[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
blobd439b1b4ebfbfbf72b6213703daed821d1d4f923
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/MemoryBuffer.h"
23 #include "llvm/TargetParser/Triple.h"
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::support::endian;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33 static void or32AArch64Imm(void *L, uint64_t Imm) {
34 or32le(L, (Imm & 0xFFF) << 10);
37 template <class T> static void write(bool isBE, void *P, T V) {
38 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
41 static void write32AArch64Addr(void *L, uint64_t Imm) {
42 uint32_t ImmLo = (Imm & 0x3) << 29;
43 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
44 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
45 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
48 // Return the bits [Start, End] from Val shifted Start bits.
49 // For instance, getBits(0xF0, 4, 8) returns 0xF.
50 static uint64_t getBits(uint64_t Val, int Start, int End) {
51 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
52 return (Val >> Start) & Mask;
55 namespace {
57 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
58 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60 typedef typename ELFT::uint addr_type;
62 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
64 public:
65 static Expected<std::unique_ptr<DyldELFObject>>
66 create(MemoryBufferRef Wrapper);
68 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
70 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
72 // Methods for type inquiry through isa, cast and dyn_cast
73 static bool classof(const Binary *v) {
74 return (isa<ELFObjectFile<ELFT>>(v) &&
75 classof(cast<ELFObjectFile<ELFT>>(v)));
77 static bool classof(const ELFObjectFile<ELFT> *v) {
78 return v->isDyldType();
84 // The MemoryBuffer passed into this constructor is just a wrapper around the
85 // actual memory. Ultimately, the Binary parent class will take ownership of
86 // this MemoryBuffer object but not the underlying memory.
87 template <class ELFT>
88 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
89 : ELFObjectFile<ELFT>(std::move(Obj)) {
90 this->isDyldELFObject = true;
93 template <class ELFT>
94 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
95 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
96 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
97 if (auto E = Obj.takeError())
98 return std::move(E);
99 std::unique_ptr<DyldELFObject<ELFT>> Ret(
100 new DyldELFObject<ELFT>(std::move(*Obj)));
101 return std::move(Ret);
104 template <class ELFT>
105 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
106 uint64_t Addr) {
107 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
108 Elf_Shdr *shdr =
109 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
111 // This assumes the address passed in matches the target address bitness
112 // The template-based type cast handles everything else.
113 shdr->sh_addr = static_cast<addr_type>(Addr);
116 template <class ELFT>
117 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
118 uint64_t Addr) {
120 Elf_Sym *sym = const_cast<Elf_Sym *>(
121 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
123 // This assumes the address passed in matches the target address bitness
124 // The template-based type cast handles everything else.
125 sym->st_value = static_cast<addr_type>(Addr);
128 class LoadedELFObjectInfo final
129 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
130 RuntimeDyld::LoadedObjectInfo> {
131 public:
132 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
133 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
135 OwningBinary<ObjectFile>
136 getObjectForDebug(const ObjectFile &Obj) const override;
139 template <typename ELFT>
140 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
141 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
142 const LoadedELFObjectInfo &L) {
143 typedef typename ELFT::Shdr Elf_Shdr;
144 typedef typename ELFT::uint addr_type;
146 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
147 DyldELFObject<ELFT>::create(Buffer);
148 if (Error E = ObjOrErr.takeError())
149 return std::move(E);
151 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
153 // Iterate over all sections in the object.
154 auto SI = SourceObject.section_begin();
155 for (const auto &Sec : Obj->sections()) {
156 Expected<StringRef> NameOrErr = Sec.getName();
157 if (!NameOrErr) {
158 consumeError(NameOrErr.takeError());
159 continue;
162 if (*NameOrErr != "") {
163 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
164 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
165 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
167 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
168 // This assumes that the address passed in matches the target address
169 // bitness. The template-based type cast handles everything else.
170 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
173 ++SI;
176 return std::move(Obj);
179 static OwningBinary<ObjectFile>
180 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
181 assert(Obj.isELF() && "Not an ELF object file.");
183 std::unique_ptr<MemoryBuffer> Buffer =
184 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
186 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
187 handleAllErrors(DebugObj.takeError());
188 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
189 DebugObj =
190 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
191 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
192 DebugObj =
193 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
194 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
195 DebugObj =
196 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
197 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
198 DebugObj =
199 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
200 else
201 llvm_unreachable("Unexpected ELF format");
203 handleAllErrors(DebugObj.takeError());
204 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
207 OwningBinary<ObjectFile>
208 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
209 return createELFDebugObject(Obj, *this);
212 } // anonymous namespace
214 namespace llvm {
216 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
217 JITSymbolResolver &Resolver)
218 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
219 RuntimeDyldELF::~RuntimeDyldELF() = default;
221 void RuntimeDyldELF::registerEHFrames() {
222 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
223 SID EHFrameSID = UnregisteredEHFrameSections[i];
224 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
225 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
226 size_t EHFrameSize = Sections[EHFrameSID].getSize();
227 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
229 UnregisteredEHFrameSections.clear();
232 std::unique_ptr<RuntimeDyldELF>
233 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
234 RuntimeDyld::MemoryManager &MemMgr,
235 JITSymbolResolver &Resolver) {
236 switch (Arch) {
237 default:
238 return std::make_unique<RuntimeDyldELF>(MemMgr, Resolver);
239 case Triple::mips:
240 case Triple::mipsel:
241 case Triple::mips64:
242 case Triple::mips64el:
243 return std::make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
247 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
248 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
249 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
250 return std::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
251 else {
252 HasError = true;
253 raw_string_ostream ErrStream(ErrorStr);
254 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream);
255 return nullptr;
259 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
260 uint64_t Offset, uint64_t Value,
261 uint32_t Type, int64_t Addend,
262 uint64_t SymOffset) {
263 switch (Type) {
264 default:
265 report_fatal_error("Relocation type not implemented yet!");
266 break;
267 case ELF::R_X86_64_NONE:
268 break;
269 case ELF::R_X86_64_8: {
270 Value += Addend;
271 assert((int64_t)Value <= INT8_MAX && (int64_t)Value >= INT8_MIN);
272 uint8_t TruncatedAddr = (Value & 0xFF);
273 *Section.getAddressWithOffset(Offset) = TruncatedAddr;
274 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
275 << format("%p\n", Section.getAddressWithOffset(Offset)));
276 break;
278 case ELF::R_X86_64_16: {
279 Value += Addend;
280 assert((int64_t)Value <= INT16_MAX && (int64_t)Value >= INT16_MIN);
281 uint16_t TruncatedAddr = (Value & 0xFFFF);
282 support::ulittle16_t::ref(Section.getAddressWithOffset(Offset)) =
283 TruncatedAddr;
284 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
285 << format("%p\n", Section.getAddressWithOffset(Offset)));
286 break;
288 case ELF::R_X86_64_64: {
289 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
290 Value + Addend;
291 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
292 << format("%p\n", Section.getAddressWithOffset(Offset)));
293 break;
295 case ELF::R_X86_64_32:
296 case ELF::R_X86_64_32S: {
297 Value += Addend;
298 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
299 (Type == ELF::R_X86_64_32S &&
300 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
301 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
302 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
303 TruncatedAddr;
304 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
305 << format("%p\n", Section.getAddressWithOffset(Offset)));
306 break;
308 case ELF::R_X86_64_PC8: {
309 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
310 int64_t RealOffset = Value + Addend - FinalAddress;
311 assert(isInt<8>(RealOffset));
312 int8_t TruncOffset = (RealOffset & 0xFF);
313 Section.getAddress()[Offset] = TruncOffset;
314 break;
316 case ELF::R_X86_64_PC32: {
317 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
318 int64_t RealOffset = Value + Addend - FinalAddress;
319 assert(isInt<32>(RealOffset));
320 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
321 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
322 TruncOffset;
323 break;
325 case ELF::R_X86_64_PC64: {
326 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
327 int64_t RealOffset = Value + Addend - FinalAddress;
328 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
329 RealOffset;
330 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
331 << format("%p\n", FinalAddress));
332 break;
334 case ELF::R_X86_64_GOTOFF64: {
335 // Compute Value - GOTBase.
336 uint64_t GOTBase = 0;
337 for (const auto &Section : Sections) {
338 if (Section.getName() == ".got") {
339 GOTBase = Section.getLoadAddressWithOffset(0);
340 break;
343 assert(GOTBase != 0 && "missing GOT");
344 int64_t GOTOffset = Value - GOTBase + Addend;
345 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
346 break;
348 case ELF::R_X86_64_DTPMOD64: {
349 // We only have one DSO, so the module id is always 1.
350 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = 1;
351 break;
353 case ELF::R_X86_64_DTPOFF64:
354 case ELF::R_X86_64_TPOFF64: {
355 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
356 // offset in the *initial* TLS block. Since we are statically linking, all
357 // TLS blocks already exist in the initial block, so resolve both
358 // relocations equally.
359 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
360 Value + Addend;
361 break;
363 case ELF::R_X86_64_DTPOFF32:
364 case ELF::R_X86_64_TPOFF32: {
365 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
366 // be resolved equally.
367 int64_t RealValue = Value + Addend;
368 assert(RealValue >= INT32_MIN && RealValue <= INT32_MAX);
369 int32_t TruncValue = RealValue;
370 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
371 TruncValue;
372 break;
377 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
378 uint64_t Offset, uint32_t Value,
379 uint32_t Type, int32_t Addend) {
380 switch (Type) {
381 case ELF::R_386_32: {
382 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
383 Value + Addend;
384 break;
386 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
387 // reach any 32 bit address.
388 case ELF::R_386_PLT32:
389 case ELF::R_386_PC32: {
390 uint32_t FinalAddress =
391 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
392 uint32_t RealOffset = Value + Addend - FinalAddress;
393 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
394 RealOffset;
395 break;
397 default:
398 // There are other relocation types, but it appears these are the
399 // only ones currently used by the LLVM ELF object writer
400 report_fatal_error("Relocation type not implemented yet!");
401 break;
405 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
406 uint64_t Offset, uint64_t Value,
407 uint32_t Type, int64_t Addend) {
408 uint32_t *TargetPtr =
409 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
410 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
411 // Data should use target endian. Code should always use little endian.
