1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "RuntimeDyldELF.h"
14 #include "RuntimeDyldCheckerImpl.h"
15 #include "Targets/RuntimeDyldELFMips.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/BinaryFormat/ELF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/MemoryBuffer.h"
23 #include "llvm/TargetParser/Triple.h"
26 using namespace llvm::object
;
27 using namespace llvm::support::endian
;
29 #define DEBUG_TYPE "dyld"
31 static void or32le(void *P
, int32_t V
) { write32le(P
, read32le(P
) | V
); }
33 static void or32AArch64Imm(void *L
, uint64_t Imm
) {
34 or32le(L
, (Imm
& 0xFFF) << 10);
37 template <class T
> static void write(bool isBE
, void *P
, T V
) {
38 isBE
? write
<T
, llvm::endianness::big
>(P
, V
)
39 : write
<T
, llvm::endianness::little
>(P
, V
);
42 static void write32AArch64Addr(void *L
, uint64_t Imm
) {
43 uint32_t ImmLo
= (Imm
& 0x3) << 29;
44 uint32_t ImmHi
= (Imm
& 0x1FFFFC) << 3;
45 uint64_t Mask
= (0x3 << 29) | (0x1FFFFC << 3);
46 write32le(L
, (read32le(L
) & ~Mask
) | ImmLo
| ImmHi
);
49 // Return the bits [Start, End] from Val shifted Start bits.
50 // For instance, getBits(0xF0, 4, 8) returns 0xF.
51 static uint64_t getBits(uint64_t Val
, int Start
, int End
) {
52 uint64_t Mask
= ((uint64_t)1 << (End
+ 1 - Start
)) - 1;
53 return (Val
>> Start
) & Mask
;
58 template <class ELFT
> class DyldELFObject
: public ELFObjectFile
<ELFT
> {
59 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
61 typedef typename
ELFT::uint addr_type
;
63 DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
);
66 static Expected
<std::unique_ptr
<DyldELFObject
>>
67 create(MemoryBufferRef Wrapper
);
69 void updateSectionAddress(const SectionRef
&Sec
, uint64_t Addr
);
71 void updateSymbolAddress(const SymbolRef
&SymRef
, uint64_t Addr
);
73 // Methods for type inquiry through isa, cast and dyn_cast
74 static bool classof(const Binary
*v
) {
75 return (isa
<ELFObjectFile
<ELFT
>>(v
) &&
76 classof(cast
<ELFObjectFile
<ELFT
>>(v
)));
78 static bool classof(const ELFObjectFile
<ELFT
> *v
) {
79 return v
->isDyldType();
85 // The MemoryBuffer passed into this constructor is just a wrapper around the
86 // actual memory. Ultimately, the Binary parent class will take ownership of
87 // this MemoryBuffer object but not the underlying memory.
89 DyldELFObject
<ELFT
>::DyldELFObject(ELFObjectFile
<ELFT
> &&Obj
)
90 : ELFObjectFile
<ELFT
>(std::move(Obj
)) {
91 this->isDyldELFObject
= true;
95 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
96 DyldELFObject
<ELFT
>::create(MemoryBufferRef Wrapper
) {
97 auto Obj
= ELFObjectFile
<ELFT
>::create(Wrapper
);
98 if (auto E
= Obj
.takeError())
100 std::unique_ptr
<DyldELFObject
<ELFT
>> Ret(
101 new DyldELFObject
<ELFT
>(std::move(*Obj
)));
102 return std::move(Ret
);
105 template <class ELFT
>
106 void DyldELFObject
<ELFT
>::updateSectionAddress(const SectionRef
&Sec
,
108 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
110 const_cast<Elf_Shdr
*>(reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
112 // This assumes the address passed in matches the target address bitness
113 // The template-based type cast handles everything else.
114 shdr
->sh_addr
= static_cast<addr_type
>(Addr
);
117 template <class ELFT
>
118 void DyldELFObject
<ELFT
>::updateSymbolAddress(const SymbolRef
&SymRef
,
121 Elf_Sym
*sym
= const_cast<Elf_Sym
*>(
122 ELFObjectFile
<ELFT
>::getSymbol(SymRef
.getRawDataRefImpl()));
124 // This assumes the address passed in matches the target address bitness
125 // The template-based type cast handles everything else.
126 sym
->st_value
= static_cast<addr_type
>(Addr
);
129 class LoadedELFObjectInfo final
130 : public LoadedObjectInfoHelper
<LoadedELFObjectInfo
,
131 RuntimeDyld::LoadedObjectInfo
> {
133 LoadedELFObjectInfo(RuntimeDyldImpl
&RTDyld
, ObjSectionToIDMap ObjSecToIDMap
)
134 : LoadedObjectInfoHelper(RTDyld
, std::move(ObjSecToIDMap
)) {}
136 OwningBinary
<ObjectFile
>
137 getObjectForDebug(const ObjectFile
&Obj
) const override
;
140 template <typename ELFT
>
141 static Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>>
142 createRTDyldELFObject(MemoryBufferRef Buffer
, const ObjectFile
&SourceObject
,
143 const LoadedELFObjectInfo
&L
) {
144 typedef typename
ELFT::Shdr Elf_Shdr
;
145 typedef typename
ELFT::uint addr_type
;
147 Expected
<std::unique_ptr
<DyldELFObject
<ELFT
>>> ObjOrErr
=
148 DyldELFObject
<ELFT
>::create(Buffer
);
149 if (Error E
= ObjOrErr
.takeError())
152 std::unique_ptr
<DyldELFObject
<ELFT
>> Obj
= std::move(*ObjOrErr
);
154 // Iterate over all sections in the object.
155 auto SI
= SourceObject
.section_begin();
156 for (const auto &Sec
: Obj
->sections()) {
157 Expected
<StringRef
> NameOrErr
= Sec
.getName();
159 consumeError(NameOrErr
.takeError());
163 if (*NameOrErr
!= "") {
164 DataRefImpl ShdrRef
= Sec
.getRawDataRefImpl();
165 Elf_Shdr
*shdr
= const_cast<Elf_Shdr
*>(
166 reinterpret_cast<const Elf_Shdr
*>(ShdrRef
.p
));
168 if (uint64_t SecLoadAddr
= L
.getSectionLoadAddress(*SI
)) {
169 // This assumes that the address passed in matches the target address
170 // bitness. The template-based type cast handles everything else.
171 shdr
->sh_addr
= static_cast<addr_type
>(SecLoadAddr
);
177 return std::move(Obj
);
180 static OwningBinary
<ObjectFile
>
181 createELFDebugObject(const ObjectFile
&Obj
, const LoadedELFObjectInfo
&L
) {
182 assert(Obj
.isELF() && "Not an ELF object file.");
184 std::unique_ptr
<MemoryBuffer
> Buffer
=
185 MemoryBuffer::getMemBufferCopy(Obj
.getData(), Obj
.getFileName());
187 Expected
<std::unique_ptr
<ObjectFile
>> DebugObj(nullptr);
188 handleAllErrors(DebugObj
.takeError());
189 if (Obj
.getBytesInAddress() == 4 && Obj
.isLittleEndian())
191 createRTDyldELFObject
<ELF32LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
192 else if (Obj
.getBytesInAddress() == 4 && !Obj
.isLittleEndian())
194 createRTDyldELFObject
<ELF32BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
195 else if (Obj
.getBytesInAddress() == 8 && !Obj
.isLittleEndian())
197 createRTDyldELFObject
<ELF64BE
>(Buffer
->getMemBufferRef(), Obj
, L
);
198 else if (Obj
.getBytesInAddress() == 8 && Obj
.isLittleEndian())
200 createRTDyldELFObject
<ELF64LE
>(Buffer
->getMemBufferRef(), Obj
, L
);
202 llvm_unreachable("Unexpected ELF format");
204 handleAllErrors(DebugObj
.takeError());
205 return OwningBinary
<ObjectFile
>(std::move(*DebugObj
), std::move(Buffer
));
208 OwningBinary
<ObjectFile
>
209 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile
&Obj
) const {
210 return createELFDebugObject(Obj
, *this);
213 } // anonymous namespace
217 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager
&MemMgr
,
218 JITSymbolResolver
&Resolver
)
219 : RuntimeDyldImpl(MemMgr
, Resolver
), GOTSectionID(0), CurrentGOTIndex(0) {}
220 RuntimeDyldELF::~RuntimeDyldELF() = default;
222 void RuntimeDyldELF::registerEHFrames() {
223 for (int i
= 0, e
= UnregisteredEHFrameSections
.size(); i
!= e
; ++i
) {
224 SID EHFrameSID
= UnregisteredEHFrameSections
[i
];
225 uint8_t *EHFrameAddr
= Sections
[EHFrameSID
].getAddress();
226 uint64_t EHFrameLoadAddr
= Sections
[EHFrameSID
].getLoadAddress();
227 size_t EHFrameSize
= Sections
[EHFrameSID
].getSize();
228 MemMgr
.registerEHFrames(EHFrameAddr
, EHFrameLoadAddr
, EHFrameSize
);
230 UnregisteredEHFrameSections
.clear();
233 std::unique_ptr
<RuntimeDyldELF
>
234 llvm::RuntimeDyldELF::create(Triple::ArchType Arch
,
235 RuntimeDyld::MemoryManager
&MemMgr
,
236 JITSymbolResolver
&Resolver
) {
239 return std::make_unique
<RuntimeDyldELF
>(MemMgr
, Resolver
);
243 case Triple::mips64el
:
244 return std::make_unique
<RuntimeDyldELFMips
>(MemMgr
, Resolver
);
248 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
249 RuntimeDyldELF::loadObject(const object::ObjectFile
&O
) {
250 if (auto ObjSectionToIDOrErr
= loadObjectImpl(O
))
251 return std::make_unique
<LoadedELFObjectInfo
>(*this, *ObjSectionToIDOrErr
);
254 raw_string_ostream
ErrStream(ErrorStr
);
255 logAllUnhandledErrors(ObjSectionToIDOrErr
.takeError(), ErrStream
);
260 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry
&Section
,
261 uint64_t Offset
, uint64_t Value
,
262 uint32_t Type
, int64_t Addend
,
263 uint64_t SymOffset
) {
266 report_fatal_error("Relocation type not implemented yet!");
268 case ELF::R_X86_64_NONE
:
270 case ELF::R_X86_64_8
: {
272 assert((int64_t)Value
<= INT8_MAX
&& (int64_t)Value
>= INT8_MIN
);
273 uint8_t TruncatedAddr
= (Value
& 0xFF);
274 *Section
.getAddressWithOffset(Offset
) = TruncatedAddr
;
275 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
276 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
279 case ELF::R_X86_64_16
: {
281 assert((int64_t)Value
<= INT16_MAX
&& (int64_t)Value
>= INT16_MIN
);
282 uint16_t TruncatedAddr
= (Value
& 0xFFFF);
283 support::ulittle16_t::ref(Section
.getAddressWithOffset(Offset
)) =
285 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
286 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
289 case ELF::R_X86_64_64
: {
290 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
292 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
293 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
296 case ELF::R_X86_64_32
:
297 case ELF::R_X86_64_32S
: {
299 assert((Type
== ELF::R_X86_64_32
&& (Value
<= UINT32_MAX
)) ||
300 (Type
== ELF::R_X86_64_32S
&&
301 ((int64_t)Value
<= INT32_MAX
&& (int64_t)Value
>= INT32_MIN
)));
302 uint32_t TruncatedAddr
= (Value
& 0xFFFFFFFF);
303 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
305 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr
) << " at "
306 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
309 case ELF::R_X86_64_PC8
: {
310 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
311 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
312 assert(isInt
<8>(RealOffset
));
313 int8_t TruncOffset
= (RealOffset
& 0xFF);
314 Section
.getAddress()[Offset
] = TruncOffset
;
317 case ELF::R_X86_64_PC32
: {
318 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
319 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
320 assert(isInt
<32>(RealOffset
));
321 int32_t TruncOffset
= (RealOffset
& 0xFFFFFFFF);
322 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
326 case ELF::R_X86_64_PC64
: {
327 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
328 int64_t RealOffset
= Value
+ Addend
- FinalAddress
;
329 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
331 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset
) << " at "
332 << format("%p\n", FinalAddress
));
335 case ELF::R_X86_64_GOTOFF64
: {
336 // Compute Value - GOTBase.
337 uint64_t GOTBase
= 0;
338 for (const auto &Section
: Sections
) {
339 if (Section
.getName() == ".got") {
340 GOTBase
= Section
.getLoadAddressWithOffset(0);
344 assert(GOTBase
!= 0 && "missing GOT");
345 int64_t GOTOffset
= Value
- GOTBase
+ Addend
;
346 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = GOTOffset
;
349 case ELF::R_X86_64_DTPMOD64
: {
350 // We only have one DSO, so the module id is always 1.
351 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) = 1;
354 case ELF::R_X86_64_DTPOFF64
:
355 case ELF::R_X86_64_TPOFF64
: {
356 // DTPOFF64 should resolve to the offset in the TLS block, TPOFF64 to the
357 // offset in the *initial* TLS block. Since we are statically linking, all
358 // TLS blocks already exist in the initial block, so resolve both
359 // relocations equally.
