[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Analysis / LoopAccessAnalysis.cpp
blobdd6b88fee415a7a4e006e17a7a7429f4d268d4bd
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/DiagnosticInfo.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/IR/GetElementPtrTypeIterator.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/PatternMatch.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/IR/ValueHandle.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
64 #include <variant>
65 #include <vector>
67 using namespace llvm;
68 using namespace llvm::PatternMatch;
70 #define DEBUG_TYPE "loop-accesses"
72 static cl::opt<unsigned, true>
73 VectorizationFactor("force-vector-width", cl::Hidden,
74 cl::desc("Sets the SIMD width. Zero is autoselect."),
75 cl::location(VectorizerParams::VectorizationFactor));
76 unsigned VectorizerParams::VectorizationFactor;
78 static cl::opt<unsigned, true>
79 VectorizationInterleave("force-vector-interleave", cl::Hidden,
80 cl::desc("Sets the vectorization interleave count. "
81 "Zero is autoselect."),
82 cl::location(
83 VectorizerParams::VectorizationInterleave));
84 unsigned VectorizerParams::VectorizationInterleave;
86 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
87 "runtime-memory-check-threshold", cl::Hidden,
88 cl::desc("When performing memory disambiguation checks at runtime do not "
89 "generate more than this number of comparisons (default = 8)."),
90 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
91 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93 /// The maximum iterations used to merge memory checks
94 static cl::opt<unsigned> MemoryCheckMergeThreshold(
95 "memory-check-merge-threshold", cl::Hidden,
96 cl::desc("Maximum number of comparisons done when trying to merge "
97 "runtime memory checks. (default = 100)"),
98 cl::init(100));
100 /// Maximum SIMD width.
101 const unsigned VectorizerParams::MaxVectorWidth = 64;
103 /// We collect dependences up to this threshold.
104 static cl::opt<unsigned>
105 MaxDependences("max-dependences", cl::Hidden,
106 cl::desc("Maximum number of dependences collected by "
107 "loop-access analysis (default = 100)"),
108 cl::init(100));
110 /// This enables versioning on the strides of symbolically striding memory
111 /// accesses in code like the following.
112 /// for (i = 0; i < N; ++i)
113 /// A[i * Stride1] += B[i * Stride2] ...
115 /// Will be roughly translated to
116 /// if (Stride1 == 1 && Stride2 == 1) {
117 /// for (i = 0; i < N; i+=4)
118 /// A[i:i+3] += ...
119 /// } else
120 /// ...
121 static cl::opt<bool> EnableMemAccessVersioning(
122 "enable-mem-access-versioning", cl::init(true), cl::Hidden,
123 cl::desc("Enable symbolic stride memory access versioning"));
125 /// Enable store-to-load forwarding conflict detection. This option can
126 /// be disabled for correctness testing.
127 static cl::opt<bool> EnableForwardingConflictDetection(
128 "store-to-load-forwarding-conflict-detection", cl::Hidden,
129 cl::desc("Enable conflict detection in loop-access analysis"),
130 cl::init(true));
132 static cl::opt<unsigned> MaxForkedSCEVDepth(
133 "max-forked-scev-depth", cl::Hidden,
134 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
135 cl::init(5));
137 static cl::opt<bool> SpeculateUnitStride(
138 "laa-speculate-unit-stride", cl::Hidden,
139 cl::desc("Speculate that non-constant strides are unit in LAA"),
140 cl::init(true));
142 static cl::opt<bool, true> HoistRuntimeChecks(
143 "hoist-runtime-checks", cl::Hidden,
144 cl::desc(
145 "Hoist inner loop runtime memory checks to outer loop if possible"),
146 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
147 bool VectorizerParams::HoistRuntimeChecks;
149 bool VectorizerParams::isInterleaveForced() {
150 return ::VectorizationInterleave.getNumOccurrences() > 0;
153 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
154 const DenseMap<Value *, const SCEV *> &PtrToStride,
155 Value *Ptr) {
156 const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
158 // If there is an entry in the map return the SCEV of the pointer with the
159 // symbolic stride replaced by one.
160 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
161 if (SI == PtrToStride.end())
162 // For a non-symbolic stride, just return the original expression.
163 return OrigSCEV;
165 const SCEV *StrideSCEV = SI->second;
166 // Note: This assert is both overly strong and overly weak. The actual
167 // invariant here is that StrideSCEV should be loop invariant. The only
168 // such invariant strides we happen to speculate right now are unknowns
169 // and thus this is a reasonable proxy of the actual invariant.
170 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172 ScalarEvolution *SE = PSE.getSE();
173 const auto *CT = SE->getOne(StrideSCEV->getType());
174 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
175 auto *Expr = PSE.getSCEV(Ptr);
177 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
178 << " by: " << *Expr << "\n");
179 return Expr;
182 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
183 unsigned Index, RuntimePointerChecking &RtCheck)
184 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
185 AddressSpace(RtCheck.Pointers[Index]
186 .PointerValue->getType()
187 ->getPointerAddressSpace()),
188 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
189 Members.push_back(Index);
192 /// Calculate Start and End points of memory access.
193 /// Let's assume A is the first access and B is a memory access on N-th loop
194 /// iteration. Then B is calculated as:
195 /// B = A + Step*N .
196 /// Step value may be positive or negative.
197 /// N is a calculated back-edge taken count:
198 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
199 /// Start and End points are calculated in the following way:
200 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
201 /// where SizeOfElt is the size of single memory access in bytes.
203 /// There is no conflict when the intervals are disjoint:
204 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
205 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
206 Type *AccessTy, bool WritePtr,
207 unsigned DepSetId, unsigned ASId,
208 PredicatedScalarEvolution &PSE,
209 bool NeedsFreeze) {
210 ScalarEvolution *SE = PSE.getSE();
212 const SCEV *ScStart;
213 const SCEV *ScEnd;
215 if (SE->isLoopInvariant(PtrExpr, Lp)) {
216 ScStart = ScEnd = PtrExpr;
217 } else {
218 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr);
219 assert(AR && "Invalid addrec expression");
220 const SCEV *Ex = PSE.getBackedgeTakenCount();
222 ScStart = AR->getStart();
223 ScEnd = AR->evaluateAtIteration(Ex, *SE);
224 const SCEV *Step = AR->getStepRecurrence(*SE);
226 // For expressions with negative step, the upper bound is ScStart and the
227 // lower bound is ScEnd.
228 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
229 if (CStep->getValue()->isNegative())
230 std::swap(ScStart, ScEnd);
231 } else {
232 // Fallback case: the step is not constant, but we can still
233 // get the upper and lower bounds of the interval by using min/max
234 // expressions.
235 ScStart = SE->getUMinExpr(ScStart, ScEnd);
236 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
239 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
240 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
242 // Add the size of the pointed element to ScEnd.
243 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
244 Type *IdxTy = DL.getIndexType(Ptr->getType());
245 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
246 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
248 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
249 NeedsFreeze);
252 void RuntimePointerChecking::tryToCreateDiffCheck(
253 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
254 if (!CanUseDiffCheck)
255 return;
257 // If either group contains multiple different pointers, bail out.
258 // TODO: Support multiple pointers by using the minimum or maximum pointer,
259 // depending on src & sink.
260 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) {
261 CanUseDiffCheck = false;
262 return;
265 PointerInfo *Src = &Pointers[CGI.Members[0]];
266 PointerInfo *Sink = &Pointers[CGJ.Members[0]];
268 // If either pointer is read and written, multiple checks may be needed. Bail
269 // out.
270 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
271 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) {
272 CanUseDiffCheck = false;
273 return;
276 ArrayRef<unsigned> AccSrc =
277 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
278 ArrayRef<unsigned> AccSink =
279 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
280 // If either pointer is accessed multiple times, there may not be a clear
281 // src/sink relation. Bail out for now.
282 if (AccSrc.size() != 1 || AccSink.size() != 1) {
283 CanUseDiffCheck = false;
284 return;
286 // If the sink is accessed before src, swap src/sink.
287 if (AccSink[0] < AccSrc[0])
288 std::swap(Src, Sink);
290 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
291 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
292 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
293 SinkAR->getLoop() != DC.getInnermostLoop()) {
294 CanUseDiffCheck = false;
295 return;
298 SmallVector<Instruction *, 4> SrcInsts =
299 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
300 SmallVector<Instruction *, 4> SinkInsts =
301 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
302 Type *SrcTy = getLoadStoreType(SrcInsts[0]);
303 Type *DstTy = getLoadStoreType(SinkInsts[0]);
304 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) {
305 CanUseDiffCheck = false;
306 return;
308 const DataLayout &DL =
309 SinkAR->getLoop()->getHeader()->getModule()->getDataLayout();
310 unsigned AllocSize =
311 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
313 // Only matching constant steps matching the AllocSize are supported at the
314 // moment. This simplifies the difference computation. Can be extended in the
315 // future.
316 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
317 if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
318 Step->getAPInt().abs() != AllocSize) {
319 CanUseDiffCheck = false;
320 return;
323 IntegerType *IntTy =
324 IntegerType::get(Src->PointerValue->getContext(),
325 DL.getPointerSizeInBits(CGI.AddressSpace));
327 // When counting down, the dependence distance needs to be swapped.
328 if (Step->getValue()->isNegative())
329 std::swap(SinkAR, SrcAR);
331 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
332 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
333 if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
334 isa<SCEVCouldNotCompute>(SrcStartInt)) {
335 CanUseDiffCheck = false;
336 return;
339 const Loop *InnerLoop = SrcAR->getLoop();
340 // If the start values for both Src and Sink also vary according to an outer
341 // loop, then it's probably better to avoid creating diff checks because
342 // they may not be hoisted. We should instead let llvm::addRuntimeChecks
343 // do the expanded full range overlap checks, which can be hoisted.
344 if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
345 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
346 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
347 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
348 const Loop *StartARLoop = SrcStartAR->getLoop();
349 if (StartARLoop == SinkStartAR->getLoop() &&
350 StartARLoop == InnerLoop->getParentLoop() &&
351 // If the diff check would already be loop invariant (due to the
352 // recurrences being the same), then we prefer to keep the diff checks
353 // because they are cheaper.
354 SrcStartAR->getStepRecurrence(*SE) !=
355 SinkStartAR->getStepRecurrence(*SE)) {
356 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
357 "cannot be hoisted out of the outer loop\n");
358 CanUseDiffCheck = false;
359 return;
363 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
364 << "SrcStart: " << *SrcStartInt << '\n'
365 << "SinkStartInt: " << *SinkStartInt << '\n');
366 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
367 Src->NeedsFreeze || Sink->NeedsFreeze);
370 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
371 SmallVector<RuntimePointerCheck, 4> Checks;
373 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
374 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
375 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
376 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
378 if (needsChecking(CGI, CGJ)) {
379 tryToCreateDiffCheck(CGI, CGJ);
380 Checks.push_back(std::make_pair(&CGI, &CGJ));
384 return Checks;
387 void RuntimePointerChecking::generateChecks(
388 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
389 assert(Checks.empty() && "Checks is not empty");
390 groupChecks(DepCands, UseDependencies);
391 Checks = generateChecks();
394 bool RuntimePointerChecking::needsChecking(
395 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
396 for (unsigned I = 0, EI = M.Members.size(); EI != I; ++I)
397 for (unsigned J = 0, EJ = N.Members.size(); EJ != J; ++J)
398 if (needsChecking(M.Members[I], N.Members[J]))
399 return true;
400 return false;
403 /// Compare \p I and \p J and return the minimum.
404 /// Return nullptr in case we couldn't find an answer.
405 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
406 ScalarEvolution *SE) {
407 const SCEV *Diff = SE->getMinusSCEV(J, I);
408 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
410 if (!C)
411 return nullptr;
412 if (C->getValue()->isNegative())
413 return J;
414 return I;
417 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
418 RuntimePointerChecking &RtCheck) {
419 return addPointer(
420 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
421 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
422 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
425 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
426 const SCEV *End, unsigned AS,
427 bool NeedsFreeze,
428 ScalarEvolution &SE) {
429 assert(AddressSpace == AS &&
430 "all pointers in a checking group must be in the same address space");
432 // Compare the starts and ends with the known minimum and maximum
433 // of this set. We need to know how we compare against the min/max
434 // of the set in order to be able to emit memchecks.