412 bool isBE = Arch == Triple::aarch64_be;
414 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
415 << format("%llx", Section.getAddressWithOffset(Offset))
416 << " FinalAddress: 0x" << format("%llx", FinalAddress)
417 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
418 << format("%x", Type) << " Addend: 0x"
419 << format("%llx", Addend) << "\n");
421 switch (Type) {
422 default:
423 report_fatal_error("Relocation type not implemented yet!");
424 break;
425 case ELF::R_AARCH64_NONE:
426 break;
427 case ELF::R_AARCH64_ABS16: {
428 uint64_t Result = Value + Addend;
429 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 16)) ||
430 (Result >> 16) == 0);
431 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
432 break;
434 case ELF::R_AARCH64_ABS32: {
435 uint64_t Result = Value + Addend;
436 assert(Result == static_cast<uint64_t>(llvm::SignExtend64(Result, 32)) ||
437 (Result >> 32) == 0);
438 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
439 break;
441 case ELF::R_AARCH64_ABS64:
442 write(isBE, TargetPtr, Value + Addend);
443 break;
444 case ELF::R_AARCH64_PLT32: {
445 uint64_t Result = Value + Addend - FinalAddress;
446 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
447 static_cast<int64_t>(Result) <= INT32_MAX);
448 write(isBE, TargetPtr, static_cast<uint32_t>(Result));
449 break;
451 case ELF::R_AARCH64_PREL16: {
452 uint64_t Result = Value + Addend - FinalAddress;
453 assert(static_cast<int64_t>(Result) >= INT16_MIN &&
454 static_cast<int64_t>(Result) <= UINT16_MAX);
455 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
456 break;
458 case ELF::R_AARCH64_PREL32: {
459 uint64_t Result = Value + Addend - FinalAddress;
460 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
461 static_cast<int64_t>(Result) <= UINT32_MAX);
462 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
463 break;
465 case ELF::R_AARCH64_PREL64:
466 write(isBE, TargetPtr, Value + Addend - FinalAddress);
467 break;
468 case ELF::R_AARCH64_CONDBR19: {
469 uint64_t BranchImm = Value + Addend - FinalAddress;
471 assert(isInt<21>(BranchImm));
472 *TargetPtr &= 0xff00001fU;
473 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
474 or32le(TargetPtr, (BranchImm & 0x001FFFFC) << 3);
475 break;
477 case ELF::R_AARCH64_TSTBR14: {
478 uint64_t BranchImm = Value + Addend - FinalAddress;
480 assert(isInt<16>(BranchImm));
482 uint32_t RawInstr = *(support::little32_t *)TargetPtr;
483 *(support::little32_t *)TargetPtr = RawInstr & 0xfff8001fU;
485 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
486 or32le(TargetPtr, (BranchImm & 0x0000FFFC) << 3);
487 break;
489 case ELF::R_AARCH64_CALL26: // fallthrough
490 case ELF::R_AARCH64_JUMP26: {
491 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
492 // calculation.
493 uint64_t BranchImm = Value + Addend - FinalAddress;
495 // "Check that -2^27 <= result < 2^27".
496 assert(isInt<28>(BranchImm));
497 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
498 break;
500 case ELF::R_AARCH64_MOVW_UABS_G3:
501 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
502 break;
503 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
504 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
505 break;
506 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
507 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
508 break;
509 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
510 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
511 break;
512 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
513 // Operation: Page(S+A) - Page(P)
514 uint64_t Result =
515 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
517 // Check that -2^32 <= X < 2^32
518 assert(isInt<33>(Result) && "overflow check failed for relocation");
520 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
521 // from bits 32:12 of X.
522 write32AArch64Addr(TargetPtr, Result >> 12);
523 break;
525 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
526 // Operation: S + A
527 // Immediate goes in bits 21:10 of LD/ST instruction, taken
528 // from bits 11:0 of X
529 or32AArch64Imm(TargetPtr, Value + Addend);
530 break;
531 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
532 // Operation: S + A
533 // Immediate goes in bits 21:10 of LD/ST instruction, taken
534 // from bits 11:0 of X
535 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
536 break;
537 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
538 // Operation: S + A
539 // Immediate goes in bits 21:10 of LD/ST instruction, taken
540 // from bits 11:1 of X
541 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
542 break;
543 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
544 // Operation: S + A
545 // Immediate goes in bits 21:10 of LD/ST instruction, taken
546 // from bits 11:2 of X
547 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
548 break;
549 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
550 // Operation: S + A
551 // Immediate goes in bits 21:10 of LD/ST instruction, taken
552 // from bits 11:3 of X
553 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
554 break;
555 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
556 // Operation: S + A
557 // Immediate goes in bits 21:10 of LD/ST instruction, taken
558 // from bits 11:4 of X
559 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
560 break;
561 case ELF::R_AARCH64_LD_PREL_LO19: {
562 // Operation: S + A - P
563 uint64_t Result = Value + Addend - FinalAddress;
565 // "Check that -2^20 <= result < 2^20".
566 assert(isInt<21>(Result));
568 *TargetPtr &= 0xff00001fU;
569 // Immediate goes in bits 23:5 of LD imm instruction, taken
570 // from bits 20:2 of X
571 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
572 break;
574 case ELF::R_AARCH64_ADR_PREL_LO21: {
575 // Operation: S + A - P
576 uint64_t Result = Value + Addend - FinalAddress;
578 // "Check that -2^20 <= result < 2^20".
579 assert(isInt<21>(Result));
581 *TargetPtr &= 0x9f00001fU;
582 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
583 // from bits 20:0 of X
584 *TargetPtr |= ((Result & 0xffc) << (5 - 2));
585 *TargetPtr |= (Result & 0x3) << 29;
586 break;
591 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
592 uint64_t Offset, uint32_t Value,
593 uint32_t Type, int32_t Addend) {
594 // TODO: Add Thumb relocations.
595 uint32_t *TargetPtr =
596 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
597 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
598 Value += Addend;
600 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
601 << Section.getAddressWithOffset(Offset)
602 << " FinalAddress: " << format("%p", FinalAddress)
603 << " Value: " << format("%x", Value)
604 << " Type: " << format("%x", Type)
605 << " Addend: " << format("%x", Addend) << "\n");
607 switch (Type) {
608 default:
609 llvm_unreachable("Not implemented relocation type!");
611 case ELF::R_ARM_NONE:
612 break;
613 // Write a 31bit signed offset
614 case ELF::R_ARM_PREL31:
615 support::ulittle32_t::ref{TargetPtr} =
616 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
617 ((Value - FinalAddress) & ~0x80000000);
618 break;
619 case ELF::R_ARM_TARGET1:
620 case ELF::R_ARM_ABS32:
621 support::ulittle32_t::ref{TargetPtr} = Value;
622 break;
623 // Write first 16 bit of 32 bit value to the mov instruction.
624 // Last 4 bit should be shifted.
625 case ELF::R_ARM_MOVW_ABS_NC:
626 case ELF::R_ARM_MOVT_ABS:
627 if (Type == ELF::R_ARM_MOVW_ABS_NC)
628 Value = Value & 0xFFFF;
629 else if (Type == ELF::R_ARM_MOVT_ABS)
630 Value = (Value >> 16) & 0xFFFF;
631 support::ulittle32_t::ref{TargetPtr} =
632 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
633 (((Value >> 12) & 0xF) << 16);
634 break;
635 // Write 24 bit relative value to the branch instruction.
636 case ELF::R_ARM_PC24: // Fall through.
637 case ELF::R_ARM_CALL: // Fall through.
638 case ELF::R_ARM_JUMP24:
639 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
640 RelValue = (RelValue & 0x03FFFFFC) >> 2;
641 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
642 support::ulittle32_t::ref{TargetPtr} =
643 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
644 break;
648 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
649 if (Arch == Triple::UnknownArch ||
650 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
651 IsMipsO32ABI = false;
652 IsMipsN32ABI = false;
653 IsMipsN64ABI = false;
654 return;
656 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
657 unsigned AbiVariant = E->getPlatformFlags();
658 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
659 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
661 IsMipsN64ABI = Obj.getFileFormatName().equals("elf64-mips");
664 // Return the .TOC. section and offset.
665 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
666 ObjSectionToIDMap &LocalSections,
667 RelocationValueRef &Rel) {
668 // Set a default SectionID in case we do not find a TOC section below.
669 // This may happen for references to TOC base base (sym@toc, .odp
670 // relocation) without a .toc directive. In this case just use the
671 // first section (which is usually the .odp) since the code won't
672 // reference the .toc base directly.
673 Rel.SymbolName = nullptr;
674 Rel.SectionID = 0;
676 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
677 // order. The TOC starts where the first of these sections starts.
678 for (auto &Section : Obj.sections()) {
679 Expected<StringRef> NameOrErr = Section.getName();
680 if (!NameOrErr)
681 return NameOrErr.takeError();
682 StringRef SectionName = *NameOrErr;
684 if (SectionName == ".got"
685 || SectionName == ".toc"
686 || SectionName == ".tocbss"
687 || SectionName == ".plt") {
688 if (auto SectionIDOrErr =
689 findOrEmitSection(Obj, Section, false, LocalSections))
690 Rel.SectionID = *SectionIDOrErr;
691 else
692 return SectionIDOrErr.takeError();
693 break;
697 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
698 // thus permitting a full 64 Kbytes segment.
699 Rel.Addend = 0x8000;
701 return Error::success();
704 // Returns the sections and offset associated with the ODP entry referenced
705 // by Symbol.
706 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
707 ObjSectionToIDMap &LocalSections,
708 RelocationValueRef &Rel) {
709 // Get the ELF symbol value (st_value) to compare with Relocation offset in
710 // .opd entries
711 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
712 si != se; ++si) {
714 Expected<section_iterator> RelSecOrErr = si->getRelocatedSection();
715 if (!RelSecOrErr)
716 report_fatal_error(Twine(toString(RelSecOrErr.takeError())));
718 section_iterator RelSecI = *RelSecOrErr;
719 if (RelSecI == Obj.section_end())
720 continue;
722 Expected<StringRef> NameOrErr = RelSecI->getName();
723 if (!NameOrErr)
724 return NameOrErr.takeError();
725 StringRef RelSectionName = *NameOrErr;
727 if (RelSectionName != ".opd")
728 continue;
730 for (elf_relocation_iterator i = si->relocation_begin(),
731 e = si->relocation_end();
732 i != e;) {
733 // The R_PPC64_ADDR64 relocation indicates the first field
734 // of a .opd entry
735 uint64_t TypeFunc = i->getType();
736 if (TypeFunc != ELF::R_PPC64_ADDR64) {
737 ++i;
738 continue;
741 uint64_t TargetSymbolOffset = i->getOffset();
742 symbol_iterator TargetSymbol = i->getSymbol();
743 int64_t Addend;
744 if (auto AddendOrErr = i->getAddend())
745 Addend = *AddendOrErr;
746 else
747 return AddendOrErr.takeError();
749 ++i;
750 if (i == e)
751 break;
753 // Just check if following relocation is a R_PPC64_TOC
754 uint64_t TypeTOC = i->getType();
755 if (TypeTOC != ELF::R_PPC64_TOC)
756 continue;
758 // Finally compares the Symbol value and the target symbol offset
759 // to check if this .opd entry refers to the symbol the relocation
760 // points to.
