1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/MemoryBuffer.h"
23 #include "llvm/TargetParser/Triple.h"
26 using namespace llvm::object
;
27 using namespace llvm::support::endian
;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
33 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
34 or32le(L
, (Imm
& 0xFFF) << 10);
37 template <class T
> static void write(bool isBE
, void *P
, T V
) {
38 isBE
? write
<T
, support::big
>(P
, V
) : write
<T
, support::little
>(P
, V
);
41 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
42 uint32_t ImmLo
= (Imm
& 0x3) << 29;
43 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
44 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
51 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
52 return (Val
>> Start
) & Mask
;
57 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
60 typedef typename
ELFT::uint addr_type
;
62 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
65 static Expected
<std::unique_ptr
<DyldELFObject
>>
66 create(MemoryBufferRef Wrapper
);
68 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
70 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(const Binary
*v
) {
74 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
75 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
77 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
78 return v
->isDyldType();
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory. Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
88 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
89 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
90 this->isDyldELFObject
= true;
94 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
95 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
96 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
97 if (auto E
= Obj
.takeError())
99 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
100 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
101 return std::move(Ret
);
104 template <class ELFT
>
105 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
107 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
109 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
116 template <class ELFT
>
117 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
120 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
121 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym
->st_value
= static_cast<addr_type
>(Addr
);
128 class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
130 RuntimeDyld::LoadedObjectInfo
> {
132 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
133 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
135 OwningBinary
<ObjectFile
>
136 getObjectForDebug(const ObjectFile
&Obj
) const override
;
139 template <typename ELFT
>
140 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
142 const LoadedELFObjectInfo
&L
) {
143 typedef typename
ELFT::Shdr Elf_Shdr
;
144 typedef typename
ELFT::uint addr_type
;
146 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
147 DyldELFObject
<ELFT
>::create(Buffer
);
148 if (Error E
= ObjOrErr
.takeError())
151 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
153 // Iterate over all sections in the object.
154 auto SI
= SourceObject
.section_begin();
155 for (const auto &Sec
: Obj
->sections()) {
156 Expected
<StringRef
> NameOrErr
= Sec
.getName();
158 consumeError(NameOrErr
.takeError());
162 if (*NameOrErr
!= "") {
163 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
164 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
165 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
167 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
176 return std::move(Obj
);
179 static OwningBinary
<ObjectFile
>
180 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
181 assert(Obj
.isELF() && "Not an ELF object file.");
183 std::unique_ptr
<MemoryBuffer
> Buffer
=
184 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
186 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
187 handleAllErrors(DebugObj
.takeError());
188 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
190 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
191 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
193 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
194 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
196 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
197 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
199 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
201 llvm_unreachable("Unexpected ELF format");
203 handleAllErrors(DebugObj
.takeError());
204 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
207 OwningBinary
<ObjectFile
>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
209 return createELFDebugObject(Obj
, *this);
212 } // anonymous namespace
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
217 JITSymbolResolver
&Resolver
)
218 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() = default;
221 void RuntimeDyldELF::registerEHFrames() {
222 for (int i
= 0, e
= UnregisteredEHFrameSections
.size(); i
!= e
; ++i
) {
223 SID EHFrameSID
= UnregisteredEHFrameSections
[i
];
224 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
225 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
226 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
227 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
229 UnregisteredEHFrameSections
.clear();
232 std::unique_ptr
<RuntimeDyldELF
>
233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
234 RuntimeDyld::MemoryManager
&MemMgr
,
235 JITSymbolResolver
&Resolver
) {
238 return std::make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
242 case Triple::mips64el
:
243 return std::make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
247 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
248 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
249 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
250 return std::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
253 raw_string_ostream
ErrStream(ErrorStr
);
254 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
);
259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
260 uint64_t Offset
, uint64_t Value
,
261 uint32_t Type
, int64_t Addend
,
262 uint64_t SymOffset
) {
265 report_fatal_error("Relocation type not implemented yet!");
267 case ELF::R_X86_64_NONE
:
269 case ELF::R_X86_64_8
: {
271 assert((int64_t)Value
<= INT8_MAX
&& (int64_t)Value
>= INT8_MIN
);
272 uint8_t TruncatedAddr
= (Value
& 0xFF);
273 *Section
.getAddressWithOffset(Offset
) = TruncatedAddr
;
274 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
275 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
278 case ELF::R_X86_64_16
: {
280 assert((int64_t)Value
<= INT16_MAX
&& (int64_t)Value
>= INT16_MIN
);
281 uint16_t TruncatedAddr
= (Value
& 0xFFFF);
282 support::ulittle16_t::ref(Section
.getAddressWithOffset(Offset
)) =
284 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
285 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
288 case ELF::R_X86_64_64
: {
289 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
291 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
292 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
295 case ELF::R_X86_64_32
:
296 case ELF::R_X86_64_32S
: {
298 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
299 (Type
== ELF::R_X86_64_32S
&&
300 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
301 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
302 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
304 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
305 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
308 case ELF::R_X86_64_PC8
: {
309 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
310 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
311 assert(isInt
<8>(RealOffset
));
312 int8_t TruncOffset
= (RealOffset
& 0xFF);
313 Section
.getAddress()[Offset
] = TruncOffset
;
316 case ELF::R_X86_64_PC32
: {
317 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
318 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
319 assert(isInt
<32>(RealOffset
));
320 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
321 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
325 case ELF::R_X86_64_PC64
: {
326 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
327 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
328 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
330 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
331 << format("%p\n", FinalAddress
));
334 case ELF::R_X86_64_GOTOFF64
: {
335 // Compute Value - GOTBase.
336 uint64_t GOTBase
= 0;
337 for (const auto &Section
: Sections
) {
338 if (Section
.getName() == ".got") {
339 GOTBase
= Section
.getLoadAddressWithOffset(0);
343 assert(GOTBase
!= 0 && "missing GOT");
344 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
345 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
348 case ELF::R_X86_64_DTPMOD64
: {
349 // We only have one DSO, so the module id is always 1.
350 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = 1;
353 case ELF::R_X86_64_DTPOFF64
:
354 case ELF::R_X86_64_TPOFF64
: {
355 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356 // offset in the *initial* TLS block. Since we are statically linking, all
357 // TLS blocks already exist in the initial block, so resolve both
358 // relocations equally.
359 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
363 case ELF::R_X86_64_DTPOFF32
:
364 case ELF::R_X86_64_TPOFF32
: {
365 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366 // be resolved equally.
367 int64_t RealValue
= Value
+ Addend
;
368 assert(RealValue
>= INT32_MIN
&& RealValue
<= INT32_MAX
);
369 int32_t TruncValue
= RealValue
;
370 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
378 uint64_t Offset
, uint32_t Value
,
379 uint32_t Type
, int32_t Addend
) {
381 case ELF::R_386_32
: {
382 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
386 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387 // reach any 32 bit address.
388 case ELF::R_386_PLT32
:
389 case ELF::R_386_PC32
: {
390 uint32_t FinalAddress
=
391 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
392 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
393 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
398 // There are other relocation types, but it appears these are the
399 // only ones currently used by the LLVM ELF object writer
400 report_fatal_error("Relocation type not implemented yet!");
405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
406 uint64_t Offset
, uint64_t Value
,
407 uint32_t Type
, int64_t Addend
) {
408 uint32_t *TargetPtr
=
409 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
410 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
411 // Data should use target endian. Code should always use little endian.
412 bool isBE
= Arch
== Triple::aarch64_be
;
414 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415 << format("%llx", Section
.getAddressWithOffset(Offset
))
416 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
417 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
418 << format("%x", Type
) << " Addend: 0x"
419 << format("%llx", Addend
) << "\n");
423 report_fatal_error("Relocation type not implemented yet!");
425 case ELF::R_AARCH64_NONE
:
427 case ELF::R_AARCH64_ABS16
: {
428 uint64_t Result
= Value
+ Addend
;
429 assert(Result
== static_cast<uint64_t>(llvm::SignExtend64(Result
, 16)) ||
430 (Result
>> 16) == 0);
431 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
434 case ELF::R_AARCH64_ABS32
: {
435 uint64_t Result
= Value
+ Addend
;
436 assert(Result
== static_cast<uint64_t>(llvm::SignExtend64(Result
, 32)) ||
437 (Result
>> 32) == 0);
438 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
441 case ELF::R_AARCH64_ABS64
:
442 write(isBE
, TargetPtr
, Value
+ Addend
);
444 case ELF::R_AARCH64_PLT32
: {
445 uint64_t Result
= Value
+ Addend
- FinalAddress
;
446 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
447 static_cast<int64_t>(Result
) <= INT32_MAX
);
448 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
));
451 case ELF::R_AARCH64_PREL16
: {
452 uint64_t Result
= Value
+ Addend
- FinalAddress
;
453 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&&
454 static_cast<int64_t>(Result
) <= UINT16_MAX
);
455 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
458 case ELF::R_AARCH64_PREL32
: {
459 uint64_t Result
= Value
+ Addend
- FinalAddress
;
460 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
461 static_cast<int64_t>(Result
) <= UINT32_MAX
);
462 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
465 case ELF::R_AARCH64_PREL64
:
466 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
468 case ELF::R_AARCH64_CONDBR19
: {
469 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
471 assert(isInt
<21>(BranchImm
));
472 *TargetPtr
&= 0xff00001fU
;
473 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
474 or32le(TargetPtr
, (BranchImm
& 0x001FFFFC) << 3);
477 case ELF::R_AARCH64_TSTBR14
: {
478 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
480 assert(isInt
<16>(BranchImm
));
482 uint32_t RawInstr
= *(support::little32_t
*)TargetPtr
;
483 *(support::little32_t
*)TargetPtr
= RawInstr
& 0xfff8001fU
;
485 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
486 or32le(TargetPtr
, (BranchImm
& 0x0000FFFC) << 3);
489 case ELF::R_AARCH64_CALL26
: // fallthrough
490 case ELF::R_AARCH64_JUMP26
: {
491 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
493 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
495 // "Check that -2^27 <= result < 2^27".
