1 //===------ DeLICM.cpp -----------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Undo the effect of Loop Invariant Code Motion (LICM) and
10 // GVN Partial Redundancy Elimination (PRE) on SCoP-level.
12 // Namely, remove register/scalar dependencies by mapping them back to array
15 //===----------------------------------------------------------------------===//
17 #include "polly/DeLICM.h"
18 #include "polly/LinkAllPasses.h"
19 #include "polly/Options.h"
20 #include "polly/ScopInfo.h"
21 #include "polly/ScopPass.h"
22 #include "polly/Support/GICHelper.h"
23 #include "polly/Support/ISLOStream.h"
24 #include "polly/Support/ISLTools.h"
25 #include "polly/ZoneAlgo.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/InitializePasses.h"
29 #define DEBUG_TYPE "polly-delicm"
31 using namespace polly
;
37 DelicmMaxOps("polly-delicm-max-ops",
38 cl::desc("Maximum number of isl operations to invest for "
39 "lifetime analysis; 0=no limit"),
40 cl::init(1000000), cl::cat(PollyCategory
));
42 cl::opt
<bool> DelicmOverapproximateWrites(
43 "polly-delicm-overapproximate-writes",
45 "Do more PHI writes than necessary in order to avoid partial accesses"),
46 cl::init(false), cl::Hidden
, cl::cat(PollyCategory
));
48 cl::opt
<bool> DelicmPartialWrites("polly-delicm-partial-writes",
49 cl::desc("Allow partial writes"),
50 cl::init(true), cl::Hidden
,
51 cl::cat(PollyCategory
));
54 DelicmComputeKnown("polly-delicm-compute-known",
55 cl::desc("Compute known content of array elements"),
56 cl::init(true), cl::Hidden
, cl::cat(PollyCategory
));
58 STATISTIC(DeLICMAnalyzed
, "Number of successfully analyzed SCoPs");
59 STATISTIC(DeLICMOutOfQuota
,
60 "Analyses aborted because max_operations was reached");
61 STATISTIC(MappedValueScalars
, "Number of mapped Value scalars");
62 STATISTIC(MappedPHIScalars
, "Number of mapped PHI scalars");
63 STATISTIC(TargetsMapped
, "Number of stores used for at least one mapping");
64 STATISTIC(DeLICMScopsModified
, "Number of SCoPs optimized");
66 STATISTIC(NumValueWrites
, "Number of scalar value writes after DeLICM");
67 STATISTIC(NumValueWritesInLoops
,
68 "Number of scalar value writes nested in affine loops after DeLICM");
69 STATISTIC(NumPHIWrites
, "Number of scalar phi writes after DeLICM");
70 STATISTIC(NumPHIWritesInLoops
,
71 "Number of scalar phi writes nested in affine loops after DeLICM");
72 STATISTIC(NumSingletonWrites
, "Number of singleton writes after DeLICM");
73 STATISTIC(NumSingletonWritesInLoops
,
74 "Number of singleton writes nested in affine loops after DeLICM");
76 isl::union_map
computeReachingOverwrite(isl::union_map Schedule
,
77 isl::union_map Writes
,
80 return computeReachingWrite(Schedule
, Writes
, true, InclPrevWrite
,
84 /// Compute the next overwrite for a scalar.
86 /// @param Schedule { DomainWrite[] -> Scatter[] }
87 /// Schedule of (at least) all writes. Instances not in @p
88 /// Writes are ignored.
89 /// @param Writes { DomainWrite[] }
90 /// The element instances that write to the scalar.
91 /// @param InclPrevWrite Whether to extend the timepoints to include
92 /// the timepoint where the previous write happens.
93 /// @param InclOverwrite Whether the reaching overwrite includes the timepoint
94 /// of the overwrite itself.
96 /// @return { Scatter[] -> DomainDef[] }
97 isl::union_map
computeScalarReachingOverwrite(isl::union_map Schedule
,
98 isl::union_set Writes
,
100 bool InclOverwrite
) {
103 auto WritesMap
= isl::union_map::from_domain(Writes
);
105 // { [Element[] -> Scatter[]] -> DomainWrite[] }
106 auto Result
= computeReachingOverwrite(
107 std::move(Schedule
), std::move(WritesMap
), InclPrevWrite
, InclOverwrite
);
109 return Result
.domain_factor_range();
112 /// Overload of computeScalarReachingOverwrite, with only one writing statement.
113 /// Consequently, the result consists of only one map space.
115 /// @param Schedule { DomainWrite[] -> Scatter[] }
116 /// @param Writes { DomainWrite[] }
117 /// @param InclPrevWrite Include the previous write to result.
118 /// @param InclOverwrite Include the overwrite to the result.
120 /// @return { Scatter[] -> DomainWrite[] }
121 isl::map
computeScalarReachingOverwrite(isl::union_map Schedule
,
122 isl::set Writes
, bool InclPrevWrite
,
123 bool InclOverwrite
) {
124 isl::space ScatterSpace
= getScatterSpace(Schedule
);
125 isl::space DomSpace
= Writes
.get_space();
127 isl::union_map ReachOverwrite
= computeScalarReachingOverwrite(
128 Schedule
, isl::union_set(Writes
), InclPrevWrite
, InclOverwrite
);
130 isl::space ResultSpace
= ScatterSpace
.map_from_domain_and_range(DomSpace
);
131 return singleton(std::move(ReachOverwrite
), ResultSpace
);
134 /// Try to find a 'natural' extension of a mapped to elements outside its
137 /// @param Relevant The map with mapping that may not be modified.
138 /// @param Universe The domain to which @p Relevant needs to be extended.
140 /// @return A map with that associates the domain elements of @p Relevant to the
141 /// same elements and in addition the elements of @p Universe to some
142 /// undefined elements. The function prefers to return simple maps.
143 isl::union_map
expandMapping(isl::union_map Relevant
, isl::union_set Universe
) {
144 Relevant
= Relevant
.coalesce();
145 isl::union_set RelevantDomain
= Relevant
.domain();
146 isl::union_map Simplified
= Relevant
.gist_domain(RelevantDomain
);
147 Simplified
= Simplified
.coalesce();
148 return Simplified
.intersect_domain(Universe
);
151 /// Represent the knowledge of the contents of any array elements in any zone or
152 /// the knowledge we would add when mapping a scalar to an array element.
154 /// Every array element at every zone unit has one of two states:
156 /// - Unused: Not occupied by any value so a transformation can change it to
159 /// - Occupied: The element contains a value that is still needed.
161 /// The union of Unused and Unknown zones forms the universe, the set of all
162 /// elements at every timepoint. The universe can easily be derived from the
163 /// array elements that are accessed someway. Arrays that are never accessed
164 /// also never play a role in any computation and can hence be ignored. With a
165 /// given universe, only one of the sets needs to stored implicitly. Computing
166 /// the complement is also an expensive operation, hence this class has been
167 /// designed that only one of sets is needed while the other is assumed to be
168 /// implicit. It can still be given, but is mostly ignored.
170 /// There are two use cases for the Knowledge class:
172 /// 1) To represent the knowledge of the current state of ScopInfo. The unused
173 /// state means that an element is currently unused: there is no read of it
174 /// before the next overwrite. Also called 'Existing'.
176 /// 2) To represent the requirements for mapping a scalar to array elements. The
177 /// unused state means that there is no change/requirement. Also called
180 /// In addition to these states at unit zones, Knowledge needs to know when
181 /// values are written. This is because written values may have no lifetime (one
182 /// reason is that the value is never read). Such writes would therefore never
183 /// conflict, but overwrite values that might still be required. Another source
184 /// of problems are multiple writes to the same element at the same timepoint,
185 /// because their order is undefined.
