[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / IR / Verifier.cpp
blob1b08847ea3789ab547757ab0c9a991acc1683b89
1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the function verifier interface, that can be used for some
10 // basic correctness checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * All basic blocks should only end with terminator insts, not contain them
27 // * The entry node to a function must not have predecessors
28 // * All Instructions must be embedded into a basic block
29 // * Functions cannot take a void-typed parameter
30 // * Verify that a function's argument list agrees with it's declared type.
31 // * It is illegal to specify a name for a void value.
32 // * It is illegal to have a internal global value with no initializer
33 // * It is illegal to have a ret instruction that returns a value that does not
34 // agree with the function return value type.
35 // * Function call argument types match the function prototype
36 // * A landing pad is defined by a landingpad instruction, and can be jumped to
37 // only by the unwind edge of an invoke instruction.
38 // * A landingpad instruction must be the first non-PHI instruction in the
39 // block.
40 // * Landingpad instructions must be in a function with a personality function.
41 // * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42 // The applied restrictions are too numerous to list here.
43 // * The convergence entry intrinsic and the loop heart must be the first
44 // non-PHI instruction in their respective block. This does not conflict with
45 // the landing pads, since these two kinds cannot occur in the same block.
46 // * All other things that are tested by asserts spread about the code...
48 //===----------------------------------------------------------------------===//
50 #include "llvm/IR/Verifier.h"
51 #include "llvm/ADT/APFloat.h"
52 #include "llvm/ADT/APInt.h"
53 #include "llvm/ADT/ArrayRef.h"
54 #include "llvm/ADT/DenseMap.h"
55 #include "llvm/ADT/MapVector.h"
56 #include "llvm/ADT/PostOrderIterator.h"
57 #include "llvm/ADT/STLExtras.h"
58 #include "llvm/ADT/SmallPtrSet.h"
59 #include "llvm/ADT/SmallSet.h"
60 #include "llvm/ADT/SmallVector.h"
61 #include "llvm/ADT/StringExtras.h"
62 #include "llvm/ADT/StringMap.h"
63 #include "llvm/ADT/StringRef.h"
64 #include "llvm/ADT/Twine.h"
65 #include "llvm/BinaryFormat/Dwarf.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/AttributeMask.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/BasicBlock.h"
70 #include "llvm/IR/CFG.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Comdat.h"
73 #include "llvm/IR/Constant.h"
74 #include "llvm/IR/ConstantRange.h"
75 #include "llvm/IR/Constants.h"
76 #include "llvm/IR/ConvergenceVerifier.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfo.h"
79 #include "llvm/IR/DebugInfoMetadata.h"
80 #include "llvm/IR/DebugLoc.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/EHPersonalities.h"
84 #include "llvm/IR/Function.h"
85 #include "llvm/IR/GCStrategy.h"
86 #include "llvm/IR/GlobalAlias.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/GlobalVariable.h"
89 #include "llvm/IR/InlineAsm.h"
90 #include "llvm/IR/InstVisitor.h"
91 #include "llvm/IR/InstrTypes.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/Intrinsics.h"
96 #include "llvm/IR/IntrinsicsAArch64.h"
97 #include "llvm/IR/IntrinsicsAMDGPU.h"
98 #include "llvm/IR/IntrinsicsARM.h"
99 #include "llvm/IR/IntrinsicsWebAssembly.h"
100 #include "llvm/IR/LLVMContext.h"
101 #include "llvm/IR/Metadata.h"
102 #include "llvm/IR/Module.h"
103 #include "llvm/IR/ModuleSlotTracker.h"
104 #include "llvm/IR/PassManager.h"
105 #include "llvm/IR/Statepoint.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/InitializePasses.h"
111 #include "llvm/Pass.h"
112 #include "llvm/Support/AtomicOrdering.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/ErrorHandling.h"
116 #include "llvm/Support/MathExtras.h"
117 #include "llvm/Support/raw_ostream.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstdint>
121 #include <memory>
122 #include <optional>
123 #include <string>
124 #include <utility>
126 using namespace llvm;
128 static cl::opt<bool> VerifyNoAliasScopeDomination(
129 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(false),
130 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
131 "scopes are not dominating"));
133 namespace llvm {
135 struct VerifierSupport {
136 raw_ostream *OS;
137 const Module &M;
138 ModuleSlotTracker MST;
139 Triple TT;
140 const DataLayout &DL;
141 LLVMContext &Context;
143 /// Track the brokenness of the module while recursively visiting.
144 bool Broken = false;
145 /// Broken debug info can be "recovered" from by stripping the debug info.
146 bool BrokenDebugInfo = false;
147 /// Whether to treat broken debug info as an error.
148 bool TreatBrokenDebugInfoAsError = true;
150 explicit VerifierSupport(raw_ostream *OS, const Module &M)
151 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
152 Context(M.getContext()) {}
154 private:
155 void Write(const Module *M) {
156 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
159 void Write(const Value *V) {
160 if (V)
161 Write(*V);
164 void Write(const Value &V) {
165 if (isa<Instruction>(V)) {
166 V.print(*OS, MST);
167 *OS << '\n';
168 } else {
169 V.printAsOperand(*OS, true, MST);
170 *OS << '\n';
174 void Write(const Metadata *MD) {
175 if (!MD)
176 return;
177 MD->print(*OS, MST, &M);
178 *OS << '\n';
181 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
182 Write(MD.get());
185 void Write(const NamedMDNode *NMD) {
186 if (!NMD)
187 return;
188 NMD->print(*OS, MST);
189 *OS << '\n';
192 void Write(Type *T) {
193 if (!T)
194 return;
195 *OS << ' ' << *T;
198 void Write(const Comdat *C) {
199 if (!C)
200 return;
201 *OS << *C;
204 void Write(const APInt *AI) {
205 if (!AI)
206 return;
207 *OS << *AI << '\n';
210 void Write(const unsigned i) { *OS << i << '\n'; }
212 // NOLINTNEXTLINE(readability-identifier-naming)
213 void Write(const Attribute *A) {
214 if (!A)
215 return;
216 *OS << A->getAsString() << '\n';
219 // NOLINTNEXTLINE(readability-identifier-naming)
220 void Write(const AttributeSet *AS) {
221 if (!AS)
222 return;
223 *OS << AS->getAsString() << '\n';
226 // NOLINTNEXTLINE(readability-identifier-naming)
227 void Write(const AttributeList *AL) {
228 if (!AL)
229 return;
230 AL->print(*OS);
233 void Write(Printable P) { *OS << P << '\n'; }
235 template <typename T> void Write(ArrayRef<T> Vs) {
236 for (const T &V : Vs)
237 Write(V);
240 template <typename T1, typename... Ts>
241 void WriteTs(const T1 &V1, const Ts &... Vs) {
242 Write(V1);
243 WriteTs(Vs...);
246 template <typename... Ts> void WriteTs() {}
248 public:
249 /// A check failed, so printout out the condition and the message.
251 /// This provides a nice place to put a breakpoint if you want to see why
252 /// something is not correct.
253 void CheckFailed(const Twine &Message) {
254 if (OS)
255 *OS << Message << '\n';
256 Broken = true;
259 /// A check failed (with values to print).
261 /// This calls the Message-only version so that the above is easier to set a
262 /// breakpoint on.
263 template <typename T1, typename... Ts>
264 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
265 CheckFailed(Message);
266 if (OS)
267 WriteTs(V1, Vs...);
270 /// A debug info check failed.
271 void DebugInfoCheckFailed(const Twine &Message) {
272 if (OS)
273 *OS << Message << '\n';
274 Broken |= TreatBrokenDebugInfoAsError;
275 BrokenDebugInfo = true;
278 /// A debug info check failed (with values to print).
279 template <typename T1, typename... Ts>
280 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
281 const Ts &... Vs) {
282 DebugInfoCheckFailed(Message);
283 if (OS)
284 WriteTs(V1, Vs...);
288 } // namespace llvm
290 namespace {
292 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
293 friend class InstVisitor<Verifier>;
295 // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
296 // the alignment size should not exceed 2^15. Since encode(Align)
297 // would plus the shift value by 1, the alignment size should
298 // not exceed 2^14, otherwise it can NOT be properly lowered
299 // in backend.
300 static constexpr unsigned ParamMaxAlignment = 1 << 14;
301 DominatorTree DT;
303 /// When verifying a basic block, keep track of all of the
304 /// instructions we have seen so far.
306 /// This allows us to do efficient dominance checks for the case when an
307 /// instruction has an operand that is an instruction in the same block.
308 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
310 /// Keep track of the metadata nodes that have been checked already.
311 SmallPtrSet<const Metadata *, 32> MDNodes;
313 /// Keep track which DISubprogram is attached to which function.
314 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
316 /// Track all DICompileUnits visited.
317 SmallPtrSet<const Metadata *, 2> CUVisited;
319 /// The result type for a landingpad.
320 Type *LandingPadResultTy;
322 /// Whether we've seen a call to @llvm.localescape in this function
323 /// already.
324 bool SawFrameEscape;
326 /// Whether the current function has a DISubprogram attached to it.
327 bool HasDebugInfo = false;
329 /// The current source language.
330 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
332 /// Whether source was present on the first DIFile encountered in each CU.
333 DenseMap<const DICompileUnit *, bool> HasSourceDebugInfo;
335 /// Stores the count of how many objects were passed to llvm.localescape for a
336 /// given function and the largest index passed to llvm.localrecover.
337 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
339 // Maps catchswitches and cleanuppads that unwind to siblings to the
340 // terminators that indicate the unwind, used to detect cycles therein.
341 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
343 /// Cache which blocks are in which funclet, if an EH funclet personality is
344 /// in use. Otherwise empty.
345 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
347 /// Cache of constants visited in search of ConstantExprs.
348 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
350 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
351 SmallVector<const Function *, 4> DeoptimizeDeclarations;
353 /// Cache of attribute lists verified.
354 SmallPtrSet<const void *, 32> AttributeListsVisited;
356 // Verify that this GlobalValue is only used in this module.
357 // This map is used to avoid visiting uses twice. We can arrive at a user
358 // twice, if they have multiple operands. In particular for very large
359 // constant expressions, we can arrive at a particular user many times.
360 SmallPtrSet<const Value *, 32> GlobalValueVisited;
362 // Keeps track of duplicate function argument debug info.
363 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
365 TBAAVerifier TBAAVerifyHelper;
366 ConvergenceVerifier ConvergenceVerifyHelper;
368 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
370 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
372 public:
373 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
374 const Module &M)
375 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
376 SawFrameEscape(false), TBAAVerifyHelper(this) {
377 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
380 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
382 bool verify(const Function &F) {
383 assert(F.getParent() == &M &&
384 "An instance of this class only works with a specific module!");
386 // First ensure the function is well-enough formed to compute dominance
387 // information, and directly compute a dominance tree. We don't rely on the
388 // pass manager to provide this as it isolates us from a potentially
389 // out-of-date dominator tree and makes it significantly more complex to run
390 // this code outside of a pass manager.
391 // FIXME: It's really gross that we have to cast away constness here.
392 if (!F.empty())
393 DT.recalculate(const_cast<Function &>(F));
395 for (const BasicBlock &BB : F) {
396 if (!BB.empty() && BB.back().isTerminator())
397 continue;
399 if (OS) {
400 *OS << "Basic Block in function '" << F.getName()
401 << "' does not have terminator!\n";
402 BB.printAsOperand(*OS, true, MST);
403 *OS << "\n";
405 return false;
408 auto FailureCB = [this](const Twine &Message) {
409 this->CheckFailed(Message);
411 ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
413 Broken = false;
414 // FIXME: We strip const here because the inst visitor strips const.
415 visit(const_cast<Function &>(F));
416 verifySiblingFuncletUnwinds();
418 if (ConvergenceVerifyHelper.sawTokens())
419 ConvergenceVerifyHelper.verify(DT);
421 InstsInThisBlock.clear();
422 DebugFnArgs.clear();
423 LandingPadResultTy = nullptr;
424 SawFrameEscape = false;
425 SiblingFuncletInfo.clear();
426 verifyNoAliasScopeDecl();
427 NoAliasScopeDecls.clear();
429 return !Broken;
432 /// Verify the module that this instance of \c Verifier was initialized with.
433 bool verify() {
434 Broken = false;
436 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
437 for (const Function &F : M)
438 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
439 DeoptimizeDeclarations.push_back(&F);
441 // Now that we've visited every function, verify that we never asked to
442 // recover a frame index that wasn't escaped.
443 verifyFrameRecoverIndices();
444 for (const GlobalVariable &GV : M.globals())
445 visitGlobalVariable(GV);
447 for (const GlobalAlias &GA : M.aliases())
448 visitGlobalAlias(GA);
450 for (const GlobalIFunc &GI : M.ifuncs())
451 visitGlobalIFunc(GI);
453 for (const NamedMDNode &NMD : M.named_metadata())
454 visitNamedMDNode(NMD);
456 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
457 visitComdat(SMEC.getValue());
459 visitModuleFlags();
460 visitModuleIdents();
461 visitModuleCommandLines();
463 verifyCompileUnits();
465 verifyDeoptimizeCallingConvs();
466 DISubprogramAttachments.clear();
467 return !Broken;
470 private:
471 /// Whether a metadata node is allowed to be, or contain, a DILocation.
472 enum class AreDebugLocsAllowed { No, Yes };
474 // Verification methods...
475 void visitGlobalValue(const GlobalValue &GV);
476 void visitGlobalVariable(const GlobalVariable &GV);
477 void visitGlobalAlias(const GlobalAlias &GA);
478 void visitGlobalIFunc(const GlobalIFunc &GI);
479 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
480 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
481 const GlobalAlias &A, const Constant &C);
482 void visitNamedMDNode(const NamedMDNode &NMD);
483 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
484 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
485 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
486 void visitComdat(const Comdat &C);
487 void visitModuleIdents();
488 void visitModuleCommandLines();
489 void visitModuleFlags();
490 void visitModuleFlag(const MDNode *Op,
491 DenseMap<const MDString *, const MDNode *> &SeenIDs,
492 SmallVectorImpl<const MDNode *> &Requirements);
493 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
494 void visitFunction(const Function &F);
495 void visitBasicBlock(BasicBlock &BB);
496 void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
497 bool IsAbsoluteSymbol);
498 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
499 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
500 void visitProfMetadata(Instruction &I, MDNode *MD);
501 void visitCallStackMetadata(MDNode *MD);
502 void visitMemProfMetadata(Instruction &I, MDNode *MD);
503 void visitCallsiteMetadata(Instruction &I, MDNode *MD);
504 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
505 void visitAnnotationMetadata(MDNode *Annotation);
506 void visitAliasScopeMetadata(const MDNode *MD);
507 void visitAliasScopeListMetadata(const MDNode *MD);
508 void visitAccessGroupMetadata(const MDNode *MD);
510 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
511 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
512 #include "llvm/IR/Metadata.def"
513 void visitDIScope(const DIScope &N);
514 void visitDIVariable(const DIVariable &N);
515 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
516 void visitDITemplateParameter(const DITemplateParameter &N);
518 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
520 // InstVisitor overrides...
521 using InstVisitor<Verifier>::visit;
522 void visit(Instruction &I);
524 void visitTruncInst(TruncInst &I);
525 void visitZExtInst(ZExtInst &I);
526 void visitSExtInst(SExtInst &I);
527 void visitFPTruncInst(FPTruncInst &I);
528 void visitFPExtInst(FPExtInst &I);
529 void visitFPToUIInst(FPToUIInst &I);
530 void visitFPToSIInst(FPToSIInst &I);
531 void visitUIToFPInst(UIToFPInst &I);
532 void visitSIToFPInst(SIToFPInst &I);
533 void visitIntToPtrInst(IntToPtrInst &I);
534 void visitPtrToIntInst(PtrToIntInst &I);
535 void visitBitCastInst(BitCastInst &I);
536 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
537 void visitPHINode(PHINode &PN);
538 void visitCallBase(CallBase &Call);
539 void visitUnaryOperator(UnaryOperator &U);
540 void visitBinaryOperator(BinaryOperator &B);
541 void visitICmpInst(ICmpInst &IC);
542 void visitFCmpInst(FCmpInst &FC);
543 void visitExtractElementInst(ExtractElementInst &EI);
544 void visitInsertElementInst(InsertElementInst &EI);
545 void visitShuffleVectorInst(ShuffleVectorInst &EI);
546 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
547 void visitCallInst(CallInst &CI);
548 void visitInvokeInst(InvokeInst &II);
549 void visitGetElementPtrInst(GetElementPtrInst &GEP);
550 void visitLoadInst(LoadInst &LI);
551 void visitStoreInst(StoreInst &SI);
552 void verifyDominatesUse(Instruction &I, unsigned i);
553 void visitInstruction(Instruction &I);
554 void visitTerminator(Instruction &I);
555 void visitBranchInst(BranchInst &BI);
556 void visitReturnInst(ReturnInst &RI);
557 void visitSwitchInst(SwitchInst &SI);
558 void visitIndirectBrInst(IndirectBrInst &BI);
559 void visitCallBrInst(CallBrInst &CBI);
560 void visitSelectInst(SelectInst &SI);
561 void visitUserOp1(Instruction &I);
562 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
563 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
564 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
565 void visitVPIntrinsic(VPIntrinsic &VPI);
566 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
567 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
568 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
569 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
570 void visitFenceInst(FenceInst &FI);
571 void visitAllocaInst(AllocaInst &AI);
572 void visitExtractValueInst(ExtractValueInst &EVI);
573 void visitInsertValueInst(InsertValueInst &IVI);
574 void visitEHPadPredecessors(Instruction &I);
575 void visitLandingPadInst(LandingPadInst &LPI);
576 void visitResumeInst(ResumeInst &RI);
577 void visitCatchPadInst(CatchPadInst &CPI);
578 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
579 void visitCleanupPadInst(CleanupPadInst &CPI);
580 void visitFuncletPadInst(FuncletPadInst &FPI);
581 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
582 void visitCleanupReturnInst(CleanupReturnInst &CRI);
584 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
585 void verifySwiftErrorValue(const Value *SwiftErrorVal);
586 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
587 void verifyMustTailCall(CallInst &CI);
588 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
589 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
590 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
591 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
592 const Value *V);
593 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
594 const Value *V, bool IsIntrinsic, bool IsInlineAsm);
595 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
597 void visitConstantExprsRecursively(const Constant *EntryC);
598 void visitConstantExpr(const ConstantExpr *CE);
599 void verifyInlineAsmCall(const CallBase &Call);
600 void verifyStatepoint(const CallBase &Call);
601 void verifyFrameRecoverIndices();
602 void verifySiblingFuncletUnwinds();
604 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
605 template <typename ValueOrMetadata>
606 void verifyFragmentExpression(const DIVariable &V,
607 DIExpression::FragmentInfo Fragment,
608 ValueOrMetadata *Desc);
609 void verifyFnArgs(const DbgVariableIntrinsic &I);
610 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
612 /// Module-level debug info verification...
613 void verifyCompileUnits();
615 /// Module-level verification that all @llvm.experimental.deoptimize
616 /// declarations share the same calling convention.
617 void verifyDeoptimizeCallingConvs();
619 void verifyAttachedCallBundle(const CallBase &Call,
620 const OperandBundleUse &BU);
622 /// Verify all-or-nothing property of DIFile source attribute within a CU.
623 void verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F);
625 /// Verify the llvm.experimental.noalias.scope.decl declarations
626 void verifyNoAliasScopeDecl();
629 } // end anonymous namespace
631 /// We know that cond should be true, if not print an error message.
632 #define Check(C, ...) \
633 do { \
634 if (!(C)) { \
635 CheckFailed(__VA_ARGS__); \
636 return; \
638 } while (false)
640 /// We know that a debug info condition should be true, if not print
641 /// an error message.
642 #define CheckDI(C, ...) \
643 do { \
644 if (!(C)) { \
645 DebugInfoCheckFailed(__VA_ARGS__); \
646 return; \
648 } while (false)
650 void Verifier::visit(Instruction &I) {
651 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
652 Check(I.getOperand(i) != nullptr, "Operand is null", &I);
653 InstVisitor<Verifier>::visit(I);
656 // Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
657 static void forEachUser(const Value *User,
658 SmallPtrSet<const Value *, 32> &Visited,
659 llvm::function_ref<bool(const Value *)> Callback) {
660 if (!Visited.insert(User).second)
661 return;
663 SmallVector<const Value *> WorkList;
664 append_range(WorkList, User->materialized_users());
665 while (!WorkList.empty()) {
666 const Value *Cur = WorkList.pop_back_val();
667 if (!Visited.insert(Cur).second)
668 continue;
669 if (Callback(Cur))
670 append_range(WorkList, Cur->materialized_users());
674 void Verifier::visitGlobalValue(const GlobalValue &GV) {
675 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
676 "Global is external, but doesn't have external or weak linkage!", &GV);
678 if (const GlobalObject *GO = dyn_cast<GlobalObject>(&GV)) {
680 if (MaybeAlign A = GO->getAlign()) {
681 Check(A->value() <= Value::MaximumAlignment,
682 "huge alignment values are unsupported", GO);
685 if (const MDNode *Associated =
686 GO->getMetadata(LLVMContext::MD_associated)) {
687 Check(Associated->getNumOperands() == 1,
688 "associated metadata must have one operand", &GV, Associated);
689 const Metadata *Op = Associated->getOperand(0).get();
690 Check(Op, "associated metadata must have a global value", GO, Associated);
692 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Op);
693 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
694 if (VM) {
695 Check(isa<PointerType>(VM->getValue()->getType()),
696 "associated value must be pointer typed", GV, Associated);
698 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
699 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
700 "associated metadata must point to a GlobalObject", GO, Stripped);
701 Check(Stripped != GO,
702 "global values should not associate to themselves", GO,
703 Associated);
707 // FIXME: Why is getMetadata on GlobalValue protected?
708 if (const MDNode *AbsoluteSymbol =
709 GO->getMetadata(LLVMContext::MD_absolute_symbol)) {
710 verifyRangeMetadata(*GO, AbsoluteSymbol, DL.getIntPtrType(GO->getType()),
711 true);
715 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
716 "Only global variables can have appending linkage!", &GV);
718 if (GV.hasAppendingLinkage()) {
719 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
720 Check(GVar && GVar->getValueType()->isArrayTy(),
721 "Only global arrays can have appending linkage!", GVar);
724 if (GV.isDeclarationForLinker())
725 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
727 if (GV.hasDLLExportStorageClass()) {
728 Check(!GV.hasHiddenVisibility(),
729 "dllexport GlobalValue must have default or protected visibility",
730 &GV);
732 if (GV.hasDLLImportStorageClass()) {
733 Check(GV.hasDefaultVisibility(),
734 "dllimport GlobalValue must have default visibility", &GV);
735 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
736 &GV);
738 Check((GV.isDeclaration() &&
739 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
740 GV.hasAvailableExternallyLinkage(),
741 "Global is marked as dllimport, but not external", &GV);
744 if (GV.isImplicitDSOLocal())
745 Check(GV.isDSOLocal(),
746 "GlobalValue with local linkage or non-default "
747 "visibility must be dso_local!",
748 &GV);
750 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
751 if (const Instruction *I = dyn_cast<Instruction>(V)) {
752 if (!I->getParent() || !I->getParent()->getParent())
753 CheckFailed("Global is referenced by parentless instruction!", &GV, &M,
755 else if (I->getParent()->getParent()->getParent() != &M)
756 CheckFailed("Global is referenced in a different module!", &GV, &M, I,
757 I->getParent()->getParent(),
758 I->getParent()->getParent()->getParent());
759 return false;
760 } else if (const Function *F = dyn_cast<Function>(V)) {
761 if (F->getParent() != &M)
762 CheckFailed("Global is used by function in a different module", &GV, &M,
763 F, F->getParent());
764 return false;
766 return true;
770 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
771 if (GV.hasInitializer()) {
772 Check(GV.getInitializer()->getType() == GV.getValueType(),
773 "Global variable initializer type does not match global "
774 "variable type!",
775 &GV);
776 // If the global has common linkage, it must have a zero initializer and
777 // cannot be constant.
778 if (GV.hasCommonLinkage()) {
779 Check(GV.getInitializer()->isNullValue(),
780 "'common' global must have a zero initializer!", &GV);
781 Check(!GV.isConstant(), "'common' global may not be marked constant!",
782 &GV);
783 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
787 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
788 GV.getName() == "llvm.global_dtors")) {
789 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
790 "invalid linkage for intrinsic global variable", &GV);
791 Check(GV.materialized_use_empty(),
792 "invalid uses of intrinsic global variable", &GV);
794 // Don't worry about emitting an error for it not being an array,
795 // visitGlobalValue will complain on appending non-array.
796 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
797 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
798 PointerType *FuncPtrTy =
799 PointerType::get(Context, DL.getProgramAddressSpace());
800 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
801 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
802 STy->getTypeAtIndex(1) == FuncPtrTy,
803 "wrong type for intrinsic global variable", &GV);
804 Check(STy->getNumElements() == 3,
805 "the third field of the element type is mandatory, "
806 "specify ptr null to migrate from the obsoleted 2-field form");
807 Type *ETy = STy->getTypeAtIndex(2);
808 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
809 &GV);
813 if (GV.hasName() && (GV.getName() == "llvm.used" ||
814 GV.getName() == "llvm.compiler.used")) {
815 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
816 "invalid linkage for intrinsic global variable", &GV);
817 Check(GV.materialized_use_empty(),
818 "invalid uses of intrinsic global variable", &GV);
820 Type *GVType = GV.getValueType();
821 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
822 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
823 Check(PTy, "wrong type for intrinsic global variable", &GV);
824 if (GV.hasInitializer()) {
825 const Constant *Init = GV.getInitializer();
826 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
827 Check(InitArray, "wrong initalizer for intrinsic global variable",
828 Init);
829 for (Value *Op : InitArray->operands()) {
830 Value *V = Op->stripPointerCasts();
831 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
832 isa<GlobalAlias>(V),
833 Twine("invalid ") + GV.getName() + " member", V);
834 Check(V->hasName(),
835 Twine("members of ") + GV.getName() + " must be named", V);
841 // Visit any debug info attachments.
842 SmallVector<MDNode *, 1> MDs;
843 GV.getMetadata(LLVMContext::MD_dbg, MDs);
844 for (auto *MD : MDs) {
845 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(MD))
846 visitDIGlobalVariableExpression(*GVE);
847 else
848 CheckDI(false, "!dbg attachment of global variable must be a "
849 "DIGlobalVariableExpression");
852 // Scalable vectors cannot be global variables, since we don't know
853 // the runtime size.
854 Check(!GV.getValueType()->isScalableTy(),
855 "Globals cannot contain scalable types", &GV);
857 // Check if it's a target extension type that disallows being used as a
858 // global.
859 if (auto *TTy = dyn_cast<TargetExtType>(GV.getValueType()))
860 Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
861 "Global @" + GV.getName() + " has illegal target extension type",
862 TTy);
864 if (!GV.hasInitializer()) {
865 visitGlobalValue(GV);
866 return;
869 // Walk any aggregate initializers looking for bitcasts between address spaces
870 visitConstantExprsRecursively(GV.getInitializer());
872 visitGlobalValue(GV);
875 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
876 SmallPtrSet<const GlobalAlias*, 4> Visited;
877 Visited.insert(&GA);
878 visitAliaseeSubExpr(Visited, GA, C);
881 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
882 const GlobalAlias &GA, const Constant &C) {
883 if (GA.hasAvailableExternallyLinkage()) {
884 Check(isa<GlobalValue>(C) &&
885 cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
886 "available_externally alias must point to available_externally "
887 "global value",
888 &GA);
890 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
891 if (!GA.hasAvailableExternallyLinkage()) {
892 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
893 &GA);
896 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
897 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
899 Check(!GA2->isInterposable(),
900 "Alias cannot point to an interposable alias", &GA);
901 } else {
902 // Only continue verifying subexpressions of GlobalAliases.
903 // Do not recurse into global initializers.
904 return;
908 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
909 visitConstantExprsRecursively(CE);
911 for (const Use &U : C.operands()) {
912 Value *V = &*U;
913 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
914 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
915 else if (const auto *C2 = dyn_cast<Constant>(V))
916 visitAliaseeSubExpr(Visited, GA, *C2);
920 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
921 Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
922 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
923 "weak_odr, external, or available_externally linkage!",
924 &GA);
925 const Constant *Aliasee = GA.getAliasee();
926 Check(Aliasee, "Aliasee cannot be NULL!", &GA);
927 Check(GA.getType() == Aliasee->getType(),
928 "Alias and aliasee types should match!", &GA);
930 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
931 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
933 visitAliaseeSubExpr(GA, *Aliasee);
935 visitGlobalValue(GA);
938 void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
939 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
940 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
941 "weak_odr, or external linkage!",
942 &GI);
943 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
944 // is a Function definition.