496 assert(isInt
<28>(BranchImm
));
497 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
500 case ELF::R_AARCH64_MOVW_UABS_G3
:
501 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
503 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
504 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
506 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
507 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
509 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
510 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
512 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
513 // Operation: Page(S+A) - Page(P)
515 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
517 // Check that -2^32 <= X < 2^32
518 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
520 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
521 // from bits 32:12 of X.
522 write32AArch64Addr(TargetPtr
, Result
>> 12);
525 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
527 // Immediate goes in bits 21:10 of LD/ST instruction, taken
528 // from bits 11:0 of X
529 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
531 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
533 // Immediate goes in bits 21:10 of LD/ST instruction, taken
534 // from bits 11:0 of X
535 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
537 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
539 // Immediate goes in bits 21:10 of LD/ST instruction, taken
540 // from bits 11:1 of X
541 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
543 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
545 // Immediate goes in bits 21:10 of LD/ST instruction, taken
546 // from bits 11:2 of X
547 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
549 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
551 // Immediate goes in bits 21:10 of LD/ST instruction, taken
552 // from bits 11:3 of X
553 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
555 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
557 // Immediate goes in bits 21:10 of LD/ST instruction, taken
558 // from bits 11:4 of X
559 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
561 case ELF::R_AARCH64_LD_PREL_LO19
: {
562 // Operation: S + A - P
563 uint64_t Result
= Value
+ Addend
- FinalAddress
;
565 // "Check that -2^20 <= result < 2^20".
566 assert(isInt
<21>(Result
));
568 *TargetPtr
&= 0xff00001fU
;
569 // Immediate goes in bits 23:5 of LD imm instruction, taken
570 // from bits 20:2 of X
571 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
574 case ELF::R_AARCH64_ADR_PREL_LO21
: {
575 // Operation: S + A - P
576 uint64_t Result
= Value
+ Addend
- FinalAddress
;
578 // "Check that -2^20 <= result < 2^20".
579 assert(isInt
<21>(Result
));
581 *TargetPtr
&= 0x9f00001fU
;
582 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
583 // from bits 20:0 of X
584 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
585 *TargetPtr
|= (Result
& 0x3) << 29;
591 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
592 uint64_t Offset
, uint32_t Value
,
593 uint32_t Type
, int32_t Addend
) {
594 // TODO: Add Thumb relocations.
595 uint32_t *TargetPtr
=
596 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
597 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
600 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
601 << Section
.getAddressWithOffset(Offset
)
602 << " FinalAddress: " << format("%p", FinalAddress
)
603 << " Value: " << format("%x", Value
)
604 << " Type: " << format("%x", Type
)
605 << " Addend: " << format("%x", Addend
) << "\n");
609 llvm_unreachable("Not implemented relocation type!");
611 case ELF::R_ARM_NONE
:
613 // Write a 31bit signed offset
614 case ELF::R_ARM_PREL31
:
615 support::ulittle32_t::ref
{TargetPtr
} =
616 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
617 ((Value
- FinalAddress
) & ~0x80000000);
619 case ELF::R_ARM_TARGET1
:
620 case ELF::R_ARM_ABS32
:
621 support::ulittle32_t::ref
{TargetPtr
} = Value
;
623 // Write first 16 bit of 32 bit value to the mov instruction.
624 // Last 4 bit should be shifted.
625 case ELF::R_ARM_MOVW_ABS_NC
:
626 case ELF::R_ARM_MOVT_ABS
:
627 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
628 Value
= Value
& 0xFFFF;
629 else if (Type
== ELF::R_ARM_MOVT_ABS
)
630 Value
= (Value
>> 16) & 0xFFFF;
631 support::ulittle32_t::ref
{TargetPtr
} =
632 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
633 (((Value
>> 12) & 0xF) << 16);
635 // Write 24 bit relative value to the branch instruction.
636 case ELF::R_ARM_PC24
: // Fall through.
637 case ELF::R_ARM_CALL
: // Fall through.
638 case ELF::R_ARM_JUMP24
:
639 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
640 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
641 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
642 support::ulittle32_t::ref
{TargetPtr
} =
643 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
648 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
649 if (Arch
== Triple::UnknownArch
||
650 !StringRef(Triple::getArchTypePrefix(Arch
)).equals("mips")) {
651 IsMipsO32ABI
= false;
652 IsMipsN32ABI
= false;
653 IsMipsN64ABI
= false;
656 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
657 unsigned AbiVariant
= E
->getPlatformFlags();
658 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
659 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
661 IsMipsN64ABI
= Obj
.getFileFormatName().equals("elf64-mips");
664 // Return the .TOC. section and offset.
665 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
666 ObjSectionToIDMap
&LocalSections
,
667 RelocationValueRef
&Rel
) {
668 // Set a default SectionID in case we do not find a TOC section below.
669 // This may happen for references to TOC base base (sym@toc, .odp
670 // relocation) without a .toc directive. In this case just use the
671 // first section (which is usually the .odp) since the code won't
672 // reference the .toc base directly.
673 Rel
.SymbolName
= nullptr;
676 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
677 // order. The TOC starts where the first of these sections starts.
678 for (auto &Section
: Obj
.sections()) {
679 Expected
<StringRef
> NameOrErr
= Section
.getName();
681 return NameOrErr
.takeError();
682 StringRef SectionName
= *NameOrErr
;
684 if (SectionName
== ".got"
685 || SectionName
== ".toc"
686 || SectionName
== ".tocbss"
687 || SectionName
== ".plt") {
688 if (auto SectionIDOrErr
=
689 findOrEmitSection(Obj
, Section
, false, LocalSections
))
690 Rel
.SectionID
= *SectionIDOrErr
;
692 return SectionIDOrErr
.takeError();
697 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
698 // thus permitting a full 64 Kbytes segment.