761 if (Rel.Addend != (int64_t)TargetSymbolOffset)
762 continue;
764 section_iterator TSI = Obj.section_end();
765 if (auto TSIOrErr = TargetSymbol->getSection())
766 TSI = *TSIOrErr;
767 else
768 return TSIOrErr.takeError();
769 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
771 bool IsCode = TSI->isText();
772 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
773 LocalSections))
774 Rel.SectionID = *SectionIDOrErr;
775 else
776 return SectionIDOrErr.takeError();
777 Rel.Addend = (intptr_t)Addend;
778 return Error::success();
781 llvm_unreachable("Attempting to get address of ODP entry!");
784 // Relocation masks following the #lo(value), #hi(value), #ha(value),
785 // #higher(value), #highera(value), #highest(value), and #highesta(value)
786 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
787 // document.
789 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
791 static inline uint16_t applyPPChi(uint64_t value) {
792 return (value >> 16) & 0xffff;
795 static inline uint16_t applyPPCha (uint64_t value) {
796 return ((value + 0x8000) >> 16) & 0xffff;
799 static inline uint16_t applyPPChigher(uint64_t value) {
800 return (value >> 32) & 0xffff;
803 static inline uint16_t applyPPChighera (uint64_t value) {
804 return ((value + 0x8000) >> 32) & 0xffff;
807 static inline uint16_t applyPPChighest(uint64_t value) {
808 return (value >> 48) & 0xffff;
811 static inline uint16_t applyPPChighesta (uint64_t value) {
812 return ((value + 0x8000) >> 48) & 0xffff;
815 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
816 uint64_t Offset, uint64_t Value,
817 uint32_t Type, int64_t Addend) {
818 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
819 switch (Type) {
820 default:
821 report_fatal_error("Relocation type not implemented yet!");
822 break;
823 case ELF::R_PPC_ADDR16_LO:
824 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
825 break;
826 case ELF::R_PPC_ADDR16_HI:
827 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
828 break;
829 case ELF::R_PPC_ADDR16_HA:
830 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
831 break;
835 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
836 uint64_t Offset, uint64_t Value,
837 uint32_t Type, int64_t Addend) {
838 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
839 switch (Type) {
840 default:
841 report_fatal_error("Relocation type not implemented yet!");
842 break;
843 case ELF::R_PPC64_ADDR16:
844 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
845 break;
846 case ELF::R_PPC64_ADDR16_DS:
847 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
848 break;
849 case ELF::R_PPC64_ADDR16_LO:
850 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
851 break;
852 case ELF::R_PPC64_ADDR16_LO_DS:
853 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
854 break;
855 case ELF::R_PPC64_ADDR16_HI:
856 case ELF::R_PPC64_ADDR16_HIGH:
857 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
858 break;
859 case ELF::R_PPC64_ADDR16_HA:
860 case ELF::R_PPC64_ADDR16_HIGHA:
861 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
862 break;
863 case ELF::R_PPC64_ADDR16_HIGHER:
864 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
865 break;
866 case ELF::R_PPC64_ADDR16_HIGHERA:
867 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
868 break;
869 case ELF::R_PPC64_ADDR16_HIGHEST:
870 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
871 break;
872 case ELF::R_PPC64_ADDR16_HIGHESTA:
873 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
874 break;
875 case ELF::R_PPC64_ADDR14: {
876 assert(((Value + Addend) & 3) == 0);
877 // Preserve the AA/LK bits in the branch instruction
878 uint8_t aalk = *(LocalAddress + 3);
879 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
880 } break;
881 case ELF::R_PPC64_REL16_LO: {
882 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
883 uint64_t Delta = Value - FinalAddress + Addend;
884 writeInt16BE(LocalAddress, applyPPClo(Delta));
885 } break;
886 case ELF::R_PPC64_REL16_HI: {
887 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
888 uint64_t Delta = Value - FinalAddress + Addend;
889 writeInt16BE(LocalAddress, applyPPChi(Delta));
890 } break;
891 case ELF::R_PPC64_REL16_HA: {
892 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
893 uint64_t Delta = Value - FinalAddress + Addend;
894 writeInt16BE(LocalAddress, applyPPCha(Delta));
895 } break;
896 case ELF::R_PPC64_ADDR32: {
897 int64_t Result = static_cast<int64_t>(Value + Addend);
898 if (SignExtend64<32>(Result) != Result)
899 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
900 writeInt32BE(LocalAddress, Result);
901 } break;
902 case ELF::R_PPC64_REL24: {
903 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
904 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
905 if (SignExtend64<26>(delta) != delta)
906 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
907 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
908 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
909 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
910 } break;
911 case ELF::R_PPC64_REL32: {
912 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
913 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
914 if (SignExtend64<32>(delta) != delta)
915 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
916 writeInt32BE(LocalAddress, delta);
917 } break;
918 case ELF::R_PPC64_REL64: {
919 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
920 uint64_t Delta = Value - FinalAddress + Addend;
921 writeInt64BE(LocalAddress, Delta);
922 } break;
923 case ELF::R_PPC64_ADDR64:
924 writeInt64BE(LocalAddress, Value + Addend);
925 break;
929 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
930 uint64_t Offset, uint64_t Value,
931 uint32_t Type, int64_t Addend) {
932 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
933 switch (Type) {
934 default:
935 report_fatal_error("Relocation type not implemented yet!");
936 break;
937 case ELF::R_390_PC16DBL:
938 case ELF::R_390_PLT16DBL: {
939 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
940 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
941 writeInt16BE(LocalAddress, Delta / 2);
942 break;
944 case ELF::R_390_PC32DBL:
945 case ELF::R_390_PLT32DBL: {
946 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
947 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
948 writeInt32BE(LocalAddress, Delta / 2);
949 break;
951 case ELF::R_390_PC16: {
952 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
953 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
954 writeInt16BE(LocalAddress, Delta);
955 break;
957 case ELF::R_390_PC32: {
958 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
959 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
960 writeInt32BE(LocalAddress, Delta);
961 break;
963 case ELF::R_390_PC64: {
964 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
965 writeInt64BE(LocalAddress, Delta);
966 break;
968 case ELF::R_390_8:
969 *LocalAddress = (uint8_t)(Value + Addend);
970 break;
971 case ELF::R_390_16:
972 writeInt16BE(LocalAddress, Value + Addend);
973 break;
974 case ELF::R_390_32:
975 writeInt32BE(LocalAddress, Value + Addend);
976 break;
977 case ELF::R_390_64:
978 writeInt64BE(LocalAddress, Value + Addend);
979 break;
983 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
984 uint64_t Offset, uint64_t Value,
985 uint32_t Type, int64_t Addend) {
986 bool isBE = Arch == Triple::bpfeb;
988 switch (Type) {
989 default:
990 report_fatal_error("Relocation type not implemented yet!");
991 break;
992 case ELF::R_BPF_NONE:
993 case ELF::R_BPF_64_64:
994 case ELF::R_BPF_64_32:
995 case ELF::R_BPF_64_NODYLD32:
996 break;
997 case ELF::R_BPF_64_ABS64: {
998 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
999 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
1000 << format("%p\n", Section.getAddressWithOffset(Offset)));
1001 break;
1003 case ELF::R_BPF_64_ABS32: {
1004 Value += Addend;
1005 assert(Value <= UINT32_MAX);
1006 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
1007 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
1008 << format("%p\n", Section.getAddressWithOffset(Offset)));
1009 break;
1014 // The target location for the relocation is described by RE.SectionID and
1015 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1016 // SectionEntry has three members describing its location.
1017 // SectionEntry::Address is the address at which the section has been loaded
1018 // into memory in the current (host) process. SectionEntry::LoadAddress is the
1019 // address that the section will have in the target process.
1020 // SectionEntry::ObjAddress is the address of the bits for this section in the
1021 // original emitted object image (also in the current address space).
1023 // Relocations will be applied as if the section were loaded at
1024 // SectionEntry::LoadAddress, but they will be applied at an address based
1025 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1026 // Target memory contents if they are required for value calculations.
1028 // The Value parameter here is the load address of the symbol for the
1029 // relocation to be applied. For relocations which refer to symbols in the
1030 // current object Value will be the LoadAddress of the section in which
1031 // the symbol resides (RE.Addend provides additional information about the
1032 // symbol location). For external symbols, Value will be the address of the
1033 // symbol in the target address space.
1034 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
1035 uint64_t Value) {
1036 const SectionEntry &Section = Sections[RE.SectionID];
1037 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
1038 RE.SymOffset, RE.SectionID);
1041 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
1042 uint64_t Offset, uint64_t Value,
1043 uint32_t Type, int64_t Addend,
1044 uint64_t SymOffset, SID SectionID) {
1045 switch (Arch) {
1046 case Triple::x86_64:
1047 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
1048 break;
1049 case Triple::x86:
1050 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1051 (uint32_t)(Addend & 0xffffffffL));
1052 break;
1053 case Triple::aarch64:
1054 case Triple::aarch64_be:
1055 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
1056 break;
1057 case Triple::arm: // Fall through.
1058 case Triple::armeb:
1059 case Triple::thumb:
1060 case Triple::thumbeb:
1061 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
1062 (uint32_t)(Addend & 0xffffffffL));
1063 break;
1064 case Triple::ppc: // Fall through.
1065 case Triple::ppcle:
1066 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
1067 break;
1068 case Triple::ppc64: // Fall through.