435 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
436 if (!Min0)
437 return false;
439 const SCEV *Min1 = getMinFromExprs(End, High, &SE);
440 if (!Min1)
441 return false;
443 // Update the low bound expression if we've found a new min value.
444 if (Min0 == Start)
445 Low = Start;
447 // Update the high bound expression if we've found a new max value.
448 if (Min1 != End)
449 High = End;
451 Members.push_back(Index);
452 this->NeedsFreeze |= NeedsFreeze;
453 return true;
456 void RuntimePointerChecking::groupChecks(
457 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
458 // We build the groups from dependency candidates equivalence classes
459 // because:
460 // - We know that pointers in the same equivalence class share
461 // the same underlying object and therefore there is a chance
462 // that we can compare pointers
463 // - We wouldn't be able to merge two pointers for which we need
464 // to emit a memcheck. The classes in DepCands are already
465 // conveniently built such that no two pointers in the same
466 // class need checking against each other.
468 // We use the following (greedy) algorithm to construct the groups
469 // For every pointer in the equivalence class:
470 // For each existing group:
471 // - if the difference between this pointer and the min/max bounds
472 // of the group is a constant, then make the pointer part of the
473 // group and update the min/max bounds of that group as required.
475 CheckingGroups.clear();
477 // If we need to check two pointers to the same underlying object
478 // with a non-constant difference, we shouldn't perform any pointer
479 // grouping with those pointers. This is because we can easily get
480 // into cases where the resulting check would return false, even when
481 // the accesses are safe.
483 // The following example shows this:
484 // for (i = 0; i < 1000; ++i)
485 // a[5000 + i * m] = a[i] + a[i + 9000]
487 // Here grouping gives a check of (5000, 5000 + 1000 * m) against
488 // (0, 10000) which is always false. However, if m is 1, there is no
489 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
490 // us to perform an accurate check in this case.
492 // The above case requires that we have an UnknownDependence between
493 // accesses to the same underlying object. This cannot happen unless
494 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
495 // is also false. In this case we will use the fallback path and create
496 // separate checking groups for all pointers.
498 // If we don't have the dependency partitions, construct a new
499 // checking pointer group for each pointer. This is also required
500 // for correctness, because in this case we can have checking between
501 // pointers to the same underlying object.
502 if (!UseDependencies) {
503 for (unsigned I = 0; I < Pointers.size(); ++I)
504 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
505 return;
508 unsigned TotalComparisons = 0;
510 DenseMap<Value *, SmallVector<unsigned>> PositionMap;
511 for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
512 auto Iter = PositionMap.insert({Pointers[Index].PointerValue, {}});
513 Iter.first->second.push_back(Index);
516 // We need to keep track of what pointers we've already seen so we
517 // don't process them twice.
518 SmallSet<unsigned, 2> Seen;
520 // Go through all equivalence classes, get the "pointer check groups"
521 // and add them to the overall solution. We use the order in which accesses
522 // appear in 'Pointers' to enforce determinism.
523 for (unsigned I = 0; I < Pointers.size(); ++I) {
524 // We've seen this pointer before, and therefore already processed
525 // its equivalence class.
526 if (Seen.count(I))
527 continue;
529 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
530 Pointers[I].IsWritePtr);
532 SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
533 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
535 // Because DepCands is constructed by visiting accesses in the order in
536 // which they appear in alias sets (which is deterministic) and the
537 // iteration order within an equivalence class member is only dependent on
538 // the order in which unions and insertions are performed on the
539 // equivalence class, the iteration order is deterministic.
540 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
541 MI != ME; ++MI) {
542 auto PointerI = PositionMap.find(MI->getPointer());
543 assert(PointerI != PositionMap.end() &&
544 "pointer in equivalence class not found in PositionMap");
545 for (unsigned Pointer : PointerI->second) {
546 bool Merged = false;
547 // Mark this pointer as seen.
548 Seen.insert(Pointer);
550 // Go through all the existing sets and see if we can find one
551 // which can include this pointer.
552 for (RuntimeCheckingPtrGroup &Group : Groups) {
553 // Don't perform more than a certain amount of comparisons.
554 // This should limit the cost of grouping the pointers to something
555 // reasonable. If we do end up hitting this threshold, the algorithm
556 // will create separate groups for all remaining pointers.
557 if (TotalComparisons > MemoryCheckMergeThreshold)
558 break;
560 TotalComparisons++;
562 if (Group.addPointer(Pointer, *this)) {
563 Merged = true;
564 break;
568 if (!Merged)
569 // We couldn't add this pointer to any existing set or the threshold
570 // for the number of comparisons has been reached. Create a new group
571 // to hold the current pointer.
572 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
576 // We've computed the grouped checks for this partition.
577 // Save the results and continue with the next one.
578 llvm::copy(Groups, std::back_inserter(CheckingGroups));
582 bool RuntimePointerChecking::arePointersInSamePartition(
583 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
584 unsigned PtrIdx2) {
585 return (PtrToPartition[PtrIdx1] != -1 &&
586 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
589 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
590 const PointerInfo &PointerI = Pointers[I];
591 const PointerInfo &PointerJ = Pointers[J];
593 // No need to check if two readonly pointers intersect.
594 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
595 return false;
597 // Only need to check pointers between two different dependency sets.
598 if (PointerI.DependencySetId == PointerJ.DependencySetId)
599 return false;
601 // Only need to check pointers in the same alias set.
602 if (PointerI.AliasSetId != PointerJ.AliasSetId)
603 return false;
605 return true;
608 void RuntimePointerChecking::printChecks(
609 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
610 unsigned Depth) const {
611 unsigned N = 0;
612 for (const auto &Check : Checks) {
613 const auto &First = Check.first->Members, &Second = Check.second->Members;
615 OS.indent(Depth) << "Check " << N++ << ":\n";
617 OS.indent(Depth + 2) << "Comparing group (" << Check.first << "):\n";
618 for (unsigned K = 0; K < First.size(); ++K)
619 OS.indent(Depth + 2) << *Pointers[First[K]].PointerValue << "\n";
621 OS.indent(Depth + 2) << "Against group (" << Check.second << "):\n";
622 for (unsigned K = 0; K < Second.size(); ++K)
623 OS.indent(Depth + 2) << *Pointers[Second[K]].PointerValue << "\n";
627 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
629 OS.indent(Depth) << "Run-time memory checks:\n";
630 printChecks(OS, Checks, Depth);
632 OS.indent(Depth) << "Grouped accesses:\n";
633 for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
634 const auto &CG = CheckingGroups[I];
636 OS.indent(Depth + 2) << "Group " << &CG << ":\n";
637 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
638 << ")\n";
639 for (unsigned J = 0; J < CG.Members.size(); ++J) {
640 OS.indent(Depth + 6) << "Member: " << *Pointers[CG.Members[J]].Expr
641 << "\n";
646 namespace {
648 /// Analyses memory accesses in a loop.
650 /// Checks whether run time pointer checks are needed and builds sets for data
651 /// dependence checking.
652 class AccessAnalysis {
653 public:
654 /// Read or write access location.
655 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
656 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
658 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
659 MemoryDepChecker::DepCandidates &DA,
660 PredicatedScalarEvolution &PSE,
661 SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
662 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
663 LoopAliasScopes(LoopAliasScopes) {
664 // We're analyzing dependences across loop iterations.
665 BAA.enableCrossIterationMode();
668 /// Register a load and whether it is only read from.
669 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
670 Value *Ptr = const_cast<Value *>(Loc.Ptr);
671 AST.add(adjustLoc(Loc));
672 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
673 if (IsReadOnly)
674 ReadOnlyPtr.insert(Ptr);
677 /// Register a store.
678 void addStore(MemoryLocation &Loc, Type *AccessTy) {
679 Value *Ptr = const_cast<Value *>(Loc.Ptr);
680 AST.add(adjustLoc(Loc));
681 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
684 /// Check if we can emit a run-time no-alias check for \p Access.
686 /// Returns true if we can emit a run-time no alias check for \p Access.
687 /// If we can check this access, this also adds it to a dependence set and
688 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
689 /// we will attempt to use additional run-time checks in order to get
690 /// the bounds of the pointer.
691 bool createCheckForAccess(RuntimePointerChecking &RtCheck,
692 MemAccessInfo Access, Type *AccessTy,
693 const DenseMap<Value *, const SCEV *> &Strides,
694 DenseMap<Value *, unsigned> &DepSetId,
695 Loop *TheLoop, unsigned &RunningDepId,
696 unsigned ASId, bool ShouldCheckStride, bool Assume);
698 /// Check whether we can check the pointers at runtime for
699 /// non-intersection.
701 /// Returns true if we need no check or if we do and we can generate them
702 /// (i.e. the pointers have computable bounds).
703 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
704 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
705 Value *&UncomputablePtr, bool ShouldCheckWrap = false);
707 /// Goes over all memory accesses, checks whether a RT check is needed
708 /// and builds sets of dependent accesses.
709 void buildDependenceSets() {
710 processMemAccesses();
713 /// Initial processing of memory accesses determined that we need to
714 /// perform dependency checking.
716 /// Note that this can later be cleared if we retry memcheck analysis without
717 /// dependency checking (i.e. FoundNonConstantDistanceDependence).
718 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
720 /// We decided that no dependence analysis would be used. Reset the state.
721 void resetDepChecks(MemoryDepChecker &DepChecker) {
722 CheckDeps.clear();
723 DepChecker.clearDependences();
726 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
728 const DenseMap<Value *, SmallVector<const Value *, 16>> &
729 getUnderlyingObjects() {
730 return UnderlyingObjects;
733 private:
734 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
736 /// Adjust the MemoryLocation so that it represents accesses to this
737 /// location across all iterations, rather than a single one.
738 MemoryLocation adjustLoc(MemoryLocation Loc) const {
739 // The accessed location varies within the loop, but remains within the
740 // underlying object.
741 Loc.Size = LocationSize::beforeOrAfterPointer();
742 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
743 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
744 return Loc;
747 /// Drop alias scopes that are only valid within a single loop iteration.
748 MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
749 if (!ScopeList)
750 return nullptr;
752 // For the sake of simplicity, drop the whole scope list if any scope is
753 // iteration-local.
754 if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
755 return LoopAliasScopes.contains(cast<MDNode>(Scope));
757 return nullptr;
759 return ScopeList;
762 /// Go over all memory access and check whether runtime pointer checks
763 /// are needed and build sets of dependency check candidates.
764 void processMemAccesses();
766 /// Map of all accesses. Values are the types used to access memory pointed to
767 /// by the pointer.
768 PtrAccessMap Accesses;
770 /// The loop being checked.
771 const Loop *TheLoop;
773 /// List of accesses that need a further dependence check.
774 MemAccessInfoList CheckDeps;
776 /// Set of pointers that are read only.
777 SmallPtrSet<Value*, 16> ReadOnlyPtr;
779 /// Batched alias analysis results.
780 BatchAAResults BAA;
782 /// An alias set tracker to partition the access set by underlying object and
783 //intrinsic property (such as TBAA metadata).
784 AliasSetTracker AST;
786 LoopInfo *LI;
788 /// Sets of potentially dependent accesses - members of one set share an
789 /// underlying pointer. The set "CheckDeps" identfies which sets really need a
790 /// dependence check.
791 MemoryDepChecker::DepCandidates &DepCands;
793 /// Initial processing of memory accesses determined that we may need
794 /// to add memchecks. Perform the analysis to determine the necessary checks.
796 /// Note that, this is different from isDependencyCheckNeeded. When we retry
797 /// memcheck analysis without dependency checking
798 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
799 /// cleared while this remains set if we have potentially dependent accesses.
800 bool IsRTCheckAnalysisNeeded = false;
802 /// The SCEV predicate containing all the SCEV-related assumptions.
803 PredicatedScalarEvolution &PSE;
805 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
807 /// Alias scopes that are declared inside the loop, and as such not valid
808 /// across iterations.
809 SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
812 } // end anonymous namespace
814 /// Check whether a pointer can participate in a runtime bounds check.
815 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
816 /// by adding run-time checks (overflow checks) if necessary.