701 return Error::success();
704 // Returns the sections and offset associated with the ODP entry referenced
706 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
707 ObjSectionToIDMap
&LocalSections
,
708 RelocationValueRef
&Rel
) {
709 // Get the ELF symbol value (st_value) to compare with Relocation offset in
711 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
714 Expected
<section_iterator
> RelSecOrErr
= si
->getRelocatedSection();
716 report_fatal_error(Twine(toString(RelSecOrErr
.takeError())));
718 section_iterator RelSecI
= *RelSecOrErr
;
719 if (RelSecI
== Obj
.section_end())
722 Expected
<StringRef
> NameOrErr
= RelSecI
->getName();
724 return NameOrErr
.takeError();
725 StringRef RelSectionName
= *NameOrErr
;
727 if (RelSectionName
!= ".opd")
730 for (elf_relocation_iterator i
= si
->relocation_begin(),
731 e
= si
->relocation_end();
733 // The R_PPC64_ADDR64 relocation indicates the first field
735 uint64_t TypeFunc
= i
->getType();
736 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
741 uint64_t TargetSymbolOffset
= i
->getOffset();
742 symbol_iterator TargetSymbol
= i
->getSymbol();
744 if (auto AddendOrErr
= i
->getAddend())
745 Addend
= *AddendOrErr
;
747 return AddendOrErr
.takeError();
753 // Just check if following relocation is a R_PPC64_TOC
754 uint64_t TypeTOC
= i
->getType();
755 if (TypeTOC
!= ELF::R_PPC64_TOC
)
758 // Finally compares the Symbol value and the target symbol offset
759 // to check if this .opd entry refers to the symbol the relocation
761 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
764 section_iterator TSI
= Obj
.section_end();
765 if (auto TSIOrErr
= TargetSymbol
->getSection())
768 return TSIOrErr
.takeError();
769 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
771 bool IsCode
= TSI
->isText();
772 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
774 Rel
.SectionID
= *SectionIDOrErr
;
776 return SectionIDOrErr
.takeError();
777 Rel
.Addend
= (intptr_t)Addend
;
778 return Error::success();
781 llvm_unreachable("Attempting to get address of ODP entry!");
784 // Relocation masks following the #lo(value), #hi(value), #ha(value),
785 // #higher(value), #highera(value), #highest(value), and #highesta(value)
786 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
789 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
791 static inline uint16_t applyPPChi(uint64_t value
) {
792 return (value
>> 16) & 0xffff;
795 static inline uint16_t applyPPCha (uint64_t value
) {
796 return ((value
+ 0x8000) >> 16) & 0xffff;
799 static inline uint16_t applyPPChigher(uint64_t value
) {
800 return (value
>> 32) & 0xffff;
803 static inline uint16_t applyPPChighera (uint64_t value
) {
804 return ((value
+ 0x8000) >> 32) & 0xffff;
807 static inline uint16_t applyPPChighest(uint64_t value
) {
808 return (value
>> 48) & 0xffff;
811 static inline uint16_t applyPPChighesta (uint64_t value
) {
812 return ((value
+ 0x8000) >> 48) & 0xffff;
815 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
816 uint64_t Offset
, uint64_t Value
,
817 uint32_t Type
, int64_t Addend
) {
818 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
821 report_fatal_error("Relocation type not implemented yet!");
823 case ELF::R_PPC_ADDR16_LO
:
824 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
826 case ELF::R_PPC_ADDR16_HI
:
827 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
829 case ELF::R_PPC_ADDR16_HA
:
830 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
835 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
836 uint64_t Offset
, uint64_t Value
,
837 uint32_t Type
, int64_t Addend
) {
838 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
841 report_fatal_error("Relocation type not implemented yet!");
843 case ELF::R_PPC64_ADDR16
:
844 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
846 case ELF::R_PPC64_ADDR16_DS
:
847 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
849 case ELF::R_PPC64_ADDR16_LO
:
850 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
852 case ELF::R_PPC64_ADDR16_LO_DS
:
853 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
855 case ELF::R_PPC64_ADDR16_HI
:
856 case ELF::R_PPC64_ADDR16_HIGH
:
857 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
859 case ELF::R_PPC64_ADDR16_HA
:
860 case ELF::R_PPC64_ADDR16_HIGHA
:
861 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
863 case ELF::R_PPC64_ADDR16_HIGHER
:
864 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
866 case ELF::R_PPC64_ADDR16_HIGHERA
:
867 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
869 case ELF::R_PPC64_ADDR16_HIGHEST
:
870 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
872 case ELF::R_PPC64_ADDR16_HIGHESTA
:
873 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
875 case ELF::R_PPC64_ADDR14
: {
876 assert(((Value
+ Addend
) & 3) == 0);
877 // Preserve the AA/LK bits in the branch instruction
878 uint8_t aalk
= *(LocalAddress
+ 3);
879 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
881 case ELF::R_PPC64_REL16_LO
: {
882 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
883 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
884 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
886 case ELF::R_PPC64_REL16_HI
: {
887 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
888 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
889 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
891 case ELF::R_PPC64_REL16_HA
: {
892 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
893 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
894 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
896 case ELF::R_PPC64_ADDR32
: {
897 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
898 if (SignExtend64
<32>(Result
) != Result
)
899 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
900 writeInt32BE(LocalAddress
, Result
);
902 case ELF::R_PPC64_REL24
: {
903 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
904 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
905 if (SignExtend64
<26>(delta
) != delta
)
906 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
907 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
908 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
909 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
911 case ELF::R_PPC64_REL32
: {
912 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
913 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
914 if (SignExtend64
<32>(delta
) != delta
)
915 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
916 writeInt32BE(LocalAddress
, delta
);
918 case ELF::R_PPC64_REL64
: {
919 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
920 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
921 writeInt64BE(LocalAddress
, Delta
);
923 case ELF::R_PPC64_ADDR64
:
924 writeInt64BE(LocalAddress
, Value
+ Addend
);
929 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
930 uint64_t Offset
, uint64_t Value
,
931 uint32_t Type
, int64_t Addend
) {
932 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
935 report_fatal_error("Relocation type not implemented yet!");
937 case ELF::R_390_PC16DBL
:
938 case ELF::R_390_PLT16DBL
: {
939 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
940 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
941 writeInt16BE(LocalAddress
, Delta
/ 2);
944 case ELF::R_390_PC32DBL
:
945 case ELF::R_390_PLT32DBL
: {
946 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
947 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
948 writeInt32BE(LocalAddress
, Delta
/ 2);
951 case ELF::R_390_PC16
: {
952 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
953 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
954 writeInt16BE(LocalAddress
, Delta
);
957 case ELF::R_390_PC32
: {
958 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
959 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
960 writeInt32BE(LocalAddress
, Delta
);
963 case ELF::R_390_PC64
: {
964 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
965 writeInt64BE(LocalAddress
, Delta
);
969 *LocalAddress
= (uint8_t)(Value
+ Addend
);
972 writeInt16BE(LocalAddress
, Value
+ Addend
);
975 writeInt32BE(LocalAddress
, Value
+ Addend
);
978 writeInt64BE(LocalAddress
, Value
+ Addend
);
983 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
984 uint64_t Offset
, uint64_t Value
,
985 uint32_t Type
, int64_t Addend
) {
986 bool isBE
= Arch
== Triple::bpfeb
;
990 report_fatal_error("Relocation type not implemented yet!");
992 case ELF::R_BPF_NONE
:
993 case ELF::R_BPF_64_64
:
994 case ELF::R_BPF_64_32
:
995 case ELF::R_BPF_64_NODYLD32
:
997 case ELF::R_BPF_64_ABS64
: {
998 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
999 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
1000 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
1003 case ELF::R_BPF_64_ABS32
: {
1005 assert(Value
<= UINT32_MAX
);
1006 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
1007 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
1008 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
1014 // The target location for the relocation is described by RE.SectionID and
1015 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1016 // SectionEntry has three members describing its location.
1017 // SectionEntry::Address is the address at which the section has been loaded
1018 // into memory in the current (host) process. SectionEntry::LoadAddress is the
1019 // address that the section will have in the target process.
1020 // SectionEntry::ObjAddress is the address of the bits for this section in the
1021 // original emitted object image (also in the current address space).
1023 // Relocations will be applied as if the section were loaded at
1024 // SectionEntry::LoadAddress, but they will be applied at an address based
1025 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1026 // Target memory contents if they are required for value calculations.
1028 // The Value parameter here is the load address of the symbol for the
1029 // relocation to be applied. For relocations which refer to symbols in the
1030 // current object Value will be the LoadAddress of the section in which
1031 // the symbol resides (RE.Addend provides additional information about the
1032 // symbol location). For external symbols, Value will be the address of the
1033 // symbol in the target address space.
1034 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
1036 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
1037 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
1038 RE
.SymOffset
, RE
.SectionID
);
1041 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
1042 uint64_t Offset
, uint64_t Value
,
1043 uint32_t Type
, int64_t Addend
,
1044 uint64_t SymOffset
, SID SectionID
) {
1046 case Triple::x86_64
:
1047 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
1050 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1051 (uint32_t)(Addend
& 0xffffffffL
));
1053 case Triple::aarch64
:
1054 case Triple::aarch64_be
:
1055 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1057 case Triple::arm
: // Fall through.
1060 case Triple::thumbeb
:
1061 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1062 (uint32_t)(Addend
& 0xffffffffL
));
1064 case Triple::ppc
: // Fall through.
1066 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
1068 case Triple::ppc64
: // Fall through.
1069 case Triple::ppc64le
:
1070 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1072 case Triple::systemz
:
1073 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
1077 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
1080 llvm_unreachable("Unsupported CPU type!");
1084 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
, uint64_t Offset
) const {
1085 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
1088 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
1089 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
1090 if (Value
.SymbolName
)
1091 addRelocationForSymbol(RE
, Value
.SymbolName
);
1093 addRelocationForSection(RE
, Value
.SectionID
);
1096 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
1097 bool IsLocal
) const {
1099 case ELF::R_MICROMIPS_GOT16
:
1101 return ELF::R_MICROMIPS_LO16
;
1103 case ELF::R_MICROMIPS_HI16
:
1104 return ELF::R_MICROMIPS_LO16
;
1105 case ELF::R_MIPS_GOT16
:
1107 return ELF::R_MIPS_LO16
;
1109 case ELF::R_MIPS_HI16
:
1110 return ELF::R_MIPS_LO16
;
1111 case ELF::R_MIPS_PCHI16
:
1112 return ELF::R_MIPS_PCLO16
;
1116 return ELF::R_MIPS_NONE
;
1119 // Sometimes we don't need to create thunk for a branch.
1120 // This typically happens when branch target is located
1121 // in the same object file. In such case target is either
1122 // a weak symbol or symbol in a different executable section.
1123 // This function checks if branch target is located in the
1124 // same object file and if distance between source and target
1125 // fits R_AARCH64_CALL26 relocation. If both conditions are
1126 // met, it emits direct jump to the target and returns true.
1127 // Otherwise false is returned and thunk is created.
1128 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1129 unsigned SectionID
, relocation_iterator RelI
,
1130 const RelocationValueRef
&Value
) {
1132 if (Value
.SymbolName
) {
1133 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1135 // Don't create direct branch for external symbols.
1136 if (Loc
== GlobalSymbolTable
.end())
1139 const auto &SymInfo
= Loc
->second
;
1141 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
1142 SymInfo
.getOffset()));
1144 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
1146 uint64_t Offset
= RelI
->getOffset();
1147 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
1149 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1150 // If distance between source and target is out of range then we should
1152 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
1155 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
1161 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1162 const RelocationValueRef
&Value
,
1163 relocation_iterator RelI
,
1166 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1167 SectionEntry
&Section
= Sections
[SectionID
];
1169 uint64_t Offset
= RelI
->getOffset();
1170 unsigned RelType
= RelI
->getType();
1171 // Look for an existing stub.
