[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Transforms / Utils / CodeExtractor.cpp
blobcafa99491f5b5f6427cdc06efe70f30b89262a99
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DIBuilder.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/User.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/Verifier.h"
55 #include "llvm/Support/BlockFrequency.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <map>
67 #include <utility>
68 #include <vector>
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
74 #define DEBUG_TYPE "code-extractor"
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82 cl::desc("Aggregate arguments to code-extracted functions"));
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86 const SetVector<BasicBlock *> &Result,
87 bool AllowVarArgs, bool AllowAlloca) {
88 // taking the address of a basic block moved to another function is illegal
89 if (BB.hasAddressTaken())
90 return false;
92 // don't hoist code that uses another basicblock address, as it's likely to
93 // lead to unexpected behavior, like cross-function jumps
94 SmallPtrSet<User const *, 16> Visited;
95 SmallVector<User const *, 16> ToVisit;
97 for (Instruction const &Inst : BB)
98 ToVisit.push_back(&Inst);
100 while (!ToVisit.empty()) {
101 User const *Curr = ToVisit.pop_back_val();
102 if (!Visited.insert(Curr).second)
103 continue;
104 if (isa<BlockAddress const>(Curr))
105 return false; // even a reference to self is likely to be not compatible
107 if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108 continue;
110 for (auto const &U : Curr->operands()) {
111 if (auto *UU = dyn_cast<User>(U))
112 ToVisit.push_back(UU);
116 // If explicitly requested, allow vastart and alloca. For invoke instructions
117 // verify that extraction is valid.
118 for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119 if (isa<AllocaInst>(I)) {
120 if (!AllowAlloca)
121 return false;
122 continue;
125 if (const auto *II = dyn_cast<InvokeInst>(I)) {
126 // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127 // must be a part of the subgraph which is being extracted.
128 if (auto *UBB = II->getUnwindDest())
129 if (!Result.count(UBB))
130 return false;
131 continue;
134 // All catch handlers of a catchswitch instruction as well as the unwind
135 // destination must be in the subgraph.
136 if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137 if (auto *UBB = CSI->getUnwindDest())
138 if (!Result.count(UBB))
139 return false;
140 for (const auto *HBB : CSI->handlers())
141 if (!Result.count(const_cast<BasicBlock*>(HBB)))
142 return false;
143 continue;
146 // Make sure that entire catch handler is within subgraph. It is sufficient
147 // to check that catch return's block is in the list.
148 if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149 for (const auto *U : CPI->users())
150 if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152 return false;
153 continue;
156 // And do similar checks for cleanup handler - the entire handler must be
157 // in subgraph which is going to be extracted. For cleanup return should
158 // additionally check that the unwind destination is also in the subgraph.
159 if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160 for (const auto *U : CPI->users())
161 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162 if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163 return false;
164 continue;
166 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167 if (auto *UBB = CRI->getUnwindDest())
168 if (!Result.count(UBB))
169 return false;
170 continue;
173 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174 if (const Function *F = CI->getCalledFunction()) {
175 auto IID = F->getIntrinsicID();
176 if (IID == Intrinsic::vastart) {
177 if (AllowVarArgs)
178 continue;
179 else
180 return false;
183 // Currently, we miscompile outlined copies of eh_typid_for. There are
184 // proposals for fixing this in llvm.org/PR39545.
185 if (IID == Intrinsic::eh_typeid_for)
186 return false;
191 return true;
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197 bool AllowVarArgs, bool AllowAlloca) {
198 assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199 SetVector<BasicBlock *> Result;
201 // Loop over the blocks, adding them to our set-vector, and aborting with an
202 // empty set if we encounter invalid blocks.
203 for (BasicBlock *BB : BBs) {
204 // If this block is dead, don't process it.
205 if (DT && !DT->isReachableFromEntry(BB))
206 continue;
208 if (!Result.insert(BB))
209 llvm_unreachable("Repeated basic blocks in extraction input");
212 LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213 << '\n');
215 for (auto *BB : Result) {
216 if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217 return {};
219 // Make sure that the first block is not a landing pad.
220 if (BB == Result.front()) {
221 if (BB->isEHPad()) {
222 LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223 return {};
225 continue;
228 // All blocks other than the first must not have predecessors outside of
229 // the subgraph which is being extracted.
230 for (auto *PBB : predecessors(BB))
231 if (!Result.count(PBB)) {
232 LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233 "outside the region except for the first block!\n"
234 << "Problematic source BB: " << BB->getName() << "\n"
235 << "Problematic destination BB: " << PBB->getName()
236 << "\n");
237 return {};
241 return Result;
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245 bool AggregateArgs, BlockFrequencyInfo *BFI,
246 BranchProbabilityInfo *BPI, AssumptionCache *AC,
247 bool AllowVarArgs, bool AllowAlloca,
248 BasicBlock *AllocationBlock, std::string Suffix)
249 : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250 BPI(BPI), AC(AC), AllocationBlock(AllocationBlock),
251 AllowVarArgs(AllowVarArgs),
252 Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
253 Suffix(Suffix) {}
255 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
256 BlockFrequencyInfo *BFI,
257 BranchProbabilityInfo *BPI, AssumptionCache *AC,
258 std::string Suffix)
259 : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
260 BPI(BPI), AC(AC), AllocationBlock(nullptr), AllowVarArgs(false),
261 Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
262 /* AllowVarArgs */ false,
263 /* AllowAlloca */ false)),
264 Suffix(Suffix) {}
266 /// definedInRegion - Return true if the specified value is defined in the
267 /// extracted region.
268 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
269 if (Instruction *I = dyn_cast<Instruction>(V))
270 if (Blocks.count(I->getParent()))
271 return true;
272 return false;
275 /// definedInCaller - Return true if the specified value is defined in the
276 /// function being code extracted, but not in the region being extracted.
277 /// These values must be passed in as live-ins to the function.
278 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
279 if (isa<Argument>(V)) return true;
280 if (Instruction *I = dyn_cast<Instruction>(V))
281 if (!Blocks.count(I->getParent()))
282 return true;
283 return false;
286 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
287 BasicBlock *CommonExitBlock = nullptr;
288 auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
289 for (auto *Succ : successors(Block)) {
290 // Internal edges, ok.
291 if (Blocks.count(Succ))
292 continue;
293 if (!CommonExitBlock) {
294 CommonExitBlock = Succ;
295 continue;
297 if (CommonExitBlock != Succ)
298 return true;
300 return false;
303 if (any_of(Blocks, hasNonCommonExitSucc))
304 return nullptr;
306 return CommonExitBlock;
309 CodeExtractorAnalysisCache::CodeExtractorAnalysisCache(Function &F) {
310 for (BasicBlock &BB : F) {
311 for (Instruction &II : BB.instructionsWithoutDebug())
312 if (auto *AI = dyn_cast<AllocaInst>(&II))
313 Allocas.push_back(AI);
315 findSideEffectInfoForBlock(BB);
319 void CodeExtractorAnalysisCache::findSideEffectInfoForBlock(BasicBlock &BB) {
320 for (Instruction &II : BB.instructionsWithoutDebug()) {
321 unsigned Opcode = II.getOpcode();
322 Value *MemAddr = nullptr;
323 switch (Opcode) {
324 case Instruction::Store:
325 case Instruction::Load: {
326 if (Opcode == Instruction::Store) {
327 StoreInst *SI = cast<StoreInst>(&II);
328 MemAddr = SI->getPointerOperand();
329 } else {
330 LoadInst *LI = cast<LoadInst>(&II);
331 MemAddr = LI->getPointerOperand();
333 // Global variable can not be aliased with locals.
334 if (isa<Constant>(MemAddr))
335 break;
336 Value *Base = MemAddr->stripInBoundsConstantOffsets();
337 if (!isa<AllocaInst>(Base)) {
338 SideEffectingBlocks.insert(&BB);
339 return;
341 BaseMemAddrs[&BB].insert(Base);
342 break;
344 default: {
345 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
346 if (IntrInst) {
347 if (IntrInst->isLifetimeStartOrEnd())
348 break;
349 SideEffectingBlocks.insert(&BB);
350 return;
352 // Treat all the other cases conservatively if it has side effects.
