
2124 case BitstreamEntry::EndBlock:
2125 return Error::success();
2126 case BitstreamEntry::Record:
2127 // The interesting case.
2128 break;
2131 // Read a record.
2132 Record.clear();
2133 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2134 if (!MaybeRecord)
2135 return MaybeRecord.takeError();
2136 switch (MaybeRecord.get()) {
2137 default: // Default behavior: ignore.
2138 break;
2139 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2140 if (Record.size() < 3)
2141 return error("Invalid grp record");
2143 uint64_t GrpID = Record[0];
2144 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2146 AttrBuilder B(Context);
2147 MemoryEffects ME = MemoryEffects::unknown();
2148 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2149 if (Record[i] == 0) { // Enum attribute
2150 Attribute::AttrKind Kind;
2151 uint64_t EncodedKind = Record[++i];
2152 if (Idx == AttributeList::FunctionIndex &&
2153 upgradeOldMemoryAttribute(ME, EncodedKind))
2154 continue;
2156 if (Error Err = parseAttrKind(EncodedKind, &Kind))
2157 return Err;
2159 // Upgrade old-style byval attribute to one with a type, even if it's
2160 // nullptr. We will have to insert the real type when we associate
2161 // this AttributeList with a function.
2162 if (Kind == Attribute::ByVal)
2163 B.addByValAttr(nullptr);
2164 else if (Kind == Attribute::StructRet)
2165 B.addStructRetAttr(nullptr);
2166 else if (Kind == Attribute::InAlloca)
2167 B.addInAllocaAttr(nullptr);
2168 else if (Kind == Attribute::UWTable)
2169 B.addUWTableAttr(UWTableKind::Default);
2170 else if (Attribute::isEnumAttrKind(Kind))
2171 B.addAttribute(Kind);
2172 else
2173 return error("Not an enum attribute");
2174 } else if (Record[i] == 1) { // Integer attribute
2175 Attribute::AttrKind Kind;
2176 if (Error Err = parseAttrKind(Record[++i], &Kind))
2177 return Err;
2178 if (!Attribute::isIntAttrKind(Kind))
2179 return error("Not an int attribute");
2180 if (Kind == Attribute::Alignment)
2181 B.addAlignmentAttr(Record[++i]);
2182 else if (Kind == Attribute::StackAlignment)
2183 B.addStackAlignmentAttr(Record[++i]);
2184 else if (Kind == Attribute::Dereferenceable)
2185 B.addDereferenceableAttr(Record[++i]);
2186 else if (Kind == Attribute::DereferenceableOrNull)
2187 B.addDereferenceableOrNullAttr(Record[++i]);
2188 else if (Kind == Attribute::AllocSize)
2189 B.addAllocSizeAttrFromRawRepr(Record[++i]);
2190 else if (Kind == Attribute::VScaleRange)
2191 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2192 else if (Kind == Attribute::UWTable)
2193 B.addUWTableAttr(UWTableKind(Record[++i]));
2194 else if (Kind == Attribute::AllocKind)
2195 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2196 else if (Kind == Attribute::Memory)
2197 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2198 else if (Kind == Attribute::NoFPClass)
2199 B.addNoFPClassAttr(
2200 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2201 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2202 bool HasValue = (Record[i++] == 4);
2203 SmallString<64> KindStr;
2204 SmallString<64> ValStr;
2206 while (Record[i] != 0 && i != e)
2207 KindStr += Record[i++];
2208 assert(Record[i] == 0 && "Kind string not null terminated");
2210 if (HasValue) {
2211 // Has a value associated with it.
2212 ++i; // Skip the '0' that terminates the "kind" string.
2213 while (Record[i] != 0 && i != e)
2214 ValStr += Record[i++];
2215 assert(Record[i] == 0 && "Value string not null terminated");
2218 B.addAttribute(KindStr.str(), ValStr.str());
2219 } else if (Record[i] == 5 || Record[i] == 6) {
2220 bool HasType = Record[i] == 6;
2221 Attribute::AttrKind Kind;
2222 if (Error Err = parseAttrKind(Record[++i], &Kind))
2223 return Err;
2224 if (!Attribute::isTypeAttrKind(Kind))
2225 return error("Not a type attribute");
2227 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2228 } else {
2229 return error("Invalid attribute group entry");
2233 if (ME != MemoryEffects::unknown())
2234 B.addMemoryAttr(ME);
2236 UpgradeAttributes(B);
2237 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2238 break;
2244 Error BitcodeReader::parseTypeTable() {
2245 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2246 return Err;
2248 return parseTypeTableBody();
2251 Error BitcodeReader::parseTypeTableBody() {
2252 if (!TypeList.empty())
2253 return error("Invalid multiple blocks");
2255 SmallVector<uint64_t, 64> Record;
2256 unsigned NumRecords = 0;
2258 SmallString<64> TypeName;
2260 // Read all the records for this type table.
2261 while (true) {
2262 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2263 if (!MaybeEntry)
2264 return MaybeEntry.takeError();
2265 BitstreamEntry Entry = MaybeEntry.get();
2267 switch (Entry.Kind) {
2268 case BitstreamEntry::SubBlock: // Handled for us already.
2269 case BitstreamEntry::Error:
2270 return error("Malformed block");
2271 case BitstreamEntry::EndBlock:
2272 if (NumRecords != TypeList.size())
2273 return error("Malformed block");
2274 return Error::success();
2275 case BitstreamEntry::Record:
2276 // The interesting case.
2277 break;
2280 // Read a record.
2281 Record.clear();
2282 Type *ResultTy = nullptr;
2283 SmallVector<unsigned> ContainedIDs;
2284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2285 if (!MaybeRecord)
2286 return MaybeRecord.takeError();
2287 switch (MaybeRecord.get()) {
2288 default:
2289 return error("Invalid value");
2290 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2291 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2292 // type list. This allows us to reserve space.
2293 if (Record.empty())
2294 return error("Invalid numentry record");
2295 TypeList.resize(Record[0]);
2296 continue;
2297 case bitc::TYPE_CODE_VOID: // VOID
2298 ResultTy = Type::getVoidTy(Context);
2299 break;
2300 case bitc::TYPE_CODE_HALF: // HALF
2301 ResultTy = Type::getHalfTy(Context);
2302 break;
2303 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
2304 ResultTy = Type::getBFloatTy(Context);
2305 break;
2306 case bitc::TYPE_CODE_FLOAT: // FLOAT
2307 ResultTy = Type::getFloatTy(Context);
2308 break;
2309 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
2310 ResultTy = Type::getDoubleTy(Context);
2311 break;
2312 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
2313 ResultTy = Type::getX86_FP80Ty(Context);
2314 break;
2315 case bitc::TYPE_CODE_FP128: // FP128
2316 ResultTy = Type::getFP128Ty(Context);
2317 break;
2318 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2319 ResultTy = Type::getPPC_FP128Ty(Context);
2320 break;
2321 case bitc::TYPE_CODE_LABEL: // LABEL
2322 ResultTy = Type::getLabelTy(Context);
2323 break;
2324 case bitc::TYPE_CODE_METADATA: // METADATA
2325 ResultTy = Type::getMetadataTy(Context);
2326 break;
2327 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
2328 ResultTy = Type::getX86_MMXTy(Context);
2329 break;
2330 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
2331 ResultTy = Type::getX86_AMXTy(Context);
2332 break;
2333 case bitc::TYPE_CODE_TOKEN: // TOKEN
2334 ResultTy = Type::getTokenTy(Context);
2335 break;
2336 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2337 if (Record.empty())
2338 return error("Invalid integer record");
2340 uint64_t NumBits = Record[0];
2341 if (NumBits < IntegerType::MIN_INT_BITS ||
2342 NumBits > IntegerType::MAX_INT_BITS)
2343 return error("Bitwidth for integer type out of range");
2344 ResultTy = IntegerType::get(Context, NumBits);
2345 break;
2347 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2348 // [pointee type, address space]
2349 if (Record.empty())
2350 return error("Invalid pointer record");
2351 unsigned AddressSpace = 0;
2352 if (Record.size() == 2)
2353 AddressSpace = Record[1];
2354 ResultTy = getTypeByID(Record[0]);
2355 if (!ResultTy ||
2356 !PointerType::isValidElementType(ResultTy))
2357 return error("Invalid type");
2358 ContainedIDs.push_back(Record[0]);
2359 ResultTy = PointerType::get(ResultTy, AddressSpace);
2360 break;
2362 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2363 if (Record.size() != 1)
2364 return error("Invalid opaque pointer record");
2365 unsigned AddressSpace = Record[0];
2366 ResultTy = PointerType::get(Context, AddressSpace);
2367 break;
2369 case bitc::TYPE_CODE_FUNCTION_OLD: {
2370 // Deprecated, but still needed to read old bitcode files.
2371 // FUNCTION: [vararg, attrid, retty, paramty x N]
2372 if (Record.size() < 3)
2373 return error("Invalid function record");
2374 SmallVector<Type*, 8> ArgTys;
2375 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2376 if (Type *T = getTypeByID(Record[i]))
2377 ArgTys.push_back(T);
2378 else
2379 break;
2382 ResultTy = getTypeByID(Record[2]);
2383 if (!ResultTy || ArgTys.size() < Record.size()-3)
2384 return error("Invalid type");
2386 ContainedIDs.append(Record.begin() + 2, Record.end());
2387 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2388 break;
2390 case bitc::TYPE_CODE_FUNCTION: {
2391 // FUNCTION: [vararg, retty, paramty x N]
2392 if (Record.size() < 2)
2393 return error("Invalid function record");
2394 SmallVector<Type*, 8> ArgTys;
2395 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2396 if (Type *T = getTypeByID(Record[i])) {
2397 if (!FunctionType::isValidArgumentType(T))
2398 return error("Invalid function argument type");
2399 ArgTys.push_back(T);
2401 else
2402 break;
2405 ResultTy = getTypeByID(Record[1]);
2406 if (!ResultTy || ArgTys.size() < Record.size()-2)
2407 return error("Invalid type");
2409 ContainedIDs.append(Record.begin() + 1, Record.end());
2410 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2411 break;
2413 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
2414 if (Record.empty())
2415 return error("Invalid anon struct record");
2416 SmallVector<Type*, 8> EltTys;
2417 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2418 if (Type *T = getTypeByID(Record[i]))
2419 EltTys.push_back(T);
2420 else
2421 break;
2423 if (EltTys.size() != Record.size()-1)
2424 return error("Invalid type");
2425 ContainedIDs.append(Record.begin() + 1, Record.end());
2426 ResultTy = StructType::get(Context, EltTys, Record[0]);
2427 break;
2429 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
2430 if (convertToString(Record, 0, TypeName))
2431 return error("Invalid struct name record");
2432 continue;
2434 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2435 if (Record.empty())
2436 return error("Invalid named struct record");
2438 if (NumRecords >= TypeList.size())
2439 return error("Invalid TYPE table");
2441 // Check to see if this was forward referenced, if so fill in the temp.
2442 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2443 if (Res) {
2444 Res->setName(TypeName);
2445 TypeList[NumRecords] = nullptr;
2446 } else // Otherwise, create a new struct.
2447 Res = createIdentifiedStructType(Context, TypeName);
2448 TypeName.clear();
2450 SmallVector<Type*, 8> EltTys;
2451 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2452 if (Type *T = getTypeByID(Record[i]))
2453 EltTys.push_back(T);
2454 else
2455 break;
2457 if (EltTys.size() != Record.size()-1)
2458 return error("Invalid named struct record");
2459 Res->setBody(EltTys, Record[0]);
2460 ContainedIDs.append(Record.begin() + 1, Record.end());
2461 ResultTy = Res;
2462 break;
2464 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
2465 if (Record.size() != 1)
2466 return error("Invalid opaque type record");
2468 if (NumRecords >= TypeList.size())
2469 return error("Invalid TYPE table");
2471 // Check to see if this was forward referenced, if so fill in the temp.
2472 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2473 if (Res) {
2474 Res->setName(TypeName);
2475 TypeList[NumRecords] = nullptr;
2476 } else // Otherwise, create a new struct with no body.
2477 Res = createIdentifiedStructType(Context, TypeName);
2478 TypeName.clear();
2479 ResultTy = Res;
2480 break;
2482 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2483 if (Record.size() < 1)
2484 return error("Invalid target extension type record");
2486 if (NumRecords >= TypeList.size())
2487 return error("Invalid TYPE table");
2489 if (Record[0] >= Record.size())
2490 return error("Too many type parameters");
2492 unsigned NumTys = Record[0];
2493 SmallVector<Type *, 4> TypeParams;
2494 SmallVector<unsigned, 8> IntParams;
2495 for (unsigned i = 0; i < NumTys; i++) {
2496 if (Type *T = getTypeByID(Record[i + 1]))
2497 TypeParams.push_back(T);
2498 else
2499 return error("Invalid type");
2502 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2503 if (Record[i] > UINT_MAX)
2504 return error("Integer parameter too large");
2505 IntParams.push_back(Record[i]);
2507 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2508 TypeName.clear();
2509 break;
2511 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
2512 if (Record.size() < 2)
2513 return error("Invalid array type record");
2514 ResultTy = getTypeByID(Record[1]);
2515 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2516 return error("Invalid type");
2517 ContainedIDs.push_back(Record[1]);
2518 ResultTy = ArrayType::get(ResultTy, Record[0]);
2519 break;
2520 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
2521 // [numelts, eltty, scalable]
2522 if (Record.size() < 2)
2523 return error("Invalid vector type record");
2524 if (Record[0] == 0)
2525 return error("Invalid vector length");
2526 ResultTy = getTypeByID(Record[1]);
2527 if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2528 return error("Invalid type");
2529 bool Scalable = Record.size() > 2 ? Record[2] : false;
2530 ContainedIDs.push_back(Record[1]);
2531 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2532 break;
2535 if (NumRecords >= TypeList.size())
2536 return error("Invalid TYPE table");
2537 if (TypeList[NumRecords])
2538 return error(
2539 "Invalid TYPE table: Only named structs can be forward referenced");
2540 assert(ResultTy && "Didn't read a type?");
2541 TypeList[NumRecords] = ResultTy;
2542 if (!ContainedIDs.empty())
2543 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2544 ++NumRecords;
2548 Error BitcodeReader::parseOperandBundleTags() {
2549 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2550 return Err;
2552 if (!BundleTags.empty())
2553 return error("Invalid multiple blocks");
2555 SmallVector<uint64_t, 64> Record;
2557 while (true) {
2558 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2559 if (!MaybeEntry)
2560 return MaybeEntry.takeError();
2561 BitstreamEntry Entry = MaybeEntry.get();
2563 switch (Entry.Kind) {
2564 case BitstreamEntry::SubBlock: // Handled for us already.
2565 case BitstreamEntry::Error:
2566 return error("Malformed block");
2567 case BitstreamEntry::EndBlock:
2568 return Error::success();
2569 case BitstreamEntry::Record:
2570 // The interesting case.
2571 break;
2574 // Tags are implicitly mapped to integers by their order.
2576 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2577 if (!MaybeRecord)
2578 return MaybeRecord.takeError();
2579 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2580 return error("Invalid operand bundle record");
2582 // OPERAND_BUNDLE_TAG: [strchr x N]
2583 BundleTags.emplace_back();
2584 if (convertToString(Record, 0, BundleTags.back()))
2585 return error("Invalid operand bundle record");
2586 Record.clear();
2590 Error BitcodeReader::parseSyncScopeNames() {
2591 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2592 return Err;
2594 if (!SSIDs.empty())
2595 return error("Invalid multiple synchronization scope names blocks");
2597 SmallVector<uint64_t, 64> Record;
2598 while (true) {
2599 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2600 if (!MaybeEntry)
2601 return MaybeEntry.takeError();
2602 BitstreamEntry Entry = MaybeEntry.get();
2604 switch (Entry.Kind) {
2605 case BitstreamEntry::SubBlock: // Handled for us already.
2606 case BitstreamEntry::Error:
2607 return error("Malformed block");
2608 case BitstreamEntry::EndBlock:
2609 if (SSIDs.empty())
2610 return error("Invalid empty synchronization scope names block");
2611 return Error::success();
2612 case BitstreamEntry::Record:
2613 // The interesting case.
2614 break;
2617 // Synchronization scope names are implicitly mapped to synchronization
2618 // scope IDs by their order.
2620 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2621 if (!MaybeRecord)
2622 return MaybeRecord.takeError();
2623 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2624 return error("Invalid sync scope record");
2626 SmallString<16> SSN;
2627 if (convertToString(Record, 0, SSN))
2628 return error("Invalid sync scope record");
2630 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2631 Record.clear();
2635 /// Associate a value with its name from the given index in the provided record.
2636 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2637 unsigned NameIndex, Triple &TT) {
2638 SmallString<128> ValueName;
2639 if (convertToString(Record, NameIndex, ValueName))
2640 return error("Invalid record");
2641 unsigned ValueID = Record[0];
2642 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2643 return error("Invalid record");
2644 Value *V = ValueList[ValueID];
2646 StringRef NameStr(ValueName.data(), ValueName.size());
2647 if (NameStr.find_first_of(0) != StringRef::npos)
2648 return error("Invalid value name");
2649 V->setName(NameStr);
2650 auto *GO = dyn_cast<GlobalObject>(V);
2651 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2652 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2653 return V;
2656 /// Helper to note and return the current location, and jump to the given
2657 /// offset.
2658 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2659 BitstreamCursor &Stream) {
2660 // Save the current parsing location so we can jump back at the end
2661 // of the VST read.
2662 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2663 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2664 return std::move(JumpFailed);
2665 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2666 if (!MaybeEntry)
2667 return MaybeEntry.takeError();
2668 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2669 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2670 return error("Expected value symbol table subblock");
2671 return CurrentBit;
2674 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2675 Function *F,
2676 ArrayRef<uint64_t> Record) {
2677 // Note that we subtract 1 here because the offset is relative to one word
2678 // before the start of the identification or module block, which was
2679 // historically always the start of the regular bitcode header.
2680 uint64_t FuncWordOffset = Record[1] - 1;
2681 uint64_t FuncBitOffset = FuncWordOffset * 32;
2682 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2683 // Set the LastFunctionBlockBit to point to the last function block.
2684 // Later when parsing is resumed after function materialization,
2685 // we can simply skip that last function block.
2686 if (FuncBitOffset > LastFunctionBlockBit)
2687 LastFunctionBlockBit = FuncBitOffset;
2690 /// Read a new-style GlobalValue symbol table.
2691 Error BitcodeReader::parseGlobalValueSymbolTable() {
2692 unsigned FuncBitcodeOffsetDelta =
2693 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2695 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2696 return Err;
2698 SmallVector<uint64_t, 64> Record;
2699 while (true) {
2700 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2701 if (!MaybeEntry)
2702 return MaybeEntry.takeError();
2703 BitstreamEntry Entry = MaybeEntry.get();
2705 switch (Entry.Kind) {
2706 case BitstreamEntry::SubBlock:
2707 case BitstreamEntry::Error:
2708 return error("Malformed block");
2709 case BitstreamEntry::EndBlock:
2710 return Error::success();
2711 case BitstreamEntry::Record:
2712 break;
2715 Record.clear();
2716 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2717 if (!MaybeRecord)
2718 return MaybeRecord.takeError();
2719 switch (MaybeRecord.get()) {
2720 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2721 unsigned ValueID = Record[0];
2722 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2723 return error("Invalid value reference in symbol table");
2724 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2725 cast<Function>(ValueList[ValueID]), Record);
2726 break;
2732 /// Parse the value symbol table at either the current parsing location or
2733 /// at the given bit offset if provided.
2734 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2735 uint64_t CurrentBit;
2736 // Pass in the Offset to distinguish between calling for the module-level
2737 // VST (where we want to jump to the VST offset) and the function-level
2738 // VST (where we don't).
2739 if (Offset > 0) {
2740 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2741 if (!MaybeCurrentBit)
2742 return MaybeCurrentBit.takeError();
2743 CurrentBit = MaybeCurrentBit.get();
2744 // If this module uses a string table, read this as a module-level VST.
2745 if (UseStrtab) {
2746 if (Error Err = parseGlobalValueSymbolTable())
2747 return Err;
2748 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2749 return JumpFailed;
2750 return Error::success();
2752 // Otherwise, the VST will be in a similar format to a function-level VST,
2753 // and will contain symbol names.
2756 // Compute the delta between the bitcode indices in the VST (the word offset
2757 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2758 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2759 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2760 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2761 // just before entering the VST subblock because: 1) the EnterSubBlock
2762 // changes the AbbrevID width; 2) the VST block is nested within the same
2763 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2764 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2765 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2766 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2767 unsigned FuncBitcodeOffsetDelta =
2768 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2770 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2771 return Err;
2773 SmallVector<uint64_t, 64> Record;
2775 Triple TT(TheModule->getTargetTriple());
2777 // Read all the records for this value table.
2778 SmallString<128> ValueName;
2780 while (true) {
2781 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2782 if (!MaybeEntry)
2783 return MaybeEntry.takeError();
2784 BitstreamEntry Entry = MaybeEntry.get();
2786 switch (Entry.Kind) {
2787 case BitstreamEntry::SubBlock: // Handled for us already.
2788 case BitstreamEntry::Error:
2789 return error("Malformed block");
2790 case BitstreamEntry::EndBlock:
2791 if (Offset > 0)
2792 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2793 return JumpFailed;
2794 return Error::success();
2795 case BitstreamEntry::Record:
2796 // The interesting case.
2797 break;
2800 // Read a record.
2801 Record.clear();
2802 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2803 if (!MaybeRecord)
2804 return MaybeRecord.takeError();
2805 switch (MaybeRecord.get()) {
2806 default: // Default behavior: unknown type.
2807 break;
2808 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2809 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2810 if (Error Err = ValOrErr.takeError())
2811 return Err;
2812 ValOrErr.get();
2813 break;
2815 case bitc::VST_CODE_FNENTRY: {
2816 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2817 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2818 if (Error Err = ValOrErr.takeError())
2819 return Err;
2820 Value *V = ValOrErr.get();
2822 // Ignore function offsets emitted for aliases of functions in older
2823 // versions of LLVM.
2824 if (auto *F = dyn_cast<Function>(V))
2825 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2826 break;
2828 case bitc::VST_CODE_BBENTRY: {
2829 if (convertToString(Record, 1, ValueName))
2830 return error("Invalid bbentry record");
2831 BasicBlock *BB = getBasicBlock(Record[0]);
2832 if (!BB)
2833 return error("Invalid bbentry record");
2835 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2836 ValueName.clear();
2837 break;
2843 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2844 /// encoding.
2845 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2846 if ((V & 1) == 0)
2847 return V >> 1;
2848 if (V != 1)
2849 return -(V >> 1);
2850 // There is no such thing as -0 with integers. "-0" really means MININT.
2851 return 1ULL << 63;
2854 /// Resolve all of the initializers for global values and aliases that we can.
2855 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2856 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2857 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2858 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2860 GlobalInitWorklist.swap(GlobalInits);
2861 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2862 FunctionOperandWorklist.swap(FunctionOperands);
2864 while (!GlobalInitWorklist.empty()) {
2865 unsigned ValID = GlobalInitWorklist.back().second;
2866 if (ValID >= ValueList.size()) {
2867 // Not ready to resolve this yet, it requires something later in the file.