1172 StubMap::const_iterator i
= Stubs
.find(Value
);
1173 if (i
!= Stubs
.end()) {
1174 resolveRelocation(Section
, Offset
,
1175 (uint64_t)Section
.getAddressWithOffset(i
->second
),
1177 LLVM_DEBUG(dbgs() << " Stub function found\n");
1178 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1179 // Create a new stub function.
1180 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1181 Stubs
[Value
] = Section
.getStubOffset();
1182 uint8_t *StubTargetAddr
= createStubFunction(
1183 Section
.getAddressWithOffset(Section
.getStubOffset()));
1185 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1186 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1187 RelocationEntry
REmovk_g2(SectionID
,
1188 StubTargetAddr
- Section
.getAddress() + 4,
1189 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1190 RelocationEntry
REmovk_g1(SectionID
,
1191 StubTargetAddr
- Section
.getAddress() + 8,
1192 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1193 RelocationEntry
REmovk_g0(SectionID
,
1194 StubTargetAddr
- Section
.getAddress() + 12,
1195 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1197 if (Value
.SymbolName
) {
1198 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1199 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1200 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1201 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1203 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1204 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1205 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1206 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1208 resolveRelocation(Section
, Offset
,
1209 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(
1210 Section
.getStubOffset())),
1212 Section
.advanceStubOffset(getMaxStubSize());
1216 Expected
<relocation_iterator
>
1217 RuntimeDyldELF::processRelocationRef(
1218 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1219 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1220 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1221 uint64_t RelType
= RelI
->getType();
1223 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1224 Addend
= *AddendOrErr
;
1226 consumeError(AddendOrErr
.takeError());
1227 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1229 // Obtain the symbol name which is referenced in the relocation
1230 StringRef TargetName
;
1231 if (Symbol
!= Obj
.symbol_end()) {
1232 if (auto TargetNameOrErr
= Symbol
->getName())
1233 TargetName
= *TargetNameOrErr
;
1235 return TargetNameOrErr
.takeError();
1237 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1238 << " TargetName: " << TargetName
<< "\n");
1239 RelocationValueRef Value
;
1240 // First search for the symbol in the local symbol table
1241 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1243 // Search for the symbol in the global symbol table
1244 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1245 if (Symbol
!= Obj
.symbol_end()) {
1246 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1247 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1248 if (!SymTypeOrErr
) {
1250 raw_string_ostream
OS(Buf
);
1251 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
);
1252 report_fatal_error(Twine(OS
.str()));
1254 SymType
= *SymTypeOrErr
;
1256 if (gsi
!= GlobalSymbolTable
.end()) {
1257 const auto &SymInfo
= gsi
->second
;
1258 Value
.SectionID
= SymInfo
.getSectionID();
1259 Value
.Offset
= SymInfo
.getOffset();
1260 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1263 case SymbolRef::ST_Debug
: {
1264 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1265 // and can be changed by another developers. Maybe best way is add
1266 // a new symbol type ST_Section to SymbolRef and use it.
1267 auto SectionOrErr
= Symbol
->getSection();
1268 if (!SectionOrErr
) {
1270 raw_string_ostream
OS(Buf
);
1271 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
);
1272 report_fatal_error(Twine(OS
.str()));
1274 section_iterator si
= *SectionOrErr
;
1275 if (si
== Obj
.section_end())
1276 llvm_unreachable("Symbol section not found, bad object file format!");
1277 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1278 bool isCode
= si
->isText();
1279 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1281 Value
.SectionID
= *SectionIDOrErr
;
1283 return SectionIDOrErr
.takeError();
1284 Value
.Addend
= Addend
;
1287 case SymbolRef::ST_Data
:
1288 case SymbolRef::ST_Function
:
1289 case SymbolRef::ST_Other
:
1290 case SymbolRef::ST_Unknown
: {
1291 Value
.SymbolName
= TargetName
.data();
1292 Value
.Addend
= Addend
;
1294 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1295 // will manifest here as a NULL symbol name.
1296 // We can set this as a valid (but empty) symbol name, and rely
1297 // on addRelocationForSymbol to handle this.
1298 if (!Value
.SymbolName
)
1299 Value
.SymbolName
= "";
1303 llvm_unreachable("Unresolved symbol type!");
1308 uint64_t Offset
= RelI
->getOffset();
1310 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1312 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1313 if ((RelType
== ELF::R_AARCH64_CALL26
||
1314 RelType
== ELF::R_AARCH64_JUMP26
) &&
1315 MemMgr
.allowStubAllocation()) {
1316 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1317 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1318 // Create new GOT entry or find existing one. If GOT entry is
1319 // to be created, then we also emit ABS64 relocation for it.
1320 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1321 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1322 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1324 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1325 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1326 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1327 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1329 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1331 } else if (Arch
== Triple::arm
) {
1332 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1333 RelType
== ELF::R_ARM_JUMP24
) {
1334 // This is an ARM branch relocation, need to use a stub function.
1335 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1336 SectionEntry
&Section
= Sections
[SectionID
];
1338 // Look for an existing stub.
1339 StubMap::const_iterator i
= Stubs
.find(Value
);
1340 if (i
!= Stubs
.end()) {
1343 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(i
->second
)),
1345 LLVM_DEBUG(dbgs() << " Stub function found\n");
1347 // Create a new stub function.
1348 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1349 Stubs
[Value
] = Section
.getStubOffset();
1350 uint8_t *StubTargetAddr
= createStubFunction(
1351 Section
.getAddressWithOffset(Section
.getStubOffset()));
1352 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1353 ELF::R_ARM_ABS32
, Value
.Addend
);
1354 if (Value
.SymbolName
)
1355 addRelocationForSymbol(RE
, Value
.SymbolName
);
1357 addRelocationForSection(RE
, Value
.SectionID
);
1359 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1360 Section
.getAddressWithOffset(
1361 Section
.getStubOffset())),
1363 Section
.advanceStubOffset(getMaxStubSize());
1366 uint32_t *Placeholder
=
1367 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1368 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1369 RelType
== ELF::R_ARM_ABS32
) {
1370 Value
.Addend
+= *Placeholder
;
1371 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1372 // See ELF for ARM documentation
1373 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1375 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1377 } else if (IsMipsO32ABI
) {
1378 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1379 computePlaceholderAddress(SectionID
, Offset
));
1380 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1381 if (RelType
== ELF::R_MIPS_26
) {
1382 // This is an Mips branch relocation, need to use a stub function.
1383 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1384 SectionEntry
&Section
= Sections
[SectionID
];
1386 // Extract the addend from the instruction.
1387 // We shift up by two since the Value will be down shifted again
1388 // when applying the relocation.
1389 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1391 Value
.Addend
+= Addend
;
1393 // Look up for existing stub.
1394 StubMap::const_iterator i
= Stubs
.find(Value
);
1395 if (i
!= Stubs
.end()) {
1396 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1397 addRelocationForSection(RE
, SectionID
);
1398 LLVM_DEBUG(dbgs() << " Stub function found\n");
1400 // Create a new stub function.
1401 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1402 Stubs
[Value
] = Section
.getStubOffset();
1404 unsigned AbiVariant
= Obj
.getPlatformFlags();
1406 uint8_t *StubTargetAddr
= createStubFunction(
1407 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1409 // Creating Hi and Lo relocations for the filled stub instructions.
1410 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1411 ELF::R_MIPS_HI16
, Value
.Addend
);
1412 RelocationEntry
RELo(SectionID
,
1413 StubTargetAddr
- Section
.getAddress() + 4,
1414 ELF::R_MIPS_LO16
, Value
.Addend
);
1416 if (Value
.SymbolName
) {
1417 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1418 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1420 addRelocationForSection(REHi
, Value
.SectionID
);
1421 addRelocationForSection(RELo
, Value
.SectionID
);
1424 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1425 addRelocationForSection(RE
, SectionID
);
1426 Section
.advanceStubOffset(getMaxStubSize());
1428 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1429 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1430 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1431 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1432 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1433 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1434 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1435 const RelocationValueRef
&MatchingValue
= I
->first
;
1436 RelocationEntry
&Reloc
= I
->second
;
1437 if (MatchingValue
== Value
&&
1438 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1439 SectionID
== Reloc
.SectionID
) {
1440 Reloc
.Addend
+= Addend
;
1441 if (Value
.SymbolName
)
1442 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1444 addRelocationForSection(Reloc
, Value
.SectionID
);
1445 I
= PendingRelocs
.erase(I
);
1449 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1450 if (Value
.SymbolName
)
1451 addRelocationForSymbol(RE
, Value
.SymbolName
);
1453 addRelocationForSection(RE
, Value
.SectionID
);
1455 if (RelType
== ELF::R_MIPS_32
)
1456 Value
.Addend
+= Opcode
;
1457 else if (RelType
== ELF::R_MIPS_PC16
)
1458 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1459 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1460 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1461 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1462 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1463 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1464 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1465 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1467 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1468 uint32_t r_type
= RelType
& 0xff;
1469 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1470 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1471 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1472 StringMap
<uint64_t>::iterator i
= GOTSymbolOffsets
.find(TargetName
);
1473 if (i
!= GOTSymbolOffsets
.end())
1474 RE
.SymOffset
= i
->second
;
1476 RE
.SymOffset
= allocateGOTEntries(1);
1477 GOTSymbolOffsets
[TargetName
] = RE
.SymOffset
;
1479 if (Value
.SymbolName
)
1480 addRelocationForSymbol(RE
, Value
.SymbolName
);
1482 addRelocationForSection(RE
, Value
.SectionID
);
1483 } else if (RelType
== ELF::R_MIPS_26
) {
1484 // This is an Mips branch relocation, need to use a stub function.