1069 case Triple::ppc64le:
1070 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
1071 break;
1072 case Triple::systemz:
1073 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
1074 break;
1075 case Triple::bpfel:
1076 case Triple::bpfeb:
1077 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
1078 break;
1079 default:
1080 llvm_unreachable("Unsupported CPU type!");
1084 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
1085 return (void *)(Sections[SectionID].getObjAddress() + Offset);
1088 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
1089 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
1090 if (Value.SymbolName)
1091 addRelocationForSymbol(RE, Value.SymbolName);
1092 else
1093 addRelocationForSection(RE, Value.SectionID);
1096 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
1097 bool IsLocal) const {
1098 switch (RelType) {
1099 case ELF::R_MICROMIPS_GOT16:
1100 if (IsLocal)
1101 return ELF::R_MICROMIPS_LO16;
1102 break;
1103 case ELF::R_MICROMIPS_HI16:
1104 return ELF::R_MICROMIPS_LO16;
1105 case ELF::R_MIPS_GOT16:
1106 if (IsLocal)
1107 return ELF::R_MIPS_LO16;
1108 break;
1109 case ELF::R_MIPS_HI16:
1110 return ELF::R_MIPS_LO16;
1111 case ELF::R_MIPS_PCHI16:
1112 return ELF::R_MIPS_PCLO16;
1113 default:
1114 break;
1116 return ELF::R_MIPS_NONE;
1119 // Sometimes we don't need to create thunk for a branch.
1120 // This typically happens when branch target is located
1121 // in the same object file. In such case target is either
1122 // a weak symbol or symbol in a different executable section.
1123 // This function checks if branch target is located in the
1124 // same object file and if distance between source and target
1125 // fits R_AARCH64_CALL26 relocation. If both conditions are
1126 // met, it emits direct jump to the target and returns true.
1127 // Otherwise false is returned and thunk is created.
1128 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1129 unsigned SectionID, relocation_iterator RelI,
1130 const RelocationValueRef &Value) {
1131 uint64_t Address;
1132 if (Value.SymbolName) {
1133 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1135 // Don't create direct branch for external symbols.
1136 if (Loc == GlobalSymbolTable.end())
1137 return false;
1139 const auto &SymInfo = Loc->second;
1140 Address =
1141 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1142 SymInfo.getOffset()));
1143 } else {
1144 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1146 uint64_t Offset = RelI->getOffset();
1147 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1149 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1150 // If distance between source and target is out of range then we should
1151 // create thunk.
1152 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1153 return false;
1155 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1156 Value.Addend);
1158 return true;
1161 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1162 const RelocationValueRef &Value,
1163 relocation_iterator RelI,
1164 StubMap &Stubs) {
1166 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1167 SectionEntry &Section = Sections[SectionID];
1169 uint64_t Offset = RelI->getOffset();
1170 unsigned RelType = RelI->getType();
1171 // Look for an existing stub.
1172 StubMap::const_iterator i = Stubs.find(Value);
1173 if (i != Stubs.end()) {
1174 resolveRelocation(Section, Offset,
1175 (uint64_t)Section.getAddressWithOffset(i->second),
1176 RelType, 0);
1177 LLVM_DEBUG(dbgs() << " Stub function found\n");
1178 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1179 // Create a new stub function.
1180 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1181 Stubs[Value] = Section.getStubOffset();
1182 uint8_t *StubTargetAddr = createStubFunction(
1183 Section.getAddressWithOffset(Section.getStubOffset()));
1185 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1186 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1187 RelocationEntry REmovk_g2(SectionID,
1188 StubTargetAddr - Section.getAddress() + 4,
1189 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1190 RelocationEntry REmovk_g1(SectionID,
1191 StubTargetAddr - Section.getAddress() + 8,
1192 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1193 RelocationEntry REmovk_g0(SectionID,
1194 StubTargetAddr - Section.getAddress() + 12,
1195 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1197 if (Value.SymbolName) {
1198 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1199 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1200 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1201 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1202 } else {
1203 addRelocationForSection(REmovz_g3, Value.SectionID);
1204 addRelocationForSection(REmovk_g2, Value.SectionID);
1205 addRelocationForSection(REmovk_g1, Value.SectionID);
1206 addRelocationForSection(REmovk_g0, Value.SectionID);
1208 resolveRelocation(Section, Offset,
1209 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1210 Section.getStubOffset())),
1211 RelType, 0);
1212 Section.advanceStubOffset(getMaxStubSize());
1216 Expected<relocation_iterator>
1217 RuntimeDyldELF::processRelocationRef(
1218 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1219 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1220 const auto &Obj = cast<ELFObjectFileBase>(O);
1221 uint64_t RelType = RelI->getType();
1222 int64_t Addend = 0;
1223 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1224 Addend = *AddendOrErr;
1225 else
1226 consumeError(AddendOrErr.takeError());
1227 elf_symbol_iterator Symbol = RelI->getSymbol();
1229 // Obtain the symbol name which is referenced in the relocation
1230 StringRef TargetName;
1231 if (Symbol != Obj.symbol_end()) {
1232 if (auto TargetNameOrErr = Symbol->getName())
1233 TargetName = *TargetNameOrErr;
1234 else
1235 return TargetNameOrErr.takeError();
1237 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1238 << " TargetName: " << TargetName << "\n");
1239 RelocationValueRef Value;
1240 // First search for the symbol in the local symbol table
1241 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1243 // Search for the symbol in the global symbol table
1244 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1245 if (Symbol != Obj.symbol_end()) {
1246 gsi = GlobalSymbolTable.find(TargetName.data());
1247 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1248 if (!SymTypeOrErr) {
1249 std::string Buf;
1250 raw_string_ostream OS(Buf);
1251 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
1252 report_fatal_error(Twine(OS.str()));
1254 SymType = *SymTypeOrErr;
1256 if (gsi != GlobalSymbolTable.end()) {
1257 const auto &SymInfo = gsi->second;
1258 Value.SectionID = SymInfo.getSectionID();
1259 Value.Offset = SymInfo.getOffset();
1260 Value.Addend = SymInfo.getOffset() + Addend;
1261 } else {
1262 switch (SymType) {
1263 case SymbolRef::ST_Debug: {
1264 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1265 // and can be changed by another developers. Maybe best way is add
1266 // a new symbol type ST_Section to SymbolRef and use it.
1267 auto SectionOrErr = Symbol->getSection();
1268 if (!SectionOrErr) {
1269 std::string Buf;
1270 raw_string_ostream OS(Buf);
1271 logAllUnhandledErrors(SectionOrErr.takeError(), OS);
1272 report_fatal_error(Twine(OS.str()));
1274 section_iterator si = *SectionOrErr;
1275 if (si == Obj.section_end())
1276 llvm_unreachable("Symbol section not found, bad object file format!");
1277 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1278 bool isCode = si->isText();
1279 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1280 ObjSectionToID))
1281 Value.SectionID = *SectionIDOrErr;
1282 else
1283 return SectionIDOrErr.takeError();
1284 Value.Addend = Addend;
1285 break;
1287 case SymbolRef::ST_Data:
1288 case SymbolRef::ST_Function:
1289 case SymbolRef::ST_Other:
1290 case SymbolRef::ST_Unknown: {
1291 Value.SymbolName = TargetName.data();
1292 Value.Addend = Addend;
1294 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1295 // will manifest here as a NULL symbol name.
1296 // We can set this as a valid (but empty) symbol name, and rely
1297 // on addRelocationForSymbol to handle this.
1298 if (!Value.SymbolName)
1299 Value.SymbolName = "";
1300 break;
1302 default:
1303 llvm_unreachable("Unresolved symbol type!");
1304 break;
1308 uint64_t Offset = RelI->getOffset();
1310 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1311 << "\n");
1312 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1313 if ((RelType == ELF::R_AARCH64_CALL26 ||
1314 RelType == ELF::R_AARCH64_JUMP26) &&
1315 MemMgr.allowStubAllocation()) {
1316 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1317 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1318 // Create new GOT entry or find existing one. If GOT entry is
1319 // to be created, then we also emit ABS64 relocation for it.
1320 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1321 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1322 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1324 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1325 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1326 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1327 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1328 } else {
1329 processSimpleRelocation(SectionID, Offset, RelType, Value);
1331 } else if (Arch == Triple::arm) {
1332 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1333 RelType == ELF::R_ARM_JUMP24) {
1334 // This is an ARM branch relocation, need to use a stub function.
1335 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1336 SectionEntry &Section = Sections[SectionID];
1338 // Look for an existing stub.
1339 StubMap::const_iterator i = Stubs.find(Value);
1340 if (i != Stubs.end()) {
1341 resolveRelocation(
1342 Section, Offset,
1343 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1344 RelType, 0);
1345 LLVM_DEBUG(dbgs() << " Stub function found\n");
1346 } else {
1347 // Create a new stub function.
1348 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1349 Stubs[Value] = Section.getStubOffset();
1350 uint8_t *StubTargetAddr = createStubFunction(
1351 Section.getAddressWithOffset(Section.getStubOffset()));
1352 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1353 ELF::R_ARM_ABS32, Value.Addend);
1354 if (Value.SymbolName)
1355 addRelocationForSymbol(RE, Value.SymbolName);
1356 else
1357 addRelocationForSection(RE, Value.SectionID);
1359 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1360 Section.getAddressWithOffset(
1361 Section.getStubOffset())),
1362 RelType, 0);
1363 Section.advanceStubOffset(getMaxStubSize());
1365 } else {
1366 uint32_t *Placeholder =
1367 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1368 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1369 RelType == ELF::R_ARM_ABS32) {
1370 Value.Addend += *Placeholder;
1371 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1372 // See ELF for ARM documentation
1373 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1375 processSimpleRelocation(SectionID, Offset, RelType, Value);
1377 } else if (IsMipsO32ABI) {
1378 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1379 computePlaceholderAddress(SectionID, Offset));
1380 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1381 if (RelType == ELF::R_MIPS_26) {
1382 // This is an Mips branch relocation, need to use a stub function.
1383 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1384 SectionEntry &Section = Sections[SectionID];
1386 // Extract the addend from the instruction.
1387 // We shift up by two since the Value will be down shifted again
1388 // when applying the relocation.
1389 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1391 Value.Addend += Addend;
1393 // Look up for existing stub.
1394 StubMap::const_iterator i = Stubs.find(Value);
1395 if (i != Stubs.end()) {
1396 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1397 addRelocationForSection(RE, SectionID);
1398 LLVM_DEBUG(dbgs() << " Stub function found\n");
1399 } else {
1400 // Create a new stub function.
1401 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1402 Stubs[Value] = Section.getStubOffset();
1404 unsigned AbiVariant = Obj.getPlatformFlags();
1406 uint8_t *StubTargetAddr = createStubFunction(
1407 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1409 // Creating Hi and Lo relocations for the filled stub instructions.