353 if (II.mayHaveSideEffects()) {
354 SideEffectingBlocks.insert(&BB);
355 return;
362 bool CodeExtractorAnalysisCache::doesBlockContainClobberOfAddr(
363 BasicBlock &BB, AllocaInst *Addr) const {
364 if (SideEffectingBlocks.count(&BB))
365 return true;
366 auto It = BaseMemAddrs.find(&BB);
367 if (It != BaseMemAddrs.end())
368 return It->second.count(Addr);
369 return false;
372 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
373 const CodeExtractorAnalysisCache &CEAC, Instruction *Addr) const {
374 AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
375 Function *Func = (*Blocks.begin())->getParent();
376 for (BasicBlock &BB : *Func) {
377 if (Blocks.count(&BB))
378 continue;
379 if (CEAC.doesBlockContainClobberOfAddr(BB, AI))
380 return false;
382 return true;
385 BasicBlock *
386 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
387 BasicBlock *SinglePredFromOutlineRegion = nullptr;
388 assert(!Blocks.count(CommonExitBlock) &&
389 "Expect a block outside the region!");
390 for (auto *Pred : predecessors(CommonExitBlock)) {
391 if (!Blocks.count(Pred))
392 continue;
393 if (!SinglePredFromOutlineRegion) {
394 SinglePredFromOutlineRegion = Pred;
395 } else if (SinglePredFromOutlineRegion != Pred) {
396 SinglePredFromOutlineRegion = nullptr;
397 break;
401 if (SinglePredFromOutlineRegion)
402 return SinglePredFromOutlineRegion;
404 #ifndef NDEBUG
405 auto getFirstPHI = [](BasicBlock *BB) {
406 BasicBlock::iterator I = BB->begin();
407 PHINode *FirstPhi = nullptr;
408 while (I != BB->end()) {
409 PHINode *Phi = dyn_cast<PHINode>(I);
410 if (!Phi)
411 break;
412 if (!FirstPhi) {
413 FirstPhi = Phi;
414 break;
417 return FirstPhi;
419 // If there are any phi nodes, the single pred either exists or has already
420 // be created before code extraction.
421 assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
422 #endif
424 BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
425 CommonExitBlock->getFirstNonPHI()->getIterator());
427 for (BasicBlock *Pred :
428 llvm::make_early_inc_range(predecessors(CommonExitBlock))) {
429 if (Blocks.count(Pred))
430 continue;
431 Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
433 // Now add the old exit block to the outline region.
434 Blocks.insert(CommonExitBlock);
435 OldTargets.push_back(NewExitBlock);
436 return CommonExitBlock;
439 // Find the pair of life time markers for address 'Addr' that are either
440 // defined inside the outline region or can legally be shrinkwrapped into the
441 // outline region. If there are not other untracked uses of the address, return
442 // the pair of markers if found; otherwise return a pair of nullptr.
443 CodeExtractor::LifetimeMarkerInfo
444 CodeExtractor::getLifetimeMarkers(const CodeExtractorAnalysisCache &CEAC,
445 Instruction *Addr,
446 BasicBlock *ExitBlock) const {
447 LifetimeMarkerInfo Info;
449 for (User *U : Addr->users()) {
450 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
451 if (IntrInst) {
452 // We don't model addresses with multiple start/end markers, but the
453 // markers do not need to be in the region.
454 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
455 if (Info.LifeStart)
456 return {};
457 Info.LifeStart = IntrInst;
458 continue;
460 if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
461 if (Info.LifeEnd)
462 return {};
463 Info.LifeEnd = IntrInst;
464 continue;
466 // At this point, permit debug uses outside of the region.
467 // This is fixed in a later call to fixupDebugInfoPostExtraction().
468 if (isa<DbgInfoIntrinsic>(IntrInst))
469 continue;
471 // Find untracked uses of the address, bail.
472 if (!definedInRegion(Blocks, U))
473 return {};
476 if (!Info.LifeStart || !Info.LifeEnd)
477 return {};
479 Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
480 Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
481 // Do legality check.
482 if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
483 !isLegalToShrinkwrapLifetimeMarkers(CEAC, Addr))
484 return {};
486 // Check to see if we have a place to do hoisting, if not, bail.
487 if (Info.HoistLifeEnd && !ExitBlock)
488 return {};
490 return Info;
493 void CodeExtractor::findAllocas(const CodeExtractorAnalysisCache &CEAC,
494 ValueSet &SinkCands, ValueSet &HoistCands,
495 BasicBlock *&ExitBlock) const {
496 Function *Func = (*Blocks.begin())->getParent();
497 ExitBlock = getCommonExitBlock(Blocks);
499 auto moveOrIgnoreLifetimeMarkers =
500 [&](const LifetimeMarkerInfo &LMI) -> bool {
501 if (!LMI.LifeStart)
502 return false;
503 if (LMI.SinkLifeStart) {
504 LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
505 << "\n");
506 SinkCands.insert(LMI.LifeStart);
508 if (LMI.HoistLifeEnd) {
509 LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
510 HoistCands.insert(LMI.LifeEnd);
512 return true;
515 // Look up allocas in the original function in CodeExtractorAnalysisCache, as
516 // this is much faster than walking all the instructions.
517 for (AllocaInst *AI : CEAC.getAllocas()) {
518 BasicBlock *BB = AI->getParent();
519 if (Blocks.count(BB))
520 continue;
522 // As a prior call to extractCodeRegion() may have shrinkwrapped the alloca,
523 // check whether it is actually still in the original function.
524 Function *AIFunc = BB->getParent();
525 if (AIFunc != Func)
526 continue;
528 LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(CEAC, AI, ExitBlock);
529 bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
530 if (Moved) {
531 LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
532 SinkCands.insert(AI);
533 continue;
536 // Find bitcasts in the outlined region that have lifetime marker users
537 // outside that region. Replace the lifetime marker use with an
538 // outside region bitcast to avoid unnecessary alloca/reload instructions
539 // and extra lifetime markers.
540 SmallVector<Instruction *, 2> LifetimeBitcastUsers;
541 for (User *U : AI->users()) {
542 if (!definedInRegion(Blocks, U))
543 continue;
545 if (U->stripInBoundsConstantOffsets() != AI)
546 continue;
548 Instruction *Bitcast = cast<Instruction>(U);
549 for (User *BU : Bitcast->users()) {
550 IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(BU);
551 if (!IntrInst)
552 continue;
554 if (!IntrInst->isLifetimeStartOrEnd())
555 continue;
557 if (definedInRegion(Blocks, IntrInst))
558 continue;
560 LLVM_DEBUG(dbgs() << "Replace use of extracted region bitcast"
561 << *Bitcast << " in out-of-region lifetime marker "
562 << *IntrInst << "\n");
563 LifetimeBitcastUsers.push_back(IntrInst);
567 for (Instruction *I : LifetimeBitcastUsers) {
568 Module *M = AIFunc->getParent();
569 LLVMContext &Ctx = M->getContext();
570 auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
571 CastInst *CastI =
572 CastInst::CreatePointerCast(AI, Int8PtrTy, "lt.cast", I);
573 I->replaceUsesOfWith(I->getOperand(1), CastI);
576 // Follow any bitcasts.
577 SmallVector<Instruction *, 2> Bitcasts;
578 SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
579 for (User *U : AI->users()) {
580 if (U->stripInBoundsConstantOffsets() == AI) {
581 Instruction *Bitcast = cast<Instruction>(U);
582 LifetimeMarkerInfo LMI = getLifetimeMarkers(CEAC, Bitcast, ExitBlock);
583 if (LMI.LifeStart) {
584 Bitcasts.push_back(Bitcast);
585 BitcastLifetimeInfo.push_back(LMI);
586 continue;
590 // Found unknown use of AI.
591 if (!definedInRegion(Blocks, U)) {
592 Bitcasts.clear();
593 break;
597 // Either no bitcasts reference the alloca or there are unknown uses.