1485 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1486 SectionEntry
&Section
= Sections
[SectionID
];
1488 // Look up for existing stub.
1489 StubMap::const_iterator i
= Stubs
.find(Value
);
1490 if (i
!= Stubs
.end()) {
1491 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1492 addRelocationForSection(RE
, SectionID
);
1493 LLVM_DEBUG(dbgs() << " Stub function found\n");
1495 // Create a new stub function.
1496 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1497 Stubs
[Value
] = Section
.getStubOffset();
1499 unsigned AbiVariant
= Obj
.getPlatformFlags();
1501 uint8_t *StubTargetAddr
= createStubFunction(
1502 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1505 // Creating Hi and Lo relocations for the filled stub instructions.
1506 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1507 ELF::R_MIPS_HI16
, Value
.Addend
);
1508 RelocationEntry
RELo(SectionID
,
1509 StubTargetAddr
- Section
.getAddress() + 4,
1510 ELF::R_MIPS_LO16
, Value
.Addend
);
1511 if (Value
.SymbolName
) {
1512 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1513 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1515 addRelocationForSection(REHi
, Value
.SectionID
);
1516 addRelocationForSection(RELo
, Value
.SectionID
);
1519 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1521 RelocationEntry
REHighest(SectionID
,
1522 StubTargetAddr
- Section
.getAddress(),
1523 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1524 RelocationEntry
REHigher(SectionID
,
1525 StubTargetAddr
- Section
.getAddress() + 4,
1526 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1527 RelocationEntry
REHi(SectionID
,
1528 StubTargetAddr
- Section
.getAddress() + 12,
1529 ELF::R_MIPS_HI16
, Value
.Addend
);
1530 RelocationEntry
RELo(SectionID
,
1531 StubTargetAddr
- Section
.getAddress() + 20,
1532 ELF::R_MIPS_LO16
, Value
.Addend
);
1533 if (Value
.SymbolName
) {
1534 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1535 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1536 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1537 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1539 addRelocationForSection(REHighest
, Value
.SectionID
);
1540 addRelocationForSection(REHigher
, Value
.SectionID
);
1541 addRelocationForSection(REHi
, Value
.SectionID
);
1542 addRelocationForSection(RELo
, Value
.SectionID
);
1545 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1546 addRelocationForSection(RE
, SectionID
);
1547 Section
.advanceStubOffset(getMaxStubSize());
1550 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1553 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1554 if (RelType
== ELF::R_PPC64_REL24
) {
1555 // Determine ABI variant in use for this object.
1556 unsigned AbiVariant
= Obj
.getPlatformFlags();
1557 AbiVariant
&= ELF::EF_PPC64_ABI
;
1558 // A PPC branch relocation will need a stub function if the target is
1559 // an external symbol (either Value.SymbolName is set, or SymType is
1560 // Symbol::ST_Unknown) or if the target address is not within the
1561 // signed 24-bits branch address.
1562 SectionEntry
&Section
= Sections
[SectionID
];
1563 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1564 bool RangeOverflow
= false;
1565 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1567 if (AbiVariant
!= 2) {
1568 // In the ELFv1 ABI, a function call may point to the .opd entry,
1569 // so the final symbol value is calculated based on the relocation
1570 // values in the .opd section.
1571 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1572 return std::move(Err
);
1574 // In the ELFv2 ABI, a function symbol may provide a local entry
1575 // point, which must be used for direct calls.
1576 if (Value
.SectionID
== SectionID
){
1577 uint8_t SymOther
= Symbol
->getOther();
1578 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1581 uint8_t *RelocTarget
=
1582 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1583 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1584 // If it is within 26-bits branch range, just set the branch target
1585 if (SignExtend64
<26>(delta
) != delta
) {
1586 RangeOverflow
= true;
1587 } else if ((AbiVariant
!= 2) ||
1588 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1589 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1590 addRelocationForSection(RE
, Value
.SectionID
);
1593 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1595 // It is an external symbol (either Value.SymbolName is set, or
1596 // SymType is SymbolRef::ST_Unknown) or out of range.
1597 StubMap::const_iterator i
= Stubs
.find(Value
);
1598 if (i
!= Stubs
.end()) {
1599 // Symbol function stub already created, just relocate to it
1600 resolveRelocation(Section
, Offset
,
1601 reinterpret_cast<uint64_t>(
1602 Section
.getAddressWithOffset(i
->second
)),
1604 LLVM_DEBUG(dbgs() << " Stub function found\n");
1606 // Create a new stub function.
1607 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1608 Stubs
[Value
] = Section
.getStubOffset();
1609 uint8_t *StubTargetAddr
= createStubFunction(
1610 Section
.getAddressWithOffset(Section
.getStubOffset()),
1612 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1613 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1615 // Generates the 64-bits address loads as exemplified in section
1616 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1617 // apply to the low part of the instructions, so we have to update
1618 // the offset according to the target endianness.
1619 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1620 if (!IsTargetLittleEndian
)
1621 StubRelocOffset
+= 2;
1623 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1624 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1625 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1626 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1627 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1628 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1629 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1630 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1632 if (Value
.SymbolName
) {
1633 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1634 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1635 addRelocationForSymbol(REh
, Value
.SymbolName
);
1636 addRelocationForSymbol(REl
, Value
.SymbolName
);
1638 addRelocationForSection(REhst
, Value
.SectionID
);
1639 addRelocationForSection(REhr
, Value
.SectionID
);
1640 addRelocationForSection(REh
, Value
.SectionID
);
1641 addRelocationForSection(REl
, Value
.SectionID
);
1644 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1645 Section
.getAddressWithOffset(
1646 Section
.getStubOffset())),
1648 Section
.advanceStubOffset(getMaxStubSize());
1650 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
1651 // Restore the TOC for external calls
1652 if (AbiVariant
== 2)
1653 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
1655 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
1658 } else if (RelType
== ELF::R_PPC64_TOC16
||
1659 RelType
== ELF::R_PPC64_TOC16_DS
||
1660 RelType
== ELF::R_PPC64_TOC16_LO
||
1661 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
1662 RelType
== ELF::R_PPC64_TOC16_HI
||
1663 RelType
== ELF::R_PPC64_TOC16_HA
) {
1664 // These relocations are supposed to subtract the TOC address from
1665 // the final value. This does not fit cleanly into the RuntimeDyld
1666 // scheme, since there may be *two* sections involved in determining
1667 // the relocation value (the section of the symbol referred to by the
1668 // relocation, and the TOC section associated with the current module).
1670 // Fortunately, these relocations are currently only ever generated
1671 // referring to symbols that themselves reside in the TOC, which means
1672 // that the two sections are actually the same. Thus they cancel out
1673 // and we can immediately resolve the relocation right now.
1675 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
1676 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
1677 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
1678 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
1679 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
1680 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
1681 default: llvm_unreachable("Wrong relocation type.");
1684 RelocationValueRef TOCValue
;
1685 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
1686 return std::move(Err
);
1687 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
1688 llvm_unreachable("Unsupported TOC relocation.");
1689 Value
.Addend
-= TOCValue
.Addend
;
1690 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
1692 // There are two ways to refer to the TOC address directly: either
1693 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1694 // ignored), or via any relocation that refers to the magic ".TOC."
1695 // symbols (in which case the addend is respected).
1696 if (RelType
== ELF::R_PPC64_TOC
) {
1697 RelType
= ELF::R_PPC64_ADDR64
;
1698 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1699 return std::move(Err
);
1700 } else if (TargetName
== ".TOC.") {
1701 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1702 return std::move(Err
);
1703 Value
.Addend
+= Addend
;
1706 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1708 if (Value
.SymbolName
)
1709 addRelocationForSymbol(RE
, Value
.SymbolName
);
1711 addRelocationForSection(RE
, Value
.SectionID
);
1713 } else if (Arch
== Triple::systemz
&&
1714 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
1715 // Create function stubs for both PLT and GOT references, regardless of
1716 // whether the GOT reference is to data or code. The stub contains the
1717 // full address of the symbol, as needed by GOT references, and the
1718 // executable part only adds an overhead of 8 bytes.
1720 // We could try to conserve space by allocating the code and data
1721 // parts of the stub separately. However, as things stand, we allocate
1722 // a stub for every relocation, so using a GOT in JIT code should be
1723 // no less space efficient than using an explicit constant pool.
1724 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1725 SectionEntry
&Section
= Sections
[SectionID
];
1727 // Look for an existing stub.
1728 StubMap::const_iterator i
= Stubs
.find(Value
);
1729 uintptr_t StubAddress
;
1730 if (i
!= Stubs
.end()) {
1731 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
1732 LLVM_DEBUG(dbgs() << " Stub function found\n");
1734 // Create a new stub function.
