1 //===------ Simplify.cpp ----------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Simplify a SCoP by removing unnecessary statements and accesses.
11 //===----------------------------------------------------------------------===//
13 #include "polly/Simplify.h"
14 #include "polly/ScopInfo.h"
15 #include "polly/ScopPass.h"
16 #include "polly/Support/GICHelper.h"
17 #include "polly/Support/ISLOStream.h"
18 #include "polly/Support/ISLTools.h"
19 #include "polly/Support/VirtualInstruction.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/InitializePasses.h"
22 #include "llvm/Support/Debug.h"
25 #define DEBUG_TYPE "polly-simplify"
28 using namespace polly
;
32 #define TWO_STATISTICS(VARNAME, DESC) \
33 static llvm::Statistic VARNAME[2] = { \
34 {DEBUG_TYPE, #VARNAME "0", DESC " (first)"}, \
35 {DEBUG_TYPE, #VARNAME "1", DESC " (second)"}}
37 /// Number of max disjuncts we allow in removeOverwrites(). This is to avoid
38 /// that the analysis of accesses in a statement is becoming too complex. Chosen
39 /// to be relatively small because all the common cases should access only few
40 /// array elements per statement.
41 static unsigned const SimplifyMaxDisjuncts
= 4;
43 TWO_STATISTICS(ScopsProcessed
, "Number of SCoPs processed");
44 TWO_STATISTICS(ScopsModified
, "Number of SCoPs simplified");
46 TWO_STATISTICS(TotalEmptyDomainsRemoved
,
47 "Number of statement with empty domains removed in any SCoP");
48 TWO_STATISTICS(TotalOverwritesRemoved
, "Number of removed overwritten writes");
49 TWO_STATISTICS(TotalWritesCoalesced
, "Number of writes coalesced with another");
50 TWO_STATISTICS(TotalRedundantWritesRemoved
,
51 "Number of writes of same value removed in any SCoP");
52 TWO_STATISTICS(TotalEmptyPartialAccessesRemoved
,
53 "Number of empty partial accesses removed");
54 TWO_STATISTICS(TotalDeadAccessesRemoved
, "Number of dead accesses removed");
55 TWO_STATISTICS(TotalDeadInstructionsRemoved
,
56 "Number of unused instructions removed");
57 TWO_STATISTICS(TotalStmtsRemoved
, "Number of statements removed in any SCoP");
59 TWO_STATISTICS(NumValueWrites
, "Number of scalar value writes after Simplify");
61 NumValueWritesInLoops
,
62 "Number of scalar value writes nested in affine loops after Simplify");
63 TWO_STATISTICS(NumPHIWrites
,
64 "Number of scalar phi writes after the first simplification");
67 "Number of scalar phi writes nested in affine loops after Simplify");
68 TWO_STATISTICS(NumSingletonWrites
, "Number of singleton writes after Simplify");
70 NumSingletonWritesInLoops
,
71 "Number of singleton writes nested in affine loops after Simplify");
73 static bool isImplicitRead(MemoryAccess
*MA
) {
74 return MA
->isRead() && MA
->isOriginalScalarKind();
77 static bool isExplicitAccess(MemoryAccess
*MA
) {
78 return MA
->isOriginalArrayKind();
81 static bool isImplicitWrite(MemoryAccess
*MA
) {
82 return MA
->isWrite() && MA
->isOriginalScalarKind();
85 /// Like isl::union_map::unite, but may also return an underapproximated
86 /// result if getting too complex.
88 /// This is implemented by adding disjuncts to the results until the limit is
90 static isl::union_map
underapproximatedAddMap(isl::union_map UMap
,
92 if (UMap
.is_null() || Map
.is_null())
95 isl::map PrevMap
= UMap
.extract_map(Map
.get_space());
97 // Fast path: If known that we cannot exceed the disjunct limit, just add
99 if (unsignedFromIslSize(PrevMap
.n_basic_map()) +
100 unsignedFromIslSize(Map
.n_basic_map()) <=
101 SimplifyMaxDisjuncts
)
102 return UMap
.unite(Map
);
104 isl::map Result
= isl::map::empty(PrevMap
.get_space());
105 for (isl::basic_map BMap
: PrevMap
.get_basic_map_list()) {
106 if (unsignedFromIslSize(Result
.n_basic_map()) > SimplifyMaxDisjuncts
)
108 Result
= Result
.unite(BMap
);
110 for (isl::basic_map BMap
: Map
.get_basic_map_list()) {
111 if (unsignedFromIslSize(Result
.n_basic_map()) > SimplifyMaxDisjuncts
)
113 Result
= Result
.unite(BMap
);
116 isl::union_map UResult
=
117 UMap
.subtract(isl::map::universe(PrevMap
.get_space()));
118 UResult
.unite(Result
);
123 class SimplifyImpl final
{
125 /// The invocation id (if there are multiple instances in the pass manager's
126 /// pipeline) to determine which statistics to update.