2868 GlobalInits.push_back(GlobalInitWorklist.back());
2869 } else {
2870 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2871 if (!MaybeC)
2872 return MaybeC.takeError();
2873 GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2875 GlobalInitWorklist.pop_back();
2878 while (!IndirectSymbolInitWorklist.empty()) {
2879 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2880 if (ValID >= ValueList.size()) {
2881 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2882 } else {
2883 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2884 if (!MaybeC)
2885 return MaybeC.takeError();
2886 Constant *C = MaybeC.get();
2887 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2888 if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2889 if (C->getType() != GV->getType())
2890 return error("Alias and aliasee types don't match");
2891 GA->setAliasee(C);
2892 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2893 Type *ResolverFTy =
2894 GlobalIFunc::getResolverFunctionType(GI->getValueType());
2895 // Transparently fix up the type for compatibility with older bitcode
2896 GI->setResolver(ConstantExpr::getBitCast(
2897 C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2898 } else {
2899 return error("Expected an alias or an ifunc");
2902 IndirectSymbolInitWorklist.pop_back();
2905 while (!FunctionOperandWorklist.empty()) {
2906 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2907 if (Info.PersonalityFn) {
2908 unsigned ValID = Info.PersonalityFn - 1;
2909 if (ValID < ValueList.size()) {
2910 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2911 if (!MaybeC)
2912 return MaybeC.takeError();
2913 Info.F->setPersonalityFn(MaybeC.get());
2914 Info.PersonalityFn = 0;
2917 if (Info.Prefix) {
2918 unsigned ValID = Info.Prefix - 1;
2919 if (ValID < ValueList.size()) {
2920 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2921 if (!MaybeC)
2922 return MaybeC.takeError();
2923 Info.F->setPrefixData(MaybeC.get());
2924 Info.Prefix = 0;
2927 if (Info.Prologue) {
2928 unsigned ValID = Info.Prologue - 1;
2929 if (ValID < ValueList.size()) {
2930 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2931 if (!MaybeC)
2932 return MaybeC.takeError();
2933 Info.F->setPrologueData(MaybeC.get());
2934 Info.Prologue = 0;
2937 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2938 FunctionOperands.push_back(Info);
2939 FunctionOperandWorklist.pop_back();
2942 return Error::success();
2945 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2946 SmallVector<uint64_t, 8> Words(Vals.size());
2947 transform(Vals, Words.begin(),
2948 BitcodeReader::decodeSignRotatedValue);
2950 return APInt(TypeBits, Words);
2953 Error BitcodeReader::parseConstants() {
2954 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2955 return Err;
2957 SmallVector<uint64_t, 64> Record;
2959 // Read all the records for this value table.
2960 Type *CurTy = Type::getInt32Ty(Context);
2961 unsigned Int32TyID = getVirtualTypeID(CurTy);
2962 unsigned CurTyID = Int32TyID;
2963 Type *CurElemTy = nullptr;
2964 unsigned NextCstNo = ValueList.size();
2966 while (true) {
2967 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2968 if (!MaybeEntry)
2969 return MaybeEntry.takeError();
2970 BitstreamEntry Entry = MaybeEntry.get();
2972 switch (Entry.Kind) {
2973 case BitstreamEntry::SubBlock: // Handled for us already.
2974 case BitstreamEntry::Error:
2975 return error("Malformed block");
2976 case BitstreamEntry::EndBlock:
2977 if (NextCstNo != ValueList.size())
2978 return error("Invalid constant reference");
2979 return Error::success();
2980 case BitstreamEntry::Record:
2981 // The interesting case.
2982 break;
2985 // Read a record.
2986 Record.clear();
2987 Type *VoidType = Type::getVoidTy(Context);
2988 Value *V = nullptr;
2989 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2990 if (!MaybeBitCode)
2991 return MaybeBitCode.takeError();
2992 switch (unsigned BitCode = MaybeBitCode.get()) {
2993 default: // Default behavior: unknown constant
2994 case bitc::CST_CODE_UNDEF: // UNDEF
2995 V = UndefValue::get(CurTy);
2996 break;
2997 case bitc::CST_CODE_POISON: // POISON
2998 V = PoisonValue::get(CurTy);
2999 break;
3000 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
3001 if (Record.empty())
3002 return error("Invalid settype record");
3003 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3004 return error("Invalid settype record");
3005 if (TypeList[Record[0]] == VoidType)
3006 return error("Invalid constant type");
3007 CurTyID = Record[0];
3008 CurTy = TypeList[CurTyID];
3009 CurElemTy = getPtrElementTypeByID(CurTyID);
3010 continue; // Skip the ValueList manipulation.
3011 case bitc::CST_CODE_NULL: // NULL
3012 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3013 return error("Invalid type for a constant null value");
3014 if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3015 if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3016 return error("Invalid type for a constant null value");
3017 V = Constant::getNullValue(CurTy);
3018 break;
3019 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
3020 if (!CurTy->isIntegerTy() || Record.empty())
3021 return error("Invalid integer const record");
3022 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3023 break;
3024 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3025 if (!CurTy->isIntegerTy() || Record.empty())
3026 return error("Invalid wide integer const record");
3028 APInt VInt =
3029 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3030 V = ConstantInt::get(Context, VInt);
3032 break;
3034 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
3035 if (Record.empty())
3036 return error("Invalid float const record");
3037 if (CurTy->isHalfTy())
3038 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3039 APInt(16, (uint16_t)Record[0])));
3040 else if (CurTy->isBFloatTy())
3041 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3042 APInt(16, (uint32_t)Record[0])));
3043 else if (CurTy->isFloatTy())
3044 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3045 APInt(32, (uint32_t)Record[0])));
3046 else if (CurTy->isDoubleTy())
3047 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3048 APInt(64, Record[0])));
3049 else if (CurTy->isX86_FP80Ty()) {
3050 // Bits are not stored the same way as a normal i80 APInt, compensate.
3051 uint64_t Rearrange[2];
3052 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3053 Rearrange[1] = Record[0] >> 48;
3054 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3055 APInt(80, Rearrange)));
3056 } else if (CurTy->isFP128Ty())
3057 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3058 APInt(128, Record)));
3059 else if (CurTy->isPPC_FP128Ty())
3060 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3061 APInt(128, Record)));
3062 else
3063 V = UndefValue::get(CurTy);
3064 break;
3067 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3068 if (Record.empty())
3069 return error("Invalid aggregate record");
3071 unsigned Size = Record.size();
3072 SmallVector<unsigned, 16> Elts;
3073 for (unsigned i = 0; i != Size; ++i)
3074 Elts.push_back(Record[i]);
3076 if (isa<StructType>(CurTy)) {
3077 V = BitcodeConstant::create(
3078 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3079 } else if (isa<ArrayType>(CurTy)) {
3080 V = BitcodeConstant::create(Alloc, CurTy,
3081 BitcodeConstant::ConstantArrayOpcode, Elts);
3082 } else if (isa<VectorType>(CurTy)) {
3083 V = BitcodeConstant::create(
3084 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3085 } else {
3086 V = UndefValue::get(CurTy);
3088 break;
3090 case bitc::CST_CODE_STRING: // STRING: [values]
3091 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3092 if (Record.empty())
3093 return error("Invalid string record");
3095 SmallString<16> Elts(Record.begin(), Record.end());
3096 V = ConstantDataArray::getString(Context, Elts,
3097 BitCode == bitc::CST_CODE_CSTRING);
3098 break;
3100 case bitc::CST_CODE_DATA: {// DATA: [n x value]
3101 if (Record.empty())
3102 return error("Invalid data record");
3104 Type *EltTy;
3105 if (auto *Array = dyn_cast<ArrayType>(CurTy))
3106 EltTy = Array->getElementType();
3107 else
3108 EltTy = cast<VectorType>(CurTy)->getElementType();
3109 if (EltTy->isIntegerTy(8)) {
3110 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3111 if (isa<VectorType>(CurTy))
3112 V = ConstantDataVector::get(Context, Elts);
3113 else
3114 V = ConstantDataArray::get(Context, Elts);
3115 } else if (EltTy->isIntegerTy(16)) {
3116 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3117 if (isa<VectorType>(CurTy))
3118 V = ConstantDataVector::get(Context, Elts);
3119 else
3120 V = ConstantDataArray::get(Context, Elts);
3121 } else if (EltTy->isIntegerTy(32)) {
3122 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3123 if (isa<VectorType>(CurTy))
3124 V = ConstantDataVector::get(Context, Elts);
3125 else
3126 V = ConstantDataArray::get(Context, Elts);
3127 } else if (EltTy->isIntegerTy(64)) {
3128 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3129 if (isa<VectorType>(CurTy))
3130 V = ConstantDataVector::get(Context, Elts);
3131 else
3132 V = ConstantDataArray::get(Context, Elts);
3133 } else if (EltTy->isHalfTy()) {
3134 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3135 if (isa<VectorType>(CurTy))
3136 V = ConstantDataVector::getFP(EltTy, Elts);
3137 else
3138 V = ConstantDataArray::getFP(EltTy, Elts);
3139 } else if (EltTy->isBFloatTy()) {
3140 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3141 if (isa<VectorType>(CurTy))
3142 V = ConstantDataVector::getFP(EltTy, Elts);
3143 else
3144 V = ConstantDataArray::getFP(EltTy, Elts);
3145 } else if (EltTy->isFloatTy()) {
3146 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3147 if (isa<VectorType>(CurTy))
3148 V = ConstantDataVector::getFP(EltTy, Elts);
3149 else
3150 V = ConstantDataArray::getFP(EltTy, Elts);
3151 } else if (EltTy->isDoubleTy()) {
3152 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3153 if (isa<VectorType>(CurTy))
3154 V = ConstantDataVector::getFP(EltTy, Elts);
3155 else
3156 V = ConstantDataArray::getFP(EltTy, Elts);
3157 } else {
3158 return error("Invalid type for value");
3160 break;
3162 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
3163 if (Record.size() < 2)
3164 return error("Invalid unary op constexpr record");
3165 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3166 if (Opc < 0) {
3167 V = UndefValue::get(CurTy); // Unknown unop.
3168 } else {
3169 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3171 break;
3173 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
3174 if (Record.size() < 3)
3175 return error("Invalid binary op constexpr record");
3176 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3177 if (Opc < 0) {
3178 V = UndefValue::get(CurTy); // Unknown binop.
3179 } else {
3180 uint8_t Flags = 0;
3181 if (Record.size() >= 4) {
3182 if (Opc == Instruction::Add ||
3183 Opc == Instruction::Sub ||
3184 Opc == Instruction::Mul ||
3185 Opc == Instruction::Shl) {
3186 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3187 Flags |= OverflowingBinaryOperator::NoSignedWrap;
3188 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3189 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3190 } else if (Opc == Instruction::SDiv ||
3191 Opc == Instruction::UDiv ||
3192 Opc == Instruction::LShr ||
3193 Opc == Instruction::AShr) {
3194 if (Record[3] & (1 << bitc::PEO_EXACT))
3195 Flags |= PossiblyExactOperator::IsExact;
3198 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3199 {(unsigned)Record[1], (unsigned)Record[2]});
3201 break;
3203 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
3204 if (Record.size() < 3)
3205 return error("Invalid cast constexpr record");
3206 int Opc = getDecodedCastOpcode(Record[0]);
3207 if (Opc < 0) {
3208 V = UndefValue::get(CurTy); // Unknown cast.
3209 } else {
3210 unsigned OpTyID = Record[1];
3211 Type *OpTy = getTypeByID(OpTyID);
3212 if (!OpTy)
3213 return error("Invalid cast constexpr record");
3214 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3216 break;
3218 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3219 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3220 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3221 // operands]
3222 if (Record.size() < 2)
3223 return error("Constant GEP record must have at least two elements");
3224 unsigned OpNum = 0;
3225 Type *PointeeType = nullptr;
3226 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3227 Record.size() % 2)
3228 PointeeType = getTypeByID(Record[OpNum++]);
3230 bool InBounds = false;
3231 std::optional<unsigned> InRangeIndex;
3232 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3233 uint64_t Op = Record[OpNum++];
3234 InBounds = Op & 1;
3235 InRangeIndex = Op >> 1;
3236 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3237 InBounds = true;
3239 SmallVector<unsigned, 16> Elts;
3240 unsigned BaseTypeID = Record[OpNum];
3241 while (OpNum != Record.size()) {
3242 unsigned ElTyID = Record[OpNum++];
3243 Type *ElTy = getTypeByID(ElTyID);
3244 if (!ElTy)
3245 return error("Invalid getelementptr constexpr record");
3246 Elts.push_back(Record[OpNum++]);
3249 if (Elts.size() < 1)
3250 return error("Invalid gep with no operands");
3252 Type *BaseType = getTypeByID(BaseTypeID);
3253 if (isa<VectorType>(BaseType)) {
3254 BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3255 BaseType = getTypeByID(BaseTypeID);
3258 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3259 if (!OrigPtrTy)
3260 return error("GEP base operand must be pointer or vector of pointer");
3262 if (!PointeeType) {
3263 PointeeType = getPtrElementTypeByID(BaseTypeID);
3264 if (!PointeeType)
3265 return error("Missing element type for old-style constant GEP");
3268 V = BitcodeConstant::create(Alloc, CurTy,
3269 {Instruction::GetElementPtr, InBounds,
3270 InRangeIndex.value_or(-1), PointeeType},
3271 Elts);
3272 break;
3274 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
3275 if (Record.size() < 3)
3276 return error("Invalid select constexpr record");
3278 V = BitcodeConstant::create(
3279 Alloc, CurTy, Instruction::Select,
3280 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3281 break;
3283 case bitc::CST_CODE_CE_EXTRACTELT
3284 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3285 if (Record.size() < 3)
3286 return error("Invalid extractelement constexpr record");
3287 unsigned OpTyID = Record[0];
3288 VectorType *OpTy =
3289 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3290 if (!OpTy)
3291 return error("Invalid extractelement constexpr record");
3292 unsigned IdxRecord;
3293 if (Record.size() == 4) {
3294 unsigned IdxTyID = Record[2];
3295 Type *IdxTy = getTypeByID(IdxTyID);
3296 if (!IdxTy)
3297 return error("Invalid extractelement constexpr record");
3298 IdxRecord = Record[3];
3299 } else {
3300 // Deprecated, but still needed to read old bitcode files.
3301 IdxRecord = Record[2];
3303 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3304 {(unsigned)Record[1], IdxRecord});
3305 break;
3307 case bitc::CST_CODE_CE_INSERTELT
3308 : { // CE_INSERTELT: [opval, opval, opty, opval]
3309 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3310 if (Record.size() < 3 || !OpTy)
3311 return error("Invalid insertelement constexpr record");
3312 unsigned IdxRecord;
3313 if (Record.size() == 4) {
3314 unsigned IdxTyID = Record[2];
3315 Type *IdxTy = getTypeByID(IdxTyID);
3316 if (!IdxTy)
3317 return error("Invalid insertelement constexpr record");
3318 IdxRecord = Record[3];
3319 } else {
3320 // Deprecated, but still needed to read old bitcode files.
3321 IdxRecord = Record[2];
3323 V = BitcodeConstant::create(
3324 Alloc, CurTy, Instruction::InsertElement,
3325 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3326 break;
3328 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3329 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3330 if (Record.size() < 3 || !OpTy)
3331 return error("Invalid shufflevector constexpr record");
3332 V = BitcodeConstant::create(
3333 Alloc, CurTy, Instruction::ShuffleVector,
3334 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3335 break;
3337 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3338 VectorType *RTy = dyn_cast<VectorType>(CurTy);
3339 VectorType *OpTy =
3340 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3341 if (Record.size() < 4 || !RTy || !OpTy)
3342 return error("Invalid shufflevector constexpr record");
3343 V = BitcodeConstant::create(
3344 Alloc, CurTy, Instruction::ShuffleVector,
3345 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3346 break;
3348 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
3349 if (Record.size() < 4)
3350 return error("Invalid cmp constexpt record");
3351 unsigned OpTyID = Record[0];
3352 Type *OpTy = getTypeByID(OpTyID);
3353 if (!OpTy)
3354 return error("Invalid cmp constexpr record");
3355 V = BitcodeConstant::create(
3356 Alloc, CurTy,
3357 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3358 : Instruction::ICmp),
3359 (uint8_t)Record[3]},
3360 {(unsigned)Record[1], (unsigned)Record[2]});
3361 break;
3363 // This maintains backward compatibility, pre-asm dialect keywords.
3364 // Deprecated, but still needed to read old bitcode files.
3365 case bitc::CST_CODE_INLINEASM_OLD: {
3366 if (Record.size() < 2)
3367 return error("Invalid inlineasm record");
3368 std::string AsmStr, ConstrStr;
3369 bool HasSideEffects = Record[0] & 1;
3370 bool IsAlignStack = Record[0] >> 1;
3371 unsigned AsmStrSize = Record[1];
3372 if (2+AsmStrSize >= Record.size())
3373 return error("Invalid inlineasm record");
3374 unsigned ConstStrSize = Record[2+AsmStrSize];
3375 if (3+AsmStrSize+ConstStrSize > Record.size())
3376 return error("Invalid inlineasm record");
3378 for (unsigned i = 0; i != AsmStrSize; ++i)
3379 AsmStr += (char)Record[2+i];
3380 for (unsigned i = 0; i != ConstStrSize; ++i)
3381 ConstrStr += (char)Record[3+AsmStrSize+i];
3382 UpgradeInlineAsmString(&AsmStr);
3383 if (!CurElemTy)
3384 return error("Missing element type for old-style inlineasm");
3385 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3386 HasSideEffects, IsAlignStack);
3387 break;
3389 // This version adds support for the asm dialect keywords (e.g.,
3390 // inteldialect).
3391 case bitc::CST_CODE_INLINEASM_OLD2: {
3392 if (Record.size() < 2)
3393 return error("Invalid inlineasm record");
3394 std::string AsmStr, ConstrStr;
3395 bool HasSideEffects = Record[0] & 1;
3396 bool IsAlignStack = (Record[0] >> 1) & 1;
3397 unsigned AsmDialect = Record[0] >> 2;
3398 unsigned AsmStrSize = Record[1];
3399 if (2+AsmStrSize >= Record.size())
3400 return error("Invalid inlineasm record");
3401 unsigned ConstStrSize = Record[2+AsmStrSize];
3402 if (3+AsmStrSize+ConstStrSize > Record.size())
3403 return error("Invalid inlineasm record");
3405 for (unsigned i = 0; i != AsmStrSize; ++i)
3406 AsmStr += (char)Record[2+i];
3407 for (unsigned i = 0; i != ConstStrSize; ++i)
3408 ConstrStr += (char)Record[3+AsmStrSize+i];
3409 UpgradeInlineAsmString(&AsmStr);
3410 if (!CurElemTy)
3411 return error("Missing element type for old-style inlineasm");
3412 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3413 HasSideEffects, IsAlignStack,
3414 InlineAsm::AsmDialect(AsmDialect));
3415 break;
3417 // This version adds support for the unwind keyword.
3418 case bitc::CST_CODE_INLINEASM_OLD3: {
3419 if (Record.size() < 2)
3420 return error("Invalid inlineasm record");
3421 unsigned OpNum = 0;
3422 std::string AsmStr, ConstrStr;
3423 bool HasSideEffects = Record[OpNum] & 1;
3424 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3425 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3426 bool CanThrow = (Record[OpNum] >> 3) & 1;
3427 ++OpNum;
3428 unsigned AsmStrSize = Record[OpNum];
3429 ++OpNum;
3430 if (OpNum + AsmStrSize >= Record.size())
3431 return error("Invalid inlineasm record");
3432 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3433 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3434 return error("Invalid inlineasm record");
3436 for (unsigned i = 0; i != AsmStrSize; ++i)
3437 AsmStr += (char)Record[OpNum + i];
3438 ++OpNum;
3439 for (unsigned i = 0; i != ConstStrSize; ++i)
3440 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3441 UpgradeInlineAsmString(&AsmStr);
3442 if (!CurElemTy)
3443 return error("Missing element type for old-style inlineasm");
3444 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3445 HasSideEffects, IsAlignStack,
3446 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3447 break;
3449 // This version adds explicit function type.
3450 case bitc::CST_CODE_INLINEASM: {
3451 if (Record.size() < 3)
3452 return error("Invalid inlineasm record");
3453 unsigned OpNum = 0;
3454 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3455 ++OpNum;
3456 if (!FnTy)
3457 return error("Invalid inlineasm record");
3458 std::string AsmStr, ConstrStr;
3459 bool HasSideEffects = Record[OpNum] & 1;
3460 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3461 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3462 bool CanThrow = (Record[OpNum] >> 3) & 1;
3463 ++OpNum;
3464 unsigned AsmStrSize = Record[OpNum];
3465 ++OpNum;
3466 if (OpNum + AsmStrSize >= Record.size())
3467 return error("Invalid inlineasm record");
3468 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3469 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3470 return error("Invalid inlineasm record");
3472 for (unsigned i = 0; i != AsmStrSize; ++i)
3473 AsmStr += (char)Record[OpNum + i];
3474 ++OpNum;
3475 for (unsigned i = 0; i != ConstStrSize; ++i)
3476 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3477 UpgradeInlineAsmString(&AsmStr);
3478 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3479 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3480 break;
3482 case bitc::CST_CODE_BLOCKADDRESS:{
3483 if (Record.size() < 3)
3484 return error("Invalid blockaddress record");
3485 unsigned FnTyID = Record[0];
3486 Type *FnTy = getTypeByID(FnTyID);
3487 if (!FnTy)
3488 return error("Invalid blockaddress record");
3489 V = BitcodeConstant::create(
3490 Alloc, CurTy,
3491 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3492 Record[1]);
3493 break;
3495 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3496 if (Record.size() < 2)
3497 return error("Invalid dso_local record");
3498 unsigned GVTyID = Record[0];
3499 Type *GVTy = getTypeByID(GVTyID);
3500 if (!GVTy)
3501 return error("Invalid dso_local record");
3502 V = BitcodeConstant::create(
3503 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3504 break;
3506 case bitc::CST_CODE_NO_CFI_VALUE: {
3507 if (Record.size() < 2)
3508 return error("Invalid no_cfi record");
3509 unsigned GVTyID = Record[0];
3510 Type *GVTy = getTypeByID(GVTyID);
3511 if (!GVTy)
3512 return error("Invalid no_cfi record");
3513 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3514 Record[1]);
3515 break;
3519 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3520 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3521 return Err;
3522 ++NextCstNo;
3526 Error BitcodeReader::parseUseLists() {
3527 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3528 return Err;
3530 // Read all the records.
3531 SmallVector<uint64_t, 64> Record;
3533 while (true) {
3534 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3535 if (!MaybeEntry)
3536 return MaybeEntry.takeError();
3537 BitstreamEntry Entry = MaybeEntry.get();
3539 switch (Entry.Kind) {
3540 case BitstreamEntry::SubBlock: // Handled for us already.
3541 case BitstreamEntry::Error:
3542 return error("Malformed block");
3543 case BitstreamEntry::EndBlock:
3544 return Error::success();
3545 case BitstreamEntry::Record:
3546 // The interesting case.
3547 break;
3550 // Read a use list record.
3551 Record.clear();
3552 bool IsBB = false;
3553 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3554 if (!MaybeRecord)
3555 return MaybeRecord.takeError();
3556 switch (MaybeRecord.get()) {
3557 default: // Default behavior: unknown type.
3558 break;
3559 case bitc::USELIST_CODE_BB:
3560 IsBB = true;
3561 [[fallthrough]];
3562 case bitc::USELIST_CODE_DEFAULT: {
3563 unsigned RecordLength = Record.size();
3564 if (RecordLength < 3)
3565 // Records should have at least an ID and two indexes.