360 support::ulittle64_t::ref(Section
.getAddressWithOffset(Offset
)) =
364 case ELF::R_X86_64_DTPOFF32
:
365 case ELF::R_X86_64_TPOFF32
: {
366 // As for the (D)TPOFF64 relocations above, both DTPOFF32 and TPOFF32 can
367 // be resolved equally.
368 int64_t RealValue
= Value
+ Addend
;
369 assert(RealValue
>= INT32_MIN
&& RealValue
<= INT32_MAX
);
370 int32_t TruncValue
= RealValue
;
371 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
378 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry
&Section
,
379 uint64_t Offset
, uint32_t Value
,
380 uint32_t Type
, int32_t Addend
) {
382 case ELF::R_386_32
: {
383 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
387 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
388 // reach any 32 bit address.
389 case ELF::R_386_PLT32
:
390 case ELF::R_386_PC32
: {
391 uint32_t FinalAddress
=
392 Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
393 uint32_t RealOffset
= Value
+ Addend
- FinalAddress
;
394 support::ulittle32_t::ref(Section
.getAddressWithOffset(Offset
)) =
399 // There are other relocation types, but it appears these are the
400 // only ones currently used by the LLVM ELF object writer
401 report_fatal_error("Relocation type not implemented yet!");
406 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry
&Section
,
407 uint64_t Offset
, uint64_t Value
,
408 uint32_t Type
, int64_t Addend
) {
409 uint32_t *TargetPtr
=
410 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
411 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
412 // Data should use target endian. Code should always use little endian.
413 bool isBE
= Arch
== Triple::aarch64_be
;
415 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
416 << format("%llx", Section
.getAddressWithOffset(Offset
))
417 << " FinalAddress: 0x" << format("%llx", FinalAddress
)
418 << " Value: 0x" << format("%llx", Value
) << " Type: 0x"
419 << format("%x", Type
) << " Addend: 0x"
420 << format("%llx", Addend
) << "\n");
424 report_fatal_error("Relocation type not implemented yet!");
426 case ELF::R_AARCH64_NONE
:
428 case ELF::R_AARCH64_ABS16
: {
429 uint64_t Result
= Value
+ Addend
;
430 assert(Result
== static_cast<uint64_t>(llvm::SignExtend64(Result
, 16)) ||
431 (Result
>> 16) == 0);
432 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
435 case ELF::R_AARCH64_ABS32
: {
436 uint64_t Result
= Value
+ Addend
;
437 assert(Result
== static_cast<uint64_t>(llvm::SignExtend64(Result
, 32)) ||
438 (Result
>> 32) == 0);
439 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
442 case ELF::R_AARCH64_ABS64
:
443 write(isBE
, TargetPtr
, Value
+ Addend
);
445 case ELF::R_AARCH64_PLT32
: {
446 uint64_t Result
= Value
+ Addend
- FinalAddress
;
447 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
448 static_cast<int64_t>(Result
) <= INT32_MAX
);
449 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
));
452 case ELF::R_AARCH64_PREL16
: {
453 uint64_t Result
= Value
+ Addend
- FinalAddress
;
454 assert(static_cast<int64_t>(Result
) >= INT16_MIN
&&
455 static_cast<int64_t>(Result
) <= UINT16_MAX
);
456 write(isBE
, TargetPtr
, static_cast<uint16_t>(Result
& 0xffffU
));
459 case ELF::R_AARCH64_PREL32
: {
460 uint64_t Result
= Value
+ Addend
- FinalAddress
;
461 assert(static_cast<int64_t>(Result
) >= INT32_MIN
&&
462 static_cast<int64_t>(Result
) <= UINT32_MAX
);
463 write(isBE
, TargetPtr
, static_cast<uint32_t>(Result
& 0xffffffffU
));
466 case ELF::R_AARCH64_PREL64
:
467 write(isBE
, TargetPtr
, Value
+ Addend
- FinalAddress
);
469 case ELF::R_AARCH64_CONDBR19
: {
470 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
472 assert(isInt
<21>(BranchImm
));
473 *TargetPtr
&= 0xff00001fU
;
474 // Immediate:20:2 goes in bits 23:5 of Bcc, CBZ, CBNZ
475 or32le(TargetPtr
, (BranchImm
& 0x001FFFFC) << 3);
478 case ELF::R_AARCH64_TSTBR14
: {
479 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
481 assert(isInt
<16>(BranchImm
));
483 uint32_t RawInstr
= *(support::little32_t
*)TargetPtr
;
484 *(support::little32_t
*)TargetPtr
= RawInstr
& 0xfff8001fU
;
486 // Immediate:15:2 goes in bits 18:5 of TBZ, TBNZ
487 or32le(TargetPtr
, (BranchImm
& 0x0000FFFC) << 3);
490 case ELF::R_AARCH64_CALL26
: // fallthrough
491 case ELF::R_AARCH64_JUMP26
: {
492 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
494 uint64_t BranchImm
= Value
+ Addend
- FinalAddress
;
496 // "Check that -2^27 <= result < 2^27".
497 assert(isInt
<28>(BranchImm
));
498 or32le(TargetPtr
, (BranchImm
& 0x0FFFFFFC) >> 2);
501 case ELF::R_AARCH64_MOVW_UABS_G3
:
502 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF000000000000) >> 43);
504 case ELF::R_AARCH64_MOVW_UABS_G2_NC
:
505 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF00000000) >> 27);
507 case ELF::R_AARCH64_MOVW_UABS_G1_NC
:
508 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF0000) >> 11);
510 case ELF::R_AARCH64_MOVW_UABS_G0_NC
:
511 or32le(TargetPtr
, ((Value
+ Addend
) & 0xFFFF) << 5);
513 case ELF::R_AARCH64_ADR_PREL_PG_HI21
: {
514 // Operation: Page(S+A) - Page(P)
516 ((Value
+ Addend
) & ~0xfffULL
) - (FinalAddress
& ~0xfffULL
);
518 // Check that -2^32 <= X < 2^32
519 assert(isInt
<33>(Result
) && "overflow check failed for relocation");
521 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
522 // from bits 32:12 of X.
523 write32AArch64Addr(TargetPtr
, Result
>> 12);
526 case ELF::R_AARCH64_ADD_ABS_LO12_NC
:
528 // Immediate goes in bits 21:10 of LD/ST instruction, taken
529 // from bits 11:0 of X
530 or32AArch64Imm(TargetPtr
, Value
+ Addend
);
532 case ELF::R_AARCH64_LDST8_ABS_LO12_NC
:
534 // Immediate goes in bits 21:10 of LD/ST instruction, taken
535 // from bits 11:0 of X
536 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 0, 11));
538 case ELF::R_AARCH64_LDST16_ABS_LO12_NC
:
540 // Immediate goes in bits 21:10 of LD/ST instruction, taken
541 // from bits 11:1 of X
542 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 1, 11));
544 case ELF::R_AARCH64_LDST32_ABS_LO12_NC
:
546 // Immediate goes in bits 21:10 of LD/ST instruction, taken
547 // from bits 11:2 of X
548 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 2, 11));
550 case ELF::R_AARCH64_LDST64_ABS_LO12_NC
:
552 // Immediate goes in bits 21:10 of LD/ST instruction, taken
553 // from bits 11:3 of X
554 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 3, 11));
556 case ELF::R_AARCH64_LDST128_ABS_LO12_NC
:
558 // Immediate goes in bits 21:10 of LD/ST instruction, taken
559 // from bits 11:4 of X
560 or32AArch64Imm(TargetPtr
, getBits(Value
+ Addend
, 4, 11));
562 case ELF::R_AARCH64_LD_PREL_LO19
: {
563 // Operation: S + A - P
564 uint64_t Result
= Value
+ Addend
- FinalAddress
;
566 // "Check that -2^20 <= result < 2^20".
567 assert(isInt
<21>(Result
));
569 *TargetPtr
&= 0xff00001fU
;
570 // Immediate goes in bits 23:5 of LD imm instruction, taken
571 // from bits 20:2 of X
572 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
575 case ELF::R_AARCH64_ADR_PREL_LO21
: {
576 // Operation: S + A - P
577 uint64_t Result
= Value
+ Addend
- FinalAddress
;
579 // "Check that -2^20 <= result < 2^20".
580 assert(isInt
<21>(Result
));
582 *TargetPtr
&= 0x9f00001fU
;
583 // Immediate goes in bits 23:5, 30:29 of ADR imm instruction, taken
584 // from bits 20:0 of X
585 *TargetPtr
|= ((Result
& 0xffc) << (5 - 2));
586 *TargetPtr
|= (Result
& 0x3) << 29;
592 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry
&Section
,
593 uint64_t Offset
, uint32_t Value
,
594 uint32_t Type
, int32_t Addend
) {
595 // TODO: Add Thumb relocations.
596 uint32_t *TargetPtr
=
597 reinterpret_cast<uint32_t *>(Section
.getAddressWithOffset(Offset
));
598 uint32_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
) & 0xFFFFFFFF;
601 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
602 << Section
.getAddressWithOffset(Offset
)
603 << " FinalAddress: " << format("%p", FinalAddress
)
604 << " Value: " << format("%x", Value
)
605 << " Type: " << format("%x", Type
)
606 << " Addend: " << format("%x", Addend
) << "\n");
610 llvm_unreachable("Not implemented relocation type!");
612 case ELF::R_ARM_NONE
:
614 // Write a 31bit signed offset
615 case ELF::R_ARM_PREL31
:
616 support::ulittle32_t::ref
{TargetPtr
} =
617 (support::ulittle32_t::ref
{TargetPtr
} & 0x80000000) |
618 ((Value
- FinalAddress
) & ~0x80000000);
620 case ELF::R_ARM_TARGET1
:
621 case ELF::R_ARM_ABS32
:
622 support::ulittle32_t::ref
{TargetPtr
} = Value
;
624 // Write first 16 bit of 32 bit value to the mov instruction.
625 // Last 4 bit should be shifted.
626 case ELF::R_ARM_MOVW_ABS_NC
:
627 case ELF::R_ARM_MOVT_ABS
:
628 if (Type
== ELF::R_ARM_MOVW_ABS_NC
)
629 Value
= Value
& 0xFFFF;
630 else if (Type
== ELF::R_ARM_MOVT_ABS
)
631 Value
= (Value
>> 16) & 0xFFFF;
632 support::ulittle32_t::ref
{TargetPtr
} =
633 (support::ulittle32_t::ref
{TargetPtr
} & ~0x000F0FFF) | (Value
& 0xFFF) |
634 (((Value
>> 12) & 0xF) << 16);
636 // Write 24 bit relative value to the branch instruction.
637 case ELF::R_ARM_PC24
: // Fall through.
638 case ELF::R_ARM_CALL
: // Fall through.
639 case ELF::R_ARM_JUMP24
:
640 int32_t RelValue
= static_cast<int32_t>(Value
- FinalAddress
- 8);
641 RelValue
= (RelValue
& 0x03FFFFFC) >> 2;
642 assert((support::ulittle32_t::ref
{TargetPtr
} & 0xFFFFFF) == 0xFFFFFE);
643 support::ulittle32_t::ref
{TargetPtr
} =
644 (support::ulittle32_t::ref
{TargetPtr
} & 0xFF000000) | RelValue
;
649 void RuntimeDyldELF::setMipsABI(const ObjectFile
&Obj
) {
650 if (Arch
== Triple::UnknownArch
||
651 !StringRef(Triple::getArchTypePrefix(Arch
)).equals("mips")) {
652 IsMipsO32ABI
= false;
653 IsMipsN32ABI
= false;
654 IsMipsN64ABI
= false;
657 if (auto *E
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
658 unsigned AbiVariant
= E
->getPlatformFlags();
659 IsMipsO32ABI
= AbiVariant
& ELF::EF_MIPS_ABI_O32
;
660 IsMipsN32ABI
= AbiVariant
& ELF::EF_MIPS_ABI2
;
662 IsMipsN64ABI
= Obj
.getFileFormatName().equals("elf64-mips");
665 // Return the .TOC. section and offset.
666 Error
RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase
&Obj
,
667 ObjSectionToIDMap
&LocalSections
,
668 RelocationValueRef
&Rel
) {
669 // Set a default SectionID in case we do not find a TOC section below.
670 // This may happen for references to TOC base base (sym@toc, .odp
671 // relocation) without a .toc directive. In this case just use the
672 // first section (which is usually the .odp) since the code won't
673 // reference the .toc base directly.
674 Rel
.SymbolName
= nullptr;
677 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
678 // order. The TOC starts where the first of these sections starts.
679 for (auto &Section
: Obj
.sections()) {
680 Expected
<StringRef
> NameOrErr
= Section
.getName();
682 return NameOrErr
.takeError();
683 StringRef SectionName
= *NameOrErr
;
685 if (SectionName
== ".got"
686 || SectionName
== ".toc"
687 || SectionName
== ".tocbss"
688 || SectionName
== ".plt") {
689 if (auto SectionIDOrErr
=
690 findOrEmitSection(Obj
, Section
, false, LocalSections
))
691 Rel
.SectionID
= *SectionIDOrErr
;
693 return SectionIDOrErr
.takeError();
698 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
699 // thus permitting a full 64 Kbytes segment.