129 /// The last/current SCoP that is/has been processed.
132 /// Number of statements with empty domains removed from the SCoP.
133 int EmptyDomainsRemoved
= 0;
135 /// Number of writes that are overwritten anyway.
136 int OverwritesRemoved
= 0;
138 /// Number of combined writes.
139 int WritesCoalesced
= 0;
141 /// Number of redundant writes removed from this SCoP.
142 int RedundantWritesRemoved
= 0;
144 /// Number of writes with empty access domain removed.
145 int EmptyPartialAccessesRemoved
= 0;
147 /// Number of unused accesses removed from this SCoP.
148 int DeadAccessesRemoved
= 0;
150 /// Number of unused instructions removed from this SCoP.
151 int DeadInstructionsRemoved
= 0;
153 /// Number of unnecessary statements removed from the SCoP.
154 int StmtsRemoved
= 0;
156 /// Remove statements that are never executed due to their domains being
159 /// In contrast to Scop::simplifySCoP, this removes based on the SCoP's
160 /// effective domain, i.e. including the SCoP's context as used by some other
161 /// simplification methods in this pass. This is necessary because the
162 /// analysis on empty domains is unreliable, e.g. remove a scalar value
163 /// definition MemoryAccesses, but not its use.
164 void removeEmptyDomainStmts();
166 /// Remove writes that are overwritten unconditionally later in the same
169 /// There must be no read of the same value between the write (that is to be
170 /// removed) and the overwrite.
171 void removeOverwrites();
173 /// Combine writes that write the same value if possible.
175 /// This function is able to combine:
176 /// - Partial writes with disjoint domain.
177 /// - Writes that write to the same array element.
179 /// In all cases, both writes must write the same values.
180 void coalesceWrites();
182 /// Remove writes that just write the same value already stored in the
184 void removeRedundantWrites();
186 /// Remove statements without side effects.
187 void removeUnnecessaryStmts();
189 /// Remove accesses that have an empty domain.
190 void removeEmptyPartialAccesses();
192 /// Mark all reachable instructions and access, and sweep those that are not
194 void markAndSweep(LoopInfo
*LI
);
196 /// Print simplification statistics to @p OS.
197 void printStatistics(llvm::raw_ostream
&OS
, int Indent
= 0) const;
199 /// Print the current state of all MemoryAccesses to @p OS.
200 void printAccesses(llvm::raw_ostream
&OS
, int Indent
= 0) const;
203 explicit SimplifyImpl(int CallNo
= 0) : CallNo(CallNo
) {}
205 void run(Scop
&S
, LoopInfo
*LI
);
207 void printScop(raw_ostream
&OS
, Scop
&S
) const;
209 /// Return whether at least one simplification has been applied.
210 bool isModified() const;
213 /// Return whether at least one simplification has been applied.
214 bool SimplifyImpl::isModified() const {
215 return EmptyDomainsRemoved
> 0 || OverwritesRemoved
> 0 ||
216 WritesCoalesced
> 0 || RedundantWritesRemoved
> 0 ||
217 EmptyPartialAccessesRemoved
> 0 || DeadAccessesRemoved
> 0 ||
218 DeadInstructionsRemoved
> 0 || StmtsRemoved
> 0;
221 /// Remove statements that are never executed due to their domains being
224 /// In contrast to Scop::simplifySCoP, this removes based on the SCoP's
225 /// effective domain, i.e. including the SCoP's context as used by some other
226 /// simplification methods in this pass. This is necessary because the
227 /// analysis on empty domains is unreliable, e.g. remove a scalar value
228 /// definition MemoryAccesses, but not its use.