186 class Knowledge final
{
188 /// { [Element[] -> Zone[]] }
189 /// Set of array elements and when they are alive.
190 /// Can contain a nullptr; in this case the set is implicitly defined as the
191 /// complement of #Unused.
193 /// The set of alive array elements is represented as zone, as the set of live
194 /// values can differ depending on how the elements are interpreted.
195 /// Assuming a value X is written at timestep [0] and read at timestep [1]
196 /// without being used at any later point, then the value is alive in the
197 /// interval ]0,1[. This interval cannot be represented by an integer set, as
198 /// it does not contain any integer point. Zones allow us to represent this
199 /// interval and can be converted to sets of timepoints when needed (e.g., in
200 /// isConflicting when comparing to the write sets).
201 /// @see convertZoneToTimepoints and this file's comment for more details.
202 isl::union_set Occupied
;
204 /// { [Element[] -> Zone[]] }
205 /// Set of array elements when they are not alive, i.e. their memory can be
206 /// used for other purposed. Can contain a nullptr; in this case the set is
207 /// implicitly defined as the complement of #Occupied.
208 isl::union_set Unused
;
210 /// { [Element[] -> Zone[]] -> ValInst[] }
211 /// Maps to the known content for each array element at any interval.
213 /// Any element/interval can map to multiple known elements. This is due to
214 /// multiple llvm::Value referring to the same content. Examples are
216 /// - A value stored and loaded again. The LoadInst represents the same value
217 /// as the StoreInst's value operand.
219 /// - A PHINode is equal to any one of the incoming values. In case of
220 /// LCSSA-form, it is always equal to its single incoming value.
222 /// Two Knowledges are considered not conflicting if at least one of the known
223 /// values match. Not known values are not stored as an unnamed tuple (as
224 /// #Written does), but maps to nothing.
226 /// Known values are usually just defined for #Occupied elements. Knowing
227 /// #Unused contents has no advantage as it can be overwritten.
228 isl::union_map Known
;
230 /// { [Element[] -> Scatter[]] -> ValInst[] }
231 /// The write actions currently in the scop or that would be added when
232 /// mapping a scalar. Maps to the value that is written.
234 /// Written values that cannot be identified are represented by an unknown
235 /// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself.
236 isl::union_map Written
;
238 /// Check whether this Knowledge object is well-formed.
239 void checkConsistency() const {
241 // Default-initialized object
242 if (Occupied
.is_null() && Unused
.is_null() && Known
.is_null() &&
246 assert(!Occupied
.is_null() || !Unused
.is_null());
247 assert(!Known
.is_null());
248 assert(!Written
.is_null());
250 // If not all fields are defined, we cannot derived the universe.
251 if (Occupied
.is_null() || Unused
.is_null())
254 assert(Occupied
.is_disjoint(Unused
));
255 auto Universe
= Occupied
.unite(Unused
);
257 assert(!Known
.domain().is_subset(Universe
).is_false());
258 assert(!Written
.domain().is_subset(Universe
).is_false());
263 /// Initialize a nullptr-Knowledge. This is only provided for convenience; do
264 /// not use such an object.
267 /// Create a new object with the given members.
268 Knowledge(isl::union_set Occupied
, isl::union_set Unused
,
269 isl::union_map Known
, isl::union_map Written
)
270 : Occupied(std::move(Occupied
)), Unused(std::move(Unused
)),
271 Known(std::move(Known
)), Written(std::move(Written
)) {
275 /// Return whether this object was not default-constructed.
276 bool isUsable() const {
277 return (Occupied
.is_null() || Unused
.is_null()) && !Known
.is_null() &&
281 /// Print the content of this object to @p OS.
282 void print(llvm::raw_ostream
&OS
, unsigned Indent
= 0) const {
284 if (!Occupied
.is_null())
285 OS
.indent(Indent
) << "Occupied: " << Occupied
<< "\n";
287 OS
.indent(Indent
) << "Occupied: <Everything else not in Unused>\n";
288 if (!Unused
.is_null())
289 OS
.indent(Indent
) << "Unused: " << Unused
<< "\n";
291 OS
.indent(Indent
) << "Unused: <Everything else not in Occupied>\n";
292 OS
.indent(Indent
) << "Known: " << Known
<< "\n";
293 OS
.indent(Indent
) << "Written : " << Written
<< '\n';
295 OS
.indent(Indent
) << "Invalid knowledge\n";
299 /// Combine two knowledges, this and @p That.
300 void learnFrom(Knowledge That
) {
301 assert(!isConflicting(*this, That
));
302 assert(!Unused
.is_null() && !That
.Occupied
.is_null());
304 That
.Unused
.is_null() &&
305 "This function is only prepared to learn occupied elements from That");
306 assert(Occupied
.is_null() && "This function does not implement "
308 "this->Occupied.unite(That.Occupied);`");
310 Unused
= Unused
.subtract(That
.Occupied
);
311 Known
= Known
.unite(That
.Known
);
312 Written
= Written
.unite(That
.Written
);
317 /// Determine whether two Knowledges conflict with each other.
319 /// In theory @p Existing and @p Proposed are symmetric, but the
320 /// implementation is constrained by the implicit interpretation. That is, @p
321 /// Existing must have #Unused defined (use case 1) and @p Proposed must have
322 /// #Occupied defined (use case 1).
324 /// A conflict is defined as non-preserved semantics when they are merged. For
325 /// instance, when for the same array and zone they assume different
328 /// @param Existing One of the knowledges with #Unused defined.
329 /// @param Proposed One of the knowledges with #Occupied defined.
330 /// @param OS Dump the conflict reason to this output stream; use
331 /// nullptr to not output anything.
332 /// @param Indent Indention for the conflict reason.
334 /// @return True, iff the two knowledges are conflicting.
335 static bool isConflicting(const Knowledge
&Existing
,
336 const Knowledge
&Proposed
,
337 llvm::raw_ostream
*OS
= nullptr,
338 unsigned Indent
= 0) {
339 assert(!Existing
.Unused
.is_null());
340 assert(!Proposed
.Occupied
.is_null());
343 if (!Existing
.Occupied
.is_null() && !Proposed
.Unused
.is_null()) {
344 auto ExistingUniverse
= Existing
.Occupied
.unite(Existing
.Unused
);
345 auto ProposedUniverse
= Proposed
.Occupied
.unite(Proposed
.Unused
);
346 assert(ExistingUniverse
.is_equal(ProposedUniverse
) &&
347 "Both inputs' Knowledges must be over the same universe");
351 // Do the Existing and Proposed lifetimes conflict?
353 // Lifetimes are described as the cross-product of array elements and zone
354 // intervals in which they are alive (the space { [Element[] -> Zone[]] }).
355 // In the following we call this "element/lifetime interval".
357 // In order to not conflict, one of the following conditions must apply for
358 // each element/lifetime interval:
360 // 1. If occupied in one of the knowledges, it is unused in the other.
364 // 2. Both contain the same value.
366 // Instead of partitioning the element/lifetime intervals into a part that
367 // both Knowledges occupy (which requires an expensive subtraction) and for
368 // these to check whether they are known to be the same value, we check only
369 // the second condition and ensure that it also applies when then first
370 // condition is true. This is done by adding a wildcard value to
371 // Proposed.Known and Existing.Unused such that they match as a common known
372 // value. We use the "unknown ValInst" for this purpose. Every
373 // Existing.Unused may match with an unknown Proposed.Occupied because these
374 // never are in conflict with each other.