702 return Error::success();
705 // Returns the sections and offset associated with the ODP entry referenced
707 Error
RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase
&Obj
,
708 ObjSectionToIDMap
&LocalSections
,
709 RelocationValueRef
&Rel
) {
710 // Get the ELF symbol value (st_value) to compare with Relocation offset in
712 for (section_iterator si
= Obj
.section_begin(), se
= Obj
.section_end();
715 Expected
<section_iterator
> RelSecOrErr
= si
->getRelocatedSection();
717 report_fatal_error(Twine(toString(RelSecOrErr
.takeError())));
719 section_iterator RelSecI
= *RelSecOrErr
;
720 if (RelSecI
== Obj
.section_end())
723 Expected
<StringRef
> NameOrErr
= RelSecI
->getName();
725 return NameOrErr
.takeError();
726 StringRef RelSectionName
= *NameOrErr
;
728 if (RelSectionName
!= ".opd")
731 for (elf_relocation_iterator i
= si
->relocation_begin(),
732 e
= si
->relocation_end();
734 // The R_PPC64_ADDR64 relocation indicates the first field
736 uint64_t TypeFunc
= i
->getType();
737 if (TypeFunc
!= ELF::R_PPC64_ADDR64
) {
742 uint64_t TargetSymbolOffset
= i
->getOffset();
743 symbol_iterator TargetSymbol
= i
->getSymbol();
745 if (auto AddendOrErr
= i
->getAddend())
746 Addend
= *AddendOrErr
;
748 return AddendOrErr
.takeError();
754 // Just check if following relocation is a R_PPC64_TOC
755 uint64_t TypeTOC
= i
->getType();
756 if (TypeTOC
!= ELF::R_PPC64_TOC
)
759 // Finally compares the Symbol value and the target symbol offset
760 // to check if this .opd entry refers to the symbol the relocation
762 if (Rel
.Addend
!= (int64_t)TargetSymbolOffset
)
765 section_iterator TSI
= Obj
.section_end();
766 if (auto TSIOrErr
= TargetSymbol
->getSection())
769 return TSIOrErr
.takeError();
770 assert(TSI
!= Obj
.section_end() && "TSI should refer to a valid section");
772 bool IsCode
= TSI
->isText();
773 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *TSI
, IsCode
,
775 Rel
.SectionID
= *SectionIDOrErr
;
777 return SectionIDOrErr
.takeError();
778 Rel
.Addend
= (intptr_t)Addend
;
779 return Error::success();
782 llvm_unreachable("Attempting to get address of ODP entry!");
785 // Relocation masks following the #lo(value), #hi(value), #ha(value),
786 // #higher(value), #highera(value), #highest(value), and #highesta(value)
787 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
790 static inline uint16_t applyPPClo(uint64_t value
) { return value
& 0xffff; }
792 static inline uint16_t applyPPChi(uint64_t value
) {
793 return (value
>> 16) & 0xffff;
796 static inline uint16_t applyPPCha (uint64_t value
) {
797 return ((value
+ 0x8000) >> 16) & 0xffff;
800 static inline uint16_t applyPPChigher(uint64_t value
) {
801 return (value
>> 32) & 0xffff;
804 static inline uint16_t applyPPChighera (uint64_t value
) {
805 return ((value
+ 0x8000) >> 32) & 0xffff;
808 static inline uint16_t applyPPChighest(uint64_t value
) {
809 return (value
>> 48) & 0xffff;
812 static inline uint16_t applyPPChighesta (uint64_t value
) {
813 return ((value
+ 0x8000) >> 48) & 0xffff;
816 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry
&Section
,
817 uint64_t Offset
, uint64_t Value
,
818 uint32_t Type
, int64_t Addend
) {
819 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
822 report_fatal_error("Relocation type not implemented yet!");
824 case ELF::R_PPC_ADDR16_LO
:
825 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
827 case ELF::R_PPC_ADDR16_HI
:
828 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
830 case ELF::R_PPC_ADDR16_HA
:
831 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
836 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry
&Section
,
837 uint64_t Offset
, uint64_t Value
,
838 uint32_t Type
, int64_t Addend
) {
839 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
842 report_fatal_error("Relocation type not implemented yet!");
844 case ELF::R_PPC64_ADDR16
:
845 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
847 case ELF::R_PPC64_ADDR16_DS
:
848 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
850 case ELF::R_PPC64_ADDR16_LO
:
851 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
));
853 case ELF::R_PPC64_ADDR16_LO_DS
:
854 writeInt16BE(LocalAddress
, applyPPClo(Value
+ Addend
) & ~3);
856 case ELF::R_PPC64_ADDR16_HI
:
857 case ELF::R_PPC64_ADDR16_HIGH
:
858 writeInt16BE(LocalAddress
, applyPPChi(Value
+ Addend
));
860 case ELF::R_PPC64_ADDR16_HA
:
861 case ELF::R_PPC64_ADDR16_HIGHA
:
862 writeInt16BE(LocalAddress
, applyPPCha(Value
+ Addend
));
864 case ELF::R_PPC64_ADDR16_HIGHER
:
865 writeInt16BE(LocalAddress
, applyPPChigher(Value
+ Addend
));
867 case ELF::R_PPC64_ADDR16_HIGHERA
:
868 writeInt16BE(LocalAddress
, applyPPChighera(Value
+ Addend
));
870 case ELF::R_PPC64_ADDR16_HIGHEST
:
871 writeInt16BE(LocalAddress
, applyPPChighest(Value
+ Addend
));
873 case ELF::R_PPC64_ADDR16_HIGHESTA
:
874 writeInt16BE(LocalAddress
, applyPPChighesta(Value
+ Addend
));
876 case ELF::R_PPC64_ADDR14
: {
877 assert(((Value
+ Addend
) & 3) == 0);
878 // Preserve the AA/LK bits in the branch instruction
879 uint8_t aalk
= *(LocalAddress
+ 3);
880 writeInt16BE(LocalAddress
+ 2, (aalk
& 3) | ((Value
+ Addend
) & 0xfffc));
882 case ELF::R_PPC64_REL16_LO
: {
883 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
884 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
885 writeInt16BE(LocalAddress
, applyPPClo(Delta
));
887 case ELF::R_PPC64_REL16_HI
: {
888 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
889 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
890 writeInt16BE(LocalAddress
, applyPPChi(Delta
));
892 case ELF::R_PPC64_REL16_HA
: {
893 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
894 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
895 writeInt16BE(LocalAddress
, applyPPCha(Delta
));
897 case ELF::R_PPC64_ADDR32
: {
898 int64_t Result
= static_cast<int64_t>(Value
+ Addend
);
899 if (SignExtend64
<32>(Result
) != Result
)
900 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
901 writeInt32BE(LocalAddress
, Result
);
903 case ELF::R_PPC64_REL24
: {
904 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
905 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
906 if (SignExtend64
<26>(delta
) != delta
)
907 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
908 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
909 uint32_t Inst
= readBytesUnaligned(LocalAddress
, 4);
910 writeInt32BE(LocalAddress
, (Inst
& 0xFC000003) | (delta
& 0x03FFFFFC));
912 case ELF::R_PPC64_REL32
: {
913 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
914 int64_t delta
= static_cast<int64_t>(Value
- FinalAddress
+ Addend
);
915 if (SignExtend64
<32>(delta
) != delta
)
916 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
917 writeInt32BE(LocalAddress
, delta
);
919 case ELF::R_PPC64_REL64
: {
920 uint64_t FinalAddress
= Section
.getLoadAddressWithOffset(Offset
);
921 uint64_t Delta
= Value
- FinalAddress
+ Addend
;
922 writeInt64BE(LocalAddress
, Delta
);
924 case ELF::R_PPC64_ADDR64
:
925 writeInt64BE(LocalAddress
, Value
+ Addend
);
930 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry
&Section
,
931 uint64_t Offset
, uint64_t Value
,
932 uint32_t Type
, int64_t Addend
) {
933 uint8_t *LocalAddress
= Section
.getAddressWithOffset(Offset
);
936 report_fatal_error("Relocation type not implemented yet!");
938 case ELF::R_390_PC16DBL
:
939 case ELF::R_390_PLT16DBL
: {
940 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
941 assert(int16_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC16DBL overflow");
942 writeInt16BE(LocalAddress
, Delta
/ 2);
945 case ELF::R_390_PC32DBL
:
946 case ELF::R_390_PLT32DBL
: {
947 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
948 assert(int32_t(Delta
/ 2) * 2 == Delta
&& "R_390_PC32DBL overflow");
949 writeInt32BE(LocalAddress
, Delta
/ 2);
952 case ELF::R_390_PC16
: {
953 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
954 assert(int16_t(Delta
) == Delta
&& "R_390_PC16 overflow");
955 writeInt16BE(LocalAddress
, Delta
);
958 case ELF::R_390_PC32
: {
959 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
960 assert(int32_t(Delta
) == Delta
&& "R_390_PC32 overflow");
961 writeInt32BE(LocalAddress
, Delta
);
964 case ELF::R_390_PC64
: {
965 int64_t Delta
= (Value
+ Addend
) - Section
.getLoadAddressWithOffset(Offset
);
966 writeInt64BE(LocalAddress
, Delta
);
970 *LocalAddress
= (uint8_t)(Value
+ Addend
);
973 writeInt16BE(LocalAddress
, Value
+ Addend
);
976 writeInt32BE(LocalAddress
, Value
+ Addend
);
979 writeInt64BE(LocalAddress
, Value
+ Addend
);
984 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry
&Section
,
985 uint64_t Offset
, uint64_t Value
,
986 uint32_t Type
, int64_t Addend
) {
987 bool isBE
= Arch
== Triple::bpfeb
;
991 report_fatal_error("Relocation type not implemented yet!");
993 case ELF::R_BPF_NONE
:
994 case ELF::R_BPF_64_64
:
995 case ELF::R_BPF_64_32
:
996 case ELF::R_BPF_64_NODYLD32
:
998 case ELF::R_BPF_64_ABS64
: {
999 write(isBE
, Section
.getAddressWithOffset(Offset
), Value
+ Addend
);
1000 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value
+ Addend
)) << " at "
1001 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
1004 case ELF::R_BPF_64_ABS32
: {
1006 assert(Value
<= UINT32_MAX
);
1007 write(isBE
, Section
.getAddressWithOffset(Offset
), static_cast<uint32_t>(Value
));
1008 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value
) << " at "
1009 << format("%p\n", Section
.getAddressWithOffset(Offset
)));
1015 // The target location for the relocation is described by RE.SectionID and
1016 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
1017 // SectionEntry has three members describing its location.
1018 // SectionEntry::Address is the address at which the section has been loaded
1019 // into memory in the current (host) process. SectionEntry::LoadAddress is the
1020 // address that the section will have in the target process.
1021 // SectionEntry::ObjAddress is the address of the bits for this section in the
1022 // original emitted object image (also in the current address space).
1024 // Relocations will be applied as if the section were loaded at
1025 // SectionEntry::LoadAddress, but they will be applied at an address based
1026 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
1027 // Target memory contents if they are required for value calculations.
1029 // The Value parameter here is the load address of the symbol for the
1030 // relocation to be applied. For relocations which refer to symbols in the
1031 // current object Value will be the LoadAddress of the section in which
1032 // the symbol resides (RE.Addend provides additional information about the
1033 // symbol location). For external symbols, Value will be the address of the
1034 // symbol in the target address space.
1035 void RuntimeDyldELF::resolveRelocation(const RelocationEntry
&RE
,
1037 const SectionEntry
&Section
= Sections
[RE
.SectionID
];
1038 return resolveRelocation(Section
, RE
.Offset
, Value
, RE
.RelType
, RE
.Addend
,
1039 RE
.SymOffset
, RE
.SectionID
);
1042 void RuntimeDyldELF::resolveRelocation(const SectionEntry
&Section
,
1043 uint64_t Offset
, uint64_t Value
,
1044 uint32_t Type
, int64_t Addend
,
1045 uint64_t SymOffset
, SID SectionID
) {
1047 case Triple::x86_64
:
1048 resolveX86_64Relocation(Section
, Offset
, Value
, Type
, Addend
, SymOffset
);
1051 resolveX86Relocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1052 (uint32_t)(Addend
& 0xffffffffL
));
1054 case Triple::aarch64
:
1055 case Triple::aarch64_be
:
1056 resolveAArch64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1058 case Triple::arm
: // Fall through.
1061 case Triple::thumbeb
:
1062 resolveARMRelocation(Section
, Offset
, (uint32_t)(Value
& 0xffffffffL
), Type
,
1063 (uint32_t)(Addend
& 0xffffffffL
));
1065 case Triple::ppc
: // Fall through.
1067 resolvePPC32Relocation(Section
, Offset
, Value
, Type
, Addend
);
1069 case Triple::ppc64
: // Fall through.