817 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
818 const SCEV *PtrScev, Loop *L, bool Assume) {
819 // The bounds for loop-invariant pointer is trivial.
820 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
821 return true;
823 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
825 if (!AR && Assume)
826 AR = PSE.getAsAddRec(Ptr);
828 if (!AR)
829 return false;
831 return AR->isAffine();
834 /// Check whether a pointer address cannot wrap.
835 static bool isNoWrap(PredicatedScalarEvolution &PSE,
836 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
837 Loop *L) {
838 const SCEV *PtrScev = PSE.getSCEV(Ptr);
839 if (PSE.getSE()->isLoopInvariant(PtrScev, L))
840 return true;
842 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
843 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
844 return true;
846 return false;
849 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
850 function_ref<void(Value *)> AddPointer) {
851 SmallPtrSet<Value *, 8> Visited;
852 SmallVector<Value *> WorkList;
853 WorkList.push_back(StartPtr);
855 while (!WorkList.empty()) {
856 Value *Ptr = WorkList.pop_back_val();
857 if (!Visited.insert(Ptr).second)
858 continue;
859 auto *PN = dyn_cast<PHINode>(Ptr);
860 // SCEV does not look through non-header PHIs inside the loop. Such phis
861 // can be analyzed by adding separate accesses for each incoming pointer
862 // value.
863 if (PN && InnermostLoop.contains(PN->getParent()) &&
864 PN->getParent() != InnermostLoop.getHeader()) {
865 for (const Use &Inc : PN->incoming_values())
866 WorkList.push_back(Inc);
867 } else
868 AddPointer(Ptr);
872 // Walk back through the IR for a pointer, looking for a select like the
873 // following:
875 // %offset = select i1 %cmp, i64 %a, i64 %b
876 // %addr = getelementptr double, double* %base, i64 %offset
877 // %ld = load double, double* %addr, align 8
879 // We won't be able to form a single SCEVAddRecExpr from this since the
880 // address for each loop iteration depends on %cmp. We could potentially
881 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
882 // memory safety/aliasing if needed.
884 // If we encounter some IR we don't yet handle, or something obviously fine
885 // like a constant, then we just add the SCEV for that term to the list passed
886 // in by the caller. If we have a node that may potentially yield a valid
887 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
888 // ourselves before adding to the list.
889 static void findForkedSCEVs(
890 ScalarEvolution *SE, const Loop *L, Value *Ptr,
891 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
892 unsigned Depth) {
893 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
894 // we've exceeded our limit on recursion, just return whatever we have
895 // regardless of whether it can be used for a forked pointer or not, along
896 // with an indication of whether it might be a poison or undef value.
897 const SCEV *Scev = SE->getSCEV(Ptr);
898 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
899 !isa<Instruction>(Ptr) || Depth == 0) {
900 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
901 return;
904 Depth--;
906 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
907 return get<1>(S);
910 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
911 switch (Opcode) {
912 case Instruction::Add:
913 return SE->getAddExpr(L, R);
914 case Instruction::Sub:
915 return SE->getMinusSCEV(L, R);
916 default:
917 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
921 Instruction *I = cast<Instruction>(Ptr);
922 unsigned Opcode = I->getOpcode();
923 switch (Opcode) {
924 case Instruction::GetElementPtr: {
925 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
926 Type *SourceTy = GEP->getSourceElementType();
927 // We only handle base + single offset GEPs here for now.
928 // Not dealing with preexisting gathers yet, so no vectors.
929 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
930 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
931 break;
933 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
934 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
935 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
936 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
938 // See if we need to freeze our fork...
939 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
940 any_of(OffsetScevs, UndefPoisonCheck);
942 // Check that we only have a single fork, on either the base or the offset.
943 // Copy the SCEV across for the one without a fork in order to generate
944 // the full SCEV for both sides of the GEP.
945 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
946 BaseScevs.push_back(BaseScevs[0]);
947 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
948 OffsetScevs.push_back(OffsetScevs[0]);
949 else {
950 ScevList.emplace_back(Scev, NeedsFreeze);
951 break;
954 // Find the pointer type we need to extend to.
955 Type *IntPtrTy = SE->getEffectiveSCEVType(
956 SE->getSCEV(GEP->getPointerOperand())->getType());
958 // Find the size of the type being pointed to. We only have a single
959 // index term (guarded above) so we don't need to index into arrays or
960 // structures, just get the size of the scalar value.
961 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
963 // Scale up the offsets by the size of the type, then add to the bases.
964 const SCEV *Scaled1 = SE->getMulExpr(
965 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
966 const SCEV *Scaled2 = SE->getMulExpr(
967 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
968 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
969 NeedsFreeze);
970 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
971 NeedsFreeze);
972 break;
974 case Instruction::Select: {
975 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
976 // A select means we've found a forked pointer, but we currently only
977 // support a single select per pointer so if there's another behind this
978 // then we just bail out and return the generic SCEV.
979 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
980 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
981 if (ChildScevs.size() == 2) {
982 ScevList.push_back(ChildScevs[0]);
983 ScevList.push_back(ChildScevs[1]);
984 } else
985 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
986 break;
988 case Instruction::PHI: {
989 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
990 // A phi means we've found a forked pointer, but we currently only
991 // support a single phi per pointer so if there's another behind this
992 // then we just bail out and return the generic SCEV.
993 if (I->getNumOperands() == 2) {
994 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
995 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
997 if (ChildScevs.size() == 2) {
998 ScevList.push_back(ChildScevs[0]);
999 ScevList.push_back(ChildScevs[1]);
1000 } else
1001 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1002 break;
1004 case Instruction::Add:
1005 case Instruction::Sub: {
1006 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
1007 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
1008 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1009 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1011 // See if we need to freeze our fork...
1012 bool NeedsFreeze =
1013 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1015 // Check that we only have a single fork, on either the left or right side.
1016 // Copy the SCEV across for the one without a fork in order to generate
1017 // the full SCEV for both sides of the BinOp.
1018 if (LScevs.size() == 2 && RScevs.size() == 1)
1019 RScevs.push_back(RScevs[0]);
1020 else if (RScevs.size() == 2 && LScevs.size() == 1)
1021 LScevs.push_back(LScevs[0]);
1022 else {
1023 ScevList.emplace_back(Scev, NeedsFreeze);
1024 break;
1027 ScevList.emplace_back(
1028 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1029 NeedsFreeze);
1030 ScevList.emplace_back(
1031 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1032 NeedsFreeze);
1033 break;
1035 default:
1036 // Just return the current SCEV if we haven't handled the instruction yet.
1037 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1038 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1039 break;
1043 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1044 findForkedPointer(PredicatedScalarEvolution &PSE,
1045 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1046 const Loop *L) {
1047 ScalarEvolution *SE = PSE.getSE();
1048 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1049 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1050 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1052 // For now, we will only accept a forked pointer with two possible SCEVs
1053 // that are either SCEVAddRecExprs or loop invariant.
1054 if (Scevs.size() == 2 &&
1055 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1056 SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1057 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1058 SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1059 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1060 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1061 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1062 return Scevs;
1065 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1068 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1069 MemAccessInfo Access, Type *AccessTy,
1070 const DenseMap<Value *, const SCEV *> &StridesMap,
1071 DenseMap<Value *, unsigned> &DepSetId,
1072 Loop *TheLoop, unsigned &RunningDepId,
1073 unsigned ASId, bool ShouldCheckWrap,
1074 bool Assume) {
1075 Value *Ptr = Access.getPointer();
1077 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1078 findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1080 for (auto &P : TranslatedPtrs) {
1081 const SCEV *PtrExpr = get<0>(P);
1082 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1083 return false;
1085 // When we run after a failing dependency check we have to make sure
1086 // we don't have wrapping pointers.
1087 if (ShouldCheckWrap) {
1088 // Skip wrap checking when translating pointers.
1089 if (TranslatedPtrs.size() > 1)
1090 return false;
1092 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1093 auto *Expr = PSE.getSCEV(Ptr);
1094 if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1095 return false;
1096 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1099 // If there's only one option for Ptr, look it up after bounds and wrap
1100 // checking, because assumptions might have been added to PSE.
1101 if (TranslatedPtrs.size() == 1)
1102 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1103 false};
1106 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1107 // The id of the dependence set.
1108 unsigned DepId;
1110 if (isDependencyCheckNeeded()) {
1111 Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1112 unsigned &LeaderId = DepSetId[Leader];
1113 if (!LeaderId)
1114 LeaderId = RunningDepId++;
1115 DepId = LeaderId;
1116 } else
1117 // Each access has its own dependence set.
1118 DepId = RunningDepId++;
1120 bool IsWrite = Access.getInt();
1121 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1122 NeedsFreeze);
1123 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1126 return true;
1129 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1130 ScalarEvolution *SE, Loop *TheLoop,
1131 const DenseMap<Value *, const SCEV *> &StridesMap,
1132 Value *&UncomputablePtr, bool ShouldCheckWrap) {
1133 // Find pointers with computable bounds. We are going to use this information
1134 // to place a runtime bound check.
1135 bool CanDoRT = true;
1137 bool MayNeedRTCheck = false;
1138 if (!IsRTCheckAnalysisNeeded) return true;
1140 bool IsDepCheckNeeded = isDependencyCheckNeeded();
1142 // We assign a consecutive id to access from different alias sets.
1143 // Accesses between different groups doesn't need to be checked.
1144 unsigned ASId = 0;
1145 for (auto &AS : AST) {
1146 int NumReadPtrChecks = 0;
1147 int NumWritePtrChecks = 0;
1148 bool CanDoAliasSetRT = true;
1149 ++ASId;
1150 auto ASPointers = AS.getPointers();
1152 // We assign consecutive id to access from different dependence sets.
1153 // Accesses within the same set don't need a runtime check.
1154 unsigned RunningDepId = 1;
1155 DenseMap<Value *, unsigned> DepSetId;
1157 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1159 // First, count how many write and read accesses are in the alias set. Also
1160 // collect MemAccessInfos for later.
1161 SmallVector<MemAccessInfo, 4> AccessInfos;
1162 for (const Value *Ptr_ : ASPointers) {
1163 Value *Ptr = const_cast<Value *>(Ptr_);
1164 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1165 if (IsWrite)
1166 ++NumWritePtrChecks;
1167 else
1168 ++NumReadPtrChecks;
1169 AccessInfos.emplace_back(Ptr, IsWrite);
1172 // We do not need runtime checks for this alias set, if there are no writes
1173 // or a single write and no reads.
1174 if (NumWritePtrChecks == 0 ||
1175 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1176 assert((ASPointers.size() <= 1 ||
1177 all_of(ASPointers,
1178 [this](const Value *Ptr) {
1179 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1180 true);
1181 return DepCands.findValue(AccessWrite) == DepCands.end();
1182 })) &&
1183 "Can only skip updating CanDoRT below, if all entries in AS "
1184 "are reads or there is at most 1 entry");
1185 continue;
1188 for (auto &Access : AccessInfos) {
1189 for (const auto &AccessTy : Accesses[Access]) {
1190 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1191 DepSetId, TheLoop, RunningDepId, ASId,
1192 ShouldCheckWrap, false)) {
1193 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1194 << *Access.getPointer() << '\n');
1195 Retries.push_back({Access, AccessTy});
1196 CanDoAliasSetRT = false;
1201 // Note that this function computes CanDoRT and MayNeedRTCheck
1202 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1203 // we have a pointer for which we couldn't find the bounds but we don't
1204 // actually need to emit any checks so it does not matter.
1206 // We need runtime checks for this alias set, if there are at least 2
1207 // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1208 // any bound checks (because in that case the number of dependence sets is
1209 // incomplete).
1210 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1212 // We need to perform run-time alias checks, but some pointers had bounds
1213 // that couldn't be checked.
1214 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1215 // Reset the CanDoSetRt flag and retry all accesses that have failed.
1216 // We know that we need these checks, so we can now be more aggressive
1217 // and add further checks if required (overflow checks).