229 void SimplifyImpl::removeEmptyDomainStmts() {
230 size_t NumStmtsBefore
= S
->getSize();
232 S
->removeStmts([](ScopStmt
&Stmt
) -> bool {
233 auto EffectiveDomain
=
234 Stmt
.getDomain().intersect_params(Stmt
.getParent()->getContext());
235 return EffectiveDomain
.is_empty();
238 assert(NumStmtsBefore
>= S
->getSize());
239 EmptyDomainsRemoved
= NumStmtsBefore
- S
->getSize();
240 LLVM_DEBUG(dbgs() << "Removed " << EmptyDomainsRemoved
<< " (of "
241 << NumStmtsBefore
<< ") statements with empty domains \n");
242 TotalEmptyDomainsRemoved
[CallNo
] += EmptyDomainsRemoved
;
245 /// Remove writes that are overwritten unconditionally later in the same
248 /// There must be no read of the same value between the write (that is to be
249 /// removed) and the overwrite.
250 void SimplifyImpl::removeOverwrites() {
251 for (auto &Stmt
: *S
) {
252 isl::set Domain
= Stmt
.getDomain();
253 isl::union_map WillBeOverwritten
= isl::union_map::empty(S
->getIslCtx());
255 SmallVector
<MemoryAccess
*, 32> Accesses(getAccessesInOrder(Stmt
));
257 // Iterate in reverse order, so the overwrite comes before the write that
259 for (auto *MA
: reverse(Accesses
)) {
261 // In region statements, the explicit accesses can be in blocks that are
262 // can be executed in any order. We therefore process only the implicit
263 // writes and stop after that.
264 if (Stmt
.isRegionStmt() && isExplicitAccess(MA
))
267 auto AccRel
= MA
->getAccessRelation();
268 AccRel
= AccRel
.intersect_domain(Domain
);
269 AccRel
= AccRel
.intersect_params(S
->getContext());
271 // If a value is read in-between, do not consider it as overwritten.
273 // Invalidate all overwrites for the array it accesses to avoid too
275 isl::map AccRelUniv
= isl::map::universe(AccRel
.get_space());
276 WillBeOverwritten
= WillBeOverwritten
.subtract(AccRelUniv
);
280 // If all of a write's elements are overwritten, remove it.
281 isl::union_map AccRelUnion
= AccRel
;
282 if (AccRelUnion
.is_subset(WillBeOverwritten
)) {
283 LLVM_DEBUG(dbgs() << "Removing " << MA
284 << " which will be overwritten anyway\n");
286 Stmt
.removeSingleMemoryAccess(MA
);
288 TotalOverwritesRemoved
[CallNo
]++;
291 // Unconditional writes overwrite other values.
292 if (MA
->isMustWrite()) {
293 // Avoid too complex isl sets. If necessary, throw away some of the
295 WillBeOverwritten
= underapproximatedAddMap(WillBeOverwritten
, AccRel
);
301 /// Combine writes that write the same value if possible.
303 /// This function is able to combine:
304 /// - Partial writes with disjoint domain.
305 /// - Writes that write to the same array element.
307 /// In all cases, both writes must write the same values.
308 void SimplifyImpl::coalesceWrites() {
309 for (auto &Stmt
: *S
) {
310 isl::set Domain
= Stmt
.getDomain().intersect_params(S
->getContext());
312 // We let isl do the lookup for the same-value condition. For this, we
313 // wrap llvm::Value into an isl::set such that isl can do the lookup in
314 // its hashtable implementation. llvm::Values are only compared within a
315 // ScopStmt, so the map can be local to this scope. TODO: Refactor with
316 // ZoneAlgorithm::makeValueSet()
317 SmallDenseMap
<Value
*, isl::set
> ValueSets
;
318 auto makeValueSet
= [&ValueSets
, this](Value
*V
) -> isl::set
{
320 isl::set
&Result
= ValueSets
[V
];
321 if (Result
.is_null()) {
322 isl::ctx Ctx
= S
->getIslCtx();
323 std::string Name
= getIslCompatibleName(
324 "Val", V
, ValueSets
.size() - 1, std::string(), UseInstructionNames
);
325 isl::id Id
= isl::id::alloc(Ctx
, Name
, V
);
326 Result
= isl::set::universe(
327 isl::space(Ctx
, 0, 0).set_tuple_id(isl::dim::set
, Id
));
332 // List of all eligible (for coalescing) writes of the future.
333 // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
334 isl::union_map FutureWrites
= isl::union_map::empty(S
->getIslCtx());
336 // Iterate over accesses from the last to the first.
337 SmallVector
<MemoryAccess
*, 32> Accesses(getAccessesInOrder(Stmt
));
338 for (MemoryAccess
*MA
: reverse(Accesses
)) {
339 // In region statements, the explicit accesses can be in blocks that can
340 // be executed in any order. We therefore process only the implicit
341 // writes and stop after that.