1070 case Triple::ppc64le
:
1071 resolvePPC64Relocation(Section
, Offset
, Value
, Type
, Addend
);
1073 case Triple::systemz
:
1074 resolveSystemZRelocation(Section
, Offset
, Value
, Type
, Addend
);
1078 resolveBPFRelocation(Section
, Offset
, Value
, Type
, Addend
);
1081 llvm_unreachable("Unsupported CPU type!");
1085 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID
, uint64_t Offset
) const {
1086 return (void *)(Sections
[SectionID
].getObjAddress() + Offset
);
1089 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID
, uint64_t Offset
, unsigned RelType
, RelocationValueRef Value
) {
1090 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
, Value
.Offset
);
1091 if (Value
.SymbolName
)
1092 addRelocationForSymbol(RE
, Value
.SymbolName
);
1094 addRelocationForSection(RE
, Value
.SectionID
);
1097 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType
,
1098 bool IsLocal
) const {
1100 case ELF::R_MICROMIPS_GOT16
:
1102 return ELF::R_MICROMIPS_LO16
;
1104 case ELF::R_MICROMIPS_HI16
:
1105 return ELF::R_MICROMIPS_LO16
;
1106 case ELF::R_MIPS_GOT16
:
1108 return ELF::R_MIPS_LO16
;
1110 case ELF::R_MIPS_HI16
:
1111 return ELF::R_MIPS_LO16
;
1112 case ELF::R_MIPS_PCHI16
:
1113 return ELF::R_MIPS_PCLO16
;
1117 return ELF::R_MIPS_NONE
;
1120 // Sometimes we don't need to create thunk for a branch.
1121 // This typically happens when branch target is located
1122 // in the same object file. In such case target is either
1123 // a weak symbol or symbol in a different executable section.
1124 // This function checks if branch target is located in the
1125 // same object file and if distance between source and target
1126 // fits R_AARCH64_CALL26 relocation. If both conditions are
1127 // met, it emits direct jump to the target and returns true.
1128 // Otherwise false is returned and thunk is created.
1129 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1130 unsigned SectionID
, relocation_iterator RelI
,
1131 const RelocationValueRef
&Value
) {
1133 if (Value
.SymbolName
) {
1134 auto Loc
= GlobalSymbolTable
.find(Value
.SymbolName
);
1136 // Don't create direct branch for external symbols.
1137 if (Loc
== GlobalSymbolTable
.end())
1140 const auto &SymInfo
= Loc
->second
;
1142 uint64_t(Sections
[SymInfo
.getSectionID()].getLoadAddressWithOffset(
1143 SymInfo
.getOffset()));
1145 Address
= uint64_t(Sections
[Value
.SectionID
].getLoadAddress());
1147 uint64_t Offset
= RelI
->getOffset();
1148 uint64_t SourceAddress
= Sections
[SectionID
].getLoadAddressWithOffset(Offset
);
1150 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1151 // If distance between source and target is out of range then we should
1153 if (!isInt
<28>(Address
+ Value
.Addend
- SourceAddress
))
1156 resolveRelocation(Sections
[SectionID
], Offset
, Address
, RelI
->getType(),
1162 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID
,
1163 const RelocationValueRef
&Value
,
1164 relocation_iterator RelI
,
1167 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1168 SectionEntry
&Section
= Sections
[SectionID
];
1170 uint64_t Offset
= RelI
->getOffset();
1171 unsigned RelType
= RelI
->getType();
1172 // Look for an existing stub.
1173 StubMap::const_iterator i
= Stubs
.find(Value
);
1174 if (i
!= Stubs
.end()) {
1175 resolveRelocation(Section
, Offset
,
1176 (uint64_t)Section
.getAddressWithOffset(i
->second
),
1178 LLVM_DEBUG(dbgs() << " Stub function found\n");
1179 } else if (!resolveAArch64ShortBranch(SectionID
, RelI
, Value
)) {
1180 // Create a new stub function.
1181 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1182 Stubs
[Value
] = Section
.getStubOffset();
1183 uint8_t *StubTargetAddr
= createStubFunction(
1184 Section
.getAddressWithOffset(Section
.getStubOffset()));
1186 RelocationEntry
REmovz_g3(SectionID
, StubTargetAddr
- Section
.getAddress(),
1187 ELF::R_AARCH64_MOVW_UABS_G3
, Value
.Addend
);
1188 RelocationEntry
REmovk_g2(SectionID
,
1189 StubTargetAddr
- Section
.getAddress() + 4,
1190 ELF::R_AARCH64_MOVW_UABS_G2_NC
, Value
.Addend
);
1191 RelocationEntry
REmovk_g1(SectionID
,
1192 StubTargetAddr
- Section
.getAddress() + 8,
1193 ELF::R_AARCH64_MOVW_UABS_G1_NC
, Value
.Addend
);
1194 RelocationEntry
REmovk_g0(SectionID
,
1195 StubTargetAddr
- Section
.getAddress() + 12,
1196 ELF::R_AARCH64_MOVW_UABS_G0_NC
, Value
.Addend
);
1198 if (Value
.SymbolName
) {
1199 addRelocationForSymbol(REmovz_g3
, Value
.SymbolName
);
1200 addRelocationForSymbol(REmovk_g2
, Value
.SymbolName
);
1201 addRelocationForSymbol(REmovk_g1
, Value
.SymbolName
);
1202 addRelocationForSymbol(REmovk_g0
, Value
.SymbolName
);
1204 addRelocationForSection(REmovz_g3
, Value
.SectionID
);
1205 addRelocationForSection(REmovk_g2
, Value
.SectionID
);
1206 addRelocationForSection(REmovk_g1
, Value
.SectionID
);
1207 addRelocationForSection(REmovk_g0
, Value
.SectionID
);
1209 resolveRelocation(Section
, Offset
,
1210 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(
1211 Section
.getStubOffset())),
1213 Section
.advanceStubOffset(getMaxStubSize());
1217 Expected
<relocation_iterator
>
1218 RuntimeDyldELF::processRelocationRef(
1219 unsigned SectionID
, relocation_iterator RelI
, const ObjectFile
&O
,
1220 ObjSectionToIDMap
&ObjSectionToID
, StubMap
&Stubs
) {
1221 const auto &Obj
= cast
<ELFObjectFileBase
>(O
);
1222 uint64_t RelType
= RelI
->getType();
1224 if (Expected
<int64_t> AddendOrErr
= ELFRelocationRef(*RelI
).getAddend())
1225 Addend
= *AddendOrErr
;
1227 consumeError(AddendOrErr
.takeError());
1228 elf_symbol_iterator Symbol
= RelI
->getSymbol();
1230 // Obtain the symbol name which is referenced in the relocation
1231 StringRef TargetName
;
1232 if (Symbol
!= Obj
.symbol_end()) {
1233 if (auto TargetNameOrErr
= Symbol
->getName())
1234 TargetName
= *TargetNameOrErr
;
1236 return TargetNameOrErr
.takeError();
1238 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType
<< " Addend: " << Addend
1239 << " TargetName: " << TargetName
<< "\n");
1240 RelocationValueRef Value
;
1241 // First search for the symbol in the local symbol table
1242 SymbolRef::Type SymType
= SymbolRef::ST_Unknown
;
1244 // Search for the symbol in the global symbol table
1245 RTDyldSymbolTable::const_iterator gsi
= GlobalSymbolTable
.end();
1246 if (Symbol
!= Obj
.symbol_end()) {
1247 gsi
= GlobalSymbolTable
.find(TargetName
.data());
1248 Expected
<SymbolRef::Type
> SymTypeOrErr
= Symbol
->getType();
1249 if (!SymTypeOrErr
) {
1251 raw_string_ostream
OS(Buf
);
1252 logAllUnhandledErrors(SymTypeOrErr
.takeError(), OS
);
1253 report_fatal_error(Twine(OS
.str()));
1255 SymType
= *SymTypeOrErr
;
1257 if (gsi
!= GlobalSymbolTable
.end()) {
1258 const auto &SymInfo
= gsi
->second
;
1259 Value
.SectionID
= SymInfo
.getSectionID();
1260 Value
.Offset
= SymInfo
.getOffset();
1261 Value
.Addend
= SymInfo
.getOffset() + Addend
;
1264 case SymbolRef::ST_Debug
: {
1265 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1266 // and can be changed by another developers. Maybe best way is add
1267 // a new symbol type ST_Section to SymbolRef and use it.
1268 auto SectionOrErr
= Symbol
->getSection();
1269 if (!SectionOrErr
) {
1271 raw_string_ostream
OS(Buf
);
1272 logAllUnhandledErrors(SectionOrErr
.takeError(), OS
);
1273 report_fatal_error(Twine(OS
.str()));
1275 section_iterator si
= *SectionOrErr
;
1276 if (si
== Obj
.section_end())
1277 llvm_unreachable("Symbol section not found, bad object file format!");
1278 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1279 bool isCode
= si
->isText();
1280 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, (*si
), isCode
,
1282 Value
.SectionID
= *SectionIDOrErr
;
1284 return SectionIDOrErr
.takeError();
1285 Value
.Addend
= Addend
;
1288 case SymbolRef::ST_Data
:
1289 case SymbolRef::ST_Function
:
1290 case SymbolRef::ST_Other
:
1291 case SymbolRef::ST_Unknown
: {
1292 Value
.SymbolName
= TargetName
.data();
1293 Value
.Addend
= Addend
;
1295 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1296 // will manifest here as a NULL symbol name.
1297 // We can set this as a valid (but empty) symbol name, and rely
1298 // on addRelocationForSymbol to handle this.
1299 if (!Value
.SymbolName
)
1300 Value
.SymbolName
= "";
1304 llvm_unreachable("Unresolved symbol type!");
1309 uint64_t Offset
= RelI
->getOffset();
1311 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID
<< " Offset: " << Offset
1313 if ((Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)) {
1314 if ((RelType
== ELF::R_AARCH64_CALL26
||
1315 RelType
== ELF::R_AARCH64_JUMP26
) &&
1316 MemMgr
.allowStubAllocation()) {
1317 resolveAArch64Branch(SectionID
, Value
, RelI
, Stubs
);
1318 } else if (RelType
== ELF::R_AARCH64_ADR_GOT_PAGE
) {
1319 // Create new GOT entry or find existing one. If GOT entry is
1320 // to be created, then we also emit ABS64 relocation for it.
1321 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1322 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1323 ELF::R_AARCH64_ADR_PREL_PG_HI21
);
1325 } else if (RelType
== ELF::R_AARCH64_LD64_GOT_LO12_NC
) {
1326 uint64_t GOTOffset
= findOrAllocGOTEntry(Value
, ELF::R_AARCH64_ABS64
);
1327 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1328 ELF::R_AARCH64_LDST64_ABS_LO12_NC
);
1330 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1332 } else if (Arch
== Triple::arm
) {
1333 if (RelType
== ELF::R_ARM_PC24
|| RelType
== ELF::R_ARM_CALL
||
1334 RelType
== ELF::R_ARM_JUMP24
) {
1335 // This is an ARM branch relocation, need to use a stub function.
1336 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1337 SectionEntry
&Section
= Sections
[SectionID
];
1339 // Look for an existing stub.
1340 StubMap::const_iterator i
= Stubs
.find(Value
);
1341 if (i
!= Stubs
.end()) {
1344 reinterpret_cast<uint64_t>(Section
.getAddressWithOffset(i
->second
)),
1346 LLVM_DEBUG(dbgs() << " Stub function found\n");
1348 // Create a new stub function.
1349 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1350 Stubs
[Value
] = Section
.getStubOffset();
1351 uint8_t *StubTargetAddr
= createStubFunction(
1352 Section
.getAddressWithOffset(Section
.getStubOffset()));
1353 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1354 ELF::R_ARM_ABS32
, Value
.Addend
);
1355 if (Value
.SymbolName
)
1356 addRelocationForSymbol(RE
, Value
.SymbolName
);
1358 addRelocationForSection(RE
, Value
.SectionID
);
1360 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1361 Section
.getAddressWithOffset(
1362 Section
.getStubOffset())),
1364 Section
.advanceStubOffset(getMaxStubSize());
1367 uint32_t *Placeholder
=
1368 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID
, Offset
));
1369 if (RelType
== ELF::R_ARM_PREL31
|| RelType
== ELF::R_ARM_TARGET1
||
1370 RelType
== ELF::R_ARM_ABS32
) {
1371 Value
.Addend
+= *Placeholder
;
1372 } else if (RelType
== ELF::R_ARM_MOVW_ABS_NC
|| RelType
== ELF::R_ARM_MOVT_ABS
) {
1373 // See ELF for ARM documentation
1374 Value
.Addend
+= (int16_t)((*Placeholder
& 0xFFF) | (((*Placeholder
>> 16) & 0xF) << 12));
1376 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1378 } else if (IsMipsO32ABI
) {
1379 uint8_t *Placeholder
= reinterpret_cast<uint8_t *>(
1380 computePlaceholderAddress(SectionID
, Offset
));
1381 uint32_t Opcode
= readBytesUnaligned(Placeholder
, 4);
1382 if (RelType
== ELF::R_MIPS_26
) {
1383 // This is an Mips branch relocation, need to use a stub function.
