[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64StackTagging.cpp
blobb5b15022cda4fa3c552d3df404ad5af4aec3abfc
1 //===- AArch64StackTagging.cpp - Stack tagging in IR --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //===----------------------------------------------------------------------===//
10 #include "AArch64.h"
11 #include "AArch64InstrInfo.h"
12 #include "AArch64Subtarget.h"
13 #include "AArch64TargetMachine.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/CFG.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/PostDominators.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/Analysis/StackSafetyAnalysis.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/LiveRegUnits.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBuilder.h"
31 #include "llvm/CodeGen/MachineLoopInfo.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GetElementPtrTypeIterator.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstIterator.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/IntrinsicsAArch64.h"
46 #include "llvm/IR/Metadata.h"
47 #include "llvm/IR/ValueHandle.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Transforms/Utils/MemoryTaggingSupport.h"
55 #include <cassert>
56 #include <iterator>
57 #include <memory>
58 #include <utility>
60 using namespace llvm;
62 #define DEBUG_TYPE "aarch64-stack-tagging"
64 static cl::opt<bool> ClMergeInit(
65 "stack-tagging-merge-init", cl::Hidden, cl::init(true),
66 cl::desc("merge stack variable initializers with tagging when possible"));
68 static cl::opt<bool>
69 ClUseStackSafety("stack-tagging-use-stack-safety", cl::Hidden,
70 cl::init(true),
71 cl::desc("Use Stack Safety analysis results"));
73 static cl::opt<unsigned> ClScanLimit("stack-tagging-merge-init-scan-limit",
74 cl::init(40), cl::Hidden);
76 static cl::opt<unsigned>
77 ClMergeInitSizeLimit("stack-tagging-merge-init-size-limit", cl::init(272),
78 cl::Hidden);
80 static cl::opt<size_t> ClMaxLifetimes(
81 "stack-tagging-max-lifetimes-for-alloca", cl::Hidden, cl::init(3),
82 cl::ReallyHidden,
83 cl::desc("How many lifetime ends to handle for a single alloca."),
84 cl::Optional);
86 static const Align kTagGranuleSize = Align(16);
88 namespace {
90 class InitializerBuilder {
91 uint64_t Size;
92 const DataLayout *DL;
93 Value *BasePtr;
94 Function *SetTagFn;
95 Function *SetTagZeroFn;
96 Function *StgpFn;
98 // List of initializers sorted by start offset.
99 struct Range {
100 uint64_t Start, End;
101 Instruction *Inst;
103 SmallVector<Range, 4> Ranges;
104 // 8-aligned offset => 8-byte initializer
105 // Missing keys are zero initialized.
106 std::map<uint64_t, Value *> Out;
108 public:
109 InitializerBuilder(uint64_t Size, const DataLayout *DL, Value *BasePtr,
110 Function *SetTagFn, Function *SetTagZeroFn,
111 Function *StgpFn)
112 : Size(Size), DL(DL), BasePtr(BasePtr), SetTagFn(SetTagFn),
113 SetTagZeroFn(SetTagZeroFn), StgpFn(StgpFn) {}
115 bool addRange(uint64_t Start, uint64_t End, Instruction *Inst) {
116 auto I =
117 llvm::lower_bound(Ranges, Start, [](const Range &LHS, uint64_t RHS) {
118 return LHS.End <= RHS;
120 if (I != Ranges.end() && End > I->Start) {
121 // Overlap - bail.
122 return false;
124 Ranges.insert(I, {Start, End, Inst});
125 return true;
128 bool addStore(uint64_t Offset, StoreInst *SI, const DataLayout *DL) {
129 int64_t StoreSize = DL->getTypeStoreSize(SI->getOperand(0)->getType());
130 if (!addRange(Offset, Offset + StoreSize, SI))
131 return false;
132 IRBuilder<> IRB(SI);
133 applyStore(IRB, Offset, Offset + StoreSize, SI->getOperand(0));
134 return true;
137 bool addMemSet(uint64_t Offset, MemSetInst *MSI) {
138 uint64_t StoreSize = cast<ConstantInt>(MSI->getLength())->getZExtValue();
139 if (!addRange(Offset, Offset + StoreSize, MSI))
140 return false;
141 IRBuilder<> IRB(MSI);
142 applyMemSet(IRB, Offset, Offset + StoreSize,
143 cast<ConstantInt>(MSI->getValue()));
144 return true;
147 void applyMemSet(IRBuilder<> &IRB, int64_t Start, int64_t End,
148 ConstantInt *V) {
149 // Out[] does not distinguish between zero and undef, and we already know
150 // that this memset does not overlap with any other initializer. Nothing to
151 // do for memset(0).
152 if (V->isZero())
153 return;
154 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
155 uint64_t Cst = 0x0101010101010101UL;
156 int LowBits = Offset < Start ? (Start - Offset) * 8 : 0;
157 if (LowBits)
158 Cst = (Cst >> LowBits) << LowBits;
159 int HighBits = End - Offset < 8 ? (8 - (End - Offset)) * 8 : 0;
160 if (HighBits)
161 Cst = (Cst << HighBits) >> HighBits;
162 ConstantInt *C =
163 ConstantInt::get(IRB.getInt64Ty(), Cst * V->getZExtValue());
165 Value *&CurrentV = Out[Offset];
166 if (!CurrentV) {
167 CurrentV = C;
168 } else {
169 CurrentV = IRB.CreateOr(CurrentV, C);
174 // Take a 64-bit slice of the value starting at the given offset (in bytes).