598 if (Bitcasts.empty())
599 continue;
601 LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
602 SinkCands.insert(AI);
603 for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
604 Instruction *BitcastAddr = Bitcasts[I];
605 const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
606 assert(LMI.LifeStart &&
607 "Unsafe to sink bitcast without lifetime markers");
608 moveOrIgnoreLifetimeMarkers(LMI);
609 if (!definedInRegion(Blocks, BitcastAddr)) {
610 LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
611 << "\n");
612 SinkCands.insert(BitcastAddr);
618 bool CodeExtractor::isEligible() const {
619 if (Blocks.empty())
620 return false;
621 BasicBlock *Header = *Blocks.begin();
622 Function *F = Header->getParent();
624 // For functions with varargs, check that varargs handling is only done in the
625 // outlined function, i.e vastart and vaend are only used in outlined blocks.
626 if (AllowVarArgs && F->getFunctionType()->isVarArg()) {
627 auto containsVarArgIntrinsic = [](const Instruction &I) {
628 if (const CallInst *CI = dyn_cast<CallInst>(&I))
629 if (const Function *Callee = CI->getCalledFunction())
630 return Callee->getIntrinsicID() == Intrinsic::vastart ||
631 Callee->getIntrinsicID() == Intrinsic::vaend;
632 return false;
635 for (auto &BB : *F) {
636 if (Blocks.count(&BB))
637 continue;
638 if (llvm::any_of(BB, containsVarArgIntrinsic))
639 return false;
642 return true;
645 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
646 const ValueSet &SinkCands) const {
647 for (BasicBlock *BB : Blocks) {
648 // If a used value is defined outside the region, it's an input. If an
649 // instruction is used outside the region, it's an output.
650 for (Instruction &II : *BB) {
651 for (auto &OI : II.operands()) {
652 Value *V = OI;
653 if (!SinkCands.count(V) && definedInCaller(Blocks, V))
654 Inputs.insert(V);
657 for (User *U : II.users())
658 if (!definedInRegion(Blocks, U)) {
659 Outputs.insert(&II);
660 break;
666 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
667 /// of the region, we need to split the entry block of the region so that the
668 /// PHI node is easier to deal with.
669 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
670 unsigned NumPredsFromRegion = 0;
671 unsigned NumPredsOutsideRegion = 0;
673 if (Header != &Header->getParent()->getEntryBlock()) {
674 PHINode *PN = dyn_cast<PHINode>(Header->begin());
675 if (!PN) return; // No PHI nodes.
677 // If the header node contains any PHI nodes, check to see if there is more
678 // than one entry from outside the region. If so, we need to sever the
679 // header block into two.
680 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
681 if (Blocks.count(PN->getIncomingBlock(i)))
682 ++NumPredsFromRegion;
683 else
684 ++NumPredsOutsideRegion;
686 // If there is one (or fewer) predecessor from outside the region, we don't
687 // need to do anything special.
688 if (NumPredsOutsideRegion <= 1) return;
691 // Otherwise, we need to split the header block into two pieces: one
692 // containing PHI nodes merging values from outside of the region, and a
693 // second that contains all of the code for the block and merges back any
694 // incoming values from inside of the region.
695 BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
697 // We only want to code extract the second block now, and it becomes the new
698 // header of the region.
699 BasicBlock *OldPred = Header;
700 Blocks.remove(OldPred);
701 Blocks.insert(NewBB);
702 Header = NewBB;
704 // Okay, now we need to adjust the PHI nodes and any branches from within the
705 // region to go to the new header block instead of the old header block.
706 if (NumPredsFromRegion) {
707 PHINode *PN = cast<PHINode>(OldPred->begin());
708 // Loop over all of the predecessors of OldPred that are in the region,
709 // changing them to branch to NewBB instead.
710 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
711 if (Blocks.count(PN->getIncomingBlock(i))) {
712 Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
713 TI->replaceUsesOfWith(OldPred, NewBB);
716 // Okay, everything within the region is now branching to the right block, we
717 // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
718 BasicBlock::iterator AfterPHIs;
719 for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
720 PHINode *PN = cast<PHINode>(AfterPHIs);
721 // Create a new PHI node in the new region, which has an incoming value
722 // from OldPred of PN.
723 PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
724 PN->getName() + ".ce");
725 NewPN->insertBefore(NewBB->begin());
726 PN->replaceAllUsesWith(NewPN);
727 NewPN->addIncoming(PN, OldPred);
729 // Loop over all of the incoming value in PN, moving them to NewPN if they
730 // are from the extracted region.
731 for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
732 if (Blocks.count(PN->getIncomingBlock(i))) {
733 NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
734 PN->removeIncomingValue(i);
735 --i;
742 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
743 /// outlined region, we split these PHIs on two: one with inputs from region
744 /// and other with remaining incoming blocks; then first PHIs are placed in
745 /// outlined region.
746 void CodeExtractor::severSplitPHINodesOfExits(
747 const SmallPtrSetImpl<BasicBlock *> &Exits) {
748 for (BasicBlock *ExitBB : Exits) {
749 BasicBlock *NewBB = nullptr;
751 for (PHINode &PN : ExitBB->phis()) {
752 // Find all incoming values from the outlining region.
753 SmallVector<unsigned, 2> IncomingVals;
754 for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
755 if (Blocks.count(PN.getIncomingBlock(i)))
756 IncomingVals.push_back(i);
758 // Do not process PHI if there is one (or fewer) predecessor from region.
759 // If PHI has exactly one predecessor from region, only this one incoming
760 // will be replaced on codeRepl block, so it should be safe to skip PHI.
761 if (IncomingVals.size() <= 1)
762 continue;
764 // Create block for new PHIs and add it to the list of outlined if it
765 // wasn't done before.
766 if (!NewBB) {
767 NewBB = BasicBlock::Create(ExitBB->getContext(),
768 ExitBB->getName() + ".split",
769 ExitBB->getParent(), ExitBB);
770 SmallVector<BasicBlock *, 4> Preds(predecessors(ExitBB));
771 for (BasicBlock *PredBB : Preds)
772 if (Blocks.count(PredBB))
773 PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
774 BranchInst::Create(ExitBB, NewBB);
775 Blocks.insert(NewBB);
778 // Split this PHI.
779 PHINode *NewPN = PHINode::Create(PN.getType(), IncomingVals.size(),
780 PN.getName() + ".ce");
781 NewPN->insertBefore(NewBB->getFirstNonPHIIt());
782 for (unsigned i : IncomingVals)
783 NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
784 for (unsigned i : reverse(IncomingVals))
785 PN.removeIncomingValue(i, false);
786 PN.addIncoming(NewPN, NewBB);
791 void CodeExtractor::splitReturnBlocks() {
792 for (BasicBlock *Block : Blocks)
793 if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
794 BasicBlock *New =
795 Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
796 if (DT) {
797 // Old dominates New. New node dominates all other nodes dominated
798 // by Old.
799 DomTreeNode *OldNode = DT->getNode(Block);
800 SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
801 OldNode->end());
803 DomTreeNode *NewNode = DT->addNewBlock(New, Block);
805 for (DomTreeNode *I : Children)
806 DT->changeImmediateDominator(I, NewNode);
811 /// constructFunction - make a function based on inputs and outputs, as follows:
812 /// f(in0, ..., inN, out0, ..., outN)
813 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
814 const ValueSet &outputs,
815 BasicBlock *header,
816 BasicBlock *newRootNode,
817 BasicBlock *newHeader,
818 Function *oldFunction,
819 Module *M) {
820 LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
821 LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
823 // This function returns unsigned, outputs will go back by reference.