1218 CanDoAliasSetRT = true;
1219 for (auto Retry : Retries) {
1220 MemAccessInfo Access = Retry.first;
1221 Type *AccessTy = Retry.second;
1222 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1223 DepSetId, TheLoop, RunningDepId, ASId,
1224 ShouldCheckWrap, /*Assume=*/true)) {
1225 CanDoAliasSetRT = false;
1226 UncomputablePtr = Access.getPointer();
1227 break;
1232 CanDoRT &= CanDoAliasSetRT;
1233 MayNeedRTCheck |= NeedsAliasSetRTCheck;
1234 ++ASId;
1237 // If the pointers that we would use for the bounds comparison have different
1238 // address spaces, assume the values aren't directly comparable, so we can't
1239 // use them for the runtime check. We also have to assume they could
1240 // overlap. In the future there should be metadata for whether address spaces
1241 // are disjoint.
1242 unsigned NumPointers = RtCheck.Pointers.size();
1243 for (unsigned i = 0; i < NumPointers; ++i) {
1244 for (unsigned j = i + 1; j < NumPointers; ++j) {
1245 // Only need to check pointers between two different dependency sets.
1246 if (RtCheck.Pointers[i].DependencySetId ==
1247 RtCheck.Pointers[j].DependencySetId)
1248 continue;
1249 // Only need to check pointers in the same alias set.
1250 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1251 continue;
1253 Value *PtrI = RtCheck.Pointers[i].PointerValue;
1254 Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1256 unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1257 unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1258 if (ASi != ASj) {
1259 LLVM_DEBUG(
1260 dbgs() << "LAA: Runtime check would require comparison between"
1261 " different address spaces\n");
1262 return false;
1267 if (MayNeedRTCheck && CanDoRT)
1268 RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1270 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1271 << " pointer comparisons.\n");
1273 // If we can do run-time checks, but there are no checks, no runtime checks
1274 // are needed. This can happen when all pointers point to the same underlying
1275 // object for example.
1276 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1278 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1279 if (!CanDoRTIfNeeded)
1280 RtCheck.reset();
1281 return CanDoRTIfNeeded;
1284 void AccessAnalysis::processMemAccesses() {
1285 // We process the set twice: first we process read-write pointers, last we
1286 // process read-only pointers. This allows us to skip dependence tests for
1287 // read-only pointers.
1289 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1290 LLVM_DEBUG(dbgs() << " AST: "; AST.dump());
1291 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n");
1292 LLVM_DEBUG({
1293 for (auto A : Accesses)
1294 dbgs() << "\t" << *A.first.getPointer() << " ("
1295 << (A.first.getInt()
1296 ? "write"
1297 : (ReadOnlyPtr.count(A.first.getPointer()) ? "read-only"
1298 : "read"))
1299 << ")\n";
1302 // The AliasSetTracker has nicely partitioned our pointers by metadata
1303 // compatibility and potential for underlying-object overlap. As a result, we
1304 // only need to check for potential pointer dependencies within each alias
1305 // set.
1306 for (const auto &AS : AST) {
1307 // Note that both the alias-set tracker and the alias sets themselves used
1308 // ordered collections internally and so the iteration order here is
1309 // deterministic.
1310 auto ASPointers = AS.getPointers();
1312 bool SetHasWrite = false;
1314 // Map of pointers to last access encountered.
1315 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1316 UnderlyingObjToAccessMap ObjToLastAccess;
1318 // Set of access to check after all writes have been processed.
1319 PtrAccessMap DeferredAccesses;
1321 // Iterate over each alias set twice, once to process read/write pointers,
1322 // and then to process read-only pointers.
1323 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1324 bool UseDeferred = SetIteration > 0;
1325 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1327 for (const Value *Ptr_ : ASPointers) {
1328 Value *Ptr = const_cast<Value *>(Ptr_);
1330 // For a single memory access in AliasSetTracker, Accesses may contain
1331 // both read and write, and they both need to be handled for CheckDeps.
1332 for (const auto &AC : S) {
1333 if (AC.first.getPointer() != Ptr)
1334 continue;
1336 bool IsWrite = AC.first.getInt();
1338 // If we're using the deferred access set, then it contains only
1339 // reads.
1340 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1341 if (UseDeferred && !IsReadOnlyPtr)
1342 continue;
1343 // Otherwise, the pointer must be in the PtrAccessSet, either as a
1344 // read or a write.
1345 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1346 S.count(MemAccessInfo(Ptr, false))) &&
1347 "Alias-set pointer not in the access set?");
1349 MemAccessInfo Access(Ptr, IsWrite);
1350 DepCands.insert(Access);
1352 // Memorize read-only pointers for later processing and skip them in
1353 // the first round (they need to be checked after we have seen all
1354 // write pointers). Note: we also mark pointer that are not
1355 // consecutive as "read-only" pointers (so that we check
1356 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1357 if (!UseDeferred && IsReadOnlyPtr) {
1358 // We only use the pointer keys, the types vector values don't
1359 // matter.
1360 DeferredAccesses.insert({Access, {}});
1361 continue;
1364 // If this is a write - check other reads and writes for conflicts. If
1365 // this is a read only check other writes for conflicts (but only if
1366 // there is no other write to the ptr - this is an optimization to
1367 // catch "a[i] = a[i] + " without having to do a dependence check).
1368 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1369 CheckDeps.push_back(Access);
1370 IsRTCheckAnalysisNeeded = true;
1373 if (IsWrite)
1374 SetHasWrite = true;
1376 // Create sets of pointers connected by a shared alias set and
1377 // underlying object.
1378 typedef SmallVector<const Value *, 16> ValueVector;
1379 ValueVector TempObjects;
1381 UnderlyingObjects[Ptr] = {};
1382 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1383 ::getUnderlyingObjects(Ptr, UOs, LI);
1384 LLVM_DEBUG(dbgs()
1385 << "Underlying objects for pointer " << *Ptr << "\n");
1386 for (const Value *UnderlyingObj : UOs) {
1387 // nullptr never alias, don't join sets for pointer that have "null"
1388 // in their UnderlyingObjects list.
1389 if (isa<ConstantPointerNull>(UnderlyingObj) &&
1390 !NullPointerIsDefined(
1391 TheLoop->getHeader()->getParent(),
1392 UnderlyingObj->getType()->getPointerAddressSpace()))
1393 continue;
1395 UnderlyingObjToAccessMap::iterator Prev =
1396 ObjToLastAccess.find(UnderlyingObj);
1397 if (Prev != ObjToLastAccess.end())
1398 DepCands.unionSets(Access, Prev->second);
1400 ObjToLastAccess[UnderlyingObj] = Access;
1401 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n");
1409 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1410 /// i.e. monotonically increasing/decreasing.
1411 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1412 PredicatedScalarEvolution &PSE, const Loop *L) {
1414 // FIXME: This should probably only return true for NUW.
1415 if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1416 return true;
1418 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1419 return true;
1421 // Scalar evolution does not propagate the non-wrapping flags to values that
1422 // are derived from a non-wrapping induction variable because non-wrapping
1423 // could be flow-sensitive.
1425 // Look through the potentially overflowing instruction to try to prove
1426 // non-wrapping for the *specific* value of Ptr.
1428 // The arithmetic implied by an inbounds GEP can't overflow.
1429 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1430 if (!GEP || !GEP->isInBounds())
1431 return false;
1433 // Make sure there is only one non-const index and analyze that.
1434 Value *NonConstIndex = nullptr;
1435 for (Value *Index : GEP->indices())
1436 if (!isa<ConstantInt>(Index)) {
1437 if (NonConstIndex)
1438 return false;
1439 NonConstIndex = Index;
1441 if (!NonConstIndex)
1442 // The recurrence is on the pointer, ignore for now.
1443 return false;
1445 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
1446 // AddRec using a NSW operation.
1447 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1448 if (OBO->hasNoSignedWrap() &&
1449 // Assume constant for other the operand so that the AddRec can be
1450 // easily found.
1451 isa<ConstantInt>(OBO->getOperand(1))) {
1452 auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1454 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1455 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1458 return false;
1461 /// Check whether the access through \p Ptr has a constant stride.
1462 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
1463 Type *AccessTy, Value *Ptr,
1464 const Loop *Lp,
1465 const DenseMap<Value *, const SCEV *> &StridesMap,
1466 bool Assume, bool ShouldCheckWrap) {
1467 Type *Ty = Ptr->getType();
1468 assert(Ty->isPointerTy() && "Unexpected non-ptr");
1470 if (isa<ScalableVectorType>(AccessTy)) {
1471 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1472 << "\n");
1473 return std::nullopt;
1476 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1478 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1479 if (Assume && !AR)
1480 AR = PSE.getAsAddRec(Ptr);
1482 if (!AR) {
1483 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1484 << " SCEV: " << *PtrScev << "\n");
1485 return std::nullopt;
1488 // The access function must stride over the innermost loop.
1489 if (Lp != AR->getLoop()) {
1490 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1491 << *Ptr << " SCEV: " << *AR << "\n");
1492 return std::nullopt;
1495 // Check the step is constant.
1496 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1498 // Calculate the pointer stride and check if it is constant.
1499 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1500 if (!C) {
1501 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1502 << " SCEV: " << *AR << "\n");
1503 return std::nullopt;
1506 auto &DL = Lp->getHeader()->getModule()->getDataLayout();
1507 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1508 int64_t Size = AllocSize.getFixedValue();
1509 const APInt &APStepVal = C->getAPInt();
1511 // Huge step value - give up.
1512 if (APStepVal.getBitWidth() > 64)
1513 return std::nullopt;
1515 int64_t StepVal = APStepVal.getSExtValue();
1517 // Strided access.
1518 int64_t Stride = StepVal / Size;
1519 int64_t Rem = StepVal % Size;
1520 if (Rem)
1521 return std::nullopt;
1523 if (!ShouldCheckWrap)
1524 return Stride;
1526 // The address calculation must not wrap. Otherwise, a dependence could be
1527 // inverted.
1528 if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1529 return Stride;
1531 // An inbounds getelementptr that is a AddRec with a unit stride
1532 // cannot wrap per definition. If it did, the result would be poison
1533 // and any memory access dependent on it would be immediate UB
1534 // when executed.
1535 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1536 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
1537 return Stride;
1539 // If the null pointer is undefined, then a access sequence which would
1540 // otherwise access it can be assumed not to unsigned wrap. Note that this
1541 // assumes the object in memory is aligned to the natural alignment.
1542 unsigned AddrSpace = Ty->getPointerAddressSpace();
1543 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1544 (Stride == 1 || Stride == -1))
1545 return Stride;
1547 if (Assume) {
1548 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1549 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1550 << "LAA: Pointer: " << *Ptr << "\n"
1551 << "LAA: SCEV: " << *AR << "\n"
1552 << "LAA: Added an overflow assumption\n");
1553 return Stride;
1555 LLVM_DEBUG(
1556 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1557 << *Ptr << " SCEV: " << *AR << "\n");
1558 return std::nullopt;
1561 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1562 Type *ElemTyB, Value *PtrB,
1563 const DataLayout &DL,
1564 ScalarEvolution &SE, bool StrictCheck,
1565 bool CheckType) {
1566 assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1568 // Make sure that A and B are different pointers.
1569 if (PtrA == PtrB)
1570 return 0;
1572 // Make sure that the element types are the same if required.
1573 if (CheckType && ElemTyA != ElemTyB)
1574 return std::nullopt;
1576 unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1577 unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1579 // Check that the address spaces match.
1580 if (ASA != ASB)
1581 return std::nullopt;
1582 unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1584 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1585 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1586 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1588 int Val;
1589 if (PtrA1 == PtrB1) {
1590 // Retrieve the address space again as pointer stripping now tracks through
1591 // `addrspacecast`.
1592 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1593 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1594 // Check that the address spaces match and that the pointers are valid.
1595 if (ASA != ASB)
1596 return std::nullopt;
1598 IdxWidth = DL.getIndexSizeInBits(ASA);
1599 OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1600 OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1602 OffsetB -= OffsetA;
1603 Val = OffsetB.getSExtValue();
1604 } else {
1605 // Otherwise compute the distance with SCEV between the base pointers.
1606 const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1607 const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1608 const auto *Diff =
1609 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1610 if (!Diff)
1611 return std::nullopt;
1612 Val = Diff->getAPInt().getSExtValue();
1614 int Size = DL.getTypeStoreSize(ElemTyA);
1615 int Dist = Val / Size;
1617 // Ensure that the calculated distance matches the type-based one after all
1618 // the bitcasts removal in the provided pointers.