3566 return error("Invalid record");
3567 unsigned ID = Record.pop_back_val();
3569 Value *V;
3570 if (IsBB) {
3571 assert(ID < FunctionBBs.size() && "Basic block not found");
3572 V = FunctionBBs[ID];
3573 } else
3574 V = ValueList[ID];
3575 unsigned NumUses = 0;
3576 SmallDenseMap<const Use *, unsigned, 16> Order;
3577 for (const Use &U : V->materialized_uses()) {
3578 if (++NumUses > Record.size())
3579 break;
3580 Order[&U] = Record[NumUses - 1];
3582 if (Order.size() != Record.size() || NumUses > Record.size())
3583 // Mismatches can happen if the functions are being materialized lazily
3584 // (out-of-order), or a value has been upgraded.
3585 break;
3587 V->sortUseList([&](const Use &L, const Use &R) {
3588 return Order.lookup(&L) < Order.lookup(&R);
3590 break;
3596 /// When we see the block for metadata, remember where it is and then skip it.
3597 /// This lets us lazily deserialize the metadata.
3598 Error BitcodeReader::rememberAndSkipMetadata() {
3599 // Save the current stream state.
3600 uint64_t CurBit = Stream.GetCurrentBitNo();
3601 DeferredMetadataInfo.push_back(CurBit);
3603 // Skip over the block for now.
3604 if (Error Err = Stream.SkipBlock())
3605 return Err;
3606 return Error::success();
3609 Error BitcodeReader::materializeMetadata() {
3610 for (uint64_t BitPos : DeferredMetadataInfo) {
3611 // Move the bit stream to the saved position.
3612 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3613 return JumpFailed;
3614 if (Error Err = MDLoader->parseModuleMetadata())
3615 return Err;
3618 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3619 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3620 // multiple times.
3621 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3622 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3623 NamedMDNode *LinkerOpts =
3624 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3625 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3626 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3630 DeferredMetadataInfo.clear();
3631 return Error::success();
3634 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3636 /// When we see the block for a function body, remember where it is and then
3637 /// skip it. This lets us lazily deserialize the functions.
3638 Error BitcodeReader::rememberAndSkipFunctionBody() {
3639 // Get the function we are talking about.
3640 if (FunctionsWithBodies.empty())
3641 return error("Insufficient function protos");
3643 Function *Fn = FunctionsWithBodies.back();
3644 FunctionsWithBodies.pop_back();
3646 // Save the current stream state.
3647 uint64_t CurBit = Stream.GetCurrentBitNo();
3648 assert(
3649 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3650 "Mismatch between VST and scanned function offsets");
3651 DeferredFunctionInfo[Fn] = CurBit;
3653 // Skip over the function block for now.
3654 if (Error Err = Stream.SkipBlock())
3655 return Err;
3656 return Error::success();
3659 Error BitcodeReader::globalCleanup() {
3660 // Patch the initializers for globals and aliases up.
3661 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3662 return Err;
3663 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3664 return error("Malformed global initializer set");
3666 // Look for intrinsic functions which need to be upgraded at some point
3667 // and functions that need to have their function attributes upgraded.
3668 for (Function &F : *TheModule) {
3669 MDLoader->upgradeDebugIntrinsics(F);
3670 Function *NewFn;
3671 if (UpgradeIntrinsicFunction(&F, NewFn))
3672 UpgradedIntrinsics[&F] = NewFn;
3673 // Look for functions that rely on old function attribute behavior.
3674 UpgradeFunctionAttributes(F);
3677 // Look for global variables which need to be renamed.
3678 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3679 for (GlobalVariable &GV : TheModule->globals())
3680 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3681 UpgradedVariables.emplace_back(&GV, Upgraded);
3682 for (auto &Pair : UpgradedVariables) {
3683 Pair.first->eraseFromParent();
3684 TheModule->insertGlobalVariable(Pair.second);
3687 // Force deallocation of memory for these vectors to favor the client that
3688 // want lazy deserialization.
3689 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3690 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3691 return Error::success();
3694 /// Support for lazy parsing of function bodies. This is required if we
3695 /// either have an old bitcode file without a VST forward declaration record,
3696 /// or if we have an anonymous function being materialized, since anonymous
3697 /// functions do not have a name and are therefore not in the VST.
3698 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3699 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3700 return JumpFailed;
3702 if (Stream.AtEndOfStream())
3703 return error("Could not find function in stream");
3705 if (!SeenFirstFunctionBody)
3706 return error("Trying to materialize functions before seeing function blocks");
3708 // An old bitcode file with the symbol table at the end would have
3709 // finished the parse greedily.
3710 assert(SeenValueSymbolTable);
3712 SmallVector<uint64_t, 64> Record;
3714 while (true) {
3715 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3716 if (!MaybeEntry)
3717 return MaybeEntry.takeError();
3718 llvm::BitstreamEntry Entry = MaybeEntry.get();
3720 switch (Entry.Kind) {
3721 default:
3722 return error("Expect SubBlock");
3723 case BitstreamEntry::SubBlock:
3724 switch (Entry.ID) {
3725 default:
3726 return error("Expect function block");
3727 case bitc::FUNCTION_BLOCK_ID:
3728 if (Error Err = rememberAndSkipFunctionBody())
3729 return Err;
3730 NextUnreadBit = Stream.GetCurrentBitNo();
3731 return Error::success();
3737 Error BitcodeReaderBase::readBlockInfo() {
3738 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3739 Stream.ReadBlockInfoBlock();
3740 if (!MaybeNewBlockInfo)
3741 return MaybeNewBlockInfo.takeError();
3742 std::optional<BitstreamBlockInfo> NewBlockInfo =
3743 std::move(MaybeNewBlockInfo.get());
3744 if (!NewBlockInfo)
3745 return error("Malformed block");
3746 BlockInfo = std::move(*NewBlockInfo);
3747 return Error::success();
3750 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3751 // v1: [selection_kind, name]
3752 // v2: [strtab_offset, strtab_size, selection_kind]
3753 StringRef Name;
3754 std::tie(Name, Record) = readNameFromStrtab(Record);
3756 if (Record.empty())
3757 return error("Invalid record");
3758 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3759 std::string OldFormatName;
3760 if (!UseStrtab) {
3761 if (Record.size() < 2)
3762 return error("Invalid record");
3763 unsigned ComdatNameSize = Record[1];
3764 if (ComdatNameSize > Record.size() - 2)
3765 return error("Comdat name size too large");
3766 OldFormatName.reserve(ComdatNameSize);
3767 for (unsigned i = 0; i != ComdatNameSize; ++i)
3768 OldFormatName += (char)Record[2 + i];
3769 Name = OldFormatName;
3771 Comdat *C = TheModule->getOrInsertComdat(Name);
3772 C->setSelectionKind(SK);
3773 ComdatList.push_back(C);
3774 return Error::success();
3777 static void inferDSOLocal(GlobalValue *GV) {
3778 // infer dso_local from linkage and visibility if it is not encoded.
3779 if (GV->hasLocalLinkage() ||
3780 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3781 GV->setDSOLocal(true);
3784 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3785 GlobalValue::SanitizerMetadata Meta;
3786 if (V & (1 << 0))
3787 Meta.NoAddress = true;
3788 if (V & (1 << 1))
3789 Meta.NoHWAddress = true;
3790 if (V & (1 << 2))
3791 Meta.Memtag = true;
3792 if (V & (1 << 3))
3793 Meta.IsDynInit = true;
3794 return Meta;
3797 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3798 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3799 // visibility, threadlocal, unnamed_addr, externally_initialized,
3800 // dllstorageclass, comdat, attributes, preemption specifier,
3801 // partition strtab offset, partition strtab size] (name in VST)
3802 // v2: [strtab_offset, strtab_size, v1]
3803 StringRef Name;
3804 std::tie(Name, Record) = readNameFromStrtab(Record);
3806 if (Record.size() < 6)
3807 return error("Invalid record");
3808 unsigned TyID = Record[0];
3809 Type *Ty = getTypeByID(TyID);
3810 if (!Ty)
3811 return error("Invalid record");
3812 bool isConstant = Record[1] & 1;
3813 bool explicitType = Record[1] & 2;
3814 unsigned AddressSpace;
3815 if (explicitType) {
3816 AddressSpace = Record[1] >> 2;
3817 } else {
3818 if (!Ty->isPointerTy())
3819 return error("Invalid type for value");
3820 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3821 TyID = getContainedTypeID(TyID);
3822 Ty = getTypeByID(TyID);
3823 if (!Ty)
3824 return error("Missing element type for old-style global");
3827 uint64_t RawLinkage = Record[3];
3828 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3829 MaybeAlign Alignment;
3830 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3831 return Err;
3832 std::string Section;
3833 if (Record[5]) {
3834 if (Record[5] - 1 >= SectionTable.size())
3835 return error("Invalid ID");
3836 Section = SectionTable[Record[5] - 1];
3838 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3839 // Local linkage must have default visibility.
3840 // auto-upgrade `hidden` and `protected` for old bitcode.
3841 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3842 Visibility = getDecodedVisibility(Record[6]);
3844 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3845 if (Record.size() > 7)
3846 TLM = getDecodedThreadLocalMode(Record[7]);
3848 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3849 if (Record.size() > 8)
3850 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3852 bool ExternallyInitialized = false;
3853 if (Record.size() > 9)
3854 ExternallyInitialized = Record[9];
3856 GlobalVariable *NewGV =
3857 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3858 nullptr, TLM, AddressSpace, ExternallyInitialized);
3859 if (Alignment)
3860 NewGV->setAlignment(*Alignment);
3861 if (!Section.empty())
3862 NewGV->setSection(Section);
3863 NewGV->setVisibility(Visibility);
3864 NewGV->setUnnamedAddr(UnnamedAddr);
3866 if (Record.size() > 10) {
3867 // A GlobalValue with local linkage cannot have a DLL storage class.
3868 if (!NewGV->hasLocalLinkage()) {
3869 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3871 } else {
3872 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3875 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3877 // Remember which value to use for the global initializer.
3878 if (unsigned InitID = Record[2])
3879 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3881 if (Record.size() > 11) {
3882 if (unsigned ComdatID = Record[11]) {
3883 if (ComdatID > ComdatList.size())
3884 return error("Invalid global variable comdat ID");
3885 NewGV->setComdat(ComdatList[ComdatID - 1]);
3887 } else if (hasImplicitComdat(RawLinkage)) {
3888 ImplicitComdatObjects.insert(NewGV);
3891 if (Record.size() > 12) {
3892 auto AS = getAttributes(Record[12]).getFnAttrs();
3893 NewGV->setAttributes(AS);
3896 if (Record.size() > 13) {
3897 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3899 inferDSOLocal(NewGV);
3901 // Check whether we have enough values to read a partition name.
3902 if (Record.size() > 15)
3903 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3905 if (Record.size() > 16 && Record[16]) {
3906 llvm::GlobalValue::SanitizerMetadata Meta =
3907 deserializeSanitizerMetadata(Record[16]);
3908 NewGV->setSanitizerMetadata(Meta);
3911 return Error::success();
3914 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3915 if (ValueTypeCallback) {
3916 (*ValueTypeCallback)(
3917 F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3918 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3922 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3923 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3924 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3925 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3926 // v2: [strtab_offset, strtab_size, v1]
3927 StringRef Name;
3928 std::tie(Name, Record) = readNameFromStrtab(Record);
3930 if (Record.size() < 8)
3931 return error("Invalid record");
3932 unsigned FTyID = Record[0];
3933 Type *FTy = getTypeByID(FTyID);
3934 if (!FTy)
3935 return error("Invalid record");
3936 if (isa<PointerType>(FTy)) {
3937 FTyID = getContainedTypeID(FTyID, 0);
3938 FTy = getTypeByID(FTyID);
3939 if (!FTy)
3940 return error("Missing element type for old-style function");
3943 if (!isa<FunctionType>(FTy))
3944 return error("Invalid type for value");
3945 auto CC = static_cast<CallingConv::ID>(Record[1]);
3946 if (CC & ~CallingConv::MaxID)
3947 return error("Invalid calling convention ID");
3949 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3950 if (Record.size() > 16)
3951 AddrSpace = Record[16];
3953 Function *Func =
3954 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3955 AddrSpace, Name, TheModule);
3957 assert(Func->getFunctionType() == FTy &&
3958 "Incorrect fully specified type provided for function");
3959 FunctionTypeIDs[Func] = FTyID;
3961 Func->setCallingConv(CC);
3962 bool isProto = Record[2];
3963 uint64_t RawLinkage = Record[3];
3964 Func->setLinkage(getDecodedLinkage(RawLinkage));
3965 Func->setAttributes(getAttributes(Record[4]));
3966 callValueTypeCallback(Func, FTyID);
3968 // Upgrade any old-style byval or sret without a type by propagating the
3969 // argument's pointee type. There should be no opaque pointers where the byval
3970 // type is implicit.
3971 for (unsigned i = 0; i != Func->arg_size(); ++i) {
3972 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3973 Attribute::InAlloca}) {
3974 if (!Func->hasParamAttribute(i, Kind))
3975 continue;
3977 if (Func->getParamAttribute(i, Kind).getValueAsType())
3978 continue;
3980 Func->removeParamAttr(i, Kind);
3982 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3983 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3984 if (!PtrEltTy)
3985 return error("Missing param element type for attribute upgrade");
3987 Attribute NewAttr;
3988 switch (Kind) {
3989 case Attribute::ByVal:
3990 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3991 break;
3992 case Attribute::StructRet:
3993 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3994 break;
3995 case Attribute::InAlloca:
3996 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3997 break;
3998 default:
3999 llvm_unreachable("not an upgraded type attribute");
4002 Func->addParamAttr(i, NewAttr);
4006 if (Func->getCallingConv() == CallingConv::X86_INTR &&
4007 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4008 unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4009 Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4010 if (!ByValTy)
4011 return error("Missing param element type for x86_intrcc upgrade");
4012 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4013 Func->addParamAttr(0, NewAttr);
4016 MaybeAlign Alignment;
4017 if (Error Err = parseAlignmentValue(Record[5], Alignment))
4018 return Err;
4019 if (Alignment)
4020 Func->setAlignment(*Alignment);
4021 if (Record[6]) {
4022 if (Record[6] - 1 >= SectionTable.size())
4023 return error("Invalid ID");
4024 Func->setSection(SectionTable[Record[6] - 1]);
4026 // Local linkage must have default visibility.
4027 // auto-upgrade `hidden` and `protected` for old bitcode.
4028 if (!Func->hasLocalLinkage())
4029 Func->setVisibility(getDecodedVisibility(Record[7]));
4030 if (Record.size() > 8 && Record[8]) {
4031 if (Record[8] - 1 >= GCTable.size())
4032 return error("Invalid ID");
4033 Func->setGC(GCTable[Record[8] - 1]);
4035 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4036 if (Record.size() > 9)
4037 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4038 Func->setUnnamedAddr(UnnamedAddr);
4040 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4041 if (Record.size() > 10)
4042 OperandInfo.Prologue = Record[10];
4044 if (Record.size() > 11) {
4045 // A GlobalValue with local linkage cannot have a DLL storage class.
4046 if (!Func->hasLocalLinkage()) {
4047 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4049 } else {
4050 upgradeDLLImportExportLinkage(Func, RawLinkage);
4053 if (Record.size() > 12) {
4054 if (unsigned ComdatID = Record[12]) {
4055 if (ComdatID > ComdatList.size())
4056 return error("Invalid function comdat ID");
4057 Func->setComdat(ComdatList[ComdatID - 1]);
4059 } else if (hasImplicitComdat(RawLinkage)) {
4060 ImplicitComdatObjects.insert(Func);
4063 if (Record.size() > 13)
4064 OperandInfo.Prefix = Record[13];
4066 if (Record.size() > 14)
4067 OperandInfo.PersonalityFn = Record[14];
4069 if (Record.size() > 15) {
4070 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4072 inferDSOLocal(Func);
4074 // Record[16] is the address space number.
4076 // Check whether we have enough values to read a partition name. Also make
4077 // sure Strtab has enough values.
4078 if (Record.size() > 18 && Strtab.data() &&
4079 Record[17] + Record[18] <= Strtab.size()) {
4080 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4083 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4085 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4086 FunctionOperands.push_back(OperandInfo);
4088 // If this is a function with a body, remember the prototype we are
4089 // creating now, so that we can match up the body with them later.
4090 if (!isProto) {
4091 Func->setIsMaterializable(true);
4092 FunctionsWithBodies.push_back(Func);
4093 DeferredFunctionInfo[Func] = 0;
4095 return Error::success();
4098 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4099 unsigned BitCode, ArrayRef<uint64_t> Record) {
4100 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4101 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4102 // dllstorageclass, threadlocal, unnamed_addr,
4103 // preemption specifier] (name in VST)
4104 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4105 // visibility, dllstorageclass, threadlocal, unnamed_addr,
4106 // preemption specifier] (name in VST)
4107 // v2: [strtab_offset, strtab_size, v1]
4108 StringRef Name;
4109 std::tie(Name, Record) = readNameFromStrtab(Record);
4111 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4112 if (Record.size() < (3 + (unsigned)NewRecord))
4113 return error("Invalid record");
4114 unsigned OpNum = 0;
4115 unsigned TypeID = Record[OpNum++];
4116 Type *Ty = getTypeByID(TypeID);
4117 if (!Ty)
4118 return error("Invalid record");
4120 unsigned AddrSpace;
4121 if (!NewRecord) {
4122 auto *PTy = dyn_cast<PointerType>(Ty);
4123 if (!PTy)
4124 return error("Invalid type for value");
4125 AddrSpace = PTy->getAddressSpace();
4126 TypeID = getContainedTypeID(TypeID);
4127 Ty = getTypeByID(TypeID);
4128 if (!Ty)
4129 return error("Missing element type for old-style indirect symbol");
4130 } else {
4131 AddrSpace = Record[OpNum++];
4134 auto Val = Record[OpNum++];
4135 auto Linkage = Record[OpNum++];
4136 GlobalValue *NewGA;
4137 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4138 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4139 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4140 TheModule);
4141 else
4142 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4143 nullptr, TheModule);
4145 // Local linkage must have default visibility.
4146 // auto-upgrade `hidden` and `protected` for old bitcode.
4147 if (OpNum != Record.size()) {
4148 auto VisInd = OpNum++;
4149 if (!NewGA->hasLocalLinkage())
4150 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4152 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4153 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4154 if (OpNum != Record.size()) {
4155 auto S = Record[OpNum++];
4156 // A GlobalValue with local linkage cannot have a DLL storage class.
4157 if (!NewGA->hasLocalLinkage())
4158 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4160 else
4161 upgradeDLLImportExportLinkage(NewGA, Linkage);
4162 if (OpNum != Record.size())
4163 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4164 if (OpNum != Record.size())
4165 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4167 if (OpNum != Record.size())
4168 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4169 inferDSOLocal(NewGA);
4171 // Check whether we have enough values to read a partition name.
4172 if (OpNum + 1 < Record.size()) {
4173 NewGA->setPartition(
4174 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4175 OpNum += 2;
4178 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4179 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4180 return Error::success();
4183 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4184 bool ShouldLazyLoadMetadata,
4185 ParserCallbacks Callbacks) {
4186 this->ValueTypeCallback = std::move(Callbacks.ValueType);
4187 if (ResumeBit) {
4188 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4189 return JumpFailed;
4190 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4191 return Err;
4193 SmallVector<uint64_t, 64> Record;
4195 // Parts of bitcode parsing depend on the datalayout. Make sure we
4196 // finalize the datalayout before we run any of that code.
4197 bool ResolvedDataLayout = false;
4198 // In order to support importing modules with illegal data layout strings,
4199 // delay parsing the data layout string until after upgrades and overrides
4200 // have been applied, allowing to fix illegal data layout strings.
4201 // Initialize to the current module's layout string in case none is specified.
4202 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4204 auto ResolveDataLayout = [&]() -> Error {
4205 if (ResolvedDataLayout)
4206 return Error::success();
4208 // Datalayout and triple can't be parsed after this point.
4209 ResolvedDataLayout = true;
4211 // Auto-upgrade the layout string
4212 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4213 TentativeDataLayoutStr, TheModule->getTargetTriple());
4215 // Apply override
4216 if (Callbacks.DataLayout) {
4217 if (auto LayoutOverride = (*Callbacks.DataLayout)(
4218 TheModule->getTargetTriple(), TentativeDataLayoutStr))
4219 TentativeDataLayoutStr = *LayoutOverride;
4222 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4223 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4224 if (!MaybeDL)
4225 return MaybeDL.takeError();
4227 TheModule->setDataLayout(MaybeDL.get());
4228 return Error::success();
4231 // Read all the records for this module.
4232 while (true) {
4233 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4234 if (!MaybeEntry)
4235 return MaybeEntry.takeError();
4236 llvm::BitstreamEntry Entry = MaybeEntry.get();
4238 switch (Entry.Kind) {
4239 case BitstreamEntry::Error:
4240 return error("Malformed block");
4241 case BitstreamEntry::EndBlock:
4242 if (Error Err = ResolveDataLayout())
4243 return Err;
4244 return globalCleanup();
4246 case BitstreamEntry::SubBlock:
4247 switch (Entry.ID) {
4248 default: // Skip unknown content.
4249 if (Error Err = Stream.SkipBlock())
4250 return Err;
4251 break;
4252 case bitc::BLOCKINFO_BLOCK_ID:
4253 if (Error Err = readBlockInfo())
4254 return Err;
4255 break;
4256 case bitc::PARAMATTR_BLOCK_ID:
4257 if (Error Err = parseAttributeBlock())
4258 return Err;
4259 break;
4260 case bitc::PARAMATTR_GROUP_BLOCK_ID:
4261 if (Error Err = parseAttributeGroupBlock())
4262 return Err;
4263 break;
4264 case bitc::TYPE_BLOCK_ID_NEW:
4265 if (Error Err = parseTypeTable())
4266 return Err;
4267 break;
4268 case bitc::VALUE_SYMTAB_BLOCK_ID:
4269 if (!SeenValueSymbolTable) {
4270 // Either this is an old form VST without function index and an
4271 // associated VST forward declaration record (which would have caused
4272 // the VST to be jumped to and parsed before it was encountered
4273 // normally in the stream), or there were no function blocks to
4274 // trigger an earlier parsing of the VST.
4275 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4276 if (Error Err = parseValueSymbolTable())
4277 return Err;
4278 SeenValueSymbolTable = true;
4279 } else {
4280 // We must have had a VST forward declaration record, which caused
4281 // the parser to jump to and parse the VST earlier.
4282 assert(VSTOffset > 0);
4283 if (Error Err = Stream.SkipBlock())
4284 return Err;
4286 break;
4287 case bitc::CONSTANTS_BLOCK_ID:
4288 if (Error Err = parseConstants())
4289 return Err;
4290 if (Error Err = resolveGlobalAndIndirectSymbolInits())
4291 return Err;
4292 break;
4293 case bitc::METADATA_BLOCK_ID:
4294 if (ShouldLazyLoadMetadata) {
4295 if (Error Err = rememberAndSkipMetadata())
4296 return Err;
4297 break;
4299 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4300 if (Error Err = MDLoader->parseModuleMetadata())
4301 return Err;
4302 break;
4303 case bitc::METADATA_KIND_BLOCK_ID:
4304 if (Error Err = MDLoader->parseMetadataKinds())
4305 return Err;
4306 break;
4307 case bitc::FUNCTION_BLOCK_ID:
4308 if (Error Err = ResolveDataLayout())
4309 return Err;
4311 // If this is the first function body we've seen, reverse the
4312 // FunctionsWithBodies list.