1410 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1411 ELF::R_MIPS_HI16, Value.Addend);
1412 RelocationEntry RELo(SectionID,
1413 StubTargetAddr - Section.getAddress() + 4,
1414 ELF::R_MIPS_LO16, Value.Addend);
1416 if (Value.SymbolName) {
1417 addRelocationForSymbol(REHi, Value.SymbolName);
1418 addRelocationForSymbol(RELo, Value.SymbolName);
1419 } else {
1420 addRelocationForSection(REHi, Value.SectionID);
1421 addRelocationForSection(RELo, Value.SectionID);
1424 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1425 addRelocationForSection(RE, SectionID);
1426 Section.advanceStubOffset(getMaxStubSize());
1428 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1429 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1430 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1431 PendingRelocs.push_back(std::make_pair(Value, RE));
1432 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1433 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1434 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1435 const RelocationValueRef &MatchingValue = I->first;
1436 RelocationEntry &Reloc = I->second;
1437 if (MatchingValue == Value &&
1438 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1439 SectionID == Reloc.SectionID) {
1440 Reloc.Addend += Addend;
1441 if (Value.SymbolName)
1442 addRelocationForSymbol(Reloc, Value.SymbolName);
1443 else
1444 addRelocationForSection(Reloc, Value.SectionID);
1445 I = PendingRelocs.erase(I);
1446 } else
1447 ++I;
1449 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1450 if (Value.SymbolName)
1451 addRelocationForSymbol(RE, Value.SymbolName);
1452 else
1453 addRelocationForSection(RE, Value.SectionID);
1454 } else {
1455 if (RelType == ELF::R_MIPS_32)
1456 Value.Addend += Opcode;
1457 else if (RelType == ELF::R_MIPS_PC16)
1458 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1459 else if (RelType == ELF::R_MIPS_PC19_S2)
1460 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1461 else if (RelType == ELF::R_MIPS_PC21_S2)
1462 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1463 else if (RelType == ELF::R_MIPS_PC26_S2)
1464 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1465 processSimpleRelocation(SectionID, Offset, RelType, Value);
1467 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1468 uint32_t r_type = RelType & 0xff;
1469 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1470 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1471 || r_type == ELF::R_MIPS_GOT_DISP) {
1472 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1473 if (i != GOTSymbolOffsets.end())
1474 RE.SymOffset = i->second;
1475 else {
1476 RE.SymOffset = allocateGOTEntries(1);
1477 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1479 if (Value.SymbolName)
1480 addRelocationForSymbol(RE, Value.SymbolName);
1481 else
1482 addRelocationForSection(RE, Value.SectionID);
1483 } else if (RelType == ELF::R_MIPS_26) {
1484 // This is an Mips branch relocation, need to use a stub function.
1485 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1486 SectionEntry &Section = Sections[SectionID];
1488 // Look up for existing stub.
1489 StubMap::const_iterator i = Stubs.find(Value);
1490 if (i != Stubs.end()) {
1491 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1492 addRelocationForSection(RE, SectionID);
1493 LLVM_DEBUG(dbgs() << " Stub function found\n");
1494 } else {
1495 // Create a new stub function.
1496 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1497 Stubs[Value] = Section.getStubOffset();
1499 unsigned AbiVariant = Obj.getPlatformFlags();
1501 uint8_t *StubTargetAddr = createStubFunction(
1502 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1504 if (IsMipsN32ABI) {
1505 // Creating Hi and Lo relocations for the filled stub instructions.
1506 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1507 ELF::R_MIPS_HI16, Value.Addend);
1508 RelocationEntry RELo(SectionID,
1509 StubTargetAddr - Section.getAddress() + 4,
1510 ELF::R_MIPS_LO16, Value.Addend);
1511 if (Value.SymbolName) {
1512 addRelocationForSymbol(REHi, Value.SymbolName);
1513 addRelocationForSymbol(RELo, Value.SymbolName);
1514 } else {
1515 addRelocationForSection(REHi, Value.SectionID);
1516 addRelocationForSection(RELo, Value.SectionID);
1518 } else {
1519 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1520 // instructions.
1521 RelocationEntry REHighest(SectionID,
1522 StubTargetAddr - Section.getAddress(),
1523 ELF::R_MIPS_HIGHEST, Value.Addend);
1524 RelocationEntry REHigher(SectionID,
1525 StubTargetAddr - Section.getAddress() + 4,
1526 ELF::R_MIPS_HIGHER, Value.Addend);
1527 RelocationEntry REHi(SectionID,
1528 StubTargetAddr - Section.getAddress() + 12,
1529 ELF::R_MIPS_HI16, Value.Addend);
1530 RelocationEntry RELo(SectionID,
1531 StubTargetAddr - Section.getAddress() + 20,
1532 ELF::R_MIPS_LO16, Value.Addend);
1533 if (Value.SymbolName) {
1534 addRelocationForSymbol(REHighest, Value.SymbolName);
1535 addRelocationForSymbol(REHigher, Value.SymbolName);
1536 addRelocationForSymbol(REHi, Value.SymbolName);
1537 addRelocationForSymbol(RELo, Value.SymbolName);
1538 } else {
1539 addRelocationForSection(REHighest, Value.SectionID);
1540 addRelocationForSection(REHigher, Value.SectionID);
1541 addRelocationForSection(REHi, Value.SectionID);
1542 addRelocationForSection(RELo, Value.SectionID);
1545 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1546 addRelocationForSection(RE, SectionID);
1547 Section.advanceStubOffset(getMaxStubSize());
1549 } else {
1550 processSimpleRelocation(SectionID, Offset, RelType, Value);
1553 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1554 if (RelType == ELF::R_PPC64_REL24) {
1555 // Determine ABI variant in use for this object.
1556 unsigned AbiVariant = Obj.getPlatformFlags();
1557 AbiVariant &= ELF::EF_PPC64_ABI;
1558 // A PPC branch relocation will need a stub function if the target is
1559 // an external symbol (either Value.SymbolName is set, or SymType is
1560 // Symbol::ST_Unknown) or if the target address is not within the
1561 // signed 24-bits branch address.
1562 SectionEntry &Section = Sections[SectionID];
1563 uint8_t *Target = Section.getAddressWithOffset(Offset);
1564 bool RangeOverflow = false;
1565 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1566 if (!IsExtern) {
1567 if (AbiVariant != 2) {
1568 // In the ELFv1 ABI, a function call may point to the .opd entry,
1569 // so the final symbol value is calculated based on the relocation
1570 // values in the .opd section.
1571 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1572 return std::move(Err);
1573 } else {
1574 // In the ELFv2 ABI, a function symbol may provide a local entry
1575 // point, which must be used for direct calls.
1576 if (Value.SectionID == SectionID){
1577 uint8_t SymOther = Symbol->getOther();
1578 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1581 uint8_t *RelocTarget =
1582 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1583 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1584 // If it is within 26-bits branch range, just set the branch target
1585 if (SignExtend64<26>(delta) != delta) {
1586 RangeOverflow = true;
1587 } else if ((AbiVariant != 2) ||
1588 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1589 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1590 addRelocationForSection(RE, Value.SectionID);
1593 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1594 RangeOverflow) {
1595 // It is an external symbol (either Value.SymbolName is set, or
1596 // SymType is SymbolRef::ST_Unknown) or out of range.
1597 StubMap::const_iterator i = Stubs.find(Value);
1598 if (i != Stubs.end()) {
1599 // Symbol function stub already created, just relocate to it
1600 resolveRelocation(Section, Offset,
1601 reinterpret_cast<uint64_t>(
1602 Section.getAddressWithOffset(i->second)),
1603 RelType, 0);
1604 LLVM_DEBUG(dbgs() << " Stub function found\n");
1605 } else {
1606 // Create a new stub function.
1607 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1608 Stubs[Value] = Section.getStubOffset();
1609 uint8_t *StubTargetAddr = createStubFunction(
1610 Section.getAddressWithOffset(Section.getStubOffset()),
1611 AbiVariant);
1612 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1613 ELF::R_PPC64_ADDR64, Value.Addend);
1615 // Generates the 64-bits address loads as exemplified in section
1616 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1617 // apply to the low part of the instructions, so we have to update
1618 // the offset according to the target endianness.
1619 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1620 if (!IsTargetLittleEndian)
1621 StubRelocOffset += 2;
1623 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1624 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1625 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1626 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1627 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1628 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1629 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1630 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1632 if (Value.SymbolName) {
1633 addRelocationForSymbol(REhst, Value.SymbolName);
1634 addRelocationForSymbol(REhr, Value.SymbolName);
1635 addRelocationForSymbol(REh, Value.SymbolName);
1636 addRelocationForSymbol(REl, Value.SymbolName);
1637 } else {
1638 addRelocationForSection(REhst, Value.SectionID);
1639 addRelocationForSection(REhr, Value.SectionID);
1640 addRelocationForSection(REh, Value.SectionID);
1641 addRelocationForSection(REl, Value.SectionID);
1644 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1645 Section.getAddressWithOffset(
1646 Section.getStubOffset())),
1647 RelType, 0);
1648 Section.advanceStubOffset(getMaxStubSize());
1650 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1651 // Restore the TOC for external calls
1652 if (AbiVariant == 2)
1653 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1654 else
1655 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1658 } else if (RelType == ELF::R_PPC64_TOC16 ||
1659 RelType == ELF::R_PPC64_TOC16_DS ||
1660 RelType == ELF::R_PPC64_TOC16_LO ||
1661 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1662 RelType == ELF::R_PPC64_TOC16_HI ||
1663 RelType == ELF::R_PPC64_TOC16_HA) {
1664 // These relocations are supposed to subtract the TOC address from
1665 // the final value. This does not fit cleanly into the RuntimeDyld
1666 // scheme, since there may be *two* sections involved in determining
1667 // the relocation value (the section of the symbol referred to by the
1668 // relocation, and the TOC section associated with the current module).
1670 // Fortunately, these relocations are currently only ever generated
1671 // referring to symbols that themselves reside in the TOC, which means
1672 // that the two sections are actually the same. Thus they cancel out
1673 // and we can immediately resolve the relocation right now.
1674 switch (RelType) {
1675 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1676 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1677 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1678 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1679 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1680 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1681 default: llvm_unreachable("Wrong relocation type.");
1684 RelocationValueRef TOCValue;
1685 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1686 return std::move(Err);
1687 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1688 llvm_unreachable("Unsupported TOC relocation.");
1689 Value.Addend -= TOCValue.Addend;
1690 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1691 } else {
1692 // There are two ways to refer to the TOC address directly: either
1693 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1694 // ignored), or via any relocation that refers to the magic ".TOC."
1695 // symbols (in which case the addend is respected).
