[AMDGPU] Test codegen'ing True16 additions.
[llvm-project.git] / llvm / lib / Transforms / Utils / UnifyLoopExits.cpp
blob8c781f59ff5a4b018b4005efd17fff9eb07fd805
1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 // (the "br" instruction). The presence of any other control flow
15 // such as indirectbr, switch or callbr will cause an assert.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/DomTreeUpdater.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Transforms/Utils.h"
28 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #define DEBUG_TYPE "unify-loop-exits"
32 using namespace llvm;
34 static cl::opt<unsigned> MaxBooleansInControlFlowHub(
35 "max-booleans-in-control-flow-hub", cl::init(32), cl::Hidden,
36 cl::desc("Set the maximum number of outgoing blocks for using a boolean "
37 "value to record the exiting block in CreateControlFlowHub."));
39 namespace {
40 struct UnifyLoopExitsLegacyPass : public FunctionPass {
41 static char ID;
42 UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
43 initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
46 void getAnalysisUsage(AnalysisUsage &AU) const override {
47 AU.addRequiredID(LowerSwitchID);
48 AU.addRequired<LoopInfoWrapperPass>();
49 AU.addRequired<DominatorTreeWrapperPass>();
50 AU.addPreservedID(LowerSwitchID);
51 AU.addPreserved<LoopInfoWrapperPass>();
52 AU.addPreserved<DominatorTreeWrapperPass>();
55 bool runOnFunction(Function &F) override;
57 } // namespace
59 char UnifyLoopExitsLegacyPass::ID = 0;
61 FunctionPass *llvm::createUnifyLoopExitsPass() {
62 return new UnifyLoopExitsLegacyPass();
65 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
66 "Fixup each natural loop to have a single exit block",
67 false /* Only looks at CFG */, false /* Analysis Pass */)
68 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
69 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
70 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
71 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
72 "Fixup each natural loop to have a single exit block",
73 false /* Only looks at CFG */, false /* Analysis Pass */)
75 // The current transform introduces new control flow paths which may break the
76 // SSA requirement that every def must dominate all its uses. For example,
77 // consider a value D defined inside the loop that is used by some instruction
78 // U outside the loop. It follows that D dominates U, since the original
79 // program has valid SSA form. After merging the exits, all paths from D to U
80 // now flow through the unified exit block. In addition, there may be other
81 // paths that do not pass through D, but now reach the unified exit
82 // block. Thus, D no longer dominates U.
84 // Restore the dominance by creating a phi for each such D at the new unified
85 // loop exit. But when doing this, ignore any uses U that are in the new unified
86 // loop exit, since those were introduced specially when the block was created.
88 // The use of SSAUpdater seems like overkill for this operation. The location
89 // for creating the new PHI is well-known, and also the set of incoming blocks
90 // to the new PHI.
91 static void restoreSSA(const DominatorTree &DT, const Loop *L,
92 const SetVector<BasicBlock *> &Incoming,
93 BasicBlock *LoopExitBlock) {
94 using InstVector = SmallVector<Instruction *, 8>;
95 using IIMap = MapVector<Instruction *, InstVector>;
96 IIMap ExternalUsers;
97 for (auto *BB : L->blocks()) {
98 for (auto &I : *BB) {
99 for (auto &U : I.uses()) {
100 auto UserInst = cast<Instruction>(U.getUser());
101 auto UserBlock = UserInst->getParent();
102 if (UserBlock == LoopExitBlock)
103 continue;
104 if (L->contains(UserBlock))
105 continue;
106 LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
107 << BB->getName() << ")"
108 << ": " << UserInst->getName() << "("
109 << UserBlock->getName() << ")"
110 << "\n");
111 ExternalUsers[&I].push_back(UserInst);
116 for (const auto &II : ExternalUsers) {
117 // For each Def used outside the loop, create NewPhi in
118 // LoopExitBlock. NewPhi receives Def only along exiting blocks that
119 // dominate it, while the remaining values are undefined since those paths
120 // didn't exist in the original CFG.