4313 if (!SeenFirstFunctionBody) {
4314 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4315 if (Error Err = globalCleanup())
4316 return Err;
4317 SeenFirstFunctionBody = true;
4320 if (VSTOffset > 0) {
4321 // If we have a VST forward declaration record, make sure we
4322 // parse the VST now if we haven't already. It is needed to
4323 // set up the DeferredFunctionInfo vector for lazy reading.
4324 if (!SeenValueSymbolTable) {
4325 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4326 return Err;
4327 SeenValueSymbolTable = true;
4328 // Fall through so that we record the NextUnreadBit below.
4329 // This is necessary in case we have an anonymous function that
4330 // is later materialized. Since it will not have a VST entry we
4331 // need to fall back to the lazy parse to find its offset.
4332 } else {
4333 // If we have a VST forward declaration record, but have already
4334 // parsed the VST (just above, when the first function body was
4335 // encountered here), then we are resuming the parse after
4336 // materializing functions. The ResumeBit points to the
4337 // start of the last function block recorded in the
4338 // DeferredFunctionInfo map. Skip it.
4339 if (Error Err = Stream.SkipBlock())
4340 return Err;
4341 continue;
4345 // Support older bitcode files that did not have the function
4346 // index in the VST, nor a VST forward declaration record, as
4347 // well as anonymous functions that do not have VST entries.
4348 // Build the DeferredFunctionInfo vector on the fly.
4349 if (Error Err = rememberAndSkipFunctionBody())
4350 return Err;
4352 // Suspend parsing when we reach the function bodies. Subsequent
4353 // materialization calls will resume it when necessary. If the bitcode
4354 // file is old, the symbol table will be at the end instead and will not
4355 // have been seen yet. In this case, just finish the parse now.
4356 if (SeenValueSymbolTable) {
4357 NextUnreadBit = Stream.GetCurrentBitNo();
4358 // After the VST has been parsed, we need to make sure intrinsic name
4359 // are auto-upgraded.
4360 return globalCleanup();
4362 break;
4363 case bitc::USELIST_BLOCK_ID:
4364 if (Error Err = parseUseLists())
4365 return Err;
4366 break;
4367 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4368 if (Error Err = parseOperandBundleTags())
4369 return Err;
4370 break;
4371 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4372 if (Error Err = parseSyncScopeNames())
4373 return Err;
4374 break;
4376 continue;
4378 case BitstreamEntry::Record:
4379 // The interesting case.
4380 break;
4383 // Read a record.
4384 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4385 if (!MaybeBitCode)
4386 return MaybeBitCode.takeError();
4387 switch (unsigned BitCode = MaybeBitCode.get()) {
4388 default: break; // Default behavior, ignore unknown content.
4389 case bitc::MODULE_CODE_VERSION: {
4390 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4391 if (!VersionOrErr)
4392 return VersionOrErr.takeError();
4393 UseRelativeIDs = *VersionOrErr >= 1;
4394 break;
4396 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
4397 if (ResolvedDataLayout)
4398 return error("target triple too late in module");
4399 std::string S;
4400 if (convertToString(Record, 0, S))
4401 return error("Invalid record");
4402 TheModule->setTargetTriple(S);
4403 break;
4405 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
4406 if (ResolvedDataLayout)
4407 return error("datalayout too late in module");
4408 if (convertToString(Record, 0, TentativeDataLayoutStr))
4409 return error("Invalid record");
4410 break;
4412 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
4413 std::string S;
4414 if (convertToString(Record, 0, S))
4415 return error("Invalid record");
4416 TheModule->setModuleInlineAsm(S);
4417 break;
4419 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
4420 // Deprecated, but still needed to read old bitcode files.
4421 std::string S;
4422 if (convertToString(Record, 0, S))
4423 return error("Invalid record");
4424 // Ignore value.
4425 break;
4427 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4428 std::string S;
4429 if (convertToString(Record, 0, S))
4430 return error("Invalid record");
4431 SectionTable.push_back(S);
4432 break;
4434 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
4435 std::string S;
4436 if (convertToString(Record, 0, S))
4437 return error("Invalid record");
4438 GCTable.push_back(S);
4439 break;
4441 case bitc::MODULE_CODE_COMDAT:
4442 if (Error Err = parseComdatRecord(Record))
4443 return Err;
4444 break;
4445 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4446 // written by ThinLinkBitcodeWriter. See
4447 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4448 // record
4449 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4450 case bitc::MODULE_CODE_GLOBALVAR:
4451 if (Error Err = parseGlobalVarRecord(Record))
4452 return Err;
4453 break;
4454 case bitc::MODULE_CODE_FUNCTION:
4455 if (Error Err = ResolveDataLayout())
4456 return Err;
4457 if (Error Err = parseFunctionRecord(Record))
4458 return Err;
4459 break;
4460 case bitc::MODULE_CODE_IFUNC:
4461 case bitc::MODULE_CODE_ALIAS:
4462 case bitc::MODULE_CODE_ALIAS_OLD:
4463 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4464 return Err;
4465 break;
4466 /// MODULE_CODE_VSTOFFSET: [offset]
4467 case bitc::MODULE_CODE_VSTOFFSET:
4468 if (Record.empty())
4469 return error("Invalid record");
4470 // Note that we subtract 1 here because the offset is relative to one word
4471 // before the start of the identification or module block, which was
4472 // historically always the start of the regular bitcode header.
4473 VSTOffset = Record[0] - 1;
4474 break;
4475 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4476 case bitc::MODULE_CODE_SOURCE_FILENAME:
4477 SmallString<128> ValueName;
4478 if (convertToString(Record, 0, ValueName))
4479 return error("Invalid record");
4480 TheModule->setSourceFileName(ValueName);
4481 break;
4483 Record.clear();
4485 this->ValueTypeCallback = std::nullopt;
4486 return Error::success();
4489 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4490 bool IsImporting,
4491 ParserCallbacks Callbacks) {
4492 TheModule = M;
4493 MetadataLoaderCallbacks MDCallbacks;
4494 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4495 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4496 return getContainedTypeID(I, J);
4498 MDCallbacks.MDType = Callbacks.MDType;
4499 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4500 return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4503 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4504 if (!isa<PointerType>(PtrType))
4505 return error("Load/Store operand is not a pointer type");
4506 if (!PointerType::isLoadableOrStorableType(ValType))
4507 return error("Cannot load/store from pointer");
4508 return Error::success();
4511 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4512 ArrayRef<unsigned> ArgTyIDs) {
4513 AttributeList Attrs = CB->getAttributes();
4514 for (unsigned i = 0; i != CB->arg_size(); ++i) {
4515 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4516 Attribute::InAlloca}) {
4517 if (!Attrs.hasParamAttr(i, Kind) ||
4518 Attrs.getParamAttr(i, Kind).getValueAsType())
4519 continue;
4521 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4522 if (!PtrEltTy)
4523 return error("Missing element type for typed attribute upgrade");
4525 Attribute NewAttr;
4526 switch (Kind) {
4527 case Attribute::ByVal:
4528 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4529 break;
4530 case Attribute::StructRet:
4531 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4532 break;
4533 case Attribute::InAlloca:
4534 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4535 break;
4536 default:
4537 llvm_unreachable("not an upgraded type attribute");
4540 Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4544 if (CB->isInlineAsm()) {
4545 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4546 unsigned ArgNo = 0;
4547 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4548 if (!CI.hasArg())
4549 continue;
4551 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4552 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4553 if (!ElemTy)
4554 return error("Missing element type for inline asm upgrade");
4555 Attrs = Attrs.addParamAttribute(
4556 Context, ArgNo,
4557 Attribute::get(Context, Attribute::ElementType, ElemTy));
4560 ArgNo++;
4564 switch (CB->getIntrinsicID()) {
4565 case Intrinsic::preserve_array_access_index:
4566 case Intrinsic::preserve_struct_access_index:
4567 case Intrinsic::aarch64_ldaxr:
4568 case Intrinsic::aarch64_ldxr:
4569 case Intrinsic::aarch64_stlxr:
4570 case Intrinsic::aarch64_stxr:
4571 case Intrinsic::arm_ldaex:
4572 case Intrinsic::arm_ldrex:
4573 case Intrinsic::arm_stlex:
4574 case Intrinsic::arm_strex: {
4575 unsigned ArgNo;
4576 switch (CB->getIntrinsicID()) {
4577 case Intrinsic::aarch64_stlxr:
4578 case Intrinsic::aarch64_stxr:
4579 case Intrinsic::arm_stlex:
4580 case Intrinsic::arm_strex:
4581 ArgNo = 1;
4582 break;
4583 default:
4584 ArgNo = 0;
4585 break;
4587 if (!Attrs.getParamElementType(ArgNo)) {
4588 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4589 if (!ElTy)
4590 return error("Missing element type for elementtype upgrade");
4591 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4592 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4594 break;
4596 default:
4597 break;
4600 CB->setAttributes(Attrs);
4601 return Error::success();
4604 /// Lazily parse the specified function body block.
4605 Error BitcodeReader::parseFunctionBody(Function *F) {
4606 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4607 return Err;
4609 // Unexpected unresolved metadata when parsing function.
4610 if (MDLoader->hasFwdRefs())
4611 return error("Invalid function metadata: incoming forward references");
4613 InstructionList.clear();
4614 unsigned ModuleValueListSize = ValueList.size();
4615 unsigned ModuleMDLoaderSize = MDLoader->size();
4617 // Add all the function arguments to the value table.
4618 unsigned ArgNo = 0;
4619 unsigned FTyID = FunctionTypeIDs[F];
4620 for (Argument &I : F->args()) {
4621 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4622 assert(I.getType() == getTypeByID(ArgTyID) &&
4623 "Incorrect fully specified type for Function Argument");
4624 ValueList.push_back(&I, ArgTyID);
4625 ++ArgNo;
4627 unsigned NextValueNo = ValueList.size();
4628 BasicBlock *CurBB = nullptr;
4629 unsigned CurBBNo = 0;
4630 // Block into which constant expressions from phi nodes are materialized.
4631 BasicBlock *PhiConstExprBB = nullptr;
4632 // Edge blocks for phi nodes into which constant expressions have been
4633 // expanded.
4634 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4635 ConstExprEdgeBBs;
4637 DebugLoc LastLoc;
4638 auto getLastInstruction = [&]() -> Instruction * {
4639 if (CurBB && !CurBB->empty())
4640 return &CurBB->back();
4641 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4642 !FunctionBBs[CurBBNo - 1]->empty())
4643 return &FunctionBBs[CurBBNo - 1]->back();
4644 return nullptr;
4647 std::vector<OperandBundleDef> OperandBundles;
4649 // Read all the records.
4650 SmallVector<uint64_t, 64> Record;
4652 while (true) {
4653 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4654 if (!MaybeEntry)
4655 return MaybeEntry.takeError();
4656 llvm::BitstreamEntry Entry = MaybeEntry.get();
4658 switch (Entry.Kind) {
4659 case BitstreamEntry::Error:
4660 return error("Malformed block");
4661 case BitstreamEntry::EndBlock:
4662 goto OutOfRecordLoop;
4664 case BitstreamEntry::SubBlock:
4665 switch (Entry.ID) {
4666 default: // Skip unknown content.
4667 if (Error Err = Stream.SkipBlock())
4668 return Err;
4669 break;
4670 case bitc::CONSTANTS_BLOCK_ID:
4671 if (Error Err = parseConstants())
4672 return Err;
4673 NextValueNo = ValueList.size();
4674 break;
4675 case bitc::VALUE_SYMTAB_BLOCK_ID:
4676 if (Error Err = parseValueSymbolTable())
4677 return Err;
4678 break;
4679 case bitc::METADATA_ATTACHMENT_ID:
4680 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4681 return Err;
4682 break;
4683 case bitc::METADATA_BLOCK_ID:
4684 assert(DeferredMetadataInfo.empty() &&
4685 "Must read all module-level metadata before function-level");
4686 if (Error Err = MDLoader->parseFunctionMetadata())
4687 return Err;
4688 break;
4689 case bitc::USELIST_BLOCK_ID:
4690 if (Error Err = parseUseLists())
4691 return Err;
4692 break;
4694 continue;
4696 case BitstreamEntry::Record:
4697 // The interesting case.
4698 break;
4701 // Read a record.
4702 Record.clear();
4703 Instruction *I = nullptr;
4704 unsigned ResTypeID = InvalidTypeID;
4705 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4706 if (!MaybeBitCode)
4707 return MaybeBitCode.takeError();
4708 switch (unsigned BitCode = MaybeBitCode.get()) {
4709 default: // Default behavior: reject
4710 return error("Invalid value");
4711 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4712 if (Record.empty() || Record[0] == 0)
4713 return error("Invalid record");
4714 // Create all the basic blocks for the function.
4715 FunctionBBs.resize(Record[0]);
4717 // See if anything took the address of blocks in this function.
4718 auto BBFRI = BasicBlockFwdRefs.find(F);
4719 if (BBFRI == BasicBlockFwdRefs.end()) {
4720 for (BasicBlock *&BB : FunctionBBs)
4721 BB = BasicBlock::Create(Context, "", F);
4722 } else {
4723 auto &BBRefs = BBFRI->second;
4724 // Check for invalid basic block references.
4725 if (BBRefs.size() > FunctionBBs.size())
4726 return error("Invalid ID");
4727 assert(!BBRefs.empty() && "Unexpected empty array");
4728 assert(!BBRefs.front() && "Invalid reference to entry block");
4729 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4730 ++I)
4731 if (I < RE && BBRefs[I]) {
4732 BBRefs[I]->insertInto(F);
4733 FunctionBBs[I] = BBRefs[I];
4734 } else {
4735 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4738 // Erase from the table.
4739 BasicBlockFwdRefs.erase(BBFRI);
4742 CurBB = FunctionBBs[0];
4743 continue;
4746 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4747 // The record should not be emitted if it's an empty list.
4748 if (Record.empty())
4749 return error("Invalid record");
4750 // When we have the RARE case of a BlockAddress Constant that is not
4751 // scoped to the Function it refers to, we need to conservatively
4752 // materialize the referred to Function, regardless of whether or not
4753 // that Function will ultimately be linked, otherwise users of
4754 // BitcodeReader might start splicing out Function bodies such that we
4755 // might no longer be able to materialize the BlockAddress since the
4756 // BasicBlock (and entire body of the Function) the BlockAddress refers
4757 // to may have been moved. In the case that the user of BitcodeReader
4758 // decides ultimately not to link the Function body, materializing here
4759 // could be considered wasteful, but it's better than a deserialization
4760 // failure as described. This keeps BitcodeReader unaware of complex
4761 // linkage policy decisions such as those use by LTO, leaving those
4762 // decisions "one layer up."
4763 for (uint64_t ValID : Record)
4764 if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4765 BackwardRefFunctions.push_back(F);
4766 else
4767 return error("Invalid record");
4769 continue;
4771 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4772 // This record indicates that the last instruction is at the same
4773 // location as the previous instruction with a location.
4774 I = getLastInstruction();
4776 if (!I)
4777 return error("Invalid record");
4778 I->setDebugLoc(LastLoc);
4779 I = nullptr;
4780 continue;
4782 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4783 I = getLastInstruction();
4784 if (!I || Record.size() < 4)
4785 return error("Invalid record");
4787 unsigned Line = Record[0], Col = Record[1];
4788 unsigned ScopeID = Record[2], IAID = Record[3];
4789 bool isImplicitCode = Record.size() == 5 && Record[4];
4791 MDNode *Scope = nullptr, *IA = nullptr;
4792 if (ScopeID) {
4793 Scope = dyn_cast_or_null<MDNode>(
4794 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4795 if (!Scope)
4796 return error("Invalid record");
4798 if (IAID) {
4799 IA = dyn_cast_or_null<MDNode>(
4800 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4801 if (!IA)
4802 return error("Invalid record");
4804 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4805 isImplicitCode);
4806 I->setDebugLoc(LastLoc);
4807 I = nullptr;
4808 continue;
4810 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4811 unsigned OpNum = 0;
4812 Value *LHS;
4813 unsigned TypeID;
4814 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4815 OpNum+1 > Record.size())
4816 return error("Invalid record");
4818 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4819 if (Opc == -1)
4820 return error("Invalid record");
4821 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4822 ResTypeID = TypeID;
4823 InstructionList.push_back(I);
4824 if (OpNum < Record.size()) {
4825 if (isa<FPMathOperator>(I)) {
4826 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4827 if (FMF.any())
4828 I->setFastMathFlags(FMF);
4831 break;
4833 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4834 unsigned OpNum = 0;
4835 Value *LHS, *RHS;
4836 unsigned TypeID;
4837 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4838 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4839 CurBB) ||
4840 OpNum+1 > Record.size())
4841 return error("Invalid record");
4843 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4844 if (Opc == -1)
4845 return error("Invalid record");
4846 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4847 ResTypeID = TypeID;
4848 InstructionList.push_back(I);
4849 if (OpNum < Record.size()) {
4850 if (Opc == Instruction::Add ||
4851 Opc == Instruction::Sub ||
4852 Opc == Instruction::Mul ||
4853 Opc == Instruction::Shl) {
4854 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4855 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4856 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4857 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4858 } else if (Opc == Instruction::SDiv ||
4859 Opc == Instruction::UDiv ||
4860 Opc == Instruction::LShr ||
4861 Opc == Instruction::AShr) {
4862 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4863 cast<BinaryOperator>(I)->setIsExact(true);
4864 } else if (isa<FPMathOperator>(I)) {
4865 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4866 if (FMF.any())
4867 I->setFastMathFlags(FMF);
4871 break;
4873 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4874 unsigned OpNum = 0;
4875 Value *Op;
4876 unsigned OpTypeID;
4877 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4878 OpNum+2 != Record.size())
4879 return error("Invalid record");
4881 ResTypeID = Record[OpNum];
4882 Type *ResTy = getTypeByID(ResTypeID);
4883 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4884 if (Opc == -1 || !ResTy)
4885 return error("Invalid record");
4886 Instruction *Temp = nullptr;
4887 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4888 if (Temp) {
4889 InstructionList.push_back(Temp);
4890 assert(CurBB && "No current BB?");
4891 Temp->insertInto(CurBB, CurBB->end());
4893 } else {
4894 auto CastOp = (Instruction::CastOps)Opc;
4895 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4896 return error("Invalid cast");
4897 I = CastInst::Create(CastOp, Op, ResTy);
4899 InstructionList.push_back(I);
4900 break;
4902 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4903 case bitc::FUNC_CODE_INST_GEP_OLD:
4904 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4905 unsigned OpNum = 0;
4907 unsigned TyID;
4908 Type *Ty;
4909 bool InBounds;
4911 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4912 InBounds = Record[OpNum++];
4913 TyID = Record[OpNum++];
4914 Ty = getTypeByID(TyID);
4915 } else {
4916 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4917 TyID = InvalidTypeID;
4918 Ty = nullptr;
4921 Value *BasePtr;
4922 unsigned BasePtrTypeID;
4923 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4924 CurBB))
4925 return error("Invalid record");
4927 if (!Ty) {
4928 TyID = getContainedTypeID(BasePtrTypeID);
4929 if (BasePtr->getType()->isVectorTy())
4930 TyID = getContainedTypeID(TyID);
4931 Ty = getTypeByID(TyID);
4934 SmallVector<Value*, 16> GEPIdx;
4935 while (OpNum != Record.size()) {
4936 Value *Op;
4937 unsigned OpTypeID;
4938 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4939 return error("Invalid record");
4940 GEPIdx.push_back(Op);
4943 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4945 ResTypeID = TyID;
4946 if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4947 auto GTI = std::next(gep_type_begin(I));
4948 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4949 unsigned SubType = 0;
4950 if (GTI.isStruct()) {
4951 ConstantInt *IdxC =
4952 Idx->getType()->isVectorTy()
4953 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4954 : cast<ConstantInt>(Idx);
4955 SubType = IdxC->getZExtValue();
4957 ResTypeID = getContainedTypeID(ResTypeID, SubType);
4958 ++GTI;
4962 // At this point ResTypeID is the result element type. We need a pointer
4963 // or vector of pointer to it.