824 switch (NumExitBlocks) {
825 case 0:
826 case 1: RetTy = Type::getVoidTy(header->getContext()); break;
827 case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
828 default: RetTy = Type::getInt16Ty(header->getContext()); break;
831 std::vector<Type *> ParamTy;
832 std::vector<Type *> AggParamTy;
833 ValueSet StructValues;
834 const DataLayout &DL = M->getDataLayout();
836 // Add the types of the input values to the function's argument list
837 for (Value *value : inputs) {
838 LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
839 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(value)) {
840 AggParamTy.push_back(value->getType());
841 StructValues.insert(value);
842 } else
843 ParamTy.push_back(value->getType());
846 // Add the types of the output values to the function's argument list.
847 for (Value *output : outputs) {
848 LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
849 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
850 AggParamTy.push_back(output->getType());
851 StructValues.insert(output);
852 } else
853 ParamTy.push_back(
854 PointerType::get(output->getType(), DL.getAllocaAddrSpace()));
857 assert(
858 (ParamTy.size() + AggParamTy.size()) ==
859 (inputs.size() + outputs.size()) &&
860 "Number of scalar and aggregate params does not match inputs, outputs");
861 assert((StructValues.empty() || AggregateArgs) &&
862 "Expeced StructValues only with AggregateArgs set");
864 // Concatenate scalar and aggregate params in ParamTy.
865 size_t NumScalarParams = ParamTy.size();
866 StructType *StructTy = nullptr;
867 if (AggregateArgs && !AggParamTy.empty()) {
868 StructTy = StructType::get(M->getContext(), AggParamTy);
869 ParamTy.push_back(PointerType::get(StructTy, DL.getAllocaAddrSpace()));
872 LLVM_DEBUG({
873 dbgs() << "Function type: " << *RetTy << " f(";
874 for (Type *i : ParamTy)
875 dbgs() << *i << ", ";
876 dbgs() << ")\n";
879 FunctionType *funcType = FunctionType::get(
880 RetTy, ParamTy, AllowVarArgs && oldFunction->isVarArg());
882 std::string SuffixToUse =
883 Suffix.empty()
884 ? (header->getName().empty() ? "extracted" : header->getName().str())
885 : Suffix;
886 // Create the new function
887 Function *newFunction = Function::Create(
888 funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
889 oldFunction->getName() + "." + SuffixToUse, M);
891 // Inherit all of the target dependent attributes and white-listed
892 // target independent attributes.
893 // (e.g. If the extracted region contains a call to an x86.sse
894 // instruction we need to make sure that the extracted region has the
895 // "target-features" attribute allowing it to be lowered.
896 // FIXME: This should be changed to check to see if a specific
897 // attribute can not be inherited.
898 for (const auto &Attr : oldFunction->getAttributes().getFnAttrs()) {
899 if (Attr.isStringAttribute()) {
900 if (Attr.getKindAsString() == "thunk")
901 continue;
902 } else
903 switch (Attr.getKindAsEnum()) {
904 // Those attributes cannot be propagated safely. Explicitly list them
905 // here so we get a warning if new attributes are added.
906 case Attribute::AllocSize:
907 case Attribute::Builtin:
908 case Attribute::Convergent:
909 case Attribute::JumpTable:
910 case Attribute::Naked:
911 case Attribute::NoBuiltin:
912 case Attribute::NoMerge:
913 case Attribute::NoReturn:
914 case Attribute::NoSync:
915 case Attribute::ReturnsTwice:
916 case Attribute::Speculatable:
917 case Attribute::StackAlignment:
918 case Attribute::WillReturn:
919 case Attribute::AllocKind:
920 case Attribute::PresplitCoroutine:
921 case Attribute::Memory:
922 case Attribute::NoFPClass:
923 continue;
924 // Those attributes should be safe to propagate to the extracted function.
925 case Attribute::AlwaysInline:
926 case Attribute::Cold:
927 case Attribute::DisableSanitizerInstrumentation:
928 case Attribute::FnRetThunkExtern:
929 case Attribute::Hot:
930 case Attribute::NoRecurse:
931 case Attribute::InlineHint:
932 case Attribute::MinSize:
933 case Attribute::NoCallback:
934 case Attribute::NoDuplicate:
935 case Attribute::NoFree:
936 case Attribute::NoImplicitFloat:
937 case Attribute::NoInline:
938 case Attribute::NonLazyBind:
939 case Attribute::NoRedZone:
940 case Attribute::NoUnwind:
941 case Attribute::NoSanitizeBounds:
942 case Attribute::NoSanitizeCoverage:
943 case Attribute::NullPointerIsValid:
944 case Attribute::OptForFuzzing:
945 case Attribute::OptimizeNone:
946 case Attribute::OptimizeForSize:
947 case Attribute::SafeStack:
948 case Attribute::ShadowCallStack:
949 case Attribute::SanitizeAddress:
950 case Attribute::SanitizeMemory:
951 case Attribute::SanitizeThread:
952 case Attribute::SanitizeHWAddress:
953 case Attribute::SanitizeMemTag:
954 case Attribute::SpeculativeLoadHardening:
955 case Attribute::StackProtect:
956 case Attribute::StackProtectReq:
957 case Attribute::StackProtectStrong:
958 case Attribute::StrictFP:
959 case Attribute::UWTable:
960 case Attribute::VScaleRange:
961 case Attribute::NoCfCheck:
962 case Attribute::MustProgress:
963 case Attribute::NoProfile:
964 case Attribute::SkipProfile:
965 break;
966 // These attributes cannot be applied to functions.
967 case Attribute::Alignment:
968 case Attribute::AllocatedPointer:
969 case Attribute::AllocAlign:
970 case Attribute::ByVal:
971 case Attribute::Dereferenceable:
972 case Attribute::DereferenceableOrNull:
973 case Attribute::ElementType:
974 case Attribute::InAlloca:
975 case Attribute::InReg:
976 case Attribute::Nest:
977 case Attribute::NoAlias:
978 case Attribute::NoCapture:
979 case Attribute::NoUndef:
980 case Attribute::NonNull:
981 case Attribute::Preallocated:
982 case Attribute::ReadNone:
983 case Attribute::ReadOnly:
984 case Attribute::Returned:
985 case Attribute::SExt:
986 case Attribute::StructRet:
987 case Attribute::SwiftError:
988 case Attribute::SwiftSelf:
989 case Attribute::SwiftAsync:
990 case Attribute::ZExt:
991 case Attribute::ImmArg:
992 case Attribute::ByRef:
993 case Attribute::WriteOnly:
994 // These are not really attributes.
995 case Attribute::None:
996 case Attribute::EndAttrKinds:
997 case Attribute::EmptyKey:
998 case Attribute::TombstoneKey:
999 llvm_unreachable("Not a function attribute");
1002 newFunction->addFnAttr(Attr);
1004 newFunction->insert(newFunction->end(), newRootNode);
1006 // Create scalar and aggregate iterators to name all of the arguments we
1007 // inserted.
1008 Function::arg_iterator ScalarAI = newFunction->arg_begin();
1009 Function::arg_iterator AggAI = std::next(ScalarAI, NumScalarParams);
1011 // Rewrite all users of the inputs in the extracted region to use the
1012 // arguments (or appropriate addressing into struct) instead.
1013 for (unsigned i = 0, e = inputs.size(), aggIdx = 0; i != e; ++i) {
1014 Value *RewriteVal;
1015 if (AggregateArgs && StructValues.contains(inputs[i])) {
1016 Value *Idx[2];
1017 Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
1018 Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), aggIdx);
1019 Instruction *TI = newFunction->begin()->getTerminator();
1020 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1021 StructTy, &*AggAI, Idx, "gep_" + inputs[i]->getName(), TI);
1022 RewriteVal = new LoadInst(StructTy->getElementType(aggIdx), GEP,
1023 "loadgep_" + inputs[i]->getName(), TI);
1024 ++aggIdx;
1025 } else
1026 RewriteVal = &*ScalarAI++;
1028 std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
1029 for (User *use : Users)
1030 if (Instruction *inst = dyn_cast<Instruction>(use))
1031 if (Blocks.count(inst->getParent()))
1032 inst->replaceUsesOfWith(inputs[i], RewriteVal);
1035 // Set names for input and output arguments.