121 auto Def = II.first;
122 LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
123 auto NewPhi =
124 PHINode::Create(Def->getType(), Incoming.size(),
125 Def->getName() + ".moved", &LoopExitBlock->front());
126 for (auto *In : Incoming) {
127 LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
128 if (Def->getParent() == In || DT.dominates(Def, In)) {
129 LLVM_DEBUG(dbgs() << "dominated\n");
130 NewPhi->addIncoming(Def, In);
131 } else {
132 LLVM_DEBUG(dbgs() << "not dominated\n");
133 NewPhi->addIncoming(PoisonValue::get(Def->getType()), In);
137 LLVM_DEBUG(dbgs() << "external users:");
138 for (auto *U : II.second) {
139 LLVM_DEBUG(dbgs() << " " << U->getName());
140 U->replaceUsesOfWith(Def, NewPhi);
142 LLVM_DEBUG(dbgs() << "\n");
146 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
147 // To unify the loop exits, we need a list of the exiting blocks as
148 // well as exit blocks. The functions for locating these lists both
149 // traverse the entire loop body. It is more efficient to first
150 // locate the exiting blocks and then examine their successors to
151 // locate the exit blocks.
152 SetVector<BasicBlock *> ExitingBlocks;
153 SetVector<BasicBlock *> Exits;
155 // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
156 SmallVector<BasicBlock *, 8> Temp;
157 L->getExitingBlocks(Temp);
158 for (auto *BB : Temp) {
159 ExitingBlocks.insert(BB);
160 for (auto *S : successors(BB)) {
161 auto SL = LI.getLoopFor(S);
162 // A successor is not an exit if it is directly or indirectly in the
163 // current loop.
164 if (SL == L || L->contains(SL))
165 continue;
166 Exits.insert(S);
170 LLVM_DEBUG(
171 dbgs() << "Found exit blocks:";
172 for (auto Exit : Exits) {
173 dbgs() << " " << Exit->getName();
175 dbgs() << "\n";
177 dbgs() << "Found exiting blocks:";
178 for (auto EB : ExitingBlocks) {
179 dbgs() << " " << EB->getName();
181 dbgs() << "\n";);
183 if (Exits.size() <= 1) {
184 LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
185 return false;
188 SmallVector<BasicBlock *, 8> GuardBlocks;
189 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
190 auto LoopExitBlock =
191 CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks, Exits, "loop.exit",
192 MaxBooleansInControlFlowHub.getValue());
194 restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
196 #if defined(EXPENSIVE_CHECKS)
197 assert(DT.verify(DominatorTree::VerificationLevel::Full));
198 #else
199 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
200 #endif // EXPENSIVE_CHECKS
201 L->verifyLoop();
203 // The guard blocks were created outside the loop, so they need to become
204 // members of the parent loop.
205 if (auto ParentLoop = L->getParentLoop()) {
206 for (auto *G : GuardBlocks) {
207 ParentLoop->addBasicBlockToLoop(G, LI);
209 ParentLoop->verifyLoop();
212 #if defined(EXPENSIVE_CHECKS)
213 LI.verify(DT);
214 #endif // EXPENSIVE_CHECKS
216 return true;
219 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
221 bool Changed = false;
222 auto Loops = LI.getLoopsInPreorder();
223 for (auto *L : Loops) {
224 LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
225 << LI.getLoopDepth(L->getHeader()) << ")\n");
226 Changed |= unifyLoopExits(DT, LI, L);
228 return Changed;
231 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
232 LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
233 << "\n");
234 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
235 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
237 return runImpl(LI, DT);
240 namespace llvm {
242 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
243 FunctionAnalysisManager &AM) {
244 auto &LI = AM.getResult<LoopAnalysis>(F);
245 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
247 if (!runImpl(LI, DT))
248 return PreservedAnalyses::all();
249 PreservedAnalyses PA;
250 PA.preserve<LoopAnalysis>();
251 PA.preserve<DominatorTreeAnalysis>();
252 return PA;
254 } // namespace llvm