1384 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1385 SectionEntry
&Section
= Sections
[SectionID
];
1387 // Extract the addend from the instruction.
1388 // We shift up by two since the Value will be down shifted again
1389 // when applying the relocation.
1390 uint32_t Addend
= (Opcode
& 0x03ffffff) << 2;
1392 Value
.Addend
+= Addend
;
1394 // Look up for existing stub.
1395 StubMap::const_iterator i
= Stubs
.find(Value
);
1396 if (i
!= Stubs
.end()) {
1397 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1398 addRelocationForSection(RE
, SectionID
);
1399 LLVM_DEBUG(dbgs() << " Stub function found\n");
1401 // Create a new stub function.
1402 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1403 Stubs
[Value
] = Section
.getStubOffset();
1405 unsigned AbiVariant
= Obj
.getPlatformFlags();
1407 uint8_t *StubTargetAddr
= createStubFunction(
1408 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1410 // Creating Hi and Lo relocations for the filled stub instructions.
1411 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1412 ELF::R_MIPS_HI16
, Value
.Addend
);
1413 RelocationEntry
RELo(SectionID
,
1414 StubTargetAddr
- Section
.getAddress() + 4,
1415 ELF::R_MIPS_LO16
, Value
.Addend
);
1417 if (Value
.SymbolName
) {
1418 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1419 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1421 addRelocationForSection(REHi
, Value
.SectionID
);
1422 addRelocationForSection(RELo
, Value
.SectionID
);
1425 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1426 addRelocationForSection(RE
, SectionID
);
1427 Section
.advanceStubOffset(getMaxStubSize());
1429 } else if (RelType
== ELF::R_MIPS_HI16
|| RelType
== ELF::R_MIPS_PCHI16
) {
1430 int64_t Addend
= (Opcode
& 0x0000ffff) << 16;
1431 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1432 PendingRelocs
.push_back(std::make_pair(Value
, RE
));
1433 } else if (RelType
== ELF::R_MIPS_LO16
|| RelType
== ELF::R_MIPS_PCLO16
) {
1434 int64_t Addend
= Value
.Addend
+ SignExtend32
<16>(Opcode
& 0x0000ffff);
1435 for (auto I
= PendingRelocs
.begin(); I
!= PendingRelocs
.end();) {
1436 const RelocationValueRef
&MatchingValue
= I
->first
;
1437 RelocationEntry
&Reloc
= I
->second
;
1438 if (MatchingValue
== Value
&&
1439 RelType
== getMatchingLoRelocation(Reloc
.RelType
) &&
1440 SectionID
== Reloc
.SectionID
) {
1441 Reloc
.Addend
+= Addend
;
1442 if (Value
.SymbolName
)
1443 addRelocationForSymbol(Reloc
, Value
.SymbolName
);
1445 addRelocationForSection(Reloc
, Value
.SectionID
);
1446 I
= PendingRelocs
.erase(I
);
1450 RelocationEntry
RE(SectionID
, Offset
, RelType
, Addend
);
1451 if (Value
.SymbolName
)
1452 addRelocationForSymbol(RE
, Value
.SymbolName
);
1454 addRelocationForSection(RE
, Value
.SectionID
);
1456 if (RelType
== ELF::R_MIPS_32
)
1457 Value
.Addend
+= Opcode
;
1458 else if (RelType
== ELF::R_MIPS_PC16
)
1459 Value
.Addend
+= SignExtend32
<18>((Opcode
& 0x0000ffff) << 2);
1460 else if (RelType
== ELF::R_MIPS_PC19_S2
)
1461 Value
.Addend
+= SignExtend32
<21>((Opcode
& 0x0007ffff) << 2);
1462 else if (RelType
== ELF::R_MIPS_PC21_S2
)
1463 Value
.Addend
+= SignExtend32
<23>((Opcode
& 0x001fffff) << 2);
1464 else if (RelType
== ELF::R_MIPS_PC26_S2
)
1465 Value
.Addend
+= SignExtend32
<28>((Opcode
& 0x03ffffff) << 2);
1466 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1468 } else if (IsMipsN32ABI
|| IsMipsN64ABI
) {
1469 uint32_t r_type
= RelType
& 0xff;
1470 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1471 if (r_type
== ELF::R_MIPS_CALL16
|| r_type
== ELF::R_MIPS_GOT_PAGE
1472 || r_type
== ELF::R_MIPS_GOT_DISP
) {
1473 StringMap
<uint64_t>::iterator i
= GOTSymbolOffsets
.find(TargetName
);
1474 if (i
!= GOTSymbolOffsets
.end())
1475 RE
.SymOffset
= i
->second
;
1477 RE
.SymOffset
= allocateGOTEntries(1);
1478 GOTSymbolOffsets
[TargetName
] = RE
.SymOffset
;
1480 if (Value
.SymbolName
)
1481 addRelocationForSymbol(RE
, Value
.SymbolName
);
1483 addRelocationForSection(RE
, Value
.SectionID
);
1484 } else if (RelType
== ELF::R_MIPS_26
) {
1485 // This is an Mips branch relocation, need to use a stub function.
1486 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1487 SectionEntry
&Section
= Sections
[SectionID
];
1489 // Look up for existing stub.
1490 StubMap::const_iterator i
= Stubs
.find(Value
);
1491 if (i
!= Stubs
.end()) {
1492 RelocationEntry
RE(SectionID
, Offset
, RelType
, i
->second
);
1493 addRelocationForSection(RE
, SectionID
);
1494 LLVM_DEBUG(dbgs() << " Stub function found\n");
1496 // Create a new stub function.
1497 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1498 Stubs
[Value
] = Section
.getStubOffset();
1500 unsigned AbiVariant
= Obj
.getPlatformFlags();
1502 uint8_t *StubTargetAddr
= createStubFunction(
1503 Section
.getAddressWithOffset(Section
.getStubOffset()), AbiVariant
);
1506 // Creating Hi and Lo relocations for the filled stub instructions.
1507 RelocationEntry
REHi(SectionID
, StubTargetAddr
- Section
.getAddress(),
1508 ELF::R_MIPS_HI16
, Value
.Addend
);
1509 RelocationEntry
RELo(SectionID
,
1510 StubTargetAddr
- Section
.getAddress() + 4,
1511 ELF::R_MIPS_LO16
, Value
.Addend
);
1512 if (Value
.SymbolName
) {
1513 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1514 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1516 addRelocationForSection(REHi
, Value
.SectionID
);
1517 addRelocationForSection(RELo
, Value
.SectionID
);
1520 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1522 RelocationEntry
REHighest(SectionID
,
1523 StubTargetAddr
- Section
.getAddress(),
1524 ELF::R_MIPS_HIGHEST
, Value
.Addend
);
1525 RelocationEntry
REHigher(SectionID
,
1526 StubTargetAddr
- Section
.getAddress() + 4,
1527 ELF::R_MIPS_HIGHER
, Value
.Addend
);
1528 RelocationEntry
REHi(SectionID
,
1529 StubTargetAddr
- Section
.getAddress() + 12,
1530 ELF::R_MIPS_HI16
, Value
.Addend
);
1531 RelocationEntry
RELo(SectionID
,
1532 StubTargetAddr
- Section
.getAddress() + 20,
1533 ELF::R_MIPS_LO16
, Value
.Addend
);
1534 if (Value
.SymbolName
) {
1535 addRelocationForSymbol(REHighest
, Value
.SymbolName
);
1536 addRelocationForSymbol(REHigher
, Value
.SymbolName
);
1537 addRelocationForSymbol(REHi
, Value
.SymbolName
);
1538 addRelocationForSymbol(RELo
, Value
.SymbolName
);
1540 addRelocationForSection(REHighest
, Value
.SectionID
);
1541 addRelocationForSection(REHigher
, Value
.SectionID
);
1542 addRelocationForSection(REHi
, Value
.SectionID
);
1543 addRelocationForSection(RELo
, Value
.SectionID
);
1546 RelocationEntry
RE(SectionID
, Offset
, RelType
, Section
.getStubOffset());
1547 addRelocationForSection(RE
, SectionID
);
1548 Section
.advanceStubOffset(getMaxStubSize());
1551 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1554 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1555 if (RelType
== ELF::R_PPC64_REL24
) {
1556 // Determine ABI variant in use for this object.
1557 unsigned AbiVariant
= Obj
.getPlatformFlags();
1558 AbiVariant
&= ELF::EF_PPC64_ABI
;
1559 // A PPC branch relocation will need a stub function if the target is
1560 // an external symbol (either Value.SymbolName is set, or SymType is
1561 // Symbol::ST_Unknown) or if the target address is not within the
1562 // signed 24-bits branch address.
1563 SectionEntry
&Section
= Sections
[SectionID
];
1564 uint8_t *Target
= Section
.getAddressWithOffset(Offset
);
1565 bool RangeOverflow
= false;
1566 bool IsExtern
= Value
.SymbolName
|| SymType
== SymbolRef::ST_Unknown
;
1568 if (AbiVariant
!= 2) {
1569 // In the ELFv1 ABI, a function call may point to the .opd entry,
1570 // so the final symbol value is calculated based on the relocation
1571 // values in the .opd section.
1572 if (auto Err
= findOPDEntrySection(Obj
, ObjSectionToID
, Value
))
1573 return std::move(Err
);
1575 // In the ELFv2 ABI, a function symbol may provide a local entry
1576 // point, which must be used for direct calls.
1577 if (Value
.SectionID
== SectionID
){
1578 uint8_t SymOther
= Symbol
->getOther();
1579 Value
.Addend
+= ELF::decodePPC64LocalEntryOffset(SymOther
);
1582 uint8_t *RelocTarget
=
1583 Sections
[Value
.SectionID
].getAddressWithOffset(Value
.Addend
);
1584 int64_t delta
= static_cast<int64_t>(Target
- RelocTarget
);
1585 // If it is within 26-bits branch range, just set the branch target
1586 if (SignExtend64
<26>(delta
) != delta
) {
1587 RangeOverflow
= true;
1588 } else if ((AbiVariant
!= 2) ||
1589 (AbiVariant
== 2 && Value
.SectionID
== SectionID
)) {
1590 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1591 addRelocationForSection(RE
, Value
.SectionID
);
1594 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
) ||
1596 // It is an external symbol (either Value.SymbolName is set, or
1597 // SymType is SymbolRef::ST_Unknown) or out of range.
1598 StubMap::const_iterator i
= Stubs
.find(Value
);
1599 if (i
!= Stubs
.end()) {
1600 // Symbol function stub already created, just relocate to it
1601 resolveRelocation(Section
, Offset
,
1602 reinterpret_cast<uint64_t>(
1603 Section
.getAddressWithOffset(i
->second
)),
1605 LLVM_DEBUG(dbgs() << " Stub function found\n");
1607 // Create a new stub function.
1608 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1609 Stubs
[Value
] = Section
.getStubOffset();
1610 uint8_t *StubTargetAddr
= createStubFunction(
1611 Section
.getAddressWithOffset(Section
.getStubOffset()),
1613 RelocationEntry
RE(SectionID
, StubTargetAddr
- Section
.getAddress(),
1614 ELF::R_PPC64_ADDR64
, Value
.Addend
);
1616 // Generates the 64-bits address loads as exemplified in section
1617 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1618 // apply to the low part of the instructions, so we have to update
1619 // the offset according to the target endianness.
1620 uint64_t StubRelocOffset
= StubTargetAddr
- Section
.getAddress();
1621 if (!IsTargetLittleEndian
)
1622 StubRelocOffset
+= 2;
1624 RelocationEntry
REhst(SectionID
, StubRelocOffset
+ 0,
1625 ELF::R_PPC64_ADDR16_HIGHEST
, Value
.Addend
);
1626 RelocationEntry
REhr(SectionID
, StubRelocOffset
+ 4,
1627 ELF::R_PPC64_ADDR16_HIGHER
, Value
.Addend
);
1628 RelocationEntry
REh(SectionID
, StubRelocOffset
+ 12,
1629 ELF::R_PPC64_ADDR16_HI
, Value
.Addend
);
1630 RelocationEntry
REl(SectionID
, StubRelocOffset
+ 16,
1631 ELF::R_PPC64_ADDR16_LO
, Value
.Addend
);
1633 if (Value
.SymbolName
) {
1634 addRelocationForSymbol(REhst
, Value
.SymbolName
);
1635 addRelocationForSymbol(REhr
, Value
.SymbolName
);
1636 addRelocationForSymbol(REh
, Value
.SymbolName
);
1637 addRelocationForSymbol(REl
, Value
.SymbolName
);
1639 addRelocationForSection(REhst
, Value
.SectionID
);
1640 addRelocationForSection(REhr
, Value
.SectionID
);
1641 addRelocationForSection(REh
, Value
.SectionID
);
1642 addRelocationForSection(REl
, Value
.SectionID
);
1645 resolveRelocation(Section
, Offset
, reinterpret_cast<uint64_t>(
1646 Section
.getAddressWithOffset(
1647 Section
.getStubOffset())),
1649 Section
.advanceStubOffset(getMaxStubSize());
1651 if (IsExtern
|| (AbiVariant
== 2 && Value
.SectionID
!= SectionID
)) {
1652 // Restore the TOC for external calls
1653 if (AbiVariant
== 2)
1654 writeInt32BE(Target
+ 4, 0xE8410018); // ld r2,24(r1)
1656 writeInt32BE(Target
+ 4, 0xE8410028); // ld r2,40(r1)
1659 } else if (RelType
== ELF::R_PPC64_TOC16
||
1660 RelType
== ELF::R_PPC64_TOC16_DS
||
1661 RelType
== ELF::R_PPC64_TOC16_LO
||
1662 RelType
== ELF::R_PPC64_TOC16_LO_DS
||
1663 RelType
== ELF::R_PPC64_TOC16_HI
||
1664 RelType
== ELF::R_PPC64_TOC16_HA
) {
1665 // These relocations are supposed to subtract the TOC address from
1666 // the final value. This does not fit cleanly into the RuntimeDyld
1667 // scheme, since there may be *two* sections involved in determining
1668 // the relocation value (the section of the symbol referred to by the
1669 // relocation, and the TOC section associated with the current module).