342 if (Stmt
.isRegionStmt() && isExplicitAccess(MA
))
345 // { Domain[] -> Element[] }
346 isl::map AccRel
= MA
->getLatestAccessRelation().intersect_domain(Domain
);
348 // { [Domain[] -> Element[]] }
349 isl::set AccRelWrapped
= AccRel
.wrap();
354 if (MA
->isMustWrite() && (MA
->isOriginalScalarKind() ||
355 isa
<StoreInst
>(MA
->getAccessInstruction()))) {
356 // Normally, tryGetValueStored() should be used to determine which
357 // element is written, but it can return nullptr; For PHI accesses,
358 // getAccessValue() returns the PHI instead of the PHI's incoming
359 // value. In this case, where we only compare values of a single
360 // statement, this is fine, because within a statement, a PHI in a
361 // successor block has always the same value as the incoming write. We
362 // still preferably use the incoming value directly so we also catch
363 // direct uses of that.
364 Value
*StoredVal
= MA
->tryGetValueStored();
366 StoredVal
= MA
->getAccessValue();
367 ValSet
= makeValueSet(StoredVal
);
370 isl::set AccDomain
= AccRel
.domain();
372 // Parts of the statement's domain that is not written by this access.
373 isl::set UndefDomain
= Domain
.subtract(AccDomain
);
376 isl::set ElementUniverse
=
377 isl::set::universe(AccRel
.get_space().range());
379 // { Domain[] -> Element[] }
380 isl::map UndefAnything
=
381 isl::map::from_domain_and_range(UndefDomain
, ElementUniverse
);
383 // We are looking a compatible write access. The other write can
384 // access these elements...
385 isl::map AllowedAccesses
= AccRel
.unite(UndefAnything
);
387 // ... and must write the same value.
388 // { [Domain[] -> Element[]] -> Value[] }
390 isl::map::from_domain_and_range(AllowedAccesses
.wrap(), ValSet
);
392 // Lookup future write that fulfills these conditions.
393 // { [[Domain[] -> Element[]] -> Value[]] -> MemoryAccess[] }
394 isl::union_map Filtered
=
395 FutureWrites
.uncurry().intersect_domain(Filter
.wrap());
397 // Iterate through the candidates.
398 for (isl::map Map
: Filtered
.get_map_list()) {
399 MemoryAccess
*OtherMA
= (MemoryAccess
*)Map
.get_space()
400 .get_tuple_id(isl::dim::out
)
403 isl::map OtherAccRel
=
404 OtherMA
->getLatestAccessRelation().intersect_domain(Domain
);
406 // The filter only guaranteed that some of OtherMA's accessed
407 // elements are allowed. Verify that it only accesses allowed
408 // elements. Otherwise, continue with the next candidate.
409 if (!OtherAccRel
.is_subset(AllowedAccesses
).is_true())
412 // The combined access relation.
413 // { Domain[] -> Element[] }
414 isl::map NewAccRel
= AccRel
.unite(OtherAccRel
);
417 // Carry out the coalescing.
418 Stmt
.removeSingleMemoryAccess(MA
);
419 OtherMA
->setNewAccessRelation(NewAccRel
);
421 // We removed MA, OtherMA takes its role.
424 TotalWritesCoalesced
[CallNo
]++;
427 // Don't look for more candidates.