1036 if (NumScalarParams) {
1037 ScalarAI = newFunction->arg_begin();
1038 for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++ScalarAI)
1039 if (!StructValues.contains(inputs[i]))
1040 ScalarAI->setName(inputs[i]->getName());
1041 for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++ScalarAI)
1042 if (!StructValues.contains(outputs[i]))
1043 ScalarAI->setName(outputs[i]->getName() + ".out");
1046 // Rewrite branches to basic blocks outside of the loop to new dummy blocks
1047 // within the new function. This must be done before we lose track of which
1048 // blocks were originally in the code region.
1049 std::vector<User *> Users(header->user_begin(), header->user_end());
1050 for (auto &U : Users)
1051 // The BasicBlock which contains the branch is not in the region
1052 // modify the branch target to a new block
1053 if (Instruction *I = dyn_cast<Instruction>(U))
1054 if (I->isTerminator() && I->getFunction() == oldFunction &&
1055 !Blocks.count(I->getParent()))
1056 I->replaceUsesOfWith(header, newHeader);
1058 return newFunction;
1061 /// Erase lifetime.start markers which reference inputs to the extraction
1062 /// region, and insert the referenced memory into \p LifetimesStart.
1064 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
1065 /// of allocas which will be moved from the caller function into the extracted
1066 /// function (\p SunkAllocas).
1067 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
1068 const SetVector<Value *> &SunkAllocas,
1069 SetVector<Value *> &LifetimesStart) {
1070 for (BasicBlock *BB : Blocks) {
1071 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
1072 auto *II = dyn_cast<IntrinsicInst>(&I);
1073 if (!II || !II->isLifetimeStartOrEnd())
1074 continue;
1076 // Get the memory operand of the lifetime marker. If the underlying
1077 // object is a sunk alloca, or is otherwise defined in the extraction
1078 // region, the lifetime marker must not be erased.
1079 Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
1080 if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
1081 continue;
1083 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1084 LifetimesStart.insert(Mem);
1085 II->eraseFromParent();
1090 /// Insert lifetime start/end markers surrounding the call to the new function
1091 /// for objects defined in the caller.
1092 static void insertLifetimeMarkersSurroundingCall(
1093 Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
1094 CallInst *TheCall) {
1095 LLVMContext &Ctx = M->getContext();
1096 auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
1097 Instruction *Term = TheCall->getParent()->getTerminator();
1099 // Emit lifetime markers for the pointers given in \p Objects. Insert the
1100 // markers before the call if \p InsertBefore, and after the call otherwise.
1101 auto insertMarkers = [&](Intrinsic::ID MarkerFunc, ArrayRef<Value *> Objects,
1102 bool InsertBefore) {
1103 for (Value *Mem : Objects) {
1104 assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
1105 TheCall->getFunction()) &&
1106 "Input memory not defined in original function");
1108 Function *Func = Intrinsic::getDeclaration(M, MarkerFunc, Mem->getType());
1109 auto Marker = CallInst::Create(Func, {NegativeOne, Mem});
1110 if (InsertBefore)
1111 Marker->insertBefore(TheCall);
1112 else
1113 Marker->insertBefore(Term);
1117 if (!LifetimesStart.empty()) {
1118 insertMarkers(Intrinsic::lifetime_start, LifetimesStart,
1119 /*InsertBefore=*/true);
1122 if (!LifetimesEnd.empty()) {
1123 insertMarkers(Intrinsic::lifetime_end, LifetimesEnd,
1124 /*InsertBefore=*/false);
1128 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1129 /// the call instruction, splitting any PHI nodes in the header block as
1130 /// necessary.
1131 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1132 BasicBlock *codeReplacer,
1133 ValueSet &inputs,
1134 ValueSet &outputs) {
1135 // Emit a call to the new function, passing in: *pointer to struct (if
1136 // aggregating parameters), or plan inputs and allocated memory for outputs
1137 std::vector<Value *> params, ReloadOutputs, Reloads;
1138 ValueSet StructValues;
1140 Module *M = newFunction->getParent();
1141 LLVMContext &Context = M->getContext();
1142 const DataLayout &DL = M->getDataLayout();
1143 CallInst *call = nullptr;
1145 // Add inputs as params, or to be filled into the struct
1146 unsigned ScalarInputArgNo = 0;
1147 SmallVector<unsigned, 1> SwiftErrorArgs;
1148 for (Value *input : inputs) {
1149 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(input))
1150 StructValues.insert(input);
1151 else {
1152 params.push_back(input);
1153 if (input->isSwiftError())
1154 SwiftErrorArgs.push_back(ScalarInputArgNo);
1156 ++ScalarInputArgNo;
1159 // Create allocas for the outputs
1160 unsigned ScalarOutputArgNo = 0;
1161 for (Value *output : outputs) {
1162 if (AggregateArgs && !ExcludeArgsFromAggregate.contains(output)) {
1163 StructValues.insert(output);
1164 } else {
1165 AllocaInst *alloca =
1166 new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1167 nullptr, output->getName() + ".loc",
1168 &codeReplacer->getParent()->front().front());
1169 ReloadOutputs.push_back(alloca);
1170 params.push_back(alloca);
1171 ++ScalarOutputArgNo;
1175 StructType *StructArgTy = nullptr;
1176 AllocaInst *Struct = nullptr;
1177 unsigned NumAggregatedInputs = 0;
1178 if (AggregateArgs && !StructValues.empty()) {
1179 std::vector<Type *> ArgTypes;
1180 for (Value *V : StructValues)
1181 ArgTypes.push_back(V->getType());
1183 // Allocate a struct at the beginning of this function
1184 StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1185 Struct = new AllocaInst(
1186 StructArgTy, DL.getAllocaAddrSpace(), nullptr, "structArg",
1187 AllocationBlock ? &*AllocationBlock->getFirstInsertionPt()
1188 : &codeReplacer->getParent()->front().front());
1189 params.push_back(Struct);
1191 // Store aggregated inputs in the struct.
1192 for (unsigned i = 0, e = StructValues.size(); i != e; ++i) {
1193 if (inputs.contains(StructValues[i])) {
1194 Value *Idx[2];
1195 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1196 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1197 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1198 StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1199 GEP->insertInto(codeReplacer, codeReplacer->end());
1200 new StoreInst(StructValues[i], GEP, codeReplacer);
1201 NumAggregatedInputs++;
1206 // Emit the call to the function
1207 call = CallInst::Create(newFunction, params,
1208 NumExitBlocks > 1 ? "targetBlock" : "");
1209 // Add debug location to the new call, if the original function has debug
1210 // info. In that case, the terminator of the entry block of the extracted
1211 // function contains the first debug location of the extracted function,
1212 // set in extractCodeRegion.
1213 if (codeReplacer->getParent()->getSubprogram()) {
1214 if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1215 call->setDebugLoc(DL);
1217 call->insertInto(codeReplacer, codeReplacer->end());
1219 // Set swifterror parameter attributes.
1220 for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1221 call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1222 newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1225 // Reload the outputs passed in by reference, use the struct if output is in
1226 // the aggregate or reload from the scalar argument.
1227 for (unsigned i = 0, e = outputs.size(), scalarIdx = 0,
1228 aggIdx = NumAggregatedInputs;
1229 i != e; ++i) {
1230 Value *Output = nullptr;
1231 if (AggregateArgs && StructValues.contains(outputs[i])) {
1232 Value *Idx[2];
1233 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1234 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1235 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1236 StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1237 GEP->insertInto(codeReplacer, codeReplacer->end());
1238 Output = GEP;
1239 ++aggIdx;
1240 } else {
1241 Output = ReloadOutputs[scalarIdx];
1242 ++scalarIdx;
1244 LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1245 outputs[i]->getName() + ".reload",
1246 codeReplacer);
1247 Reloads.push_back(load);
1248 std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1249 for (User *U : Users) {
1250 Instruction *inst = cast<Instruction>(U);
1251 if (!Blocks.count(inst->getParent()))
1252 inst->replaceUsesOfWith(outputs[i], load);
1256 // Now we can emit a switch statement using the call as a value.