1671 // Fortunately, these relocations are currently only ever generated
1672 // referring to symbols that themselves reside in the TOC, which means
1673 // that the two sections are actually the same. Thus they cancel out
1674 // and we can immediately resolve the relocation right now.
1676 case ELF::R_PPC64_TOC16
: RelType
= ELF::R_PPC64_ADDR16
; break;
1677 case ELF::R_PPC64_TOC16_DS
: RelType
= ELF::R_PPC64_ADDR16_DS
; break;
1678 case ELF::R_PPC64_TOC16_LO
: RelType
= ELF::R_PPC64_ADDR16_LO
; break;
1679 case ELF::R_PPC64_TOC16_LO_DS
: RelType
= ELF::R_PPC64_ADDR16_LO_DS
; break;
1680 case ELF::R_PPC64_TOC16_HI
: RelType
= ELF::R_PPC64_ADDR16_HI
; break;
1681 case ELF::R_PPC64_TOC16_HA
: RelType
= ELF::R_PPC64_ADDR16_HA
; break;
1682 default: llvm_unreachable("Wrong relocation type.");
1685 RelocationValueRef TOCValue
;
1686 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, TOCValue
))
1687 return std::move(Err
);
1688 if (Value
.SymbolName
|| Value
.SectionID
!= TOCValue
.SectionID
)
1689 llvm_unreachable("Unsupported TOC relocation.");
1690 Value
.Addend
-= TOCValue
.Addend
;
1691 resolveRelocation(Sections
[SectionID
], Offset
, Value
.Addend
, RelType
, 0);
1693 // There are two ways to refer to the TOC address directly: either
1694 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1695 // ignored), or via any relocation that refers to the magic ".TOC."
1696 // symbols (in which case the addend is respected).
1697 if (RelType
== ELF::R_PPC64_TOC
) {
1698 RelType
= ELF::R_PPC64_ADDR64
;
1699 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1700 return std::move(Err
);
1701 } else if (TargetName
== ".TOC.") {
1702 if (auto Err
= findPPC64TOCSection(Obj
, ObjSectionToID
, Value
))
1703 return std::move(Err
);
1704 Value
.Addend
+= Addend
;
1707 RelocationEntry
RE(SectionID
, Offset
, RelType
, Value
.Addend
);
1709 if (Value
.SymbolName
)
1710 addRelocationForSymbol(RE
, Value
.SymbolName
);
1712 addRelocationForSection(RE
, Value
.SectionID
);
1714 } else if (Arch
== Triple::systemz
&&
1715 (RelType
== ELF::R_390_PLT32DBL
|| RelType
== ELF::R_390_GOTENT
)) {
1716 // Create function stubs for both PLT and GOT references, regardless of
1717 // whether the GOT reference is to data or code. The stub contains the
1718 // full address of the symbol, as needed by GOT references, and the
1719 // executable part only adds an overhead of 8 bytes.
1721 // We could try to conserve space by allocating the code and data
1722 // parts of the stub separately. However, as things stand, we allocate
1723 // a stub for every relocation, so using a GOT in JIT code should be
1724 // no less space efficient than using an explicit constant pool.
1725 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1726 SectionEntry
&Section
= Sections
[SectionID
];
1728 // Look for an existing stub.
1729 StubMap::const_iterator i
= Stubs
.find(Value
);
1730 uintptr_t StubAddress
;
1731 if (i
!= Stubs
.end()) {
1732 StubAddress
= uintptr_t(Section
.getAddressWithOffset(i
->second
));
1733 LLVM_DEBUG(dbgs() << " Stub function found\n");
1735 // Create a new stub function.
1736 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1738 uintptr_t BaseAddress
= uintptr_t(Section
.getAddress());
1740 alignTo(BaseAddress
+ Section
.getStubOffset(), getStubAlignment());
1741 unsigned StubOffset
= StubAddress
- BaseAddress
;
1743 Stubs
[Value
] = StubOffset
;
1744 createStubFunction((uint8_t *)StubAddress
);
1745 RelocationEntry
RE(SectionID
, StubOffset
+ 8, ELF::R_390_64
,
1747 if (Value
.SymbolName
)
1748 addRelocationForSymbol(RE
, Value
.SymbolName
);
1750 addRelocationForSection(RE
, Value
.SectionID
);
1751 Section
.advanceStubOffset(getMaxStubSize());
1754 if (RelType
== ELF::R_390_GOTENT
)
1755 resolveRelocation(Section
, Offset
, StubAddress
+ 8, ELF::R_390_PC32DBL
,
1758 resolveRelocation(Section
, Offset
, StubAddress
, RelType
, Addend
);
1759 } else if (Arch
== Triple::x86_64
) {
1760 if (RelType
== ELF::R_X86_64_PLT32
) {
1761 // The way the PLT relocations normally work is that the linker allocates
1763 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1764 // entry will then jump to an address provided by the GOT. On first call,
1766 // GOT address will point back into PLT code that resolves the symbol. After
1767 // the first call, the GOT entry points to the actual function.
1769 // For local functions we're ignoring all of that here and just replacing
1770 // the PLT32 relocation type with PC32, which will translate the relocation
1771 // into a PC-relative call directly to the function. For external symbols we
1772 // can't be sure the function will be within 2^32 bytes of the call site, so
1773 // we need to create a stub, which calls into the GOT. This case is
1774 // equivalent to the usual PLT implementation except that we use the stub
1775 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1776 // rather than allocating a PLT section.
1777 if (Value
.SymbolName
&& MemMgr
.allowStubAllocation()) {
1778 // This is a call to an external function.
1779 // Look for an existing stub.
1780 SectionEntry
*Section
= &Sections
[SectionID
];
1781 StubMap::const_iterator i
= Stubs
.find(Value
);
1782 uintptr_t StubAddress
;
1783 if (i
!= Stubs
.end()) {
1784 StubAddress
= uintptr_t(Section
->getAddress()) + i
->second
;
1785 LLVM_DEBUG(dbgs() << " Stub function found\n");
1787 // Create a new stub function (equivalent to a PLT entry).
1788 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1790 uintptr_t BaseAddress
= uintptr_t(Section
->getAddress());
1791 StubAddress
= alignTo(BaseAddress
+ Section
->getStubOffset(),
1792 getStubAlignment());
1793 unsigned StubOffset
= StubAddress
- BaseAddress
;
1794 Stubs
[Value
] = StubOffset
;
1795 createStubFunction((uint8_t *)StubAddress
);
1797 // Bump our stub offset counter
1798 Section
->advanceStubOffset(getMaxStubSize());
1800 // Allocate a GOT Entry
1801 uint64_t GOTOffset
= allocateGOTEntries(1);
1802 // This potentially creates a new Section which potentially
1803 // invalidates the Section pointer, so reload it.
1804 Section
= &Sections
[SectionID
];
1806 // The load of the GOT address has an addend of -4
1807 resolveGOTOffsetRelocation(SectionID
, StubOffset
+ 2, GOTOffset
- 4,
1808 ELF::R_X86_64_PC32
);
1810 // Fill in the value of the symbol we're targeting into the GOT
1811 addRelocationForSymbol(
1812 computeGOTOffsetRE(GOTOffset
, 0, ELF::R_X86_64_64
),
1816 // Make the target call a call into the stub table.
1817 resolveRelocation(*Section
, Offset
, StubAddress
, ELF::R_X86_64_PC32
,
1820 Value
.Addend
+= support::ulittle32_t::ref(
1821 computePlaceholderAddress(SectionID
, Offset
));
1822 processSimpleRelocation(SectionID
, Offset
, ELF::R_X86_64_PC32
, Value
);
1824 } else if (RelType
== ELF::R_X86_64_GOTPCREL
||
1825 RelType
== ELF::R_X86_64_GOTPCRELX
||
1826 RelType
== ELF::R_X86_64_REX_GOTPCRELX
) {
1827 uint64_t GOTOffset
= allocateGOTEntries(1);
1828 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
1829 ELF::R_X86_64_PC32
);
1831 // Fill in the value of the symbol we're targeting into the GOT
1832 RelocationEntry RE
=
1833 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1834 if (Value
.SymbolName
)
1835 addRelocationForSymbol(RE
, Value
.SymbolName
);
1837 addRelocationForSection(RE
, Value
.SectionID
);
1838 } else if (RelType
== ELF::R_X86_64_GOT64
) {
1839 // Fill in a 64-bit GOT offset.
1840 uint64_t GOTOffset
= allocateGOTEntries(1);
1841 resolveRelocation(Sections
[SectionID
], Offset
, GOTOffset
,
1842 ELF::R_X86_64_64
, 0);
1844 // Fill in the value of the symbol we're targeting into the GOT
1845 RelocationEntry RE
=
1846 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_64
);
1847 if (Value
.SymbolName
)
1848 addRelocationForSymbol(RE
, Value
.SymbolName
);
1850 addRelocationForSection(RE
, Value
.SectionID
);
1851 } else if (RelType
== ELF::R_X86_64_GOTPC32
) {
1852 // Materialize the address of the base of the GOT relative to the PC.
1853 // This doesn't create a GOT entry, but it does mean we need a GOT
1855 (void)allocateGOTEntries(0);
1856 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC32
);
1857 } else if (RelType
== ELF::R_X86_64_GOTPC64
) {
1858 (void)allocateGOTEntries(0);
1859 resolveGOTOffsetRelocation(SectionID
, Offset
, Addend
, ELF::R_X86_64_PC64
);
1860 } else if (RelType
== ELF::R_X86_64_GOTOFF64
) {
1861 // GOTOFF relocations ultimately require a section difference relocation.
1862 (void)allocateGOTEntries(0);
1863 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1864 } else if (RelType
== ELF::R_X86_64_PC32
) {
1865 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1866 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1867 } else if (RelType
== ELF::R_X86_64_PC64
) {
1868 Value
.Addend
+= support::ulittle64_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1869 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1870 } else if (RelType
== ELF::R_X86_64_GOTTPOFF
) {
1871 processX86_64GOTTPOFFRelocation(SectionID
, Offset
, Value
, Addend
);
1872 } else if (RelType
== ELF::R_X86_64_TLSGD
||
1873 RelType
== ELF::R_X86_64_TLSLD
) {
1874 // The next relocation must be the relocation for __tls_get_addr.
1876 auto &GetAddrRelocation
= *RelI
;
1877 processX86_64TLSRelocation(SectionID
, Offset
, RelType
, Value
, Addend
,
1880 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1883 if (Arch
== Triple::x86
) {
1884 Value
.Addend
+= support::ulittle32_t::ref(computePlaceholderAddress(SectionID
, Offset
));
1886 processSimpleRelocation(SectionID
, Offset
, RelType
, Value
);
1891 void RuntimeDyldELF::processX86_64GOTTPOFFRelocation(unsigned SectionID
,
1893 RelocationValueRef Value
,
1895 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
1896 // to replace the GOTTPOFF relocation with a TPOFF relocation. The spec
1897 // only mentions one optimization even though there are two different
1898 // code sequences for the Initial Exec TLS Model. We match the code to
1899 // find out which one was used.