1735 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1737 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1739 alignTo(BaseAddress
+ Section
.getStubOffset(), getStubAlignment());
1740 unsigned StubOffset
= StubAddress
- BaseAddress
;
1742 Stubs
[Value
] = StubOffset
;
1743 createStubFunction((uint8_t *)StubAddress
);
1744 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
1746 if (Value
.SymbolName
)
1747 addRelocationForSymbol(RE
, Value
.SymbolName
);
1749 addRelocationForSection(RE
, Value
.SectionID
);
1750 Section
.advanceStubOffset(getMaxStubSize());
1753 if (RelType
== ELF::R_390_GOTENT
)
1754 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
1757 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
1758 } else if (Arch
== Triple::x86_64
) {
1759 if (RelType
== ELF::R_X86_64_PLT32
) {
1760 // The way the PLT relocations normally work is that the linker allocates
1762 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1763 // entry will then jump to an address provided by the GOT. On first call,
1765 // GOT address will point back into PLT code that resolves the symbol. After
1766 // the first call, the GOT entry points to the actual function.
1768 // For local functions we're ignoring all of that here and just replacing
1769 // the PLT32 relocation type with PC32, which will translate the relocation
1770 // into a PC-relative call directly to the function. For external symbols we
1771 // can't be sure the function will be within 2^32 bytes of the call site, so
1772 // we need to create a stub, which calls into the GOT. This case is
1773 // equivalent to the usual PLT implementation except that we use the stub
1774 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1775 // rather than allocating a PLT section.
1776 if (Value
.SymbolName
&& MemMgr
.allowStubAllocation()) {
1777 // This is a call to an external function.
1778 // Look for an existing stub.
1779 SectionEntry
*Section
= &Sections
[SectionID
];
1780 StubMap::const_iterator i
= Stubs
.find(Value
);
1781 uintptr_t StubAddress
;
1782 if (i
!= Stubs
.end()) {
1783 StubAddress
= uintptr_t(Section
->getAddress()) + i
->second
;
1784 LLVM_DEBUG(dbgs() << " Stub function found\n");
1786 // Create a new stub function (equivalent to a PLT entry).
1787 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1789 uintptr_t BaseAddress
= uintptr_t(Section
->getAddress());
1790 StubAddress
= alignTo(BaseAddress
+ Section
->getStubOffset(),
1791 getStubAlignment());
1792 unsigned StubOffset
= StubAddress
- BaseAddress
;
1793 Stubs
[Value
] = StubOffset
;
1794 createStubFunction((uint8_t *)StubAddress
);
1796 // Bump our stub offset counter
1797 Section
->advanceStubOffset(getMaxStubSize());
1799 // Allocate a GOT Entry
1800 uint64_t GOTOffset
= allocateGOTEntries(1);
1801 // This potentially creates a new Section which potentially
1802 // invalidates the Section pointer, so reload it.
1803 Section
= &Sections
[SectionID
];
1805 // The load of the GOT address has an addend of -4
1806 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
1807 ELF::R_X86_64_PC32
);
1809 // Fill in the value of the symbol we're targeting into the GOT
1810 addRelocationForSymbol(
1811 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
1815 // Make the target call a call into the stub table.
1816 resolveRelocation(*Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
1819 Value
.Addend
+= support::ulittle32_t::ref(
1820 computePlaceholderAddress(SectionID
, Offset
));
1821 processSimpleRelocation(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
);
1823 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
1824 RelType
== ELF::R_X86_64_GOTPCRELX
||
1825 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
1826 uint64_t GOTOffset
= allocateGOTEntries(1);
1827 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1828 ELF::R_X86_64_PC32
);
1830 // Fill in the value of the symbol we're targeting into the GOT
1831 RelocationEntry RE
=
1832 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1833 if (Value
.SymbolName
)
1834 addRelocationForSymbol(RE
, Value
.SymbolName
);
1836 addRelocationForSection(RE
, Value
.SectionID
);
1837 } else if (RelType
== ELF::R_X86_64_GOT64
) {
1838 // Fill in a 64-bit GOT offset.
1839 uint64_t GOTOffset
= allocateGOTEntries(1);
1840 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
1841 ELF::R_X86_64_64
, 0);
1843 // Fill in the value of the symbol we're targeting into the GOT
1844 RelocationEntry RE
=
1845 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1846 if (Value
.SymbolName
)
1847 addRelocationForSymbol(RE
, Value
.SymbolName
);
1849 addRelocationForSection(RE
, Value
.SectionID
);
1850 } else if (RelType
== ELF::R_X86_64_GOTPC32
) {
1851 // Materialize the address of the base of the GOT relative to the PC.
1852 // This doesn't create a GOT entry, but it does mean we need a GOT
1854 (void)allocateGOTEntries(0);
1855 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC32
);
1856 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
1857 (void)allocateGOTEntries(0);
1858 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
1859 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
1860 // GOTOFF relocations ultimately require a section difference relocation.
1861 (void)allocateGOTEntries(0);
1862 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1863 } else if (RelType
== ELF::R_X86_64_PC32
) {
1864 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1865 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1866 } else if (RelType
== ELF::R_X86_64_PC64
) {
1867 Value
.Addend
+= support::ulittle64_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1868 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1869 } else if (RelType
== ELF::R_X86_64_GOTTPOFF
) {
1870 processX86_64GOTTPOFFRelocation(SectionID
, Offset
, Value
, Addend
);
1871 } else if (RelType
== ELF::R_X86_64_TLSGD
||
1872 RelType
== ELF::R_X86_64_TLSLD
) {
1873 // The next relocation must be the relocation for __tls_get_addr.
1875 auto &GetAddrRelocation
= *RelI
;
1876 processX86_64TLSRelocation(SectionID
, Offset
, RelType
, Value
, Addend
,
1879 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1882 if (Arch
== Triple::x86
) {
1883 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1885 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1890 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID
,
1892 RelocationValueRef Value
,
1894 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1895 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1896 // only mentions one optimization even though there are two different
1897 // code sequences for the Initial Exec TLS Model. We match the code to
1898 // find out which one was used.
1900 // A possible TLS code sequence and its replacement
1901 struct CodeSequence
{
1902 // The expected code sequence
1903 ArrayRef
<uint8_t> ExpectedCodeSequence
;
1904 // The negative offset of the GOTTPOFF relocation to the beginning of
1906 uint64_t TLSSequenceOffset
;
1907 // The new code sequence
1908 ArrayRef
<uint8_t> NewCodeSequence
;
1909 // The offset of the new TPOFF relocation
1910 uint64_t TpoffRelocationOffset
;
1913 std::array
<CodeSequence
, 2> CodeSequences
;
1915 // Initial Exec Code Model Sequence
1917 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
1918 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1919 0x00, // mov %fs:0, %rax
1920 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1923 CodeSequences
[0].ExpectedCodeSequence
=
1924 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
1925 CodeSequences
[0].TLSSequenceOffset
= 12;
1927 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
1928 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1929 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1931 CodeSequences
[0].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
1932 CodeSequences
[0].TpoffRelocationOffset
= 12;
1935 // Initial Exec Code Model Sequence, II
1937 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
1938 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1939 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1941 CodeSequences
[1].ExpectedCodeSequence
=
1942 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
1943 CodeSequences
[1].TLSSequenceOffset
= 3;
1945 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
1946 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1947 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1949 CodeSequences
[1].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
1950 CodeSequences
[1].TpoffRelocationOffset
= 10;
1953 bool Resolved
= false;
1954 auto &Section
= Sections
[SectionID
];
1955 for (const auto &C
: CodeSequences
) {
1956 assert(C
.ExpectedCodeSequence
.size() == C
.NewCodeSequence
.size() &&
1957 "Old and new code sequences must have the same size");
1959 if (Offset
< C
.TLSSequenceOffset
||
1960 (Offset
- C
.TLSSequenceOffset
+ C
.NewCodeSequence
.size()) >
1961 Section
.getSize()) {
1962 // This can't be a matching sequence as it doesn't fit in the current
1967 auto TLSSequenceStartOffset
= Offset
- C
.TLSSequenceOffset
;
1968 auto *TLSSequence
= Section
.getAddressWithOffset(TLSSequenceStartOffset
);
1969 if (ArrayRef
<uint8_t>(TLSSequence
, C
.ExpectedCodeSequence
.size()) !=
1970 C
.ExpectedCodeSequence
) {
1974 memcpy(TLSSequence
, C
.NewCodeSequence
.data(), C
.NewCodeSequence
.size());
1976 // The original GOTTPOFF relocation has an addend as it is PC relative,
1977 // so it needs to be corrected. The TPOFF32 relocation is used as an
1978 // absolute value (which is an offset from %fs:0), so remove the addend
1980 RelocationEntry
RE(SectionID
,
1981 TLSSequenceStartOffset
+ C
.TpoffRelocationOffset
,
1982 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
1984 if (Value
.SymbolName
)
1985 addRelocationForSymbol(RE
, Value
.SymbolName
);
1987 addRelocationForSection(RE
, Value
.SectionID
);
1994 // The GOTTPOFF relocation was not used in one of the sequences
1995 // described in the spec, so we can't optimize it to a TPOFF
1997 uint64_t GOTOffset
= allocateGOTEntries(1);
1998 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1999 ELF::R_X86_64_PC32
);
2000 RelocationEntry RE
=
2001 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_TPOFF64
);
2002 if (Value
.SymbolName
)
2003 addRelocationForSymbol(RE
, Value
.SymbolName
);
2005 addRelocationForSection(RE
, Value
.SectionID
);
2009 void RuntimeDyldELF::processX86_64TLSRelocation(
2010 unsigned SectionID
, uint64_t Offset
, uint64_t RelType
,
2011 RelocationValueRef Value
, int64_t Addend
,
2012 const RelocationRef
&GetAddrRelocation
) {
2013 // Since we are statically linking and have no additional DSOs, we can resolve
2014 // the relocation directly without using __tls_get_addr.