945 const Function *Resolver = GI.getResolverFunction();
946 Check(Resolver, "IFunc must have a Function resolver", &GI);
947 Check(!Resolver->isDeclarationForLinker(),
948 "IFunc resolver must be a definition", &GI);
950 // Check that the immediate resolver operand (prior to any bitcasts) has the
951 // correct type.
952 const Type *ResolverTy = GI.getResolver()->getType();
954 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
955 "IFunc resolver must return a pointer", &GI);
957 const Type *ResolverFuncTy =
958 GlobalIFunc::getResolverFunctionType(GI.getValueType());
959 Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
960 "IFunc resolver has incorrect type", &GI);
963 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
964 // There used to be various other llvm.dbg.* nodes, but we don't support
965 // upgrading them and we want to reserve the namespace for future uses.
966 if (NMD.getName().startswith("llvm.dbg."))
967 CheckDI(NMD.getName() == "llvm.dbg.cu",
968 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
969 for (const MDNode *MD : NMD.operands()) {
970 if (NMD.getName() == "llvm.dbg.cu")
971 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
973 if (!MD)
974 continue;
976 visitMDNode(*MD, AreDebugLocsAllowed::Yes);
980 void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
981 // Only visit each node once. Metadata can be mutually recursive, so this
982 // avoids infinite recursion here, as well as being an optimization.
983 if (!MDNodes.insert(&MD).second)
984 return;
986 Check(&MD.getContext() == &Context,
987 "MDNode context does not match Module context!", &MD);
989 switch (MD.getMetadataID()) {
990 default:
991 llvm_unreachable("Invalid MDNode subclass");
992 case Metadata::MDTupleKind:
993 break;
994 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
995 case Metadata::CLASS##Kind: \
996 visit##CLASS(cast<CLASS>(MD)); \
997 break;
998 #include "llvm/IR/Metadata.def"
1001 for (const Metadata *Op : MD.operands()) {
1002 if (!Op)
1003 continue;
1004 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1005 &MD, Op);
1006 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1007 "DILocation not allowed within this metadata node", &MD, Op);
1008 if (auto *N = dyn_cast<MDNode>(Op)) {
1009 visitMDNode(*N, AllowLocs);
1010 continue;
1012 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
1013 visitValueAsMetadata(*V, nullptr);
1014 continue;
1018 // Check these last, so we diagnose problems in operands first.
1019 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1020 Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1023 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1024 Check(MD.getValue(), "Expected valid value", &MD);
1025 Check(!MD.getValue()->getType()->isMetadataTy(),
1026 "Unexpected metadata round-trip through values", &MD, MD.getValue());
1028 auto *L = dyn_cast<LocalAsMetadata>(&MD);
1029 if (!L)
1030 return;
1032 Check(F, "function-local metadata used outside a function", L);
1034 // If this was an instruction, bb, or argument, verify that it is in the
1035 // function that we expect.
1036 Function *ActualF = nullptr;
1037 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
1038 Check(I->getParent(), "function-local metadata not in basic block", L, I);
1039 ActualF = I->getParent()->getParent();
1040 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
1041 ActualF = BB->getParent();
1042 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
1043 ActualF = A->getParent();
1044 assert(ActualF && "Unimplemented function local metadata case!");
1046 Check(ActualF == F, "function-local metadata used in wrong function", L);
1049 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1050 Metadata *MD = MDV.getMetadata();
1051 if (auto *N = dyn_cast<MDNode>(MD)) {
1052 visitMDNode(*N, AreDebugLocsAllowed::No);
1053 return;
1056 // Only visit each node once. Metadata can be mutually recursive, so this
1057 // avoids infinite recursion here, as well as being an optimization.
1058 if (!MDNodes.insert(MD).second)
1059 return;
1061 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
1062 visitValueAsMetadata(*V, F);
1065 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
1066 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
1067 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
1069 void Verifier::visitDILocation(const DILocation &N) {
1070 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1071 "location requires a valid scope", &N, N.getRawScope());
1072 if (auto *IA = N.getRawInlinedAt())
1073 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1074 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1075 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1078 void Verifier::visitGenericDINode(const GenericDINode &N) {
1079 CheckDI(N.getTag(), "invalid tag", &N);
1082 void Verifier::visitDIScope(const DIScope &N) {
1083 if (auto *F = N.getRawFile())
1084 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1087 void Verifier::visitDISubrange(const DISubrange &N) {
1088 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1089 bool HasAssumedSizedArraySupport = dwarf::isFortran(CurrentSourceLang);
1090 CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1091 N.getRawUpperBound(),
1092 "Subrange must contain count or upperBound", &N);
1093 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1094 "Subrange can have any one of count or upperBound", &N);
1095 auto *CBound = N.getRawCountNode();
1096 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1097 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1098 "Count must be signed constant or DIVariable or DIExpression", &N);
1099 auto Count = N.getCount();
1100 CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1101 cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1102 "invalid subrange count", &N);
1103 auto *LBound = N.getRawLowerBound();
1104 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1105 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1106 "LowerBound must be signed constant or DIVariable or DIExpression",
1107 &N);
1108 auto *UBound = N.getRawUpperBound();
1109 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1110 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1111 "UpperBound must be signed constant or DIVariable or DIExpression",
1112 &N);
1113 auto *Stride = N.getRawStride();
1114 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1115 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1116 "Stride must be signed constant or DIVariable or DIExpression", &N);
1119 void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1120 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1121 CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1122 "GenericSubrange must contain count or upperBound", &N);
1123 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1124 "GenericSubrange can have any one of count or upperBound", &N);
1125 auto *CBound = N.getRawCountNode();
1126 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1127 "Count must be signed constant or DIVariable or DIExpression", &N);
1128 auto *LBound = N.getRawLowerBound();
1129 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1130 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1131 "LowerBound must be signed constant or DIVariable or DIExpression",
1132 &N);
1133 auto *UBound = N.getRawUpperBound();
1134 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1135 "UpperBound must be signed constant or DIVariable or DIExpression",
1136 &N);
1137 auto *Stride = N.getRawStride();
1138 CheckDI(Stride, "GenericSubrange must contain stride", &N);
1139 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1140 "Stride must be signed constant or DIVariable or DIExpression", &N);
1143 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1144 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1147 void Verifier::visitDIBasicType(const DIBasicType &N) {
1148 CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1149 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1150 N.getTag() == dwarf::DW_TAG_string_type,
1151 "invalid tag", &N);
1154 void Verifier::visitDIStringType(const DIStringType &N) {
1155 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1156 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1157 &N);
1160 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1161 // Common scope checks.
1162 visitDIScope(N);
1164 CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1165 N.getTag() == dwarf::DW_TAG_pointer_type ||
1166 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1167 N.getTag() == dwarf::DW_TAG_reference_type ||
1168 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1169 N.getTag() == dwarf::DW_TAG_const_type ||
1170 N.getTag() == dwarf::DW_TAG_immutable_type ||
1171 N.getTag() == dwarf::DW_TAG_volatile_type ||
1172 N.getTag() == dwarf::DW_TAG_restrict_type ||
1173 N.getTag() == dwarf::DW_TAG_atomic_type ||
1174 N.getTag() == dwarf::DW_TAG_member ||
1175 N.getTag() == dwarf::DW_TAG_inheritance ||
1176 N.getTag() == dwarf::DW_TAG_friend ||
1177 N.getTag() == dwarf::DW_TAG_set_type,
1178 "invalid tag", &N);
1179 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1180 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1181 N.getRawExtraData());
1184 if (N.getTag() == dwarf::DW_TAG_set_type) {
1185 if (auto *T = N.getRawBaseType()) {
1186 auto *Enum = dyn_cast_or_null<DICompositeType>(T);
1187 auto *Basic = dyn_cast_or_null<DIBasicType>(T);
1188 CheckDI(
1189 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1190 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1191 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1192 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1193 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1194 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1195 "invalid set base type", &N, T);
1199 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1200 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1201 N.getRawBaseType());
1203 if (N.getDWARFAddressSpace()) {
1204 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1205 N.getTag() == dwarf::DW_TAG_reference_type ||
1206 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1207 "DWARF address space only applies to pointer or reference types",
1208 &N);
1212 /// Detect mutually exclusive flags.
1213 static bool hasConflictingReferenceFlags(unsigned Flags) {
1214 return ((Flags & DINode::FlagLValueReference) &&
1215 (Flags & DINode::FlagRValueReference)) ||
1216 ((Flags & DINode::FlagTypePassByValue) &&
1217 (Flags & DINode::FlagTypePassByReference));
1220 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1221 auto *Params = dyn_cast<MDTuple>(&RawParams);
1222 CheckDI(Params, "invalid template params", &N, &RawParams);
1223 for (Metadata *Op : Params->operands()) {
1224 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1225 &N, Params, Op);
1229 void Verifier::visitDICompositeType(const DICompositeType &N) {
1230 // Common scope checks.
1231 visitDIScope(N);
1233 CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1234 N.getTag() == dwarf::DW_TAG_structure_type ||
1235 N.getTag() == dwarf::DW_TAG_union_type ||
1236 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1237 N.getTag() == dwarf::DW_TAG_class_type ||
1238 N.getTag() == dwarf::DW_TAG_variant_part ||
1239 N.getTag() == dwarf::DW_TAG_namelist,
1240 "invalid tag", &N);
1242 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1243 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1244 N.getRawBaseType());
1246 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1247 "invalid composite elements", &N, N.getRawElements());
1248 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1249 N.getRawVTableHolder());
1250 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1251 "invalid reference flags", &N);
1252 unsigned DIBlockByRefStruct = 1 << 4;
1253 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1254 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1256 if (N.isVector()) {
1257 const DINodeArray Elements = N.getElements();
1258 CheckDI(Elements.size() == 1 &&
1259 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1260 "invalid vector, expected one element of type subrange", &N);
1263 if (auto *Params = N.getRawTemplateParams())
1264 visitTemplateParams(N, *Params);
1266 if (auto *D = N.getRawDiscriminator()) {
1267 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1268 "discriminator can only appear on variant part");
1271 if (N.getRawDataLocation()) {
1272 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1273 "dataLocation can only appear in array type");
1276 if (N.getRawAssociated()) {
1277 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1278 "associated can only appear in array type");
1281 if (N.getRawAllocated()) {
1282 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1283 "allocated can only appear in array type");
1286 if (N.getRawRank()) {
1287 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1288 "rank can only appear in array type");
1292 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1293 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1294 if (auto *Types = N.getRawTypeArray()) {
1295 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1296 for (Metadata *Ty : N.getTypeArray()->operands()) {
1297 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1300 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1301 "invalid reference flags", &N);
1304 void Verifier::visitDIFile(const DIFile &N) {
1305 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1306 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1307 if (Checksum) {
1308 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1309 "invalid checksum kind", &N);
1310 size_t Size;
1311 switch (Checksum->Kind) {
1312 case DIFile::CSK_MD5:
1313 Size = 32;
1314 break;
1315 case DIFile::CSK_SHA1:
1316 Size = 40;
1317 break;
1318 case DIFile::CSK_SHA256:
1319 Size = 64;
1320 break;
1322 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1323 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1324 "invalid checksum", &N);
1328 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1329 CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1330 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1332 // Don't bother verifying the compilation directory or producer string
1333 // as those could be empty.
1334 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1335 N.getRawFile());
1336 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1337 N.getFile());
1339 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1341 verifySourceDebugInfo(N, *N.getFile());
1343 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1344 "invalid emission kind", &N);
1346 if (auto *Array = N.getRawEnumTypes()) {
1347 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1348 for (Metadata *Op : N.getEnumTypes()->operands()) {
1349 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
1350 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1351 "invalid enum type", &N, N.getEnumTypes(), Op);
1354 if (auto *Array = N.getRawRetainedTypes()) {
1355 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1356 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1357 CheckDI(
1358 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1359 !cast<DISubprogram>(Op)->isDefinition())),
1360 "invalid retained type", &N, Op);
1363 if (auto *Array = N.getRawGlobalVariables()) {
1364 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1365 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1366 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1367 "invalid global variable ref", &N, Op);
1370 if (auto *Array = N.getRawImportedEntities()) {
1371 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1372 for (Metadata *Op : N.getImportedEntities()->operands()) {
1373 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1374 &N, Op);
1377 if (auto *Array = N.getRawMacros()) {
1378 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1379 for (Metadata *Op : N.getMacros()->operands()) {
1380 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1383 CUVisited.insert(&N);
1386 void Verifier::visitDISubprogram(const DISubprogram &N) {
1387 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1388 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1389 if (auto *F = N.getRawFile())
1390 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1391 else
1392 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1393 if (auto *T = N.getRawType())
1394 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1395 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1396 N.getRawContainingType());
1397 if (auto *Params = N.getRawTemplateParams())
1398 visitTemplateParams(N, *Params);
1399 if (auto *S = N.getRawDeclaration())
1400 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1401 "invalid subprogram declaration", &N, S);
1402 if (auto *RawNode = N.getRawRetainedNodes()) {
1403 auto *Node = dyn_cast<MDTuple>(RawNode);
1404 CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1405 for (Metadata *Op : Node->operands()) {
1406 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1407 isa<DIImportedEntity>(Op) || isa<DIType>(Op)),
1408 "invalid retained nodes, expected DILocalVariable, DILabel, "
1409 "DIImportedEntity or DIType",
1410 &N, Node, Op);
1413 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1414 "invalid reference flags", &N);
1416 auto *Unit = N.getRawUnit();
1417 if (N.isDefinition()) {
1418 // Subprogram definitions (not part of the type hierarchy).
1419 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1420 CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1421 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1422 // There's no good way to cross the CU boundary to insert a nested
1423 // DISubprogram definition in one CU into a type defined in another CU.
1424 auto *CT = dyn_cast_or_null<DICompositeType>(N.getRawScope());
1425 if (CT && CT->getRawIdentifier() &&
1426 M.getContext().isODRUniquingDebugTypes())
1427 CheckDI(N.getDeclaration(),
1428 "definition subprograms cannot be nested within DICompositeType "
1429 "when enabling ODR",
1430 &N);
1431 if (N.getFile())
1432 verifySourceDebugInfo(*N.getUnit(), *N.getFile());
1433 } else {
1434 // Subprogram declarations (part of the type hierarchy).
1435 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1436 CheckDI(!N.getRawDeclaration(),
1437 "subprogram declaration must not have a declaration field");
1440 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1441 auto *ThrownTypes = dyn_cast<MDTuple>(RawThrownTypes);
1442 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1443 for (Metadata *Op : ThrownTypes->operands())
1444 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1445 Op);
1448 if (N.areAllCallsDescribed())
1449 CheckDI(N.isDefinition(),
1450 "DIFlagAllCallsDescribed must be attached to a definition");
1453 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1454 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1455 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1456 "invalid local scope", &N, N.getRawScope());
1457 if (auto *SP = dyn_cast<DISubprogram>(N.getRawScope()))
1458 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1461 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1462 visitDILexicalBlockBase(N);
1464 CheckDI(N.getLine() || !N.getColumn(),
1465 "cannot have column info without line info", &N);
1468 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1469 visitDILexicalBlockBase(N);
1472 void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1473 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1474 if (auto *S = N.getRawScope())
1475 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1476 if (auto *S = N.getRawDecl())
1477 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1480 void Verifier::visitDINamespace(const DINamespace &N) {
1481 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1482 if (auto *S = N.getRawScope())
1483 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1486 void Verifier::visitDIMacro(const DIMacro &N) {
1487 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1488 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1489 "invalid macinfo type", &N);
1490 CheckDI(!N.getName().empty(), "anonymous macro", &N);
1491 if (!N.getValue().empty()) {
1492 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1496 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1497 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1498 "invalid macinfo type", &N);
1499 if (auto *F = N.getRawFile())
1500 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1502 if (auto *Array = N.getRawElements()) {
1503 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1504 for (Metadata *Op : N.getElements()->operands()) {
1505 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1510 void Verifier::visitDIArgList(const DIArgList &N) {
1511 CheckDI(!N.getNumOperands(),
1512 "DIArgList should have no operands other than a list of "
1513 "ValueAsMetadata",
1514 &N);
1517 void Verifier::visitDIModule(const DIModule &N) {
1518 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1519 CheckDI(!N.getName().empty(), "anonymous module", &N);
1522 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1523 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1526 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1527 visitDITemplateParameter(N);
1529 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1530 &N);
1533 void Verifier::visitDITemplateValueParameter(
1534 const DITemplateValueParameter &N) {
1535 visitDITemplateParameter(N);
1537 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1538 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1539 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1540 "invalid tag", &N);
1543 void Verifier::visitDIVariable(const DIVariable &N) {
1544 if (auto *S = N.getRawScope())
1545 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1546 if (auto *F = N.getRawFile())
1547 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1550 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1551 // Checks common to all variables.
1552 visitDIVariable(N);
1554 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1555 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1556 // Check only if the global variable is not an extern
1557 if (N.isDefinition())
1558 CheckDI(N.getType(), "missing global variable type", &N);
1559 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1560 CheckDI(isa<DIDerivedType>(Member),
1561 "invalid static data member declaration", &N, Member);
1565 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1566 // Checks common to all variables.
1567 visitDIVariable(N);
1569 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1570 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1571 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1572 "local variable requires a valid scope", &N, N.getRawScope());
1573 if (auto Ty = N.getType())
1574 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1577 void Verifier::visitDIAssignID(const DIAssignID &N) {
1578 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1579 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1582 void Verifier::visitDILabel(const DILabel &N) {
1583 if (auto *S = N.getRawScope())
1584 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1585 if (auto *F = N.getRawFile())
1586 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1588 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1589 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1590 "label requires a valid scope", &N, N.getRawScope());
1593 void Verifier::visitDIExpression(const DIExpression &N) {
1594 CheckDI(N.isValid(), "invalid expression", &N);
1597 void Verifier::visitDIGlobalVariableExpression(
1598 const DIGlobalVariableExpression &GVE) {
1599 CheckDI(GVE.getVariable(), "missing variable");
1600 if (auto *Var = GVE.getVariable())
1601 visitDIGlobalVariable(*Var);
1602 if (auto *Expr = GVE.getExpression()) {
1603 visitDIExpression(*Expr);
1604 if (auto Fragment = Expr->getFragmentInfo())
1605 verifyFragmentExpression(*GVE.getVariable(), *Fragment, &GVE);
1609 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1610 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1611 if (auto *T = N.getRawType())
1612 CheckDI(isType(T), "invalid type ref", &N, T);
1613 if (auto *F = N.getRawFile())
1614 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1617 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1618 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1619 N.getTag() == dwarf::DW_TAG_imported_declaration,
1620 "invalid tag", &N);
1621 if (auto *S = N.getRawScope())
1622 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1623 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1624 N.getRawEntity());
1627 void Verifier::visitComdat(const Comdat &C) {
1628 // In COFF the Module is invalid if the GlobalValue has private linkage.
1629 // Entities with private linkage don't have entries in the symbol table.
1630 if (TT.isOSBinFormatCOFF())
1631 if (const GlobalValue *GV = M.getNamedValue(C.getName()))
1632 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1633 GV);
1636 void Verifier::visitModuleIdents() {
1637 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1638 if (!Idents)
1639 return;
1641 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1642 // Scan each llvm.ident entry and make sure that this requirement is met.
1643 for (const MDNode *N : Idents->operands()) {
1644 Check(N->getNumOperands() == 1,
1645 "incorrect number of operands in llvm.ident metadata", N);
1646 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1647 ("invalid value for llvm.ident metadata entry operand"
1648 "(the operand should be a string)"),
1649 N->getOperand(0));
1653 void Verifier::visitModuleCommandLines() {
1654 const NamedMDNode *CommandLines = M.getNamedMetadata("llvm.commandline");
1655 if (!CommandLines)
1656 return;
1658 // llvm.commandline takes a list of metadata entry. Each entry has only one
1659 // string. Scan each llvm.commandline entry and make sure that this
1660 // requirement is met.
1661 for (const MDNode *N : CommandLines->operands()) {
1662 Check(N->getNumOperands() == 1,
1663 "incorrect number of operands in llvm.commandline metadata", N);
1664 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1665 ("invalid value for llvm.commandline metadata entry operand"
1666 "(the operand should be a string)"),
1667 N->getOperand(0));
1671 void Verifier::visitModuleFlags() {
1672 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1673 if (!Flags) return;
1675 // Scan each flag, and track the flags and requirements.
1676 DenseMap<const MDString*, const MDNode*> SeenIDs;
1677 SmallVector<const MDNode*, 16> Requirements;
1678 for (const MDNode *MDN : Flags->operands())
1679 visitModuleFlag(MDN, SeenIDs, Requirements);
1681 // Validate that the requirements in the module are valid.
1682 for (const MDNode *Requirement : Requirements) {
1683 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1684 const Metadata *ReqValue = Requirement->getOperand(1);
1686 const MDNode *Op = SeenIDs.lookup(Flag);
1687 if (!Op) {
1688 CheckFailed("invalid requirement on flag, flag is not present in module",
1689 Flag);
1690 continue;
1693 if (Op->getOperand(2) != ReqValue) {
1694 CheckFailed(("invalid requirement on flag, "
1695 "flag does not have the required value"),
1696 Flag);
1697 continue;
1702 void
1703 Verifier::visitModuleFlag(const MDNode *Op,
1704 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1705 SmallVectorImpl<const MDNode *> &Requirements) {
1706 // Each module flag should have three arguments, the merge behavior (a
1707 // constant int), the flag ID (an MDString), and the value.
1708 Check(Op->getNumOperands() == 3,
1709 "incorrect number of operands in module flag", Op);
1710 Module::ModFlagBehavior MFB;
1711 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1712 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1713 "invalid behavior operand in module flag (expected constant integer)",
1714 Op->getOperand(0));
1715 Check(false,
1716 "invalid behavior operand in module flag (unexpected constant)",
1717 Op->getOperand(0));
1719 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1720 Check(ID, "invalid ID operand in module flag (expected metadata string)",
1721 Op->getOperand(1));
1723 // Check the values for behaviors with additional requirements.
1724 switch (MFB) {
1725 case Module::Error:
1726 case Module::Warning:
1727 case Module::Override:
1728 // These behavior types accept any value.
1729 break;
1731 case Module::Min: {
1732 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1733 Check(V && V->getValue().isNonNegative(),
1734 "invalid value for 'min' module flag (expected constant non-negative "
1735 "integer)",
1736 Op->getOperand(2));
1737 break;
1740 case Module::Max: {
1741 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1742 "invalid value for 'max' module flag (expected constant integer)",
1743 Op->getOperand(2));
1744 break;
1747 case Module::Require: {
1748 // The value should itself be an MDNode with two operands, a flag ID (an
1749 // MDString), and a value.
1750 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1751 Check(Value && Value->getNumOperands() == 2,
1752 "invalid value for 'require' module flag (expected metadata pair)",
1753 Op->getOperand(2));
1754 Check(isa<MDString>(Value->getOperand(0)),
1755 ("invalid value for 'require' module flag "
1756 "(first value operand should be a string)"),
1757 Value->getOperand(0));
1759 // Append it to the list of requirements, to check once all module flags are
1760 // scanned.
1761 Requirements.push_back(Value);
1762 break;
1765 case Module::Append:
1766 case Module::AppendUnique: {
1767 // These behavior types require the operand be an MDNode.
1768 Check(isa<MDNode>(Op->getOperand(2)),
1769 "invalid value for 'append'-type module flag "
1770 "(expected a metadata node)",
1771 Op->getOperand(2));
1772 break;
1776 // Unless this is a "requires" flag, check the ID is unique.
1777 if (MFB != Module::Require) {
1778 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1779 Check(Inserted,
1780 "module flag identifiers must be unique (or of 'require' type)", ID);
1783 if (ID->getString() == "wchar_size") {
1784 ConstantInt *Value
1785 = mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1786 Check(Value, "wchar_size metadata requires constant integer argument");
1789 if (ID->getString() == "Linker Options") {
1790 // If the llvm.linker.options named metadata exists, we assume that the
1791 // bitcode reader has upgraded the module flag. Otherwise the flag might
1792 // have been created by a client directly.
1793 Check(M.getNamedMetadata("llvm.linker.options"),
1794 "'Linker Options' named metadata no longer supported");
1797 if (ID->getString() == "SemanticInterposition") {
1798 ConstantInt *Value =
1799 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2));
1800 Check(Value,
1801 "SemanticInterposition metadata requires constant integer argument");
1804 if (ID->getString() == "CG Profile") {
1805 for (const MDOperand &MDO : cast<MDNode>(Op->getOperand(2))->operands())
1806 visitModuleFlagCGProfileEntry(MDO);
1810 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1811 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1812 if (!FuncMDO)
1813 return;
1814 auto F = dyn_cast<ValueAsMetadata>(FuncMDO);
1815 Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1816 "expected a Function or null", FuncMDO);
1818 auto Node = dyn_cast_or_null<MDNode>(MDO);
1819 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1820 CheckFunction(Node->getOperand(0));
1821 CheckFunction(Node->getOperand(1));
1822 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Node->getOperand(2));
1823 Check(Count && Count->getType()->isIntegerTy(),
1824 "expected an integer constant", Node->getOperand(2));
1827 void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1828 for (Attribute A : Attrs) {
1830 if (A.isStringAttribute()) {
1831 #define GET_ATTR_NAMES
1832 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1833 #define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1834 if (A.getKindAsString() == #DISPLAY_NAME) { \
1835 auto V = A.getValueAsString(); \
1836 if (!(V.empty() || V == "true" || V == "false")) \
1837 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1838 ""); \
1841 #include "llvm/IR/Attributes.inc"
1842 continue;
1845 if (A.isIntAttribute() != Attribute::isIntAttrKind(A.getKindAsEnum())) {
1846 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1848 return;
1853 // VerifyParameterAttrs - Check the given attributes for an argument or return
1854 // value of the specified type. The value V is printed in error messages.
1855 void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1856 const Value *V) {
1857 if (!Attrs.hasAttributes())
1858 return;
1860 verifyAttributeTypes(Attrs, V);
1862 for (Attribute Attr : Attrs)
1863 Check(Attr.isStringAttribute() ||
1864 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1865 "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1868 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1869 Check(Attrs.getNumAttributes() == 1,
1870 "Attribute 'immarg' is incompatible with other attributes", V);
1873 // Check for mutually incompatible attributes. Only inreg is compatible with
1874 // sret.
1875 unsigned AttrCount = 0;
1876 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1877 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1878 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1879 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1880 Attrs.hasAttribute(Attribute::InReg);
1881 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1882 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1883 Check(AttrCount <= 1,
1884 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1885 "'byref', and 'sret' are incompatible!",
1888 Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1889 Attrs.hasAttribute(Attribute::ReadOnly)),
1890 "Attributes "
1891 "'inalloca and readonly' are incompatible!",
1894 Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1895 Attrs.hasAttribute(Attribute::Returned)),
1896 "Attributes "
1897 "'sret and returned' are incompatible!",
1900 Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1901 Attrs.hasAttribute(Attribute::SExt)),
1902 "Attributes "
1903 "'zeroext and signext' are incompatible!",
1906 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1907 Attrs.hasAttribute(Attribute::ReadOnly)),
1908 "Attributes "
1909 "'readnone and readonly' are incompatible!",
1912 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1913 Attrs.hasAttribute(Attribute::WriteOnly)),
1914 "Attributes "
1915 "'readnone and writeonly' are incompatible!",
1918 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
1919 Attrs.hasAttribute(Attribute::WriteOnly)),
1920 "Attributes "
1921 "'readonly and writeonly' are incompatible!",
1924 Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
1925 Attrs.hasAttribute(Attribute::AlwaysInline)),
1926 "Attributes "
1927 "'noinline and alwaysinline' are incompatible!",
1930 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
1931 for (Attribute Attr : Attrs) {
1932 if (!Attr.isStringAttribute() &&
1933 IncompatibleAttrs.contains(Attr.getKindAsEnum())) {
1934 CheckFailed("Attribute '" + Attr.getAsString() +
1935 "' applied to incompatible type!", V);
1936 return;
1940 if (isa<PointerType>(Ty)) {
1941 if (Attrs.hasAttribute(Attribute::ByVal)) {
1942 if (Attrs.hasAttribute(Attribute::Alignment)) {
1943 Align AttrAlign = Attrs.getAlignment().valueOrOne();
1944 Align MaxAlign(ParamMaxAlignment);
1945 Check(AttrAlign <= MaxAlign,
1946 "Attribute 'align' exceed the max size 2^14", V);
1948 SmallPtrSet<Type *, 4> Visited;
1949 Check(Attrs.getByValType()->isSized(&Visited),
1950 "Attribute 'byval' does not support unsized types!", V);
1952 if (Attrs.hasAttribute(Attribute::ByRef)) {
1953 SmallPtrSet<Type *, 4> Visited;
1954 Check(Attrs.getByRefType()->isSized(&Visited),
1955 "Attribute 'byref' does not support unsized types!", V);
1957 if (Attrs.hasAttribute(Attribute::InAlloca)) {
1958 SmallPtrSet<Type *, 4> Visited;
1959 Check(Attrs.getInAllocaType()->isSized(&Visited),
1960 "Attribute 'inalloca' does not support unsized types!", V);
1962 if (Attrs.hasAttribute(Attribute::Preallocated)) {
1963 SmallPtrSet<Type *, 4> Visited;
1964 Check(Attrs.getPreallocatedType()->isSized(&Visited),
1965 "Attribute 'preallocated' does not support unsized types!", V);
1969 if (Attrs.hasAttribute(Attribute::NoFPClass)) {
1970 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
1971 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
1973 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
1974 "Invalid value for 'nofpclass' test mask", V);
1978 void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
1979 const Value *V) {
1980 if (Attrs.hasFnAttr(Attr)) {
1981 StringRef S = Attrs.getFnAttr(Attr).getValueAsString();
1982 unsigned N;
1983 if (S.getAsInteger(10, N))
1984 CheckFailed("\"" + Attr + "\" takes an unsigned integer: " + S, V);
1988 // Check parameter attributes against a function type.