1901 // A possible TLS code sequence and its replacement
1902 struct CodeSequence
{
1903 // The expected code sequence
1904 ArrayRef
<uint8_t> ExpectedCodeSequence
;
1905 // The negative offset of the GOTTPOFF relocation to the beginning of
1907 uint64_t TLSSequenceOffset
;
1908 // The new code sequence
1909 ArrayRef
<uint8_t> NewCodeSequence
;
1910 // The offset of the new TPOFF relocation
1911 uint64_t TpoffRelocationOffset
;
1914 std::array
<CodeSequence
, 2> CodeSequences
;
1916 // Initial Exec Code Model Sequence
1918 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
1919 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
1920 0x00, // mov %fs:0, %rax
1921 0x48, 0x03, 0x05, 0x00, 0x00, 0x00, 0x00 // add x@gotpoff(%rip),
1924 CodeSequences
[0].ExpectedCodeSequence
=
1925 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
1926 CodeSequences
[0].TLSSequenceOffset
= 12;
1928 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
1929 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:0, %rax
1930 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax), %rax
1932 CodeSequences
[0].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
1933 CodeSequences
[0].TpoffRelocationOffset
= 12;
1936 // Initial Exec Code Model Sequence, II
1938 static const std::initializer_list
<uint8_t> ExpectedCodeSequenceList
= {
1939 0x48, 0x8b, 0x05, 0x00, 0x00, 0x00, 0x00, // mov x@gotpoff(%rip), %rax
1940 0x64, 0x48, 0x8b, 0x00, 0x00, 0x00, 0x00 // mov %fs:(%rax), %rax
1942 CodeSequences
[1].ExpectedCodeSequence
=
1943 ArrayRef
<uint8_t>(ExpectedCodeSequenceList
);
1944 CodeSequences
[1].TLSSequenceOffset
= 3;
1946 static const std::initializer_list
<uint8_t> NewCodeSequenceList
= {
1947 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00, // 6 byte nop
1948 0x64, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00, // mov %fs:x@tpoff, %rax
1950 CodeSequences
[1].NewCodeSequence
= ArrayRef
<uint8_t>(NewCodeSequenceList
);
1951 CodeSequences
[1].TpoffRelocationOffset
= 10;
1954 bool Resolved
= false;
1955 auto &Section
= Sections
[SectionID
];
1956 for (const auto &C
: CodeSequences
) {
1957 assert(C
.ExpectedCodeSequence
.size() == C
.NewCodeSequence
.size() &&
1958 "Old and new code sequences must have the same size");
1960 if (Offset
< C
.TLSSequenceOffset
||
1961 (Offset
- C
.TLSSequenceOffset
+ C
.NewCodeSequence
.size()) >
1962 Section
.getSize()) {
1963 // This can't be a matching sequence as it doesn't fit in the current
1968 auto TLSSequenceStartOffset
= Offset
- C
.TLSSequenceOffset
;
1969 auto *TLSSequence
= Section
.getAddressWithOffset(TLSSequenceStartOffset
);
1970 if (ArrayRef
<uint8_t>(TLSSequence
, C
.ExpectedCodeSequence
.size()) !=
1971 C
.ExpectedCodeSequence
) {
1975 memcpy(TLSSequence
, C
.NewCodeSequence
.data(), C
.NewCodeSequence
.size());
1977 // The original GOTTPOFF relocation has an addend as it is PC relative,
1978 // so it needs to be corrected. The TPOFF32 relocation is used as an
1979 // absolute value (which is an offset from %fs:0), so remove the addend
1981 RelocationEntry
RE(SectionID
,
1982 TLSSequenceStartOffset
+ C
.TpoffRelocationOffset
,
1983 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
1985 if (Value
.SymbolName
)
1986 addRelocationForSymbol(RE
, Value
.SymbolName
);
1988 addRelocationForSection(RE
, Value
.SectionID
);
1995 // The GOTTPOFF relocation was not used in one of the sequences
1996 // described in the spec, so we can't optimize it to a TPOFF
1998 uint64_t GOTOffset
= allocateGOTEntries(1);
1999 resolveGOTOffsetRelocation(SectionID
, Offset
, GOTOffset
+ Addend
,
2000 ELF::R_X86_64_PC32
);
2001 RelocationEntry RE
=
2002 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, ELF::R_X86_64_TPOFF64
);
2003 if (Value
.SymbolName
)
2004 addRelocationForSymbol(RE
, Value
.SymbolName
);
2006 addRelocationForSection(RE
, Value
.SectionID
);
2010 void RuntimeDyldELF::processX86_64TLSRelocation(
2011 unsigned SectionID
, uint64_t Offset
, uint64_t RelType
,
2012 RelocationValueRef Value
, int64_t Addend
,
2013 const RelocationRef
&GetAddrRelocation
) {
2014 // Since we are statically linking and have no additional DSOs, we can resolve
2015 // the relocation directly without using __tls_get_addr.
2016 // Use the approach from "x86-64 Linker Optimizations" from the TLS spec
2017 // to replace it with the Local Exec relocation variant.
2019 // Find out whether the code was compiled with the large or small memory
2020 // model. For this we look at the next relocation which is the relocation
2021 // for the __tls_get_addr function. If it's a 32 bit relocation, it's the
2022 // small code model, with a 64 bit relocation it's the large code model.
2023 bool IsSmallCodeModel
;
2024 // Is the relocation for the __tls_get_addr a PC-relative GOT relocation?
2025 bool IsGOTPCRel
= false;
2027 switch (GetAddrRelocation
.getType()) {
2028 case ELF::R_X86_64_GOTPCREL
:
2029 case ELF::R_X86_64_REX_GOTPCRELX
:
2030 case ELF::R_X86_64_GOTPCRELX
:
2033 case ELF::R_X86_64_PLT32
:
2034 IsSmallCodeModel
= true;
2036 case ELF::R_X86_64_PLTOFF64
:
2037 IsSmallCodeModel
= false;
2041 "invalid TLS relocations for General/Local Dynamic TLS Model: "
2042 "expected PLT or GOT relocation for __tls_get_addr function");
2045 // The negative offset to the start of the TLS code sequence relative to
2046 // the offset of the TLSGD/TLSLD relocation
2047 uint64_t TLSSequenceOffset
;
2048 // The expected start of the code sequence
2049 ArrayRef
<uint8_t> ExpectedCodeSequence
;
2050 // The new TLS code sequence that will replace the existing code
2051 ArrayRef
<uint8_t> NewCodeSequence
;
2053 if (RelType
== ELF::R_X86_64_TLSGD
) {
2054 // The offset of the new TPOFF32 relocation (offset starting from the
2055 // beginning of the whole TLS sequence)
2056 uint64_t TpoffRelocOffset
;
2058 if (IsSmallCodeModel
) {
2060 static const std::initializer_list
<uint8_t> CodeSequence
= {
2061 0x66, // data16 (no-op prefix)
2062 0x48, 0x8d, 0x3d, 0x00, 0x00,
2063 0x00, 0x00, // lea <disp32>(%rip), %rdi
2064 0x66, 0x66, // two data16 prefixes
2065 0x48, // rex64 (no-op prefix)
2066 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2068 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2069 TLSSequenceOffset
= 4;
2071 // This code sequence is not described in the TLS spec but gcc
2072 // generates it sometimes.
2073 static const std::initializer_list
<uint8_t> CodeSequence
= {
2074 0x66, // data16 (no-op prefix)
2075 0x48, 0x8d, 0x3d, 0x00, 0x00,
2076 0x00, 0x00, // lea <disp32>(%rip), %rdi
2077 0x66, // data16 prefix (no-op prefix)
2078 0x48, // rex64 (no-op prefix)
2079 0xff, 0x15, 0x00, 0x00, 0x00,
2080 0x00 // call *__tls_get_addr@gotpcrel(%rip)
2082 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2083 TLSSequenceOffset
= 4;
2086 // The replacement code for the small code model. It's the same for
2088 static const std::initializer_list
<uint8_t> SmallSequence
= {
2089 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2090 0x00, // mov %fs:0, %rax
2091 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00 // lea x@tpoff(%rax),
2094 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2095 TpoffRelocOffset
= 12;
2097 static const std::initializer_list
<uint8_t> CodeSequence
= {
2098 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2100 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2101 0x00, // movabs $__tls_get_addr@pltoff, %rax
2102 0x48, 0x01, 0xd8, // add %rbx, %rax
2103 0xff, 0xd0 // call *%rax
2105 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2106 TLSSequenceOffset
= 3;
2108 // The replacement code for the large code model
2109 static const std::initializer_list
<uint8_t> LargeSequence
= {
2110 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00,
2111 0x00, // mov %fs:0, %rax
2112 0x48, 0x8d, 0x80, 0x00, 0x00, 0x00, 0x00, // lea x@tpoff(%rax),
2114 0x66, 0x0f, 0x1f, 0x44, 0x00, 0x00 // nopw 0x0(%rax,%rax,1)
2116 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2117 TpoffRelocOffset
= 12;
2120 // The TLSGD/TLSLD relocations are PC-relative, so they have an addend.
2121 // The new TPOFF32 relocations is used as an absolute offset from
2122 // %fs:0, so remove the TLSGD/TLSLD addend again.
2123 RelocationEntry
RE(SectionID
, Offset
- TLSSequenceOffset
+ TpoffRelocOffset
,
2124 ELF::R_X86_64_TPOFF32
, Value
.Addend
- Addend
);
2125 if (Value
.SymbolName
)
2126 addRelocationForSymbol(RE
, Value
.SymbolName
);
2128 addRelocationForSection(RE
, Value
.SectionID
);
2129 } else if (RelType
== ELF::R_X86_64_TLSLD
) {
2130 if (IsSmallCodeModel
) {
2132 static const std::initializer_list
<uint8_t> CodeSequence
= {
2133 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2134 0x00, 0xe8, 0x00, 0x00, 0x00, 0x00 // call __tls_get_addr@plt
2136 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2137 TLSSequenceOffset
= 3;
2139 // The replacement code for the small code model
2140 static const std::initializer_list
<uint8_t> SmallSequence
= {
2141 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2142 0x64, 0x48, 0x8b, 0x04, 0x25,
2143 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2145 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2147 // This code sequence is not described in the TLS spec but gcc
2148 // generates it sometimes.
2149 static const std::initializer_list
<uint8_t> CodeSequence
= {
2150 0x48, 0x8d, 0x3d, 0x00,
2151 0x00, 0x00, 0x00, // leaq <disp32>(%rip), %rdi
2152 0xff, 0x15, 0x00, 0x00,
2154 // *__tls_get_addr@gotpcrel(%rip)
2156 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2157 TLSSequenceOffset
= 3;
2159 // The replacement is code is just like above but it needs to be
2161 static const std::initializer_list
<uint8_t> SmallSequence
= {
2162 0x0f, 0x1f, 0x40, 0x00, // 4 byte nop
2163 0x64, 0x48, 0x8b, 0x04, 0x25,
2164 0x00, 0x00, 0x00, 0x00 // mov %fs:0, %rax
2166 NewCodeSequence
= ArrayRef
<uint8_t>(SmallSequence
);
2169 // This is the same sequence as for the TLSGD sequence with the large
2170 // memory model above
2171 static const std::initializer_list
<uint8_t> CodeSequence
= {
2172 0x48, 0x8d, 0x3d, 0x00, 0x00, 0x00, 0x00, // lea <disp32>(%rip),
2174 0x48, 0xb8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
2175 0x48, // movabs $__tls_get_addr@pltoff, %rax
2176 0x01, 0xd8, // add %rbx, %rax
2177 0xff, 0xd0 // call *%rax
2179 ExpectedCodeSequence
= ArrayRef
<uint8_t>(CodeSequence
);
2180 TLSSequenceOffset
= 3;
2182 // The replacement code for the large code model
2183 static const std::initializer_list
<uint8_t> LargeSequence
= {
2184 0x66, 0x66, 0x66, // three data16 prefixes (no-op)
2185 0x66, 0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x00, 0x00,
2186 0x00, // 10 byte nop
2187 0x64, 0x48, 0x8b, 0x04, 0x25, 0x00, 0x00, 0x00, 0x00 // mov %fs:0,%rax
2189 NewCodeSequence
= ArrayRef
<uint8_t>(LargeSequence
);
2192 llvm_unreachable("both TLS relocations handled above");
2195 assert(ExpectedCodeSequence
.size() == NewCodeSequence
.size() &&
2196 "Old and new code sequences must have the same size");
2198 auto &Section
= Sections
[SectionID
];
2199 if (Offset
< TLSSequenceOffset
||
2200 (Offset
- TLSSequenceOffset
+ NewCodeSequence
.size()) >
2201 Section
.getSize()) {
2202 report_fatal_error("unexpected end of section in TLS sequence");
2205 auto *TLSSequence
= Section
.getAddressWithOffset(Offset
- TLSSequenceOffset
);
2206 if (ArrayRef
<uint8_t>(TLSSequence
, ExpectedCodeSequence
.size()) !=
2207 ExpectedCodeSequence
) {
2209 "invalid TLS sequence for Global/Local Dynamic TLS Model");
2212 memcpy(TLSSequence
, NewCodeSequence
.data(), NewCodeSequence
.size());
2215 size_t RuntimeDyldELF::getGOTEntrySize() {
2216 // We don't use the GOT in all of these cases, but it's essentially free
2217 // to put them all here.