375 auto ProposedOccupiedAnyVal
= makeUnknownForDomain(Proposed
.Occupied
);
376 auto ProposedValues
= Proposed
.Known
.unite(ProposedOccupiedAnyVal
);
378 auto ExistingUnusedAnyVal
= makeUnknownForDomain(Existing
.Unused
);
379 auto ExistingValues
= Existing
.Known
.unite(ExistingUnusedAnyVal
);
381 auto MatchingVals
= ExistingValues
.intersect(ProposedValues
);
382 auto Matches
= MatchingVals
.domain();
384 // Any Proposed.Occupied must either have a match between the known values
385 // of Existing and Occupied, or be in Existing.Unused. In the latter case,
386 // the previously added "AnyVal" will match each other.
387 if (!Proposed
.Occupied
.is_subset(Matches
)) {
389 auto Conflicting
= Proposed
.Occupied
.subtract(Matches
);
390 auto ExistingConflictingKnown
=
391 Existing
.Known
.intersect_domain(Conflicting
);
392 auto ProposedConflictingKnown
=
393 Proposed
.Known
.intersect_domain(Conflicting
);
395 OS
->indent(Indent
) << "Proposed lifetime conflicting with Existing's\n";
396 OS
->indent(Indent
) << "Conflicting occupied: " << Conflicting
<< "\n";
397 if (!ExistingConflictingKnown
.is_empty())
399 << "Existing Known: " << ExistingConflictingKnown
<< "\n";
400 if (!ProposedConflictingKnown
.is_empty())
402 << "Proposed Known: " << ProposedConflictingKnown
<< "\n";
407 // Do the writes in Existing conflict with occupied values in Proposed?
409 // In order to not conflict, it must either write to unused lifetime or
410 // write the same value. To check, we remove the writes that write into
411 // Proposed.Unused (they never conflict) and then see whether the written
412 // value is already in Proposed.Known. If there are multiple known values
413 // and a written value is known under different names, it is enough when one
414 // of the written values (assuming that they are the same value under
415 // different names, e.g. a PHINode and one of the incoming values) matches
416 // one of the known names.
418 // We convert here the set of lifetimes to actual timepoints. A lifetime is
419 // in conflict with a set of write timepoints, if either a live timepoint is
420 // clearly within the lifetime or if a write happens at the beginning of the
421 // lifetime (where it would conflict with the value that actually writes the
422 // value alive). There is no conflict at the end of a lifetime, as the alive
423 // value will always be read, before it is overwritten again. The last
424 // property holds in Polly for all scalar values and we expect all users of
425 // Knowledge to check this property also for accesses to MemoryKind::Array.
426 auto ProposedFixedDefs
=
427 convertZoneToTimepoints(Proposed
.Occupied
, true, false);
428 auto ProposedFixedKnown
=
429 convertZoneToTimepoints(Proposed
.Known
, isl::dim::in
, true, false);
431 auto ExistingConflictingWrites
=
432 Existing
.Written
.intersect_domain(ProposedFixedDefs
);
433 auto ExistingConflictingWritesDomain
= ExistingConflictingWrites
.domain();
435 auto CommonWrittenVal
=
436 ProposedFixedKnown
.intersect(ExistingConflictingWrites
);
437 auto CommonWrittenValDomain
= CommonWrittenVal
.domain();
439 if (!ExistingConflictingWritesDomain
.is_subset(CommonWrittenValDomain
)) {
441 auto ExistingConflictingWritten
=
442 ExistingConflictingWrites
.subtract_domain(CommonWrittenValDomain
);
443 auto ProposedConflictingKnown
= ProposedFixedKnown
.subtract_domain(
444 ExistingConflictingWritten
.domain());
447 << "Proposed a lifetime where there is an Existing write into it\n";
448 OS
->indent(Indent
) << "Existing conflicting writes: "
449 << ExistingConflictingWritten
<< "\n";
450 if (!ProposedConflictingKnown
.is_empty())
452 << "Proposed conflicting known: " << ProposedConflictingKnown
458 // Do the writes in Proposed conflict with occupied values in Existing?
459 auto ExistingAvailableDefs
=
460 convertZoneToTimepoints(Existing
.Unused
, true, false);
461 auto ExistingKnownDefs
=
462 convertZoneToTimepoints(Existing
.Known
, isl::dim::in
, true, false);
464 auto ProposedWrittenDomain
= Proposed
.Written
.domain();
465 auto KnownIdentical
= ExistingKnownDefs
.intersect(Proposed
.Written
);
466 auto IdenticalOrUnused
=
467 ExistingAvailableDefs
.unite(KnownIdentical
.domain());
468 if (!ProposedWrittenDomain
.is_subset(IdenticalOrUnused
)) {
470 auto Conflicting
= ProposedWrittenDomain
.subtract(IdenticalOrUnused
);
471 auto ExistingConflictingKnown
=
472 ExistingKnownDefs
.intersect_domain(Conflicting
);
473 auto ProposedConflictingWritten
=
474 Proposed
.Written
.intersect_domain(Conflicting
);
476 OS
->indent(Indent
) << "Proposed writes into range used by Existing\n";
477 OS
->indent(Indent
) << "Proposed conflicting writes: "
478 << ProposedConflictingWritten
<< "\n";
479 if (!ExistingConflictingKnown
.is_empty())
481 << "Existing conflicting known: " << ExistingConflictingKnown
487 // Does Proposed write at the same time as Existing already does (order of
488 // writes is undefined)? Writing the same value is permitted.
489 auto ExistingWrittenDomain
= Existing
.Written
.domain();
491 Existing
.Written
.domain().intersect(Proposed
.Written
.domain());
492 auto ExistingKnownWritten
= filterKnownValInst(Existing
.Written
);
493 auto ProposedKnownWritten
= filterKnownValInst(Proposed
.Written
);
495 ExistingKnownWritten
.intersect(ProposedKnownWritten
).domain();
497 if (!BothWritten
.is_subset(CommonWritten
)) {
499 auto Conflicting
= BothWritten
.subtract(CommonWritten
);
500 auto ExistingConflictingWritten
=
501 Existing
.Written
.intersect_domain(Conflicting
);
502 auto ProposedConflictingWritten
=
503 Proposed
.Written
.intersect_domain(Conflicting
);
505 OS
->indent(Indent
) << "Proposed writes at the same time as an already "
507 OS
->indent(Indent
) << "Conflicting writes: " << Conflicting
<< "\n";
508 if (!ExistingConflictingWritten
.is_empty())
510 << "Exiting write: " << ExistingConflictingWritten
<< "\n";
511 if (!ProposedConflictingWritten
.is_empty())
513 << "Proposed write: " << ProposedConflictingWritten
<< "\n";
522 /// Implementation of the DeLICM/DePRE transformation.
523 class DeLICMImpl final
: public ZoneAlgorithm
{
525 /// Knowledge before any transformation took place.
526 Knowledge OriginalZone
;
528 /// Current knowledge of the SCoP including all already applied
532 /// Number of StoreInsts something can be mapped to.
533 int NumberOfCompatibleTargets
= 0;
535 /// The number of StoreInsts to which at least one value or PHI has been
537 int NumberOfTargetsMapped
= 0;
539 /// The number of llvm::Value mapped to some array element.
540 int NumberOfMappedValueScalars
= 0;
542 /// The number of PHIs mapped to some array element.