1696 if (RelType == ELF::R_PPC64_TOC) {
1697 RelType = ELF::R_PPC64_ADDR64;
1698 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1699 return std::move(Err);
1700 } else if (TargetName == ".TOC.") {
1701 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1702 return std::move(Err);
1703 Value.Addend += Addend;
1706 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1708 if (Value.SymbolName)
1709 addRelocationForSymbol(RE, Value.SymbolName);
1710 else
1711 addRelocationForSection(RE, Value.SectionID);
1713 } else if (Arch == Triple::systemz &&
1714 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1715 // Create function stubs for both PLT and GOT references, regardless of
1716 // whether the GOT reference is to data or code. The stub contains the
1717 // full address of the symbol, as needed by GOT references, and the
1718 // executable part only adds an overhead of 8 bytes.
1720 // We could try to conserve space by allocating the code and data
1721 // parts of the stub separately. However, as things stand, we allocate
1722 // a stub for every relocation, so using a GOT in JIT code should be
1723 // no less space efficient than using an explicit constant pool.
1724 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1725 SectionEntry &Section = Sections[SectionID];
1727 // Look for an existing stub.
1728 StubMap::const_iterator i = Stubs.find(Value);
1729 uintptr_t StubAddress;
1730 if (i != Stubs.end()) {
1731 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1732 LLVM_DEBUG(dbgs() << " Stub function found\n");
1733 } else {
1734 // Create a new stub function.
1735 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1737 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1738 StubAddress =
1739 alignTo(BaseAddress + Section.getStubOffset(), getStubAlignment());
1740 unsigned StubOffset = StubAddress - BaseAddress;
1742 Stubs[Value] = StubOffset;
1743 createStubFunction((uint8_t *)StubAddress);
1744 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1745 Value.Offset);
1746 if (Value.SymbolName)
1747 addRelocationForSymbol(RE, Value.SymbolName);
1748 else
1749 addRelocationForSection(RE, Value.SectionID);
1750 Section.advanceStubOffset(getMaxStubSize());
1753 if (RelType == ELF::R_390_GOTENT)
1754 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1755 Addend);
1756 else
1757 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1758 } else if (Arch == Triple::x86_64) {
1759 if (RelType == ELF::R_X86_64_PLT32) {
1760 // The way the PLT relocations normally work is that the linker allocates
1761 // the
1762 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1763 // entry will then jump to an address provided by the GOT. On first call,
1764 // the
1765 // GOT address will point back into PLT code that resolves the symbol. After
1766 // the first call, the GOT entry points to the actual function.
1768 // For local functions we're ignoring all of that here and just replacing
1769 // the PLT32 relocation type with PC32, which will translate the relocation
1770 // into a PC-relative call directly to the function. For external symbols we
1771 // can't be sure the function will be within 2^32 bytes of the call site, so
1772 // we need to create a stub, which calls into the GOT. This case is
1773 // equivalent to the usual PLT implementation except that we use the stub
1774 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1775 // rather than allocating a PLT section.
1776 if (Value.SymbolName && MemMgr.allowStubAllocation()) {
1777 // This is a call to an external function.
1778 // Look for an existing stub.
1779 SectionEntry *Section = &Sections[SectionID];
1780 StubMap::const_iterator i = Stubs.find(Value);
1781 uintptr_t StubAddress;
1782 if (i != Stubs.end()) {
1783 StubAddress = uintptr_t(Section->getAddress()) + i->second;
1784 LLVM_DEBUG(dbgs() << " Stub function found\n");
1785 } else {
1786 // Create a new stub function (equivalent to a PLT entry).
1787 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1789 uintptr_t BaseAddress = uintptr_t(Section->getAddress());
1790 StubAddress = alignTo(BaseAddress + Section->getStubOffset(),
1791 getStubAlignment());
1792 unsigned StubOffset = StubAddress - BaseAddress;
1793 Stubs[Value] = StubOffset;
1794 createStubFunction((uint8_t *)StubAddress);
1796 // Bump our stub offset counter
1797 Section->advanceStubOffset(getMaxStubSize());
1799 // Allocate a GOT Entry
1800 uint64_t GOTOffset = allocateGOTEntries(1);
1801 // This potentially creates a new Section which potentially
1802 // invalidates the Section pointer, so reload it.
1803 Section = &Sections[SectionID];
1805 // The load of the GOT address has an addend of -4
1806 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1807 ELF::R_X86_64_PC32);
1809 // Fill in the value of the symbol we're targeting into the GOT
1810 addRelocationForSymbol(
1811 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1812 Value.SymbolName);
1815 // Make the target call a call into the stub table.
1816 resolveRelocation(*Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1817 Addend);
1818 } else {
1819 Value.Addend += support::ulittle32_t::ref(
1820 computePlaceholderAddress(SectionID, Offset));
1821 processSimpleRelocation(SectionID, Offset, ELF::R_X86_64_PC32, Value);
1823 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1824 RelType == ELF::R_X86_64_GOTPCRELX ||
1825 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1826 uint64_t GOTOffset = allocateGOTEntries(1);
1827 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1828 ELF::R_X86_64_PC32);
1830 // Fill in the value of the symbol we're targeting into the GOT
1831 RelocationEntry RE =
1832 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1833 if (Value.SymbolName)
1834 addRelocationForSymbol(RE, Value.SymbolName);
1835 else
1836 addRelocationForSection(RE, Value.SectionID);
1837 } else if (RelType == ELF::R_X86_64_GOT64) {
1838 // Fill in a 64-bit GOT offset.
1839 uint64_t GOTOffset = allocateGOTEntries(1);
1840 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1841 ELF::R_X86_64_64, 0);
1843 // Fill in the value of the symbol we're targeting into the GOT
1844 RelocationEntry RE =
1845 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1846 if (Value.SymbolName)
1847 addRelocationForSymbol(RE, Value.SymbolName);
1848 else
1849 addRelocationForSection(RE, Value.SectionID);
1850 } else if (RelType == ELF::R_X86_64_GOTPC32) {
1851 // Materialize the address of the base of the GOT relative to the PC.
1852 // This doesn't create a GOT entry, but it does mean we need a GOT
1853 // section.
1854 (void)allocateGOTEntries(0);
1855 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC32);
1856 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1857 (void)allocateGOTEntries(0);
1858 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1859 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1860 // GOTOFF relocations ultimately require a section difference relocation.
1861 (void)allocateGOTEntries(0);
1862 processSimpleRelocation(SectionID, Offset, RelType, Value);
1863 } else if (RelType == ELF::R_X86_64_PC32) {
1864 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1865 processSimpleRelocation(SectionID, Offset, RelType, Value);
1866 } else if (RelType == ELF::R_X86_64_PC64) {
1867 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1868 processSimpleRelocation(SectionID, Offset, RelType, Value);
1869 } else if (RelType == ELF::R_X86_64_GOTTPOFF) {
1870 processX86_64GOTTPOFFRelocation(SectionID, Offset, Value, Addend);
1871 } else if (RelType == ELF::R_X86_64_TLSGD ||
1872 RelType == ELF::R_X86_64_TLSLD) {
1873 // The next relocation must be the relocation for __tls_get_addr.
1874 ++RelI;
1875 auto &GetAddrRelocation = *RelI;
1876 processX86_64TLSRelocation(SectionID, Offset, RelType, Value, Addend,
1877 GetAddrRelocation);
1878 } else {
1879 processSimpleRelocation(SectionID, Offset, RelType, Value);
1881 } else {
1882 if (Arch == Triple::x86) {
1883 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1885 processSimpleRelocation(SectionID, Offset, RelType, Value);
1887 return ++RelI;
1890 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID,
1891 uint64_t Offset,
1892 RelocationValueRef Value,
1893 int64_t Addend) {
1894 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1895 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1896 // only mentions one optimization even though there are two different
1897 // code sequences for the Initial Exec TLS Model. We match the code to
1898 // find out which one was used.
1900 // A possible TLS code sequence and its replacement
1901 struct CodeSequence {
1902 // The expected code sequence
1903 ArrayRef<uint8_t> ExpectedCodeSequence;
1904 // The negative offset of the GOTTPOFF relocation to the beginning of
1905 // the sequence
1906 uint64_t TLSSequenceOffset;
1907 // The new code sequence
1908 ArrayRef<uint8_t> NewCodeSequence;
1909 // The offset of the new TPOFF relocation
1910 uint64_t TpoffRelocationOffset;
1913 std::array<CodeSequence, 2> CodeSequences;
1915 // Initial Exec Code Model Sequence
1917 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1918 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1919 0x00, // mov %fs:0, %rax
1920 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1921 // %rax
1923 CodeSequences[0].ExpectedCodeSequence =
1924 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1925 CodeSequences[0].TLSSequenceOffset = 12;
1927 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1928 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1929 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1931 CodeSequences[0].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1932 CodeSequences[0].TpoffRelocationOffset = 12;
1935 // Initial Exec Code Model Sequence, II
1937 static const std::initializer_list<uint8_t> ExpectedCodeSequenceList = {
1938 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1939 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1941 CodeSequences[1].ExpectedCodeSequence =
1942 ArrayRef<uint8_t>(ExpectedCodeSequenceList);
1943 CodeSequences[1].TLSSequenceOffset = 3;
1945 static const std::initializer_list<uint8_t> NewCodeSequenceList = {
1946 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1947 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1949 CodeSequences[1].NewCodeSequence = ArrayRef<uint8_t>(NewCodeSequenceList);
1950 CodeSequences[1].TpoffRelocationOffset = 10;
1953 bool Resolved = false;
1954 auto &Section = Sections[SectionID];
1955 for (const auto &C : CodeSequences) {
1956 assert(C.ExpectedCodeSequence.size() == C.NewCodeSequence.size() &&
1957 "Old and new code sequences must have the same size");
1959 if (Offset < C.TLSSequenceOffset ||
1960 (Offset - C.TLSSequenceOffset + C.NewCodeSequence.size()) >
1961 Section.getSize()) {
1962 // This can't be a matching sequence as it doesn't fit in the current
1963 // section
1964 continue;
1967 auto TLSSequenceStartOffset = Offset - C.TLSSequenceOffset;
1968 auto *TLSSequence = Section.getAddressWithOffset(TLSSequenceStartOffset);
1969 if (ArrayRef<uint8_t>(TLSSequence, C.ExpectedCodeSequence.size()) !=
1970 C.ExpectedCodeSequence) {
1971 continue;
1974 memcpy(TLSSequence, C.NewCodeSequence.data(), C.NewCodeSequence.size());
1976 // The original GOTTPOFF relocation has an addend as it is PC relative,
1977 // so it needs to be corrected. The TPOFF32 relocation is used as an
1978 // absolute value (which is an offset from %fs:0), so remove the addend
1979 // again.