432 // Two writes cannot be coalesced if there is another access (to some of
433 // the written elements) between them. Remove all visited write accesses
434 // from the list of eligible writes. Don't just remove the accessed
435 // elements, but any MemoryAccess that touches any of the invalidated
437 SmallPtrSet
<MemoryAccess
*, 2> TouchedAccesses
;
439 FutureWrites
.intersect_domain(AccRelWrapped
).get_map_list()) {
440 MemoryAccess
*MA
= (MemoryAccess
*)Map
.get_space()
443 .get_tuple_id(isl::dim::out
)
445 TouchedAccesses
.insert(MA
);
447 isl::union_map NewFutureWrites
=
448 isl::union_map::empty(FutureWrites
.ctx());
449 for (isl::map FutureWrite
: FutureWrites
.get_map_list()) {
450 MemoryAccess
*MA
= (MemoryAccess
*)FutureWrite
.get_space()
453 .get_tuple_id(isl::dim::out
)
455 if (!TouchedAccesses
.count(MA
))
456 NewFutureWrites
= NewFutureWrites
.unite(FutureWrite
);
458 FutureWrites
= NewFutureWrites
;
460 if (MA
->isMustWrite() && !ValSet
.is_null()) {
461 // { MemoryAccess[] }
463 isl::set::universe(isl::space(S
->getIslCtx(), 0, 0)
464 .set_tuple_id(isl::dim::set
, MA
->getId()));
466 // { Val[] -> MemoryAccess[] }
467 isl::map ValAccSet
= isl::map::from_domain_and_range(ValSet
, AccSet
);
469 // { [Domain[] -> Element[]] -> [Value[] -> MemoryAccess[]] }
470 isl::map AccRelValAcc
=
471 isl::map::from_domain_and_range(AccRelWrapped
, ValAccSet
.wrap());
472 FutureWrites
= FutureWrites
.unite(AccRelValAcc
);
478 /// Remove writes that just write the same value already stored in the
480 void SimplifyImpl::removeRedundantWrites() {
481 for (auto &Stmt
: *S
) {
482 SmallDenseMap
<Value
*, isl::set
> ValueSets
;
483 auto makeValueSet
= [&ValueSets
, this](Value
*V
) -> isl::set
{
485 isl::set
&Result
= ValueSets
[V
];
486 if (Result
.is_null()) {
487 isl_ctx
*Ctx
= S
->getIslCtx().get();
488 std::string Name
= getIslCompatibleName(
489 "Val", V
, ValueSets
.size() - 1, std::string(), UseInstructionNames
);
490 isl::id Id
= isl::manage(isl_id_alloc(Ctx
, Name
.c_str(), V
));
491 Result
= isl::set::universe(
492 isl::space(Ctx
, 0, 0).set_tuple_id(isl::dim::set
, Id
));
497 isl::set Domain
= Stmt
.getDomain();
498 Domain
= Domain
.intersect_params(S
->getContext());
500 // List of element reads that still have the same value while iterating
501 // through the MemoryAccesses.
502 // { [Domain[] -> Element[]] -> Val[] }
503 isl::union_map Known
= isl::union_map::empty(S
->getIslCtx());
505 SmallVector
<MemoryAccess
*, 32> Accesses(getAccessesInOrder(Stmt
));
506 for (MemoryAccess
*MA
: Accesses
) {
507 // Is the memory access in a defined order relative to the other
508 // accesses? In region statements, only the first and the last accesses
509 // have defined order. Execution of those in the middle may depend on
510 // runtime conditions an therefore cannot be modified.
512 Stmt
.isBlockStmt() || MA
->isOriginalScalarKind() ||
513 (!S
->getBoxedLoops().size() && MA
->getAccessInstruction() &&
514 Stmt
.getEntryBlock() == MA
->getAccessInstruction()->getParent());
516 isl::map AccRel
= MA
->getAccessRelation();
517 AccRel
= AccRel
.intersect_domain(Domain
);
518 isl::set AccRelWrapped
= AccRel
.wrap();
520 // Determine whether a write is redundant (stores only values that are
521 // already present in the written array elements) and remove it if this
523 if (IsOrdered
&& MA
->isMustWrite() &&
524 (isa
<StoreInst
>(MA
->getAccessInstruction()) ||
525 MA
->isOriginalScalarKind())) {
526 Value
*StoredVal
= MA
->tryGetValueStored();
528 StoredVal
= MA
->getAccessValue();
531 // Lookup in the set of known values.
532 isl::map AccRelStoredVal
= isl::map::from_domain_and_range(
533 AccRelWrapped
, makeValueSet(StoredVal
));
534 if (isl::union_map(AccRelStoredVal
).is_subset(Known
)) {
535 LLVM_DEBUG(dbgs() << "Cleanup of " << MA
<< ":\n");
536 LLVM_DEBUG(dbgs() << " Scalar: " << *StoredVal
<< "\n");
537 LLVM_DEBUG(dbgs() << " AccRel: " << AccRel
<< "\n");
539 Stmt
.removeSingleMemoryAccess(MA
);
541 RedundantWritesRemoved
++;
542 TotalRedundantWritesRemoved
[CallNo
]++;
547 // Update the know values set.
549 // Loaded values are the currently known values of the array element
550 // it was loaded from.
551 Value
*LoadedVal
= MA
->getAccessValue();
552 if (LoadedVal
&& IsOrdered
) {
553 isl::map AccRelVal
= isl::map::from_domain_and_range(
554 AccRelWrapped
, makeValueSet(LoadedVal
));
556 Known
= Known
.unite(AccRelVal
);
558 } else if (MA
->isWrite()) {
559 // Remove (possibly) overwritten values from the known elements set.