1989 // The value V is printed in error messages.
1990 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
1991 const Value *V, bool IsIntrinsic,
1992 bool IsInlineAsm) {
1993 if (Attrs.isEmpty())
1994 return;
1996 if (AttributeListsVisited.insert(Attrs.getRawPointer()).second) {
1997 Check(Attrs.hasParentContext(Context),
1998 "Attribute list does not match Module context!", &Attrs, V);
1999 for (const auto &AttrSet : Attrs) {
2000 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2001 "Attribute set does not match Module context!", &AttrSet, V);
2002 for (const auto &A : AttrSet) {
2003 Check(A.hasParentContext(Context),
2004 "Attribute does not match Module context!", &A, V);
2009 bool SawNest = false;
2010 bool SawReturned = false;
2011 bool SawSRet = false;
2012 bool SawSwiftSelf = false;
2013 bool SawSwiftAsync = false;
2014 bool SawSwiftError = false;
2016 // Verify return value attributes.
2017 AttributeSet RetAttrs = Attrs.getRetAttrs();
2018 for (Attribute RetAttr : RetAttrs)
2019 Check(RetAttr.isStringAttribute() ||
2020 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2021 "Attribute '" + RetAttr.getAsString() +
2022 "' does not apply to function return values",
2025 unsigned MaxParameterWidth = 0;
2026 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2027 if (Ty->isVectorTy()) {
2028 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
2029 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2030 if (Size > MaxParameterWidth)
2031 MaxParameterWidth = Size;
2035 GetMaxParameterWidth(FT->getReturnType());
2036 verifyParameterAttrs(RetAttrs, FT->getReturnType(), V);
2038 // Verify parameter attributes.
2039 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2040 Type *Ty = FT->getParamType(i);
2041 AttributeSet ArgAttrs = Attrs.getParamAttrs(i);
2043 if (!IsIntrinsic) {
2044 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2045 "immarg attribute only applies to intrinsics", V);
2046 if (!IsInlineAsm)
2047 Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2048 "Attribute 'elementtype' can only be applied to intrinsics"
2049 " and inline asm.",
2053 verifyParameterAttrs(ArgAttrs, Ty, V);
2054 GetMaxParameterWidth(Ty);
2056 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2057 Check(!SawNest, "More than one parameter has attribute nest!", V);
2058 SawNest = true;
2061 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2062 Check(!SawReturned, "More than one parameter has attribute returned!", V);
2063 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2064 "Incompatible argument and return types for 'returned' attribute",
2066 SawReturned = true;
2069 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2070 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2071 Check(i == 0 || i == 1,
2072 "Attribute 'sret' is not on first or second parameter!", V);
2073 SawSRet = true;
2076 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2077 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2078 SawSwiftSelf = true;
2081 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2082 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2083 SawSwiftAsync = true;
2086 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2087 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2088 SawSwiftError = true;
2091 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2092 Check(i == FT->getNumParams() - 1,
2093 "inalloca isn't on the last parameter!", V);
2097 if (!Attrs.hasFnAttrs())
2098 return;
2100 verifyAttributeTypes(Attrs.getFnAttrs(), V);
2101 for (Attribute FnAttr : Attrs.getFnAttrs())
2102 Check(FnAttr.isStringAttribute() ||
2103 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2104 "Attribute '" + FnAttr.getAsString() +
2105 "' does not apply to functions!",
2108 Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2109 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2110 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2112 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2113 Check(Attrs.hasFnAttr(Attribute::NoInline),
2114 "Attribute 'optnone' requires 'noinline'!", V);
2116 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2117 "Attributes 'optsize and optnone' are incompatible!", V);
2119 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2120 "Attributes 'minsize and optnone' are incompatible!", V);
2123 if (Attrs.hasFnAttr("aarch64_pstate_sm_enabled")) {
2124 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2125 "Attributes 'aarch64_pstate_sm_enabled and "
2126 "aarch64_pstate_sm_compatible' are incompatible!",
2130 if (Attrs.hasFnAttr("aarch64_pstate_za_new")) {
2131 Check(!Attrs.hasFnAttr("aarch64_pstate_za_preserved"),
2132 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_preserved' "
2133 "are incompatible!",
2136 Check(!Attrs.hasFnAttr("aarch64_pstate_za_shared"),
2137 "Attributes 'aarch64_pstate_za_new and aarch64_pstate_za_shared' "
2138 "are incompatible!",
2142 if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2143 const GlobalValue *GV = cast<GlobalValue>(V);
2144 Check(GV->hasGlobalUnnamedAddr(),
2145 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2148 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2149 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2150 if (ParamNo >= FT->getNumParams()) {
2151 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
2152 return false;
2155 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
2156 CheckFailed("'allocsize' " + Name +
2157 " argument must refer to an integer parameter",
2159 return false;
2162 return true;
2165 if (!CheckParam("element size", Args->first))
2166 return;
2168 if (Args->second && !CheckParam("number of elements", *Args->second))
2169 return;
2172 if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2173 AllocFnKind K = Attrs.getAllocKind();
2174 AllocFnKind Type =
2175 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2176 if (!is_contained(
2177 {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2178 Type))
2179 CheckFailed(
2180 "'allockind()' requires exactly one of alloc, realloc, and free");
2181 if ((Type == AllocFnKind::Free) &&
2182 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2183 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2184 CheckFailed("'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2185 "or aligned modifiers.");
2186 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2187 if ((K & ZeroedUninit) == ZeroedUninit)
2188 CheckFailed("'allockind()' can't be both zeroed and uninitialized");
2191 if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2192 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2193 if (VScaleMin == 0)
2194 CheckFailed("'vscale_range' minimum must be greater than 0", V);
2195 else if (!isPowerOf2_32(VScaleMin))
2196 CheckFailed("'vscale_range' minimum must be power-of-two value", V);
2197 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2198 if (VScaleMax && VScaleMin > VScaleMax)
2199 CheckFailed("'vscale_range' minimum cannot be greater than maximum", V);
2200 else if (VScaleMax && !isPowerOf2_32(*VScaleMax))
2201 CheckFailed("'vscale_range' maximum must be power-of-two value", V);
2204 if (Attrs.hasFnAttr("frame-pointer")) {
2205 StringRef FP = Attrs.getFnAttr("frame-pointer").getValueAsString();
2206 if (FP != "all" && FP != "non-leaf" && FP != "none")
2207 CheckFailed("invalid value for 'frame-pointer' attribute: " + FP, V);
2210 // Check EVEX512 feature.
2211 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr("target-features")) {
2212 Triple T(M.getTargetTriple());
2213 if (T.isX86()) {
2214 StringRef TF = Attrs.getFnAttr("target-features").getValueAsString();
2215 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2216 "512-bit vector arguments require 'evex512' for AVX512", V);
2220 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-prefix", V);
2221 checkUnsignedBaseTenFuncAttr(Attrs, "patchable-function-entry", V);
2222 checkUnsignedBaseTenFuncAttr(Attrs, "warn-stack-size", V);
2225 void Verifier::verifyFunctionMetadata(
2226 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2227 for (const auto &Pair : MDs) {
2228 if (Pair.first == LLVMContext::MD_prof) {
2229 MDNode *MD = Pair.second;
2230 Check(MD->getNumOperands() >= 2,
2231 "!prof annotations should have no less than 2 operands", MD);
2233 // Check first operand.
2234 Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2235 MD);
2236 Check(isa<MDString>(MD->getOperand(0)),
2237 "expected string with name of the !prof annotation", MD);
2238 MDString *MDS = cast<MDString>(MD->getOperand(0));
2239 StringRef ProfName = MDS->getString();
2240 Check(ProfName.equals("function_entry_count") ||
2241 ProfName.equals("synthetic_function_entry_count"),
2242 "first operand should be 'function_entry_count'"
2243 " or 'synthetic_function_entry_count'",
2244 MD);
2246 // Check second operand.
2247 Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2248 MD);
2249 Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2250 "expected integer argument to function_entry_count", MD);
2251 } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2252 MDNode *MD = Pair.second;
2253 Check(MD->getNumOperands() == 1,
2254 "!kcfi_type must have exactly one operand", MD);
2255 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2256 MD);
2257 Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2258 "expected a constant operand for !kcfi_type", MD);
2259 Constant *C = cast<ConstantAsMetadata>(MD->getOperand(0))->getValue();
2260 Check(isa<ConstantInt>(C),
2261 "expected a constant integer operand for !kcfi_type", MD);
2262 IntegerType *Type = cast<ConstantInt>(C)->getType();
2263 Check(Type->getBitWidth() == 32,
2264 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2269 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2270 if (!ConstantExprVisited.insert(EntryC).second)
2271 return;
2273 SmallVector<const Constant *, 16> Stack;
2274 Stack.push_back(EntryC);
2276 while (!Stack.empty()) {
2277 const Constant *C = Stack.pop_back_val();
2279 // Check this constant expression.
2280 if (const auto *CE = dyn_cast<ConstantExpr>(C))
2281 visitConstantExpr(CE);
2283 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
2284 // Global Values get visited separately, but we do need to make sure
2285 // that the global value is in the correct module
2286 Check(GV->getParent() == &M, "Referencing global in another module!",
2287 EntryC, &M, GV, GV->getParent());
2288 continue;
2291 // Visit all sub-expressions.
2292 for (const Use &U : C->operands()) {
2293 const auto *OpC = dyn_cast<Constant>(U);
2294 if (!OpC)
2295 continue;
2296 if (!ConstantExprVisited.insert(OpC).second)
2297 continue;
2298 Stack.push_back(OpC);
2303 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2304 if (CE->getOpcode() == Instruction::BitCast)
2305 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2306 CE->getType()),
2307 "Invalid bitcast", CE);
2310 bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2311 // There shouldn't be more attribute sets than there are parameters plus the
2312 // function and return value.
2313 return Attrs.getNumAttrSets() <= Params + 2;
2316 void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2317 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
2318 unsigned ArgNo = 0;
2319 unsigned LabelNo = 0;
2320 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2321 if (CI.Type == InlineAsm::isLabel) {
2322 ++LabelNo;
2323 continue;
2326 // Only deal with constraints that correspond to call arguments.
2327 if (!CI.hasArg())
2328 continue;
2330 if (CI.isIndirect) {
2331 const Value *Arg = Call.getArgOperand(ArgNo);
2332 Check(Arg->getType()->isPointerTy(),
2333 "Operand for indirect constraint must have pointer type", &Call);
2335 Check(Call.getParamElementType(ArgNo),
2336 "Operand for indirect constraint must have elementtype attribute",
2337 &Call);
2338 } else {
2339 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2340 "Elementtype attribute can only be applied for indirect "
2341 "constraints",
2342 &Call);
2345 ArgNo++;
2348 if (auto *CallBr = dyn_cast<CallBrInst>(&Call)) {
2349 Check(LabelNo == CallBr->getNumIndirectDests(),
2350 "Number of label constraints does not match number of callbr dests",
2351 &Call);
2352 } else {
2353 Check(LabelNo == 0, "Label constraints can only be used with callbr",
2354 &Call);
2358 /// Verify that statepoint intrinsic is well formed.
2359 void Verifier::verifyStatepoint(const CallBase &Call) {
2360 assert(Call.getCalledFunction() &&
2361 Call.getCalledFunction()->getIntrinsicID() ==
2362 Intrinsic::experimental_gc_statepoint);
2364 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2365 !Call.onlyAccessesArgMemory(),
2366 "gc.statepoint must read and write all memory to preserve "
2367 "reordering restrictions required by safepoint semantics",
2368 Call);
2370 const int64_t NumPatchBytes =
2371 cast<ConstantInt>(Call.getArgOperand(1))->getSExtValue();
2372 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2373 Check(NumPatchBytes >= 0,
2374 "gc.statepoint number of patchable bytes must be "
2375 "positive",
2376 Call);
2378 Type *TargetElemType = Call.getParamElementType(2);
2379 Check(TargetElemType,
2380 "gc.statepoint callee argument must have elementtype attribute", Call);
2381 FunctionType *TargetFuncType = dyn_cast<FunctionType>(TargetElemType);
2382 Check(TargetFuncType,
2383 "gc.statepoint callee elementtype must be function type", Call);
2385 const int NumCallArgs = cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue();
2386 Check(NumCallArgs >= 0,
2387 "gc.statepoint number of arguments to underlying call "
2388 "must be positive",
2389 Call);
2390 const int NumParams = (int)TargetFuncType->getNumParams();
2391 if (TargetFuncType->isVarArg()) {
2392 Check(NumCallArgs >= NumParams,
2393 "gc.statepoint mismatch in number of vararg call args", Call);
2395 // TODO: Remove this limitation
2396 Check(TargetFuncType->getReturnType()->isVoidTy(),
2397 "gc.statepoint doesn't support wrapping non-void "
2398 "vararg functions yet",
2399 Call);
2400 } else
2401 Check(NumCallArgs == NumParams,
2402 "gc.statepoint mismatch in number of call args", Call);
2404 const uint64_t Flags
2405 = cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue();
2406 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2407 "unknown flag used in gc.statepoint flags argument", Call);
2409 // Verify that the types of the call parameter arguments match
2410 // the type of the wrapped callee.
2411 AttributeList Attrs = Call.getAttributes();
2412 for (int i = 0; i < NumParams; i++) {
2413 Type *ParamType = TargetFuncType->getParamType(i);
2414 Type *ArgType = Call.getArgOperand(5 + i)->getType();
2415 Check(ArgType == ParamType,
2416 "gc.statepoint call argument does not match wrapped "
2417 "function type",
2418 Call);
2420 if (TargetFuncType->isVarArg()) {
2421 AttributeSet ArgAttrs = Attrs.getParamAttrs(5 + i);
2422 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2423 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2427 const int EndCallArgsInx = 4 + NumCallArgs;
2429 const Value *NumTransitionArgsV = Call.getArgOperand(EndCallArgsInx + 1);
2430 Check(isa<ConstantInt>(NumTransitionArgsV),
2431 "gc.statepoint number of transition arguments "
2432 "must be constant integer",
2433 Call);
2434 const int NumTransitionArgs =
2435 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
2436 Check(NumTransitionArgs == 0,
2437 "gc.statepoint w/inline transition bundle is deprecated", Call);
2438 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2440 const Value *NumDeoptArgsV = Call.getArgOperand(EndTransitionArgsInx + 1);
2441 Check(isa<ConstantInt>(NumDeoptArgsV),
2442 "gc.statepoint number of deoptimization arguments "
2443 "must be constant integer",
2444 Call);
2445 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
2446 Check(NumDeoptArgs == 0,
2447 "gc.statepoint w/inline deopt operands is deprecated", Call);
2449 const int ExpectedNumArgs = 7 + NumCallArgs;
2450 Check(ExpectedNumArgs == (int)Call.arg_size(),
2451 "gc.statepoint too many arguments", Call);
2453 // Check that the only uses of this gc.statepoint are gc.result or
2454 // gc.relocate calls which are tied to this statepoint and thus part
2455 // of the same statepoint sequence
2456 for (const User *U : Call.users()) {
2457 const CallInst *UserCall = dyn_cast<const CallInst>(U);
2458 Check(UserCall, "illegal use of statepoint token", Call, U);
2459 if (!UserCall)
2460 continue;
2461 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2462 "gc.result or gc.relocate are the only value uses "
2463 "of a gc.statepoint",
2464 Call, U);
2465 if (isa<GCResultInst>(UserCall)) {
2466 Check(UserCall->getArgOperand(0) == &Call,
2467 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2468 } else if (isa<GCRelocateInst>(Call)) {
2469 Check(UserCall->getArgOperand(0) == &Call,
2470 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2474 // Note: It is legal for a single derived pointer to be listed multiple
2475 // times. It's non-optimal, but it is legal. It can also happen after
2476 // insertion if we strip a bitcast away.
2477 // Note: It is really tempting to check that each base is relocated and
2478 // that a derived pointer is never reused as a base pointer. This turns
2479 // out to be problematic since optimizations run after safepoint insertion
2480 // can recognize equality properties that the insertion logic doesn't know
2481 // about. See example statepoint.ll in the verifier subdirectory
2484 void Verifier::verifyFrameRecoverIndices() {
2485 for (auto &Counts : FrameEscapeInfo) {
2486 Function *F = Counts.first;
2487 unsigned EscapedObjectCount = Counts.second.first;
2488 unsigned MaxRecoveredIndex = Counts.second.second;
2489 Check(MaxRecoveredIndex <= EscapedObjectCount,
2490 "all indices passed to llvm.localrecover must be less than the "
2491 "number of arguments passed to llvm.localescape in the parent "
2492 "function",
2497 static Instruction *getSuccPad(Instruction *Terminator) {
2498 BasicBlock *UnwindDest;
2499 if (auto *II = dyn_cast<InvokeInst>(Terminator))
2500 UnwindDest = II->getUnwindDest();
2501 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
2502 UnwindDest = CSI->getUnwindDest();
2503 else
2504 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
2505 return UnwindDest->getFirstNonPHI();
2508 void Verifier::verifySiblingFuncletUnwinds() {
2509 SmallPtrSet<Instruction *, 8> Visited;
2510 SmallPtrSet<Instruction *, 8> Active;
2511 for (const auto &Pair : SiblingFuncletInfo) {
2512 Instruction *PredPad = Pair.first;
2513 if (Visited.count(PredPad))
2514 continue;
2515 Active.insert(PredPad);
2516 Instruction *Terminator = Pair.second;
2517 do {
2518 Instruction *SuccPad = getSuccPad(Terminator);
2519 if (Active.count(SuccPad)) {
2520 // Found a cycle; report error
2521 Instruction *CyclePad = SuccPad;
2522 SmallVector<Instruction *, 8> CycleNodes;
2523 do {
2524 CycleNodes.push_back(CyclePad);
2525 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2526 if (CycleTerminator != CyclePad)
2527 CycleNodes.push_back(CycleTerminator);
2528 CyclePad = getSuccPad(CycleTerminator);
2529 } while (CyclePad != SuccPad);
2530 Check(false, "EH pads can't handle each other's exceptions",
2531 ArrayRef<Instruction *>(CycleNodes));
2533 // Don't re-walk a node we've already checked
2534 if (!Visited.insert(SuccPad).second)
2535 break;
2536 // Walk to this successor if it has a map entry.
2537 PredPad = SuccPad;
2538 auto TermI = SiblingFuncletInfo.find(PredPad);
2539 if (TermI == SiblingFuncletInfo.end())
2540 break;
2541 Terminator = TermI->second;
2542 Active.insert(PredPad);
2543 } while (true);
2544 // Each node only has one successor, so we've walked all the active
2545 // nodes' successors.
2546 Active.clear();
2550 // visitFunction - Verify that a function is ok.
2552 void Verifier::visitFunction(const Function &F) {
2553 visitGlobalValue(F);
2555 // Check function arguments.
2556 FunctionType *FT = F.getFunctionType();
2557 unsigned NumArgs = F.arg_size();
2559 Check(&Context == &F.getContext(),
2560 "Function context does not match Module context!", &F);
2562 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2563 Check(FT->getNumParams() == NumArgs,
2564 "# formal arguments must match # of arguments for function type!", &F,
2565 FT);
2566 Check(F.getReturnType()->isFirstClassType() ||
2567 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2568 "Functions cannot return aggregate values!", &F);
2570 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2571 "Invalid struct return type!", &F);
2573 AttributeList Attrs = F.getAttributes();
2575 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2576 "Attribute after last parameter!", &F);
2578 bool IsIntrinsic = F.isIntrinsic();
2580 // Check function attributes.
2581 verifyFunctionAttrs(FT, Attrs, &F, IsIntrinsic, /* IsInlineAsm */ false);
2583 // On function declarations/definitions, we do not support the builtin
2584 // attribute. We do not check this in VerifyFunctionAttrs since that is
2585 // checking for Attributes that can/can not ever be on functions.
2586 Check(!Attrs.hasFnAttr(Attribute::Builtin),
2587 "Attribute 'builtin' can only be applied to a callsite.", &F);
2589 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2590 "Attribute 'elementtype' can only be applied to a callsite.", &F);
2592 // Check that this function meets the restrictions on this calling convention.
2593 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2594 // restrictions can be lifted.
2595 switch (F.getCallingConv()) {
2596 default:
2597 case CallingConv::C:
2598 break;
2599 case CallingConv::X86_INTR: {
2600 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2601 "Calling convention parameter requires byval", &F);
2602 break;
2604 case CallingConv::AMDGPU_KERNEL:
2605 case CallingConv::SPIR_KERNEL:
2606 case CallingConv::AMDGPU_CS_Chain:
2607 case CallingConv::AMDGPU_CS_ChainPreserve:
2608 Check(F.getReturnType()->isVoidTy(),
2609 "Calling convention requires void return type", &F);
2610 [[fallthrough]];
2611 case CallingConv::AMDGPU_VS:
2612 case CallingConv::AMDGPU_HS:
2613 case CallingConv::AMDGPU_GS:
2614 case CallingConv::AMDGPU_PS:
2615 case CallingConv::AMDGPU_CS:
2616 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2617 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2618 const unsigned StackAS = DL.getAllocaAddrSpace();
2619 unsigned i = 0;
2620 for (const Argument &Arg : F.args()) {
2621 Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2622 "Calling convention disallows byval", &F);
2623 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2624 "Calling convention disallows preallocated", &F);
2625 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2626 "Calling convention disallows inalloca", &F);
2628 if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2629 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2630 // value here.
2631 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2632 "Calling convention disallows stack byref", &F);
2635 ++i;
2639 [[fallthrough]];
2640 case CallingConv::Fast:
2641 case CallingConv::Cold:
2642 case CallingConv::Intel_OCL_BI:
2643 case CallingConv::PTX_Kernel:
2644 case CallingConv::PTX_Device:
2645 Check(!F.isVarArg(),
2646 "Calling convention does not support varargs or "
2647 "perfect forwarding!",
2648 &F);
2649 break;
2652 // Check that the argument values match the function type for this function...
2653 unsigned i = 0;
2654 for (const Argument &Arg : F.args()) {
2655 Check(Arg.getType() == FT->getParamType(i),
2656 "Argument value does not match function argument type!", &Arg,
2657 FT->getParamType(i));
2658 Check(Arg.getType()->isFirstClassType(),
2659 "Function arguments must have first-class types!", &Arg);
2660 if (!IsIntrinsic) {
2661 Check(!Arg.getType()->isMetadataTy(),
2662 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2663 Check(!Arg.getType()->isTokenTy(),
2664 "Function takes token but isn't an intrinsic", &Arg, &F);
2665 Check(!Arg.getType()->isX86_AMXTy(),
2666 "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2669 // Check that swifterror argument is only used by loads and stores.
2670 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2671 verifySwiftErrorValue(&Arg);
2673 ++i;
2676 if (!IsIntrinsic) {
2677 Check(!F.getReturnType()->isTokenTy(),
2678 "Function returns a token but isn't an intrinsic", &F);
2679 Check(!F.getReturnType()->isX86_AMXTy(),
2680 "Function returns a x86_amx but isn't an intrinsic", &F);
2683 // Get the function metadata attachments.
2684 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2685 F.getAllMetadata(MDs);
2686 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2687 verifyFunctionMetadata(MDs);
2689 // Check validity of the personality function
2690 if (F.hasPersonalityFn()) {
2691 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2692 if (Per)
2693 Check(Per->getParent() == F.getParent(),
2694 "Referencing personality function in another module!", &F,
2695 F.getParent(), Per, Per->getParent());
2698 // EH funclet coloring can be expensive, recompute on-demand
2699 BlockEHFuncletColors.clear();
2701 if (F.isMaterializable()) {
2702 // Function has a body somewhere we can't see.
2703 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2704 MDs.empty() ? nullptr : MDs.front().second);
2705 } else if (F.isDeclaration()) {
2706 for (const auto &I : MDs) {
2707 // This is used for call site debug information.
2708 CheckDI(I.first != LLVMContext::MD_dbg ||
2709 !cast<DISubprogram>(I.second)->isDistinct(),
2710 "function declaration may only have a unique !dbg attachment",
2711 &F);
2712 Check(I.first != LLVMContext::MD_prof,
2713 "function declaration may not have a !prof attachment", &F);
2715 // Verify the metadata itself.
2716 visitMDNode(*I.second, AreDebugLocsAllowed::Yes);
2718 Check(!F.hasPersonalityFn(),
2719 "Function declaration shouldn't have a personality routine", &F);
2720 } else {
2721 // Verify that this function (which has a body) is not named "llvm.*". It
2722 // is not legal to define intrinsics.
2723 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2725 // Check the entry node
2726 const BasicBlock *Entry = &F.getEntryBlock();
2727 Check(pred_empty(Entry),
2728 "Entry block to function must not have predecessors!", Entry);
2730 // The address of the entry block cannot be taken, unless it is dead.
2731 if (Entry->hasAddressTaken()) {
2732 Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2733 "blockaddress may not be used with the entry block!", Entry);
2736 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2737 NumKCFIAttachments = 0;
2738 // Visit metadata attachments.
2739 for (const auto &I : MDs) {
2740 // Verify that the attachment is legal.
2741 auto AllowLocs = AreDebugLocsAllowed::No;
2742 switch (I.first) {
2743 default:
2744 break;
2745 case LLVMContext::MD_dbg: {
2746 ++NumDebugAttachments;
2747 CheckDI(NumDebugAttachments == 1,
2748 "function must have a single !dbg attachment", &F, I.second);
2749 CheckDI(isa<DISubprogram>(I.second),
2750 "function !dbg attachment must be a subprogram", &F, I.second);
2751 CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2752 "function definition may only have a distinct !dbg attachment",
2753 &F);
2755 auto *SP = cast<DISubprogram>(I.second);
2756 const Function *&AttachedTo = DISubprogramAttachments[SP];
2757 CheckDI(!AttachedTo || AttachedTo == &F,
2758 "DISubprogram attached to more than one function", SP, &F);
2759 AttachedTo = &F;
2760 AllowLocs = AreDebugLocsAllowed::Yes;
2761 break;
2763 case LLVMContext::MD_prof:
2764 ++NumProfAttachments;
2765 Check(NumProfAttachments == 1,
2766 "function must have a single !prof attachment", &F, I.second);
2767 break;
2768 case LLVMContext::MD_kcfi_type:
2769 ++NumKCFIAttachments;
2770 Check(NumKCFIAttachments == 1,
2771 "function must have a single !kcfi_type attachment", &F,
2772 I.second);
2773 break;
2776 // Verify the metadata itself.
2777 visitMDNode(*I.second, AllowLocs);
2781 // If this function is actually an intrinsic, verify that it is only used in
2782 // direct call/invokes, never having its "address taken".
2783 // Only do this if the module is materialized, otherwise we don't have all the
2784 // uses.
2785 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2786 const User *U;
2787 if (F.hasAddressTaken(&U, false, true, false,
2788 /*IgnoreARCAttachedCall=*/true))
2789 Check(false, "Invalid user of intrinsic instruction!", U);
2792 // Check intrinsics' signatures.