543 int NumberOfMappedPHIScalars
= 0;
545 /// Determine whether two knowledges are conflicting with each other.
547 /// @see Knowledge::isConflicting
548 bool isConflicting(const Knowledge
&Proposed
) {
549 raw_ostream
*OS
= nullptr;
550 LLVM_DEBUG(OS
= &llvm::dbgs());
551 return Knowledge::isConflicting(Zone
, Proposed
, OS
, 4);
554 /// Determine whether @p SAI is a scalar that can be mapped to an array
556 bool isMappable(const ScopArrayInfo
*SAI
) {
559 if (SAI
->isValueKind()) {
560 auto *MA
= S
->getValueDef(SAI
);
564 << " Reject because value is read-only within the scop\n");
568 // Mapping if value is used after scop is not supported. The code
569 // generator would need to reload the scalar after the scop, but it
570 // does not have the information to where it is mapped to. Only the
571 // MemoryAccesses have that information, not the ScopArrayInfo.
572 auto Inst
= MA
->getAccessInstruction();
573 for (auto User
: Inst
->users()) {
574 if (!isa
<Instruction
>(User
))
576 auto UserInst
= cast
<Instruction
>(User
);
578 if (!S
->contains(UserInst
)) {
579 LLVM_DEBUG(dbgs() << " Reject because value is escaping\n");
587 if (SAI
->isPHIKind()) {
588 auto *MA
= S
->getPHIRead(SAI
);
591 // Mapping of an incoming block from before the SCoP is not supported by
592 // the code generator.
593 auto PHI
= cast
<PHINode
>(MA
->getAccessInstruction());
594 for (auto Incoming
: PHI
->blocks()) {
595 if (!S
->contains(Incoming
)) {
597 << " Reject because at least one incoming block is "
598 "not in the scop region\n");
606 LLVM_DEBUG(dbgs() << " Reject ExitPHI or other non-value\n");
610 /// Compute the uses of a MemoryKind::Value and its lifetime (from its
611 /// definition to the last use).
613 /// @param SAI The ScopArrayInfo representing the value's storage.
615 /// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] }
616 /// First element is the set of uses for each definition.
617 /// The second is the lifetime of each definition.
618 std::tuple
<isl::union_map
, isl::map
>
619 computeValueUses(const ScopArrayInfo
*SAI
) {
620 assert(SAI
->isValueKind());
623 auto Reads
= makeEmptyUnionSet();
626 for (auto *MA
: S
->getValueUses(SAI
))
627 Reads
= Reads
.unite(getDomainFor(MA
));
629 // { DomainRead[] -> Scatter[] }
630 auto ReadSchedule
= getScatterFor(Reads
);
632 auto *DefMA
= S
->getValueDef(SAI
);
636 auto Writes
= getDomainFor(DefMA
);
638 // { DomainDef[] -> Scatter[] }
639 auto WriteScatter
= getScatterFor(Writes
);
641 // { Scatter[] -> DomainDef[] }
642 auto ReachDef
= getScalarReachingDefinition(DefMA
->getStatement());
644 // { [DomainDef[] -> Scatter[]] -> DomainUse[] }
645 auto Uses
= isl::union_map(ReachDef
.reverse().range_map())
646 .apply_range(ReadSchedule
.reverse());
648 // { DomainDef[] -> Scatter[] }
650 singleton(Uses
.domain().unwrap(),
651 Writes
.get_space().map_from_domain_and_range(ScatterSpace
));
653 // { DomainDef[] -> Zone[] }
654 auto Lifetime
= betweenScatter(WriteScatter
, UseScatter
, false, true);
656 // { DomainDef[] -> DomainRead[] }
657 auto DefUses
= Uses
.domain_factor_domain();
659 return std::make_pair(DefUses
, Lifetime
);
662 /// Try to map a MemoryKind::Value to a given array element.
664 /// @param SAI Representation of the scalar's memory to map.
665 /// @param TargetElt { Scatter[] -> Element[] }
666 /// Suggestion where to map a scalar to when at a timepoint.
668 /// @return true if the scalar was successfully mapped.
669 bool tryMapValue(const ScopArrayInfo
*SAI
, isl::map TargetElt
) {
670 assert(SAI
->isValueKind());
672 auto *DefMA
= S
->getValueDef(SAI
);
673 assert(DefMA
->isValueKind());
674 assert(DefMA
->isMustWrite());
675 auto *V
= DefMA
->getAccessValue();
676 auto *DefInst
= DefMA
->getAccessInstruction();
678 // Stop if the scalar has already been mapped.
679 if (!DefMA
->getLatestScopArrayInfo()->isValueKind())
682 // { DomainDef[] -> Scatter[] }
683 auto DefSched
= getScatterFor(DefMA
);
685 // Where each write is mapped to, according to the suggestion.
686 // { DomainDef[] -> Element[] }
687 auto DefTarget
= TargetElt
.apply_domain(DefSched
.reverse());
689 LLVM_DEBUG(dbgs() << " Def Mapping: " << DefTarget
<< '\n');
691 auto OrigDomain
= getDomainFor(DefMA
);
692 auto MappedDomain
= DefTarget
.domain();
693 if (!OrigDomain
.is_subset(MappedDomain
)) {
696 << " Reject because mapping does not encompass all instances\n");
700 // { DomainDef[] -> Zone[] }
703 // { DomainDef[] -> DomainUse[] }
704 isl::union_map DefUses
;
706 std::tie(DefUses
, Lifetime
) = computeValueUses(SAI
);
707 LLVM_DEBUG(dbgs() << " Lifetime: " << Lifetime
<< '\n');
709 /// { [Element[] -> Zone[]] }
710 auto EltZone
= Lifetime
.apply_domain(DefTarget
).wrap();
713 // When known knowledge is disabled, just return the unknown value. It will
714 // either get filtered out or conflict with itself.
715 // { DomainDef[] -> ValInst[] }
717 if (DelicmComputeKnown
)
718 ValInst
= makeValInst(V
, DefMA
->getStatement(),
719 LI
->getLoopFor(DefInst
->getParent()));
721 ValInst
= makeUnknownForDomain(DefMA
->getStatement());
723 // { DomainDef[] -> [Element[] -> Zone[]] }
724 auto EltKnownTranslator
= DefTarget
.range_product(Lifetime
);
726 // { [Element[] -> Zone[]] -> ValInst[] }
727 auto EltKnown
= ValInst
.apply_domain(EltKnownTranslator
);
730 // { DomainDef[] -> [Element[] -> Scatter[]] }
731 auto WrittenTranslator
= DefTarget
.range_product(DefSched
);
733 // { [Element[] -> Scatter[]] -> ValInst[] }
734 auto DefEltSched
= ValInst
.apply_domain(WrittenTranslator
);
735 simplify(DefEltSched
);
737 Knowledge
Proposed(EltZone
, {}, filterKnownValInst(EltKnown
), DefEltSched
);
738 if (isConflicting(Proposed
))
741 // { DomainUse[] -> Element[] }
742 auto UseTarget
= DefUses
.reverse().apply_range(DefTarget
);
744 mapValue(SAI
, std::move(DefTarget
), std::move(UseTarget
),
745 std::move(Lifetime
), std::move(Proposed
));
749 /// After a scalar has been mapped, update the global knowledge.
750 void applyLifetime(Knowledge Proposed
) {
751 Zone
.learnFrom(std::move(Proposed
));
754 /// Map a MemoryKind::Value scalar to an array element.
756 /// Callers must have ensured that the mapping is valid and not conflicting.