4964 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4965 if (I->getType()->isVectorTy())
4966 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4968 InstructionList.push_back(I);
4969 if (InBounds)
4970 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4971 break;
4974 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4975 // EXTRACTVAL: [opty, opval, n x indices]
4976 unsigned OpNum = 0;
4977 Value *Agg;
4978 unsigned AggTypeID;
4979 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4980 return error("Invalid record");
4981 Type *Ty = Agg->getType();
4983 unsigned RecSize = Record.size();
4984 if (OpNum == RecSize)
4985 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4987 SmallVector<unsigned, 4> EXTRACTVALIdx;
4988 ResTypeID = AggTypeID;
4989 for (; OpNum != RecSize; ++OpNum) {
4990 bool IsArray = Ty->isArrayTy();
4991 bool IsStruct = Ty->isStructTy();
4992 uint64_t Index = Record[OpNum];
4994 if (!IsStruct && !IsArray)
4995 return error("EXTRACTVAL: Invalid type");
4996 if ((unsigned)Index != Index)
4997 return error("Invalid value");
4998 if (IsStruct && Index >= Ty->getStructNumElements())
4999 return error("EXTRACTVAL: Invalid struct index");
5000 if (IsArray && Index >= Ty->getArrayNumElements())
5001 return error("EXTRACTVAL: Invalid array index");
5002 EXTRACTVALIdx.push_back((unsigned)Index);
5004 if (IsStruct) {
5005 Ty = Ty->getStructElementType(Index);
5006 ResTypeID = getContainedTypeID(ResTypeID, Index);
5007 } else {
5008 Ty = Ty->getArrayElementType();
5009 ResTypeID = getContainedTypeID(ResTypeID);
5013 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5014 InstructionList.push_back(I);
5015 break;
5018 case bitc::FUNC_CODE_INST_INSERTVAL: {
5019 // INSERTVAL: [opty, opval, opty, opval, n x indices]
5020 unsigned OpNum = 0;
5021 Value *Agg;
5022 unsigned AggTypeID;
5023 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5024 return error("Invalid record");
5025 Value *Val;
5026 unsigned ValTypeID;
5027 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5028 return error("Invalid record");
5030 unsigned RecSize = Record.size();
5031 if (OpNum == RecSize)
5032 return error("INSERTVAL: Invalid instruction with 0 indices");
5034 SmallVector<unsigned, 4> INSERTVALIdx;
5035 Type *CurTy = Agg->getType();
5036 for (; OpNum != RecSize; ++OpNum) {
5037 bool IsArray = CurTy->isArrayTy();
5038 bool IsStruct = CurTy->isStructTy();
5039 uint64_t Index = Record[OpNum];
5041 if (!IsStruct && !IsArray)
5042 return error("INSERTVAL: Invalid type");
5043 if ((unsigned)Index != Index)
5044 return error("Invalid value");
5045 if (IsStruct && Index >= CurTy->getStructNumElements())
5046 return error("INSERTVAL: Invalid struct index");
5047 if (IsArray && Index >= CurTy->getArrayNumElements())
5048 return error("INSERTVAL: Invalid array index");
5050 INSERTVALIdx.push_back((unsigned)Index);
5051 if (IsStruct)
5052 CurTy = CurTy->getStructElementType(Index);
5053 else
5054 CurTy = CurTy->getArrayElementType();
5057 if (CurTy != Val->getType())
5058 return error("Inserted value type doesn't match aggregate type");
5060 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5061 ResTypeID = AggTypeID;
5062 InstructionList.push_back(I);
5063 break;
5066 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5067 // obsolete form of select
5068 // handles select i1 ... in old bitcode
5069 unsigned OpNum = 0;
5070 Value *TrueVal, *FalseVal, *Cond;
5071 unsigned TypeID;
5072 Type *CondType = Type::getInt1Ty(Context);
5073 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5074 CurBB) ||
5075 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5076 FalseVal, CurBB) ||
5077 popValue(Record, OpNum, NextValueNo, CondType,
5078 getVirtualTypeID(CondType), Cond, CurBB))
5079 return error("Invalid record");
5081 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5082 ResTypeID = TypeID;
5083 InstructionList.push_back(I);
5084 break;
5087 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5088 // new form of select
5089 // handles select i1 or select [N x i1]
5090 unsigned OpNum = 0;
5091 Value *TrueVal, *FalseVal, *Cond;
5092 unsigned ValTypeID, CondTypeID;
5093 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5094 CurBB) ||
5095 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5096 FalseVal, CurBB) ||
5097 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5098 return error("Invalid record");
5100 // select condition can be either i1 or [N x i1]
5101 if (VectorType* vector_type =
5102 dyn_cast<VectorType>(Cond->getType())) {
5103 // expect <n x i1>
5104 if (vector_type->getElementType() != Type::getInt1Ty(Context))
5105 return error("Invalid type for value");
5106 } else {
5107 // expect i1
5108 if (Cond->getType() != Type::getInt1Ty(Context))
5109 return error("Invalid type for value");
5112 I = SelectInst::Create(Cond, TrueVal, FalseVal);
5113 ResTypeID = ValTypeID;
5114 InstructionList.push_back(I);
5115 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5116 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5117 if (FMF.any())
5118 I->setFastMathFlags(FMF);
5120 break;
5123 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5124 unsigned OpNum = 0;
5125 Value *Vec, *Idx;
5126 unsigned VecTypeID, IdxTypeID;
5127 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5128 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5129 return error("Invalid record");
5130 if (!Vec->getType()->isVectorTy())
5131 return error("Invalid type for value");
5132 I = ExtractElementInst::Create(Vec, Idx);
5133 ResTypeID = getContainedTypeID(VecTypeID);
5134 InstructionList.push_back(I);
5135 break;
5138 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5139 unsigned OpNum = 0;
5140 Value *Vec, *Elt, *Idx;
5141 unsigned VecTypeID, IdxTypeID;
5142 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5143 return error("Invalid record");
5144 if (!Vec->getType()->isVectorTy())
5145 return error("Invalid type for value");
5146 if (popValue(Record, OpNum, NextValueNo,
5147 cast<VectorType>(Vec->getType())->getElementType(),
5148 getContainedTypeID(VecTypeID), Elt, CurBB) ||
5149 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5150 return error("Invalid record");
5151 I = InsertElementInst::Create(Vec, Elt, Idx);
5152 ResTypeID = VecTypeID;
5153 InstructionList.push_back(I);
5154 break;
5157 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5158 unsigned OpNum = 0;
5159 Value *Vec1, *Vec2, *Mask;
5160 unsigned Vec1TypeID;
5161 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5162 CurBB) ||
5163 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5164 Vec2, CurBB))
5165 return error("Invalid record");
5167 unsigned MaskTypeID;
5168 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5169 return error("Invalid record");
5170 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5171 return error("Invalid type for value");
5173 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5174 ResTypeID =
5175 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5176 InstructionList.push_back(I);
5177 break;
5180 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
5181 // Old form of ICmp/FCmp returning bool
5182 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5183 // both legal on vectors but had different behaviour.
5184 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5185 // FCmp/ICmp returning bool or vector of bool
5187 unsigned OpNum = 0;
5188 Value *LHS, *RHS;
5189 unsigned LHSTypeID;
5190 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5191 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5192 CurBB))
5193 return error("Invalid record");
5195 if (OpNum >= Record.size())
5196 return error(
5197 "Invalid record: operand number exceeded available operands");
5199 unsigned PredVal = Record[OpNum];
5200 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5201 FastMathFlags FMF;
5202 if (IsFP && Record.size() > OpNum+1)
5203 FMF = getDecodedFastMathFlags(Record[++OpNum]);
5205 if (OpNum+1 != Record.size())
5206 return error("Invalid record");
5208 if (LHS->getType()->isFPOrFPVectorTy())
5209 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5210 else
5211 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5213 ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5214 if (LHS->getType()->isVectorTy())
5215 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5217 if (FMF.any())
5218 I->setFastMathFlags(FMF);
5219 InstructionList.push_back(I);
5220 break;
5223 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5225 unsigned Size = Record.size();
5226 if (Size == 0) {
5227 I = ReturnInst::Create(Context);
5228 InstructionList.push_back(I);
5229 break;
5232 unsigned OpNum = 0;
5233 Value *Op = nullptr;
5234 unsigned OpTypeID;
5235 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5236 return error("Invalid record");
5237 if (OpNum != Record.size())
5238 return error("Invalid record");
5240 I = ReturnInst::Create(Context, Op);
5241 InstructionList.push_back(I);
5242 break;
5244 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5245 if (Record.size() != 1 && Record.size() != 3)
5246 return error("Invalid record");
5247 BasicBlock *TrueDest = getBasicBlock(Record[0]);
5248 if (!TrueDest)
5249 return error("Invalid record");
5251 if (Record.size() == 1) {
5252 I = BranchInst::Create(TrueDest);
5253 InstructionList.push_back(I);
5255 else {
5256 BasicBlock *FalseDest = getBasicBlock(Record[1]);
5257 Type *CondType = Type::getInt1Ty(Context);
5258 Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5259 getVirtualTypeID(CondType), CurBB);
5260 if (!FalseDest || !Cond)
5261 return error("Invalid record");
5262 I = BranchInst::Create(TrueDest, FalseDest, Cond);
5263 InstructionList.push_back(I);
5265 break;
5267 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5268 if (Record.size() != 1 && Record.size() != 2)
5269 return error("Invalid record");
5270 unsigned Idx = 0;
5271 Type *TokenTy = Type::getTokenTy(Context);
5272 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5273 getVirtualTypeID(TokenTy), CurBB);
5274 if (!CleanupPad)
5275 return error("Invalid record");
5276 BasicBlock *UnwindDest = nullptr;
5277 if (Record.size() == 2) {
5278 UnwindDest = getBasicBlock(Record[Idx++]);
5279 if (!UnwindDest)
5280 return error("Invalid record");
5283 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5284 InstructionList.push_back(I);
5285 break;
5287 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5288 if (Record.size() != 2)
5289 return error("Invalid record");
5290 unsigned Idx = 0;
5291 Type *TokenTy = Type::getTokenTy(Context);
5292 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5293 getVirtualTypeID(TokenTy), CurBB);
5294 if (!CatchPad)
5295 return error("Invalid record");
5296 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5297 if (!BB)
5298 return error("Invalid record");
5300 I = CatchReturnInst::Create(CatchPad, BB);
5301 InstructionList.push_back(I);
5302 break;
5304 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5305 // We must have, at minimum, the outer scope and the number of arguments.
5306 if (Record.size() < 2)
5307 return error("Invalid record");
5309 unsigned Idx = 0;
5311 Type *TokenTy = Type::getTokenTy(Context);
5312 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5313 getVirtualTypeID(TokenTy), CurBB);
5315 unsigned NumHandlers = Record[Idx++];
5317 SmallVector<BasicBlock *, 2> Handlers;
5318 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5319 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5320 if (!BB)
5321 return error("Invalid record");
5322 Handlers.push_back(BB);
5325 BasicBlock *UnwindDest = nullptr;
5326 if (Idx + 1 == Record.size()) {
5327 UnwindDest = getBasicBlock(Record[Idx++]);
5328 if (!UnwindDest)
5329 return error("Invalid record");
5332 if (Record.size() != Idx)
5333 return error("Invalid record");
5335 auto *CatchSwitch =
5336 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5337 for (BasicBlock *Handler : Handlers)
5338 CatchSwitch->addHandler(Handler);
5339 I = CatchSwitch;
5340 ResTypeID = getVirtualTypeID(I->getType());
5341 InstructionList.push_back(I);
5342 break;
5344 case bitc::FUNC_CODE_INST_CATCHPAD:
5345 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5346 // We must have, at minimum, the outer scope and the number of arguments.
5347 if (Record.size() < 2)
5348 return error("Invalid record");
5350 unsigned Idx = 0;
5352 Type *TokenTy = Type::getTokenTy(Context);
5353 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5354 getVirtualTypeID(TokenTy), CurBB);
5356 unsigned NumArgOperands = Record[Idx++];
5358 SmallVector<Value *, 2> Args;
5359 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5360 Value *Val;
5361 unsigned ValTypeID;
5362 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5363 return error("Invalid record");
5364 Args.push_back(Val);
5367 if (Record.size() != Idx)
5368 return error("Invalid record");
5370 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5371 I = CleanupPadInst::Create(ParentPad, Args);
5372 else
5373 I = CatchPadInst::Create(ParentPad, Args);
5374 ResTypeID = getVirtualTypeID(I->getType());
5375 InstructionList.push_back(I);
5376 break;
5378 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5379 // Check magic
5380 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5381 // "New" SwitchInst format with case ranges. The changes to write this
5382 // format were reverted but we still recognize bitcode that uses it.
5383 // Hopefully someday we will have support for case ranges and can use
5384 // this format again.
5386 unsigned OpTyID = Record[1];
5387 Type *OpTy = getTypeByID(OpTyID);
5388 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5390 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5391 BasicBlock *Default = getBasicBlock(Record[3]);
5392 if (!OpTy || !Cond || !Default)
5393 return error("Invalid record");
5395 unsigned NumCases = Record[4];
5397 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5398 InstructionList.push_back(SI);
5400 unsigned CurIdx = 5;
5401 for (unsigned i = 0; i != NumCases; ++i) {
5402 SmallVector<ConstantInt*, 1> CaseVals;
5403 unsigned NumItems = Record[CurIdx++];
5404 for (unsigned ci = 0; ci != NumItems; ++ci) {
5405 bool isSingleNumber = Record[CurIdx++];
5407 APInt Low;
5408 unsigned ActiveWords = 1;
5409 if (ValueBitWidth > 64)
5410 ActiveWords = Record[CurIdx++];
5411 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5412 ValueBitWidth);
5413 CurIdx += ActiveWords;
5415 if (!isSingleNumber) {
5416 ActiveWords = 1;
5417 if (ValueBitWidth > 64)
5418 ActiveWords = Record[CurIdx++];
5419 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5420 ValueBitWidth);
5421 CurIdx += ActiveWords;
5423 // FIXME: It is not clear whether values in the range should be
5424 // compared as signed or unsigned values. The partially
5425 // implemented changes that used this format in the past used
5426 // unsigned comparisons.
5427 for ( ; Low.ule(High); ++Low)
5428 CaseVals.push_back(ConstantInt::get(Context, Low));
5429 } else
5430 CaseVals.push_back(ConstantInt::get(Context, Low));
5432 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5433 for (ConstantInt *Cst : CaseVals)
5434 SI->addCase(Cst, DestBB);
5436 I = SI;
5437 break;
5440 // Old SwitchInst format without case ranges.
5442 if (Record.size() < 3 || (Record.size() & 1) == 0)
5443 return error("Invalid record");
5444 unsigned OpTyID = Record[0];
5445 Type *OpTy = getTypeByID(OpTyID);
5446 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5447 BasicBlock *Default = getBasicBlock(Record[2]);
5448 if (!OpTy || !Cond || !Default)
5449 return error("Invalid record");
5450 unsigned NumCases = (Record.size()-3)/2;
5451 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5452 InstructionList.push_back(SI);
5453 for (unsigned i = 0, e = NumCases; i != e; ++i) {
5454 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5455 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5456 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5457 if (!CaseVal || !DestBB) {
5458 delete SI;
5459 return error("Invalid record");
5461 SI->addCase(CaseVal, DestBB);
5463 I = SI;
5464 break;
5466 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5467 if (Record.size() < 2)
5468 return error("Invalid record");
5469 unsigned OpTyID = Record[0];
5470 Type *OpTy = getTypeByID(OpTyID);
5471 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5472 if (!OpTy || !Address)
5473 return error("Invalid record");
5474 unsigned NumDests = Record.size()-2;
5475 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5476 InstructionList.push_back(IBI);
5477 for (unsigned i = 0, e = NumDests; i != e; ++i) {
5478 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5479 IBI->addDestination(DestBB);
5480 } else {
5481 delete IBI;
5482 return error("Invalid record");
5485 I = IBI;
5486 break;
5489 case bitc::FUNC_CODE_INST_INVOKE: {
5490 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5491 if (Record.size() < 4)
5492 return error("Invalid record");
5493 unsigned OpNum = 0;
5494 AttributeList PAL = getAttributes(Record[OpNum++]);
5495 unsigned CCInfo = Record[OpNum++];
5496 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5497 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5499 unsigned FTyID = InvalidTypeID;
5500 FunctionType *FTy = nullptr;
5501 if ((CCInfo >> 13) & 1) {
5502 FTyID = Record[OpNum++];
5503 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5504 if (!FTy)
5505 return error("Explicit invoke type is not a function type");
5508 Value *Callee;
5509 unsigned CalleeTypeID;
5510 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5511 CurBB))
5512 return error("Invalid record");
5514 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5515 if (!CalleeTy)
5516 return error("Callee is not a pointer");
5517 if (!FTy) {
5518 FTyID = getContainedTypeID(CalleeTypeID);
5519 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5520 if (!FTy)
5521 return error("Callee is not of pointer to function type");
5523 if (Record.size() < FTy->getNumParams() + OpNum)
5524 return error("Insufficient operands to call");
5526 SmallVector<Value*, 16> Ops;
5527 SmallVector<unsigned, 16> ArgTyIDs;
5528 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5529 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5530 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5531 ArgTyID, CurBB));
5532 ArgTyIDs.push_back(ArgTyID);
5533 if (!Ops.back())
5534 return error("Invalid record");
5537 if (!FTy->isVarArg()) {
5538 if (Record.size() != OpNum)
5539 return error("Invalid record");
5540 } else {
5541 // Read type/value pairs for varargs params.
5542 while (OpNum != Record.size()) {
5543 Value *Op;
5544 unsigned OpTypeID;
5545 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5546 return error("Invalid record");
5547 Ops.push_back(Op);
5548 ArgTyIDs.push_back(OpTypeID);
5552 // Upgrade the bundles if needed.
5553 if (!OperandBundles.empty())
5554 UpgradeOperandBundles(OperandBundles);
5556 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5557 OperandBundles);
5558 ResTypeID = getContainedTypeID(FTyID);
5559 OperandBundles.clear();
5560 InstructionList.push_back(I);
5561 cast<InvokeInst>(I)->setCallingConv(
5562 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5563 cast<InvokeInst>(I)->setAttributes(PAL);
5564 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5565 I->deleteValue();
5566 return Err;
5569 break;
5571 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5572 unsigned Idx = 0;
5573 Value *Val = nullptr;
5574 unsigned ValTypeID;
5575 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5576 return error("Invalid record");
5577 I = ResumeInst::Create(Val);
5578 InstructionList.push_back(I);
5579 break;
5581 case bitc::FUNC_CODE_INST_CALLBR: {
5582 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5583 unsigned OpNum = 0;
5584 AttributeList PAL = getAttributes(Record[OpNum++]);
5585 unsigned CCInfo = Record[OpNum++];
5587 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5588 unsigned NumIndirectDests = Record[OpNum++];
5589 SmallVector<BasicBlock *, 16> IndirectDests;
5590 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5591 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5593 unsigned FTyID = InvalidTypeID;
5594 FunctionType *FTy = nullptr;
5595 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5596 FTyID = Record[OpNum++];
5597 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5598 if (!FTy)
5599 return error("Explicit call type is not a function type");
5602 Value *Callee;
5603 unsigned CalleeTypeID;
5604 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5605 CurBB))
5606 return error("Invalid record");
5608 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5609 if (!OpTy)
5610 return error("Callee is not a pointer type");
5611 if (!FTy) {
5612 FTyID = getContainedTypeID(CalleeTypeID);
5613 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5614 if (!FTy)
5615 return error("Callee is not of pointer to function type");
5617 if (Record.size() < FTy->getNumParams() + OpNum)
5618 return error("Insufficient operands to call");
5620 SmallVector<Value*, 16> Args;
5621 SmallVector<unsigned, 16> ArgTyIDs;
5622 // Read the fixed params.
5623 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5624 Value *Arg;
5625 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5626 if (FTy->getParamType(i)->isLabelTy())
5627 Arg = getBasicBlock(Record[OpNum]);
5628 else
5629 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5630 ArgTyID, CurBB);
5631 if (!Arg)
5632 return error("Invalid record");
5633 Args.push_back(Arg);
5634 ArgTyIDs.push_back(ArgTyID);
5637 // Read type/value pairs for varargs params.
5638 if (!FTy->isVarArg()) {
5639 if (OpNum != Record.size())
5640 return error("Invalid record");
5641 } else {
5642 while (OpNum != Record.size()) {
5643 Value *Op;
5644 unsigned OpTypeID;
5645 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5646 return error("Invalid record");
5647 Args.push_back(Op);
5648 ArgTyIDs.push_back(OpTypeID);
5652 // Upgrade the bundles if needed.
5653 if (!OperandBundles.empty())
5654 UpgradeOperandBundles(OperandBundles);
5656 if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5657 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5658 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5659 return CI.Type == InlineAsm::isLabel;
5661 if (none_of(ConstraintInfo, IsLabelConstraint)) {
5662 // Upgrade explicit blockaddress arguments to label constraints.
5663 // Verify that the last arguments are blockaddress arguments that
5664 // match the indirect destinations. Clang always generates callbr
5665 // in this form. We could support reordering with more effort.
5666 unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5667 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5668 unsigned LabelNo = ArgNo - FirstBlockArg;
5669 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5670 if (!BA || BA->getFunction() != F ||
5671 LabelNo > IndirectDests.size() ||
5672 BA->getBasicBlock() != IndirectDests[LabelNo])
5673 return error("callbr argument does not match indirect dest");
5676 // Remove blockaddress arguments.
5677 Args.erase(Args.begin() + FirstBlockArg, Args.end());
5678 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5680 // Recreate the function type with less arguments.
5681 SmallVector<Type *> ArgTys;
5682 for (Value *Arg : Args)
5683 ArgTys.push_back(Arg->getType());
5684 FTy =
5685 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5687 // Update constraint string to use label constraints.
5688 std::string Constraints = IA->getConstraintString();
5689 unsigned ArgNo = 0;
5690 size_t Pos = 0;
5691 for (const auto &CI : ConstraintInfo) {
5692 if (CI.hasArg()) {
5693 if (ArgNo >= FirstBlockArg)
5694 Constraints.insert(Pos, "!");
5695 ++ArgNo;
5698 // Go to next constraint in string.
5699 Pos = Constraints.find(',', Pos);
5700 if (Pos == std::string::npos)
5701 break;
5702 ++Pos;
5705 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5706 IA->hasSideEffects(), IA->isAlignStack(),
5707 IA->getDialect(), IA->canThrow());
5711 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5712 OperandBundles);
5713 ResTypeID = getContainedTypeID(FTyID);
5714 OperandBundles.clear();
5715 InstructionList.push_back(I);
5716 cast<CallBrInst>(I)->setCallingConv(
5717 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5718 cast<CallBrInst>(I)->setAttributes(PAL);
5719 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5720 I->deleteValue();
5721 return Err;
5723 break;
5725 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5726 I = new UnreachableInst(Context);
5727 InstructionList.push_back(I);
5728 break;
5729 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5730 if (Record.empty())
5731 return error("Invalid phi record");
5732 // The first record specifies the type.
5733 unsigned TyID = Record[0];
5734 Type *Ty = getTypeByID(TyID);
5735 if (!Ty)
5736 return error("Invalid phi record");
5738 // Phi arguments are pairs of records of [value, basic block].
5739 // There is an optional final record for fast-math-flags if this phi has a
5740 // floating-point type.
5741 size_t NumArgs = (Record.size() - 1) / 2;
5742 PHINode *PN = PHINode::Create(Ty, NumArgs);
5743 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5744 PN->deleteValue();
5745 return error("Invalid phi record");
5747 InstructionList.push_back(PN);
5749 SmallDenseMap<BasicBlock *, Value *> Args;
5750 for (unsigned i = 0; i != NumArgs; i++) {
5751 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5752 if (!BB) {
5753 PN->deleteValue();
5754 return error("Invalid phi BB");
5757 // Phi nodes may contain the same predecessor multiple times, in which
5758 // case the incoming value must be identical. Directly reuse the already
5759 // seen value here, to avoid expanding a constant expression multiple
5760 // times.
5761 auto It = Args.find(BB);
5762 if (It != Args.end()) {
5763 PN->addIncoming(It->second, BB);
5764 continue;
5767 // If there already is a block for this edge (from a different phi),
5768 // use it.
5769 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5770 if (!EdgeBB) {
5771 // Otherwise, use a temporary block (that we will discard if it
5772 // turns out to be unnecessary).
5773 if (!PhiConstExprBB)
5774 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5775 EdgeBB = PhiConstExprBB;
5778 // With the new function encoding, it is possible that operands have
5779 // negative IDs (for forward references). Use a signed VBR
5780 // representation to keep the encoding small.
5781 Value *V;
5782 if (UseRelativeIDs)
5783 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5784 else
5785 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5786 if (!V) {
5787 PN->deleteValue();
5788 PhiConstExprBB->eraseFromParent();
5789 return error("Invalid phi record");
5792 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5793 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5794 PhiConstExprBB = nullptr;
5796 PN->addIncoming(V, BB);
5797 Args.insert({BB, V});
5799 I = PN;
5800 ResTypeID = TyID;
5802 // If there are an even number of records, the final record must be FMF.