1980 RelocationEntry RE(SectionID,
1981 TLSSequenceStartOffset + C.TpoffRelocationOffset,
1982 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
1984 if (Value.SymbolName)
1985 addRelocationForSymbol(RE, Value.SymbolName);
1986 else
1987 addRelocationForSection(RE, Value.SectionID);
1989 Resolved = true;
1990 break;
1993 if (!Resolved) {
1994 // The GOTTPOFF relocation was not used in one of the sequences
1995 // described in the spec, so we can't optimize it to a TPOFF
1996 // relocation.
1997 uint64_t GOTOffset = allocateGOTEntries(1);
1998 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1999 ELF::R_X86_64_PC32);
2000 RelocationEntry RE =
2001 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_TPOFF64);
2002 if (Value.SymbolName)
2003 addRelocationForSymbol(RE, Value.SymbolName);
2004 else
2005 addRelocationForSection(RE, Value.SectionID);
2009 void RuntimeDyldELF::processX86_64TLSRelocation(
2010 unsigned SectionID, uint64_t Offset, uint64_t RelType,
2011 RelocationValueRef Value, int64_t Addend,
2012 const RelocationRef &GetAddrRelocation) {
2013 // Since we are statically linking and have no additional DSOs, we can resolve
2014 // the relocation directly without using __tls_get_addr.
2015 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2016 // to replace it with the Local Exec relocation variant.
2018 // Find out whether the code was compiled with the large or small memory
2019 // model. For this we look at the next relocation which is the relocation
2020 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2021 // small code model, with a 64 bit relocation it's the large code model.
2022 bool IsSmallCodeModel;
2023 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2024 bool IsGOTPCRel = false;
2026 switch (GetAddrRelocation.getType()) {
2027 case ELF::R_X86_64_GOTPCREL:
2028 case ELF::R_X86_64_REX_GOTPCRELX:
2029 case ELF::R_X86_64_GOTPCRELX:
2030 IsGOTPCRel = true;
2031 [[fallthrough]];
2032 case ELF::R_X86_64_PLT32:
2033 IsSmallCodeModel = true;
2034 break;
2035 case ELF::R_X86_64_PLTOFF64:
2036 IsSmallCodeModel = false;
2037 break;
2038 default:
2039 report_fatal_error(
2040 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2041 "expected PLT or GOT relocation for __tls_get_addr function");
2044 // The negative offset to the start of the TLS code sequence relative to
2045 // the offset of the TLSGD/TLSLD relocation
2046 uint64_t TLSSequenceOffset;
2047 // The expected start of the code sequence
2048 ArrayRef<uint8_t> ExpectedCodeSequence;
2049 // The new TLS code sequence that will replace the existing code
2050 ArrayRef<uint8_t> NewCodeSequence;
2052 if (RelType == ELF::R_X86_64_TLSGD) {
2053 // The offset of the new TPOFF32 relocation (offset starting from the
2054 // beginning of the whole TLS sequence)
2055 uint64_t TpoffRelocOffset;
2057 if (IsSmallCodeModel) {
2058 if (!IsGOTPCRel) {
2059 static const std::initializer_list<uint8_t> CodeSequence = {
2060 0x66, // data16 (no-op prefix)
2061 0x48, 0x8d, 0x3d, 0x00, 0x00,
2062 0x00, 0x00, // lea <disp32>(%rip), %rdi
2063 0x66, 0x66, // two data16 prefixes
2064 0x48, // rex64 (no-op prefix)
2065 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2067 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2068 TLSSequenceOffset = 4;
2069 } else {
2070 // This code sequence is not described in the TLS spec but gcc
2071 // generates it sometimes.
2072 static const std::initializer_list<uint8_t> CodeSequence = {
2073 0x66, // data16 (no-op prefix)
2074 0x48, 0x8d, 0x3d, 0x00, 0x00,
2075 0x00, 0x00, // lea <disp32>(%rip), %rdi
2076 0x66, // data16 prefix (no-op prefix)
2077 0x48, // rex64 (no-op prefix)
2078 0xff, 0x15, 0x00, 0x00, 0x00,
2079 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2081 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2082 TLSSequenceOffset = 4;
2085 // The replacement code for the small code model. It's the same for
2086 // both sequences.
2087 static const std::initializer_list<uint8_t> SmallSequence = {
2088 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2089 0x00, // mov %fs:0, %rax
2090 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2091 // %rax
2093 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2094 TpoffRelocOffset = 12;
2095 } else {
2096 static const std::initializer_list<uint8_t> CodeSequence = {
2097 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2098 // %rdi
2099 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2100 0x00, // movabs $__tls_get_addr@pltoff, %rax
2101 0x48, 0x01, 0xd8, // add %rbx, %rax
2102 0xff, 0xd0 // call *%rax
2104 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2105 TLSSequenceOffset = 3;
2107 // The replacement code for the large code model
2108 static const std::initializer_list<uint8_t> LargeSequence = {
2109 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2110 0x00, // mov %fs:0, %rax
2111 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2112 // %rax
2113 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2115 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2116 TpoffRelocOffset = 12;
2119 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2120 // The new TPOFF32 relocations is used as an absolute offset from
2121 // %fs:0, so remove the TLSGD/TLSLD addend again.
2122 RelocationEntry RE(SectionID, Offset - TLSSequenceOffset + TpoffRelocOffset,
2123 ELF::R_X86_64_TPOFF32, Value.Addend - Addend);
2124 if (Value.SymbolName)
2125 addRelocationForSymbol(RE, Value.SymbolName);
2126 else
2127 addRelocationForSection(RE, Value.SectionID);
2128 } else if (RelType == ELF::R_X86_64_TLSLD) {
2129 if (IsSmallCodeModel) {
2130 if (!IsGOTPCRel) {
2131 static const std::initializer_list<uint8_t> CodeSequence = {
2132 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2133 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2135 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2136 TLSSequenceOffset = 3;
2138 // The replacement code for the small code model
2139 static const std::initializer_list<uint8_t> SmallSequence = {
2140 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2141 0x64, 0x48, 0x8b, 0x04, 0x25,
2142 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2144 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2145 } else {
2146 // This code sequence is not described in the TLS spec but gcc
2147 // generates it sometimes.
2148 static const std::initializer_list<uint8_t> CodeSequence = {
2149 0x48, 0x8d, 0x3d, 0x00,
2150 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2151 0xff, 0x15, 0x00, 0x00,
2152 0x00, 0x00 // call
2153 // *__tls_get_addr@gotpcrel(%rip)
2155 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2156 TLSSequenceOffset = 3;
2158 // The replacement is code is just like above but it needs to be
2159 // one byte longer.
2160 static const std::initializer_list<uint8_t> SmallSequence = {
2161 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2162 0x64, 0x48, 0x8b, 0x04, 0x25,
2163 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2165 NewCodeSequence = ArrayRef<uint8_t>(SmallSequence);
2167 } else {
2168 // This is the same sequence as for the TLSGD sequence with the large
2169 // memory model above
2170 static const std::initializer_list<uint8_t> CodeSequence = {
2171 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2172 // %rdi
2173 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2174 0x48, // movabs $__tls_get_addr@pltoff, %rax
2175 0x01, 0xd8, // add %rbx, %rax
2176 0xff, 0xd0 // call *%rax
2178 ExpectedCodeSequence = ArrayRef<uint8_t>(CodeSequence);
2179 TLSSequenceOffset = 3;
2181 // The replacement code for the large code model
2182 static const std::initializer_list<uint8_t> LargeSequence = {
2183 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2184 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2185 0x00, // 10 byte nop
2186 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2188 NewCodeSequence = ArrayRef<uint8_t>(LargeSequence);
2190 } else {
2191 llvm_unreachable("both TLS relocations handled above");
2194 assert(ExpectedCodeSequence.size() == NewCodeSequence.size() &&
2195 "Old and new code sequences must have the same size");
2197 auto &Section = Sections[SectionID];
2198 if (Offset < TLSSequenceOffset ||
2199 (Offset - TLSSequenceOffset + NewCodeSequence.size()) >
2200 Section.getSize()) {
2201 report_fatal_error("unexpected end of section in TLS sequence");
2204 auto *TLSSequence = Section.getAddressWithOffset(Offset - TLSSequenceOffset);
2205 if (ArrayRef<uint8_t>(TLSSequence, ExpectedCodeSequence.size()) !=
2206 ExpectedCodeSequence) {
2207 report_fatal_error(
2208 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2211 memcpy(TLSSequence, NewCodeSequence.data(), NewCodeSequence.size());
2214 size_t RuntimeDyldELF::getGOTEntrySize() {
2215 // We don't use the GOT in all of these cases, but it's essentially free
2216 // to put them all here.
2217 size_t Result = 0;
2218 switch (Arch) {
2219 case Triple::x86_64:
2220 case Triple::aarch64:
2221 case Triple::aarch64_be:
2222 case Triple::ppc64:
2223 case Triple::ppc64le:
2224 case Triple::systemz:
2225 Result = sizeof(uint64_t);
2226 break;
2227 case Triple::x86:
2228 case Triple::arm:
2229 case Triple::thumb:
2230 Result = sizeof(uint32_t);
2231 break;
2232 case Triple::mips:
2233 case Triple::mipsel:
2234 case Triple::mips64:
2235 case Triple::mips64el:
2236 if (IsMipsO32ABI || IsMipsN32ABI)
2237 Result = sizeof(uint32_t);
2238 else if (IsMipsN64ABI)
2239 Result = sizeof(uint64_t);
2240 else
2241 llvm_unreachable("Mips ABI not handled");
2242 break;
2243 default:
2244 llvm_unreachable("Unsupported CPU type!");
2246 return Result;
2249 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
2250 if (GOTSectionID == 0) {
2251 GOTSectionID = Sections.size();
2252 // Reserve a section id. We'll allocate the section later
2253 // once we know the total size
2254 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2256 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
2257 CurrentGOTIndex += no;
2258 return StartOffset;
2261 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
2262 unsigned GOTRelType) {
2263 auto E = GOTOffsetMap.insert({Value, 0});
2264 if (E.second) {
2265 uint64_t GOTOffset = allocateGOTEntries(1);
2267 // Create relocation for newly created GOT entry
2268 RelocationEntry RE =
2269 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
2270 if (Value.SymbolName)
2271 addRelocationForSymbol(RE, Value.SymbolName);
2272 else
2273 addRelocationForSection(RE, Value.SectionID);
2275 E.first->second = GOTOffset;
2278 return E.first->second;
2281 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
2282 uint64_t Offset,
2283 uint64_t GOTOffset,
2284 uint32_t Type) {
2285 // Fill in the relative address of the GOT Entry into the stub
2286 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
2287 addRelocationForSection(GOTRE, GOTSectionID);
2290 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
2291 uint64_t SymbolOffset,
2292 uint32_t Type) {
2293 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
2296 void RuntimeDyldELF::processNewSymbol(const SymbolRef &ObjSymbol, SymbolTableEntry& Symbol) {
2297 // This should never return an error as `processNewSymbol` wouldn't have been
2298 // called if getFlags() returned an error before.