560 // We remove all elements of the accessed array to avoid too complex
562 isl::set AccRelUniv
= isl::set::universe(AccRelWrapped
.get_space());
563 Known
= Known
.subtract_domain(AccRelUniv
);
565 // At this point, we could add the written value of must-writes.
566 // However, writing same values is already handled by
573 /// Remove statements without side effects.
574 void SimplifyImpl::removeUnnecessaryStmts() {
575 auto NumStmtsBefore
= S
->getSize();
576 S
->simplifySCoP(true);
577 assert(NumStmtsBefore
>= S
->getSize());
578 StmtsRemoved
= NumStmtsBefore
- S
->getSize();
579 LLVM_DEBUG(dbgs() << "Removed " << StmtsRemoved
<< " (of " << NumStmtsBefore
580 << ") statements\n");
581 TotalStmtsRemoved
[CallNo
] += StmtsRemoved
;
584 /// Remove accesses that have an empty domain.
585 void SimplifyImpl::removeEmptyPartialAccesses() {
586 for (ScopStmt
&Stmt
: *S
) {
587 // Defer the actual removal to not invalidate iterators.
588 SmallVector
<MemoryAccess
*, 8> DeferredRemove
;
590 for (MemoryAccess
*MA
: Stmt
) {
594 isl::map AccRel
= MA
->getAccessRelation();
595 if (!AccRel
.is_empty().is_true())
599 dbgs() << "Removing " << MA
600 << " because it's a partial access that never occurs\n");
601 DeferredRemove
.push_back(MA
);
604 for (MemoryAccess
*MA
: DeferredRemove
) {
605 Stmt
.removeSingleMemoryAccess(MA
);
606 EmptyPartialAccessesRemoved
++;
607 TotalEmptyPartialAccessesRemoved
[CallNo
]++;
612 /// Mark all reachable instructions and access, and sweep those that are not
614 void SimplifyImpl::markAndSweep(LoopInfo
*LI
) {
615 DenseSet
<MemoryAccess
*> UsedMA
;
616 DenseSet
<VirtualInstruction
> UsedInsts
;
618 // Get all reachable instructions and accesses.
619 markReachable(S
, LI
, UsedInsts
, UsedMA
);
621 // Remove all non-reachable accesses.
622 // We need get all MemoryAccesses first, in order to not invalidate the
623 // iterators when removing them.
624 SmallVector
<MemoryAccess
*, 64> AllMAs
;
625 for (ScopStmt
&Stmt
: *S
)
626 AllMAs
.append(Stmt
.begin(), Stmt
.end());
628 for (MemoryAccess
*MA
: AllMAs
) {
629 if (UsedMA
.count(MA
))
631 LLVM_DEBUG(dbgs() << "Removing " << MA
632 << " because its value is not used\n");
633 ScopStmt
*Stmt
= MA
->getStatement();
634 Stmt
->removeSingleMemoryAccess(MA
);
636 DeadAccessesRemoved
++;
637 TotalDeadAccessesRemoved
[CallNo
]++;
640 // Remove all non-reachable instructions.
641 for (ScopStmt
&Stmt
: *S
) {
642 // Note that for region statements, we can only remove the non-terminator
643 // instructions of the entry block. All other instructions are not in the
644 // instructions list, but implicitly always part of the statement.
646 SmallVector
<Instruction
*, 32> AllInsts(Stmt
.insts_begin(),
648 SmallVector
<Instruction
*, 32> RemainInsts
;
650 for (Instruction
*Inst
: AllInsts
) {
651 auto It
= UsedInsts
.find({&Stmt
, Inst
});
652 if (It
== UsedInsts
.end()) {
653 LLVM_DEBUG(dbgs() << "Removing "; Inst
->print(dbgs());
654 dbgs() << " because it is not used\n");
655 DeadInstructionsRemoved
++;
656 TotalDeadInstructionsRemoved
[CallNo
]++;
660 RemainInsts
.push_back(Inst
);
662 // If instructions appear multiple times, keep only the first.
666 // Set the new instruction list to be only those we did not remove.
667 Stmt
.setInstructions(RemainInsts
);
671 /// Print simplification statistics to @p OS.