2793 switch (F.getIntrinsicID()) {
2794 case Intrinsic::experimental_gc_get_pointer_base: {
2795 FunctionType *FT = F.getFunctionType();
2796 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2797 Check(isa<PointerType>(F.getReturnType()),
2798 "gc.get.pointer.base must return a pointer", F);
2799 Check(FT->getParamType(0) == F.getReturnType(),
2800 "gc.get.pointer.base operand and result must be of the same type", F);
2801 break;
2803 case Intrinsic::experimental_gc_get_pointer_offset: {
2804 FunctionType *FT = F.getFunctionType();
2805 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2806 Check(isa<PointerType>(FT->getParamType(0)),
2807 "gc.get.pointer.offset operand must be a pointer", F);
2808 Check(F.getReturnType()->isIntegerTy(),
2809 "gc.get.pointer.offset must return integer", F);
2810 break;
2814 auto *N = F.getSubprogram();
2815 HasDebugInfo = (N != nullptr);
2816 if (!HasDebugInfo)
2817 return;
2819 // Check that all !dbg attachments lead to back to N.
2821 // FIXME: Check this incrementally while visiting !dbg attachments.
2822 // FIXME: Only check when N is the canonical subprogram for F.
2823 SmallPtrSet<const MDNode *, 32> Seen;
2824 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2825 // Be careful about using DILocation here since we might be dealing with
2826 // broken code (this is the Verifier after all).
2827 const DILocation *DL = dyn_cast_or_null<DILocation>(Node);
2828 if (!DL)
2829 return;
2830 if (!Seen.insert(DL).second)
2831 return;
2833 Metadata *Parent = DL->getRawScope();
2834 CheckDI(Parent && isa<DILocalScope>(Parent),
2835 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2837 DILocalScope *Scope = DL->getInlinedAtScope();
2838 Check(Scope, "Failed to find DILocalScope", DL);
2840 if (!Seen.insert(Scope).second)
2841 return;
2843 DISubprogram *SP = Scope->getSubprogram();
2845 // Scope and SP could be the same MDNode and we don't want to skip
2846 // validation in that case
2847 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2848 return;
2850 CheckDI(SP->describes(&F),
2851 "!dbg attachment points at wrong subprogram for function", N, &F,
2852 &I, DL, Scope, SP);
2854 for (auto &BB : F)
2855 for (auto &I : BB) {
2856 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
2857 // The llvm.loop annotations also contain two DILocations.
2858 if (auto MD = I.getMetadata(LLVMContext::MD_loop))
2859 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
2860 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(MD->getOperand(i)));
2861 if (BrokenDebugInfo)
2862 return;
2866 // verifyBasicBlock - Verify that a basic block is well formed...
2868 void Verifier::visitBasicBlock(BasicBlock &BB) {
2869 InstsInThisBlock.clear();
2870 ConvergenceVerifyHelper.visit(BB);
2872 // Ensure that basic blocks have terminators!
2873 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2875 // Check constraints that this basic block imposes on all of the PHI nodes in
2876 // it.
2877 if (isa<PHINode>(BB.front())) {
2878 SmallVector<BasicBlock *, 8> Preds(predecessors(&BB));
2879 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2880 llvm::sort(Preds);
2881 for (const PHINode &PN : BB.phis()) {
2882 Check(PN.getNumIncomingValues() == Preds.size(),
2883 "PHINode should have one entry for each predecessor of its "
2884 "parent basic block!",
2885 &PN);
2887 // Get and sort all incoming values in the PHI node...
2888 Values.clear();
2889 Values.reserve(PN.getNumIncomingValues());
2890 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
2891 Values.push_back(
2892 std::make_pair(PN.getIncomingBlock(i), PN.getIncomingValue(i)));
2893 llvm::sort(Values);
2895 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2896 // Check to make sure that if there is more than one entry for a
2897 // particular basic block in this PHI node, that the incoming values are
2898 // all identical.
2900 Check(i == 0 || Values[i].first != Values[i - 1].first ||
2901 Values[i].second == Values[i - 1].second,
2902 "PHI node has multiple entries for the same basic block with "
2903 "different incoming values!",
2904 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
2906 // Check to make sure that the predecessors and PHI node entries are
2907 // matched up.
2908 Check(Values[i].first == Preds[i],
2909 "PHI node entries do not match predecessors!", &PN,
2910 Values[i].first, Preds[i]);
2915 // Check that all instructions have their parent pointers set up correctly.
2916 for (auto &I : BB)
2918 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2922 void Verifier::visitTerminator(Instruction &I) {
2923 // Ensure that terminators only exist at the end of the basic block.
2924 Check(&I == I.getParent()->getTerminator(),
2925 "Terminator found in the middle of a basic block!", I.getParent());
2926 visitInstruction(I);
2929 void Verifier::visitBranchInst(BranchInst &BI) {
2930 if (BI.isConditional()) {
2931 Check(BI.getCondition()->getType()->isIntegerTy(1),
2932 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2934 visitTerminator(BI);
2937 void Verifier::visitReturnInst(ReturnInst &RI) {
2938 Function *F = RI.getParent()->getParent();
2939 unsigned N = RI.getNumOperands();
2940 if (F->getReturnType()->isVoidTy())
2941 Check(N == 0,
2942 "Found return instr that returns non-void in Function of void "
2943 "return type!",
2944 &RI, F->getReturnType());
2945 else
2946 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2947 "Function return type does not match operand "
2948 "type of return inst!",
2949 &RI, F->getReturnType());
2951 // Check to make sure that the return value has necessary properties for
2952 // terminators...
2953 visitTerminator(RI);
2956 void Verifier::visitSwitchInst(SwitchInst &SI) {
2957 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
2958 // Check to make sure that all of the constants in the switch instruction
2959 // have the same type as the switched-on value.
2960 Type *SwitchTy = SI.getCondition()->getType();
2961 SmallPtrSet<ConstantInt*, 32> Constants;
2962 for (auto &Case : SI.cases()) {
2963 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
2964 "Case value is not a constant integer.", &SI);
2965 Check(Case.getCaseValue()->getType() == SwitchTy,
2966 "Switch constants must all be same type as switch value!", &SI);
2967 Check(Constants.insert(Case.getCaseValue()).second,
2968 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2971 visitTerminator(SI);
2974 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2975 Check(BI.getAddress()->getType()->isPointerTy(),
2976 "Indirectbr operand must have pointer type!", &BI);
2977 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2978 Check(BI.getDestination(i)->getType()->isLabelTy(),
2979 "Indirectbr destinations must all have pointer type!", &BI);
2981 visitTerminator(BI);
2984 void Verifier::visitCallBrInst(CallBrInst &CBI) {
2985 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
2986 const InlineAsm *IA = cast<InlineAsm>(CBI.getCalledOperand());
2987 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
2989 verifyInlineAsmCall(CBI);
2990 visitTerminator(CBI);
2993 void Verifier::visitSelectInst(SelectInst &SI) {
2994 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2995 SI.getOperand(2)),
2996 "Invalid operands for select instruction!", &SI);
2998 Check(SI.getTrueValue()->getType() == SI.getType(),
2999 "Select values must have same type as select instruction!", &SI);
3000 visitInstruction(SI);
3003 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3004 /// a pass, if any exist, it's an error.
3006 void Verifier::visitUserOp1(Instruction &I) {
3007 Check(false, "User-defined operators should not live outside of a pass!", &I);
3010 void Verifier::visitTruncInst(TruncInst &I) {
3011 // Get the source and destination types
3012 Type *SrcTy = I.getOperand(0)->getType();
3013 Type *DestTy = I.getType();
3015 // Get the size of the types in bits, we'll need this later
3016 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3017 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3019 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3020 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3021 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3022 "trunc source and destination must both be a vector or neither", &I);
3023 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3025 visitInstruction(I);
3028 void Verifier::visitZExtInst(ZExtInst &I) {
3029 // Get the source and destination types
3030 Type *SrcTy = I.getOperand(0)->getType();
3031 Type *DestTy = I.getType();
3033 // Get the size of the types in bits, we'll need this later
3034 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3035 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3036 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3037 "zext source and destination must both be a vector or neither", &I);
3038 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3039 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3041 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3043 visitInstruction(I);
3046 void Verifier::visitSExtInst(SExtInst &I) {
3047 // Get the source and destination types
3048 Type *SrcTy = I.getOperand(0)->getType();
3049 Type *DestTy = I.getType();
3051 // Get the size of the types in bits, we'll need this later
3052 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3053 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3055 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3056 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3057 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3058 "sext source and destination must both be a vector or neither", &I);
3059 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3061 visitInstruction(I);
3064 void Verifier::visitFPTruncInst(FPTruncInst &I) {
3065 // Get the source and destination types
3066 Type *SrcTy = I.getOperand(0)->getType();
3067 Type *DestTy = I.getType();
3068 // Get the size of the types in bits, we'll need this later
3069 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3070 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3072 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3073 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3074 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3075 "fptrunc source and destination must both be a vector or neither", &I);
3076 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3078 visitInstruction(I);
3081 void Verifier::visitFPExtInst(FPExtInst &I) {
3082 // Get the source and destination types
3083 Type *SrcTy = I.getOperand(0)->getType();
3084 Type *DestTy = I.getType();
3086 // Get the size of the types in bits, we'll need this later
3087 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3088 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3090 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3091 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3092 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3093 "fpext source and destination must both be a vector or neither", &I);
3094 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3096 visitInstruction(I);
3099 void Verifier::visitUIToFPInst(UIToFPInst &I) {
3100 // Get the source and destination types
3101 Type *SrcTy = I.getOperand(0)->getType();
3102 Type *DestTy = I.getType();
3104 bool SrcVec = SrcTy->isVectorTy();
3105 bool DstVec = DestTy->isVectorTy();
3107 Check(SrcVec == DstVec,
3108 "UIToFP source and dest must both be vector or scalar", &I);
3109 Check(SrcTy->isIntOrIntVectorTy(),
3110 "UIToFP source must be integer or integer vector", &I);
3111 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3112 &I);
3114 if (SrcVec && DstVec)
3115 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3116 cast<VectorType>(DestTy)->getElementCount(),
3117 "UIToFP source and dest vector length mismatch", &I);
3119 visitInstruction(I);
3122 void Verifier::visitSIToFPInst(SIToFPInst &I) {
3123 // Get the source and destination types
3124 Type *SrcTy = I.getOperand(0)->getType();
3125 Type *DestTy = I.getType();
3127 bool SrcVec = SrcTy->isVectorTy();
3128 bool DstVec = DestTy->isVectorTy();
3130 Check(SrcVec == DstVec,
3131 "SIToFP source and dest must both be vector or scalar", &I);
3132 Check(SrcTy->isIntOrIntVectorTy(),
3133 "SIToFP source must be integer or integer vector", &I);
3134 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3135 &I);
3137 if (SrcVec && DstVec)
3138 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3139 cast<VectorType>(DestTy)->getElementCount(),
3140 "SIToFP source and dest vector length mismatch", &I);
3142 visitInstruction(I);
3145 void Verifier::visitFPToUIInst(FPToUIInst &I) {
3146 // Get the source and destination types
3147 Type *SrcTy = I.getOperand(0)->getType();
3148 Type *DestTy = I.getType();
3150 bool SrcVec = SrcTy->isVectorTy();
3151 bool DstVec = DestTy->isVectorTy();
3153 Check(SrcVec == DstVec,
3154 "FPToUI source and dest must both be vector or scalar", &I);
3155 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3156 Check(DestTy->isIntOrIntVectorTy(),
3157 "FPToUI result must be integer or integer vector", &I);
3159 if (SrcVec && DstVec)
3160 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3161 cast<VectorType>(DestTy)->getElementCount(),
3162 "FPToUI source and dest vector length mismatch", &I);
3164 visitInstruction(I);
3167 void Verifier::visitFPToSIInst(FPToSIInst &I) {
3168 // Get the source and destination types
3169 Type *SrcTy = I.getOperand(0)->getType();
3170 Type *DestTy = I.getType();
3172 bool SrcVec = SrcTy->isVectorTy();
3173 bool DstVec = DestTy->isVectorTy();
3175 Check(SrcVec == DstVec,
3176 "FPToSI source and dest must both be vector or scalar", &I);
3177 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3178 Check(DestTy->isIntOrIntVectorTy(),
3179 "FPToSI result must be integer or integer vector", &I);
3181 if (SrcVec && DstVec)
3182 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3183 cast<VectorType>(DestTy)->getElementCount(),
3184 "FPToSI source and dest vector length mismatch", &I);
3186 visitInstruction(I);
3189 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3190 // Get the source and destination types
3191 Type *SrcTy = I.getOperand(0)->getType();
3192 Type *DestTy = I.getType();
3194 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3196 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3197 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3198 &I);
3200 if (SrcTy->isVectorTy()) {
3201 auto *VSrc = cast<VectorType>(SrcTy);
3202 auto *VDest = cast<VectorType>(DestTy);
3203 Check(VSrc->getElementCount() == VDest->getElementCount(),
3204 "PtrToInt Vector width mismatch", &I);
3207 visitInstruction(I);
3210 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3211 // Get the source and destination types
3212 Type *SrcTy = I.getOperand(0)->getType();
3213 Type *DestTy = I.getType();
3215 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3216 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3218 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3219 &I);
3220 if (SrcTy->isVectorTy()) {
3221 auto *VSrc = cast<VectorType>(SrcTy);
3222 auto *VDest = cast<VectorType>(DestTy);
3223 Check(VSrc->getElementCount() == VDest->getElementCount(),
3224 "IntToPtr Vector width mismatch", &I);
3226 visitInstruction(I);
3229 void Verifier::visitBitCastInst(BitCastInst &I) {
3230 Check(
3231 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3232 "Invalid bitcast", &I);
3233 visitInstruction(I);
3236 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3237 Type *SrcTy = I.getOperand(0)->getType();
3238 Type *DestTy = I.getType();
3240 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3241 &I);
3242 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3243 &I);
3244 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3245 "AddrSpaceCast must be between different address spaces", &I);
3246 if (auto *SrcVTy = dyn_cast<VectorType>(SrcTy))
3247 Check(SrcVTy->getElementCount() ==
3248 cast<VectorType>(DestTy)->getElementCount(),
3249 "AddrSpaceCast vector pointer number of elements mismatch", &I);
3250 visitInstruction(I);
3253 /// visitPHINode - Ensure that a PHI node is well formed.
3255 void Verifier::visitPHINode(PHINode &PN) {
3256 // Ensure that the PHI nodes are all grouped together at the top of the block.
3257 // This can be tested by checking whether the instruction before this is
3258 // either nonexistent (because this is begin()) or is a PHI node. If not,
3259 // then there is some other instruction before a PHI.
3260 Check(&PN == &PN.getParent()->front() ||
3261 isa<PHINode>(--BasicBlock::iterator(&PN)),
3262 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3264 // Check that a PHI doesn't yield a Token.
3265 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3267 // Check that all of the values of the PHI node have the same type as the
3268 // result, and that the incoming blocks are really basic blocks.
3269 for (Value *IncValue : PN.incoming_values()) {
3270 Check(PN.getType() == IncValue->getType(),
3271 "PHI node operands are not the same type as the result!", &PN);
3274 // All other PHI node constraints are checked in the visitBasicBlock method.
3276 visitInstruction(PN);
3279 void Verifier::visitCallBase(CallBase &Call) {
3280 Check(Call.getCalledOperand()->getType()->isPointerTy(),
3281 "Called function must be a pointer!", Call);
3282 FunctionType *FTy = Call.getFunctionType();
3284 // Verify that the correct number of arguments are being passed
3285 if (FTy->isVarArg())
3286 Check(Call.arg_size() >= FTy->getNumParams(),
3287 "Called function requires more parameters than were provided!", Call);
3288 else
3289 Check(Call.arg_size() == FTy->getNumParams(),
3290 "Incorrect number of arguments passed to called function!", Call);
3292 // Verify that all arguments to the call match the function type.
3293 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3294 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3295 "Call parameter type does not match function signature!",
3296 Call.getArgOperand(i), FTy->getParamType(i), Call);
3298 AttributeList Attrs = Call.getAttributes();
3300 Check(verifyAttributeCount(Attrs, Call.arg_size()),
3301 "Attribute after last parameter!", Call);
3303 Function *Callee =
3304 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3305 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3306 if (IsIntrinsic)
3307 Check(Callee->getValueType() == FTy,
3308 "Intrinsic called with incompatible signature", Call);
3310 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3311 // convention.
3312 auto CC = Call.getCallingConv();
3313 Check(CC != CallingConv::AMDGPU_CS_Chain &&
3314 CC != CallingConv::AMDGPU_CS_ChainPreserve,
3315 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3316 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3317 Call);
3319 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3320 if (!Ty->isSized())
3321 return;
3322 Align ABIAlign = DL.getABITypeAlign(Ty);
3323 Align MaxAlign(ParamMaxAlignment);
3324 Check(ABIAlign <= MaxAlign,
3325 "Incorrect alignment of " + Message + " to called function!", Call);
3328 if (!IsIntrinsic) {
3329 VerifyTypeAlign(FTy->getReturnType(), "return type");
3330 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3331 Type *Ty = FTy->getParamType(i);
3332 VerifyTypeAlign(Ty, "argument passed");
3336 if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3337 // Don't allow speculatable on call sites, unless the underlying function
3338 // declaration is also speculatable.
3339 Check(Callee && Callee->isSpeculatable(),
3340 "speculatable attribute may not apply to call sites", Call);
3343 if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3344 Check(Call.getCalledFunction()->getIntrinsicID() ==
3345 Intrinsic::call_preallocated_arg,
3346 "preallocated as a call site attribute can only be on "
3347 "llvm.call.preallocated.arg");
3350 // Verify call attributes.
3351 verifyFunctionAttrs(FTy, Attrs, &Call, IsIntrinsic, Call.isInlineAsm());
3353 // Conservatively check the inalloca argument.
3354 // We have a bug if we can find that there is an underlying alloca without
3355 // inalloca.
3356 if (Call.hasInAllocaArgument()) {
3357 Value *InAllocaArg = Call.getArgOperand(FTy->getNumParams() - 1);
3358 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
3359 Check(AI->isUsedWithInAlloca(),
3360 "inalloca argument for call has mismatched alloca", AI, Call);
3363 // For each argument of the callsite, if it has the swifterror argument,
3364 // make sure the underlying alloca/parameter it comes from has a swifterror as
3365 // well.
3366 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3367 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3368 Value *SwiftErrorArg = Call.getArgOperand(i);
3369 if (auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets())) {
3370 Check(AI->isSwiftError(),
3371 "swifterror argument for call has mismatched alloca", AI, Call);
3372 continue;
3374 auto ArgI = dyn_cast<Argument>(SwiftErrorArg);
3375 Check(ArgI, "swifterror argument should come from an alloca or parameter",
3376 SwiftErrorArg, Call);
3377 Check(ArgI->hasSwiftErrorAttr(),
3378 "swifterror argument for call has mismatched parameter", ArgI,
3379 Call);
3382 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3383 // Don't allow immarg on call sites, unless the underlying declaration
3384 // also has the matching immarg.
3385 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3386 "immarg may not apply only to call sites", Call.getArgOperand(i),
3387 Call);
3390 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3391 Value *ArgVal = Call.getArgOperand(i);
3392 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3393 "immarg operand has non-immediate parameter", ArgVal, Call);
3396 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3397 Value *ArgVal = Call.getArgOperand(i);
3398 bool hasOB =
3399 Call.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0;
3400 bool isMustTail = Call.isMustTailCall();
3401 Check(hasOB != isMustTail,
3402 "preallocated operand either requires a preallocated bundle or "
3403 "the call to be musttail (but not both)",
3404 ArgVal, Call);
3408 if (FTy->isVarArg()) {
3409 // FIXME? is 'nest' even legal here?
3410 bool SawNest = false;
3411 bool SawReturned = false;
3413 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3414 if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3415 SawNest = true;
3416 if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3417 SawReturned = true;
3420 // Check attributes on the varargs part.
3421 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3422 Type *Ty = Call.getArgOperand(Idx)->getType();
3423 AttributeSet ArgAttrs = Attrs.getParamAttrs(Idx);
3424 verifyParameterAttrs(ArgAttrs, Ty, &Call);
3426 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3427 Check(!SawNest, "More than one parameter has attribute nest!", Call);
3428 SawNest = true;
3431 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3432 Check(!SawReturned, "More than one parameter has attribute returned!",
3433 Call);
3434 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3435 "Incompatible argument and return types for 'returned' "
3436 "attribute",
3437 Call);
3438 SawReturned = true;
3441 // Statepoint intrinsic is vararg but the wrapped function may be not.
3442 // Allow sret here and check the wrapped function in verifyStatepoint.
3443 if (!Call.getCalledFunction() ||
3444 Call.getCalledFunction()->getIntrinsicID() !=
3445 Intrinsic::experimental_gc_statepoint)
3446 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3447 "Attribute 'sret' cannot be used for vararg call arguments!",
3448 Call);
3450 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3451 Check(Idx == Call.arg_size() - 1,
3452 "inalloca isn't on the last argument!", Call);
3456 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3457 if (!IsIntrinsic) {
3458 for (Type *ParamTy : FTy->params()) {
3459 Check(!ParamTy->isMetadataTy(),
3460 "Function has metadata parameter but isn't an intrinsic", Call);
3461 Check(!ParamTy->isTokenTy(),
3462 "Function has token parameter but isn't an intrinsic", Call);
3466 // Verify that indirect calls don't return tokens.
3467 if (!Call.getCalledFunction()) {
3468 Check(!FTy->getReturnType()->isTokenTy(),
3469 "Return type cannot be token for indirect call!");
3470 Check(!FTy->getReturnType()->isX86_AMXTy(),
3471 "Return type cannot be x86_amx for indirect call!");
3474 if (Function *F = Call.getCalledFunction())
3475 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3476 visitIntrinsicCall(ID, Call);
3478 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3479 // most one "gc-transition", at most one "cfguardtarget", at most one
3480 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3481 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3482 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3483 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3484 FoundPtrauthBundle = false, FoundKCFIBundle = false,
3485 FoundAttachedCallBundle = false;
3486 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3487 OperandBundleUse BU = Call.getOperandBundleAt(i);
3488 uint32_t Tag = BU.getTagID();
3489 if (Tag == LLVMContext::OB_deopt) {
3490 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3491 FoundDeoptBundle = true;
3492 } else if (Tag == LLVMContext::OB_gc_transition) {
3493 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3494 Call);
3495 FoundGCTransitionBundle = true;
3496 } else if (Tag == LLVMContext::OB_funclet) {
3497 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3498 FoundFuncletBundle = true;
3499 Check(BU.Inputs.size() == 1,
3500 "Expected exactly one funclet bundle operand", Call);
3501 Check(isa<FuncletPadInst>(BU.Inputs.front()),
3502 "Funclet bundle operands should correspond to a FuncletPadInst",
3503 Call);
3504 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3505 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3506 Call);
3507 FoundCFGuardTargetBundle = true;
3508 Check(BU.Inputs.size() == 1,
3509 "Expected exactly one cfguardtarget bundle operand", Call);
3510 } else if (Tag == LLVMContext::OB_ptrauth) {
3511 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3512 FoundPtrauthBundle = true;
3513 Check(BU.Inputs.size() == 2,
3514 "Expected exactly two ptrauth bundle operands", Call);
3515 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3516 BU.Inputs[0]->getType()->isIntegerTy(32),
3517 "Ptrauth bundle key operand must be an i32 constant", Call);
3518 Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3519 "Ptrauth bundle discriminator operand must be an i64", Call);
3520 } else if (Tag == LLVMContext::OB_kcfi) {
3521 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3522 FoundKCFIBundle = true;
3523 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3524 Call);
3525 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3526 BU.Inputs[0]->getType()->isIntegerTy(32),
3527 "Kcfi bundle operand must be an i32 constant", Call);
3528 } else if (Tag == LLVMContext::OB_preallocated) {
3529 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3530 Call);
3531 FoundPreallocatedBundle = true;
3532 Check(BU.Inputs.size() == 1,
3533 "Expected exactly one preallocated bundle operand", Call);
3534 auto Input = dyn_cast<IntrinsicInst>(BU.Inputs.front());
3535 Check(Input &&
3536 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3537 "\"preallocated\" argument must be a token from "
3538 "llvm.call.preallocated.setup",
3539 Call);
3540 } else if (Tag == LLVMContext::OB_gc_live) {
3541 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3542 FoundGCLiveBundle = true;
3543 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3544 Check(!FoundAttachedCallBundle,
3545 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3546 FoundAttachedCallBundle = true;
3547 verifyAttachedCallBundle(Call, BU);
3551 // Verify that callee and callsite agree on whether to use pointer auth.
3552 Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3553 "Direct call cannot have a ptrauth bundle", Call);
3555 // Verify that each inlinable callsite of a debug-info-bearing function in a
3556 // debug-info-bearing function has a debug location attached to it. Failure to
3557 // do so causes assertion failures when the inliner sets up inline scope info
3558 // (Interposable functions are not inlinable, neither are functions without
3559 // definitions.)
3560 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3561 !Call.getCalledFunction()->isInterposable() &&
3562 !Call.getCalledFunction()->isDeclaration() &&
3563 Call.getCalledFunction()->getSubprogram())
3564 CheckDI(Call.getDebugLoc(),
3565 "inlinable function call in a function with "
3566 "debug info must have a !dbg location",
3567 Call);
3569 if (Call.isInlineAsm())
3570 verifyInlineAsmCall(Call);
3572 ConvergenceVerifyHelper.visit(Call);
3574 visitInstruction(Call);
3577 void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3578 StringRef Context) {
3579 Check(!Attrs.contains(Attribute::InAlloca),
3580 Twine("inalloca attribute not allowed in ") + Context);
3581 Check(!Attrs.contains(Attribute::InReg),
3582 Twine("inreg attribute not allowed in ") + Context);
3583 Check(!Attrs.contains(Attribute::SwiftError),
3584 Twine("swifterror attribute not allowed in ") + Context);
3585 Check(!Attrs.contains(Attribute::Preallocated),
3586 Twine("preallocated attribute not allowed in ") + Context);
3587 Check(!Attrs.contains(Attribute::ByRef),
3588 Twine("byref attribute not allowed in ") + Context);
3591 /// Two types are "congruent" if they are identical, or if they are both pointer
3592 /// types with different pointee types and the same address space.
3593 static bool isTypeCongruent(Type *L, Type *R) {
3594 if (L == R)
3595 return true;
3596 PointerType *PL = dyn_cast<PointerType>(L);
3597 PointerType *PR = dyn_cast<PointerType>(R);
3598 if (!PL || !PR)
3599 return false;
3600 return PL->getAddressSpace() == PR->getAddressSpace();
3603 static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3604 static const Attribute::AttrKind ABIAttrs[] = {
3605 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3606 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3607 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3608 Attribute::ByRef};
3609 AttrBuilder Copy(C);
3610 for (auto AK : ABIAttrs) {
3611 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3612 if (Attr.isValid())
3613 Copy.addAttribute(Attr);
3616 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3617 if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3618 (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3619 Attrs.hasParamAttr(I, Attribute::ByRef)))
3620 Copy.addAlignmentAttr(Attrs.getParamAlignment(I));
3621 return Copy;
3624 void Verifier::verifyMustTailCall(CallInst &CI) {
3625 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3627 Function *F = CI.getParent()->getParent();
3628 FunctionType *CallerTy = F->getFunctionType();
3629 FunctionType *CalleeTy = CI.getFunctionType();
3630 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3631 "cannot guarantee tail call due to mismatched varargs", &CI);
3632 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3633 "cannot guarantee tail call due to mismatched return types", &CI);
3635 // - The calling conventions of the caller and callee must match.
3636 Check(F->getCallingConv() == CI.getCallingConv(),
3637 "cannot guarantee tail call due to mismatched calling conv", &CI);
3639 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3640 // or a pointer bitcast followed by a ret instruction.
3641 // - The ret instruction must return the (possibly bitcasted) value
3642 // produced by the call or void.
3643 Value *RetVal = &CI;
3644 Instruction *Next = CI.getNextNode();
3646 // Handle the optional bitcast.
3647 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
3648 Check(BI->getOperand(0) == RetVal,
3649 "bitcast following musttail call must use the call", BI);
3650 RetVal = BI;
3651 Next = BI->getNextNode();
3654 // Check the return.
3655 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
3656 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3657 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3658 isa<UndefValue>(Ret->getReturnValue()),
3659 "musttail call result must be returned", Ret);
3661 AttributeList CallerAttrs = F->getAttributes();
3662 AttributeList CalleeAttrs = CI.getAttributes();
3663 if (CI.getCallingConv() == CallingConv::SwiftTail ||
3664 CI.getCallingConv() == CallingConv::Tail) {
3665 StringRef CCName =
3666 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3668 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3669 // are allowed in swifttailcc call
3670 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3671 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3672 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3673 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3675 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3676 AttrBuilder ABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3677 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3678 verifyTailCCMustTailAttrs(ABIAttrs, Context);
3680 // - Varargs functions are not allowed
3681 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3682 " tail call for varargs function");
3683 return;
3686 // - The caller and callee prototypes must match. Pointer types of
3687 // parameters or return types may differ in pointee type, but not
3688 // address space.