758 /// @param SAI The ScopArrayInfo representing the scalar's memory to
760 /// @param DefTarget { DomainDef[] -> Element[] }
761 /// The array element to map the scalar to.
762 /// @param UseTarget { DomainUse[] -> Element[] }
763 /// The array elements the uses are mapped to.
764 /// @param Lifetime { DomainDef[] -> Zone[] }
765 /// The lifetime of each llvm::Value definition for
767 /// @param Proposed Mapping constraints for reporting.
768 void mapValue(const ScopArrayInfo
*SAI
, isl::map DefTarget
,
769 isl::union_map UseTarget
, isl::map Lifetime
,
770 Knowledge Proposed
) {
771 // Redirect the read accesses.
772 for (auto *MA
: S
->getValueUses(SAI
)) {
774 auto Domain
= getDomainFor(MA
);
776 // { DomainUse[] -> Element[] }
777 auto NewAccRel
= UseTarget
.intersect_domain(Domain
);
780 assert(isl_union_map_n_map(NewAccRel
.get()) == 1);
781 MA
->setNewAccessRelation(isl::map::from_union_map(NewAccRel
));
784 auto *WA
= S
->getValueDef(SAI
);
785 WA
->setNewAccessRelation(DefTarget
);
786 applyLifetime(Proposed
);
788 MappedValueScalars
++;
789 NumberOfMappedValueScalars
+= 1;
792 isl::map
makeValInst(Value
*Val
, ScopStmt
*UserStmt
, Loop
*Scope
,
793 bool IsCertain
= true) {
794 // When known knowledge is disabled, just return the unknown value. It will
795 // either get filtered out or conflict with itself.
796 if (!DelicmComputeKnown
)
797 return makeUnknownForDomain(UserStmt
);
798 return ZoneAlgorithm::makeValInst(Val
, UserStmt
, Scope
, IsCertain
);
801 /// Express the incoming values of a PHI for each incoming statement in an
804 /// @param SAI The PHI scalar represented by a ScopArrayInfo.
806 /// @return { PHIWriteDomain[] -> ValInst[] }
807 isl::union_map
determinePHIWrittenValues(const ScopArrayInfo
*SAI
) {
808 auto Result
= makeEmptyUnionMap();
810 // Collect the incoming values.
811 for (auto *MA
: S
->getPHIIncomings(SAI
)) {
812 // { DomainWrite[] -> ValInst[] }
813 isl::union_map ValInst
;
814 auto *WriteStmt
= MA
->getStatement();
816 auto Incoming
= MA
->getIncoming();
817 assert(!Incoming
.empty());
818 if (Incoming
.size() == 1) {
819 ValInst
= makeValInst(Incoming
[0].second
, WriteStmt
,
820 LI
->getLoopFor(Incoming
[0].first
));
822 // If the PHI is in a subregion's exit node it can have multiple
823 // incoming values (+ maybe another incoming edge from an unrelated
824 // block). We cannot directly represent it as a single llvm::Value.
825 // We currently model it as unknown value, but modeling as the PHIInst
826 // itself could be OK, too.
827 ValInst
= makeUnknownForDomain(WriteStmt
);
830 Result
= Result
.unite(ValInst
);
833 assert(Result
.is_single_valued() &&
834 "Cannot have multiple incoming values for same incoming statement");
838 /// Try to map a MemoryKind::PHI scalar to a given array element.
840 /// @param SAI Representation of the scalar's memory to map.
841 /// @param TargetElt { Scatter[] -> Element[] }
842 /// Suggestion where to map the scalar to when at a
845 /// @return true if the PHI scalar has been mapped.
846 bool tryMapPHI(const ScopArrayInfo
*SAI
, isl::map TargetElt
) {
847 auto *PHIRead
= S
->getPHIRead(SAI
);
848 assert(PHIRead
->isPHIKind());
849 assert(PHIRead
->isRead());
851 // Skip if already been mapped.
852 if (!PHIRead
->getLatestScopArrayInfo()->isPHIKind())
855 // { DomainRead[] -> Scatter[] }
856 auto PHISched
= getScatterFor(PHIRead
);
858 // { DomainRead[] -> Element[] }
859 auto PHITarget
= PHISched
.apply_range(TargetElt
);
861 LLVM_DEBUG(dbgs() << " Mapping: " << PHITarget
<< '\n');
863 auto OrigDomain
= getDomainFor(PHIRead
);
864 auto MappedDomain
= PHITarget
.domain();
865 if (!OrigDomain
.is_subset(MappedDomain
)) {
868 << " Reject because mapping does not encompass all instances\n");
872 // { DomainRead[] -> DomainWrite[] }
873 auto PerPHIWrites
= computePerPHI(SAI
);
874 if (PerPHIWrites
.is_null()) {
876 dbgs() << " Reject because cannot determine incoming values\n");
880 // { DomainWrite[] -> Element[] }
881 auto WritesTarget
= PerPHIWrites
.apply_domain(PHITarget
).reverse();
882 simplify(WritesTarget
);
885 auto UniverseWritesDom
= isl::union_set::empty(ParamSpace
.ctx());
887 for (auto *MA
: S
->getPHIIncomings(SAI
))
888 UniverseWritesDom
= UniverseWritesDom
.unite(getDomainFor(MA
));
890 auto RelevantWritesTarget
= WritesTarget
;
891 if (DelicmOverapproximateWrites
)
892 WritesTarget
= expandMapping(WritesTarget
, UniverseWritesDom
);
894 auto ExpandedWritesDom
= WritesTarget
.domain();
895 if (!DelicmPartialWrites
&&
896 !UniverseWritesDom
.is_subset(ExpandedWritesDom
)) {
898 dbgs() << " Reject because did not find PHI write mapping for "
900 if (DelicmOverapproximateWrites
)
901 LLVM_DEBUG(dbgs() << " Relevant Mapping: "
902 << RelevantWritesTarget
<< '\n');
903 LLVM_DEBUG(dbgs() << " Deduced Mapping: " << WritesTarget
905 LLVM_DEBUG(dbgs() << " Missing instances: "
906 << UniverseWritesDom
.subtract(ExpandedWritesDom
)
911 // { DomainRead[] -> Scatter[] }
912 isl::union_map PerPHIWriteScatterUmap
= PerPHIWrites
.apply_range(Schedule
);
913 isl::map PerPHIWriteScatter
=
914 singleton(PerPHIWriteScatterUmap
, PHISched
.get_space());
916 // { DomainRead[] -> Zone[] }
917 auto Lifetime
= betweenScatter(PerPHIWriteScatter
, PHISched
, false, true);
919 LLVM_DEBUG(dbgs() << " Lifetime: " << Lifetime
<< "\n");
921 // { DomainWrite[] -> Zone[] }
922 auto WriteLifetime
= isl::union_map(Lifetime
).apply_domain(PerPHIWrites
);
924 // { DomainWrite[] -> ValInst[] }
925 auto WrittenValue
= determinePHIWrittenValues(SAI
);
927 // { DomainWrite[] -> [Element[] -> Scatter[]] }
928 auto WrittenTranslator
= WritesTarget
.range_product(Schedule
);
930 // { [Element[] -> Scatter[]] -> ValInst[] }
931 auto Written
= WrittenValue
.apply_domain(WrittenTranslator
);
934 // { DomainWrite[] -> [Element[] -> Zone[]] }
935 auto LifetimeTranslator
= WritesTarget
.range_product(WriteLifetime
);
937 // { DomainWrite[] -> ValInst[] }
938 auto WrittenKnownValue
= filterKnownValInst(WrittenValue
);
940 // { [Element[] -> Zone[]] -> ValInst[] }
941 auto EltLifetimeInst
= WrittenKnownValue
.apply_domain(LifetimeTranslator
);
942 simplify(EltLifetimeInst
);
944 // { [Element[] -> Zone[] }
945 auto Occupied
= LifetimeTranslator
.range();
948 Knowledge
Proposed(Occupied
, {}, EltLifetimeInst
, Written
);
949 if (isConflicting(Proposed
))
952 mapPHI(SAI
, std::move(PHITarget
), std::move(WritesTarget
),
953 std::move(Lifetime
), std::move(Proposed
));
957 /// Map a MemoryKind::PHI scalar to an array element.