672 void SimplifyImpl::printStatistics(llvm::raw_ostream
&OS
, int Indent
) const {
673 OS
.indent(Indent
) << "Statistics {\n";
674 OS
.indent(Indent
+ 4) << "Empty domains removed: " << EmptyDomainsRemoved
676 OS
.indent(Indent
+ 4) << "Overwrites removed: " << OverwritesRemoved
<< '\n';
677 OS
.indent(Indent
+ 4) << "Partial writes coalesced: " << WritesCoalesced
679 OS
.indent(Indent
+ 4) << "Redundant writes removed: "
680 << RedundantWritesRemoved
<< "\n";
681 OS
.indent(Indent
+ 4) << "Accesses with empty domains removed: "
682 << EmptyPartialAccessesRemoved
<< "\n";
683 OS
.indent(Indent
+ 4) << "Dead accesses removed: " << DeadAccessesRemoved
685 OS
.indent(Indent
+ 4) << "Dead instructions removed: "
686 << DeadInstructionsRemoved
<< '\n';
687 OS
.indent(Indent
+ 4) << "Stmts removed: " << StmtsRemoved
<< "\n";
688 OS
.indent(Indent
) << "}\n";
691 /// Print the current state of all MemoryAccesses to @p OS.
692 void SimplifyImpl::printAccesses(llvm::raw_ostream
&OS
, int Indent
) const {
693 OS
.indent(Indent
) << "After accesses {\n";
694 for (auto &Stmt
: *S
) {
695 OS
.indent(Indent
+ 4) << Stmt
.getBaseName() << "\n";
696 for (auto *MA
: Stmt
)
699 OS
.indent(Indent
) << "}\n";
702 void SimplifyImpl::run(Scop
&S
, LoopInfo
*LI
) {
703 // Must not have run before.
705 assert(!isModified());
707 // Prepare processing of this SCoP.
709 ScopsProcessed
[CallNo
]++;
711 LLVM_DEBUG(dbgs() << "Removing statements that are never executed...\n");
712 removeEmptyDomainStmts();
714 LLVM_DEBUG(dbgs() << "Removing partial writes that never happen...\n");
715 removeEmptyPartialAccesses();
717 LLVM_DEBUG(dbgs() << "Removing overwrites...\n");
720 LLVM_DEBUG(dbgs() << "Coalesce partial writes...\n");
723 LLVM_DEBUG(dbgs() << "Removing redundant writes...\n");
724 removeRedundantWrites();
726 LLVM_DEBUG(dbgs() << "Cleanup unused accesses...\n");
729 LLVM_DEBUG(dbgs() << "Removing statements without side effects...\n");
730 removeUnnecessaryStmts();
733 ScopsModified
[CallNo
]++;
734 LLVM_DEBUG(dbgs() << "\nFinal Scop:\n");
735 LLVM_DEBUG(dbgs() << S
);
737 auto ScopStats
= S
.getStatistics();
738 NumValueWrites
[CallNo
] += ScopStats
.NumValueWrites
;
739 NumValueWritesInLoops
[CallNo
] += ScopStats
.NumValueWritesInLoops
;
740 NumPHIWrites
[CallNo
] += ScopStats
.NumPHIWrites
;
741 NumPHIWritesInLoops
[CallNo
] += ScopStats
.NumPHIWritesInLoops
;
742 NumSingletonWrites
[CallNo
] += ScopStats
.NumSingletonWrites
;
743 NumSingletonWritesInLoops
[CallNo
] += ScopStats
.NumSingletonWritesInLoops
;
746 void SimplifyImpl::printScop(raw_ostream
&OS
, Scop
&S
) const {
747 assert(&S
== this->S
&&
748 "Can only print analysis for the last processed SCoP");
752 OS
<< "SCoP could not be simplified\n";
758 class SimplifyWrapperPass final
: public ScopPass
{
762 std::optional
<SimplifyImpl
> Impl
;
764 explicit SimplifyWrapperPass(int CallNo
= 0) : ScopPass(ID
), CallNo(CallNo
) {}
766 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
767 AU
.addRequiredTransitive
<ScopInfoRegionPass
>();
768 AU
.addRequired
<LoopInfoWrapperPass
>();
769 AU
.setPreservesAll();
772 bool runOnScop(Scop
&S
) override
{
773 LoopInfo
*LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
775 Impl
.emplace(CallNo
);
781 void printScop(raw_ostream
&OS
, Scop
&S
) const override