1619 if (!StrictCheck || Dist * Size == Val)
1620 return Dist;
1621 return std::nullopt;
1624 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1625 const DataLayout &DL, ScalarEvolution &SE,
1626 SmallVectorImpl<unsigned> &SortedIndices) {
1627 assert(llvm::all_of(
1628 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1629 "Expected list of pointer operands.");
1630 // Walk over the pointers, and map each of them to an offset relative to
1631 // first pointer in the array.
1632 Value *Ptr0 = VL[0];
1634 using DistOrdPair = std::pair<int64_t, int>;
1635 auto Compare = llvm::less_first();
1636 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1637 Offsets.emplace(0, 0);
1638 int Cnt = 1;
1639 bool IsConsecutive = true;
1640 for (auto *Ptr : VL.drop_front()) {
1641 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1642 /*StrictCheck=*/true);
1643 if (!Diff)
1644 return false;
1646 // Check if the pointer with the same offset is found.
1647 int64_t Offset = *Diff;
1648 auto Res = Offsets.emplace(Offset, Cnt);
1649 if (!Res.second)
1650 return false;
1651 // Consecutive order if the inserted element is the last one.
1652 IsConsecutive = IsConsecutive && std::next(Res.first) == Offsets.end();
1653 ++Cnt;
1655 SortedIndices.clear();
1656 if (!IsConsecutive) {
1657 // Fill SortedIndices array only if it is non-consecutive.
1658 SortedIndices.resize(VL.size());
1659 Cnt = 0;
1660 for (const std::pair<int64_t, int> &Pair : Offsets) {
1661 SortedIndices[Cnt] = Pair.second;
1662 ++Cnt;
1665 return true;
1668 /// Returns true if the memory operations \p A and \p B are consecutive.
1669 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1670 ScalarEvolution &SE, bool CheckType) {
1671 Value *PtrA = getLoadStorePointerOperand(A);
1672 Value *PtrB = getLoadStorePointerOperand(B);
1673 if (!PtrA || !PtrB)
1674 return false;
1675 Type *ElemTyA = getLoadStoreType(A);
1676 Type *ElemTyB = getLoadStoreType(B);
1677 std::optional<int> Diff =
1678 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1679 /*StrictCheck=*/true, CheckType);
1680 return Diff && *Diff == 1;
1683 void MemoryDepChecker::addAccess(StoreInst *SI) {
1684 visitPointers(SI->getPointerOperand(), *InnermostLoop,
1685 [this, SI](Value *Ptr) {
1686 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1687 InstMap.push_back(SI);
1688 ++AccessIdx;
1692 void MemoryDepChecker::addAccess(LoadInst *LI) {
1693 visitPointers(LI->getPointerOperand(), *InnermostLoop,
1694 [this, LI](Value *Ptr) {
1695 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1696 InstMap.push_back(LI);
1697 ++AccessIdx;
1701 MemoryDepChecker::VectorizationSafetyStatus
1702 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1703 switch (Type) {
1704 case NoDep:
1705 case Forward:
1706 case BackwardVectorizable:
1707 return VectorizationSafetyStatus::Safe;
1709 case Unknown:
1710 return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1711 case ForwardButPreventsForwarding:
1712 case Backward:
1713 case BackwardVectorizableButPreventsForwarding:
1714 case IndirectUnsafe:
1715 return VectorizationSafetyStatus::Unsafe;
1717 llvm_unreachable("unexpected DepType!");
1720 bool MemoryDepChecker::Dependence::isBackward() const {
1721 switch (Type) {
1722 case NoDep:
1723 case Forward:
1724 case ForwardButPreventsForwarding:
1725 case Unknown:
1726 case IndirectUnsafe:
1727 return false;
1729 case BackwardVectorizable:
1730 case Backward:
1731 case BackwardVectorizableButPreventsForwarding:
1732 return true;
1734 llvm_unreachable("unexpected DepType!");
1737 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1738 return isBackward() || Type == Unknown;
1741 bool MemoryDepChecker::Dependence::isForward() const {
1742 switch (Type) {
1743 case Forward:
1744 case ForwardButPreventsForwarding:
1745 return true;
1747 case NoDep:
1748 case Unknown:
1749 case BackwardVectorizable:
1750 case Backward:
1751 case BackwardVectorizableButPreventsForwarding:
1752 case IndirectUnsafe:
1753 return false;
1755 llvm_unreachable("unexpected DepType!");
1758 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1759 uint64_t TypeByteSize) {
1760 // If loads occur at a distance that is not a multiple of a feasible vector
1761 // factor store-load forwarding does not take place.
1762 // Positive dependences might cause troubles because vectorizing them might
1763 // prevent store-load forwarding making vectorized code run a lot slower.
1764 // a[i] = a[i-3] ^ a[i-8];
1765 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1766 // hence on your typical architecture store-load forwarding does not take
1767 // place. Vectorizing in such cases does not make sense.
1768 // Store-load forwarding distance.
1770 // After this many iterations store-to-load forwarding conflicts should not
1771 // cause any slowdowns.
1772 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1773 // Maximum vector factor.
1774 uint64_t MaxVFWithoutSLForwardIssues = std::min(
1775 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1777 // Compute the smallest VF at which the store and load would be misaligned.
1778 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1779 VF *= 2) {
1780 // If the number of vector iteration between the store and the load are
1781 // small we could incur conflicts.
1782 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1783 MaxVFWithoutSLForwardIssues = (VF >> 1);
1784 break;
1788 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1789 LLVM_DEBUG(
1790 dbgs() << "LAA: Distance " << Distance
1791 << " that could cause a store-load forwarding conflict\n");
1792 return true;
1795 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1796 MaxVFWithoutSLForwardIssues !=
1797 VectorizerParams::MaxVectorWidth * TypeByteSize)
1798 MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1799 return false;
1802 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1803 if (Status < S)
1804 Status = S;
1807 /// Given a dependence-distance \p Dist between two
1808 /// memory accesses, that have the same stride whose absolute value is given
1809 /// in \p Stride, and that have the same type size \p TypeByteSize,
1810 /// in a loop whose takenCount is \p BackedgeTakenCount, check if it is
1811 /// possible to prove statically that the dependence distance is larger
1812 /// than the range that the accesses will travel through the execution of
1813 /// the loop. If so, return true; false otherwise. This is useful for
1814 /// example in loops such as the following (PR31098):
1815 /// for (i = 0; i < D; ++i) {
1816 /// = out[i];
1817 /// out[i+D] =
1818 /// }
1819 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1820 const SCEV &BackedgeTakenCount,
1821 const SCEV &Dist, uint64_t Stride,
1822 uint64_t TypeByteSize) {
1824 // If we can prove that
1825 // (**) |Dist| > BackedgeTakenCount * Step
1826 // where Step is the absolute stride of the memory accesses in bytes,
1827 // then there is no dependence.
1829 // Rationale:
1830 // We basically want to check if the absolute distance (|Dist/Step|)
1831 // is >= the loop iteration count (or > BackedgeTakenCount).
1832 // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1833 // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1834 // that the dependence distance is >= VF; This is checked elsewhere.
1835 // But in some cases we can prune dependence distances early, and
1836 // even before selecting the VF, and without a runtime test, by comparing
1837 // the distance against the loop iteration count. Since the vectorized code
1838 // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1839 // also guarantees that distance >= VF.
1841 const uint64_t ByteStride = Stride * TypeByteSize;
1842 const SCEV *Step = SE.getConstant(BackedgeTakenCount.getType(), ByteStride);
1843 const SCEV *Product = SE.getMulExpr(&BackedgeTakenCount, Step);
1845 const SCEV *CastedDist = &Dist;
1846 const SCEV *CastedProduct = Product;
1847 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1848 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1850 // The dependence distance can be positive/negative, so we sign extend Dist;
1851 // The multiplication of the absolute stride in bytes and the
1852 // backedgeTakenCount is non-negative, so we zero extend Product.
1853 if (DistTypeSizeBits > ProductTypeSizeBits)
1854 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1855 else
1856 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1858 // Is Dist - (BackedgeTakenCount * Step) > 0 ?
1859 // (If so, then we have proven (**) because |Dist| >= Dist)
1860 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1861 if (SE.isKnownPositive(Minus))
1862 return true;
1864 // Second try: Is -Dist - (BackedgeTakenCount * Step) > 0 ?
1865 // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1866 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1867 Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1868 if (SE.isKnownPositive(Minus))
1869 return true;
1871 return false;
1874 /// Check the dependence for two accesses with the same stride \p Stride.
1875 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1876 /// bytes.
1878 /// \returns true if they are independent.
1879 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1880 uint64_t TypeByteSize) {
1881 assert(Stride > 1 && "The stride must be greater than 1");
1882 assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1883 assert(Distance > 0 && "The distance must be non-zero");
1885 // Skip if the distance is not multiple of type byte size.
1886 if (Distance % TypeByteSize)
1887 return false;
1889 uint64_t ScaledDist = Distance / TypeByteSize;
1891 // No dependence if the scaled distance is not multiple of the stride.
1892 // E.g.
1893 // for (i = 0; i < 1024 ; i += 4)
1894 // A[i+2] = A[i] + 1;
1896 // Two accesses in memory (scaled distance is 2, stride is 4):
1897 // | A[0] | | | | A[4] | | | |
1898 // | | | A[2] | | | | A[6] | |
1900 // E.g.
1901 // for (i = 0; i < 1024 ; i += 3)
1902 // A[i+4] = A[i] + 1;
1904 // Two accesses in memory (scaled distance is 4, stride is 3):
1905 // | A[0] | | | A[3] | | | A[6] | | |
1906 // | | | | | A[4] | | | A[7] | |
1907 return ScaledDist % Stride;
1910 /// Returns true if any of the underlying objects has a loop varying address,
1911 /// i.e. may change in \p L.
1912 static bool
1913 isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects,
1914 ScalarEvolution &SE, const Loop *L) {
1915 return any_of(UnderlyingObjects, [&SE, L](const Value *UO) {
1916 return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L);
1920 // Get the dependence distance, stride, type size in whether i is a write for
1921 // the dependence between A and B. Returns a DepType, if we can prove there's
1922 // no dependence or the analysis fails. Outlined to lambda to limit he scope
1923 // of various temporary variables, like A/BPtr, StrideA/BPtr and others.
1924 // Returns either the dependence result, if it could already be determined, or a
1925 // tuple with (Distance, Stride, TypeSize, AIsWrite, BIsWrite).
1926 static std::variant<MemoryDepChecker::Dependence::DepType,
1927 std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>>
1928 getDependenceDistanceStrideAndSize(
1929 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1930 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst,
1931 const DenseMap<Value *, const SCEV *> &Strides,
1932 const DenseMap<Value *, SmallVector<const Value *, 16>> &UnderlyingObjects,
1933 PredicatedScalarEvolution &PSE, const Loop *InnermostLoop) {
1934 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
1935 auto &SE = *PSE.getSE();
1936 auto [APtr, AIsWrite] = A;
1937 auto [BPtr, BIsWrite] = B;
1939 // Two reads are independent.
1940 if (!AIsWrite && !BIsWrite)
1941 return MemoryDepChecker::Dependence::NoDep;
1943 Type *ATy = getLoadStoreType(AInst);
1944 Type *BTy = getLoadStoreType(BInst);
1946 // We cannot check pointers in different address spaces.
1947 if (APtr->getType()->getPointerAddressSpace() !=
1948 BPtr->getType()->getPointerAddressSpace())
1949 return MemoryDepChecker::Dependence::Unknown;
1951 int64_t StrideAPtr =
1952 getPtrStride(PSE, ATy, APtr, InnermostLoop, Strides, true).value_or(0);
1953 int64_t StrideBPtr =
1954 getPtrStride(PSE, BTy, BPtr, InnermostLoop, Strides, true).value_or(0);
1956 const SCEV *Src = PSE.getSCEV(APtr);
1957 const SCEV *Sink = PSE.getSCEV(BPtr);
1959 // If the induction step is negative we have to invert source and sink of the
1960 // dependence when measuring the distance between them. We should not swap
1961 // AIsWrite with BIsWrite, as their uses expect them in program order.