1257 SwitchInst *TheSwitch =
1258 SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1259 codeReplacer, 0, codeReplacer);
1261 // Since there may be multiple exits from the original region, make the new
1262 // function return an unsigned, switch on that number. This loop iterates
1263 // over all of the blocks in the extracted region, updating any terminator
1264 // instructions in the to-be-extracted region that branch to blocks that are
1265 // not in the region to be extracted.
1266 std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1268 // Iterate over the previously collected targets, and create new blocks inside
1269 // the function to branch to.
1270 unsigned switchVal = 0;
1271 for (BasicBlock *OldTarget : OldTargets) {
1272 if (Blocks.count(OldTarget))
1273 continue;
1274 BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1275 if (NewTarget)
1276 continue;
1278 // If we don't already have an exit stub for this non-extracted
1279 // destination, create one now!
1280 NewTarget = BasicBlock::Create(Context,
1281 OldTarget->getName() + ".exitStub",
1282 newFunction);
1283 unsigned SuccNum = switchVal++;
1285 Value *brVal = nullptr;
1286 assert(NumExitBlocks < 0xffff && "too many exit blocks for switch");
1287 switch (NumExitBlocks) {
1288 case 0:
1289 case 1: break; // No value needed.
1290 case 2: // Conditional branch, return a bool
1291 brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1292 break;
1293 default:
1294 brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1295 break;
1298 ReturnInst::Create(Context, brVal, NewTarget);
1300 // Update the switch instruction.
1301 TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1302 SuccNum),
1303 OldTarget);
1306 for (BasicBlock *Block : Blocks) {
1307 Instruction *TI = Block->getTerminator();
1308 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1309 if (Blocks.count(TI->getSuccessor(i)))
1310 continue;
1311 BasicBlock *OldTarget = TI->getSuccessor(i);
1312 // add a new basic block which returns the appropriate value
1313 BasicBlock *NewTarget = ExitBlockMap[OldTarget];
1314 assert(NewTarget && "Unknown target block!");
1316 // rewrite the original branch instruction with this new target
1317 TI->setSuccessor(i, NewTarget);
1321 // Store the arguments right after the definition of output value.
1322 // This should be proceeded after creating exit stubs to be ensure that invoke
1323 // result restore will be placed in the outlined function.
1324 Function::arg_iterator ScalarOutputArgBegin = newFunction->arg_begin();
1325 std::advance(ScalarOutputArgBegin, ScalarInputArgNo);
1326 Function::arg_iterator AggOutputArgBegin = newFunction->arg_begin();
1327 std::advance(AggOutputArgBegin, ScalarInputArgNo + ScalarOutputArgNo);
1329 for (unsigned i = 0, e = outputs.size(), aggIdx = NumAggregatedInputs; i != e;
1330 ++i) {
1331 auto *OutI = dyn_cast<Instruction>(outputs[i]);
1332 if (!OutI)
1333 continue;
1335 // Find proper insertion point.
1336 BasicBlock::iterator InsertPt;
1337 // In case OutI is an invoke, we insert the store at the beginning in the
1338 // 'normal destination' BB. Otherwise we insert the store right after OutI.
1339 if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1340 InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1341 else if (auto *Phi = dyn_cast<PHINode>(OutI))
1342 InsertPt = Phi->getParent()->getFirstInsertionPt();
1343 else
1344 InsertPt = std::next(OutI->getIterator());
1346 Instruction *InsertBefore = &*InsertPt;
1347 assert((InsertBefore->getFunction() == newFunction ||
1348 Blocks.count(InsertBefore->getParent())) &&
1349 "InsertPt should be in new function");
1350 if (AggregateArgs && StructValues.contains(outputs[i])) {
1351 assert(AggOutputArgBegin != newFunction->arg_end() &&
1352 "Number of aggregate output arguments should match "
1353 "the number of defined values");
1354 Value *Idx[2];
1355 Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1356 Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), aggIdx);
1357 GetElementPtrInst *GEP = GetElementPtrInst::Create(
1358 StructArgTy, &*AggOutputArgBegin, Idx, "gep_" + outputs[i]->getName(),
1359 InsertBefore);
1360 new StoreInst(outputs[i], GEP, InsertBefore);
1361 ++aggIdx;
1362 // Since there should be only one struct argument aggregating
1363 // all the output values, we shouldn't increment AggOutputArgBegin, which
1364 // always points to the struct argument, in this case.
1365 } else {
1366 assert(ScalarOutputArgBegin != newFunction->arg_end() &&
1367 "Number of scalar output arguments should match "
1368 "the number of defined values");
1369 new StoreInst(outputs[i], &*ScalarOutputArgBegin, InsertBefore);
1370 ++ScalarOutputArgBegin;
1374 // Now that we've done the deed, simplify the switch instruction.
1375 Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1376 switch (NumExitBlocks) {
1377 case 0:
1378 // There are no successors (the block containing the switch itself), which
1379 // means that previously this was the last part of the function, and hence
1380 // this should be rewritten as a `ret'
1382 // Check if the function should return a value
1383 if (OldFnRetTy->isVoidTy()) {
1384 ReturnInst::Create(Context, nullptr, TheSwitch); // Return void
1385 } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1386 // return what we have
1387 ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1388 } else {
1389 // Otherwise we must have code extracted an unwind or something, just
1390 // return whatever we want.
1391 ReturnInst::Create(Context,
1392 Constant::getNullValue(OldFnRetTy), TheSwitch);
1395 TheSwitch->eraseFromParent();
1396 break;
1397 case 1:
1398 // Only a single destination, change the switch into an unconditional
1399 // branch.
1400 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1401 TheSwitch->eraseFromParent();
1402 break;
1403 case 2:
1404 BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1405 call, TheSwitch);
1406 TheSwitch->eraseFromParent();
1407 break;
1408 default:
1409 // Otherwise, make the default destination of the switch instruction be one
1410 // of the other successors.
1411 TheSwitch->setCondition(call);
1412 TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1413 // Remove redundant case
1414 TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1415 break;
1418 // Insert lifetime markers around the reloads of any output values. The
1419 // allocas output values are stored in are only in-use in the codeRepl block.
1420 insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1422 return call;
1425 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1426 auto newFuncIt = newFunction->front().getIterator();
1427 for (BasicBlock *Block : Blocks) {
1428 // Delete the basic block from the old function, and the list of blocks
1429 Block->removeFromParent();
1431 // Insert this basic block into the new function
1432 // Insert the original blocks after the entry block created
1433 // for the new function. The entry block may be followed
1434 // by a set of exit blocks at this point, but these exit
1435 // blocks better be placed at the end of the new function.
1436 newFuncIt = newFunction->insert(std::next(newFuncIt), Block);
1440 void CodeExtractor::calculateNewCallTerminatorWeights(
1441 BasicBlock *CodeReplacer,
1442 DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1443 BranchProbabilityInfo *BPI) {
1444 using Distribution = BlockFrequencyInfoImplBase::Distribution;
1445 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1447 // Update the branch weights for the exit block.
1448 Instruction *TI = CodeReplacer->getTerminator();
1449 SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1451 // Block Frequency distribution with dummy node.
1452 Distribution BranchDist;
1454 SmallVector<BranchProbability, 4> EdgeProbabilities(
1455 TI->getNumSuccessors(), BranchProbability::getUnknown());
1457 // Add each of the frequencies of the successors.
1458 for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1459 BlockNode ExitNode(i);
1460 uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1461 if (ExitFreq != 0)
1462 BranchDist.addExit(ExitNode, ExitFreq);
1463 else
1464 EdgeProbabilities[i] = BranchProbability::getZero();
1467 // Check for no total weight.
1468 if (BranchDist.Total == 0) {
1469 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1470 return;
1473 // Normalize the distribution so that they can fit in unsigned.
1474 BranchDist.normalize();
1476 // Create normalized branch weights and set the metadata.
1477 for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1478 const auto &Weight = BranchDist.Weights[I];
1480 // Get the weight and update the current BFI.