3689 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3690 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3691 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3692 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3693 Check(
3694 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3695 "cannot guarantee tail call due to mismatched parameter types", &CI);
3699 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3700 // returned, preallocated, and inalloca, must match.
3701 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3702 AttrBuilder CallerABIAttrs = getParameterABIAttributes(F->getContext(), I, CallerAttrs);
3703 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(F->getContext(), I, CalleeAttrs);
3704 Check(CallerABIAttrs == CalleeABIAttrs,
3705 "cannot guarantee tail call due to mismatched ABI impacting "
3706 "function attributes",
3707 &CI, CI.getOperand(I));
3711 void Verifier::visitCallInst(CallInst &CI) {
3712 visitCallBase(CI);
3714 if (CI.isMustTailCall())
3715 verifyMustTailCall(CI);
3718 void Verifier::visitInvokeInst(InvokeInst &II) {
3719 visitCallBase(II);
3721 // Verify that the first non-PHI instruction of the unwind destination is an
3722 // exception handling instruction.
3723 Check(
3724 II.getUnwindDest()->isEHPad(),
3725 "The unwind destination does not have an exception handling instruction!",
3726 &II);
3728 visitTerminator(II);
3731 /// visitUnaryOperator - Check the argument to the unary operator.
3733 void Verifier::visitUnaryOperator(UnaryOperator &U) {
3734 Check(U.getType() == U.getOperand(0)->getType(),
3735 "Unary operators must have same type for"
3736 "operands and result!",
3737 &U);
3739 switch (U.getOpcode()) {
3740 // Check that floating-point arithmetic operators are only used with
3741 // floating-point operands.
3742 case Instruction::FNeg:
3743 Check(U.getType()->isFPOrFPVectorTy(),
3744 "FNeg operator only works with float types!", &U);
3745 break;
3746 default:
3747 llvm_unreachable("Unknown UnaryOperator opcode!");
3750 visitInstruction(U);
3753 /// visitBinaryOperator - Check that both arguments to the binary operator are
3754 /// of the same type!
3756 void Verifier::visitBinaryOperator(BinaryOperator &B) {
3757 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3758 "Both operands to a binary operator are not of the same type!", &B);
3760 switch (B.getOpcode()) {
3761 // Check that integer arithmetic operators are only used with
3762 // integral operands.
3763 case Instruction::Add:
3764 case Instruction::Sub:
3765 case Instruction::Mul:
3766 case Instruction::SDiv:
3767 case Instruction::UDiv:
3768 case Instruction::SRem:
3769 case Instruction::URem:
3770 Check(B.getType()->isIntOrIntVectorTy(),
3771 "Integer arithmetic operators only work with integral types!", &B);
3772 Check(B.getType() == B.getOperand(0)->getType(),
3773 "Integer arithmetic operators must have same type "
3774 "for operands and result!",
3775 &B);
3776 break;
3777 // Check that floating-point arithmetic operators are only used with
3778 // floating-point operands.
3779 case Instruction::FAdd:
3780 case Instruction::FSub:
3781 case Instruction::FMul:
3782 case Instruction::FDiv:
3783 case Instruction::FRem:
3784 Check(B.getType()->isFPOrFPVectorTy(),
3785 "Floating-point arithmetic operators only work with "
3786 "floating-point types!",
3787 &B);
3788 Check(B.getType() == B.getOperand(0)->getType(),
3789 "Floating-point arithmetic operators must have same type "
3790 "for operands and result!",
3791 &B);
3792 break;
3793 // Check that logical operators are only used with integral operands.
3794 case Instruction::And:
3795 case Instruction::Or:
3796 case Instruction::Xor:
3797 Check(B.getType()->isIntOrIntVectorTy(),
3798 "Logical operators only work with integral types!", &B);
3799 Check(B.getType() == B.getOperand(0)->getType(),
3800 "Logical operators must have same type for operands and result!", &B);
3801 break;
3802 case Instruction::Shl:
3803 case Instruction::LShr:
3804 case Instruction::AShr:
3805 Check(B.getType()->isIntOrIntVectorTy(),
3806 "Shifts only work with integral types!", &B);
3807 Check(B.getType() == B.getOperand(0)->getType(),
3808 "Shift return type must be same as operands!", &B);
3809 break;
3810 default:
3811 llvm_unreachable("Unknown BinaryOperator opcode!");
3814 visitInstruction(B);
3817 void Verifier::visitICmpInst(ICmpInst &IC) {
3818 // Check that the operands are the same type
3819 Type *Op0Ty = IC.getOperand(0)->getType();
3820 Type *Op1Ty = IC.getOperand(1)->getType();
3821 Check(Op0Ty == Op1Ty,
3822 "Both operands to ICmp instruction are not of the same type!", &IC);
3823 // Check that the operands are the right type
3824 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3825 "Invalid operand types for ICmp instruction", &IC);
3826 // Check that the predicate is valid.
3827 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3829 visitInstruction(IC);
3832 void Verifier::visitFCmpInst(FCmpInst &FC) {
3833 // Check that the operands are the same type
3834 Type *Op0Ty = FC.getOperand(0)->getType();
3835 Type *Op1Ty = FC.getOperand(1)->getType();
3836 Check(Op0Ty == Op1Ty,
3837 "Both operands to FCmp instruction are not of the same type!", &FC);
3838 // Check that the operands are the right type
3839 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3840 &FC);
3841 // Check that the predicate is valid.
3842 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3844 visitInstruction(FC);
3847 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
3848 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
3849 "Invalid extractelement operands!", &EI);
3850 visitInstruction(EI);
3853 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
3854 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
3855 IE.getOperand(2)),
3856 "Invalid insertelement operands!", &IE);
3857 visitInstruction(IE);
3860 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
3861 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
3862 SV.getShuffleMask()),
3863 "Invalid shufflevector operands!", &SV);
3864 visitInstruction(SV);
3867 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
3868 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
3870 Check(isa<PointerType>(TargetTy),
3871 "GEP base pointer is not a vector or a vector of pointers", &GEP);
3872 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
3874 if (auto *STy = dyn_cast<StructType>(GEP.getSourceElementType())) {
3875 SmallPtrSet<Type *, 4> Visited;
3876 Check(!STy->containsScalableVectorType(&Visited),
3877 "getelementptr cannot target structure that contains scalable vector"
3878 "type",
3879 &GEP);
3882 SmallVector<Value *, 16> Idxs(GEP.indices());
3883 Check(
3884 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
3885 "GEP indexes must be integers", &GEP);
3886 Type *ElTy =
3887 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
3888 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
3890 Check(GEP.getType()->isPtrOrPtrVectorTy() &&
3891 GEP.getResultElementType() == ElTy,
3892 "GEP is not of right type for indices!", &GEP, ElTy);
3894 if (auto *GEPVTy = dyn_cast<VectorType>(GEP.getType())) {
3895 // Additional checks for vector GEPs.
3896 ElementCount GEPWidth = GEPVTy->getElementCount();
3897 if (GEP.getPointerOperandType()->isVectorTy())
3898 Check(
3899 GEPWidth ==
3900 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
3901 "Vector GEP result width doesn't match operand's", &GEP);
3902 for (Value *Idx : Idxs) {
3903 Type *IndexTy = Idx->getType();
3904 if (auto *IndexVTy = dyn_cast<VectorType>(IndexTy)) {
3905 ElementCount IndexWidth = IndexVTy->getElementCount();
3906 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
3908 Check(IndexTy->isIntOrIntVectorTy(),
3909 "All GEP indices should be of integer type");
3913 if (auto *PTy = dyn_cast<PointerType>(GEP.getType())) {
3914 Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
3915 "GEP address space doesn't match type", &GEP);
3918 visitInstruction(GEP);
3921 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
3922 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
3925 /// Verify !range and !absolute_symbol metadata. These have the same
3926 /// restrictions, except !absolute_symbol allows the full set.
3927 void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
3928 Type *Ty, bool IsAbsoluteSymbol) {
3929 unsigned NumOperands = Range->getNumOperands();
3930 Check(NumOperands % 2 == 0, "Unfinished range!", Range);
3931 unsigned NumRanges = NumOperands / 2;
3932 Check(NumRanges >= 1, "It should have at least one range!", Range);
3934 ConstantRange LastRange(1, true); // Dummy initial value
3935 for (unsigned i = 0; i < NumRanges; ++i) {
3936 ConstantInt *Low =
3937 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
3938 Check(Low, "The lower limit must be an integer!", Low);
3939 ConstantInt *High =
3940 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
3941 Check(High, "The upper limit must be an integer!", High);
3942 Check(High->getType() == Low->getType() &&
3943 High->getType() == Ty->getScalarType(),
3944 "Range types must match instruction type!", &I);
3946 APInt HighV = High->getValue();
3947 APInt LowV = Low->getValue();
3949 // ConstantRange asserts if the ranges are the same except for the min/max
3950 // value. Leave the cases it tolerates for the empty range error below.
3951 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
3952 "The upper and lower limits cannot be the same value", &I);
3954 ConstantRange CurRange(LowV, HighV);
3955 Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
3956 "Range must not be empty!", Range);
3957 if (i != 0) {
3958 Check(CurRange.intersectWith(LastRange).isEmptySet(),
3959 "Intervals are overlapping", Range);
3960 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
3961 Range);
3962 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
3963 Range);
3965 LastRange = ConstantRange(LowV, HighV);
3967 if (NumRanges > 2) {
3968 APInt FirstLow =
3969 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
3970 APInt FirstHigh =
3971 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
3972 ConstantRange FirstRange(FirstLow, FirstHigh);
3973 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
3974 "Intervals are overlapping", Range);
3975 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
3976 Range);
3980 void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
3981 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
3982 "precondition violation");
3983 verifyRangeMetadata(I, Range, Ty, false);
3986 void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
3987 unsigned Size = DL.getTypeSizeInBits(Ty);
3988 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
3989 Check(!(Size & (Size - 1)),
3990 "atomic memory access' operand must have a power-of-two size", Ty, I);
3993 void Verifier::visitLoadInst(LoadInst &LI) {
3994 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
3995 Check(PTy, "Load operand must be a pointer.", &LI);
3996 Type *ElTy = LI.getType();
3997 if (MaybeAlign A = LI.getAlign()) {
3998 Check(A->value() <= Value::MaximumAlignment,
3999 "huge alignment values are unsupported", &LI);
4001 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4002 if (LI.isAtomic()) {
4003 Check(LI.getOrdering() != AtomicOrdering::Release &&
4004 LI.getOrdering() != AtomicOrdering::AcquireRelease,
4005 "Load cannot have Release ordering", &LI);
4006 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4007 "atomic load operand must have integer, pointer, or floating point "
4008 "type!",
4009 ElTy, &LI);
4010 checkAtomicMemAccessSize(ElTy, &LI);
4011 } else {
4012 Check(LI.getSyncScopeID() == SyncScope::System,
4013 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4016 visitInstruction(LI);
4019 void Verifier::visitStoreInst(StoreInst &SI) {
4020 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
4021 Check(PTy, "Store operand must be a pointer.", &SI);
4022 Type *ElTy = SI.getOperand(0)->getType();
4023 if (MaybeAlign A = SI.getAlign()) {
4024 Check(A->value() <= Value::MaximumAlignment,
4025 "huge alignment values are unsupported", &SI);
4027 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4028 if (SI.isAtomic()) {
4029 Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4030 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4031 "Store cannot have Acquire ordering", &SI);
4032 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4033 "atomic store operand must have integer, pointer, or floating point "
4034 "type!",
4035 ElTy, &SI);
4036 checkAtomicMemAccessSize(ElTy, &SI);
4037 } else {
4038 Check(SI.getSyncScopeID() == SyncScope::System,
4039 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4041 visitInstruction(SI);
4044 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
4045 void Verifier::verifySwiftErrorCall(CallBase &Call,
4046 const Value *SwiftErrorVal) {
4047 for (const auto &I : llvm::enumerate(Call.args())) {
4048 if (I.value() == SwiftErrorVal) {
4049 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4050 "swifterror value when used in a callsite should be marked "
4051 "with swifterror attribute",
4052 SwiftErrorVal, Call);
4057 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4058 // Check that swifterror value is only used by loads, stores, or as
4059 // a swifterror argument.
4060 for (const User *U : SwiftErrorVal->users()) {
4061 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4062 isa<InvokeInst>(U),
4063 "swifterror value can only be loaded and stored from, or "
4064 "as a swifterror argument!",
4065 SwiftErrorVal, U);
4066 // If it is used by a store, check it is the second operand.
4067 if (auto StoreI = dyn_cast<StoreInst>(U))
4068 Check(StoreI->getOperand(1) == SwiftErrorVal,
4069 "swifterror value should be the second operand when used "
4070 "by stores",
4071 SwiftErrorVal, U);
4072 if (auto *Call = dyn_cast<CallBase>(U))
4073 verifySwiftErrorCall(*const_cast<CallBase *>(Call), SwiftErrorVal);
4077 void Verifier::visitAllocaInst(AllocaInst &AI) {
4078 SmallPtrSet<Type*, 4> Visited;
4079 Check(AI.getAllocatedType()->isSized(&Visited),
4080 "Cannot allocate unsized type", &AI);
4081 Check(AI.getArraySize()->getType()->isIntegerTy(),
4082 "Alloca array size must have integer type", &AI);
4083 if (MaybeAlign A = AI.getAlign()) {
4084 Check(A->value() <= Value::MaximumAlignment,
4085 "huge alignment values are unsupported", &AI);
4088 if (AI.isSwiftError()) {
4089 Check(AI.getAllocatedType()->isPointerTy(),
4090 "swifterror alloca must have pointer type", &AI);
4091 Check(!AI.isArrayAllocation(),
4092 "swifterror alloca must not be array allocation", &AI);
4093 verifySwiftErrorValue(&AI);
4096 visitInstruction(AI);
4099 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4100 Type *ElTy = CXI.getOperand(1)->getType();
4101 Check(ElTy->isIntOrPtrTy(),
4102 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4103 checkAtomicMemAccessSize(ElTy, &CXI);
4104 visitInstruction(CXI);
4107 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4108 Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4109 "atomicrmw instructions cannot be unordered.", &RMWI);
4110 auto Op = RMWI.getOperation();
4111 Type *ElTy = RMWI.getOperand(1)->getType();
4112 if (Op == AtomicRMWInst::Xchg) {
4113 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4114 ElTy->isPointerTy(),
4115 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4116 " operand must have integer or floating point type!",
4117 &RMWI, ElTy);
4118 } else if (AtomicRMWInst::isFPOperation(Op)) {
4119 Check(ElTy->isFloatingPointTy(),
4120 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4121 " operand must have floating point type!",
4122 &RMWI, ElTy);
4123 } else {
4124 Check(ElTy->isIntegerTy(),
4125 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4126 " operand must have integer type!",
4127 &RMWI, ElTy);
4129 checkAtomicMemAccessSize(ElTy, &RMWI);
4130 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4131 "Invalid binary operation!", &RMWI);
4132 visitInstruction(RMWI);
4135 void Verifier::visitFenceInst(FenceInst &FI) {
4136 const AtomicOrdering Ordering = FI.getOrdering();
4137 Check(Ordering == AtomicOrdering::Acquire ||
4138 Ordering == AtomicOrdering::Release ||
4139 Ordering == AtomicOrdering::AcquireRelease ||
4140 Ordering == AtomicOrdering::SequentiallyConsistent,
4141 "fence instructions may only have acquire, release, acq_rel, or "
4142 "seq_cst ordering.",
4143 &FI);
4144 visitInstruction(FI);
4147 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4148 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4149 EVI.getIndices()) == EVI.getType(),
4150 "Invalid ExtractValueInst operands!", &EVI);
4152 visitInstruction(EVI);
4155 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4156 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4157 IVI.getIndices()) ==
4158 IVI.getOperand(1)->getType(),
4159 "Invalid InsertValueInst operands!", &IVI);
4161 visitInstruction(IVI);
4164 static Value *getParentPad(Value *EHPad) {
4165 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
4166 return FPI->getParentPad();
4168 return cast<CatchSwitchInst>(EHPad)->getParentPad();
4171 void Verifier::visitEHPadPredecessors(Instruction &I) {
4172 assert(I.isEHPad());
4174 BasicBlock *BB = I.getParent();
4175 Function *F = BB->getParent();
4177 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4179 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
4180 // The landingpad instruction defines its parent as a landing pad block. The
4181 // landing pad block may be branched to only by the unwind edge of an
4182 // invoke.
4183 for (BasicBlock *PredBB : predecessors(BB)) {
4184 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
4185 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4186 "Block containing LandingPadInst must be jumped to "
4187 "only by the unwind edge of an invoke.",
4188 LPI);
4190 return;
4192 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
4193 if (!pred_empty(BB))
4194 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4195 "Block containg CatchPadInst must be jumped to "
4196 "only by its catchswitch.",
4197 CPI);
4198 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4199 "Catchswitch cannot unwind to one of its catchpads",
4200 CPI->getCatchSwitch(), CPI);
4201 return;
4204 // Verify that each pred has a legal terminator with a legal to/from EH
4205 // pad relationship.
4206 Instruction *ToPad = &I;
4207 Value *ToPadParent = getParentPad(ToPad);
4208 for (BasicBlock *PredBB : predecessors(BB)) {
4209 Instruction *TI = PredBB->getTerminator();
4210 Value *FromPad;
4211 if (auto *II = dyn_cast<InvokeInst>(TI)) {
4212 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4213 "EH pad must be jumped to via an unwind edge", ToPad, II);
4214 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
4215 FromPad = Bundle->Inputs[0];
4216 else
4217 FromPad = ConstantTokenNone::get(II->getContext());
4218 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
4219 FromPad = CRI->getOperand(0);
4220 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4221 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4222 FromPad = CSI;
4223 } else {
4224 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4227 // The edge may exit from zero or more nested pads.
4228 SmallSet<Value *, 8> Seen;
4229 for (;; FromPad = getParentPad(FromPad)) {
4230 Check(FromPad != ToPad,
4231 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4232 if (FromPad == ToPadParent) {
4233 // This is a legal unwind edge.
4234 break;
4236 Check(!isa<ConstantTokenNone>(FromPad),
4237 "A single unwind edge may only enter one EH pad", TI);
4238 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4239 FromPad);
4241 // This will be diagnosed on the corresponding instruction already. We
4242 // need the extra check here to make sure getParentPad() works.
4243 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4244 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4249 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4250 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4251 // isn't a cleanup.
4252 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4253 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4255 visitEHPadPredecessors(LPI);
4257 if (!LandingPadResultTy)
4258 LandingPadResultTy = LPI.getType();
4259 else
4260 Check(LandingPadResultTy == LPI.getType(),
4261 "The landingpad instruction should have a consistent result type "
4262 "inside a function.",
4263 &LPI);
4265 Function *F = LPI.getParent()->getParent();
4266 Check(F->hasPersonalityFn(),
4267 "LandingPadInst needs to be in a function with a personality.", &LPI);
4269 // The landingpad instruction must be the first non-PHI instruction in the
4270 // block.
4271 Check(LPI.getParent()->getLandingPadInst() == &LPI,
4272 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4274 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4275 Constant *Clause = LPI.getClause(i);
4276 if (LPI.isCatch(i)) {
4277 Check(isa<PointerType>(Clause->getType()),
4278 "Catch operand does not have pointer type!", &LPI);
4279 } else {
4280 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4281 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4282 "Filter operand is not an array of constants!", &LPI);
4286 visitInstruction(LPI);
4289 void Verifier::visitResumeInst(ResumeInst &RI) {
4290 Check(RI.getFunction()->hasPersonalityFn(),
4291 "ResumeInst needs to be in a function with a personality.", &RI);
4293 if (!LandingPadResultTy)
4294 LandingPadResultTy = RI.getValue()->getType();
4295 else
4296 Check(LandingPadResultTy == RI.getValue()->getType(),
4297 "The resume instruction should have a consistent result type "
4298 "inside a function.",
4299 &RI);
4301 visitTerminator(RI);
4304 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4305 BasicBlock *BB = CPI.getParent();
4307 Function *F = BB->getParent();
4308 Check(F->hasPersonalityFn(),
4309 "CatchPadInst needs to be in a function with a personality.", &CPI);
4311 Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4312 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4313 CPI.getParentPad());
4315 // The catchpad instruction must be the first non-PHI instruction in the
4316 // block.
4317 Check(BB->getFirstNonPHI() == &CPI,
4318 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4320 visitEHPadPredecessors(CPI);
4321 visitFuncletPadInst(CPI);
4324 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4325 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4326 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4327 CatchReturn.getOperand(0));
4329 visitTerminator(CatchReturn);
4332 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4333 BasicBlock *BB = CPI.getParent();
4335 Function *F = BB->getParent();
4336 Check(F->hasPersonalityFn(),
4337 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4339 // The cleanuppad instruction must be the first non-PHI instruction in the
4340 // block.
4341 Check(BB->getFirstNonPHI() == &CPI,
4342 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4344 auto *ParentPad = CPI.getParentPad();
4345 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4346 "CleanupPadInst has an invalid parent.", &CPI);
4348 visitEHPadPredecessors(CPI);
4349 visitFuncletPadInst(CPI);
4352 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4353 User *FirstUser = nullptr;
4354 Value *FirstUnwindPad = nullptr;
4355 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4356 SmallSet<FuncletPadInst *, 8> Seen;
4358 while (!Worklist.empty()) {
4359 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4360 Check(Seen.insert(CurrentPad).second,
4361 "FuncletPadInst must not be nested within itself", CurrentPad);
4362 Value *UnresolvedAncestorPad = nullptr;
4363 for (User *U : CurrentPad->users()) {
4364 BasicBlock *UnwindDest;
4365 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
4366 UnwindDest = CRI->getUnwindDest();
4367 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
4368 // We allow catchswitch unwind to caller to nest
4369 // within an outer pad that unwinds somewhere else,
4370 // because catchswitch doesn't have a nounwind variant.
4371 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4372 if (CSI->unwindsToCaller())
4373 continue;
4374 UnwindDest = CSI->getUnwindDest();
4375 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
4376 UnwindDest = II->getUnwindDest();
4377 } else if (isa<CallInst>(U)) {
4378 // Calls which don't unwind may be found inside funclet
4379 // pads that unwind somewhere else. We don't *require*
4380 // such calls to be annotated nounwind.
4381 continue;
4382 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
4383 // The unwind dest for a cleanup can only be found by
4384 // recursive search. Add it to the worklist, and we'll
4385 // search for its first use that determines where it unwinds.
4386 Worklist.push_back(CPI);
4387 continue;
4388 } else {
4389 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4390 continue;
4393 Value *UnwindPad;
4394 bool ExitsFPI;
4395 if (UnwindDest) {
4396 UnwindPad = UnwindDest->getFirstNonPHI();
4397 if (!cast<Instruction>(UnwindPad)->isEHPad())
4398 continue;
4399 Value *UnwindParent = getParentPad(UnwindPad);
4400 // Ignore unwind edges that don't exit CurrentPad.
4401 if (UnwindParent == CurrentPad)
4402 continue;
4403 // Determine whether the original funclet pad is exited,
4404 // and if we are scanning nested pads determine how many
4405 // of them are exited so we can stop searching their
4406 // children.
4407 Value *ExitedPad = CurrentPad;
4408 ExitsFPI = false;
4409 do {
4410 if (ExitedPad == &FPI) {
4411 ExitsFPI = true;
4412 // Now we can resolve any ancestors of CurrentPad up to
4413 // FPI, but not including FPI since we need to make sure
4414 // to check all direct users of FPI for consistency.
4415 UnresolvedAncestorPad = &FPI;
4416 break;
4418 Value *ExitedParent = getParentPad(ExitedPad);
4419 if (ExitedParent == UnwindParent) {
4420 // ExitedPad is the ancestor-most pad which this unwind
4421 // edge exits, so we can resolve up to it, meaning that
4422 // ExitedParent is the first ancestor still unresolved.
4423 UnresolvedAncestorPad = ExitedParent;
4424 break;
4426 ExitedPad = ExitedParent;
4427 } while (!isa<ConstantTokenNone>(ExitedPad));
4428 } else {
4429 // Unwinding to caller exits all pads.
4430 UnwindPad = ConstantTokenNone::get(FPI.getContext());
4431 ExitsFPI = true;
4432 UnresolvedAncestorPad = &FPI;
4435 if (ExitsFPI) {
4436 // This unwind edge exits FPI. Make sure it agrees with other
4437 // such edges.
4438 if (FirstUser) {
4439 Check(UnwindPad == FirstUnwindPad,
4440 "Unwind edges out of a funclet "
4441 "pad must have the same unwind "
4442 "dest",
4443 &FPI, U, FirstUser);
4444 } else {
4445 FirstUser = U;
4446 FirstUnwindPad = UnwindPad;
4447 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4448 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
4449 getParentPad(UnwindPad) == getParentPad(&FPI))
4450 SiblingFuncletInfo[&FPI] = cast<Instruction>(U);
4453 // Make sure we visit all uses of FPI, but for nested pads stop as
4454 // soon as we know where they unwind to.
4455 if (CurrentPad != &FPI)
4456 break;
4458 if (UnresolvedAncestorPad) {
4459 if (CurrentPad == UnresolvedAncestorPad) {
4460 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4461 // we've found an unwind edge that exits it, because we need to verify
4462 // all direct uses of FPI.
4463 assert(CurrentPad == &FPI);
4464 continue;
4466 // Pop off the worklist any nested pads that we've found an unwind
4467 // destination for. The pads on the worklist are the uncles,
4468 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4469 // for all ancestors of CurrentPad up to but not including
4470 // UnresolvedAncestorPad.
4471 Value *ResolvedPad = CurrentPad;
4472 while (!Worklist.empty()) {
4473 Value *UnclePad = Worklist.back();
4474 Value *AncestorPad = getParentPad(UnclePad);
4475 // Walk ResolvedPad up the ancestor list until we either find the
4476 // uncle's parent or the last resolved ancestor.
4477 while (ResolvedPad != AncestorPad) {
4478 Value *ResolvedParent = getParentPad(ResolvedPad);
4479 if (ResolvedParent == UnresolvedAncestorPad) {
4480 break;
4482 ResolvedPad = ResolvedParent;
4484 // If the resolved ancestor search didn't find the uncle's parent,
4485 // then the uncle is not yet resolved.
4486 if (ResolvedPad != AncestorPad)
4487 break;
4488 // This uncle is resolved, so pop it from the worklist.
4489 Worklist.pop_back();
4494 if (FirstUnwindPad) {
4495 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
4496 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4497 Value *SwitchUnwindPad;
4498 if (SwitchUnwindDest)
4499 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4500 else
4501 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
4502 Check(SwitchUnwindPad == FirstUnwindPad,
4503 "Unwind edges out of a catch must have the same unwind dest as "
4504 "the parent catchswitch",
4505 &FPI, FirstUser, CatchSwitch);
4509 visitInstruction(FPI);
4512 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4513 BasicBlock *BB = CatchSwitch.getParent();
4515 Function *F = BB->getParent();
4516 Check(F->hasPersonalityFn(),
4517 "CatchSwitchInst needs to be in a function with a personality.",
4518 &CatchSwitch);
4520 // The catchswitch instruction must be the first non-PHI instruction in the
4521 // block.
4522 Check(BB->getFirstNonPHI() == &CatchSwitch,
4523 "CatchSwitchInst not the first non-PHI instruction in the block.",
4524 &CatchSwitch);
4526 auto *ParentPad = CatchSwitch.getParentPad();
4527 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4528 "CatchSwitchInst has an invalid parent.", ParentPad);
4530 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4531 Instruction *I = UnwindDest->getFirstNonPHI();
4532 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4533 "CatchSwitchInst must unwind to an EH block which is not a "
4534 "landingpad.",
4535 &CatchSwitch);
4537 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4538 if (getParentPad(I) == ParentPad)
4539 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4542 Check(CatchSwitch.getNumHandlers() != 0,
4543 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4545 for (BasicBlock *Handler : CatchSwitch.handlers()) {
4546 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4547 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4550 visitEHPadPredecessors(CatchSwitch);
4551 visitTerminator(CatchSwitch);
4554 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4555 Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4556 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4557 CRI.getOperand(0));
4559 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4560 Instruction *I = UnwindDest->getFirstNonPHI();
4561 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4562 "CleanupReturnInst must unwind to an EH block which is not a "
4563 "landingpad.",
4564 &CRI);
4567 visitTerminator(CRI);
4570 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4571 Instruction *Op = cast<Instruction>(I.getOperand(i));
4572 // If the we have an invalid invoke, don't try to compute the dominance.