2015 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2016 // to replace it with the Local Exec relocation variant.
2018 // Find out whether the code was compiled with the large or small memory
2019 // model. For this we look at the next relocation which is the relocation
2020 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2021 // small code model, with a 64 bit relocation it's the large code model.
2022 bool IsSmallCodeModel
;
2023 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2024 bool IsGOTPCRel
= false;
2026 switch (GetAddrRelocation
.getType()) {
2027 case ELF::R_X86_64_GOTPCREL
:
2028 case ELF::R_X86_64_REX_GOTPCRELX
:
2029 case ELF::R_X86_64_GOTPCRELX
:
2032 case ELF::R_X86_64_PLT32
:
2033 IsSmallCodeModel
= true;
2035 case ELF::R_X86_64_PLTOFF64
:
2036 IsSmallCodeModel
= false;
2040 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2041 "expected PLT or GOT relocation for __tls_get_addr function");
2044 // The negative offset to the start of the TLS code sequence relative to
2045 // the offset of the TLSGD/TLSLD relocation
2046 uint64_t TLSSequenceOffset
;
2047 // The expected start of the code sequence
2048 ArrayRef
<uint8_t> ExpectedCodeSequence
;
2049 // The new TLS code sequence that will replace the existing code
2050 ArrayRef
<uint8_t> NewCodeSequence
;
2052 if (RelType
== ELF::R_X86_64_TLSGD
) {
2053 // The offset of the new TPOFF32 relocation (offset starting from the
2054 // beginning of the whole TLS sequence)
2055 uint64_t TpoffRelocOffset
;
2057 if (IsSmallCodeModel
) {
2059 static const std::initializer_list
<uint8_t> CodeSequence
= {
2060 0x66, // data16 (no-op prefix)
2061 0x48, 0x8d, 0x3d, 0x00, 0x00,
2062 0x00, 0x00, // lea <disp32>(%rip), %rdi
2063 0x66, 0x66, // two data16 prefixes
2064 0x48, // rex64 (no-op prefix)
2065 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2067 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2068 TLSSequenceOffset
= 4;
2070 // This code sequence is not described in the TLS spec but gcc
2071 // generates it sometimes.
2072 static const std::initializer_list
<uint8_t> CodeSequence
= {
2073 0x66, // data16 (no-op prefix)
2074 0x48, 0x8d, 0x3d, 0x00, 0x00,
2075 0x00, 0x00, // lea <disp32>(%rip), %rdi
2076 0x66, // data16 prefix (no-op prefix)
2077 0x48, // rex64 (no-op prefix)
2078 0xff, 0x15, 0x00, 0x00, 0x00,
2079 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2081 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2082 TLSSequenceOffset
= 4;
2085 // The replacement code for the small code model. It's the same for
2087 static const std::initializer_list
<uint8_t> SmallSequence
= {
2088 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2089 0x00, // mov %fs:0, %rax
2090 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2093 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2094 TpoffRelocOffset
= 12;
2096 static const std::initializer_list
<uint8_t> CodeSequence
= {
2097 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2099 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2100 0x00, // movabs $__tls_get_addr@pltoff, %rax
2101 0x48, 0x01, 0xd8, // add %rbx, %rax
2102 0xff, 0xd0 // call *%rax
2104 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2105 TLSSequenceOffset
= 3;
2107 // The replacement code for the large code model
2108 static const std::initializer_list
<uint8_t> LargeSequence
= {
2109 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2110 0x00, // mov %fs:0, %rax
2111 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2113 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2115 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2116 TpoffRelocOffset
= 12;
2119 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2120 // The new TPOFF32 relocations is used as an absolute offset from
2121 // %fs:0, so remove the TLSGD/TLSLD addend again.
2122 RelocationEntry
RE(SectionID
, Offset
- TLSSequenceOffset
+ TpoffRelocOffset
,
2123 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
2124 if (Value
.SymbolName
)
2125 addRelocationForSymbol(RE
, Value
.SymbolName
);
2127 addRelocationForSection(RE
, Value
.SectionID
);
2128 } else if (RelType
== ELF::R_X86_64_TLSLD
) {
2129 if (IsSmallCodeModel
) {
2131 static const std::initializer_list
<uint8_t> CodeSequence
= {
2132 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2133 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2135 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2136 TLSSequenceOffset
= 3;
2138 // The replacement code for the small code model
2139 static const std::initializer_list
<uint8_t> SmallSequence
= {
2140 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2141 0x64, 0x48, 0x8b, 0x04, 0x25,
2142 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2144 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2146 // This code sequence is not described in the TLS spec but gcc
2147 // generates it sometimes.
2148 static const std::initializer_list
<uint8_t> CodeSequence
= {
2149 0x48, 0x8d, 0x3d, 0x00,
2150 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2151 0xff, 0x15, 0x00, 0x00,
2153 // *__tls_get_addr@gotpcrel(%rip)
2155 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2156 TLSSequenceOffset
= 3;
2158 // The replacement is code is just like above but it needs to be
2160 static const std::initializer_list
<uint8_t> SmallSequence
= {
2161 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2162 0x64, 0x48, 0x8b, 0x04, 0x25,
2163 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2165 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2168 // This is the same sequence as for the TLSGD sequence with the large
2169 // memory model above
2170 static const std::initializer_list
<uint8_t> CodeSequence
= {
2171 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2173 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2174 0x48, // movabs $__tls_get_addr@pltoff, %rax
2175 0x01, 0xd8, // add %rbx, %rax
2176 0xff, 0xd0 // call *%rax
2178 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2179 TLSSequenceOffset
= 3;
2181 // The replacement code for the large code model
2182 static const std::initializer_list
<uint8_t> LargeSequence
= {
2183 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2184 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2185 0x00, // 10 byte nop
2186 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2188 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2191 llvm_unreachable("both TLS relocations handled above");
2194 assert(ExpectedCodeSequence
.size() == NewCodeSequence
.size() &&
2195 "Old and new code sequences must have the same size");
2197 auto &Section
= Sections
[SectionID
];
2198 if (Offset
< TLSSequenceOffset
||
2199 (Offset
- TLSSequenceOffset
+ NewCodeSequence
.size()) >
2200 Section
.getSize()) {
2201 report_fatal_error("unexpected end of section in TLS sequence");
2204 auto *TLSSequence
= Section
.getAddressWithOffset(Offset
- TLSSequenceOffset
);
2205 if (ArrayRef
<uint8_t>(TLSSequence
, ExpectedCodeSequence
.size()) !=
2206 ExpectedCodeSequence
) {
2208 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2211 memcpy(TLSSequence
, NewCodeSequence
.data(), NewCodeSequence
.size());
2214 size_t RuntimeDyldELF::getGOTEntrySize() {
2215 // We don't use the GOT in all of these cases, but it's essentially free
2216 // to put them all here.
2219 case Triple::x86_64
:
2220 case Triple::aarch64
:
2221 case Triple::aarch64_be
:
2223 case Triple::ppc64le
:
2224 case Triple::systemz
:
2225 Result
= sizeof(uint64_t);
2230 Result
= sizeof(uint32_t);
2233 case Triple::mipsel
:
2234 case Triple::mips64
:
2235 case Triple::mips64el
:
2236 if (IsMipsO32ABI
|| IsMipsN32ABI
)
2237 Result
= sizeof(uint32_t);
2238 else if (IsMipsN64ABI
)
2239 Result
= sizeof(uint64_t);
2241 llvm_unreachable("Mips ABI not handled");
2244 llvm_unreachable("Unsupported CPU type!");
2249 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
2250 if (GOTSectionID
== 0) {
2251 GOTSectionID
= Sections
.size();
2252 // Reserve a section id. We'll allocate the section later
2253 // once we know the total size
2254 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2256 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
2257 CurrentGOTIndex
+= no
;
2261 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
2262 unsigned GOTRelType
) {
2263 auto E
= GOTOffsetMap
.insert({Value
, 0});
2265 uint64_t GOTOffset
= allocateGOTEntries(1);
2267 // Create relocation for newly created GOT entry
2268 RelocationEntry RE
=
2269 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
2270 if (Value
.SymbolName
)
2271 addRelocationForSymbol(RE
, Value
.SymbolName
);
2273 addRelocationForSection(RE
, Value
.SectionID
);
2275 E
.first
->second
= GOTOffset
;
2278 return E
.first
->second
;
2281 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
2285 // Fill in the relative address of the GOT Entry into the stub
2286 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
2287 addRelocationForSection(GOTRE
, GOTSectionID
);
2290 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
2291 uint64_t SymbolOffset
,
2293 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
2296 void RuntimeDyldELF::processNewSymbol(const SymbolRef
&ObjSymbol
, SymbolTableEntry
& Symbol
) {
2297 // This should never return an error as `processNewSymbol` wouldn't have been
2298 // called if getFlags() returned an error before.