1481 BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1482 BranchProbability BP(Weight.Amount, BranchDist.Total);
1483 EdgeProbabilities[Weight.TargetNode.Index] = BP;
1485 BPI->setEdgeProbability(CodeReplacer, EdgeProbabilities);
1486 TI->setMetadata(
1487 LLVMContext::MD_prof,
1488 MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1491 /// Erase debug info intrinsics which refer to values in \p F but aren't in
1492 /// \p F.
1493 static void eraseDebugIntrinsicsWithNonLocalRefs(Function &F) {
1494 for (Instruction &I : instructions(F)) {
1495 SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1496 findDbgUsers(DbgUsers, &I);
1497 for (DbgVariableIntrinsic *DVI : DbgUsers)
1498 if (DVI->getFunction() != &F)
1499 DVI->eraseFromParent();
1503 /// Fix up the debug info in the old and new functions by pointing line
1504 /// locations and debug intrinsics to the new subprogram scope, and by deleting
1505 /// intrinsics which point to values outside of the new function.
1506 static void fixupDebugInfoPostExtraction(Function &OldFunc, Function &NewFunc,
1507 CallInst &TheCall) {
1508 DISubprogram *OldSP = OldFunc.getSubprogram();
1509 LLVMContext &Ctx = OldFunc.getContext();
1511 if (!OldSP) {
1512 // Erase any debug info the new function contains.
1513 stripDebugInfo(NewFunc);
1514 // Make sure the old function doesn't contain any non-local metadata refs.
1515 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1516 return;
1519 // Create a subprogram for the new function. Leave out a description of the
1520 // function arguments, as the parameters don't correspond to anything at the
1521 // source level.
1522 assert(OldSP->getUnit() && "Missing compile unit for subprogram");
1523 DIBuilder DIB(*OldFunc.getParent(), /*AllowUnresolved=*/false,
1524 OldSP->getUnit());
1525 auto SPType =
1526 DIB.createSubroutineType(DIB.getOrCreateTypeArray(std::nullopt));
1527 DISubprogram::DISPFlags SPFlags = DISubprogram::SPFlagDefinition |
1528 DISubprogram::SPFlagOptimized |
1529 DISubprogram::SPFlagLocalToUnit;
1530 auto NewSP = DIB.createFunction(
1531 OldSP->getUnit(), NewFunc.getName(), NewFunc.getName(), OldSP->getFile(),
1532 /*LineNo=*/0, SPType, /*ScopeLine=*/0, DINode::FlagZero, SPFlags);
1533 NewFunc.setSubprogram(NewSP);
1535 // Debug intrinsics in the new function need to be updated in one of two
1536 // ways:
1537 // 1) They need to be deleted, because they describe a value in the old
1538 // function.
1539 // 2) They need to point to fresh metadata, e.g. because they currently
1540 // point to a variable in the wrong scope.
1541 SmallDenseMap<DINode *, DINode *> RemappedMetadata;
1542 SmallVector<Instruction *, 4> DebugIntrinsicsToDelete;
1543 DenseMap<const MDNode *, MDNode *> Cache;
1544 for (Instruction &I : instructions(NewFunc)) {
1545 auto *DII = dyn_cast<DbgInfoIntrinsic>(&I);
1546 if (!DII)
1547 continue;
1549 // Point the intrinsic to a fresh label within the new function if the
1550 // intrinsic was not inlined from some other function.
1551 if (auto *DLI = dyn_cast<DbgLabelInst>(&I)) {
1552 if (DLI->getDebugLoc().getInlinedAt())
1553 continue;
1554 DILabel *OldLabel = DLI->getLabel();
1555 DINode *&NewLabel = RemappedMetadata[OldLabel];
1556 if (!NewLabel) {
1557 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1558 *OldLabel->getScope(), *NewSP, Ctx, Cache);
1559 NewLabel = DILabel::get(Ctx, NewScope, OldLabel->getName(),
1560 OldLabel->getFile(), OldLabel->getLine());
1562 DLI->setArgOperand(0, MetadataAsValue::get(Ctx, NewLabel));
1563 continue;
1566 auto IsInvalidLocation = [&NewFunc](Value *Location) {
1567 // Location is invalid if it isn't a constant or an instruction, or is an
1568 // instruction but isn't in the new function.
1569 if (!Location ||
1570 (!isa<Constant>(Location) && !isa<Instruction>(Location)))
1571 return true;
1572 Instruction *LocationInst = dyn_cast<Instruction>(Location);
1573 return LocationInst && LocationInst->getFunction() != &NewFunc;
1576 auto *DVI = cast<DbgVariableIntrinsic>(DII);
1577 // If any of the used locations are invalid, delete the intrinsic.
1578 if (any_of(DVI->location_ops(), IsInvalidLocation)) {
1579 DebugIntrinsicsToDelete.push_back(DVI);
1580 continue;
1582 // If the variable was in the scope of the old function, i.e. it was not
1583 // inlined, point the intrinsic to a fresh variable within the new function.
1584 if (!DVI->getDebugLoc().getInlinedAt()) {
1585 DILocalVariable *OldVar = DVI->getVariable();
1586 DINode *&NewVar = RemappedMetadata[OldVar];
1587 if (!NewVar) {
1588 DILocalScope *NewScope = DILocalScope::cloneScopeForSubprogram(
1589 *OldVar->getScope(), *NewSP, Ctx, Cache);
1590 NewVar = DIB.createAutoVariable(
1591 NewScope, OldVar->getName(), OldVar->getFile(), OldVar->getLine(),
1592 OldVar->getType(), /*AlwaysPreserve=*/false, DINode::FlagZero,
1593 OldVar->getAlignInBits());
1595 DVI->setVariable(cast<DILocalVariable>(NewVar));
1599 for (auto *DII : DebugIntrinsicsToDelete)
1600 DII->eraseFromParent();
1601 DIB.finalizeSubprogram(NewSP);
1603 // Fix up the scope information attached to the line locations in the new
1604 // function.
1605 for (Instruction &I : instructions(NewFunc)) {
1606 if (const DebugLoc &DL = I.getDebugLoc())
1607 I.setDebugLoc(
1608 DebugLoc::replaceInlinedAtSubprogram(DL, *NewSP, Ctx, Cache));
1610 // Loop info metadata may contain line locations. Fix them up.
1611 auto updateLoopInfoLoc = [&Ctx, &Cache, NewSP](Metadata *MD) -> Metadata * {
1612 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
1613 return DebugLoc::replaceInlinedAtSubprogram(Loc, *NewSP, Ctx, Cache);
1614 return MD;
1616 updateLoopMetadataDebugLocations(I, updateLoopInfoLoc);
1618 if (!TheCall.getDebugLoc())
1619 TheCall.setDebugLoc(DILocation::get(Ctx, 0, 0, OldSP));
1621 eraseDebugIntrinsicsWithNonLocalRefs(NewFunc);
1624 Function *
1625 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC) {
1626 ValueSet Inputs, Outputs;
1627 return extractCodeRegion(CEAC, Inputs, Outputs);
1630 Function *
1631 CodeExtractor::extractCodeRegion(const CodeExtractorAnalysisCache &CEAC,
1632 ValueSet &inputs, ValueSet &outputs) {
1633 if (!isEligible())
1634 return nullptr;
1636 // Assumption: this is a single-entry code region, and the header is the first
1637 // block in the region.
1638 BasicBlock *header = *Blocks.begin();
1639 Function *oldFunction = header->getParent();
1641 // Calculate the entry frequency of the new function before we change the root
1642 // block.
1643 BlockFrequency EntryFreq;
1644 if (BFI) {
1645 assert(BPI && "Both BPI and BFI are required to preserve profile info");
1646 for (BasicBlock *Pred : predecessors(header)) {
1647 if (Blocks.count(Pred))
1648 continue;
1649 EntryFreq +=
1650 BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1654 // Remove @llvm.assume calls that will be moved to the new function from the
1655 // old function's assumption cache.