4573 // We already reject it in the invoke specific checks and the dominance
4574 // computation doesn't handle multiple edges.
4575 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
4576 if (II->getNormalDest() == II->getUnwindDest())
4577 return;
4580 // Quick check whether the def has already been encountered in the same block.
4581 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4582 // uses are defined to happen on the incoming edge, not at the instruction.
4584 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4585 // wrapping an SSA value, assert that we've already encountered it. See
4586 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4587 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
4588 return;
4590 const Use &U = I.getOperandUse(i);
4591 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4594 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4595 Check(I.getType()->isPointerTy(),
4596 "dereferenceable, dereferenceable_or_null "
4597 "apply only to pointer types",
4598 &I);
4599 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4600 "dereferenceable, dereferenceable_or_null apply only to load"
4601 " and inttoptr instructions, use attributes for calls or invokes",
4602 &I);
4603 Check(MD->getNumOperands() == 1,
4604 "dereferenceable, dereferenceable_or_null "
4605 "take one operand!",
4606 &I);
4607 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
4608 Check(CI && CI->getType()->isIntegerTy(64),
4609 "dereferenceable, "
4610 "dereferenceable_or_null metadata value must be an i64!",
4611 &I);
4614 void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4615 Check(MD->getNumOperands() >= 2,
4616 "!prof annotations should have no less than 2 operands", MD);
4618 // Check first operand.
4619 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4620 Check(isa<MDString>(MD->getOperand(0)),
4621 "expected string with name of the !prof annotation", MD);
4622 MDString *MDS = cast<MDString>(MD->getOperand(0));
4623 StringRef ProfName = MDS->getString();
4625 // Check consistency of !prof branch_weights metadata.
4626 if (ProfName.equals("branch_weights")) {
4627 if (isa<InvokeInst>(&I)) {
4628 Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4629 "Wrong number of InvokeInst branch_weights operands", MD);
4630 } else {
4631 unsigned ExpectedNumOperands = 0;
4632 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
4633 ExpectedNumOperands = BI->getNumSuccessors();
4634 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
4635 ExpectedNumOperands = SI->getNumSuccessors();
4636 else if (isa<CallInst>(&I))
4637 ExpectedNumOperands = 1;
4638 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
4639 ExpectedNumOperands = IBI->getNumDestinations();
4640 else if (isa<SelectInst>(&I))
4641 ExpectedNumOperands = 2;
4642 else if (CallBrInst *CI = dyn_cast<CallBrInst>(&I))
4643 ExpectedNumOperands = CI->getNumSuccessors();
4644 else
4645 CheckFailed("!prof branch_weights are not allowed for this instruction",
4646 MD);
4648 Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4649 "Wrong number of operands", MD);
4651 for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4652 auto &MDO = MD->getOperand(i);
4653 Check(MDO, "second operand should not be null", MD);
4654 Check(mdconst::dyn_extract<ConstantInt>(MDO),
4655 "!prof brunch_weights operand is not a const int");
4660 void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4661 assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4662 bool ExpectedInstTy =
4663 isa<AllocaInst>(I) || isa<StoreInst>(I) || isa<MemIntrinsic>(I);
4664 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4665 I, MD);
4666 // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4667 // only be found as DbgAssignIntrinsic operands.
4668 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4669 for (auto *User : AsValue->users()) {
4670 CheckDI(isa<DbgAssignIntrinsic>(User),
4671 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4672 MD, User);
4673 // All of the dbg.assign intrinsics should be in the same function as I.
4674 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(User))
4675 CheckDI(DAI->getFunction() == I.getFunction(),
4676 "dbg.assign not in same function as inst", DAI, &I);
4681 void Verifier::visitCallStackMetadata(MDNode *MD) {
4682 // Call stack metadata should consist of a list of at least 1 constant int
4683 // (representing a hash of the location).
4684 Check(MD->getNumOperands() >= 1,
4685 "call stack metadata should have at least 1 operand", MD);
4687 for (const auto &Op : MD->operands())
4688 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4689 "call stack metadata operand should be constant integer", Op);
4692 void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4693 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4694 Check(MD->getNumOperands() >= 1,
4695 "!memprof annotations should have at least 1 metadata operand "
4696 "(MemInfoBlock)",
4697 MD);
4699 // Check each MIB
4700 for (auto &MIBOp : MD->operands()) {
4701 MDNode *MIB = dyn_cast<MDNode>(MIBOp);
4702 // The first operand of an MIB should be the call stack metadata.
4703 // There rest of the operands should be MDString tags, and there should be
4704 // at least one.
4705 Check(MIB->getNumOperands() >= 2,
4706 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4708 // Check call stack metadata (first operand).
4709 Check(MIB->getOperand(0) != nullptr,
4710 "!memprof MemInfoBlock first operand should not be null", MIB);
4711 Check(isa<MDNode>(MIB->getOperand(0)),
4712 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4713 MDNode *StackMD = dyn_cast<MDNode>(MIB->getOperand(0));
4714 visitCallStackMetadata(StackMD);
4716 // Check that remaining operands are MDString.
4717 Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4718 [](const MDOperand &Op) { return isa<MDString>(Op); }),
4719 "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4723 void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4724 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4725 // Verify the partial callstack annotated from memprof profiles. This callsite
4726 // is a part of a profiled allocation callstack.
4727 visitCallStackMetadata(MD);
4730 void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4731 Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4732 Check(Annotation->getNumOperands() >= 1,
4733 "annotation must have at least one operand");
4734 for (const MDOperand &Op : Annotation->operands()) {
4735 bool TupleOfStrings =
4736 isa<MDTuple>(Op.get()) &&
4737 all_of(cast<MDTuple>(Op)->operands(), [](auto &Annotation) {
4738 return isa<MDString>(Annotation.get());
4740 Check(isa<MDString>(Op.get()) || TupleOfStrings,
4741 "operands must be a string or a tuple of strings");
4745 void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4746 unsigned NumOps = MD->getNumOperands();
4747 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4748 MD);
4749 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4750 "first scope operand must be self-referential or string", MD);
4751 if (NumOps == 3)
4752 Check(isa<MDString>(MD->getOperand(2)),
4753 "third scope operand must be string (if used)", MD);
4755 MDNode *Domain = dyn_cast<MDNode>(MD->getOperand(1));
4756 Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4758 unsigned NumDomainOps = Domain->getNumOperands();
4759 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4760 "domain must have one or two operands", Domain);
4761 Check(Domain->getOperand(0).get() == Domain ||
4762 isa<MDString>(Domain->getOperand(0)),
4763 "first domain operand must be self-referential or string", Domain);
4764 if (NumDomainOps == 2)
4765 Check(isa<MDString>(Domain->getOperand(1)),
4766 "second domain operand must be string (if used)", Domain);
4769 void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4770 for (const MDOperand &Op : MD->operands()) {
4771 const MDNode *OpMD = dyn_cast<MDNode>(Op);
4772 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4773 visitAliasScopeMetadata(OpMD);
4777 void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4778 auto IsValidAccessScope = [](const MDNode *MD) {
4779 return MD->getNumOperands() == 0 && MD->isDistinct();
4782 // It must be either an access scope itself...
4783 if (IsValidAccessScope(MD))
4784 return;
4786 // ...or a list of access scopes.
4787 for (const MDOperand &Op : MD->operands()) {
4788 const MDNode *OpMD = dyn_cast<MDNode>(Op);
4789 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4790 Check(IsValidAccessScope(OpMD),
4791 "Access scope list contains invalid access scope", MD);
4795 /// verifyInstruction - Verify that an instruction is well formed.
4797 void Verifier::visitInstruction(Instruction &I) {
4798 BasicBlock *BB = I.getParent();
4799 Check(BB, "Instruction not embedded in basic block!", &I);
4801 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
4802 for (User *U : I.users()) {
4803 Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4804 "Only PHI nodes may reference their own value!", &I);
4808 // Check that void typed values don't have names
4809 Check(!I.getType()->isVoidTy() || !I.hasName(),
4810 "Instruction has a name, but provides a void value!", &I);
4812 // Check that the return value of the instruction is either void or a legal
4813 // value type.
4814 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
4815 "Instruction returns a non-scalar type!", &I);
4817 // Check that the instruction doesn't produce metadata. Calls are already
4818 // checked against the callee type.
4819 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
4820 "Invalid use of metadata!", &I);
4822 // Check that all uses of the instruction, if they are instructions
4823 // themselves, actually have parent basic blocks. If the use is not an
4824 // instruction, it is an error!
4825 for (Use &U : I.uses()) {
4826 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
4827 Check(Used->getParent() != nullptr,
4828 "Instruction referencing"
4829 " instruction not embedded in a basic block!",
4830 &I, Used);
4831 else {
4832 CheckFailed("Use of instruction is not an instruction!", U);
4833 return;
4837 // Get a pointer to the call base of the instruction if it is some form of
4838 // call.
4839 const CallBase *CBI = dyn_cast<CallBase>(&I);
4841 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
4842 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
4844 // Check to make sure that only first-class-values are operands to
4845 // instructions.
4846 if (!I.getOperand(i)->getType()->isFirstClassType()) {
4847 Check(false, "Instruction operands must be first-class values!", &I);
4850 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
4851 // This code checks whether the function is used as the operand of a
4852 // clang_arc_attachedcall operand bundle.
4853 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
4854 int Idx) {
4855 return CBI && CBI->isOperandBundleOfType(
4856 LLVMContext::OB_clang_arc_attachedcall, Idx);
4859 // Check to make sure that the "address of" an intrinsic function is never
4860 // taken. Ignore cases where the address of the intrinsic function is used
4861 // as the argument of operand bundle "clang.arc.attachedcall" as those
4862 // cases are handled in verifyAttachedCallBundle.
4863 Check((!F->isIntrinsic() ||
4864 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
4865 IsAttachedCallOperand(F, CBI, i)),
4866 "Cannot take the address of an intrinsic!", &I);
4867 Check(!F->isIntrinsic() || isa<CallInst>(I) ||
4868 F->getIntrinsicID() == Intrinsic::donothing ||
4869 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
4870 F->getIntrinsicID() == Intrinsic::seh_try_end ||
4871 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
4872 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
4873 F->getIntrinsicID() == Intrinsic::coro_resume ||
4874 F->getIntrinsicID() == Intrinsic::coro_destroy ||
4875 F->getIntrinsicID() ==
4876 Intrinsic::experimental_patchpoint_void ||
4877 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
4878 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
4879 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
4880 IsAttachedCallOperand(F, CBI, i),
4881 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4882 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
4883 &I);
4884 Check(F->getParent() == &M, "Referencing function in another module!", &I,
4885 &M, F, F->getParent());
4886 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
4887 Check(OpBB->getParent() == BB->getParent(),
4888 "Referring to a basic block in another function!", &I);
4889 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
4890 Check(OpArg->getParent() == BB->getParent(),
4891 "Referring to an argument in another function!", &I);
4892 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
4893 Check(GV->getParent() == &M, "Referencing global in another module!", &I,
4894 &M, GV, GV->getParent());
4895 } else if (isa<Instruction>(I.getOperand(i))) {
4896 verifyDominatesUse(I, i);
4897 } else if (isa<InlineAsm>(I.getOperand(i))) {
4898 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
4899 "Cannot take the address of an inline asm!", &I);
4900 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
4901 if (CE->getType()->isPtrOrPtrVectorTy()) {
4902 // If we have a ConstantExpr pointer, we need to see if it came from an
4903 // illegal bitcast.
4904 visitConstantExprsRecursively(CE);
4909 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
4910 Check(I.getType()->isFPOrFPVectorTy(),
4911 "fpmath requires a floating point result!", &I);
4912 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
4913 if (ConstantFP *CFP0 =
4914 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
4915 const APFloat &Accuracy = CFP0->getValueAPF();
4916 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
4917 "fpmath accuracy must have float type", &I);
4918 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
4919 "fpmath accuracy not a positive number!", &I);
4920 } else {
4921 Check(false, "invalid fpmath accuracy!", &I);
4925 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
4926 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
4927 "Ranges are only for loads, calls and invokes!", &I);
4928 visitRangeMetadata(I, Range, I.getType());
4931 if (I.hasMetadata(LLVMContext::MD_invariant_group)) {
4932 Check(isa<LoadInst>(I) || isa<StoreInst>(I),
4933 "invariant.group metadata is only for loads and stores", &I);
4936 if (MDNode *MD = I.getMetadata(LLVMContext::MD_nonnull)) {
4937 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
4938 &I);
4939 Check(isa<LoadInst>(I),
4940 "nonnull applies only to load instructions, use attributes"
4941 " for calls or invokes",
4942 &I);
4943 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
4946 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
4947 visitDereferenceableMetadata(I, MD);
4949 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
4950 visitDereferenceableMetadata(I, MD);
4952 if (MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa))
4953 TBAAVerifyHelper.visitTBAAMetadata(I, TBAA);
4955 if (MDNode *MD = I.getMetadata(LLVMContext::MD_noalias))
4956 visitAliasScopeListMetadata(MD);
4957 if (MDNode *MD = I.getMetadata(LLVMContext::MD_alias_scope))
4958 visitAliasScopeListMetadata(MD);
4960 if (MDNode *MD = I.getMetadata(LLVMContext::MD_access_group))
4961 visitAccessGroupMetadata(MD);
4963 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
4964 Check(I.getType()->isPointerTy(), "align applies only to pointer types",
4965 &I);
4966 Check(isa<LoadInst>(I),
4967 "align applies only to load instructions, "
4968 "use attributes for calls or invokes",
4969 &I);
4970 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
4971 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
4972 Check(CI && CI->getType()->isIntegerTy(64),
4973 "align metadata value must be an i64!", &I);
4974 uint64_t Align = CI->getZExtValue();
4975 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
4976 &I);
4977 Check(Align <= Value::MaximumAlignment,
4978 "alignment is larger that implementation defined limit", &I);
4981 if (MDNode *MD = I.getMetadata(LLVMContext::MD_prof))
4982 visitProfMetadata(I, MD);
4984 if (MDNode *MD = I.getMetadata(LLVMContext::MD_memprof))
4985 visitMemProfMetadata(I, MD);
4987 if (MDNode *MD = I.getMetadata(LLVMContext::MD_callsite))
4988 visitCallsiteMetadata(I, MD);
4990 if (MDNode *MD = I.getMetadata(LLVMContext::MD_DIAssignID))
4991 visitDIAssignIDMetadata(I, MD);
4993 if (MDNode *Annotation = I.getMetadata(LLVMContext::MD_annotation))
4994 visitAnnotationMetadata(Annotation);
4996 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
4997 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
4998 visitMDNode(*N, AreDebugLocsAllowed::Yes);
5001 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
5002 verifyFragmentExpression(*DII);
5003 verifyNotEntryValue(*DII);
5006 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5007 I.getAllMetadata(MDs);
5008 for (auto Attachment : MDs) {
5009 unsigned Kind = Attachment.first;
5010 auto AllowLocs =
5011 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5012 ? AreDebugLocsAllowed::Yes
5013 : AreDebugLocsAllowed::No;
5014 visitMDNode(*Attachment.second, AllowLocs);
5017 InstsInThisBlock.insert(&I);
5020 /// Allow intrinsics to be verified in different ways.
5021 void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5022 Function *IF = Call.getCalledFunction();
5023 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5024 IF);
5026 // Verify that the intrinsic prototype lines up with what the .td files
5027 // describe.
5028 FunctionType *IFTy = IF->getFunctionType();
5029 bool IsVarArg = IFTy->isVarArg();
5031 SmallVector<Intrinsic::IITDescriptor, 8> Table;
5032 getIntrinsicInfoTableEntries(ID, Table);
5033 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5035 // Walk the descriptors to extract overloaded types.
5036 SmallVector<Type *, 4> ArgTys;
5037 Intrinsic::MatchIntrinsicTypesResult Res =
5038 Intrinsic::matchIntrinsicSignature(IFTy, TableRef, ArgTys);
5039 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5040 "Intrinsic has incorrect return type!", IF);
5041 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5042 "Intrinsic has incorrect argument type!", IF);
5044 // Verify if the intrinsic call matches the vararg property.
5045 if (IsVarArg)
5046 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5047 "Intrinsic was not defined with variable arguments!", IF);
5048 else
5049 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5050 "Callsite was not defined with variable arguments!", IF);
5052 // All descriptors should be absorbed by now.
5053 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5055 // Now that we have the intrinsic ID and the actual argument types (and we
5056 // know they are legal for the intrinsic!) get the intrinsic name through the
5057 // usual means. This allows us to verify the mangling of argument types into
5058 // the name.
5059 const std::string ExpectedName =
5060 Intrinsic::getName(ID, ArgTys, IF->getParent(), IFTy);
5061 Check(ExpectedName == IF->getName(),
5062 "Intrinsic name not mangled correctly for type arguments! "
5063 "Should be: " +
5064 ExpectedName,
5065 IF);
5067 // If the intrinsic takes MDNode arguments, verify that they are either global
5068 // or are local to *this* function.
5069 for (Value *V : Call.args()) {
5070 if (auto *MD = dyn_cast<MetadataAsValue>(V))
5071 visitMetadataAsValue(*MD, Call.getCaller());
5072 if (auto *Const = dyn_cast<Constant>(V))
5073 Check(!Const->getType()->isX86_AMXTy(),
5074 "const x86_amx is not allowed in argument!");
5077 switch (ID) {
5078 default:
5079 break;
5080 case Intrinsic::assume: {
5081 for (auto &Elem : Call.bundle_op_infos()) {
5082 unsigned ArgCount = Elem.End - Elem.Begin;
5083 // Separate storage assumptions are special insofar as they're the only
5084 // operand bundles allowed on assumes that aren't parameter attributes.
5085 if (Elem.Tag->getKey() == "separate_storage") {
5086 Check(ArgCount == 2,
5087 "separate_storage assumptions should have 2 arguments", Call);
5088 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5089 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5090 "arguments to separate_storage assumptions should be pointers",
5091 Call);
5092 return;
5094 Check(Elem.Tag->getKey() == "ignore" ||
5095 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5096 "tags must be valid attribute names", Call);
5097 Attribute::AttrKind Kind =
5098 Attribute::getAttrKindFromName(Elem.Tag->getKey());
5099 if (Kind == Attribute::Alignment) {
5100 Check(ArgCount <= 3 && ArgCount >= 2,
5101 "alignment assumptions should have 2 or 3 arguments", Call);
5102 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5103 "first argument should be a pointer", Call);
5104 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5105 "second argument should be an integer", Call);
5106 if (ArgCount == 3)
5107 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5108 "third argument should be an integer if present", Call);
5109 return;
5111 Check(ArgCount <= 2, "too many arguments", Call);
5112 if (Kind == Attribute::None)
5113 break;
5114 if (Attribute::isIntAttrKind(Kind)) {
5115 Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5116 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5117 "the second argument should be a constant integral value", Call);
5118 } else if (Attribute::canUseAsParamAttr(Kind)) {
5119 Check((ArgCount) == 1, "this attribute should have one argument", Call);
5120 } else if (Attribute::canUseAsFnAttr(Kind)) {
5121 Check((ArgCount) == 0, "this attribute has no argument", Call);
5124 break;
5126 case Intrinsic::coro_id: {
5127 auto *InfoArg = Call.getArgOperand(3)->stripPointerCasts();
5128 if (isa<ConstantPointerNull>(InfoArg))
5129 break;
5130 auto *GV = dyn_cast<GlobalVariable>(InfoArg);
5131 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5132 "info argument of llvm.coro.id must refer to an initialized "
5133 "constant");
5134 Constant *Init = GV->getInitializer();
5135 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5136 "info argument of llvm.coro.id must refer to either a struct or "
5137 "an array");
5138 break;
5140 case Intrinsic::is_fpclass: {
5141 const ConstantInt *TestMask = cast<ConstantInt>(Call.getOperand(1));
5142 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5143 "unsupported bits for llvm.is.fpclass test mask");
5144 break;
5146 case Intrinsic::fptrunc_round: {
5147 // Check the rounding mode
5148 Metadata *MD = nullptr;
5149 auto *MAV = dyn_cast<MetadataAsValue>(Call.getOperand(1));
5150 if (MAV)
5151 MD = MAV->getMetadata();
5153 Check(MD != nullptr, "missing rounding mode argument", Call);
5155 Check(isa<MDString>(MD),
5156 ("invalid value for llvm.fptrunc.round metadata operand"
5157 " (the operand should be a string)"),
5158 MD);
5160 std::optional<RoundingMode> RoundMode =
5161 convertStrToRoundingMode(cast<MDString>(MD)->getString());
5162 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5163 "unsupported rounding mode argument", Call);
5164 break;
5166 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5167 #include "llvm/IR/VPIntrinsics.def"
5168 visitVPIntrinsic(cast<VPIntrinsic>(Call));
5169 break;
5170 #define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5171 case Intrinsic::INTRINSIC:
5172 #include "llvm/IR/ConstrainedOps.def"
5173 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(Call));
5174 break;
5175 case Intrinsic::dbg_declare: // llvm.dbg.declare
5176 Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5177 "invalid llvm.dbg.declare intrinsic call 1", Call);
5178 visitDbgIntrinsic("declare", cast<DbgVariableIntrinsic>(Call));
5179 break;
5180 case Intrinsic::dbg_value: // llvm.dbg.value
5181 visitDbgIntrinsic("value", cast<DbgVariableIntrinsic>(Call));
5182 break;
5183 case Intrinsic::dbg_assign: // llvm.dbg.assign
5184 visitDbgIntrinsic("assign", cast<DbgVariableIntrinsic>(Call));
5185 break;
5186 case Intrinsic::dbg_label: // llvm.dbg.label
5187 visitDbgLabelIntrinsic("label", cast<DbgLabelInst>(Call));
5188 break;
5189 case Intrinsic::memcpy:
5190 case Intrinsic::memcpy_inline:
5191 case Intrinsic::memmove:
5192 case Intrinsic::memset:
5193 case Intrinsic::memset_inline: {
5194 break;
5196 case Intrinsic::memcpy_element_unordered_atomic:
5197 case Intrinsic::memmove_element_unordered_atomic:
5198 case Intrinsic::memset_element_unordered_atomic: {
5199 const auto *AMI = cast<AtomicMemIntrinsic>(&Call);
5201 ConstantInt *ElementSizeCI =
5202 cast<ConstantInt>(AMI->getRawElementSizeInBytes());
5203 const APInt &ElementSizeVal = ElementSizeCI->getValue();
5204 Check(ElementSizeVal.isPowerOf2(),
5205 "element size of the element-wise atomic memory intrinsic "
5206 "must be a power of 2",
5207 Call);
5209 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5210 return Alignment && ElementSizeVal.ule(Alignment->value());
5212 Check(IsValidAlignment(AMI->getDestAlign()),
5213 "incorrect alignment of the destination argument", Call);
5214 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(AMI)) {
5215 Check(IsValidAlignment(AMT->getSourceAlign()),
5216 "incorrect alignment of the source argument", Call);
5218 break;
5220 case Intrinsic::call_preallocated_setup: {
5221 auto *NumArgs = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5222 Check(NumArgs != nullptr,
5223 "llvm.call.preallocated.setup argument must be a constant");
5224 bool FoundCall = false;
5225 for (User *U : Call.users()) {
5226 auto *UseCall = dyn_cast<CallBase>(U);
5227 Check(UseCall != nullptr,
5228 "Uses of llvm.call.preallocated.setup must be calls");
5229 const Function *Fn = UseCall->getCalledFunction();
5230 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5231 auto *AllocArgIndex = dyn_cast<ConstantInt>(UseCall->getArgOperand(1));
5232 Check(AllocArgIndex != nullptr,
5233 "llvm.call.preallocated.alloc arg index must be a constant");
5234 auto AllocArgIndexInt = AllocArgIndex->getValue();
5235 Check(AllocArgIndexInt.sge(0) &&
5236 AllocArgIndexInt.slt(NumArgs->getValue()),
5237 "llvm.call.preallocated.alloc arg index must be between 0 and "
5238 "corresponding "
5239 "llvm.call.preallocated.setup's argument count");
5240 } else if (Fn && Fn->getIntrinsicID() ==
5241 Intrinsic::call_preallocated_teardown) {
5242 // nothing to do
5243 } else {
5244 Check(!FoundCall, "Can have at most one call corresponding to a "
5245 "llvm.call.preallocated.setup");
5246 FoundCall = true;
5247 size_t NumPreallocatedArgs = 0;
5248 for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5249 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5250 ++NumPreallocatedArgs;
5253 Check(NumPreallocatedArgs != 0,
5254 "cannot use preallocated intrinsics on a call without "
5255 "preallocated arguments");
5256 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5257 "llvm.call.preallocated.setup arg size must be equal to number "
5258 "of preallocated arguments "
5259 "at call site",
5260 Call, *UseCall);
5261 // getOperandBundle() cannot be called if more than one of the operand
5262 // bundle exists. There is already a check elsewhere for this, so skip
5263 // here if we see more than one.
5264 if (UseCall->countOperandBundlesOfType(LLVMContext::OB_preallocated) >
5265 1) {
5266 return;
5268 auto PreallocatedBundle =
5269 UseCall->getOperandBundle(LLVMContext::OB_preallocated);
5270 Check(PreallocatedBundle,
5271 "Use of llvm.call.preallocated.setup outside intrinsics "
5272 "must be in \"preallocated\" operand bundle");
5273 Check(PreallocatedBundle->Inputs.front().get() == &Call,
5274 "preallocated bundle must have token from corresponding "
5275 "llvm.call.preallocated.setup");
5278 break;
5280 case Intrinsic::call_preallocated_arg: {
5281 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5282 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5283 Intrinsic::call_preallocated_setup,
5284 "llvm.call.preallocated.arg token argument must be a "
5285 "llvm.call.preallocated.setup");
5286 Check(Call.hasFnAttr(Attribute::Preallocated),
5287 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5288 "call site attribute");
5289 break;
5291 case Intrinsic::call_preallocated_teardown: {
5292 auto *Token = dyn_cast<CallBase>(Call.getArgOperand(0));
5293 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5294 Intrinsic::call_preallocated_setup,
5295 "llvm.call.preallocated.teardown token argument must be a "
5296 "llvm.call.preallocated.setup");
5297 break;
5299 case Intrinsic::gcroot:
5300 case Intrinsic::gcwrite:
5301 case Intrinsic::gcread:
5302 if (ID == Intrinsic::gcroot) {
5303 AllocaInst *AI =
5304 dyn_cast<AllocaInst>(Call.getArgOperand(0)->stripPointerCasts());
5305 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5306 Check(isa<Constant>(Call.getArgOperand(1)),
5307 "llvm.gcroot parameter #2 must be a constant.", Call);
5308 if (!AI->getAllocatedType()->isPointerTy()) {
5309 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5310 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5311 "or argument #2 must be a non-null constant.",
5312 Call);
5316 Check(Call.getParent()->getParent()->hasGC(),
5317 "Enclosing function does not use GC.", Call);
5318 break;
5319 case Intrinsic::init_trampoline:
5320 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5321 "llvm.init_trampoline parameter #2 must resolve to a function.",
5322 Call);
5323 break;
5324 case Intrinsic::prefetch:
5325 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5326 "rw argument to llvm.prefetch must be 0-1", Call);
5327 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5328 "locality argument to llvm.prefetch must be 0-4", Call);
5329 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5330 "cache type argument to llvm.prefetch must be 0-1", Call);
5331 break;
5332 case Intrinsic::stackprotector:
5333 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5334 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5335 break;
5336 case Intrinsic::localescape: {
5337 BasicBlock *BB = Call.getParent();
5338 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5339 Call);
5340 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5341 Call);
5342 for (Value *Arg : Call.args()) {
5343 if (isa<ConstantPointerNull>(Arg))
5344 continue; // Null values are allowed as placeholders.