1962 if (StrideAPtr < 0) {
1963 std::swap(Src, Sink);
1964 std::swap(AInst, BInst);
1967 const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1969 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1970 << "(Induction step: " << StrideAPtr << ")\n");
1971 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1972 << ": " << *Dist << "\n");
1974 // Needs accesses where the addresses of the accessed underlying objects do
1975 // not change within the loop.
1976 if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE,
1977 InnermostLoop) ||
1978 isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE,
1979 InnermostLoop))
1980 return MemoryDepChecker::Dependence::IndirectUnsafe;
1982 // Need accesses with constant stride. We don't want to vectorize
1983 // "A[B[i]] += ..." and similar code or pointer arithmetic that could wrap
1984 // in the address space.
1985 if (!StrideAPtr || !StrideBPtr || StrideAPtr != StrideBPtr) {
1986 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1987 return MemoryDepChecker::Dependence::Unknown;
1990 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1991 bool HasSameSize =
1992 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1993 if (!HasSameSize)
1994 TypeByteSize = 0;
1995 uint64_t Stride = std::abs(StrideAPtr);
1996 return std::make_tuple(Dist, Stride, TypeByteSize, AIsWrite, BIsWrite);
1999 MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent(
2000 const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
2001 unsigned BIdx, const DenseMap<Value *, const SCEV *> &Strides,
2002 const DenseMap<Value *, SmallVector<const Value *, 16>>
2003 &UnderlyingObjects) {
2004 assert(AIdx < BIdx && "Must pass arguments in program order");
2006 // Get the dependence distance, stride, type size and what access writes for
2007 // the dependence between A and B.
2008 auto Res = getDependenceDistanceStrideAndSize(
2009 A, InstMap[AIdx], B, InstMap[BIdx], Strides, UnderlyingObjects, PSE,
2010 InnermostLoop);
2011 if (std::holds_alternative<Dependence::DepType>(Res))
2012 return std::get<Dependence::DepType>(Res);
2014 const auto &[Dist, Stride, TypeByteSize, AIsWrite, BIsWrite] =
2015 std::get<std::tuple<const SCEV *, uint64_t, uint64_t, bool, bool>>(Res);
2016 bool HasSameSize = TypeByteSize > 0;
2018 ScalarEvolution &SE = *PSE.getSE();
2019 auto &DL = InnermostLoop->getHeader()->getModule()->getDataLayout();
2020 if (!isa<SCEVCouldNotCompute>(Dist) && HasSameSize &&
2021 isSafeDependenceDistance(DL, SE, *(PSE.getBackedgeTakenCount()), *Dist,
2022 Stride, TypeByteSize))
2023 return Dependence::NoDep;
2025 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
2026 if (!C) {
2027 LLVM_DEBUG(dbgs() << "LAA: Dependence because of non-constant distance\n");
2028 FoundNonConstantDistanceDependence = true;
2029 return Dependence::Unknown;
2032 const APInt &Val = C->getAPInt();
2033 int64_t Distance = Val.getSExtValue();
2035 // Attempt to prove strided accesses independent.
2036 if (std::abs(Distance) > 0 && Stride > 1 && HasSameSize &&
2037 areStridedAccessesIndependent(std::abs(Distance), Stride, TypeByteSize)) {
2038 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2039 return Dependence::NoDep;
2042 // Negative distances are not plausible dependencies.
2043 if (Val.isNegative()) {
2044 bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2045 // There is no need to update MaxSafeVectorWidthInBits after call to
2046 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes,
2047 // since a forward dependency will allow vectorization using any width.
2048 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2049 (!HasSameSize || couldPreventStoreLoadForward(Val.abs().getZExtValue(),
2050 TypeByteSize))) {
2051 LLVM_DEBUG(dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2052 return Dependence::ForwardButPreventsForwarding;
2055 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2056 return Dependence::Forward;
2059 // Write to the same location with the same size.
2060 if (Val == 0) {
2061 if (HasSameSize)
2062 return Dependence::Forward;
2063 LLVM_DEBUG(
2064 dbgs() << "LAA: Zero dependence difference but different type sizes\n");
2065 return Dependence::Unknown;
2068 assert(Val.isStrictlyPositive() && "Expect a positive value");
2070 if (!HasSameSize) {
2071 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2072 "different type sizes\n");
2073 return Dependence::Unknown;
2076 // Bail out early if passed-in parameters make vectorization not feasible.
2077 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2078 VectorizerParams::VectorizationFactor : 1);
2079 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2080 VectorizerParams::VectorizationInterleave : 1);
2081 // The minimum number of iterations for a vectorized/unrolled version.
2082 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2084 // It's not vectorizable if the distance is smaller than the minimum distance
2085 // needed for a vectroized/unrolled version. Vectorizing one iteration in
2086 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2087 // TypeByteSize (No need to plus the last gap distance).
2089 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2090 // foo(int *A) {
2091 // int *B = (int *)((char *)A + 14);
2092 // for (i = 0 ; i < 1024 ; i += 2)
2093 // B[i] = A[i] + 1;
2094 // }
2096 // Two accesses in memory (stride is 2):
2097 // | A[0] | | A[2] | | A[4] | | A[6] | |
2098 // | B[0] | | B[2] | | B[4] |
2100 // Distance needs for vectorizing iterations except the last iteration:
2101 // 4 * 2 * (MinNumIter - 1). Distance needs for the last iteration: 4.
2102 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2104 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2105 // 12, which is less than distance.
2107 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2108 // the minimum distance needed is 28, which is greater than distance. It is
2109 // not safe to do vectorization.
2110 uint64_t MinDistanceNeeded =
2111 TypeByteSize * Stride * (MinNumIter - 1) + TypeByteSize;
2112 if (MinDistanceNeeded > static_cast<uint64_t>(Distance)) {
2113 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive distance "
2114 << Distance << '\n');
2115 return Dependence::Backward;
2118 // Unsafe if the minimum distance needed is greater than smallest dependence
2119 // distance distance.
2120 if (MinDistanceNeeded > MinDepDistBytes) {
2121 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2122 << MinDistanceNeeded << " size in bytes\n");
2123 return Dependence::Backward;
2126 // Positive distance bigger than max vectorization factor.
2127 // FIXME: Should use max factor instead of max distance in bytes, which could
2128 // not handle different types.
2129 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2130 // void foo (int *A, char *B) {
2131 // for (unsigned i = 0; i < 1024; i++) {
2132 // A[i+2] = A[i] + 1;
2133 // B[i+2] = B[i] + 1;
2134 // }
2135 // }
2137 // This case is currently unsafe according to the max safe distance. If we
2138 // analyze the two accesses on array B, the max safe dependence distance
2139 // is 2. Then we analyze the accesses on array A, the minimum distance needed
2140 // is 8, which is less than 2 and forbidden vectorization, But actually
2141 // both A and B could be vectorized by 2 iterations.
2142 MinDepDistBytes =
2143 std::min(static_cast<uint64_t>(Distance), MinDepDistBytes);
2145 bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2146 uint64_t MinDepDistBytesOld = MinDepDistBytes;
2147 if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2148 couldPreventStoreLoadForward(Distance, TypeByteSize)) {
2149 // Sanity check that we didn't update MinDepDistBytes when calling
2150 // couldPreventStoreLoadForward
2151 assert(MinDepDistBytes == MinDepDistBytesOld &&
2152 "An update to MinDepDistBytes requires an update to "
2153 "MaxSafeVectorWidthInBits");
2154 (void)MinDepDistBytesOld;
2155 return Dependence::BackwardVectorizableButPreventsForwarding;
2158 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2159 // since there is a backwards dependency.
2160 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * Stride);
2161 LLVM_DEBUG(dbgs() << "LAA: Positive distance " << Val.getSExtValue()
2162 << " with max VF = " << MaxVF << '\n');
2163 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2164 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2165 return Dependence::BackwardVectorizable;
2168 bool MemoryDepChecker::areDepsSafe(
2169 DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
2170 const DenseMap<Value *, const SCEV *> &Strides,
2171 const DenseMap<Value *, SmallVector<const Value *, 16>>
2172 &UnderlyingObjects) {
2174 MinDepDistBytes = -1;
2175 SmallPtrSet<MemAccessInfo, 8> Visited;
2176 for (MemAccessInfo CurAccess : CheckDeps) {
2177 if (Visited.count(CurAccess))
2178 continue;
2180 // Get the relevant memory access set.
2181 EquivalenceClasses<MemAccessInfo>::iterator I =
2182 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2184 // Check accesses within this set.
2185 EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2186 AccessSets.member_begin(I);
2187 EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2188 AccessSets.member_end();
2190 // Check every access pair.
2191 while (AI != AE) {
2192 Visited.insert(*AI);
2193 bool AIIsWrite = AI->getInt();
2194 // Check loads only against next equivalent class, but stores also against
2195 // other stores in the same equivalence class - to the same address.
2196 EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2197 (AIIsWrite ? AI : std::next(AI));
2198 while (OI != AE) {
2199 // Check every accessing instruction pair in program order.
2200 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2201 I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2202 // Scan all accesses of another equivalence class, but only the next
2203 // accesses of the same equivalent class.
2204 for (std::vector<unsigned>::iterator
2205 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2206 I2E = (OI == AI ? I1E : Accesses[*OI].end());
2207 I2 != I2E; ++I2) {
2208 auto A = std::make_pair(&*AI, *I1);
2209 auto B = std::make_pair(&*OI, *I2);
2211 assert(*I1 != *I2);
2212 if (*I1 > *I2)
2213 std::swap(A, B);
2215 Dependence::DepType Type =
2216 isDependent(*A.first, A.second, *B.first, B.second, Strides,
2217 UnderlyingObjects);
2218 mergeInStatus(Dependence::isSafeForVectorization(Type));
2220 // Gather dependences unless we accumulated MaxDependences
2221 // dependences. In that case return as soon as we find the first
2222 // unsafe dependence. This puts a limit on this quadratic
2223 // algorithm.
2224 if (RecordDependences) {
2225 if (Type != Dependence::NoDep)
2226 Dependences.push_back(Dependence(A.second, B.second, Type));
2228 if (Dependences.size() >= MaxDependences) {
2229 RecordDependences = false;
2230 Dependences.clear();
2231 LLVM_DEBUG(dbgs()
2232 << "Too many dependences, stopped recording\n");
2235 if (!RecordDependences && !isSafeForVectorization())
2236 return false;
2238 ++OI;
2240 AI++;
2244 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2245 return isSafeForVectorization();
2248 SmallVector<Instruction *, 4>
2249 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool isWrite) const {
2250 MemAccessInfo Access(Ptr, isWrite);
2251 auto &IndexVector = Accesses.find(Access)->second;
2253 SmallVector<Instruction *, 4> Insts;
2254 transform(IndexVector,
2255 std::back_inserter(Insts),
2256 [&](unsigned Idx) { return this->InstMap[Idx]; });
2257 return Insts;
2260 const char *MemoryDepChecker::Dependence::DepName[] = {
2261 "NoDep",
2262 "Unknown",
2263 "IndidrectUnsafe",
2264 "Forward",
2265 "ForwardButPreventsForwarding",
2266 "Backward",
2267 "BackwardVectorizable",
2268 "BackwardVectorizableButPreventsForwarding"};
2270 void MemoryDepChecker::Dependence::print(
2271 raw_ostream &OS, unsigned Depth,
2272 const SmallVectorImpl<Instruction *> &Instrs) const {
2273 OS.indent(Depth) << DepName[Type] << ":\n";
2274 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2275 OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2278 bool LoopAccessInfo::canAnalyzeLoop() {
2279 // We need to have a loop header.
2280 LLVM_DEBUG(dbgs() << "LAA: Found a loop in "
2281 << TheLoop->getHeader()->getParent()->getName() << ": "
2282 << TheLoop->getHeader()->getName() << '\n');
2284 // We can only analyze innermost loops.
2285 if (!TheLoop->isInnermost()) {
2286 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2287 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2288 return false;
2291 // We must have a single backedge.
2292 if (TheLoop->getNumBackEdges() != 1) {
2293 LLVM_DEBUG(
2294 dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2295 recordAnalysis("CFGNotUnderstood")
2296 << "loop control flow is not understood by analyzer";
2297 return false;
2300 // ScalarEvolution needs to be able to find the exit count.