959 /// Callers must have ensured that the mapping is valid and not conflicting
960 /// with the common knowledge.
962 /// @param SAI The ScopArrayInfo representing the scalar's memory to
964 /// @param ReadTarget { DomainRead[] -> Element[] }
965 /// The array element to map the scalar to.
966 /// @param WriteTarget { DomainWrite[] -> Element[] }
967 /// New access target for each PHI incoming write.
968 /// @param Lifetime { DomainRead[] -> Zone[] }
969 /// The lifetime of each PHI for reporting.
970 /// @param Proposed Mapping constraints for reporting.
971 void mapPHI(const ScopArrayInfo
*SAI
, isl::map ReadTarget
,
972 isl::union_map WriteTarget
, isl::map Lifetime
,
973 Knowledge Proposed
) {
975 isl::space ElementSpace
= ReadTarget
.get_space().range();
977 // Redirect the PHI incoming writes.
978 for (auto *MA
: S
->getPHIIncomings(SAI
)) {
980 auto Domain
= getDomainFor(MA
);
982 // { DomainWrite[] -> Element[] }
983 auto NewAccRel
= WriteTarget
.intersect_domain(Domain
);
986 isl::space NewAccRelSpace
=
987 Domain
.get_space().map_from_domain_and_range(ElementSpace
);
988 isl::map NewAccRelMap
= singleton(NewAccRel
, NewAccRelSpace
);
989 MA
->setNewAccessRelation(NewAccRelMap
);
992 // Redirect the PHI read.
993 auto *PHIRead
= S
->getPHIRead(SAI
);
994 PHIRead
->setNewAccessRelation(ReadTarget
);
995 applyLifetime(Proposed
);
998 NumberOfMappedPHIScalars
++;
1001 /// Search and map scalars to memory overwritten by @p TargetStoreMA.
1003 /// Start trying to map scalars that are used in the same statement as the
1004 /// store. For every successful mapping, try to also map scalars of the
1005 /// statements where those are written. Repeat, until no more mapping
1006 /// opportunity is found.
1008 /// There is currently no preference in which order scalars are tried.
1009 /// Ideally, we would direct it towards a load instruction of the same array
1011 bool collapseScalarsToStore(MemoryAccess
*TargetStoreMA
) {
1012 assert(TargetStoreMA
->isLatestArrayKind());
1013 assert(TargetStoreMA
->isMustWrite());
1015 auto TargetStmt
= TargetStoreMA
->getStatement();
1018 auto TargetDom
= getDomainFor(TargetStmt
);
1020 // { DomTarget[] -> Element[] }
1021 auto TargetAccRel
= getAccessRelationFor(TargetStoreMA
);
1023 // { Zone[] -> DomTarget[] }
1024 // For each point in time, find the next target store instance.
1026 computeScalarReachingOverwrite(Schedule
, TargetDom
, false, true);
1028 // { Zone[] -> Element[] }
1029 // Use the target store's write location as a suggestion to map scalars to.
1030 auto EltTarget
= Target
.apply_range(TargetAccRel
);
1031 simplify(EltTarget
);
1032 LLVM_DEBUG(dbgs() << " Target mapping is " << EltTarget
<< '\n');
1034 // Stack of elements not yet processed.
1035 SmallVector
<MemoryAccess
*, 16> Worklist
;
1037 // Set of scalars already tested.
1038 SmallPtrSet
<const ScopArrayInfo
*, 16> Closed
;
1040 // Lambda to add all scalar reads to the work list.
1041 auto ProcessAllIncoming
= [&](ScopStmt
*Stmt
) {
1042 for (auto *MA
: *Stmt
) {
1043 if (!MA
->isLatestScalarKind())
1048 Worklist
.push_back(MA
);
1052 auto *WrittenVal
= TargetStoreMA
->getAccessInstruction()->getOperand(0);
1053 if (auto *WrittenValInputMA
= TargetStmt
->lookupInputAccessOf(WrittenVal
))
1054 Worklist
.push_back(WrittenValInputMA
);
1056 ProcessAllIncoming(TargetStmt
);
1058 auto AnyMapped
= false;
1059 auto &DL
= S
->getRegion().getEntry()->getModule()->getDataLayout();
1061 DL
.getTypeAllocSize(TargetStoreMA
->getAccessValue()->getType());
1063 while (!Worklist
.empty()) {
1064 auto *MA
= Worklist
.pop_back_val();
1066 auto *SAI
= MA
->getScopArrayInfo();
1067 if (Closed
.count(SAI
))
1070 LLVM_DEBUG(dbgs() << "\n Trying to map " << MA
<< " (SAI: " << SAI
1073 // Skip non-mappable scalars.
1074 if (!isMappable(SAI
))
1077 auto MASize
= DL
.getTypeAllocSize(MA
->getAccessValue()->getType());
1078 if (MASize
> StoreSize
) {
1080 dbgs() << " Reject because storage size is insufficient\n");
1084 // Try to map MemoryKind::Value scalars.
1085 if (SAI
->isValueKind()) {
1086 if (!tryMapValue(SAI
, EltTarget
))
1089 auto *DefAcc
= S
->getValueDef(SAI
);
1090 ProcessAllIncoming(DefAcc
->getStatement());
1096 // Try to map MemoryKind::PHI scalars.
1097 if (SAI
->isPHIKind()) {
1098 if (!tryMapPHI(SAI
, EltTarget
))
1100 // Add inputs of all incoming statements to the worklist. Prefer the
1101 // input accesses of the incoming blocks.
1102 for (auto *PHIWrite
: S
->getPHIIncomings(SAI
)) {
1103 auto *PHIWriteStmt
= PHIWrite
->getStatement();
1104 bool FoundAny
= false;
1105 for (auto Incoming
: PHIWrite
->getIncoming()) {
1106 auto *IncomingInputMA
=
1107 PHIWriteStmt
->lookupInputAccessOf(Incoming
.second
);
1108 if (!IncomingInputMA
)
1111 Worklist
.push_back(IncomingInputMA
);
1116 ProcessAllIncoming(PHIWrite
->getStatement());
1126 NumberOfTargetsMapped
++;
1131 /// Compute when an array element is unused.
1133 /// @return { [Element[] -> Zone[]] }
1134 isl::union_set
computeLifetime() const {
1135 // { Element[] -> Zone[] }
1136 auto ArrayUnused
= computeArrayUnused(Schedule
, AllMustWrites
, AllReads
,
1137 false, false, true);
1139 auto Result
= ArrayUnused
.wrap();
1145 /// Determine when an array element is written to, and which value instance is
1148 /// @return { [Element[] -> Scatter[]] -> ValInst[] }
1149 isl::union_map
computeWritten() const {
1150 // { [Element[] -> Scatter[]] -> ValInst[] }
1151 auto EltWritten
= applyDomainRange(AllWriteValInst
, Schedule
);
1153 simplify(EltWritten
);
1157 /// Determine whether an access touches at most one element.