5345 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
5346 Check(AI && AI->isStaticAlloca(),
5347 "llvm.localescape only accepts static allocas", Call);
5349 FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5350 SawFrameEscape = true;
5351 break;
5353 case Intrinsic::localrecover: {
5354 Value *FnArg = Call.getArgOperand(0)->stripPointerCasts();
5355 Function *Fn = dyn_cast<Function>(FnArg);
5356 Check(Fn && !Fn->isDeclaration(),
5357 "llvm.localrecover first "
5358 "argument must be function defined in this module",
5359 Call);
5360 auto *IdxArg = cast<ConstantInt>(Call.getArgOperand(2));
5361 auto &Entry = FrameEscapeInfo[Fn];
5362 Entry.second = unsigned(
5363 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
5364 break;
5367 case Intrinsic::experimental_gc_statepoint:
5368 if (auto *CI = dyn_cast<CallInst>(&Call))
5369 Check(!CI->isInlineAsm(),
5370 "gc.statepoint support for inline assembly unimplemented", CI);
5371 Check(Call.getParent()->getParent()->hasGC(),
5372 "Enclosing function does not use GC.", Call);
5374 verifyStatepoint(Call);
5375 break;
5376 case Intrinsic::experimental_gc_result: {
5377 Check(Call.getParent()->getParent()->hasGC(),
5378 "Enclosing function does not use GC.", Call);
5380 auto *Statepoint = Call.getArgOperand(0);
5381 if (isa<UndefValue>(Statepoint))
5382 break;
5384 // Are we tied to a statepoint properly?
5385 const auto *StatepointCall = dyn_cast<CallBase>(Statepoint);
5386 const Function *StatepointFn =
5387 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5388 Check(StatepointFn && StatepointFn->isDeclaration() &&
5389 StatepointFn->getIntrinsicID() ==
5390 Intrinsic::experimental_gc_statepoint,
5391 "gc.result operand #1 must be from a statepoint", Call,
5392 Call.getArgOperand(0));
5394 // Check that result type matches wrapped callee.
5395 auto *TargetFuncType =
5396 cast<FunctionType>(StatepointCall->getParamElementType(2));
5397 Check(Call.getType() == TargetFuncType->getReturnType(),
5398 "gc.result result type does not match wrapped callee", Call);
5399 break;
5401 case Intrinsic::experimental_gc_relocate: {
5402 Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5404 Check(isa<PointerType>(Call.getType()->getScalarType()),
5405 "gc.relocate must return a pointer or a vector of pointers", Call);
5407 // Check that this relocate is correctly tied to the statepoint
5409 // This is case for relocate on the unwinding path of an invoke statepoint
5410 if (LandingPadInst *LandingPad =
5411 dyn_cast<LandingPadInst>(Call.getArgOperand(0))) {
5413 const BasicBlock *InvokeBB =
5414 LandingPad->getParent()->getUniquePredecessor();
5416 // Landingpad relocates should have only one predecessor with invoke
5417 // statepoint terminator
5418 Check(InvokeBB, "safepoints should have unique landingpads",
5419 LandingPad->getParent());
5420 Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5421 InvokeBB);
5422 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5423 "gc relocate should be linked to a statepoint", InvokeBB);
5424 } else {
5425 // In all other cases relocate should be tied to the statepoint directly.
5426 // This covers relocates on a normal return path of invoke statepoint and
5427 // relocates of a call statepoint.
5428 auto *Token = Call.getArgOperand(0);
5429 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5430 "gc relocate is incorrectly tied to the statepoint", Call, Token);
5433 // Verify rest of the relocate arguments.
5434 const Value &StatepointCall = *cast<GCRelocateInst>(Call).getStatepoint();
5436 // Both the base and derived must be piped through the safepoint.
5437 Value *Base = Call.getArgOperand(1);
5438 Check(isa<ConstantInt>(Base),
5439 "gc.relocate operand #2 must be integer offset", Call);
5441 Value *Derived = Call.getArgOperand(2);
5442 Check(isa<ConstantInt>(Derived),
5443 "gc.relocate operand #3 must be integer offset", Call);
5445 const uint64_t BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
5446 const uint64_t DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
5448 // Check the bounds
5449 if (isa<UndefValue>(StatepointCall))
5450 break;
5451 if (auto Opt = cast<GCStatepointInst>(StatepointCall)
5452 .getOperandBundle(LLVMContext::OB_gc_live)) {
5453 Check(BaseIndex < Opt->Inputs.size(),
5454 "gc.relocate: statepoint base index out of bounds", Call);
5455 Check(DerivedIndex < Opt->Inputs.size(),
5456 "gc.relocate: statepoint derived index out of bounds", Call);
5459 // Relocated value must be either a pointer type or vector-of-pointer type,
5460 // but gc_relocate does not need to return the same pointer type as the
5461 // relocated pointer. It can be casted to the correct type later if it's
5462 // desired. However, they must have the same address space and 'vectorness'
5463 GCRelocateInst &Relocate = cast<GCRelocateInst>(Call);
5464 auto *ResultType = Call.getType();
5465 auto *DerivedType = Relocate.getDerivedPtr()->getType();
5466 auto *BaseType = Relocate.getBasePtr()->getType();
5468 Check(BaseType->isPtrOrPtrVectorTy(),
5469 "gc.relocate: relocated value must be a pointer", Call);
5470 Check(DerivedType->isPtrOrPtrVectorTy(),
5471 "gc.relocate: relocated value must be a pointer", Call);
5473 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5474 "gc.relocate: vector relocates to vector and pointer to pointer",
5475 Call);
5476 Check(
5477 ResultType->getPointerAddressSpace() ==
5478 DerivedType->getPointerAddressSpace(),
5479 "gc.relocate: relocating a pointer shouldn't change its address space",
5480 Call);
5482 auto GC = llvm::getGCStrategy(Relocate.getFunction()->getGC());
5483 Check(GC, "gc.relocate: calling function must have GCStrategy",
5484 Call.getFunction());
5485 if (GC) {
5486 auto isGCPtr = [&GC](Type *PTy) {
5487 return GC->isGCManagedPointer(PTy->getScalarType()).value_or(true);
5489 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5490 Check(isGCPtr(BaseType),
5491 "gc.relocate: relocated value must be a gc pointer", Call);
5492 Check(isGCPtr(DerivedType),
5493 "gc.relocate: relocated value must be a gc pointer", Call);
5495 break;
5497 case Intrinsic::eh_exceptioncode:
5498 case Intrinsic::eh_exceptionpointer: {
5499 Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5500 "eh.exceptionpointer argument must be a catchpad", Call);
5501 break;
5503 case Intrinsic::get_active_lane_mask: {
5504 Check(Call.getType()->isVectorTy(),
5505 "get_active_lane_mask: must return a "
5506 "vector",
5507 Call);
5508 auto *ElemTy = Call.getType()->getScalarType();
5509 Check(ElemTy->isIntegerTy(1),
5510 "get_active_lane_mask: element type is not "
5511 "i1",
5512 Call);
5513 break;
5515 case Intrinsic::experimental_get_vector_length: {
5516 ConstantInt *VF = cast<ConstantInt>(Call.getArgOperand(1));
5517 Check(!VF->isNegative() && !VF->isZero(),
5518 "get_vector_length: VF must be positive", Call);
5519 break;
5521 case Intrinsic::masked_load: {
5522 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5523 Call);
5525 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(1));
5526 Value *Mask = Call.getArgOperand(2);
5527 Value *PassThru = Call.getArgOperand(3);
5528 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5529 Call);
5530 Check(Alignment->getValue().isPowerOf2(),
5531 "masked_load: alignment must be a power of 2", Call);
5532 Check(PassThru->getType() == Call.getType(),
5533 "masked_load: pass through and return type must match", Call);
5534 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5535 cast<VectorType>(Call.getType())->getElementCount(),
5536 "masked_load: vector mask must be same length as return", Call);
5537 break;
5539 case Intrinsic::masked_store: {
5540 Value *Val = Call.getArgOperand(0);
5541 ConstantInt *Alignment = cast<ConstantInt>(Call.getArgOperand(2));
5542 Value *Mask = Call.getArgOperand(3);
5543 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5544 Call);
5545 Check(Alignment->getValue().isPowerOf2(),
5546 "masked_store: alignment must be a power of 2", Call);
5547 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5548 cast<VectorType>(Val->getType())->getElementCount(),
5549 "masked_store: vector mask must be same length as value", Call);
5550 break;
5553 case Intrinsic::masked_gather: {
5554 const APInt &Alignment =
5555 cast<ConstantInt>(Call.getArgOperand(1))->getValue();
5556 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5557 "masked_gather: alignment must be 0 or a power of 2", Call);
5558 break;
5560 case Intrinsic::masked_scatter: {
5561 const APInt &Alignment =
5562 cast<ConstantInt>(Call.getArgOperand(2))->getValue();
5563 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5564 "masked_scatter: alignment must be 0 or a power of 2", Call);
5565 break;
5568 case Intrinsic::experimental_guard: {
5569 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5570 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5571 "experimental_guard must have exactly one "
5572 "\"deopt\" operand bundle");
5573 break;
5576 case Intrinsic::experimental_deoptimize: {
5577 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5578 Call);
5579 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5580 "experimental_deoptimize must have exactly one "
5581 "\"deopt\" operand bundle");
5582 Check(Call.getType() == Call.getFunction()->getReturnType(),
5583 "experimental_deoptimize return type must match caller return type");
5585 if (isa<CallInst>(Call)) {
5586 auto *RI = dyn_cast<ReturnInst>(Call.getNextNode());
5587 Check(RI,
5588 "calls to experimental_deoptimize must be followed by a return");
5590 if (!Call.getType()->isVoidTy() && RI)
5591 Check(RI->getReturnValue() == &Call,
5592 "calls to experimental_deoptimize must be followed by a return "
5593 "of the value computed by experimental_deoptimize");
5596 break;
5598 case Intrinsic::vector_reduce_and:
5599 case Intrinsic::vector_reduce_or:
5600 case Intrinsic::vector_reduce_xor:
5601 case Intrinsic::vector_reduce_add:
5602 case Intrinsic::vector_reduce_mul:
5603 case Intrinsic::vector_reduce_smax:
5604 case Intrinsic::vector_reduce_smin:
5605 case Intrinsic::vector_reduce_umax:
5606 case Intrinsic::vector_reduce_umin: {
5607 Type *ArgTy = Call.getArgOperand(0)->getType();
5608 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5609 "Intrinsic has incorrect argument type!");
5610 break;
5612 case Intrinsic::vector_reduce_fmax:
5613 case Intrinsic::vector_reduce_fmin: {
5614 Type *ArgTy = Call.getArgOperand(0)->getType();
5615 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5616 "Intrinsic has incorrect argument type!");
5617 break;
5619 case Intrinsic::vector_reduce_fadd:
5620 case Intrinsic::vector_reduce_fmul: {
5621 // Unlike the other reductions, the first argument is a start value. The
5622 // second argument is the vector to be reduced.
5623 Type *ArgTy = Call.getArgOperand(1)->getType();
5624 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5625 "Intrinsic has incorrect argument type!");
5626 break;
5628 case Intrinsic::smul_fix:
5629 case Intrinsic::smul_fix_sat:
5630 case Intrinsic::umul_fix:
5631 case Intrinsic::umul_fix_sat:
5632 case Intrinsic::sdiv_fix:
5633 case Intrinsic::sdiv_fix_sat:
5634 case Intrinsic::udiv_fix:
5635 case Intrinsic::udiv_fix_sat: {
5636 Value *Op1 = Call.getArgOperand(0);
5637 Value *Op2 = Call.getArgOperand(1);
5638 Check(Op1->getType()->isIntOrIntVectorTy(),
5639 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5640 "vector of ints");
5641 Check(Op2->getType()->isIntOrIntVectorTy(),
5642 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5643 "vector of ints");
5645 auto *Op3 = cast<ConstantInt>(Call.getArgOperand(2));
5646 Check(Op3->getType()->getBitWidth() <= 32,
5647 "third argument of [us][mul|div]_fix[_sat] must fit within 32 bits");
5649 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5650 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5651 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5652 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5653 "the operands");
5654 } else {
5655 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5656 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5657 "to the width of the operands");
5659 break;
5661 case Intrinsic::lround:
5662 case Intrinsic::llround:
5663 case Intrinsic::lrint:
5664 case Intrinsic::llrint: {
5665 Type *ValTy = Call.getArgOperand(0)->getType();
5666 Type *ResultTy = Call.getType();
5667 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5668 "Intrinsic does not support vectors", &Call);
5669 break;
5671 case Intrinsic::bswap: {
5672 Type *Ty = Call.getType();
5673 unsigned Size = Ty->getScalarSizeInBits();
5674 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5675 break;
5677 case Intrinsic::invariant_start: {
5678 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Call.getArgOperand(0));
5679 Check(InvariantSize &&
5680 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5681 "invariant_start parameter must be -1, 0 or a positive number",
5682 &Call);
5683 break;
5685 case Intrinsic::matrix_multiply:
5686 case Intrinsic::matrix_transpose:
5687 case Intrinsic::matrix_column_major_load:
5688 case Intrinsic::matrix_column_major_store: {
5689 Function *IF = Call.getCalledFunction();
5690 ConstantInt *Stride = nullptr;
5691 ConstantInt *NumRows;
5692 ConstantInt *NumColumns;
5693 VectorType *ResultTy;
5694 Type *Op0ElemTy = nullptr;
5695 Type *Op1ElemTy = nullptr;
5696 switch (ID) {
5697 case Intrinsic::matrix_multiply: {
5698 NumRows = cast<ConstantInt>(Call.getArgOperand(2));
5699 ConstantInt *N = cast<ConstantInt>(Call.getArgOperand(3));
5700 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5701 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
5702 ->getNumElements() ==
5703 NumRows->getZExtValue() * N->getZExtValue(),
5704 "First argument of a matrix operation does not match specified "
5705 "shape!");
5706 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
5707 ->getNumElements() ==
5708 N->getZExtValue() * NumColumns->getZExtValue(),
5709 "Second argument of a matrix operation does not match specified "
5710 "shape!");
5712 ResultTy = cast<VectorType>(Call.getType());
5713 Op0ElemTy =
5714 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5715 Op1ElemTy =
5716 cast<VectorType>(Call.getArgOperand(1)->getType())->getElementType();
5717 break;
5719 case Intrinsic::matrix_transpose:
5720 NumRows = cast<ConstantInt>(Call.getArgOperand(1));
5721 NumColumns = cast<ConstantInt>(Call.getArgOperand(2));
5722 ResultTy = cast<VectorType>(Call.getType());
5723 Op0ElemTy =
5724 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5725 break;
5726 case Intrinsic::matrix_column_major_load: {
5727 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(1));
5728 NumRows = cast<ConstantInt>(Call.getArgOperand(3));
5729 NumColumns = cast<ConstantInt>(Call.getArgOperand(4));
5730 ResultTy = cast<VectorType>(Call.getType());
5731 break;
5733 case Intrinsic::matrix_column_major_store: {
5734 Stride = dyn_cast<ConstantInt>(Call.getArgOperand(2));
5735 NumRows = cast<ConstantInt>(Call.getArgOperand(4));
5736 NumColumns = cast<ConstantInt>(Call.getArgOperand(5));
5737 ResultTy = cast<VectorType>(Call.getArgOperand(0)->getType());
5738 Op0ElemTy =
5739 cast<VectorType>(Call.getArgOperand(0)->getType())->getElementType();
5740 break;
5742 default:
5743 llvm_unreachable("unexpected intrinsic");
5746 Check(ResultTy->getElementType()->isIntegerTy() ||
5747 ResultTy->getElementType()->isFloatingPointTy(),
5748 "Result type must be an integer or floating-point type!", IF);
5750 if (Op0ElemTy)
5751 Check(ResultTy->getElementType() == Op0ElemTy,
5752 "Vector element type mismatch of the result and first operand "
5753 "vector!",
5754 IF);
5756 if (Op1ElemTy)
5757 Check(ResultTy->getElementType() == Op1ElemTy,
5758 "Vector element type mismatch of the result and second operand "
5759 "vector!",
5760 IF);
5762 Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
5763 NumRows->getZExtValue() * NumColumns->getZExtValue(),
5764 "Result of a matrix operation does not fit in the returned vector!");
5766 if (Stride)
5767 Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
5768 "Stride must be greater or equal than the number of rows!", IF);
5770 break;
5772 case Intrinsic::experimental_vector_splice: {
5773 VectorType *VecTy = cast<VectorType>(Call.getType());
5774 int64_t Idx = cast<ConstantInt>(Call.getArgOperand(2))->getSExtValue();
5775 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
5776 if (Call.getParent() && Call.getParent()->getParent()) {
5777 AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
5778 if (Attrs.hasFnAttr(Attribute::VScaleRange))
5779 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
5781 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
5782 (Idx >= 0 && Idx < KnownMinNumElements),
5783 "The splice index exceeds the range [-VL, VL-1] where VL is the "
5784 "known minimum number of elements in the vector. For scalable "
5785 "vectors the minimum number of elements is determined from "
5786 "vscale_range.",
5787 &Call);
5788 break;
5790 case Intrinsic::experimental_stepvector: {
5791 VectorType *VecTy = dyn_cast<VectorType>(Call.getType());
5792 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
5793 VecTy->getScalarSizeInBits() >= 8,
5794 "experimental_stepvector only supported for vectors of integers "
5795 "with a bitwidth of at least 8.",
5796 &Call);
5797 break;
5799 case Intrinsic::vector_insert: {
5800 Value *Vec = Call.getArgOperand(0);
5801 Value *SubVec = Call.getArgOperand(1);
5802 Value *Idx = Call.getArgOperand(2);
5803 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5805 VectorType *VecTy = cast<VectorType>(Vec->getType());
5806 VectorType *SubVecTy = cast<VectorType>(SubVec->getType());
5808 ElementCount VecEC = VecTy->getElementCount();
5809 ElementCount SubVecEC = SubVecTy->getElementCount();
5810 Check(VecTy->getElementType() == SubVecTy->getElementType(),
5811 "vector_insert parameters must have the same element "
5812 "type.",
5813 &Call);
5814 Check(IdxN % SubVecEC.getKnownMinValue() == 0,
5815 "vector_insert index must be a constant multiple of "
5816 "the subvector's known minimum vector length.");
5818 // If this insertion is not the 'mixed' case where a fixed vector is
5819 // inserted into a scalable vector, ensure that the insertion of the
5820 // subvector does not overrun the parent vector.
5821 if (VecEC.isScalable() == SubVecEC.isScalable()) {
5822 Check(IdxN < VecEC.getKnownMinValue() &&
5823 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5824 "subvector operand of vector_insert would overrun the "
5825 "vector being inserted into.");
5827 break;
5829 case Intrinsic::vector_extract: {
5830 Value *Vec = Call.getArgOperand(0);
5831 Value *Idx = Call.getArgOperand(1);
5832 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
5834 VectorType *ResultTy = cast<VectorType>(Call.getType());
5835 VectorType *VecTy = cast<VectorType>(Vec->getType());
5837 ElementCount VecEC = VecTy->getElementCount();
5838 ElementCount ResultEC = ResultTy->getElementCount();
5840 Check(ResultTy->getElementType() == VecTy->getElementType(),
5841 "vector_extract result must have the same element "
5842 "type as the input vector.",
5843 &Call);
5844 Check(IdxN % ResultEC.getKnownMinValue() == 0,
5845 "vector_extract index must be a constant multiple of "
5846 "the result type's known minimum vector length.");
5848 // If this extraction is not the 'mixed' case where a fixed vector is
5849 // extracted from a scalable vector, ensure that the extraction does not
5850 // overrun the parent vector.
5851 if (VecEC.isScalable() == ResultEC.isScalable()) {
5852 Check(IdxN < VecEC.getKnownMinValue() &&
5853 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
5854 "vector_extract would overrun.");
5856 break;
5858 case Intrinsic::experimental_noalias_scope_decl: {
5859 NoAliasScopeDecls.push_back(cast<IntrinsicInst>(&Call));
5860 break;
5862 case Intrinsic::preserve_array_access_index:
5863 case Intrinsic::preserve_struct_access_index:
5864 case Intrinsic::aarch64_ldaxr:
5865 case Intrinsic::aarch64_ldxr:
5866 case Intrinsic::arm_ldaex:
5867 case Intrinsic::arm_ldrex: {
5868 Type *ElemTy = Call.getParamElementType(0);
5869 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
5870 &Call);
5871 break;
5873 case Intrinsic::aarch64_stlxr:
5874 case Intrinsic::aarch64_stxr:
5875 case Intrinsic::arm_stlex:
5876 case Intrinsic::arm_strex: {
5877 Type *ElemTy = Call.getAttributes().getParamElementType(1);
5878 Check(ElemTy,
5879 "Intrinsic requires elementtype attribute on second argument.",
5880 &Call);
5881 break;
5883 case Intrinsic::aarch64_prefetch: {
5884 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5885 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5886 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5887 "target argument to llvm.aarch64.prefetch must be 0-3", Call);
5888 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5889 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5890 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
5891 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
5892 break;
5894 case Intrinsic::callbr_landingpad: {
5895 const auto *CBR = dyn_cast<CallBrInst>(Call.getOperand(0));
5896 Check(CBR, "intrinstic requires callbr operand", &Call);
5897 if (!CBR)
5898 break;
5900 const BasicBlock *LandingPadBB = Call.getParent();
5901 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
5902 if (!PredBB) {
5903 CheckFailed("Intrinsic in block must have 1 unique predecessor", &Call);
5904 break;
5906 if (!isa<CallBrInst>(PredBB->getTerminator())) {
5907 CheckFailed("Intrinsic must have corresponding callbr in predecessor",
5908 &Call);
5909 break;
5911 Check(llvm::any_of(CBR->getIndirectDests(),
5912 [LandingPadBB](const BasicBlock *IndDest) {
5913 return IndDest == LandingPadBB;
5915 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
5916 "block in indirect destination list",
5917 &Call);
5918 const Instruction &First = *LandingPadBB->begin();
5919 Check(&First == &Call, "No other instructions may proceed intrinsic",
5920 &Call);
5921 break;
5923 case Intrinsic::amdgcn_cs_chain: {
5924 auto CallerCC = Call.getCaller()->getCallingConv();
5925 switch (CallerCC) {
5926 case CallingConv::AMDGPU_CS:
5927 case CallingConv::AMDGPU_CS_Chain:
5928 case CallingConv::AMDGPU_CS_ChainPreserve:
5929 break;
5930 default:
5931 CheckFailed("Intrinsic can only be used from functions with the "
5932 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
5933 "calling conventions",
5934 &Call);
5935 break;
5938 Check(Call.paramHasAttr(2, Attribute::InReg),
5939 "SGPR arguments must have the `inreg` attribute", &Call);
5940 Check(!Call.paramHasAttr(3, Attribute::InReg),
5941 "VGPR arguments must not have the `inreg` attribute", &Call);
5942 break;
5944 case Intrinsic::experimental_convergence_entry:
5945 LLVM_FALLTHROUGH;
5946 case Intrinsic::experimental_convergence_anchor:
5947 break;
5948 case Intrinsic::experimental_convergence_loop:
5949 break;
5952 // Verify that there aren't any unmediated control transfers between funclets.
5953 if (IntrinsicInst::mayLowerToFunctionCall(ID)) {
5954 Function *F = Call.getParent()->getParent();
5955 if (F->hasPersonalityFn() &&
5956 isScopedEHPersonality(classifyEHPersonality(F->getPersonalityFn()))) {
5957 // Run EH funclet coloring on-demand and cache results for other intrinsic
5958 // calls in this function
5959 if (BlockEHFuncletColors.empty())
5960 BlockEHFuncletColors = colorEHFunclets(*F);
5962 // Check for catch-/cleanup-pad in first funclet block
5963 bool InEHFunclet = false;
5964 BasicBlock *CallBB = Call.getParent();
5965 const ColorVector &CV = BlockEHFuncletColors.find(CallBB)->second;
5966 assert(CV.size() > 0 && "Uncolored block");
5967 for (BasicBlock *ColorFirstBB : CV)
5968 if (dyn_cast_or_null<FuncletPadInst>(ColorFirstBB->getFirstNonPHI()))
5969 InEHFunclet = true;
5971 // Check for funclet operand bundle
5972 bool HasToken = false;
5973 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
5974 if (Call.getOperandBundleAt(I).getTagID() == LLVMContext::OB_funclet)
5975 HasToken = true;
5977 // This would cause silent code truncation in WinEHPrepare
5978 if (InEHFunclet)
5979 Check(HasToken, "Missing funclet token on intrinsic call", &Call);
5984 /// Carefully grab the subprogram from a local scope.
5986 /// This carefully grabs the subprogram from a local scope, avoiding the
5987 /// built-in assertions that would typically fire.
5988 static DISubprogram *getSubprogram(Metadata *LocalScope) {
5989 if (!LocalScope)
5990 return nullptr;
5992 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
5993 return SP;
5995 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
5996 return getSubprogram(LB->getRawScope());
5998 // Just return null; broken scope chains are checked elsewhere.
5999 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6000 return nullptr;
6003 void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6004 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(&VPI)) {
6005 auto *RetTy = cast<VectorType>(VPCast->getType());
6006 auto *ValTy = cast<VectorType>(VPCast->getOperand(0)->getType());
6007 Check(RetTy->getElementCount() == ValTy->getElementCount(),
6008 "VP cast intrinsic first argument and result vector lengths must be "
6009 "equal",
6010 *VPCast);
6012 switch (VPCast->getIntrinsicID()) {
6013 default:
6014 llvm_unreachable("Unknown VP cast intrinsic");
6015 case Intrinsic::vp_trunc:
6016 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6017 "llvm.vp.trunc intrinsic first argument and result element type "
6018 "must be integer",
6019 *VPCast);
6020 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6021 "llvm.vp.trunc intrinsic the bit size of first argument must be "
6022 "larger than the bit size of the return type",
6023 *VPCast);
6024 break;
6025 case Intrinsic::vp_zext:
6026 case Intrinsic::vp_sext:
6027 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6028 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6029 "element type must be integer",
6030 *VPCast);
6031 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6032 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6033 "argument must be smaller than the bit size of the return type",
6034 *VPCast);
6035 break;
6036 case Intrinsic::vp_fptoui:
6037 case Intrinsic::vp_fptosi:
6038 Check(
6039 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6040 "llvm.vp.fptoui or llvm.vp.fptosi intrinsic first argument element "
6041 "type must be floating-point and result element type must be integer",
6042 *VPCast);
6043 break;
6044 case Intrinsic::vp_uitofp:
6045 case Intrinsic::vp_sitofp:
6046 Check(
6047 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6048 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6049 "type must be integer and result element type must be floating-point",
6050 *VPCast);
6051 break;
6052 case Intrinsic::vp_fptrunc:
6053 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6054 "llvm.vp.fptrunc intrinsic first argument and result element type "
6055 "must be floating-point",
6056 *VPCast);
6057 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6058 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6059 "larger than the bit size of the return type",
6060 *VPCast);
6061 break;
6062 case Intrinsic::vp_fpext:
6063 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6064 "llvm.vp.fpext intrinsic first argument and result element type "
6065 "must be floating-point",
6066 *VPCast);
6067 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6068 "llvm.vp.fpext intrinsic the bit size of first argument must be "
6069 "smaller than the bit size of the return type",
6070 *VPCast);
6071 break;
6072 case Intrinsic::vp_ptrtoint:
6073 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6074 "llvm.vp.ptrtoint intrinsic first argument element type must be "
6075 "pointer and result element type must be integer",
6076 *VPCast);
6077 break;
6078 case Intrinsic::vp_inttoptr:
6079 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6080 "llvm.vp.inttoptr intrinsic first argument element type must be "
6081 "integer and result element type must be pointer",
6082 *VPCast);
6083 break;
6086 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6087 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6088 Check(CmpInst::isFPPredicate(Pred),
6089 "invalid predicate for VP FP comparison intrinsic", &VPI);
6091 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6092 auto Pred = cast<VPCmpIntrinsic>(&VPI)->getPredicate();
6093 Check(CmpInst::isIntPredicate(Pred),
6094 "invalid predicate for VP integer comparison intrinsic", &VPI);
6096 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6097 auto TestMask = cast<ConstantInt>(VPI.getOperand(1));
6098 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6099 "unsupported bits for llvm.vp.is.fpclass test mask");
6103 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6104 unsigned NumOperands;
6105 bool HasRoundingMD;
6106 switch (FPI.getIntrinsicID()) {
6107 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6108 case Intrinsic::INTRINSIC: \
6109 NumOperands = NARG; \
6110 HasRoundingMD = ROUND_MODE; \
6111 break;
6112 #include "llvm/IR/ConstrainedOps.def"
6113 default:
6114 llvm_unreachable("Invalid constrained FP intrinsic!");
6116 NumOperands += (1 + HasRoundingMD);
6117 // Compare intrinsics carry an extra predicate metadata operand.