2301 const SCEV *ExitCount = PSE->getBackedgeTakenCount();
2302 if (isa<SCEVCouldNotCompute>(ExitCount)) {
2303 recordAnalysis("CantComputeNumberOfIterations")
2304 << "could not determine number of loop iterations";
2305 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2306 return false;
2309 return true;
2312 void LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2313 const TargetLibraryInfo *TLI,
2314 DominatorTree *DT) {
2315 // Holds the Load and Store instructions.
2316 SmallVector<LoadInst *, 16> Loads;
2317 SmallVector<StoreInst *, 16> Stores;
2318 SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2320 // Holds all the different accesses in the loop.
2321 unsigned NumReads = 0;
2322 unsigned NumReadWrites = 0;
2324 bool HasComplexMemInst = false;
2326 // A runtime check is only legal to insert if there are no convergent calls.
2327 HasConvergentOp = false;
2329 PtrRtChecking->Pointers.clear();
2330 PtrRtChecking->Need = false;
2332 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2334 const bool EnableMemAccessVersioningOfLoop =
2335 EnableMemAccessVersioning &&
2336 !TheLoop->getHeader()->getParent()->hasOptSize();
2338 // Traverse blocks in fixed RPOT order, regardless of their storage in the
2339 // loop info, as it may be arbitrary.
2340 LoopBlocksRPO RPOT(TheLoop);
2341 RPOT.perform(LI);
2342 for (BasicBlock *BB : RPOT) {
2343 // Scan the BB and collect legal loads and stores. Also detect any
2344 // convergent instructions.
2345 for (Instruction &I : *BB) {
2346 if (auto *Call = dyn_cast<CallBase>(&I)) {
2347 if (Call->isConvergent())
2348 HasConvergentOp = true;
2351 // With both a non-vectorizable memory instruction and a convergent
2352 // operation, found in this loop, no reason to continue the search.
2353 if (HasComplexMemInst && HasConvergentOp) {
2354 CanVecMem = false;
2355 return;
2358 // Avoid hitting recordAnalysis multiple times.
2359 if (HasComplexMemInst)
2360 continue;
2362 // Record alias scopes defined inside the loop.
2363 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2364 for (Metadata *Op : Decl->getScopeList()->operands())
2365 LoopAliasScopes.insert(cast<MDNode>(Op));
2367 // Many math library functions read the rounding mode. We will only
2368 // vectorize a loop if it contains known function calls that don't set
2369 // the flag. Therefore, it is safe to ignore this read from memory.
2370 auto *Call = dyn_cast<CallInst>(&I);
2371 if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2372 continue;
2374 // If this is a load, save it. If this instruction can read from memory
2375 // but is not a load, then we quit. Notice that we don't handle function
2376 // calls that read or write.
2377 if (I.mayReadFromMemory()) {
2378 // If the function has an explicit vectorized counterpart, we can safely
2379 // assume that it can be vectorized.
2380 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2381 !VFDatabase::getMappings(*Call).empty())
2382 continue;
2384 auto *Ld = dyn_cast<LoadInst>(&I);
2385 if (!Ld) {
2386 recordAnalysis("CantVectorizeInstruction", Ld)
2387 << "instruction cannot be vectorized";
2388 HasComplexMemInst = true;
2389 continue;
2391 if (!Ld->isSimple() && !IsAnnotatedParallel) {
2392 recordAnalysis("NonSimpleLoad", Ld)
2393 << "read with atomic ordering or volatile read";
2394 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2395 HasComplexMemInst = true;
2396 continue;
2398 NumLoads++;
2399 Loads.push_back(Ld);
2400 DepChecker->addAccess(Ld);
2401 if (EnableMemAccessVersioningOfLoop)
2402 collectStridedAccess(Ld);
2403 continue;
2406 // Save 'store' instructions. Abort if other instructions write to memory.
2407 if (I.mayWriteToMemory()) {
2408 auto *St = dyn_cast<StoreInst>(&I);
2409 if (!St) {
2410 recordAnalysis("CantVectorizeInstruction", St)
2411 << "instruction cannot be vectorized";
2412 HasComplexMemInst = true;
2413 continue;
2415 if (!St->isSimple() && !IsAnnotatedParallel) {
2416 recordAnalysis("NonSimpleStore", St)
2417 << "write with atomic ordering or volatile write";
2418 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2419 HasComplexMemInst = true;
2420 continue;
2422 NumStores++;
2423 Stores.push_back(St);
2424 DepChecker->addAccess(St);
2425 if (EnableMemAccessVersioningOfLoop)
2426 collectStridedAccess(St);
2428 } // Next instr.
2429 } // Next block.
2431 if (HasComplexMemInst) {
2432 CanVecMem = false;
2433 return;
2436 // Now we have two lists that hold the loads and the stores.
2437 // Next, we find the pointers that they use.
2439 // Check if we see any stores. If there are no stores, then we don't
2440 // care if the pointers are *restrict*.
2441 if (!Stores.size()) {
2442 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2443 CanVecMem = true;
2444 return;
2447 MemoryDepChecker::DepCandidates DependentAccesses;
2448 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2449 LoopAliasScopes);
2451 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2452 // multiple times on the same object. If the ptr is accessed twice, once
2453 // for read and once for write, it will only appear once (on the write
2454 // list). This is okay, since we are going to check for conflicts between
2455 // writes and between reads and writes, but not between reads and reads.
2456 SmallSet<std::pair<Value *, Type *>, 16> Seen;
2458 // Record uniform store addresses to identify if we have multiple stores
2459 // to the same address.
2460 SmallPtrSet<Value *, 16> UniformStores;
2462 for (StoreInst *ST : Stores) {
2463 Value *Ptr = ST->getPointerOperand();
2465 if (isInvariant(Ptr)) {
2466 // Record store instructions to loop invariant addresses
2467 StoresToInvariantAddresses.push_back(ST);
2468 HasDependenceInvolvingLoopInvariantAddress |=
2469 !UniformStores.insert(Ptr).second;
2472 // If we did *not* see this pointer before, insert it to the read-write
2473 // list. At this phase it is only a 'write' list.
2474 Type *AccessTy = getLoadStoreType(ST);
2475 if (Seen.insert({Ptr, AccessTy}).second) {
2476 ++NumReadWrites;
2478 MemoryLocation Loc = MemoryLocation::get(ST);
2479 // The TBAA metadata could have a control dependency on the predication
2480 // condition, so we cannot rely on it when determining whether or not we
2481 // need runtime pointer checks.
2482 if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2483 Loc.AATags.TBAA = nullptr;
2485 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2486 [&Accesses, AccessTy, Loc](Value *Ptr) {
2487 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2488 Accesses.addStore(NewLoc, AccessTy);
2493 if (IsAnnotatedParallel) {
2494 LLVM_DEBUG(
2495 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2496 << "checks.\n");
2497 CanVecMem = true;
2498 return;
2501 for (LoadInst *LD : Loads) {
2502 Value *Ptr = LD->getPointerOperand();
2503 // If we did *not* see this pointer before, insert it to the
2504 // read list. If we *did* see it before, then it is already in
2505 // the read-write list. This allows us to vectorize expressions
2506 // such as A[i] += x; Because the address of A[i] is a read-write
2507 // pointer. This only works if the index of A[i] is consecutive.
2508 // If the address of i is unknown (for example A[B[i]]) then we may
2509 // read a few words, modify, and write a few words, and some of the
2510 // words may be written to the same address.
2511 bool IsReadOnlyPtr = false;
2512 Type *AccessTy = getLoadStoreType(LD);
2513 if (Seen.insert({Ptr, AccessTy}).second ||
2514 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2515 ++NumReads;
2516 IsReadOnlyPtr = true;
2519 // See if there is an unsafe dependency between a load to a uniform address and
2520 // store to the same uniform address.
2521 if (UniformStores.count(Ptr)) {
2522 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2523 "load and uniform store to the same address!\n");
2524 HasDependenceInvolvingLoopInvariantAddress = true;
2527 MemoryLocation Loc = MemoryLocation::get(LD);
2528 // The TBAA metadata could have a control dependency on the predication
2529 // condition, so we cannot rely on it when determining whether or not we
2530 // need runtime pointer checks.
2531 if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2532 Loc.AATags.TBAA = nullptr;
2534 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2535 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2536 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2537 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2541 // If we write (or read-write) to a single destination and there are no
2542 // other reads in this loop then is it safe to vectorize.
2543 if (NumReadWrites == 1 && NumReads == 0) {
2544 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2545 CanVecMem = true;
2546 return;
2549 // Build dependence sets and check whether we need a runtime pointer bounds
2550 // check.
2551 Accesses.buildDependenceSets();
2553 // Find pointers with computable bounds. We are going to use this information
2554 // to place a runtime bound check.
2555 Value *UncomputablePtr = nullptr;
2556 bool CanDoRTIfNeeded =
2557 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2558 SymbolicStrides, UncomputablePtr, false);
2559 if (!CanDoRTIfNeeded) {
2560 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2561 recordAnalysis("CantIdentifyArrayBounds", I)
2562 << "cannot identify array bounds";
2563 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2564 << "the array bounds.\n");
2565 CanVecMem = false;
2566 return;
2569 LLVM_DEBUG(
2570 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2572 CanVecMem = true;
2573 if (Accesses.isDependencyCheckNeeded()) {
2574 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2575 CanVecMem = DepChecker->areDepsSafe(
2576 DependentAccesses, Accesses.getDependenciesToCheck(), SymbolicStrides,
2577 Accesses.getUnderlyingObjects());
2579 if (!CanVecMem && DepChecker->shouldRetryWithRuntimeCheck()) {
2580 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2582 // Clear the dependency checks. We assume they are not needed.
2583 Accesses.resetDepChecks(*DepChecker);
2585 PtrRtChecking->reset();
2586 PtrRtChecking->Need = true;
2588 auto *SE = PSE->getSE();
2589 UncomputablePtr = nullptr;
2590 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2591 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2593 // Check that we found the bounds for the pointer.
2594 if (!CanDoRTIfNeeded) {
2595 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2596 recordAnalysis("CantCheckMemDepsAtRunTime", I)
2597 << "cannot check memory dependencies at runtime";
2598 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2599 CanVecMem = false;
2600 return;
2603 CanVecMem = true;
2607 if (HasConvergentOp) {
2608 recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2609 << "cannot add control dependency to convergent operation";
2610 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2611 "would be needed with a convergent operation\n");
2612 CanVecMem = false;
2613 return;
2616 if (CanVecMem)
2617 LLVM_DEBUG(
2618 dbgs() << "LAA: No unsafe dependent memory operations in loop. We"
2619 << (PtrRtChecking->Need ? "" : " don't")
2620 << " need runtime memory checks.\n");
2621 else
2622 emitUnsafeDependenceRemark();
2625 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2626 auto Deps = getDepChecker().getDependences();
2627 if (!Deps)
2628 return;
2629 auto Found = llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2630 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2631 MemoryDepChecker::VectorizationSafetyStatus::Safe;
2633 if (Found == Deps->end())
2634 return;
2635 MemoryDepChecker::Dependence Dep = *Found;
2637 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2639 // Emit remark for first unsafe dependence
2640 bool HasForcedDistribution = false;
2641 std::optional<const MDOperand *> Value =
2642 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2643 if (Value) {
2644 const MDOperand *Op = *Value;
2645 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2646 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2649 const std::string Info =
2650 HasForcedDistribution
2651 ? "unsafe dependent memory operations in loop."