1656 for (BasicBlock *Block : Blocks) {
1657 for (Instruction &I : llvm::make_early_inc_range(*Block)) {
1658 if (auto *AI = dyn_cast<AssumeInst>(&I)) {
1659 if (AC)
1660 AC->unregisterAssumption(AI);
1661 AI->eraseFromParent();
1666 // If we have any return instructions in the region, split those blocks so
1667 // that the return is not in the region.
1668 splitReturnBlocks();
1670 // Calculate the exit blocks for the extracted region and the total exit
1671 // weights for each of those blocks.
1672 DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1673 SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1674 for (BasicBlock *Block : Blocks) {
1675 for (BasicBlock *Succ : successors(Block)) {
1676 if (!Blocks.count(Succ)) {
1677 // Update the branch weight for this successor.
1678 if (BFI) {
1679 BlockFrequency &BF = ExitWeights[Succ];
1680 BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, Succ);
1682 ExitBlocks.insert(Succ);
1686 NumExitBlocks = ExitBlocks.size();
1688 for (BasicBlock *Block : Blocks) {
1689 Instruction *TI = Block->getTerminator();
1690 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1691 if (Blocks.count(TI->getSuccessor(i)))
1692 continue;
1693 BasicBlock *OldTarget = TI->getSuccessor(i);
1694 OldTargets.push_back(OldTarget);
1698 // If we have to split PHI nodes of the entry or exit blocks, do so now.
1699 severSplitPHINodesOfEntry(header);
1700 severSplitPHINodesOfExits(ExitBlocks);
1702 // This takes place of the original loop
1703 BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1704 "codeRepl", oldFunction,
1705 header);
1707 // The new function needs a root node because other nodes can branch to the
1708 // head of the region, but the entry node of a function cannot have preds.
1709 BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1710 "newFuncRoot");
1711 auto *BranchI = BranchInst::Create(header);
1712 // If the original function has debug info, we have to add a debug location
1713 // to the new branch instruction from the artificial entry block.
1714 // We use the debug location of the first instruction in the extracted
1715 // blocks, as there is no other equivalent line in the source code.
1716 if (oldFunction->getSubprogram()) {
1717 any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1718 return any_of(*BB, [&BranchI](const Instruction &I) {
1719 if (!I.getDebugLoc())
1720 return false;
1721 BranchI->setDebugLoc(I.getDebugLoc());
1722 return true;
1726 BranchI->insertInto(newFuncRoot, newFuncRoot->end());
1728 ValueSet SinkingCands, HoistingCands;
1729 BasicBlock *CommonExit = nullptr;
1730 findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1731 assert(HoistingCands.empty() || CommonExit);
1733 // Find inputs to, outputs from the code region.
1734 findInputsOutputs(inputs, outputs, SinkingCands);
1736 // Now sink all instructions which only have non-phi uses inside the region.
1737 // Group the allocas at the start of the block, so that any bitcast uses of
1738 // the allocas are well-defined.
1739 AllocaInst *FirstSunkAlloca = nullptr;
1740 for (auto *II : SinkingCands) {
1741 if (auto *AI = dyn_cast<AllocaInst>(II)) {
1742 AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1743 if (!FirstSunkAlloca)
1744 FirstSunkAlloca = AI;
1747 assert((SinkingCands.empty() || FirstSunkAlloca) &&
1748 "Did not expect a sink candidate without any allocas");
1749 for (auto *II : SinkingCands) {
1750 if (!isa<AllocaInst>(II)) {
1751 cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1755 if (!HoistingCands.empty()) {
1756 auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1757 Instruction *TI = HoistToBlock->getTerminator();
1758 for (auto *II : HoistingCands)
1759 cast<Instruction>(II)->moveBefore(TI);
1762 // Collect objects which are inputs to the extraction region and also
1763 // referenced by lifetime start markers within it. The effects of these
1764 // markers must be replicated in the calling function to prevent the stack
1765 // coloring pass from merging slots which store input objects.
1766 ValueSet LifetimesStart;
1767 eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1769 // Construct new function based on inputs/outputs & add allocas for all defs.
1770 Function *newFunction =
1771 constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1772 oldFunction, oldFunction->getParent());
1774 // Update the entry count of the function.
1775 if (BFI) {
1776 auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1777 if (Count)
1778 newFunction->setEntryCount(
1779 ProfileCount(*Count, Function::PCT_Real)); // FIXME
1780 BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1783 CallInst *TheCall =
1784 emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1786 moveCodeToFunction(newFunction);
1788 // Replicate the effects of any lifetime start/end markers which referenced
1789 // input objects in the extraction region by placing markers around the call.
1790 insertLifetimeMarkersSurroundingCall(
1791 oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1793 // Propagate personality info to the new function if there is one.
1794 if (oldFunction->hasPersonalityFn())
1795 newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1797 // Update the branch weights for the exit block.
1798 if (BFI && NumExitBlocks > 1)
1799 calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1801 // Loop over all of the PHI nodes in the header and exit blocks, and change
1802 // any references to the old incoming edge to be the new incoming edge.
1803 for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1804 PHINode *PN = cast<PHINode>(I);
1805 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1806 if (!Blocks.count(PN->getIncomingBlock(i)))
1807 PN->setIncomingBlock(i, newFuncRoot);
1810 for (BasicBlock *ExitBB : ExitBlocks)
1811 for (PHINode &PN : ExitBB->phis()) {
1812 Value *IncomingCodeReplacerVal = nullptr;
1813 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1814 // Ignore incoming values from outside of the extracted region.
1815 if (!Blocks.count(PN.getIncomingBlock(i)))
1816 continue;
1818 // Ensure that there is only one incoming value from codeReplacer.
1819 if (!IncomingCodeReplacerVal) {
1820 PN.setIncomingBlock(i, codeReplacer);
1821 IncomingCodeReplacerVal = PN.getIncomingValue(i);
1822 } else
1823 assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1824 "PHI has two incompatbile incoming values from codeRepl");
1828 fixupDebugInfoPostExtraction(*oldFunction, *newFunction, *TheCall);
1830 // Mark the new function `noreturn` if applicable. Terminators which resume
1831 // exception propagation are treated as returning instructions. This is to
1832 // avoid inserting traps after calls to outlined functions which unwind.
1833 bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1834 const Instruction *Term = BB.getTerminator();
1835 return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1837 if (doesNotReturn)
1838 newFunction->setDoesNotReturn();
1840 LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1841 newFunction->dump();
1842 report_fatal_error("verification of newFunction failed!");
1844 LLVM_DEBUG(if (verifyFunction(*oldFunction))
1845 report_fatal_error("verification of oldFunction failed!"));
1846 LLVM_DEBUG(if (AC && verifyAssumptionCache(*oldFunction, *newFunction, AC))
1847 report_fatal_error("Stale Asumption cache for old Function!"));
1848 return newFunction;
1851 bool CodeExtractor::verifyAssumptionCache(const Function &OldFunc,
1852 const Function &NewFunc,
1853 AssumptionCache *AC) {
1854 for (auto AssumeVH : AC->assumptions()) {
1855 auto *I = dyn_cast_or_null<CallInst>(AssumeVH);
1856 if (!I)
1857 continue;
1859 // There shouldn't be any llvm.assume intrinsics in the new function.
1860 if (I->getFunction() != &OldFunc)
1861 return true;
1863 // There shouldn't be any stale affected values in the assumption cache
1864 // that were previously in the old function, but that have now been moved
1865 // to the new function.
1866 for (auto AffectedValVH : AC->assumptionsFor(I->getOperand(0))) {
1867 auto *AffectedCI = dyn_cast_or_null<CallInst>(AffectedValVH);
1868 if (!AffectedCI)
1869 continue;
1870 if (AffectedCI->getFunction() != &OldFunc)
1871 return true;
1872 auto *AssumedInst = cast<Instruction>(AffectedCI->getOperand(0));
1873 if (AssumedInst->getFunction() != &OldFunc)
1874 return true;
1877 return false;
1880 void CodeExtractor::excludeArgFromAggregate(Value *Arg) {
1881 ExcludeArgsFromAggregate.insert(Arg);