1159 /// The accessed element could be a scalar or accessing an array with constant
1160 /// subscript, such that all instances access only that element.
1162 /// @param MA The access to test.
1164 /// @return True, if zero or one elements are accessed; False if at least two
1165 /// different elements are accessed.
1166 bool isScalarAccess(MemoryAccess
*MA
) {
1167 auto Map
= getAccessRelationFor(MA
);
1168 auto Set
= Map
.range();
1169 return Set
.is_singleton();
1172 /// Print mapping statistics to @p OS.
1173 void printStatistics(llvm::raw_ostream
&OS
, int Indent
= 0) const {
1174 OS
.indent(Indent
) << "Statistics {\n";
1175 OS
.indent(Indent
+ 4) << "Compatible overwrites: "
1176 << NumberOfCompatibleTargets
<< "\n";
1177 OS
.indent(Indent
+ 4) << "Overwrites mapped to: " << NumberOfTargetsMapped
1179 OS
.indent(Indent
+ 4) << "Value scalars mapped: "
1180 << NumberOfMappedValueScalars
<< '\n';
1181 OS
.indent(Indent
+ 4) << "PHI scalars mapped: "
1182 << NumberOfMappedPHIScalars
<< '\n';
1183 OS
.indent(Indent
) << "}\n";
1187 DeLICMImpl(Scop
*S
, LoopInfo
*LI
) : ZoneAlgorithm("polly-delicm", S
, LI
) {}
1189 /// Calculate the lifetime (definition to last use) of every array element.
1191 /// @return True if the computed lifetimes (#Zone) is usable.
1192 bool computeZone() {
1193 // Check that nothing strange occurs.
1194 collectCompatibleElts();
1196 isl::union_set EltUnused
;
1197 isl::union_map EltKnown
, EltWritten
;
1200 IslMaxOperationsGuard
MaxOpGuard(IslCtx
.get(), DelicmMaxOps
);
1204 EltUnused
= computeLifetime();
1205 EltKnown
= computeKnown(true, false);
1206 EltWritten
= computeWritten();
1210 if (EltUnused
.is_null() || EltKnown
.is_null() || EltWritten
.is_null()) {
1211 assert(isl_ctx_last_error(IslCtx
.get()) == isl_error_quota
&&
1212 "The only reason that these things have not been computed should "
1213 "be if the max-operations limit hit");
1215 LLVM_DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n");
1216 DebugLoc Begin
, End
;
1217 getDebugLocations(getBBPairForRegion(&S
->getRegion()), Begin
, End
);
1218 OptimizationRemarkAnalysis
R(DEBUG_TYPE
, "OutOfQuota", Begin
,
1220 R
<< "maximal number of operations exceeded during zone analysis";
1221 S
->getFunction().getContext().diagnose(R
);
1225 Zone
= OriginalZone
= Knowledge({}, EltUnused
, EltKnown
, EltWritten
);
1226 LLVM_DEBUG(dbgs() << "Computed Zone:\n"; OriginalZone
.print(dbgs(), 4));
1228 assert(Zone
.isUsable() && OriginalZone
.isUsable());
1232 /// Try to map as many scalars to unused array elements as possible.
1234 /// Multiple scalars might be mappable to intersecting unused array element
1235 /// zones, but we can only chose one. This is a greedy algorithm, therefore
1236 /// the first processed element claims it.
1237 void greedyCollapse() {
1238 bool Modified
= false;
1240 for (auto &Stmt
: *S
) {
1241 for (auto *MA
: Stmt
) {
1242 if (!MA
->isLatestArrayKind())
1247 if (MA
->isMayWrite()) {
1248 LLVM_DEBUG(dbgs() << "Access " << MA
1249 << " pruned because it is a MAY_WRITE\n");
1250 OptimizationRemarkMissed
R(DEBUG_TYPE
, "TargetMayWrite",
1251 MA
->getAccessInstruction());
1252 R
<< "Skipped possible mapping target because it is not an "
1253 "unconditional overwrite";
1254 S
->getFunction().getContext().diagnose(R
);
1258 if (Stmt
.getNumIterators() == 0) {
1259 LLVM_DEBUG(dbgs() << "Access " << MA
1260 << " pruned because it is not in a loop\n");
1261 OptimizationRemarkMissed
R(DEBUG_TYPE
, "WriteNotInLoop",
1262 MA
->getAccessInstruction());
1263 R
<< "skipped possible mapping target because it is not in a loop";
1264 S
->getFunction().getContext().diagnose(R
);
1268 if (isScalarAccess(MA
)) {
1271 << " pruned because it writes only a single element\n");
1272 OptimizationRemarkMissed
R(DEBUG_TYPE
, "ScalarWrite",
1273 MA
->getAccessInstruction());
1274 R
<< "skipped possible mapping target because the memory location "
1275 "written to does not depend on its outer loop";
1276 S
->getFunction().getContext().diagnose(R
);
1280 if (!isa
<StoreInst
>(MA
->getAccessInstruction())) {
1281 LLVM_DEBUG(dbgs() << "Access " << MA
1282 << " pruned because it is not a StoreInst\n");
1283 OptimizationRemarkMissed
R(DEBUG_TYPE
, "NotAStore",
1284 MA
->getAccessInstruction());
1285 R
<< "skipped possible mapping target because non-store instructions "
1286 "are not supported";
1287 S
->getFunction().getContext().diagnose(R
);
1291 // Check for more than one element acces per statement instance.
1292 // Currently we expect write accesses to be functional, eg. disallow
1294 // { Stmt[0] -> [i] : 0 <= i < 2 }
1296 // This may occur when some accesses to the element write/read only
1297 // parts of the element, eg. a single byte. Polly then divides each
1298 // element into subelements of the smallest access length, normal access
1299 // then touch multiple of such subelements. It is very common when the
1300 // array is accesses with memset, memcpy or memmove which take i8*
1302 isl::union_map AccRel
= MA
->getLatestAccessRelation();
1303 if (!AccRel
.is_single_valued().is_true()) {
1304 LLVM_DEBUG(dbgs() << "Access " << MA
1305 << " is incompatible because it writes multiple "
1306 "elements per instance\n");
1307 OptimizationRemarkMissed
R(DEBUG_TYPE
, "NonFunctionalAccRel",
1308 MA
->getAccessInstruction());
1309 R
<< "skipped possible mapping target because it writes more than "
1311 S
->getFunction().getContext().diagnose(R
);
1315 isl::union_set TouchedElts
= AccRel
.range();
1316 if (!TouchedElts
.is_subset(CompatibleElts
)) {
1320 << " is incompatible because it touches incompatible elements\n");
1321 OptimizationRemarkMissed
R(DEBUG_TYPE
, "IncompatibleElts",
1322 MA
->getAccessInstruction());
1323 R
<< "skipped possible mapping target because a target location "
1324 "cannot be reliably analyzed";
1325 S
->getFunction().getContext().diagnose(R
);
1329 assert(isCompatibleAccess(MA
));
1330 NumberOfCompatibleTargets
++;
1331 LLVM_DEBUG(dbgs() << "Analyzing target access " << MA
<< "\n");
1332 if (collapseScalarsToStore(MA
))
1338 DeLICMScopsModified
++;
1341 /// Dump the internal information about a performed DeLICM to @p OS.