2652 : "unsafe dependent memory operations in loop. Use "
2653 "#pragma clang loop distribute(enable) to allow loop distribution "
2654 "to attempt to isolate the offending operations into a separate "
2655 "loop";
2656 OptimizationRemarkAnalysis &R =
2657 recordAnalysis("UnsafeDep", Dep.getDestination(*this)) << Info;
2659 switch (Dep.Type) {
2660 case MemoryDepChecker::Dependence::NoDep:
2661 case MemoryDepChecker::Dependence::Forward:
2662 case MemoryDepChecker::Dependence::BackwardVectorizable:
2663 llvm_unreachable("Unexpected dependence");
2664 case MemoryDepChecker::Dependence::Backward:
2665 R << "\nBackward loop carried data dependence.";
2666 break;
2667 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2668 R << "\nForward loop carried data dependence that prevents "
2669 "store-to-load forwarding.";
2670 break;
2671 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2672 R << "\nBackward loop carried data dependence that prevents "
2673 "store-to-load forwarding.";
2674 break;
2675 case MemoryDepChecker::Dependence::IndirectUnsafe:
2676 R << "\nUnsafe indirect dependence.";
2677 break;
2678 case MemoryDepChecker::Dependence::Unknown:
2679 R << "\nUnknown data dependence.";
2680 break;
2683 if (Instruction *I = Dep.getSource(*this)) {
2684 DebugLoc SourceLoc = I->getDebugLoc();
2685 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2686 SourceLoc = DD->getDebugLoc();
2687 if (SourceLoc)
2688 R << " Memory location is the same as accessed at "
2689 << ore::NV("Location", SourceLoc);
2693 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2694 DominatorTree *DT) {
2695 assert(TheLoop->contains(BB) && "Unknown block used");
2697 // Blocks that do not dominate the latch need predication.
2698 BasicBlock* Latch = TheLoop->getLoopLatch();
2699 return !DT->dominates(BB, Latch);
2702 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2703 Instruction *I) {
2704 assert(!Report && "Multiple reports generated");
2706 Value *CodeRegion = TheLoop->getHeader();
2707 DebugLoc DL = TheLoop->getStartLoc();
2709 if (I) {
2710 CodeRegion = I->getParent();
2711 // If there is no debug location attached to the instruction, revert back to
2712 // using the loop's.
2713 if (I->getDebugLoc())
2714 DL = I->getDebugLoc();
2717 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2718 CodeRegion);
2719 return *Report;
2722 bool LoopAccessInfo::isInvariant(Value *V) const {
2723 auto *SE = PSE->getSE();
2724 // TODO: Is this really what we want? Even without FP SCEV, we may want some
2725 // trivially loop-invariant FP values to be considered invariant.
2726 if (!SE->isSCEVable(V->getType()))
2727 return false;
2728 const SCEV *S = SE->getSCEV(V);
2729 return SE->isLoopInvariant(S, TheLoop);
2732 /// Find the operand of the GEP that should be checked for consecutive
2733 /// stores. This ignores trailing indices that have no effect on the final
2734 /// pointer.
2735 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2736 const DataLayout &DL = Gep->getModule()->getDataLayout();
2737 unsigned LastOperand = Gep->getNumOperands() - 1;
2738 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2740 // Walk backwards and try to peel off zeros.
2741 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2742 // Find the type we're currently indexing into.
2743 gep_type_iterator GEPTI = gep_type_begin(Gep);
2744 std::advance(GEPTI, LastOperand - 2);
2746 // If it's a type with the same allocation size as the result of the GEP we
2747 // can peel off the zero index.
2748 TypeSize ElemSize = GEPTI.isStruct()
2749 ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2750 : GEPTI.getSequentialElementStride(DL);
2751 if (ElemSize != GEPAllocSize)
2752 break;
2753 --LastOperand;
2756 return LastOperand;
2759 /// If the argument is a GEP, then returns the operand identified by
2760 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2761 /// operand, it returns that instead.
2762 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2763 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2764 if (!GEP)
2765 return Ptr;
2767 unsigned InductionOperand = getGEPInductionOperand(GEP);
2769 // Check that all of the gep indices are uniform except for our induction
2770 // operand.
2771 for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
2772 if (i != InductionOperand &&
2773 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
2774 return Ptr;
2775 return GEP->getOperand(InductionOperand);
2778 /// If a value has only one user that is a CastInst, return it.
2779 static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
2780 Value *UniqueCast = nullptr;
2781 for (User *U : Ptr->users()) {
2782 CastInst *CI = dyn_cast<CastInst>(U);
2783 if (CI && CI->getType() == Ty) {
2784 if (!UniqueCast)
2785 UniqueCast = CI;
2786 else
2787 return nullptr;
2790 return UniqueCast;
2793 /// Get the stride of a pointer access in a loop. Looks for symbolic
2794 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2795 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2796 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2797 if (!PtrTy || PtrTy->isAggregateType())
2798 return nullptr;
2800 // Try to remove a gep instruction to make the pointer (actually index at this
2801 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2802 // pointer, otherwise, we are analyzing the index.
2803 Value *OrigPtr = Ptr;
2805 // The size of the pointer access.
2806 int64_t PtrAccessSize = 1;
2808 Ptr = stripGetElementPtr(Ptr, SE, Lp);
2809 const SCEV *V = SE->getSCEV(Ptr);
2811 if (Ptr != OrigPtr)
2812 // Strip off casts.
2813 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2814 V = C->getOperand();
2816 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2817 if (!S)
2818 return nullptr;
2820 // If the pointer is invariant then there is no stride and it makes no
2821 // sense to add it here.
2822 if (Lp != S->getLoop())
2823 return nullptr;
2825 V = S->getStepRecurrence(*SE);
2826 if (!V)
2827 return nullptr;
2829 // Strip off the size of access multiplication if we are still analyzing the
2830 // pointer.
2831 if (OrigPtr == Ptr) {
2832 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2833 if (M->getOperand(0)->getSCEVType() != scConstant)
2834 return nullptr;
2836 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2838 // Huge step value - give up.
2839 if (APStepVal.getBitWidth() > 64)
2840 return nullptr;
2842 int64_t StepVal = APStepVal.getSExtValue();
2843 if (PtrAccessSize != StepVal)
2844 return nullptr;
2845 V = M->getOperand(1);
2849 // Note that the restriction after this loop invariant check are only
2850 // profitability restrictions.
2851 if (!SE->isLoopInvariant(V, Lp))
2852 return nullptr;
2854 // Look for the loop invariant symbolic value.
2855 const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
2856 if (!U) {
2857 const auto *C = dyn_cast<SCEVIntegralCastExpr>(V);
2858 if (!C)
2859 return nullptr;
2860 U = dyn_cast<SCEVUnknown>(C->getOperand());
2861 if (!U)
2862 return nullptr;
2864 // Match legacy behavior - this is not needed for correctness
2865 if (!getUniqueCastUse(U->getValue(), Lp, V->getType()))
2866 return nullptr;
2869 return V;
2872 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2873 Value *Ptr = getLoadStorePointerOperand(MemAccess);
2874 if (!Ptr)
2875 return;
2877 // Note: getStrideFromPointer is a *profitability* heuristic. We
2878 // could broaden the scope of values returned here - to anything
2879 // which happens to be loop invariant and contributes to the
2880 // computation of an interesting IV - but we chose not to as we
2881 // don't have a cost model here, and broadening the scope exposes
2882 // far too many unprofitable cases.
2883 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2884 if (!StrideExpr)
2885 return;
2887 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2888 "versioning:");
2889 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2891 if (!SpeculateUnitStride) {
2892 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n");
2893 return;
2896 // Avoid adding the "Stride == 1" predicate when we know that
2897 // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2898 // or zero iteration loop, as Trip-Count <= Stride == 1.
2900 // TODO: We are currently not making a very informed decision on when it is
2901 // beneficial to apply stride versioning. It might make more sense that the
2902 // users of this analysis (such as the vectorizer) will trigger it, based on
2903 // their specific cost considerations; For example, in cases where stride
2904 // versioning does not help resolving memory accesses/dependences, the
2905 // vectorizer should evaluate the cost of the runtime test, and the benefit
2906 // of various possible stride specializations, considering the alternatives
2907 // of using gather/scatters (if available).
2909 const SCEV *BETakenCount = PSE->getBackedgeTakenCount();
2911 // Match the types so we can compare the stride and the BETakenCount.
2912 // The Stride can be positive/negative, so we sign extend Stride;
2913 // The backedgeTakenCount is non-negative, so we zero extend BETakenCount.
2914 const DataLayout &DL = TheLoop->getHeader()->getModule()->getDataLayout();
2915 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2916 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(BETakenCount->getType());
2917 const SCEV *CastedStride = StrideExpr;
2918 const SCEV *CastedBECount = BETakenCount;
2919 ScalarEvolution *SE = PSE->getSE();
2920 if (BETypeSizeBits >= StrideTypeSizeBits)
2921 CastedStride = SE->getNoopOrSignExtend(StrideExpr, BETakenCount->getType());
2922 else
2923 CastedBECount = SE->getZeroExtendExpr(BETakenCount, StrideExpr->getType());
2924 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2925 // Since TripCount == BackEdgeTakenCount + 1, checking:
2926 // "Stride >= TripCount" is equivalent to checking:
2927 // Stride - BETakenCount > 0
2928 if (SE->isKnownPositive(StrideMinusBETaken)) {
2929 LLVM_DEBUG(
2930 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2931 "Stride==1 predicate will imply that the loop executes "
2932 "at most once.\n");
2933 return;
2935 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2937 // Strip back off the integer cast, and check that our result is a
2938 // SCEVUnknown as we expect.
2939 const SCEV *StrideBase = StrideExpr;
2940 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2941 StrideBase = C->getOperand();
2942 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
2945 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
2946 const TargetLibraryInfo *TLI, AAResults *AA,
2947 DominatorTree *DT, LoopInfo *LI)
2948 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
2949 PtrRtChecking(nullptr),
2950 DepChecker(std::make_unique<MemoryDepChecker>(*PSE, L)), TheLoop(L) {
2951 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
2952 if (canAnalyzeLoop()) {
2953 analyzeLoop(AA, LI, TLI, DT);
2957 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
2958 if (CanVecMem) {
2959 OS.indent(Depth) << "Memory dependences are safe";
2960 const MemoryDepChecker &DC = getDepChecker();
2961 if (!DC.isSafeForAnyVectorWidth())
2962 OS << " with a maximum safe vector width of "
2963 << DC.getMaxSafeVectorWidthInBits() << " bits";
2964 if (PtrRtChecking->Need)
2965 OS << " with run-time checks";
2966 OS << "\n";
2969 if (HasConvergentOp)
2970 OS.indent(Depth) << "Has convergent operation in loop\n";
2972 if (Report)
2973 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
2975 if (auto *Dependences = DepChecker->getDependences()) {
2976 OS.indent(Depth) << "Dependences:\n";
2977 for (const auto &Dep : *Dependences) {
2978 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
2979 OS << "\n";
2981 } else
2982 OS.indent(Depth) << "Too many dependences, not recorded\n";
2984 // List the pair of accesses need run-time checks to prove independence.
2985 PtrRtChecking->print(OS, Depth);
2986 OS << "\n";
2988 OS.indent(Depth) << "Non vectorizable stores to invariant address were "
2989 << (HasDependenceInvolvingLoopInvariantAddress ? "" : "not ")
2990 << "found in loop.\n";
2992 OS.indent(Depth) << "SCEV assumptions:\n";
2993 PSE->getPredicate().print(OS, Depth);
2995 OS << "\n";
2997 OS.indent(Depth) << "Expressions re-written:\n";
2998 PSE->print(OS, Depth);
3001 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
3002 auto I = LoopAccessInfoMap.insert({&L, nullptr});
3004 if (I.second)
3005 I.first->second =
3006 std::make_unique<LoopAccessInfo>(&L, &SE, TLI, &AA, &DT, &LI);
3008 return *I.first->second;
3011 bool LoopAccessInfoManager::invalidate(
3012 Function &F, const PreservedAnalyses &PA,
3013 FunctionAnalysisManager::Invalidator &Inv) {
3014 // Check whether our analysis is preserved.
3015 auto PAC = PA.getChecker<LoopAccessAnalysis>();
3016 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3017 // If not, give up now.
3018 return true;
3020 // Check whether the analyses we depend on became invalid for any reason.
3021 // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3022 // invalid.
3023 return Inv.invalidate<AAManager>(F, PA) ||
3024 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3025 Inv.invalidate<LoopAnalysis>(F, PA) ||
3026 Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3029 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
3030 FunctionAnalysisManager &FAM) {
3031 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3032 auto &AA = FAM.getResult<AAManager>(F);
3033 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3034 auto &LI = FAM.getResult<LoopAnalysis>(F);
3035 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3036 return LoopAccessInfoManager(SE, AA, DT, LI, &TLI);
3039 AnalysisKey LoopAccessAnalysis::Key;