2299 auto ObjSymbolFlags = cantFail(ObjSymbol.getFlags());
2301 if (ObjSymbolFlags & SymbolRef::SF_Indirect) {
2302 if (IFuncStubSectionID == 0) {
2303 // Create a dummy section for the ifunc stubs. It will be actually
2304 // allocated in finalizeLoad() below.
2305 IFuncStubSectionID = Sections.size();
2306 Sections.push_back(
2307 SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2308 // First 64B are reserverd for the IFunc resolver
2309 IFuncStubOffset = 64;
2312 IFuncStubs.push_back(IFuncStub{IFuncStubOffset, Symbol});
2313 // Modify the symbol so that it points to the ifunc stub instead of to the
2314 // resolver function.
2315 Symbol = SymbolTableEntry(IFuncStubSectionID, IFuncStubOffset,
2316 Symbol.getFlags());
2317 IFuncStubOffset += getMaxIFuncStubSize();
2321 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
2322 ObjSectionToIDMap &SectionMap) {
2323 if (IsMipsO32ABI)
2324 if (!PendingRelocs.empty())
2325 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
2327 // Create the IFunc stubs if necessary. This must be done before processing
2328 // the GOT entries, as the IFunc stubs may create some.
2329 if (IFuncStubSectionID != 0) {
2330 uint8_t *IFuncStubsAddr = MemMgr.allocateCodeSection(
2331 IFuncStubOffset, 1, IFuncStubSectionID, ".text.__llvm_IFuncStubs");
2332 if (!IFuncStubsAddr)
2333 return make_error<RuntimeDyldError>(
2334 "Unable to allocate memory for IFunc stubs!");
2335 Sections[IFuncStubSectionID] =
2336 SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr, IFuncStubOffset,
2337 IFuncStubOffset, 0);
2339 createIFuncResolver(IFuncStubsAddr);
2341 LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2342 << IFuncStubSectionID << " Addr: "
2343 << Sections[IFuncStubSectionID].getAddress() << '\n');
2344 for (auto &IFuncStub : IFuncStubs) {
2345 auto &Symbol = IFuncStub.OriginalSymbol;
2346 LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol.getSectionID()
2347 << " Offset: " << format("%p", Symbol.getOffset())
2348 << " IFuncStubOffset: "
2349 << format("%p\n", IFuncStub.StubOffset));
2350 createIFuncStub(IFuncStubSectionID, 0, IFuncStub.StubOffset,
2351 Symbol.getSectionID(), Symbol.getOffset());
2354 IFuncStubSectionID = 0;
2355 IFuncStubOffset = 0;
2356 IFuncStubs.clear();
2359 // If necessary, allocate the global offset table
2360 if (GOTSectionID != 0) {
2361 // Allocate memory for the section
2362 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
2363 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
2364 GOTSectionID, ".got", false);
2365 if (!Addr)
2366 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
2368 Sections[GOTSectionID] =
2369 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
2371 // For now, initialize all GOT entries to zero. We'll fill them in as
2372 // needed when GOT-based relocations are applied.
2373 memset(Addr, 0, TotalSize);
2374 if (IsMipsN32ABI || IsMipsN64ABI) {
2375 // To correctly resolve Mips GOT relocations, we need a mapping from
2376 // object's sections to GOTs.
2377 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
2378 SI != SE; ++SI) {
2379 if (SI->relocation_begin() != SI->relocation_end()) {
2380 Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
2381 if (!RelSecOrErr)
2382 return make_error<RuntimeDyldError>(
2383 toString(RelSecOrErr.takeError()));
2385 section_iterator RelocatedSection = *RelSecOrErr;
2386 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
2387 assert(i != SectionMap.end());
2388 SectionToGOTMap[i->second] = GOTSectionID;
2391 GOTSymbolOffsets.clear();
2395 // Look for and record the EH frame section.
2396 ObjSectionToIDMap::iterator i, e;
2397 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
2398 const SectionRef &Section = i->first;
2400 StringRef Name;
2401 Expected<StringRef> NameOrErr = Section.getName();
2402 if (NameOrErr)
2403 Name = *NameOrErr;
2404 else
2405 consumeError(NameOrErr.takeError());
2407 if (Name == ".eh_frame") {
2408 UnregisteredEHFrameSections.push_back(i->second);
2409 break;
2413 GOTOffsetMap.clear();
2414 GOTSectionID = 0;
2415 CurrentGOTIndex = 0;
2417 return Error::success();
2420 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
2421 return Obj.isELF();
2424 void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr) const {
2425 if (Arch == Triple::x86_64) {
2426 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2427 // (see createIFuncStub() for details)
2428 // The following code first saves all registers that contain the original
2429 // function arguments as those registers are not saved by the resolver
2430 // function. %r11 is saved as well so that the GOT2 entry can be updated
2431 // afterwards. Then it calls the actual IFunc resolver function whose
2432 // address is stored in GOT2. After the resolver function returns, all
2433 // saved registers are restored and the return value is written to GOT1.
2434 // Finally, jump to the now resolved function.
2435 // clang-format off
2436 const uint8_t StubCode[] = {
2437 0x57, // push %rdi
2438 0x56, // push %rsi
2439 0x52, // push %rdx
2440 0x51, // push %rcx
2441 0x41, 0x50, // push %r8
2442 0x41, 0x51, // push %r9
2443 0x41, 0x53, // push %r11
2444 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2445 0x41, 0x5b, // pop %r11
2446 0x41, 0x59, // pop %r9
2447 0x41, 0x58, // pop %r8
2448 0x59, // pop %rcx
2449 0x5a, // pop %rdx
2450 0x5e, // pop %rsi
2451 0x5f, // pop %rdi
2452 0x49, 0x89, 0x03, // mov %rax,(%r11)
2453 0xff, 0xe0 // jmp *%rax
2455 // clang-format on
2456 static_assert(sizeof(StubCode) <= 64,
2457 "maximum size of the IFunc resolver is 64B");
2458 memcpy(Addr, StubCode, sizeof(StubCode));
2459 } else {
2460 report_fatal_error(
2461 "IFunc resolver is not supported for target architecture");
2465 void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID,
2466 uint64_t IFuncResolverOffset,
2467 uint64_t IFuncStubOffset,
2468 unsigned IFuncSectionID,
2469 uint64_t IFuncOffset) {
2470 auto &IFuncStubSection = Sections[IFuncStubSectionID];
2471 auto *Addr = IFuncStubSection.getAddressWithOffset(IFuncStubOffset);
2473 if (Arch == Triple::x86_64) {
2474 // The first instruction loads a PC-relative address into %r11 which is a
2475 // GOT entry for this stub. This initially contains the address to the
2476 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2477 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2478 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2479 // entry.
2481 // The next instruction just jumps to the address contained in the GOT
2482 // entry. As mentioned above, we do this two-step jump by first setting
2483 // %r11 so that the IFunc resolver has access to it.
2485 // The IFunc resolver of course also needs to know the actual address of
2486 // the actual IFunc resolver function. This will be stored in a GOT entry
2487 // right next to the first one for this stub. So, the IFunc resolver will
2488 // be able to call it with %r11+8.
2490 // In total, two adjacent GOT entries (+relocation) and one additional
2491 // relocation are required:
2492 // GOT1: Address of the IFunc resolver.
2493 // GOT2: Address of the IFunc resolver function.
2494 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2495 uint64_t GOT1 = allocateGOTEntries(2);
2496 uint64_t GOT2 = GOT1 + getGOTEntrySize();
2498 RelocationEntry RE1(GOTSectionID, GOT1, ELF::R_X86_64_64,
2499 IFuncResolverOffset, {});
2500 addRelocationForSection(RE1, IFuncStubSectionID);
2501 RelocationEntry RE2(GOTSectionID, GOT2, ELF::R_X86_64_64, IFuncOffset, {});
2502 addRelocationForSection(RE2, IFuncSectionID);
2504 const uint8_t StubCode[] = {
2505 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2506 0x41, 0xff, 0x23 // jmpq *(%r11)
2508 assert(sizeof(StubCode) <= getMaxIFuncStubSize() &&
2509 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2510 memcpy(Addr, StubCode, sizeof(StubCode));
2512 // The PC-relative value starts 4 bytes from the end of the leaq
2513 // instruction, so the addend is -4.
2514 resolveGOTOffsetRelocation(IFuncStubSectionID, IFuncStubOffset + 3,
2515 GOT1 - 4, ELF::R_X86_64_PC32);
2516 } else {
2517 report_fatal_error("IFunc stub is not supported for target architecture");
2521 unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2522 if (Arch == Triple::x86_64) {
2523 return 10;
2525 return 0;
2528 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
2529 unsigned RelTy = R.getType();
2530 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
2531 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
2532 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
2534 if (Arch == Triple::x86_64)
2535 return RelTy == ELF::R_X86_64_GOTPCREL ||
2536 RelTy == ELF::R_X86_64_GOTPCRELX ||
2537 RelTy == ELF::R_X86_64_GOT64 ||
2538 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
2539 return false;
2542 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
2543 if (Arch != Triple::x86_64)
2544 return true; // Conservative answer
2546 switch (R.getType()) {
2547 default:
2548 return true; // Conservative answer
2551 case ELF::R_X86_64_GOTPCREL:
2552 case ELF::R_X86_64_GOTPCRELX:
2553 case ELF::R_X86_64_REX_GOTPCRELX:
2554 case ELF::R_X86_64_GOTPC64:
2555 case ELF::R_X86_64_GOT64:
2556 case ELF::R_X86_64_GOTOFF64:
2557 case ELF::R_X86_64_PC32:
2558 case ELF::R_X86_64_PC64:
2559 case ELF::R_X86_64_64:
2560 // We know that these reloation types won't need a stub function. This list
2561 // can be extended as needed.
2562 return false;
2566 } // namespace llvm