2220 case Triple::x86_64
:
2221 case Triple::aarch64
:
2222 case Triple::aarch64_be
:
2224 case Triple::ppc64le
:
2225 case Triple::systemz
:
2226 Result
= sizeof(uint64_t);
2231 Result
= sizeof(uint32_t);
2234 case Triple::mipsel
:
2235 case Triple::mips64
:
2236 case Triple::mips64el
:
2237 if (IsMipsO32ABI
|| IsMipsN32ABI
)
2238 Result
= sizeof(uint32_t);
2239 else if (IsMipsN64ABI
)
2240 Result
= sizeof(uint64_t);
2242 llvm_unreachable("Mips ABI not handled");
2245 llvm_unreachable("Unsupported CPU type!");
2250 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no
) {
2251 if (GOTSectionID
== 0) {
2252 GOTSectionID
= Sections
.size();
2253 // Reserve a section id. We'll allocate the section later
2254 // once we know the total size
2255 Sections
.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
2257 uint64_t StartOffset
= CurrentGOTIndex
* getGOTEntrySize();
2258 CurrentGOTIndex
+= no
;
2262 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef
&Value
,
2263 unsigned GOTRelType
) {
2264 auto E
= GOTOffsetMap
.insert({Value
, 0});
2266 uint64_t GOTOffset
= allocateGOTEntries(1);
2268 // Create relocation for newly created GOT entry
2269 RelocationEntry RE
=
2270 computeGOTOffsetRE(GOTOffset
, Value
.Offset
, GOTRelType
);
2271 if (Value
.SymbolName
)
2272 addRelocationForSymbol(RE
, Value
.SymbolName
);
2274 addRelocationForSection(RE
, Value
.SectionID
);
2276 E
.first
->second
= GOTOffset
;
2279 return E
.first
->second
;
2282 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID
,
2286 // Fill in the relative address of the GOT Entry into the stub
2287 RelocationEntry
GOTRE(SectionID
, Offset
, Type
, GOTOffset
);
2288 addRelocationForSection(GOTRE
, GOTSectionID
);
2291 RelocationEntry
RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset
,
2292 uint64_t SymbolOffset
,
2294 return RelocationEntry(GOTSectionID
, GOTOffset
, Type
, SymbolOffset
);
2297 void RuntimeDyldELF::processNewSymbol(const SymbolRef
&ObjSymbol
, SymbolTableEntry
& Symbol
) {
2298 // This should never return an error as `processNewSymbol` wouldn't have been
2299 // called if getFlags() returned an error before.
2300 auto ObjSymbolFlags
= cantFail(ObjSymbol
.getFlags());
2302 if (ObjSymbolFlags
& SymbolRef::SF_Indirect
) {
2303 if (IFuncStubSectionID
== 0) {
2304 // Create a dummy section for the ifunc stubs. It will be actually
2305 // allocated in finalizeLoad() below.
2306 IFuncStubSectionID
= Sections
.size();
2308 SectionEntry(".text.__llvm_IFuncStubs", nullptr, 0, 0, 0));
2309 // First 64B are reserverd for the IFunc resolver
2310 IFuncStubOffset
= 64;
2313 IFuncStubs
.push_back(IFuncStub
{IFuncStubOffset
, Symbol
});
2314 // Modify the symbol so that it points to the ifunc stub instead of to the
2315 // resolver function.
2316 Symbol
= SymbolTableEntry(IFuncStubSectionID
, IFuncStubOffset
,
2318 IFuncStubOffset
+= getMaxIFuncStubSize();
2322 Error
RuntimeDyldELF::finalizeLoad(const ObjectFile
&Obj
,
2323 ObjSectionToIDMap
&SectionMap
) {
2325 if (!PendingRelocs
.empty())
2326 return make_error
<RuntimeDyldError
>("Can't find matching LO16 reloc");
2328 // Create the IFunc stubs if necessary. This must be done before processing
2329 // the GOT entries, as the IFunc stubs may create some.
2330 if (IFuncStubSectionID
!= 0) {
2331 uint8_t *IFuncStubsAddr
= MemMgr
.allocateCodeSection(
2332 IFuncStubOffset
, 1, IFuncStubSectionID
, ".text.__llvm_IFuncStubs");
2333 if (!IFuncStubsAddr
)
2334 return make_error
<RuntimeDyldError
>(
2335 "Unable to allocate memory for IFunc stubs!");
2336 Sections
[IFuncStubSectionID
] =
2337 SectionEntry(".text.__llvm_IFuncStubs", IFuncStubsAddr
, IFuncStubOffset
,
2338 IFuncStubOffset
, 0);
2340 createIFuncResolver(IFuncStubsAddr
);
2342 LLVM_DEBUG(dbgs() << "Creating IFunc stubs SectionID: "
2343 << IFuncStubSectionID
<< " Addr: "
2344 << Sections
[IFuncStubSectionID
].getAddress() << '\n');
2345 for (auto &IFuncStub
: IFuncStubs
) {
2346 auto &Symbol
= IFuncStub
.OriginalSymbol
;
2347 LLVM_DEBUG(dbgs() << "\tSectionID: " << Symbol
.getSectionID()
2348 << " Offset: " << format("%p", Symbol
.getOffset())
2349 << " IFuncStubOffset: "
2350 << format("%p\n", IFuncStub
.StubOffset
));
2351 createIFuncStub(IFuncStubSectionID
, 0, IFuncStub
.StubOffset
,
2352 Symbol
.getSectionID(), Symbol
.getOffset());
2355 IFuncStubSectionID
= 0;
2356 IFuncStubOffset
= 0;
2360 // If necessary, allocate the global offset table
2361 if (GOTSectionID
!= 0) {
2362 // Allocate memory for the section
2363 size_t TotalSize
= CurrentGOTIndex
* getGOTEntrySize();
2364 uint8_t *Addr
= MemMgr
.allocateDataSection(TotalSize
, getGOTEntrySize(),
2365 GOTSectionID
, ".got", false);
2367 return make_error
<RuntimeDyldError
>("Unable to allocate memory for GOT!");
2369 Sections
[GOTSectionID
] =
2370 SectionEntry(".got", Addr
, TotalSize
, TotalSize
, 0);
2372 // For now, initialize all GOT entries to zero. We'll fill them in as
2373 // needed when GOT-based relocations are applied.
2374 memset(Addr
, 0, TotalSize
);
2375 if (IsMipsN32ABI
|| IsMipsN64ABI
) {
2376 // To correctly resolve Mips GOT relocations, we need a mapping from
2377 // object's sections to GOTs.
2378 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
2380 if (SI
->relocation_begin() != SI
->relocation_end()) {
2381 Expected
<section_iterator
> RelSecOrErr
= SI
->getRelocatedSection();
2383 return make_error
<RuntimeDyldError
>(
2384 toString(RelSecOrErr
.takeError()));
2386 section_iterator RelocatedSection
= *RelSecOrErr
;
2387 ObjSectionToIDMap::iterator i
= SectionMap
.find(*RelocatedSection
);
2388 assert(i
!= SectionMap
.end());
2389 SectionToGOTMap
[i
->second
] = GOTSectionID
;
2392 GOTSymbolOffsets
.clear();
2396 // Look for and record the EH frame section.
2397 ObjSectionToIDMap::iterator i
, e
;
2398 for (i
= SectionMap
.begin(), e
= SectionMap
.end(); i
!= e
; ++i
) {
2399 const SectionRef
&Section
= i
->first
;
2402 Expected
<StringRef
> NameOrErr
= Section
.getName();
2406 consumeError(NameOrErr
.takeError());
2408 if (Name
== ".eh_frame") {
2409 UnregisteredEHFrameSections
.push_back(i
->second
);
2414 GOTOffsetMap
.clear();
2416 CurrentGOTIndex
= 0;
2418 return Error::success();
2421 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile
&Obj
) const {
2425 void RuntimeDyldELF::createIFuncResolver(uint8_t *Addr
) const {
2426 if (Arch
== Triple::x86_64
) {
2427 // The adddres of the GOT1 entry is in %r11, the GOT2 entry is in %r11+8
2428 // (see createIFuncStub() for details)
2429 // The following code first saves all registers that contain the original
2430 // function arguments as those registers are not saved by the resolver
2431 // function. %r11 is saved as well so that the GOT2 entry can be updated
2432 // afterwards. Then it calls the actual IFunc resolver function whose
2433 // address is stored in GOT2. After the resolver function returns, all
2434 // saved registers are restored and the return value is written to GOT1.
2435 // Finally, jump to the now resolved function.
2437 const uint8_t StubCode
[] = {
2442 0x41, 0x50, // push %r8
2443 0x41, 0x51, // push %r9
2444 0x41, 0x53, // push %r11
2445 0x41, 0xff, 0x53, 0x08, // call *0x8(%r11)
2446 0x41, 0x5b, // pop %r11
2447 0x41, 0x59, // pop %r9
2448 0x41, 0x58, // pop %r8
2453 0x49, 0x89, 0x03, // mov %rax,(%r11)
2454 0xff, 0xe0 // jmp *%rax
2457 static_assert(sizeof(StubCode
) <= 64,
2458 "maximum size of the IFunc resolver is 64B");
2459 memcpy(Addr
, StubCode
, sizeof(StubCode
));
2462 "IFunc resolver is not supported for target architecture");
2466 void RuntimeDyldELF::createIFuncStub(unsigned IFuncStubSectionID
,
2467 uint64_t IFuncResolverOffset
,
2468 uint64_t IFuncStubOffset
,
2469 unsigned IFuncSectionID
,
2470 uint64_t IFuncOffset
) {
2471 auto &IFuncStubSection
= Sections
[IFuncStubSectionID
];
2472 auto *Addr
= IFuncStubSection
.getAddressWithOffset(IFuncStubOffset
);
2474 if (Arch
== Triple::x86_64
) {
2475 // The first instruction loads a PC-relative address into %r11 which is a
2476 // GOT entry for this stub. This initially contains the address to the
2477 // IFunc resolver. We can use %r11 here as it's caller saved but not used
2478 // to pass any arguments. In fact, x86_64 ABI even suggests using %r11 for
2479 // code in the PLT. The IFunc resolver will use %r11 to update the GOT
2482 // The next instruction just jumps to the address contained in the GOT
2483 // entry. As mentioned above, we do this two-step jump by first setting
2484 // %r11 so that the IFunc resolver has access to it.
2486 // The IFunc resolver of course also needs to know the actual address of
2487 // the actual IFunc resolver function. This will be stored in a GOT entry
2488 // right next to the first one for this stub. So, the IFunc resolver will
2489 // be able to call it with %r11+8.
2491 // In total, two adjacent GOT entries (+relocation) and one additional
2492 // relocation are required:
2493 // GOT1: Address of the IFunc resolver.
2494 // GOT2: Address of the IFunc resolver function.
2495 // IFuncStubOffset+3: 32-bit PC-relative address of GOT1.
2496 uint64_t GOT1
= allocateGOTEntries(2);
2497 uint64_t GOT2
= GOT1
+ getGOTEntrySize();
2499 RelocationEntry
RE1(GOTSectionID
, GOT1
, ELF::R_X86_64_64
,
2500 IFuncResolverOffset
, {});
2501 addRelocationForSection(RE1
, IFuncStubSectionID
);
2502 RelocationEntry
RE2(GOTSectionID
, GOT2
, ELF::R_X86_64_64
, IFuncOffset
, {});
2503 addRelocationForSection(RE2
, IFuncSectionID
);
2505 const uint8_t StubCode
[] = {
2506 0x4c, 0x8d, 0x1d, 0x00, 0x00, 0x00, 0x00, // leaq 0x0(%rip),%r11
2507 0x41, 0xff, 0x23 // jmpq *(%r11)
2509 assert(sizeof(StubCode
) <= getMaxIFuncStubSize() &&
2510 "IFunc stub size must not exceed getMaxIFuncStubSize()");
2511 memcpy(Addr
, StubCode
, sizeof(StubCode
));
2513 // The PC-relative value starts 4 bytes from the end of the leaq
2514 // instruction, so the addend is -4.
2515 resolveGOTOffsetRelocation(IFuncStubSectionID
, IFuncStubOffset
+ 3,
2516 GOT1
- 4, ELF::R_X86_64_PC32
);
2518 report_fatal_error("IFunc stub is not supported for target architecture");
2522 unsigned RuntimeDyldELF::getMaxIFuncStubSize() const {
2523 if (Arch
== Triple::x86_64
) {
2529 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef
&R
) const {
2530 unsigned RelTy
= R
.getType();
2531 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
)
2532 return RelTy
== ELF::R_AARCH64_ADR_GOT_PAGE
||
2533 RelTy
== ELF::R_AARCH64_LD64_GOT_LO12_NC
;
2535 if (Arch
== Triple::x86_64
)
2536 return RelTy
== ELF::R_X86_64_GOTPCREL
||
2537 RelTy
== ELF::R_X86_64_GOTPCRELX
||
2538 RelTy
== ELF::R_X86_64_GOT64
||
2539 RelTy
== ELF::R_X86_64_REX_GOTPCRELX
;
2543 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef
&R
) const {
2544 if (Arch
!= Triple::x86_64
)
2545 return true; // Conservative answer
2547 switch (R
.getType()) {
2549 return true; // Conservative answer
2552 case ELF::R_X86_64_GOTPCREL
:
2553 case ELF::R_X86_64_GOTPCRELX
:
2554 case ELF::R_X86_64_REX_GOTPCRELX
:
2555 case ELF::R_X86_64_GOTPC64
:
2556 case ELF::R_X86_64_GOT64
:
2557 case ELF::R_X86_64_GOTOFF64
:
2558 case ELF::R_X86_64_PC32
:
2559 case ELF::R_X86_64_PC64
:
2560 case ELF::R_X86_64_64
:
2561 // We know that these reloation types won't need a stub function. This list
2562 // can be extended as needed.