5803 if (Record.size() % 2 == 0) {
5804 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5805 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5806 if (FMF.any())
5807 I->setFastMathFlags(FMF);
5810 break;
5813 case bitc::FUNC_CODE_INST_LANDINGPAD:
5814 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5815 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5816 unsigned Idx = 0;
5817 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5818 if (Record.size() < 3)
5819 return error("Invalid record");
5820 } else {
5821 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5822 if (Record.size() < 4)
5823 return error("Invalid record");
5825 ResTypeID = Record[Idx++];
5826 Type *Ty = getTypeByID(ResTypeID);
5827 if (!Ty)
5828 return error("Invalid record");
5829 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5830 Value *PersFn = nullptr;
5831 unsigned PersFnTypeID;
5832 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5833 nullptr))
5834 return error("Invalid record");
5836 if (!F->hasPersonalityFn())
5837 F->setPersonalityFn(cast<Constant>(PersFn));
5838 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5839 return error("Personality function mismatch");
5842 bool IsCleanup = !!Record[Idx++];
5843 unsigned NumClauses = Record[Idx++];
5844 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5845 LP->setCleanup(IsCleanup);
5846 for (unsigned J = 0; J != NumClauses; ++J) {
5847 LandingPadInst::ClauseType CT =
5848 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5849 Value *Val;
5850 unsigned ValTypeID;
5852 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5853 nullptr)) {
5854 delete LP;
5855 return error("Invalid record");
5858 assert((CT != LandingPadInst::Catch ||
5859 !isa<ArrayType>(Val->getType())) &&
5860 "Catch clause has a invalid type!");
5861 assert((CT != LandingPadInst::Filter ||
5862 isa<ArrayType>(Val->getType())) &&
5863 "Filter clause has invalid type!");
5864 LP->addClause(cast<Constant>(Val));
5867 I = LP;
5868 InstructionList.push_back(I);
5869 break;
5872 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5873 if (Record.size() != 4 && Record.size() != 5)
5874 return error("Invalid record");
5875 using APV = AllocaPackedValues;
5876 const uint64_t Rec = Record[3];
5877 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5878 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5879 unsigned TyID = Record[0];
5880 Type *Ty = getTypeByID(TyID);
5881 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5882 TyID = getContainedTypeID(TyID);
5883 Ty = getTypeByID(TyID);
5884 if (!Ty)
5885 return error("Missing element type for old-style alloca");
5887 unsigned OpTyID = Record[1];
5888 Type *OpTy = getTypeByID(OpTyID);
5889 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5890 MaybeAlign Align;
5891 uint64_t AlignExp =
5892 Bitfield::get<APV::AlignLower>(Rec) |
5893 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5894 if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5895 return Err;
5897 if (!Ty || !Size)
5898 return error("Invalid record");
5900 const DataLayout &DL = TheModule->getDataLayout();
5901 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5903 SmallPtrSet<Type *, 4> Visited;
5904 if (!Align && !Ty->isSized(&Visited))
5905 return error("alloca of unsized type");
5906 if (!Align)
5907 Align = DL.getPrefTypeAlign(Ty);
5909 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5910 AI->setUsedWithInAlloca(InAlloca);
5911 AI->setSwiftError(SwiftError);
5912 I = AI;
5913 ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5914 InstructionList.push_back(I);
5915 break;
5917 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5918 unsigned OpNum = 0;
5919 Value *Op;
5920 unsigned OpTypeID;
5921 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5922 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5923 return error("Invalid record");
5925 if (!isa<PointerType>(Op->getType()))
5926 return error("Load operand is not a pointer type");
5928 Type *Ty = nullptr;
5929 if (OpNum + 3 == Record.size()) {
5930 ResTypeID = Record[OpNum++];
5931 Ty = getTypeByID(ResTypeID);
5932 } else {
5933 ResTypeID = getContainedTypeID(OpTypeID);
5934 Ty = getTypeByID(ResTypeID);
5935 if (!Ty)
5936 return error("Missing element type for old-style load");
5939 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5940 return Err;
5942 MaybeAlign Align;
5943 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5944 return Err;
5945 SmallPtrSet<Type *, 4> Visited;
5946 if (!Align && !Ty->isSized(&Visited))
5947 return error("load of unsized type");
5948 if (!Align)
5949 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5950 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5951 InstructionList.push_back(I);
5952 break;
5954 case bitc::FUNC_CODE_INST_LOADATOMIC: {
5955 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5956 unsigned OpNum = 0;
5957 Value *Op;
5958 unsigned OpTypeID;
5959 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5960 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5961 return error("Invalid record");
5963 if (!isa<PointerType>(Op->getType()))
5964 return error("Load operand is not a pointer type");
5966 Type *Ty = nullptr;
5967 if (OpNum + 5 == Record.size()) {
5968 ResTypeID = Record[OpNum++];
5969 Ty = getTypeByID(ResTypeID);
5970 } else {
5971 ResTypeID = getContainedTypeID(OpTypeID);
5972 Ty = getTypeByID(ResTypeID);
5973 if (!Ty)
5974 return error("Missing element type for old style atomic load");
5977 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5978 return Err;
5980 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5981 if (Ordering == AtomicOrdering::NotAtomic ||
5982 Ordering == AtomicOrdering::Release ||
5983 Ordering == AtomicOrdering::AcquireRelease)
5984 return error("Invalid record");
5985 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5986 return error("Invalid record");
5987 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5989 MaybeAlign Align;
5990 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5991 return Err;
5992 if (!Align)
5993 return error("Alignment missing from atomic load");
5994 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5995 InstructionList.push_back(I);
5996 break;
5998 case bitc::FUNC_CODE_INST_STORE:
5999 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6000 unsigned OpNum = 0;
6001 Value *Val, *Ptr;
6002 unsigned PtrTypeID, ValTypeID;
6003 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6004 return error("Invalid record");
6006 if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6007 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6008 return error("Invalid record");
6009 } else {
6010 ValTypeID = getContainedTypeID(PtrTypeID);
6011 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6012 ValTypeID, Val, CurBB))
6013 return error("Invalid record");
6016 if (OpNum + 2 != Record.size())
6017 return error("Invalid record");
6019 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6020 return Err;
6021 MaybeAlign Align;
6022 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6023 return Err;
6024 SmallPtrSet<Type *, 4> Visited;
6025 if (!Align && !Val->getType()->isSized(&Visited))
6026 return error("store of unsized type");
6027 if (!Align)
6028 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6029 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6030 InstructionList.push_back(I);
6031 break;
6033 case bitc::FUNC_CODE_INST_STOREATOMIC:
6034 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6035 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6036 unsigned OpNum = 0;
6037 Value *Val, *Ptr;
6038 unsigned PtrTypeID, ValTypeID;
6039 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6040 !isa<PointerType>(Ptr->getType()))
6041 return error("Invalid record");
6042 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6043 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6044 return error("Invalid record");
6045 } else {
6046 ValTypeID = getContainedTypeID(PtrTypeID);
6047 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6048 ValTypeID, Val, CurBB))
6049 return error("Invalid record");
6052 if (OpNum + 4 != Record.size())
6053 return error("Invalid record");
6055 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6056 return Err;
6057 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6058 if (Ordering == AtomicOrdering::NotAtomic ||
6059 Ordering == AtomicOrdering::Acquire ||
6060 Ordering == AtomicOrdering::AcquireRelease)
6061 return error("Invalid record");
6062 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6063 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6064 return error("Invalid record");
6066 MaybeAlign Align;
6067 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6068 return Err;
6069 if (!Align)
6070 return error("Alignment missing from atomic store");
6071 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6072 InstructionList.push_back(I);
6073 break;
6075 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6076 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6077 // failure_ordering?, weak?]
6078 const size_t NumRecords = Record.size();
6079 unsigned OpNum = 0;
6080 Value *Ptr = nullptr;
6081 unsigned PtrTypeID;
6082 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6083 return error("Invalid record");
6085 if (!isa<PointerType>(Ptr->getType()))
6086 return error("Cmpxchg operand is not a pointer type");
6088 Value *Cmp = nullptr;
6089 unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6090 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6091 CmpTypeID, Cmp, CurBB))
6092 return error("Invalid record");
6094 Value *New = nullptr;
6095 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6096 New, CurBB) ||
6097 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6098 return error("Invalid record");
6100 const AtomicOrdering SuccessOrdering =
6101 getDecodedOrdering(Record[OpNum + 1]);
6102 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6103 SuccessOrdering == AtomicOrdering::Unordered)
6104 return error("Invalid record");
6106 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6108 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6109 return Err;
6111 const AtomicOrdering FailureOrdering =
6112 NumRecords < 7
6113 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6114 : getDecodedOrdering(Record[OpNum + 3]);
6116 if (FailureOrdering == AtomicOrdering::NotAtomic ||
6117 FailureOrdering == AtomicOrdering::Unordered)
6118 return error("Invalid record");
6120 const Align Alignment(
6121 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6123 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6124 FailureOrdering, SSID);
6125 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6127 if (NumRecords < 8) {
6128 // Before weak cmpxchgs existed, the instruction simply returned the
6129 // value loaded from memory, so bitcode files from that era will be
6130 // expecting the first component of a modern cmpxchg.
6131 I->insertInto(CurBB, CurBB->end());
6132 I = ExtractValueInst::Create(I, 0);
6133 ResTypeID = CmpTypeID;
6134 } else {
6135 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6136 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6137 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6140 InstructionList.push_back(I);
6141 break;
6143 case bitc::FUNC_CODE_INST_CMPXCHG: {
6144 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6145 // failure_ordering, weak, align?]
6146 const size_t NumRecords = Record.size();
6147 unsigned OpNum = 0;
6148 Value *Ptr = nullptr;
6149 unsigned PtrTypeID;
6150 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6151 return error("Invalid record");
6153 if (!isa<PointerType>(Ptr->getType()))
6154 return error("Cmpxchg operand is not a pointer type");
6156 Value *Cmp = nullptr;
6157 unsigned CmpTypeID;
6158 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6159 return error("Invalid record");
6161 Value *Val = nullptr;
6162 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6163 CurBB))
6164 return error("Invalid record");
6166 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6167 return error("Invalid record");
6169 const bool IsVol = Record[OpNum];
6171 const AtomicOrdering SuccessOrdering =
6172 getDecodedOrdering(Record[OpNum + 1]);
6173 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6174 return error("Invalid cmpxchg success ordering");
6176 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6178 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6179 return Err;
6181 const AtomicOrdering FailureOrdering =
6182 getDecodedOrdering(Record[OpNum + 3]);
6183 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6184 return error("Invalid cmpxchg failure ordering");
6186 const bool IsWeak = Record[OpNum + 4];
6188 MaybeAlign Alignment;
6190 if (NumRecords == (OpNum + 6)) {
6191 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6192 return Err;
6194 if (!Alignment)
6195 Alignment =
6196 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6198 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6199 FailureOrdering, SSID);
6200 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6201 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6203 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6204 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6206 InstructionList.push_back(I);
6207 break;
6209 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6210 case bitc::FUNC_CODE_INST_ATOMICRMW: {
6211 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6212 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6213 const size_t NumRecords = Record.size();
6214 unsigned OpNum = 0;
6216 Value *Ptr = nullptr;
6217 unsigned PtrTypeID;
6218 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6219 return error("Invalid record");
6221 if (!isa<PointerType>(Ptr->getType()))
6222 return error("Invalid record");
6224 Value *Val = nullptr;
6225 unsigned ValTypeID = InvalidTypeID;
6226 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6227 ValTypeID = getContainedTypeID(PtrTypeID);
6228 if (popValue(Record, OpNum, NextValueNo,
6229 getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6230 return error("Invalid record");
6231 } else {
6232 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6233 return error("Invalid record");
6236 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6237 return error("Invalid record");
6239 const AtomicRMWInst::BinOp Operation =
6240 getDecodedRMWOperation(Record[OpNum]);
6241 if (Operation < AtomicRMWInst::FIRST_BINOP ||
6242 Operation > AtomicRMWInst::LAST_BINOP)
6243 return error("Invalid record");
6245 const bool IsVol = Record[OpNum + 1];
6247 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6248 if (Ordering == AtomicOrdering::NotAtomic ||
6249 Ordering == AtomicOrdering::Unordered)
6250 return error("Invalid record");
6252 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6254 MaybeAlign Alignment;
6256 if (NumRecords == (OpNum + 5)) {
6257 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6258 return Err;
6261 if (!Alignment)
6262 Alignment =
6263 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6265 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6266 ResTypeID = ValTypeID;
6267 cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6269 InstructionList.push_back(I);
6270 break;
6272 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6273 if (2 != Record.size())
6274 return error("Invalid record");
6275 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6276 if (Ordering == AtomicOrdering::NotAtomic ||
6277 Ordering == AtomicOrdering::Unordered ||
6278 Ordering == AtomicOrdering::Monotonic)
6279 return error("Invalid record");
6280 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6281 I = new FenceInst(Context, Ordering, SSID);
6282 InstructionList.push_back(I);
6283 break;
6285 case bitc::FUNC_CODE_INST_CALL: {
6286 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6287 if (Record.size() < 3)
6288 return error("Invalid record");
6290 unsigned OpNum = 0;
6291 AttributeList PAL = getAttributes(Record[OpNum++]);
6292 unsigned CCInfo = Record[OpNum++];
6294 FastMathFlags FMF;
6295 if ((CCInfo >> bitc::CALL_FMF) & 1) {
6296 FMF = getDecodedFastMathFlags(Record[OpNum++]);
6297 if (!FMF.any())
6298 return error("Fast math flags indicator set for call with no FMF");
6301 unsigned FTyID = InvalidTypeID;
6302 FunctionType *FTy = nullptr;
6303 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6304 FTyID = Record[OpNum++];
6305 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6306 if (!FTy)
6307 return error("Explicit call type is not a function type");
6310 Value *Callee;
6311 unsigned CalleeTypeID;
6312 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6313 CurBB))
6314 return error("Invalid record");
6316 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6317 if (!OpTy)
6318 return error("Callee is not a pointer type");
6319 if (!FTy) {
6320 FTyID = getContainedTypeID(CalleeTypeID);
6321 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6322 if (!FTy)
6323 return error("Callee is not of pointer to function type");
6325 if (Record.size() < FTy->getNumParams() + OpNum)
6326 return error("Insufficient operands to call");
6328 SmallVector<Value*, 16> Args;
6329 SmallVector<unsigned, 16> ArgTyIDs;
6330 // Read the fixed params.
6331 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6332 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6333 if (FTy->getParamType(i)->isLabelTy())
6334 Args.push_back(getBasicBlock(Record[OpNum]));
6335 else
6336 Args.push_back(getValue(Record, OpNum, NextValueNo,
6337 FTy->getParamType(i), ArgTyID, CurBB));
6338 ArgTyIDs.push_back(ArgTyID);
6339 if (!Args.back())
6340 return error("Invalid record");
6343 // Read type/value pairs for varargs params.
6344 if (!FTy->isVarArg()) {
6345 if (OpNum != Record.size())
6346 return error("Invalid record");
6347 } else {
6348 while (OpNum != Record.size()) {
6349 Value *Op;
6350 unsigned OpTypeID;
6351 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6352 return error("Invalid record");
6353 Args.push_back(Op);
6354 ArgTyIDs.push_back(OpTypeID);
6358 // Upgrade the bundles if needed.
6359 if (!OperandBundles.empty())
6360 UpgradeOperandBundles(OperandBundles);
6362 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6363 ResTypeID = getContainedTypeID(FTyID);
6364 OperandBundles.clear();
6365 InstructionList.push_back(I);
6366 cast<CallInst>(I)->setCallingConv(
6367 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6368 CallInst::TailCallKind TCK = CallInst::TCK_None;
6369 if (CCInfo & (1 << bitc::CALL_TAIL))
6370 TCK = CallInst::TCK_Tail;
6371 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6372 TCK = CallInst::TCK_MustTail;
6373 if (CCInfo & (1 << bitc::CALL_NOTAIL))
6374 TCK = CallInst::TCK_NoTail;
6375 cast<CallInst>(I)->setTailCallKind(TCK);
6376 cast<CallInst>(I)->setAttributes(PAL);
6377 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6378 I->deleteValue();
6379 return Err;
6381 if (FMF.any()) {
6382 if (!isa<FPMathOperator>(I))
6383 return error("Fast-math-flags specified for call without "
6384 "floating-point scalar or vector return type");
6385 I->setFastMathFlags(FMF);
6387 break;
6389 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6390 if (Record.size() < 3)
6391 return error("Invalid record");
6392 unsigned OpTyID = Record[0];
6393 Type *OpTy = getTypeByID(OpTyID);
6394 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6395 ResTypeID = Record[2];
6396 Type *ResTy = getTypeByID(ResTypeID);
6397 if (!OpTy || !Op || !ResTy)
6398 return error("Invalid record");
6399 I = new VAArgInst(Op, ResTy);
6400 InstructionList.push_back(I);
6401 break;
6404 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6405 // A call or an invoke can be optionally prefixed with some variable
6406 // number of operand bundle blocks. These blocks are read into
6407 // OperandBundles and consumed at the next call or invoke instruction.
6409 if (Record.empty() || Record[0] >= BundleTags.size())
6410 return error("Invalid record");
6412 std::vector<Value *> Inputs;
6414 unsigned OpNum = 1;
6415 while (OpNum != Record.size()) {
6416 Value *Op;
6417 unsigned OpTypeID;
6418 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6419 return error("Invalid record");
6420 Inputs.push_back(Op);
6423 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6424 continue;
6427 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6428 unsigned OpNum = 0;
6429 Value *Op = nullptr;
6430 unsigned OpTypeID;
6431 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6432 return error("Invalid record");
6433 if (OpNum != Record.size())
6434 return error("Invalid record");
6436 I = new FreezeInst(Op);
6437 ResTypeID = OpTypeID;
6438 InstructionList.push_back(I);
6439 break;
6443 // Add instruction to end of current BB. If there is no current BB, reject
6444 // this file.
6445 if (!CurBB) {
6446 I->deleteValue();
6447 return error("Invalid instruction with no BB");
6449 if (!OperandBundles.empty()) {
6450 I->deleteValue();
6451 return error("Operand bundles found with no consumer");
6453 I->insertInto(CurBB, CurBB->end());
6455 // If this was a terminator instruction, move to the next block.
6456 if (I->isTerminator()) {
6457 ++CurBBNo;
6458 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6461 // Non-void values get registered in the value table for future use.
6462 if (!I->getType()->isVoidTy()) {
6463 assert(I->getType() == getTypeByID(ResTypeID) &&
6464 "Incorrect result type ID");
6465 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6466 return Err;
6470 OutOfRecordLoop:
6472 if (!OperandBundles.empty())
6473 return error("Operand bundles found with no consumer");
6475 // Check the function list for unresolved values.
6476 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6477 if (!A->getParent()) {
6478 // We found at least one unresolved value. Nuke them all to avoid leaks.
6479 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6480 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6481 A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6482 delete A;
6485 return error("Never resolved value found in function");
6489 // Unexpected unresolved metadata about to be dropped.
6490 if (MDLoader->hasFwdRefs())
6491 return error("Invalid function metadata: outgoing forward refs");
6493 if (PhiConstExprBB)
6494 PhiConstExprBB->eraseFromParent();
6496 for (const auto &Pair : ConstExprEdgeBBs) {
6497 BasicBlock *From = Pair.first.first;
6498 BasicBlock *To = Pair.first.second;
6499 BasicBlock *EdgeBB = Pair.second;
6500 BranchInst::Create(To, EdgeBB);
6501 From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6502 To->replacePhiUsesWith(From, EdgeBB);
6503 EdgeBB->moveBefore(To);
6506 // Trim the value list down to the size it was before we parsed this function.
6507 ValueList.shrinkTo(ModuleValueListSize);
6508 MDLoader->shrinkTo(ModuleMDLoaderSize);
6509 std::vector<BasicBlock*>().swap(FunctionBBs);
6510 return Error::success();
6513 /// Find the function body in the bitcode stream
6514 Error BitcodeReader::findFunctionInStream(
6515 Function *F,
6516 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6517 while (DeferredFunctionInfoIterator->second == 0) {
6518 // This is the fallback handling for the old format bitcode that
6519 // didn't contain the function index in the VST, or when we have
6520 // an anonymous function which would not have a VST entry.
6521 // Assert that we have one of those two cases.
6522 assert(VSTOffset == 0 || !F->hasName());
6523 // Parse the next body in the stream and set its position in the
6524 // DeferredFunctionInfo map.
6525 if (Error Err = rememberAndSkipFunctionBodies())
6526 return Err;
6528 return Error::success();
6531 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6532 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6533 return SyncScope::ID(Val);
6534 if (Val >= SSIDs.size())
6535 return SyncScope::System; // Map unknown synchronization scopes to system.
6536 return SSIDs[Val];
6539 //===----------------------------------------------------------------------===//
6540 // GVMaterializer implementation
6541 //===----------------------------------------------------------------------===//
6543 Error BitcodeReader::materialize(GlobalValue *GV) {
6544 Function *F = dyn_cast<Function>(GV);
6545 // If it's not a function or is already material, ignore the request.
6546 if (!F || !F->isMaterializable())
6547 return Error::success();
6549 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6550 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6551 // If its position is recorded as 0, its body is somewhere in the stream
6552 // but we haven't seen it yet.
6553 if (DFII->second == 0)
6554 if (Error Err = findFunctionInStream(F, DFII))
6555 return Err;
6557 // Materialize metadata before parsing any function bodies.
6558 if (Error Err = materializeMetadata())
6559 return Err;
6561 // Move the bit stream to the saved position of the deferred function body.
6562 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6563 return JumpFailed;
6564 if (Error Err = parseFunctionBody(F))
6565 return Err;
6566 F->setIsMaterializable(false);
6568 if (StripDebugInfo)
6569 stripDebugInfo(*F);
6571 // Upgrade any old intrinsic calls in the function.
6572 for (auto &I : UpgradedIntrinsics) {
6573 for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6574 if (CallInst *CI = dyn_cast<CallInst>(U))
6575 UpgradeIntrinsicCall(CI, I.second);
6578 // Finish fn->subprogram upgrade for materialized functions.
6579 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6580 F->setSubprogram(SP);
6582 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6583 if (!MDLoader->isStrippingTBAA()) {
6584 for (auto &I : instructions(F)) {
6585 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6586 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6587 continue;
6588 MDLoader->setStripTBAA(true);
6589 stripTBAA(F->getParent());
6593 for (auto &I : instructions(F)) {
6594 // "Upgrade" older incorrect branch weights by dropping them.
6595 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6596 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6597 MDString *MDS = cast<MDString>(MD->getOperand(0));
6598 StringRef ProfName = MDS->getString();
6599 // Check consistency of !prof branch_weights metadata.
6600 if (!ProfName.equals("branch_weights"))
6601 continue;
6602 unsigned ExpectedNumOperands = 0;
6603 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6604 ExpectedNumOperands = BI->getNumSuccessors();
6605 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6606 ExpectedNumOperands = SI->getNumSuccessors();
6607 else if (isa<CallInst>(&I))
6608 ExpectedNumOperands = 1;
6609 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6610 ExpectedNumOperands = IBI->getNumDestinations();
6611 else if (isa<SelectInst>(&I))
6612 ExpectedNumOperands = 2;
6613 else
6614 continue; // ignore and continue.
6616 // If branch weight doesn't match, just strip branch weight.
6617 if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6618 I.setMetadata(LLVMContext::MD_prof, nullptr);
6622 // Remove incompatible attributes on function calls.
6623 if (auto *CI = dyn_cast<CallBase>(&I)) {
6624 CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6625 CI->getFunctionType()->getReturnType()));
6627 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6628 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6629 CI->getArgOperand(ArgNo)->getType()));
6633 // Look for functions that rely on old function attribute behavior.
6634 UpgradeFunctionAttributes(*F);
6636 // Bring in any functions that this function forward-referenced via
6637 // blockaddresses.
6638 return materializeForwardReferencedFunctions();
6641 Error BitcodeReader::materializeModule() {
6642 if (Error Err = materializeMetadata())
6643 return Err;
6645 // Promise to materialize all forward references.
6646 WillMaterializeAllForwardRefs = true;
6648 // Iterate over the module, deserializing any functions that are still on
6649 // disk.
6650 for (Function &F : *TheModule) {
6651 if (Error Err = materialize(&F))
6652 return Err;
6654 // At this point, if there are any function bodies, parse the rest of
6655 // the bits in the module past the last function block we have recorded
6656 // through either lazy scanning or the VST.
6657 if (LastFunctionBlockBit || NextUnreadBit)
6658 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6659 ? LastFunctionBlockBit
6660 : NextUnreadBit))
6661 return Err;
6663 // Check that all block address forward references got resolved (as we
6664 // promised above).
6665 if (!BasicBlockFwdRefs.empty())
6666 return error("Never resolved function from blockaddress");
6668 // Upgrade any intrinsic calls that slipped through (should not happen!) and
6669 // delete the old functions to clean up. We can't do this unless the entire
6670 // module is materialized because there could always be another function body
6671 // with calls to the old function.