1342 void print(llvm::raw_ostream
&OS
, int Indent
= 0) {
1343 if (!Zone
.isUsable()) {
1344 OS
.indent(Indent
) << "Zone not computed\n";
1348 printStatistics(OS
, Indent
);
1349 if (!isModified()) {
1350 OS
.indent(Indent
) << "No modification has been made\n";
1353 printAccesses(OS
, Indent
);
1356 /// Return whether at least one transformation been applied.
1357 bool isModified() const { return NumberOfTargetsMapped
> 0; }
1360 static std::unique_ptr
<DeLICMImpl
> collapseToUnused(Scop
&S
, LoopInfo
&LI
) {
1361 std::unique_ptr
<DeLICMImpl
> Impl
= std::make_unique
<DeLICMImpl
>(&S
, &LI
);
1363 if (!Impl
->computeZone()) {
1364 LLVM_DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n");
1368 LLVM_DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n");
1369 Impl
->greedyCollapse();
1371 LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
1372 LLVM_DEBUG(dbgs() << S
);
1377 static std::unique_ptr
<DeLICMImpl
> runDeLICM(Scop
&S
, LoopInfo
&LI
) {
1378 std::unique_ptr
<DeLICMImpl
> Impl
= collapseToUnused(S
, LI
);
1380 Scop::ScopStatistics ScopStats
= S
.getStatistics();
1381 NumValueWrites
+= ScopStats
.NumValueWrites
;
1382 NumValueWritesInLoops
+= ScopStats
.NumValueWritesInLoops
;
1383 NumPHIWrites
+= ScopStats
.NumPHIWrites
;
1384 NumPHIWritesInLoops
+= ScopStats
.NumPHIWritesInLoops
;
1385 NumSingletonWrites
+= ScopStats
.NumSingletonWrites
;
1386 NumSingletonWritesInLoops
+= ScopStats
.NumSingletonWritesInLoops
;
1391 static PreservedAnalyses
runDeLICMUsingNPM(Scop
&S
, ScopAnalysisManager
&SAM
,
1392 ScopStandardAnalysisResults
&SAR
,
1393 SPMUpdater
&U
, raw_ostream
*OS
) {
1394 LoopInfo
&LI
= SAR
.LI
;
1395 std::unique_ptr
<DeLICMImpl
> Impl
= runDeLICM(S
, LI
);
1398 *OS
<< "Printing analysis 'Polly - DeLICM/DePRE' for region: '"
1399 << S
.getName() << "' in function '" << S
.getFunction().getName()
1402 assert(Impl
->getScop() == &S
);
1404 *OS
<< "DeLICM result:\n";
1409 if (!Impl
->isModified())
1410 return PreservedAnalyses::all();
1412 PreservedAnalyses PA
;
1413 PA
.preserveSet
<AllAnalysesOn
<Module
>>();
1414 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
1415 PA
.preserveSet
<AllAnalysesOn
<Loop
>>();
1419 class DeLICMWrapperPass final
: public ScopPass
{
1421 DeLICMWrapperPass(const DeLICMWrapperPass
&) = delete;
1422 const DeLICMWrapperPass
&operator=(const DeLICMWrapperPass
&) = delete;
1424 /// The pass implementation, also holding per-scop data.
1425 std::unique_ptr
<DeLICMImpl
> Impl
;
1429 explicit DeLICMWrapperPass() : ScopPass(ID
) {}
1431 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1432 AU
.addRequiredTransitive
<ScopInfoRegionPass
>();
1433 AU
.addRequired
<LoopInfoWrapperPass
>();
1434 AU
.setPreservesAll();
1437 bool runOnScop(Scop
&S
) override
{
1438 // Free resources for previous scop's computation, if not yet done.
1441 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
1442 Impl
= runDeLICM(S
, LI
);
1444 return Impl
->isModified();
1447 void printScop(raw_ostream
&OS
, Scop
&S
) const override
{
1450 assert(Impl
->getScop() == &S
);
1452 OS
<< "DeLICM result:\n";
1456 void releaseMemory() override
{ Impl
.reset(); }
1459 char DeLICMWrapperPass::ID
;
1461 /// Print result from DeLICMWrapperPass.
1462 class DeLICMPrinterLegacyPass final
: public ScopPass
{
1466 DeLICMPrinterLegacyPass() : DeLICMPrinterLegacyPass(outs()){};
1467 explicit DeLICMPrinterLegacyPass(llvm::raw_ostream
&OS
)
1468 : ScopPass(ID
), OS(OS
) {}
1470 bool runOnScop(Scop
&S
) override
{
1471 DeLICMWrapperPass
&P
= getAnalysis
<DeLICMWrapperPass
>();
1473 OS
<< "Printing analysis '" << P
.getPassName() << "' for region: '"
1474 << S
.getRegion().getNameStr() << "' in function '"
1475 << S
.getFunction().getName() << "':\n";
1481 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1482 ScopPass::getAnalysisUsage(AU
);
1483 AU
.addRequired
<DeLICMWrapperPass
>();
1484 AU
.setPreservesAll();
1488 llvm::raw_ostream
&OS
;
1491 char DeLICMPrinterLegacyPass::ID
= 0;
1492 } // anonymous namespace
1494 Pass
*polly::createDeLICMWrapperPass() { return new DeLICMWrapperPass(); }
1496 llvm::Pass
*polly::createDeLICMPrinterLegacyPass(llvm::raw_ostream
&OS
) {
1497 return new DeLICMPrinterLegacyPass(OS
);
1500 llvm::PreservedAnalyses
polly::DeLICMPass::run(Scop
&S
,
1501 ScopAnalysisManager
&SAM
,
1502 ScopStandardAnalysisResults
&SAR
,
1504 return runDeLICMUsingNPM(S
, SAM
, SAR
, U
, nullptr);
1507 llvm::PreservedAnalyses
DeLICMPrinterPass::run(Scop
&S
,
1508 ScopAnalysisManager
&SAM
,
1509 ScopStandardAnalysisResults
&SAR
,
1511 return runDeLICMUsingNPM(S
, SAM
, SAR
, U
, &OS
);
1514 bool polly::isConflicting(
1515 isl::union_set ExistingOccupied
, isl::union_set ExistingUnused
,
1516 isl::union_map ExistingKnown
, isl::union_map ExistingWrites
,
1517 isl::union_set ProposedOccupied
, isl::union_set ProposedUnused
,
1518 isl::union_map ProposedKnown
, isl::union_map ProposedWrites
,
1519 llvm::raw_ostream
*OS
, unsigned Indent
) {
1520 Knowledge
Existing(std::move(ExistingOccupied
), std::move(ExistingUnused
),
1521 std::move(ExistingKnown
), std::move(ExistingWrites
));
1522 Knowledge
Proposed(std::move(ProposedOccupied
), std::move(ProposedUnused
),
1523 std::move(ProposedKnown
), std::move(ProposedWrites
));
1525 return Knowledge::isConflicting(Existing
, Proposed
, OS
, Indent
);
1528 INITIALIZE_PASS_BEGIN(DeLICMWrapperPass
, "polly-delicm", "Polly - DeLICM/DePRE",
1530 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass
)
1531 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
1532 INITIALIZE_PASS_END(DeLICMWrapperPass
, "polly-delicm", "Polly - DeLICM/DePRE",
1535 INITIALIZE_PASS_BEGIN(DeLICMPrinterLegacyPass
, "polly-print-delicm",
1536 "Polly - Print DeLICM/DePRE", false, false)
1537 INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass
)
1538 INITIALIZE_PASS_END(DeLICMPrinterLegacyPass
, "polly-print-delicm",
1539 "Polly - Print DeLICM/DePRE", false, false)