2299 auto ObjSymbolFlags
= cantFail(ObjSymbol
.getFlags());
2301 if (ObjSymbolFlags
& SymbolRef::SF_Indirect
) {
2302 if (IFuncStubSectionID
== 0) {
2303 // Create a dummy section for the ifunc stubs. It will be actually
2304 // allocated in finalizeLoad() below.
2305 IFuncStubSectionID
= Sections
.size();
2307 SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2308 // First 64B are reserverd for the IFunc resolver
2309 IFuncStubOffset
= 64;
2312 IFuncStubs
.push_back(IFuncStub
{IFuncStubOffset
, Symbol
});
2313 // Modify the symbol so that it points to the ifunc stub instead of to the
2314 // resolver function.
2315 Symbol
= SymbolTableEntry(IFuncStubSectionID
, IFuncStubOffset
,
2317 IFuncStubOffset
+= getMaxIFuncStubSize();
2321 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
2322 ObjSectionToIDMap
&SectionMap
) {
2324 if (!PendingRelocs
.empty())
2325 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
2327 // Create the IFunc stubs if necessary. This must be done before processing
2328 // the GOT entries, as the IFunc stubs may create some.
2329 if (IFuncStubSectionID
!= 0) {
2330 uint8_t *IFuncStubsAddr
= MemMgr
.allocateCodeSection(
2331 IFuncStubOffset
, 1, IFuncStubSectionID
, ".text.__llvm_IFuncStubs");
2332 if (!IFuncStubsAddr
)
2333 return make_error
<RuntimeDyldError
>(
2334 "Unable to allocate memory for IFunc stubs!");
2335 Sections
[IFuncStubSectionID
] =
2336 SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr
, IFuncStubOffset
,
2337 IFuncStubOffset
, 0);
2339 createIFuncResolver(IFuncStubsAddr
);
2341 LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2342 << IFuncStubSectionID
<< " Addr: "
2343 << Sections
[IFuncStubSectionID
].getAddress() << '\n');
2344 for (auto &IFuncStub
: IFuncStubs
) {
2345 auto &Symbol
= IFuncStub
.OriginalSymbol
;
2346 LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol
.getSectionID()
2347 << " Offset: " << format("%p", Symbol
.getOffset())
2348 << " IFuncStubOffset: "
2349 << format("%p\n", IFuncStub
.StubOffset
));
2350 createIFuncStub(IFuncStubSectionID
, 0, IFuncStub
.StubOffset
,
2351 Symbol
.getSectionID(), Symbol
.getOffset());
2354 IFuncStubSectionID
= 0;
2355 IFuncStubOffset
= 0;
2359 // If necessary, allocate the global offset table
2360 if (GOTSectionID
!= 0) {
2361 // Allocate memory for the section
2362 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
2363 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
2364 GOTSectionID
, ".got", false);
2366 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
2368 Sections
[GOTSectionID
] =
2369 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
2371 // For now, initialize all GOT entries to zero. We'll fill them in as
2372 // needed when GOT-based relocations are applied.
2373 memset(Addr
, 0, TotalSize
);
2374 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
2375 // To correctly resolve Mips GOT relocations, we need a mapping from
2376 // object's sections to GOTs.
2377 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
2379 if (SI
->relocation_begin() != SI
->relocation_end()) {
2380 Expected
<section_iterator
> RelSecOrErr
= SI
->getRelocatedSection();
2382 return make_error
<RuntimeDyldError
>(
2383 toString(RelSecOrErr
.takeError()));
2385 section_iterator RelocatedSection
= *RelSecOrErr
;
2386 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
2387 assert(i
!= SectionMap
.end());
2388 SectionToGOTMap
[i
->second
] = GOTSectionID
;
2391 GOTSymbolOffsets
.clear();
2395 // Look for and record the EH frame section.
2396 ObjSectionToIDMap::iterator i
, e
;
2397 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
2398 const SectionRef
&Section
= i
->first
;
2401 Expected
<StringRef
> NameOrErr
= Section
.getName();
2405 consumeError(NameOrErr
.takeError());
2407 if (Name
== ".eh_frame") {
2408 UnregisteredEHFrameSections
.push_back(i
->second
);
2413 GOTOffsetMap
.clear();
2415 CurrentGOTIndex
= 0;
2417 return Error::success();
2420 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
2424 void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr
) const {
2425 if (Arch
== Triple::x86_64
) {
2426 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2427 // (see createIFuncStub() for details)
2428 // The following code first saves all registers that contain the original
2429 // function arguments as those registers are not saved by the resolver
2430 // function. %r11 is saved as well so that the GOT2 entry can be updated
2431 // afterwards. Then it calls the actual IFunc resolver function whose
2432 // address is stored in GOT2. After the resolver function returns, all
2433 // saved registers are restored and the return value is written to GOT1.
2434 // Finally, jump to the now resolved function.
2436 const uint8_t StubCode
[] = {
2441 0x41, 0x50, // push %r8
2442 0x41, 0x51, // push %r9
2443 0x41, 0x53, // push %r11
2444 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2445 0x41, 0x5b, // pop %r11
2446 0x41, 0x59, // pop %r9
2447 0x41, 0x58, // pop %r8
2452 0x49, 0x89, 0x03, // mov %rax,(%r11)
2453 0xff, 0xe0 // jmp *%rax
2456 static_assert(sizeof(StubCode
) <= 64,
2457 "maximum size of the IFunc resolver is 64B");
2458 memcpy(Addr
, StubCode
, sizeof(StubCode
));
2461 "IFunc resolver is not supported for target architecture");
2465 void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID
,
2466 uint64_t IFuncResolverOffset
,
2467 uint64_t IFuncStubOffset
,
2468 unsigned IFuncSectionID
,
2469 uint64_t IFuncOffset
) {
2470 auto &IFuncStubSection
= Sections
[IFuncStubSectionID
];
2471 auto *Addr
= IFuncStubSection
.getAddressWithOffset(IFuncStubOffset
);
2473 if (Arch
== Triple::x86_64
) {
2474 // The first instruction loads a PC-relative address into %r11 which is a
2475 // GOT entry for this stub. This initially contains the address to the
2476 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2477 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2478 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2481 // The next instruction just jumps to the address contained in the GOT
2482 // entry. As mentioned above, we do this two-step jump by first setting
2483 // %r11 so that the IFunc resolver has access to it.
2485 // The IFunc resolver of course also needs to know the actual address of
2486 // the actual IFunc resolver function. This will be stored in a GOT entry
2487 // right next to the first one for this stub. So, the IFunc resolver will
2488 // be able to call it with %r11+8.
2490 // In total, two adjacent GOT entries (+relocation) and one additional
2491 // relocation are required:
2492 // GOT1: Address of the IFunc resolver.
2493 // GOT2: Address of the IFunc resolver function.
2494 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2495 uint64_t GOT1
= allocateGOTEntries(2);
2496 uint64_t GOT2
= GOT1
+ getGOTEntrySize();
2498 RelocationEntry
RE1(GOTSectionID
, GOT1
, ELF::R_X86_64_64
,
2499 IFuncResolverOffset
, {});
2500 addRelocationForSection(RE1
, IFuncStubSectionID
);
2501 RelocationEntry
RE2(GOTSectionID
, GOT2
, ELF::R_X86_64_64
, IFuncOffset
, {});
2502 addRelocationForSection(RE2
, IFuncSectionID
);
2504 const uint8_t StubCode
[] = {
2505 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2506 0x41, 0xff, 0x23 // jmpq *(%r11)
2508 assert(sizeof(StubCode
) <= getMaxIFuncStubSize() &&
2509 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2510 memcpy(Addr
, StubCode
, sizeof(StubCode
));
2512 // The PC-relative value starts 4 bytes from the end of the leaq
2513 // instruction, so the addend is -4.
2514 resolveGOTOffsetRelocation(IFuncStubSectionID
, IFuncStubOffset
+ 3,
2515 GOT1
- 4, ELF::R_X86_64_PC32
);
2517 report_fatal_error("IFunc stub is not supported for target architecture");
2521 unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2522 if (Arch
== Triple::x86_64
) {
2528 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
2529 unsigned RelTy
= R
.getType();
2530 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
2531 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
2532 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
2534 if (Arch
== Triple::x86_64
)
2535 return RelTy
== ELF::R_X86_64_GOTPCREL
||
2536 RelTy
== ELF::R_X86_64_GOTPCRELX
||
2537 RelTy
== ELF::R_X86_64_GOT64
||
2538 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
2542 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
2543 if (Arch
!= Triple::x86_64
)
2544 return true; // Conservative answer
2546 switch (R
.getType()) {
2548 return true; // Conservative answer
2551 case ELF::R_X86_64_GOTPCREL
:
2552 case ELF::R_X86_64_GOTPCRELX
:
2553 case ELF::R_X86_64_REX_GOTPCRELX
:
2554 case ELF::R_X86_64_GOTPC64
:
2555 case ELF::R_X86_64_GOT64
:
2556 case ELF::R_X86_64_GOTOFF64
:
2557 case ELF::R_X86_64_PC32
:
2558 case ELF::R_X86_64_PC64
:
2559 case ELF::R_X86_64_64
:
2560 // We know that these reloation types won't need a stub function. This list
2561 // can be extended as needed.