6672 for (auto &I : UpgradedIntrinsics) {
6673 for (auto *U : I.first->users()) {
6674 if (CallInst *CI = dyn_cast<CallInst>(U))
6675 UpgradeIntrinsicCall(CI, I.second);
6677 if (!I.first->use_empty())
6678 I.first->replaceAllUsesWith(I.second);
6679 I.first->eraseFromParent();
6681 UpgradedIntrinsics.clear();
6683 UpgradeDebugInfo(*TheModule);
6685 UpgradeModuleFlags(*TheModule);
6687 UpgradeARCRuntime(*TheModule);
6689 return Error::success();
6692 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6693 return IdentifiedStructTypes;
6696 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6697 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6698 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6699 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6700 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6702 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6703 TheIndex.addModule(ModulePath);
6706 ModuleSummaryIndex::ModuleInfo *
6707 ModuleSummaryIndexBitcodeReader::getThisModule() {
6708 return TheIndex.getModule(ModulePath);
6711 template <bool AllowNullValueInfo>
6712 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6713 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6714 auto VGI = ValueIdToValueInfoMap[ValueId];
6715 // We can have a null value info for memprof callsite info records in
6716 // distributed ThinLTO index files when the callee function summary is not
6717 // included in the index. The bitcode writer records 0 in that case,
6718 // and the caller of this helper will set AllowNullValueInfo to true.
6719 assert(AllowNullValueInfo || std::get<0>(VGI));
6720 return VGI;
6723 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6724 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6725 StringRef SourceFileName) {
6726 std::string GlobalId =
6727 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6728 auto ValueGUID = GlobalValue::getGUID(GlobalId);
6729 auto OriginalNameID = ValueGUID;
6730 if (GlobalValue::isLocalLinkage(Linkage))
6731 OriginalNameID = GlobalValue::getGUID(ValueName);
6732 if (PrintSummaryGUIDs)
6733 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6734 << ValueName << "\n";
6736 // UseStrtab is false for legacy summary formats and value names are
6737 // created on stack. In that case we save the name in a string saver in
6738 // the index so that the value name can be recorded.
6739 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6740 TheIndex.getOrInsertValueInfo(
6741 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6742 OriginalNameID, ValueGUID);
6745 // Specialized value symbol table parser used when reading module index
6746 // blocks where we don't actually create global values. The parsed information
6747 // is saved in the bitcode reader for use when later parsing summaries.
6748 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6749 uint64_t Offset,
6750 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6751 // With a strtab the VST is not required to parse the summary.
6752 if (UseStrtab)
6753 return Error::success();
6755 assert(Offset > 0 && "Expected non-zero VST offset");
6756 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6757 if (!MaybeCurrentBit)
6758 return MaybeCurrentBit.takeError();
6759 uint64_t CurrentBit = MaybeCurrentBit.get();
6761 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6762 return Err;
6764 SmallVector<uint64_t, 64> Record;
6766 // Read all the records for this value table.
6767 SmallString<128> ValueName;
6769 while (true) {
6770 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6771 if (!MaybeEntry)
6772 return MaybeEntry.takeError();
6773 BitstreamEntry Entry = MaybeEntry.get();
6775 switch (Entry.Kind) {
6776 case BitstreamEntry::SubBlock: // Handled for us already.
6777 case BitstreamEntry::Error:
6778 return error("Malformed block");
6779 case BitstreamEntry::EndBlock:
6780 // Done parsing VST, jump back to wherever we came from.
6781 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6782 return JumpFailed;
6783 return Error::success();
6784 case BitstreamEntry::Record:
6785 // The interesting case.
6786 break;
6789 // Read a record.
6790 Record.clear();
6791 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6792 if (!MaybeRecord)
6793 return MaybeRecord.takeError();
6794 switch (MaybeRecord.get()) {
6795 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6796 break;
6797 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6798 if (convertToString(Record, 1, ValueName))
6799 return error("Invalid record");
6800 unsigned ValueID = Record[0];
6801 assert(!SourceFileName.empty());
6802 auto VLI = ValueIdToLinkageMap.find(ValueID);
6803 assert(VLI != ValueIdToLinkageMap.end() &&
6804 "No linkage found for VST entry?");
6805 auto Linkage = VLI->second;
6806 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6807 ValueName.clear();
6808 break;
6810 case bitc::VST_CODE_FNENTRY: {
6811 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6812 if (convertToString(Record, 2, ValueName))
6813 return error("Invalid record");
6814 unsigned ValueID = Record[0];
6815 assert(!SourceFileName.empty());
6816 auto VLI = ValueIdToLinkageMap.find(ValueID);
6817 assert(VLI != ValueIdToLinkageMap.end() &&
6818 "No linkage found for VST entry?");
6819 auto Linkage = VLI->second;
6820 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6821 ValueName.clear();
6822 break;
6824 case bitc::VST_CODE_COMBINED_ENTRY: {
6825 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6826 unsigned ValueID = Record[0];
6827 GlobalValue::GUID RefGUID = Record[1];
6828 // The "original name", which is the second value of the pair will be
6829 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6830 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6831 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6832 break;
6838 // Parse just the blocks needed for building the index out of the module.
6839 // At the end of this routine the module Index is populated with a map
6840 // from global value id to GlobalValueSummary objects.
6841 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6842 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6843 return Err;
6845 SmallVector<uint64_t, 64> Record;
6846 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6847 unsigned ValueId = 0;
6849 // Read the index for this module.
6850 while (true) {
6851 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6852 if (!MaybeEntry)
6853 return MaybeEntry.takeError();
6854 llvm::BitstreamEntry Entry = MaybeEntry.get();
6856 switch (Entry.Kind) {
6857 case BitstreamEntry::Error:
6858 return error("Malformed block");
6859 case BitstreamEntry::EndBlock:
6860 return Error::success();
6862 case BitstreamEntry::SubBlock:
6863 switch (Entry.ID) {
6864 default: // Skip unknown content.
6865 if (Error Err = Stream.SkipBlock())
6866 return Err;
6867 break;
6868 case bitc::BLOCKINFO_BLOCK_ID:
6869 // Need to parse these to get abbrev ids (e.g. for VST)
6870 if (Error Err = readBlockInfo())
6871 return Err;
6872 break;
6873 case bitc::VALUE_SYMTAB_BLOCK_ID:
6874 // Should have been parsed earlier via VSTOffset, unless there
6875 // is no summary section.
6876 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6877 !SeenGlobalValSummary) &&
6878 "Expected early VST parse via VSTOffset record");
6879 if (Error Err = Stream.SkipBlock())
6880 return Err;
6881 break;
6882 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6883 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6884 // Add the module if it is a per-module index (has a source file name).
6885 if (!SourceFileName.empty())
6886 addThisModule();
6887 assert(!SeenValueSymbolTable &&
6888 "Already read VST when parsing summary block?");
6889 // We might not have a VST if there were no values in the
6890 // summary. An empty summary block generated when we are
6891 // performing ThinLTO compiles so we don't later invoke
6892 // the regular LTO process on them.
6893 if (VSTOffset > 0) {
6894 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6895 return Err;
6896 SeenValueSymbolTable = true;
6898 SeenGlobalValSummary = true;
6899 if (Error Err = parseEntireSummary(Entry.ID))
6900 return Err;
6901 break;
6902 case bitc::MODULE_STRTAB_BLOCK_ID:
6903 if (Error Err = parseModuleStringTable())
6904 return Err;
6905 break;
6907 continue;
6909 case BitstreamEntry::Record: {
6910 Record.clear();
6911 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6912 if (!MaybeBitCode)
6913 return MaybeBitCode.takeError();
6914 switch (MaybeBitCode.get()) {
6915 default:
6916 break; // Default behavior, ignore unknown content.
6917 case bitc::MODULE_CODE_VERSION: {
6918 if (Error Err = parseVersionRecord(Record).takeError())
6919 return Err;
6920 break;
6922 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6923 case bitc::MODULE_CODE_SOURCE_FILENAME: {
6924 SmallString<128> ValueName;
6925 if (convertToString(Record, 0, ValueName))
6926 return error("Invalid record");
6927 SourceFileName = ValueName.c_str();
6928 break;
6930 /// MODULE_CODE_HASH: [5*i32]
6931 case bitc::MODULE_CODE_HASH: {
6932 if (Record.size() != 5)
6933 return error("Invalid hash length " + Twine(Record.size()).str());
6934 auto &Hash = getThisModule()->second;
6935 int Pos = 0;
6936 for (auto &Val : Record) {
6937 assert(!(Val >> 32) && "Unexpected high bits set");
6938 Hash[Pos++] = Val;
6940 break;
6942 /// MODULE_CODE_VSTOFFSET: [offset]
6943 case bitc::MODULE_CODE_VSTOFFSET:
6944 if (Record.empty())
6945 return error("Invalid record");
6946 // Note that we subtract 1 here because the offset is relative to one
6947 // word before the start of the identification or module block, which
6948 // was historically always the start of the regular bitcode header.
6949 VSTOffset = Record[0] - 1;
6950 break;
6951 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
6952 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
6953 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
6954 // v2: [strtab offset, strtab size, v1]
6955 case bitc::MODULE_CODE_GLOBALVAR:
6956 case bitc::MODULE_CODE_FUNCTION:
6957 case bitc::MODULE_CODE_ALIAS: {
6958 StringRef Name;
6959 ArrayRef<uint64_t> GVRecord;
6960 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6961 if (GVRecord.size() <= 3)
6962 return error("Invalid record");
6963 uint64_t RawLinkage = GVRecord[3];
6964 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6965 if (!UseStrtab) {
6966 ValueIdToLinkageMap[ValueId++] = Linkage;
6967 break;
6970 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6971 break;
6975 continue;
6980 std::vector<ValueInfo>
6981 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6982 std::vector<ValueInfo> Ret;
6983 Ret.reserve(Record.size());
6984 for (uint64_t RefValueId : Record)
6985 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
6986 return Ret;
6989 std::vector<FunctionSummary::EdgeTy>
6990 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6991 bool IsOldProfileFormat,
6992 bool HasProfile, bool HasRelBF) {
6993 std::vector<FunctionSummary::EdgeTy> Ret;
6994 Ret.reserve(Record.size());
6995 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6996 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6997 uint64_t RelBF = 0;
6998 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
6999 if (IsOldProfileFormat) {
7000 I += 1; // Skip old callsitecount field
7001 if (HasProfile)
7002 I += 1; // Skip old profilecount field
7003 } else if (HasProfile)
7004 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7005 else if (HasRelBF)
7006 RelBF = Record[++I];
7007 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7009 return Ret;
7012 static void
7013 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7014 WholeProgramDevirtResolution &Wpd) {
7015 uint64_t ArgNum = Record[Slot++];
7016 WholeProgramDevirtResolution::ByArg &B =
7017 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7018 Slot += ArgNum;
7020 B.TheKind =
7021 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7022 B.Info = Record[Slot++];
7023 B.Byte = Record[Slot++];
7024 B.Bit = Record[Slot++];
7027 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7028 StringRef Strtab, size_t &Slot,
7029 TypeIdSummary &TypeId) {
7030 uint64_t Id = Record[Slot++];
7031 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7033 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7034 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7035 static_cast<size_t>(Record[Slot + 1])};
7036 Slot += 2;
7038 uint64_t ResByArgNum = Record[Slot++];
7039 for (uint64_t I = 0; I != ResByArgNum; ++I)
7040 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7043 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7044 StringRef Strtab,
7045 ModuleSummaryIndex &TheIndex) {
7046 size_t Slot = 0;
7047 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7048 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7049 Slot += 2;
7051 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7052 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7053 TypeId.TTRes.AlignLog2 = Record[Slot++];
7054 TypeId.TTRes.SizeM1 = Record[Slot++];
7055 TypeId.TTRes.BitMask = Record[Slot++];
7056 TypeId.TTRes.InlineBits = Record[Slot++];
7058 while (Slot < Record.size())
7059 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7062 std::vector<FunctionSummary::ParamAccess>
7063 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7064 auto ReadRange = [&]() {
7065 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7066 BitcodeReader::decodeSignRotatedValue(Record.front()));
7067 Record = Record.drop_front();
7068 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7069 BitcodeReader::decodeSignRotatedValue(Record.front()));
7070 Record = Record.drop_front();
7071 ConstantRange Range{Lower, Upper};
7072 assert(!Range.isFullSet());
7073 assert(!Range.isUpperSignWrapped());
7074 return Range;
7077 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7078 while (!Record.empty()) {
7079 PendingParamAccesses.emplace_back();
7080 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7081 ParamAccess.ParamNo = Record.front();
7082 Record = Record.drop_front();
7083 ParamAccess.Use = ReadRange();
7084 ParamAccess.Calls.resize(Record.front());
7085 Record = Record.drop_front();
7086 for (auto &Call : ParamAccess.Calls) {
7087 Call.ParamNo = Record.front();
7088 Record = Record.drop_front();
7089 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7090 Record = Record.drop_front();
7091 Call.Offsets = ReadRange();
7094 return PendingParamAccesses;
7097 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7098 ArrayRef<uint64_t> Record, size_t &Slot,
7099 TypeIdCompatibleVtableInfo &TypeId) {
7100 uint64_t Offset = Record[Slot++];
7101 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7102 TypeId.push_back({Offset, Callee});
7105 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7106 ArrayRef<uint64_t> Record) {
7107 size_t Slot = 0;
7108 TypeIdCompatibleVtableInfo &TypeId =
7109 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7110 {Strtab.data() + Record[Slot],
7111 static_cast<size_t>(Record[Slot + 1])});
7112 Slot += 2;
7114 while (Slot < Record.size())
7115 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7118 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7119 unsigned WOCnt) {
7120 // Readonly and writeonly refs are in the end of the refs list.
7121 assert(ROCnt + WOCnt <= Refs.size());
7122 unsigned FirstWORef = Refs.size() - WOCnt;
7123 unsigned RefNo = FirstWORef - ROCnt;
7124 for (; RefNo < FirstWORef; ++RefNo)
7125 Refs[RefNo].setReadOnly();
7126 for (; RefNo < Refs.size(); ++RefNo)
7127 Refs[RefNo].setWriteOnly();
7130 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7131 // objects in the index.
7132 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7133 if (Error Err = Stream.EnterSubBlock(ID))
7134 return Err;
7135 SmallVector<uint64_t, 64> Record;
7137 // Parse version
7139 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7140 if (!MaybeEntry)
7141 return MaybeEntry.takeError();
7142 BitstreamEntry Entry = MaybeEntry.get();
7144 if (Entry.Kind != BitstreamEntry::Record)
7145 return error("Invalid Summary Block: record for version expected");
7146 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7147 if (!MaybeRecord)
7148 return MaybeRecord.takeError();
7149 if (MaybeRecord.get() != bitc::FS_VERSION)
7150 return error("Invalid Summary Block: version expected");
7152 const uint64_t Version = Record[0];
7153 const bool IsOldProfileFormat = Version == 1;
7154 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7155 return error("Invalid summary version " + Twine(Version) +
7156 ". Version should be in the range [1-" +
7157 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7158 "].");
7159 Record.clear();
7161 // Keep around the last seen summary to be used when we see an optional
7162 // "OriginalName" attachement.
7163 GlobalValueSummary *LastSeenSummary = nullptr;
7164 GlobalValue::GUID LastSeenGUID = 0;
7166 // We can expect to see any number of type ID information records before
7167 // each function summary records; these variables store the information
7168 // collected so far so that it can be used to create the summary object.
7169 std::vector<GlobalValue::GUID> PendingTypeTests;
7170 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7171 PendingTypeCheckedLoadVCalls;
7172 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7173 PendingTypeCheckedLoadConstVCalls;
7174 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7176 std::vector<CallsiteInfo> PendingCallsites;
7177 std::vector<AllocInfo> PendingAllocs;
7179 while (true) {
7180 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7181 if (!MaybeEntry)
7182 return MaybeEntry.takeError();
7183 BitstreamEntry Entry = MaybeEntry.get();
7185 switch (Entry.Kind) {
7186 case BitstreamEntry::SubBlock: // Handled for us already.
7187 case BitstreamEntry::Error:
7188 return error("Malformed block");
7189 case BitstreamEntry::EndBlock:
7190 return Error::success();
7191 case BitstreamEntry::Record:
7192 // The interesting case.
7193 break;
7196 // Read a record. The record format depends on whether this
7197 // is a per-module index or a combined index file. In the per-module
7198 // case the records contain the associated value's ID for correlation
7199 // with VST entries. In the combined index the correlation is done
7200 // via the bitcode offset of the summary records (which were saved
7201 // in the combined index VST entries). The records also contain
7202 // information used for ThinLTO renaming and importing.
7203 Record.clear();
7204 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7205 if (!MaybeBitCode)
7206 return MaybeBitCode.takeError();
7207 switch (unsigned BitCode = MaybeBitCode.get()) {
7208 default: // Default behavior: ignore.
7209 break;
7210 case bitc::FS_FLAGS: { // [flags]
7211 TheIndex.setFlags(Record[0]);
7212 break;
7214 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7215 uint64_t ValueID = Record[0];
7216 GlobalValue::GUID RefGUID = Record[1];
7217 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7218 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7219 break;
7221 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7222 // numrefs x valueid, n x (valueid)]
7223 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7224 // numrefs x valueid,
7225 // n x (valueid, hotness)]
7226 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7227 // numrefs x valueid,
7228 // n x (valueid, relblockfreq)]
7229 case bitc::FS_PERMODULE:
7230 case bitc::FS_PERMODULE_RELBF:
7231 case bitc::FS_PERMODULE_PROFILE: {
7232 unsigned ValueID = Record[0];
7233 uint64_t RawFlags = Record[1];
7234 unsigned InstCount = Record[2];
7235 uint64_t RawFunFlags = 0;
7236 unsigned NumRefs = Record[3];
7237 unsigned NumRORefs = 0, NumWORefs = 0;
7238 int RefListStartIndex = 4;
7239 if (Version >= 4) {
7240 RawFunFlags = Record[3];
7241 NumRefs = Record[4];
7242 RefListStartIndex = 5;
7243 if (Version >= 5) {
7244 NumRORefs = Record[5];
7245 RefListStartIndex = 6;
7246 if (Version >= 7) {
7247 NumWORefs = Record[6];
7248 RefListStartIndex = 7;
7253 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7254 // The module path string ref set in the summary must be owned by the
7255 // index's module string table. Since we don't have a module path
7256 // string table section in the per-module index, we create a single
7257 // module path string table entry with an empty (0) ID to take
7258 // ownership.
7259 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7260 assert(Record.size() >= RefListStartIndex + NumRefs &&
7261 "Record size inconsistent with number of references");
7262 std::vector<ValueInfo> Refs = makeRefList(
7263 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7264 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7265 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7266 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7267 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7268 IsOldProfileFormat, HasProfile, HasRelBF);
7269 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7270 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7271 // In order to save memory, only record the memprof summaries if this is
7272 // the prevailing copy of a symbol. The linker doesn't resolve local
7273 // linkage values so don't check whether those are prevailing.
7274 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7275 if (IsPrevailing &&
7276 !GlobalValue::isLocalLinkage(LT) &&
7277 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7278 PendingCallsites.clear();
7279 PendingAllocs.clear();
7281 auto FS = std::make_unique<FunctionSummary>(
7282 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7283 std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7284 std::move(PendingTypeTestAssumeVCalls),
7285 std::move(PendingTypeCheckedLoadVCalls),
7286 std::move(PendingTypeTestAssumeConstVCalls),
7287 std::move(PendingTypeCheckedLoadConstVCalls),
7288 std::move(PendingParamAccesses), std::move(PendingCallsites),
7289 std::move(PendingAllocs));
7290 FS->setModulePath(getThisModule()->first());
7291 FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7292 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7293 std::move(FS));
7294 break;
7296 // FS_ALIAS: [valueid, flags, valueid]
7297 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7298 // they expect all aliasee summaries to be available.
7299 case bitc::FS_ALIAS: {
7300 unsigned ValueID = Record[0];
7301 uint64_t RawFlags = Record[1];
7302 unsigned AliaseeID = Record[2];
7303 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7304 auto AS = std::make_unique<AliasSummary>(Flags);
7305 // The module path string ref set in the summary must be owned by the
7306 // index's module string table. Since we don't have a module path
7307 // string table section in the per-module index, we create a single
7308 // module path string table entry with an empty (0) ID to take
7309 // ownership.
7310 AS->setModulePath(getThisModule()->first());
7312 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7313 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7314 if (!AliaseeInModule)
7315 return error("Alias expects aliasee summary to be parsed");
7316 AS->setAliasee(AliaseeVI, AliaseeInModule);
7318 auto GUID = getValueInfoFromValueId(ValueID);
7319 AS->setOriginalName(std::get<1>(GUID));
7320 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7321 break;
7323 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7324 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7325 unsigned ValueID = Record[0];
7326 uint64_t RawFlags = Record[1];
7327 unsigned RefArrayStart = 2;
7328 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7329 /* WriteOnly */ false,
7330 /* Constant */ false,
7331 GlobalObject::VCallVisibilityPublic);
7332 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7333 if (Version >= 5) {
7334 GVF = getDecodedGVarFlags(Record[2]);
7335 RefArrayStart = 3;
7337 std::vector<ValueInfo> Refs =
7338 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7339 auto FS =
7340 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7341 FS->setModulePath(getThisModule()->first());
7342 auto GUID = getValueInfoFromValueId(ValueID);
7343 FS->setOriginalName(std::get<1>(GUID));
7344 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7345 break;
7347 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7348 // numrefs, numrefs x valueid,
7349 // n x (valueid, offset)]
7350 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7351 unsigned ValueID = Record[0];
7352 uint64_t RawFlags = Record[1];
7353 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7354 unsigned NumRefs = Record[3];
7355 unsigned RefListStartIndex = 4;
7356 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7357 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7358 std::vector<ValueInfo> Refs = makeRefList(
7359 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7360 VTableFuncList VTableFuncs;
7361 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7362 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7363 uint64_t Offset = Record[++I];
7364 VTableFuncs.push_back({Callee, Offset});
7366 auto VS =
7367 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7368 VS->setModulePath(getThisModule()->first());
7369 VS->setVTableFuncs(VTableFuncs);
7370 auto GUID = getValueInfoFromValueId(ValueID);
7371 VS->setOriginalName(std::get<1>(GUID));
7372 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7373 break;
7375 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7376 // numrefs x valueid, n x (valueid)]
7377 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7378 // numrefs x valueid, n x (valueid, hotness)]
7379 case bitc::FS_COMBINED:
7380 case bitc::FS_COMBINED_PROFILE: {
7381 unsigned ValueID = Record[0];
7382 uint64_t ModuleId = Record[1];
7383 uint64_t RawFlags = Record[2];
7384 unsigned InstCount = Record[3];
7385 uint64_t RawFunFlags = 0;
7386 uint64_t EntryCount = 0;
7387 unsigned NumRefs = Record[4];
7388 unsigned NumRORefs = 0, NumWORefs = 0;
7389 int RefListStartIndex = 5;
7391 if (Version >= 4) {
7392 RawFunFlags = Record[4];
7393 RefListStartIndex = 6;
7394 size_t NumRefsIndex = 5;
7395 if (Version >= 5) {
7396 unsigned NumRORefsOffset = 1;
7397 RefListStartIndex = 7;
7398 if (Version >= 6) {
7399 NumRefsIndex = 6;
7400 EntryCount = Record[5];
7401 RefListStartIndex = 8;
7402 if (Version >= 7) {
7403 RefListStartIndex = 9;
7404 NumWORefs = Record[8];
7405 NumRORefsOffset = 2;
7408 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7410 NumRefs = Record[NumRefsIndex];
7413 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7414 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7415 assert(Record.size() >= RefListStartIndex + NumRefs &&
7416 "Record size inconsistent with number of references");
7417 std::vector<ValueInfo> Refs = makeRefList(
7418 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7419 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7420 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7421 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7422 IsOldProfileFormat, HasProfile, false);
7423 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7424 setSpecialRefs(Refs, NumRORefs, NumWORefs);
7425 auto FS = std::make_unique<FunctionSummary>(
7426 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7427 std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7428 std::move(PendingTypeTestAssumeVCalls),
7429 std::move(PendingTypeCheckedLoadVCalls),
7430 std::move(PendingTypeTestAssumeConstVCalls),
7431 std::move(PendingTypeCheckedLoadConstVCalls),
7432 std::move(PendingParamAccesses), std::move(PendingCallsites),
7433 std::move(PendingAllocs));
7434 LastSeenSummary = FS.get();
7435 LastSeenGUID = VI.getGUID();
7436 FS->setModulePath(ModuleIdMap[ModuleId]);
7437 TheIndex.addGlobalValueSummary(VI, std::move(FS));
7438 break;
7440 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7441 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7442 // they expect all aliasee summaries to be available.