{
783 Impl
->printScop(OS
, S
);
786 void releaseMemory() override
{ Impl
.reset(); }
789 char SimplifyWrapperPass::ID
;
791 static llvm::PreservedAnalyses
792 runSimplifyUsingNPM(Scop
&S
, ScopAnalysisManager
&SAM
,
793 ScopStandardAnalysisResults
&SAR
, SPMUpdater
&U
, int CallNo
,
795 SimplifyImpl
Impl(CallNo
);
796 Impl
.run(S
, &SAR
.LI
);
798 *OS
<< "Printing analysis 'Polly - Simplify' for region: '" << S
.getName()
799 << "' in function '" << S
.getFunction().getName() << "':\n";
800 Impl
.printScop(*OS
, S
);
803 if (!Impl
.isModified())
804 return llvm::PreservedAnalyses::all();
806 PreservedAnalyses PA
;
807 PA
.preserveSet
<AllAnalysesOn
<Module
>>();
808 PA
.preserveSet
<AllAnalysesOn
<Function
>>();
809 PA
.preserveSet
<AllAnalysesOn
<Loop
>>();
813 } // anonymous namespace
815 llvm::PreservedAnalyses
SimplifyPass::run(Scop
&S
, ScopAnalysisManager
&SAM
,
816 ScopStandardAnalysisResults
&SAR
,
818 return runSimplifyUsingNPM(S
, SAM
, SAR
, U
, CallNo
, nullptr);
821 llvm::PreservedAnalyses
822 SimplifyPrinterPass::run(Scop
&S
, ScopAnalysisManager
&SAM
,
823 ScopStandardAnalysisResults
&SAR
, SPMUpdater
&U
) {
824 return runSimplifyUsingNPM(S
, SAM
, SAR
, U
, CallNo
, &OS
);
827 SmallVector
<MemoryAccess
*, 32> polly::getAccessesInOrder(ScopStmt
&Stmt
) {
828 SmallVector
<MemoryAccess
*, 32> Accesses
;
830 for (MemoryAccess
*MemAcc
: Stmt
)
831 if (isImplicitRead(MemAcc
))
832 Accesses
.push_back(MemAcc
);
834 for (MemoryAccess
*MemAcc
: Stmt
)
835 if (isExplicitAccess(MemAcc
))
836 Accesses
.push_back(MemAcc
);
838 for (MemoryAccess
*MemAcc
: Stmt
)
839 if (isImplicitWrite(MemAcc
))
840 Accesses
.push_back(MemAcc
);
845 Pass
*polly::createSimplifyWrapperPass(int CallNo
) {
846 return new SimplifyWrapperPass(CallNo
);
849 INITIALIZE_PASS_BEGIN(SimplifyWrapperPass
, "polly-simplify", "Polly - Simplify",
851 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
852 INITIALIZE_PASS_END(SimplifyWrapperPass
, "polly-simplify", "Polly - Simplify",
855 //===----------------------------------------------------------------------===//
858 /// Print result from SimplifyWrapperPass.
859 class SimplifyPrinterLegacyPass final
: public ScopPass
{
863 SimplifyPrinterLegacyPass() : SimplifyPrinterLegacyPass(outs()) {}
864 explicit SimplifyPrinterLegacyPass(llvm::raw_ostream
&OS
)
865 : ScopPass(ID
), OS(OS
) {}
867 bool runOnScop(Scop
&S
) override
{
868 SimplifyWrapperPass
&P
= getAnalysis
<SimplifyWrapperPass
>();
870 OS
<< "Printing analysis '" << P
.getPassName() << "' for region: '"
871 << S
.getRegion().getNameStr() << "' in function '"
872 << S
.getFunction().getName() << "':\n";
878 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
879 ScopPass::getAnalysisUsage(AU
);
880 AU
.addRequired
<SimplifyWrapperPass
>();
881 AU
.setPreservesAll();
885 llvm::raw_ostream
&OS
;
888 char SimplifyPrinterLegacyPass::ID
= 0;
891 Pass
*polly::createSimplifyPrinterLegacyPass(raw_ostream
&OS
) {
892 return new SimplifyPrinterLegacyPass(OS
);
895 INITIALIZE_PASS_BEGIN(SimplifyPrinterLegacyPass
, "polly-print-simplify",
896 "Polly - Print Simplify actions", false, false)
897 INITIALIZE_PASS_DEPENDENCY(SimplifyWrapperPass
)
898 INITIALIZE_PASS_END(SimplifyPrinterLegacyPass
, "polly-print-simplify",
899 "Polly - Print Simplify actions", false, false)