6118 if (isa<ConstrainedFPCmpIntrinsic>(FPI))
6119 NumOperands += 1;
6120 Check((FPI.arg_size() == NumOperands),
6121 "invalid arguments for constrained FP intrinsic", &FPI);
6123 switch (FPI.getIntrinsicID()) {
6124 case Intrinsic::experimental_constrained_lrint:
6125 case Intrinsic::experimental_constrained_llrint: {
6126 Type *ValTy = FPI.getArgOperand(0)->getType();
6127 Type *ResultTy = FPI.getType();
6128 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6129 "Intrinsic does not support vectors", &FPI);
6131 break;
6133 case Intrinsic::experimental_constrained_lround:
6134 case Intrinsic::experimental_constrained_llround: {
6135 Type *ValTy = FPI.getArgOperand(0)->getType();
6136 Type *ResultTy = FPI.getType();
6137 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6138 "Intrinsic does not support vectors", &FPI);
6139 break;
6142 case Intrinsic::experimental_constrained_fcmp:
6143 case Intrinsic::experimental_constrained_fcmps: {
6144 auto Pred = cast<ConstrainedFPCmpIntrinsic>(&FPI)->getPredicate();
6145 Check(CmpInst::isFPPredicate(Pred),
6146 "invalid predicate for constrained FP comparison intrinsic", &FPI);
6147 break;
6150 case Intrinsic::experimental_constrained_fptosi:
6151 case Intrinsic::experimental_constrained_fptoui: {
6152 Value *Operand = FPI.getArgOperand(0);
6153 ElementCount SrcEC;
6154 Check(Operand->getType()->isFPOrFPVectorTy(),
6155 "Intrinsic first argument must be floating point", &FPI);
6156 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6157 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6160 Operand = &FPI;
6161 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6162 "Intrinsic first argument and result disagree on vector use", &FPI);
6163 Check(Operand->getType()->isIntOrIntVectorTy(),
6164 "Intrinsic result must be an integer", &FPI);
6165 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6166 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6167 "Intrinsic first argument and result vector lengths must be equal",
6168 &FPI);
6171 break;
6173 case Intrinsic::experimental_constrained_sitofp:
6174 case Intrinsic::experimental_constrained_uitofp: {
6175 Value *Operand = FPI.getArgOperand(0);
6176 ElementCount SrcEC;
6177 Check(Operand->getType()->isIntOrIntVectorTy(),
6178 "Intrinsic first argument must be integer", &FPI);
6179 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6180 SrcEC = cast<VectorType>(OperandT)->getElementCount();
6183 Operand = &FPI;
6184 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6185 "Intrinsic first argument and result disagree on vector use", &FPI);
6186 Check(Operand->getType()->isFPOrFPVectorTy(),
6187 "Intrinsic result must be a floating point", &FPI);
6188 if (auto *OperandT = dyn_cast<VectorType>(Operand->getType())) {
6189 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6190 "Intrinsic first argument and result vector lengths must be equal",
6191 &FPI);
6193 } break;
6195 case Intrinsic::experimental_constrained_fptrunc:
6196 case Intrinsic::experimental_constrained_fpext: {
6197 Value *Operand = FPI.getArgOperand(0);
6198 Type *OperandTy = Operand->getType();
6199 Value *Result = &FPI;
6200 Type *ResultTy = Result->getType();
6201 Check(OperandTy->isFPOrFPVectorTy(),
6202 "Intrinsic first argument must be FP or FP vector", &FPI);
6203 Check(ResultTy->isFPOrFPVectorTy(),
6204 "Intrinsic result must be FP or FP vector", &FPI);
6205 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6206 "Intrinsic first argument and result disagree on vector use", &FPI);
6207 if (OperandTy->isVectorTy()) {
6208 Check(cast<VectorType>(OperandTy)->getElementCount() ==
6209 cast<VectorType>(ResultTy)->getElementCount(),
6210 "Intrinsic first argument and result vector lengths must be equal",
6211 &FPI);
6213 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6214 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6215 "Intrinsic first argument's type must be larger than result type",
6216 &FPI);
6217 } else {
6218 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6219 "Intrinsic first argument's type must be smaller than result type",
6220 &FPI);
6223 break;
6225 default:
6226 break;
6229 // If a non-metadata argument is passed in a metadata slot then the
6230 // error will be caught earlier when the incorrect argument doesn't
6231 // match the specification in the intrinsic call table. Thus, no
6232 // argument type check is needed here.
6234 Check(FPI.getExceptionBehavior().has_value(),
6235 "invalid exception behavior argument", &FPI);
6236 if (HasRoundingMD) {
6237 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6238 &FPI);
6242 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6243 auto *MD = DII.getRawLocation();
6244 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6245 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6246 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6247 CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6248 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6249 DII.getRawVariable());
6250 CheckDI(isa<DIExpression>(DII.getRawExpression()),
6251 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6252 DII.getRawExpression());
6254 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&DII)) {
6255 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6256 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6257 DAI->getRawAssignID());
6258 const auto *RawAddr = DAI->getRawAddress();
6259 CheckDI(
6260 isa<ValueAsMetadata>(RawAddr) ||
6261 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6262 "invalid llvm.dbg.assign intrinsic address", &DII,
6263 DAI->getRawAddress());
6264 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6265 "invalid llvm.dbg.assign intrinsic address expression", &DII,
6266 DAI->getRawAddressExpression());
6267 // All of the linked instructions should be in the same function as DII.
6268 for (Instruction *I : at::getAssignmentInsts(DAI))
6269 CheckDI(DAI->getFunction() == I->getFunction(),
6270 "inst not in same function as dbg.assign", I, DAI);
6273 // Ignore broken !dbg attachments; they're checked elsewhere.
6274 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6275 if (!isa<DILocation>(N))
6276 return;
6278 BasicBlock *BB = DII.getParent();
6279 Function *F = BB ? BB->getParent() : nullptr;
6281 // The scopes for variables and !dbg attachments must agree.
6282 DILocalVariable *Var = DII.getVariable();
6283 DILocation *Loc = DII.getDebugLoc();
6284 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6285 &DII, BB, F);
6287 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
6288 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6289 if (!VarSP || !LocSP)
6290 return; // Broken scope chains are checked elsewhere.
6292 CheckDI(VarSP == LocSP,
6293 "mismatched subprogram between llvm.dbg." + Kind +
6294 " variable and !dbg attachment",
6295 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6296 Loc->getScope()->getSubprogram());
6298 // This check is redundant with one in visitLocalVariable().
6299 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6300 Var->getRawType());
6301 verifyFnArgs(DII);
6304 void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6305 CheckDI(isa<DILabel>(DLI.getRawLabel()),
6306 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6307 DLI.getRawLabel());
6309 // Ignore broken !dbg attachments; they're checked elsewhere.
6310 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6311 if (!isa<DILocation>(N))
6312 return;
6314 BasicBlock *BB = DLI.getParent();
6315 Function *F = BB ? BB->getParent() : nullptr;
6317 // The scopes for variables and !dbg attachments must agree.
6318 DILabel *Label = DLI.getLabel();
6319 DILocation *Loc = DLI.getDebugLoc();
6320 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6321 BB, F);
6323 DISubprogram *LabelSP = getSubprogram(Label->getRawScope());
6324 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
6325 if (!LabelSP || !LocSP)
6326 return;
6328 CheckDI(LabelSP == LocSP,
6329 "mismatched subprogram between llvm.dbg." + Kind +
6330 " label and !dbg attachment",
6331 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6332 Loc->getScope()->getSubprogram());
6335 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6336 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(I.getRawVariable());
6337 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6339 // We don't know whether this intrinsic verified correctly.
6340 if (!V || !E || !E->isValid())
6341 return;
6343 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6344 auto Fragment = E->getFragmentInfo();
6345 if (!Fragment)
6346 return;
6348 // The frontend helps out GDB by emitting the members of local anonymous
6349 // unions as artificial local variables with shared storage. When SROA splits
6350 // the storage for artificial local variables that are smaller than the entire
6351 // union, the overhang piece will be outside of the allotted space for the
6352 // variable and this check fails.
6353 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6354 if (V->isArtificial())
6355 return;
6357 verifyFragmentExpression(*V, *Fragment, &I);
6360 template <typename ValueOrMetadata>
6361 void Verifier::verifyFragmentExpression(const DIVariable &V,
6362 DIExpression::FragmentInfo Fragment,
6363 ValueOrMetadata *Desc) {
6364 // If there's no size, the type is broken, but that should be checked
6365 // elsewhere.
6366 auto VarSize = V.getSizeInBits();
6367 if (!VarSize)
6368 return;
6370 unsigned FragSize = Fragment.SizeInBits;
6371 unsigned FragOffset = Fragment.OffsetInBits;
6372 CheckDI(FragSize + FragOffset <= *VarSize,
6373 "fragment is larger than or outside of variable", Desc, &V);
6374 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6377 void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6378 // This function does not take the scope of noninlined function arguments into
6379 // account. Don't run it if current function is nodebug, because it may
6380 // contain inlined debug intrinsics.
6381 if (!HasDebugInfo)
6382 return;
6384 // For performance reasons only check non-inlined ones.
6385 if (I.getDebugLoc()->getInlinedAt())
6386 return;
6388 DILocalVariable *Var = I.getVariable();
6389 CheckDI(Var, "dbg intrinsic without variable");
6391 unsigned ArgNo = Var->getArg();
6392 if (!ArgNo)
6393 return;
6395 // Verify there are no duplicate function argument debug info entries.
6396 // These will cause hard-to-debug assertions in the DWARF backend.
6397 if (DebugFnArgs.size() < ArgNo)
6398 DebugFnArgs.resize(ArgNo, nullptr);
6400 auto *Prev = DebugFnArgs[ArgNo - 1];
6401 DebugFnArgs[ArgNo - 1] = Var;
6402 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6403 Prev, Var);
6406 void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6407 DIExpression *E = dyn_cast_or_null<DIExpression>(I.getRawExpression());
6409 // We don't know whether this intrinsic verified correctly.
6410 if (!E || !E->isValid())
6411 return;
6413 if (isa<ValueAsMetadata>(I.getRawLocation())) {
6414 Value *VarValue = I.getVariableLocationOp(0);
6415 if (isa<UndefValue>(VarValue) || isa<PoisonValue>(VarValue))
6416 return;
6417 // We allow EntryValues for swift async arguments, as they have an
6418 // ABI-guarantee to be turned into a specific register.
6419 if (auto *ArgLoc = dyn_cast_or_null<Argument>(VarValue);
6420 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6421 return;
6424 CheckDI(!E->isEntryValue(),
6425 "Entry values are only allowed in MIR unless they target a "
6426 "swiftasync Argument",
6427 &I);
6430 void Verifier::verifyCompileUnits() {
6431 // When more than one Module is imported into the same context, such as during
6432 // an LTO build before linking the modules, ODR type uniquing may cause types
6433 // to point to a different CU. This check does not make sense in this case.
6434 if (M.getContext().isODRUniquingDebugTypes())
6435 return;
6436 auto *CUs = M.getNamedMetadata("llvm.dbg.cu");
6437 SmallPtrSet<const Metadata *, 2> Listed;
6438 if (CUs)
6439 Listed.insert(CUs->op_begin(), CUs->op_end());
6440 for (const auto *CU : CUVisited)
6441 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6442 CUVisited.clear();
6445 void Verifier::verifyDeoptimizeCallingConvs() {
6446 if (DeoptimizeDeclarations.empty())
6447 return;
6449 const Function *First = DeoptimizeDeclarations[0];
6450 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(1)) {
6451 Check(First->getCallingConv() == F->getCallingConv(),
6452 "All llvm.experimental.deoptimize declarations must have the same "
6453 "calling convention",
6454 First, F);
6458 void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6459 const OperandBundleUse &BU) {
6460 FunctionType *FTy = Call.getFunctionType();
6462 Check((FTy->getReturnType()->isPointerTy() ||
6463 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6464 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6465 "function returning a pointer or a non-returning function that has a "
6466 "void return type",
6467 Call);
6469 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6470 "operand bundle \"clang.arc.attachedcall\" requires one function as "
6471 "an argument",
6472 Call);
6474 auto *Fn = cast<Function>(BU.Inputs.front());
6475 Intrinsic::ID IID = Fn->getIntrinsicID();
6477 if (IID) {
6478 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6479 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6480 "invalid function argument", Call);
6481 } else {
6482 StringRef FnName = Fn->getName();
6483 Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6484 FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6485 "invalid function argument", Call);
6489 void Verifier::verifySourceDebugInfo(const DICompileUnit &U, const DIFile &F) {
6490 bool HasSource = F.getSource().has_value();
6491 if (!HasSourceDebugInfo.count(&U))
6492 HasSourceDebugInfo[&U] = HasSource;
6493 CheckDI(HasSource == HasSourceDebugInfo[&U],
6494 "inconsistent use of embedded source");
6497 void Verifier::verifyNoAliasScopeDecl() {
6498 if (NoAliasScopeDecls.empty())
6499 return;
6501 // only a single scope must be declared at a time.
6502 for (auto *II : NoAliasScopeDecls) {
6503 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6504 "Not a llvm.experimental.noalias.scope.decl ?");
6505 const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6506 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6507 Check(ScopeListMV != nullptr,
6508 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
6509 "argument",
6510 II);
6512 const auto *ScopeListMD = dyn_cast<MDNode>(ScopeListMV->getMetadata());
6513 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
6514 Check(ScopeListMD->getNumOperands() == 1,
6515 "!id.scope.list must point to a list with a single scope", II);
6516 visitAliasScopeListMetadata(ScopeListMD);
6519 // Only check the domination rule when requested. Once all passes have been
6520 // adapted this option can go away.
6521 if (!VerifyNoAliasScopeDomination)
6522 return;
6524 // Now sort the intrinsics based on the scope MDNode so that declarations of
6525 // the same scopes are next to each other.
6526 auto GetScope = [](IntrinsicInst *II) {
6527 const auto *ScopeListMV = cast<MetadataAsValue>(
6528 II->getOperand(Intrinsic::NoAliasScopeDeclScopeArg));
6529 return &cast<MDNode>(ScopeListMV->getMetadata())->getOperand(0);
6532 // We are sorting on MDNode pointers here. For valid input IR this is ok.
6533 // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
6534 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
6535 return GetScope(Lhs) < GetScope(Rhs);
6538 llvm::sort(NoAliasScopeDecls, Compare);
6540 // Go over the intrinsics and check that for the same scope, they are not
6541 // dominating each other.
6542 auto ItCurrent = NoAliasScopeDecls.begin();
6543 while (ItCurrent != NoAliasScopeDecls.end()) {
6544 auto CurScope = GetScope(*ItCurrent);
6545 auto ItNext = ItCurrent;
6546 do {
6547 ++ItNext;
6548 } while (ItNext != NoAliasScopeDecls.end() &&
6549 GetScope(*ItNext) == CurScope);
6551 // [ItCurrent, ItNext) represents the declarations for the same scope.
6552 // Ensure they are not dominating each other.. but only if it is not too
6553 // expensive.
6554 if (ItNext - ItCurrent < 32)
6555 for (auto *I : llvm::make_range(ItCurrent, ItNext))
6556 for (auto *J : llvm::make_range(ItCurrent, ItNext))
6557 if (I != J)
6558 Check(!DT.dominates(I, J),
6559 "llvm.experimental.noalias.scope.decl dominates another one "
6560 "with the same scope",
6562 ItCurrent = ItNext;
6566 //===----------------------------------------------------------------------===//
6567 // Implement the public interfaces to this file...
6568 //===----------------------------------------------------------------------===//
6570 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
6571 Function &F = const_cast<Function &>(f);
6573 // Don't use a raw_null_ostream. Printing IR is expensive.
6574 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
6576 // Note that this function's return value is inverted from what you would
6577 // expect of a function called "verify".
6578 return !V.verify(F);
6581 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
6582 bool *BrokenDebugInfo) {
6583 // Don't use a raw_null_ostream. Printing IR is expensive.
6584 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
6586 bool Broken = false;
6587 for (const Function &F : M)
6588 Broken |= !V.verify(F);
6590 Broken |= !V.verify();
6591 if (BrokenDebugInfo)
6592 *BrokenDebugInfo = V.hasBrokenDebugInfo();
6593 // Note that this function's return value is inverted from what you would
6594 // expect of a function called "verify".
6595 return Broken;
6598 namespace {
6600 struct VerifierLegacyPass : public FunctionPass {
6601 static char ID;
6603 std::unique_ptr<Verifier> V;
6604 bool FatalErrors = true;
6606 VerifierLegacyPass() : FunctionPass(ID) {
6607 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6609 explicit VerifierLegacyPass(bool FatalErrors)
6610 : FunctionPass(ID),
6611 FatalErrors(FatalErrors) {
6612 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
6615 bool doInitialization(Module &M) override {
6616 V = std::make_unique<Verifier>(
6617 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M);
6618 return false;
6621 bool runOnFunction(Function &F) override {
6622 if (!V->verify(F) && FatalErrors) {
6623 errs() << "in function " << F.getName() << '\n';
6624 report_fatal_error("Broken function found, compilation aborted!");
6626 return false;
6629 bool doFinalization(Module &M) override {
6630 bool HasErrors = false;
6631 for (Function &F : M)
6632 if (F.isDeclaration())
6633 HasErrors |= !V->verify(F);
6635 HasErrors |= !V->verify();
6636 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
6637 report_fatal_error("Broken module found, compilation aborted!");
6638 return false;
6641 void getAnalysisUsage(AnalysisUsage &AU) const override {
6642 AU.setPreservesAll();
6646 } // end anonymous namespace
6648 /// Helper to issue failure from the TBAA verification
6649 template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
6650 if (Diagnostic)
6651 return Diagnostic->CheckFailed(Args...);
6654 #define CheckTBAA(C, ...) \
6655 do { \
6656 if (!(C)) { \
6657 CheckFailed(__VA_ARGS__); \
6658 return false; \
6660 } while (false)
6662 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
6663 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
6664 /// struct-type node describing an aggregate data structure (like a struct).
6665 TBAAVerifier::TBAABaseNodeSummary
6666 TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
6667 bool IsNewFormat) {
6668 if (BaseNode->getNumOperands() < 2) {
6669 CheckFailed("Base nodes must have at least two operands", &I, BaseNode);
6670 return {true, ~0u};
6673 auto Itr = TBAABaseNodes.find(BaseNode);
6674 if (Itr != TBAABaseNodes.end())
6675 return Itr->second;
6677 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
6678 auto InsertResult = TBAABaseNodes.insert({BaseNode, Result});
6679 (void)InsertResult;
6680 assert(InsertResult.second && "We just checked!");
6681 return Result;
6684 TBAAVerifier::TBAABaseNodeSummary
6685 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
6686 bool IsNewFormat) {
6687 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
6689 if (BaseNode->getNumOperands() == 2) {
6690 // Scalar nodes can only be accessed at offset 0.
6691 return isValidScalarTBAANode(BaseNode)
6692 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
6693 : InvalidNode;
6696 if (IsNewFormat) {
6697 if (BaseNode->getNumOperands() % 3 != 0) {
6698 CheckFailed("Access tag nodes must have the number of operands that is a "
6699 "multiple of 3!", BaseNode);
6700 return InvalidNode;
6702 } else {
6703 if (BaseNode->getNumOperands() % 2 != 1) {
6704 CheckFailed("Struct tag nodes must have an odd number of operands!",
6705 BaseNode);
6706 return InvalidNode;
6710 // Check the type size field.
6711 if (IsNewFormat) {
6712 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6713 BaseNode->getOperand(1));
6714 if (!TypeSizeNode) {
6715 CheckFailed("Type size nodes must be constants!", &I, BaseNode);
6716 return InvalidNode;
6720 // Check the type name field. In the new format it can be anything.
6721 if (!IsNewFormat && !isa<MDString>(BaseNode->getOperand(0))) {
6722 CheckFailed("Struct tag nodes have a string as their first operand",
6723 BaseNode);
6724 return InvalidNode;
6727 bool Failed = false;
6729 std::optional<APInt> PrevOffset;
6730 unsigned BitWidth = ~0u;
6732 // We've already checked that BaseNode is not a degenerate root node with one
6733 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
6734 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6735 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6736 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6737 Idx += NumOpsPerField) {
6738 const MDOperand &FieldTy = BaseNode->getOperand(Idx);
6739 const MDOperand &FieldOffset = BaseNode->getOperand(Idx + 1);
6740 if (!isa<MDNode>(FieldTy)) {
6741 CheckFailed("Incorrect field entry in struct type node!", &I, BaseNode);
6742 Failed = true;
6743 continue;
6746 auto *OffsetEntryCI =
6747 mdconst::dyn_extract_or_null<ConstantInt>(FieldOffset);
6748 if (!OffsetEntryCI) {
6749 CheckFailed("Offset entries must be constants!", &I, BaseNode);
6750 Failed = true;
6751 continue;
6754 if (BitWidth == ~0u)
6755 BitWidth = OffsetEntryCI->getBitWidth();
6757 if (OffsetEntryCI->getBitWidth() != BitWidth) {
6758 CheckFailed(
6759 "Bitwidth between the offsets and struct type entries must match", &I,
6760 BaseNode);
6761 Failed = true;
6762 continue;
6765 // NB! As far as I can tell, we generate a non-strictly increasing offset
6766 // sequence only from structs that have zero size bit fields. When
6767 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
6768 // pick the field lexically the latest in struct type metadata node. This
6769 // mirrors the actual behavior of the alias analysis implementation.
6770 bool IsAscending =
6771 !PrevOffset || PrevOffset->ule(OffsetEntryCI->getValue());
6773 if (!IsAscending) {
6774 CheckFailed("Offsets must be increasing!", &I, BaseNode);
6775 Failed = true;
6778 PrevOffset = OffsetEntryCI->getValue();
6780 if (IsNewFormat) {
6781 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6782 BaseNode->getOperand(Idx + 2));
6783 if (!MemberSizeNode) {
6784 CheckFailed("Member size entries must be constants!", &I, BaseNode);
6785 Failed = true;
6786 continue;
6791 return Failed ? InvalidNode
6792 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
6795 static bool IsRootTBAANode(const MDNode *MD) {
6796 return MD->getNumOperands() < 2;
6799 static bool IsScalarTBAANodeImpl(const MDNode *MD,
6800 SmallPtrSetImpl<const MDNode *> &Visited) {
6801 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
6802 return false;
6804 if (!isa<MDString>(MD->getOperand(0)))
6805 return false;
6807 if (MD->getNumOperands() == 3) {
6808 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
6809 if (!(Offset && Offset->isZero() && isa<MDString>(MD->getOperand(0))))
6810 return false;
6813 auto *Parent = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6814 return Parent && Visited.insert(Parent).second &&
6815 (IsRootTBAANode(Parent) || IsScalarTBAANodeImpl(Parent, Visited));
6818 bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
6819 auto ResultIt = TBAAScalarNodes.find(MD);
6820 if (ResultIt != TBAAScalarNodes.end())
6821 return ResultIt->second;
6823 SmallPtrSet<const MDNode *, 4> Visited;
6824 bool Result = IsScalarTBAANodeImpl(MD, Visited);
6825 auto InsertResult = TBAAScalarNodes.insert({MD, Result});
6826 (void)InsertResult;
6827 assert(InsertResult.second && "Just checked!");
6829 return Result;
6832 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
6833 /// Offset in place to be the offset within the field node returned.
6835 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
6836 MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
6837 const MDNode *BaseNode,
6838 APInt &Offset,
6839 bool IsNewFormat) {
6840 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
6842 // Scalar nodes have only one possible "field" -- their parent in the access
6843 // hierarchy. Offset must be zero at this point, but our caller is supposed
6844 // to check that.
6845 if (BaseNode->getNumOperands() == 2)
6846 return cast<MDNode>(BaseNode->getOperand(1));
6848 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
6849 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
6850 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
6851 Idx += NumOpsPerField) {
6852 auto *OffsetEntryCI =
6853 mdconst::extract<ConstantInt>(BaseNode->getOperand(Idx + 1));
6854 if (OffsetEntryCI->getValue().ugt(Offset)) {
6855 if (Idx == FirstFieldOpNo) {
6856 CheckFailed("Could not find TBAA parent in struct type node", &I,
6857 BaseNode, &Offset);
6858 return nullptr;
6861 unsigned PrevIdx = Idx - NumOpsPerField;
6862 auto *PrevOffsetEntryCI =
6863 mdconst::extract<ConstantInt>(BaseNode->getOperand(PrevIdx + 1));
6864 Offset -= PrevOffsetEntryCI->getValue();
6865 return cast<MDNode>(BaseNode->getOperand(PrevIdx));
6869 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
6870 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
6871 BaseNode->getOperand(LastIdx + 1));
6872 Offset -= LastOffsetEntryCI->getValue();
6873 return cast<MDNode>(BaseNode->getOperand(LastIdx));
6876 static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
6877 if (!Type || Type->getNumOperands() < 3)
6878 return false;
6880 // In the new format type nodes shall have a reference to the parent type as
6881 // its first operand.
6882 return isa_and_nonnull<MDNode>(Type->getOperand(0));
6885 bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
6886 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
6887 &I, MD);
6889 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
6890 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
6891 isa<AtomicCmpXchgInst>(I),
6892 "This instruction shall not have a TBAA access tag!", &I);
6894 bool IsStructPathTBAA =
6895 isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
6897 CheckTBAA(IsStructPathTBAA,
6898 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
6899 &I);
6901 MDNode *BaseNode = dyn_cast_or_null<MDNode>(MD->getOperand(0));
6902 MDNode *AccessType = dyn_cast_or_null<MDNode>(MD->getOperand(1));
6904 bool IsNewFormat = isNewFormatTBAATypeNode(AccessType);
6906 if (IsNewFormat) {
6907 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
6908 "Access tag metadata must have either 4 or 5 operands", &I, MD);
6909 } else {
6910 CheckTBAA(MD->getNumOperands() < 5,
6911 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
6914 // Check the access size field.
6915 if (IsNewFormat) {
6916 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
6917 MD->getOperand(3));
6918 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
6921 // Check the immutability flag.
6922 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
6923 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
6924 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
6925 MD->getOperand(ImmutabilityFlagOpNo));
6926 CheckTBAA(IsImmutableCI,
6927 "Immutability tag on struct tag metadata must be a constant", &I,
6928 MD);
6929 CheckTBAA(
6930 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
6931 "Immutability part of the struct tag metadata must be either 0 or 1",
6932 &I, MD);
6935 CheckTBAA(BaseNode && AccessType,
6936 "Malformed struct tag metadata: base and access-type "
6937 "should be non-null and point to Metadata nodes",
6938 &I, MD, BaseNode, AccessType);
6940 if (!IsNewFormat) {
6941 CheckTBAA(isValidScalarTBAANode(AccessType),
6942 "Access type node must be a valid scalar type", &I, MD,
6943 AccessType);
6946 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD->getOperand(2));
6947 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
6949 APInt Offset = OffsetCI->getValue();
6950 bool SeenAccessTypeInPath = false;
6952 SmallPtrSet<MDNode *, 4> StructPath;
6954 for (/* empty */; BaseNode && !IsRootTBAANode(BaseNode);
6955 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
6956 IsNewFormat)) {
6957 if (!StructPath.insert(BaseNode).second) {
6958 CheckFailed("Cycle detected in struct path", &I, MD);
6959 return false;
6962 bool Invalid;
6963 unsigned BaseNodeBitWidth;
6964 std::tie(Invalid, BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
6965 IsNewFormat);
6967 // If the base node is invalid in itself, then we've already printed all the
6968 // errors we wanted to print.
6969 if (Invalid)
6970 return false;
6972 SeenAccessTypeInPath |= BaseNode == AccessType;
6974 if (isValidScalarTBAANode(BaseNode) || BaseNode == AccessType)
6975 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
6976 &I, MD, &Offset);
6978 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
6979 (BaseNodeBitWidth == 0 && Offset == 0) ||
6980 (IsNewFormat && BaseNodeBitWidth == ~0u),
6981 "Access bit-width not the same as description bit-width", &I, MD,
6982 BaseNodeBitWidth, Offset.getBitWidth());
6984 if (IsNewFormat && SeenAccessTypeInPath)
6985 break;
6988 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
6989 MD);
6990 return true;
6993 char VerifierLegacyPass::ID = 0;
6994 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
6996 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
6997 return new VerifierLegacyPass(FatalErrors);
7000 AnalysisKey VerifierAnalysis::Key;
7001 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7002 ModuleAnalysisManager &) {
7003 Result Res;
7004 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
7005 return Res;
7008 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7009 FunctionAnalysisManager &) {
7010 return { llvm::verifyFunction(F, &dbgs()), false };
7013 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7014 auto Res = AM.getResult<VerifierAnalysis>(M);
7015 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7016 report_fatal_error("Broken module found, compilation aborted!");
7018 return PreservedAnalyses::all();
7021 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7022 auto res = AM.getResult<VerifierAnalysis>(F);
7023 if (res.IRBroken && FatalErrors)
7024 report_fatal_error("Broken function found, compilation aborted!");
7026 return PreservedAnalyses::all();