7443 case bitc::FS_COMBINED_ALIAS: {
7444 unsigned ValueID = Record[0];
7445 uint64_t ModuleId = Record[1];
7446 uint64_t RawFlags = Record[2];
7447 unsigned AliaseeValueId = Record[3];
7448 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7449 auto AS = std::make_unique<AliasSummary>(Flags);
7450 LastSeenSummary = AS.get();
7451 AS->setModulePath(ModuleIdMap[ModuleId]);
7453 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7454 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7455 AS->setAliasee(AliaseeVI, AliaseeInModule);
7457 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7458 LastSeenGUID = VI.getGUID();
7459 TheIndex.addGlobalValueSummary(VI, std::move(AS));
7460 break;
7462 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7463 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7464 unsigned ValueID = Record[0];
7465 uint64_t ModuleId = Record[1];
7466 uint64_t RawFlags = Record[2];
7467 unsigned RefArrayStart = 3;
7468 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7469 /* WriteOnly */ false,
7470 /* Constant */ false,
7471 GlobalObject::VCallVisibilityPublic);
7472 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7473 if (Version >= 5) {
7474 GVF = getDecodedGVarFlags(Record[3]);
7475 RefArrayStart = 4;
7477 std::vector<ValueInfo> Refs =
7478 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7479 auto FS =
7480 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7481 LastSeenSummary = FS.get();
7482 FS->setModulePath(ModuleIdMap[ModuleId]);
7483 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7484 LastSeenGUID = VI.getGUID();
7485 TheIndex.addGlobalValueSummary(VI, std::move(FS));
7486 break;
7488 // FS_COMBINED_ORIGINAL_NAME: [original_name]
7489 case bitc::FS_COMBINED_ORIGINAL_NAME: {
7490 uint64_t OriginalName = Record[0];
7491 if (!LastSeenSummary)
7492 return error("Name attachment that does not follow a combined record");
7493 LastSeenSummary->setOriginalName(OriginalName);
7494 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7495 // Reset the LastSeenSummary
7496 LastSeenSummary = nullptr;
7497 LastSeenGUID = 0;
7498 break;
7500 case bitc::FS_TYPE_TESTS:
7501 assert(PendingTypeTests.empty());
7502 llvm::append_range(PendingTypeTests, Record);
7503 break;
7505 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7506 assert(PendingTypeTestAssumeVCalls.empty());
7507 for (unsigned I = 0; I != Record.size(); I += 2)
7508 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7509 break;
7511 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7512 assert(PendingTypeCheckedLoadVCalls.empty());
7513 for (unsigned I = 0; I != Record.size(); I += 2)
7514 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7515 break;
7517 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7518 PendingTypeTestAssumeConstVCalls.push_back(
7519 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7520 break;
7522 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7523 PendingTypeCheckedLoadConstVCalls.push_back(
7524 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7525 break;
7527 case bitc::FS_CFI_FUNCTION_DEFS: {
7528 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7529 for (unsigned I = 0; I != Record.size(); I += 2)
7530 CfiFunctionDefs.insert(
7531 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7532 break;
7535 case bitc::FS_CFI_FUNCTION_DECLS: {
7536 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7537 for (unsigned I = 0; I != Record.size(); I += 2)
7538 CfiFunctionDecls.insert(
7539 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7540 break;
7543 case bitc::FS_TYPE_ID:
7544 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7545 break;
7547 case bitc::FS_TYPE_ID_METADATA:
7548 parseTypeIdCompatibleVtableSummaryRecord(Record);
7549 break;
7551 case bitc::FS_BLOCK_COUNT:
7552 TheIndex.addBlockCount(Record[0]);
7553 break;
7555 case bitc::FS_PARAM_ACCESS: {
7556 PendingParamAccesses = parseParamAccesses(Record);
7557 break;
7560 case bitc::FS_STACK_IDS: { // [n x stackid]
7561 // Save stack ids in the reader to consult when adding stack ids from the
7562 // lists in the stack node and alloc node entries.
7563 StackIds = ArrayRef<uint64_t>(Record);
7564 break;
7567 case bitc::FS_PERMODULE_CALLSITE_INFO: {
7568 unsigned ValueID = Record[0];
7569 SmallVector<unsigned> StackIdList;
7570 for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7571 assert(*R < StackIds.size());
7572 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7574 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7575 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7576 break;
7579 case bitc::FS_COMBINED_CALLSITE_INFO: {
7580 auto RecordIter = Record.begin();
7581 unsigned ValueID = *RecordIter++;
7582 unsigned NumStackIds = *RecordIter++;
7583 unsigned NumVersions = *RecordIter++;
7584 assert(Record.size() == 3 + NumStackIds + NumVersions);
7585 SmallVector<unsigned> StackIdList;
7586 for (unsigned J = 0; J < NumStackIds; J++) {
7587 assert(*RecordIter < StackIds.size());
7588 StackIdList.push_back(
7589 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7591 SmallVector<unsigned> Versions;
7592 for (unsigned J = 0; J < NumVersions; J++)
7593 Versions.push_back(*RecordIter++);
7594 ValueInfo VI = std::get<0>(
7595 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7596 PendingCallsites.push_back(
7597 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7598 break;
7601 case bitc::FS_PERMODULE_ALLOC_INFO: {
7602 unsigned I = 0;
7603 std::vector<MIBInfo> MIBs;
7604 while (I < Record.size()) {
7605 assert(Record.size() - I >= 2);
7606 AllocationType AllocType = (AllocationType)Record[I++];
7607 unsigned NumStackEntries = Record[I++];
7608 assert(Record.size() - I >= NumStackEntries);
7609 SmallVector<unsigned> StackIdList;
7610 for (unsigned J = 0; J < NumStackEntries; J++) {
7611 assert(Record[I] < StackIds.size());
7612 StackIdList.push_back(
7613 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7615 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7617 PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7618 break;
7621 case bitc::FS_COMBINED_ALLOC_INFO: {
7622 unsigned I = 0;
7623 std::vector<MIBInfo> MIBs;
7624 unsigned NumMIBs = Record[I++];
7625 unsigned NumVersions = Record[I++];
7626 unsigned MIBsRead = 0;
7627 while (MIBsRead++ < NumMIBs) {
7628 assert(Record.size() - I >= 2);
7629 AllocationType AllocType = (AllocationType)Record[I++];
7630 unsigned NumStackEntries = Record[I++];
7631 assert(Record.size() - I >= NumStackEntries);
7632 SmallVector<unsigned> StackIdList;
7633 for (unsigned J = 0; J < NumStackEntries; J++) {
7634 assert(Record[I] < StackIds.size());
7635 StackIdList.push_back(
7636 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7638 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7640 assert(Record.size() - I >= NumVersions);
7641 SmallVector<uint8_t> Versions;
7642 for (unsigned J = 0; J < NumVersions; J++)
7643 Versions.push_back(Record[I++]);
7644 PendingAllocs.push_back(
7645 AllocInfo(std::move(Versions), std::move(MIBs)));
7646 break;
7650 llvm_unreachable("Exit infinite loop");
7653 // Parse the module string table block into the Index.
7654 // This populates the ModulePathStringTable map in the index.
7655 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7656 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7657 return Err;
7659 SmallVector<uint64_t, 64> Record;
7661 SmallString<128> ModulePath;
7662 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7664 while (true) {
7665 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7666 if (!MaybeEntry)
7667 return MaybeEntry.takeError();
7668 BitstreamEntry Entry = MaybeEntry.get();
7670 switch (Entry.Kind) {
7671 case BitstreamEntry::SubBlock: // Handled for us already.
7672 case BitstreamEntry::Error:
7673 return error("Malformed block");
7674 case BitstreamEntry::EndBlock:
7675 return Error::success();
7676 case BitstreamEntry::Record:
7677 // The interesting case.
7678 break;
7681 Record.clear();
7682 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7683 if (!MaybeRecord)
7684 return MaybeRecord.takeError();
7685 switch (MaybeRecord.get()) {
7686 default: // Default behavior: ignore.
7687 break;
7688 case bitc::MST_CODE_ENTRY: {
7689 // MST_ENTRY: [modid, namechar x N]
7690 uint64_t ModuleId = Record[0];
7692 if (convertToString(Record, 1, ModulePath))
7693 return error("Invalid record");
7695 LastSeenModule = TheIndex.addModule(ModulePath);
7696 ModuleIdMap[ModuleId] = LastSeenModule->first();
7698 ModulePath.clear();
7699 break;
7701 /// MST_CODE_HASH: [5*i32]
7702 case bitc::MST_CODE_HASH: {
7703 if (Record.size() != 5)
7704 return error("Invalid hash length " + Twine(Record.size()).str());
7705 if (!LastSeenModule)
7706 return error("Invalid hash that does not follow a module path");
7707 int Pos = 0;
7708 for (auto &Val : Record) {
7709 assert(!(Val >> 32) && "Unexpected high bits set");
7710 LastSeenModule->second[Pos++] = Val;
7712 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7713 LastSeenModule = nullptr;
7714 break;
7718 llvm_unreachable("Exit infinite loop");
7721 namespace {
7723 // FIXME: This class is only here to support the transition to llvm::Error. It
7724 // will be removed once this transition is complete. Clients should prefer to
7725 // deal with the Error value directly, rather than converting to error_code.
7726 class BitcodeErrorCategoryType : public std::error_category {
7727 const char *name() const noexcept override {
7728 return "llvm.bitcode";
7731 std::string message(int IE) const override {
7732 BitcodeError E = static_cast<BitcodeError>(IE);
7733 switch (E) {
7734 case BitcodeError::CorruptedBitcode:
7735 return "Corrupted bitcode";
7737 llvm_unreachable("Unknown error type!");
7741 } // end anonymous namespace
7743 const std::error_category &llvm::BitcodeErrorCategory() {
7744 static BitcodeErrorCategoryType ErrorCategory;
7745 return ErrorCategory;
7748 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7749 unsigned Block, unsigned RecordID) {
7750 if (Error Err = Stream.EnterSubBlock(Block))
7751 return std::move(Err);
7753 StringRef Strtab;
7754 while (true) {
7755 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7756 if (!MaybeEntry)
7757 return MaybeEntry.takeError();
7758 llvm::BitstreamEntry Entry = MaybeEntry.get();
7760 switch (Entry.Kind) {
7761 case BitstreamEntry::EndBlock:
7762 return Strtab;
7764 case BitstreamEntry::Error:
7765 return error("Malformed block");
7767 case BitstreamEntry::SubBlock:
7768 if (Error Err = Stream.SkipBlock())
7769 return std::move(Err);
7770 break;
7772 case BitstreamEntry::Record:
7773 StringRef Blob;
7774 SmallVector<uint64_t, 1> Record;
7775 Expected<unsigned> MaybeRecord =
7776 Stream.readRecord(Entry.ID, Record, &Blob);
7777 if (!MaybeRecord)
7778 return MaybeRecord.takeError();
7779 if (MaybeRecord.get() == RecordID)
7780 Strtab = Blob;
7781 break;
7786 //===----------------------------------------------------------------------===//
7787 // External interface
7788 //===----------------------------------------------------------------------===//
7790 Expected<std::vector<BitcodeModule>>
7791 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7792 auto FOrErr = getBitcodeFileContents(Buffer);
7793 if (!FOrErr)
7794 return FOrErr.takeError();
7795 return std::move(FOrErr->Mods);
7798 Expected<BitcodeFileContents>
7799 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7800 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7801 if (!StreamOrErr)
7802 return StreamOrErr.takeError();
7803 BitstreamCursor &Stream = *StreamOrErr;
7805 BitcodeFileContents F;
7806 while (true) {
7807 uint64_t BCBegin = Stream.getCurrentByteNo();
7809 // We may be consuming bitcode from a client that leaves garbage at the end
7810 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7811 // the end that there cannot possibly be another module, stop looking.
7812 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7813 return F;
7815 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7816 if (!MaybeEntry)
7817 return MaybeEntry.takeError();
7818 llvm::BitstreamEntry Entry = MaybeEntry.get();
7820 switch (Entry.Kind) {
7821 case BitstreamEntry::EndBlock:
7822 case BitstreamEntry::Error:
7823 return error("Malformed block");
7825 case BitstreamEntry::SubBlock: {
7826 uint64_t IdentificationBit = -1ull;
7827 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7828 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7829 if (Error Err = Stream.SkipBlock())
7830 return std::move(Err);
7833 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7834 if (!MaybeEntry)
7835 return MaybeEntry.takeError();
7836 Entry = MaybeEntry.get();
7839 if (Entry.Kind != BitstreamEntry::SubBlock ||
7840 Entry.ID != bitc::MODULE_BLOCK_ID)
7841 return error("Malformed block");
7844 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7845 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7846 if (Error Err = Stream.SkipBlock())
7847 return std::move(Err);
7849 F.Mods.push_back({Stream.getBitcodeBytes().slice(
7850 BCBegin, Stream.getCurrentByteNo() - BCBegin),
7851 Buffer.getBufferIdentifier(), IdentificationBit,
7852 ModuleBit});
7853 continue;
7856 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7857 Expected<StringRef> Strtab =
7858 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7859 if (!Strtab)
7860 return Strtab.takeError();
7861 // This string table is used by every preceding bitcode module that does
7862 // not have its own string table. A bitcode file may have multiple
7863 // string tables if it was created by binary concatenation, for example
7864 // with "llvm-cat -b".
7865 for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7866 if (!I.Strtab.empty())
7867 break;
7868 I.Strtab = *Strtab;
7870 // Similarly, the string table is used by every preceding symbol table;
7871 // normally there will be just one unless the bitcode file was created
7872 // by binary concatenation.
7873 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7874 F.StrtabForSymtab = *Strtab;
7875 continue;
7878 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7879 Expected<StringRef> SymtabOrErr =
7880 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7881 if (!SymtabOrErr)
7882 return SymtabOrErr.takeError();
7884 // We can expect the bitcode file to have multiple symbol tables if it
7885 // was created by binary concatenation. In that case we silently
7886 // ignore any subsequent symbol tables, which is fine because this is a
7887 // low level function. The client is expected to notice that the number
7888 // of modules in the symbol table does not match the number of modules
7889 // in the input file and regenerate the symbol table.
7890 if (F.Symtab.empty())
7891 F.Symtab = *SymtabOrErr;
7892 continue;
7895 if (Error Err = Stream.SkipBlock())
7896 return std::move(Err);
7897 continue;
7899 case BitstreamEntry::Record:
7900 if (Error E = Stream.skipRecord(Entry.ID).takeError())
7901 return std::move(E);
7902 continue;
7907 /// Get a lazy one-at-time loading module from bitcode.
7909 /// This isn't always used in a lazy context. In particular, it's also used by
7910 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull
7911 /// in forward-referenced functions from block address references.
7913 /// \param[in] MaterializeAll Set to \c true if we should materialize
7914 /// everything.
7915 Expected<std::unique_ptr<Module>>
7916 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7917 bool ShouldLazyLoadMetadata, bool IsImporting,
7918 ParserCallbacks Callbacks) {
7919 BitstreamCursor Stream(Buffer);
7921 std::string ProducerIdentification;
7922 if (IdentificationBit != -1ull) {
7923 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7924 return std::move(JumpFailed);
7925 if (Error E =
7926 readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7927 return std::move(E);
7930 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7931 return std::move(JumpFailed);
7932 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7933 Context);
7935 std::unique_ptr<Module> M =
7936 std::make_unique<Module>(ModuleIdentifier, Context);
7937 M->setMaterializer(R);
7939 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7940 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7941 IsImporting, Callbacks))
7942 return std::move(Err);
7944 if (MaterializeAll) {
7945 // Read in the entire module, and destroy the BitcodeReader.
7946 if (Error Err = M->materializeAll())
7947 return std::move(Err);
7948 } else {
7949 // Resolve forward references from blockaddresses.
7950 if (Error Err = R->materializeForwardReferencedFunctions())
7951 return std::move(Err);
7953 return std::move(M);
7956 Expected<std::unique_ptr<Module>>
7957 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7958 bool IsImporting, ParserCallbacks Callbacks) {
7959 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7960 Callbacks);
7963 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7964 // We don't use ModuleIdentifier here because the client may need to control the
7965 // module path used in the combined summary (e.g. when reading summaries for
7966 // regular LTO modules).
7967 Error BitcodeModule::readSummary(
7968 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
7969 std::function<bool(GlobalValue::GUID)> IsPrevailing) {
7970 BitstreamCursor Stream(Buffer);
7971 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7972 return JumpFailed;
7974 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7975 ModulePath, IsPrevailing);
7976 return R.parseModule();
7979 // Parse the specified bitcode buffer, returning the function info index.
7980 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7981 BitstreamCursor Stream(Buffer);
7982 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7983 return std::move(JumpFailed);
7985 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7986 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7987 ModuleIdentifier, 0);
7989 if (Error Err = R.parseModule())
7990 return std::move(Err);
7992 return std::move(Index);
7995 static Expected<std::pair<bool, bool>>
7996 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
7997 unsigned ID,
7998 BitcodeLTOInfo &LTOInfo) {
7999 if (Error Err = Stream.EnterSubBlock(ID))
8000 return std::move(Err);
8001 SmallVector<uint64_t, 64> Record;
8003 while (true) {
8004 BitstreamEntry Entry;
8005 std::pair<bool, bool> Result = {false,false};
8006 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8007 return std::move(E);
8009 switch (Entry.Kind) {
8010 case BitstreamEntry::SubBlock: // Handled for us already.
8011 case BitstreamEntry::Error:
8012 return error("Malformed block");
8013 case BitstreamEntry::EndBlock: {
8014 // If no flags record found, set both flags to false.
8015 return Result;
8017 case BitstreamEntry::Record:
8018 // The interesting case.
8019 break;
8022 // Look for the FS_FLAGS record.
8023 Record.clear();
8024 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8025 if (!MaybeBitCode)
8026 return MaybeBitCode.takeError();
8027 switch (MaybeBitCode.get()) {
8028 default: // Default behavior: ignore.
8029 break;
8030 case bitc::FS_FLAGS: { // [flags]
8031 uint64_t Flags = Record[0];
8032 // Scan flags.
8033 assert(Flags <= 0x2ff && "Unexpected bits in flag");
8035 bool EnableSplitLTOUnit = Flags & 0x8;
8036 bool UnifiedLTO = Flags & 0x200;
8037 Result = {EnableSplitLTOUnit, UnifiedLTO};
8039 return Result;
8043 llvm_unreachable("Exit infinite loop");
8046 // Check if the given bitcode buffer contains a global value summary block.
8047 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8048 BitstreamCursor Stream(Buffer);
8049 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8050 return std::move(JumpFailed);
8052 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8053 return std::move(Err);
8055 while (true) {
8056 llvm::BitstreamEntry Entry;
8057 if (Error E = Stream.advance().moveInto(Entry))
8058 return std::move(E);
8060 switch (Entry.Kind) {
8061 case BitstreamEntry::Error:
8062 return error("Malformed block");
8063 case BitstreamEntry::EndBlock:
8064 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8065 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8067 case BitstreamEntry::SubBlock:
8068 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8069 BitcodeLTOInfo LTOInfo;
8070 Expected<std::pair<bool, bool>> Flags =
8071 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8072 if (!Flags)
8073 return Flags.takeError();
8074 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8075 LTOInfo.IsThinLTO = true;
8076 LTOInfo.HasSummary = true;
8077 return LTOInfo;
8080 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8081 BitcodeLTOInfo LTOInfo;
8082 Expected<std::pair<bool, bool>> Flags =
8083 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8084 if (!Flags)
8085 return Flags.takeError();
8086 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8087 LTOInfo.IsThinLTO = false;
8088 LTOInfo.HasSummary = true;
8089 return LTOInfo;
8092 // Ignore other sub-blocks.
8093 if (Error Err = Stream.SkipBlock())
8094 return std::move(Err);
8095 continue;
8097 case BitstreamEntry::Record:
8098 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8099 continue;
8100 else
8101 return StreamFailed.takeError();
8106 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8107 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8108 if (!MsOrErr)
8109 return MsOrErr.takeError();
8111 if (MsOrErr->size() != 1)
8112 return error("Expected a single module");
8114 return (*MsOrErr)[0];
8117 Expected<std::unique_ptr<Module>>
8118 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8119 bool ShouldLazyLoadMetadata, bool IsImporting,
8120 ParserCallbacks Callbacks) {
8121 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8122 if (!BM)
8123 return BM.takeError();
8125 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8126 Callbacks);
8129 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8130 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8131 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8132 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8133 IsImporting, Callbacks);
8134 if (MOrErr)
8135 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8136 return MOrErr;
8139 Expected<std::unique_ptr<Module>>
8140 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8141 return getModuleImpl(Context, true, false, false, Callbacks);
8142 // TODO: Restore the use-lists to the in-memory state when the bitcode was
8143 // written. We must defer until the Module has been fully materialized.
8146 Expected<std::unique_ptr<Module>>
8147 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8148 ParserCallbacks Callbacks) {
8149 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8150 if (!BM)
8151 return BM.takeError();
8153 return BM->parseModule(Context, Callbacks);
8156 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8157 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8158 if (!StreamOrErr)
8159 return StreamOrErr.takeError();
8161 return readTriple(*StreamOrErr);
8164 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8165 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8166 if (!StreamOrErr)
8167 return StreamOrErr.takeError();
8169 return hasObjCCategory(*StreamOrErr);
8172 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8173 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8174 if (!StreamOrErr)
8175 return StreamOrErr.takeError();
8177 return readIdentificationCode(*StreamOrErr);
8180 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8181 ModuleSummaryIndex &CombinedIndex) {
8182 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8183 if (!BM)
8184 return BM.takeError();
8186 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8189 Expected<std::unique_ptr<ModuleSummaryIndex>>
8190 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8191 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8192 if (!BM)
8193 return BM.takeError();
8195 return BM->getSummary();
8198 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8199 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8200 if (!BM)
8201 return BM.takeError();
8203 return BM->getLTOInfo();
8206 Expected<std::unique_ptr<ModuleSummaryIndex>>
8207 llvm::getModuleSummaryIndexForFile(StringRef Path,
8208 bool IgnoreEmptyThinLTOIndexFile) {
8209 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8210 MemoryBuffer::getFileOrSTDIN(Path);
8211 if (!FileOrErr)
8212 return errorCodeToError(FileOrErr.getError());
8213 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8214 return nullptr;
8215 return getModuleSummaryIndex(**FileOrErr);