175 // Offset can be negative. Pad with zeroes on both sides when necessary.
176 Value *sliceValue(IRBuilder<> &IRB, Value *V, int64_t Offset) {
177 if (Offset > 0) {
178 V = IRB.CreateLShr(V, Offset * 8);
179 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
180 } else if (Offset < 0) {
181 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
182 V = IRB.CreateShl(V, -Offset * 8);
183 } else {
184 V = IRB.CreateZExtOrTrunc(V, IRB.getInt64Ty());
186 return V;
189 void applyStore(IRBuilder<> &IRB, int64_t Start, int64_t End,
190 Value *StoredValue) {
191 StoredValue = flatten(IRB, StoredValue);
192 for (int64_t Offset = Start - Start % 8; Offset < End; Offset += 8) {
193 Value *V = sliceValue(IRB, StoredValue, Offset - Start);
194 Value *&CurrentV = Out[Offset];
195 if (!CurrentV) {
196 CurrentV = V;
197 } else {
198 CurrentV = IRB.CreateOr(CurrentV, V);
203 void generate(IRBuilder<> &IRB) {
204 LLVM_DEBUG(dbgs() << "Combined initializer\n");
205 // No initializers => the entire allocation is undef.
206 if (Ranges.empty()) {
207 emitUndef(IRB, 0, Size);
208 return;
211 // Look through 8-byte initializer list 16 bytes at a time;
212 // If one of the two 8-byte halfs is non-zero non-undef, emit STGP.
213 // Otherwise, emit zeroes up to next available item.
214 uint64_t LastOffset = 0;
215 for (uint64_t Offset = 0; Offset < Size; Offset += 16) {
216 auto I1 = Out.find(Offset);
217 auto I2 = Out.find(Offset + 8);
218 if (I1 == Out.end() && I2 == Out.end())
219 continue;
221 if (Offset > LastOffset)
222 emitZeroes(IRB, LastOffset, Offset - LastOffset);
224 Value *Store1 = I1 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
225 : I1->second;
226 Value *Store2 = I2 == Out.end() ? Constant::getNullValue(IRB.getInt64Ty())
227 : I2->second;
228 emitPair(IRB, Offset, Store1, Store2);
229 LastOffset = Offset + 16;
232 // memset(0) does not update Out[], therefore the tail can be either undef
233 // or zero.
234 if (LastOffset < Size)
235 emitZeroes(IRB, LastOffset, Size - LastOffset);
237 for (const auto &R : Ranges) {
238 R.Inst->eraseFromParent();
242 void emitZeroes(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
243 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
244 << ") zero\n");
245 Value *Ptr = BasePtr;
246 if (Offset)
247 Ptr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), Ptr, Offset);
248 IRB.CreateCall(SetTagZeroFn,
249 {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
252 void emitUndef(IRBuilder<> &IRB, uint64_t Offset, uint64_t Size) {
253 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + Size
254 << ") undef\n");
255 Value *Ptr = BasePtr;
256 if (Offset)
257 Ptr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), Ptr, Offset);
258 IRB.CreateCall(SetTagFn, {Ptr, ConstantInt::get(IRB.getInt64Ty(), Size)});
261 void emitPair(IRBuilder<> &IRB, uint64_t Offset, Value *A, Value *B) {
262 LLVM_DEBUG(dbgs() << " [" << Offset << ", " << Offset + 16 << "):\n");
263 LLVM_DEBUG(dbgs() << " " << *A << "\n " << *B << "\n");
264 Value *Ptr = BasePtr;
265 if (Offset)
266 Ptr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), Ptr, Offset);
267 IRB.CreateCall(StgpFn, {Ptr, A, B});
270 Value *flatten(IRBuilder<> &IRB, Value *V) {
271 if (V->getType()->isIntegerTy())
272 return V;
273 // vector of pointers -> vector of ints
274 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) {
275 LLVMContext &Ctx = IRB.getContext();
276 Type *EltTy = VecTy->getElementType();
277 if (EltTy->isPointerTy()) {
278 uint32_t EltSize = DL->getTypeSizeInBits(EltTy);
279 auto *NewTy = FixedVectorType::get(
280 IntegerType::get(Ctx, EltSize),
281 cast<FixedVectorType>(VecTy)->getNumElements());
282 V = IRB.CreatePointerCast(V, NewTy);
285 return IRB.CreateBitOrPointerCast(
286 V, IRB.getIntNTy(DL->getTypeStoreSize(V->getType()) * 8));
290 class AArch64StackTagging : public FunctionPass {
291 const bool MergeInit;
292 const bool UseStackSafety;
294 public:
295 static char ID; // Pass ID, replacement for typeid
297 AArch64StackTagging(bool IsOptNone = false)
298 : FunctionPass(ID),
299 MergeInit(ClMergeInit.getNumOccurrences() ? ClMergeInit : !IsOptNone),
300 UseStackSafety(ClUseStackSafety.getNumOccurrences() ? ClUseStackSafety
301 : !IsOptNone) {
302 initializeAArch64StackTaggingPass(*PassRegistry::getPassRegistry());
305 void tagAlloca(AllocaInst *AI, Instruction *InsertBefore, Value *Ptr,
306 uint64_t Size);
307 void untagAlloca(AllocaInst *AI, Instruction *InsertBefore, uint64_t Size);
309 Instruction *collectInitializers(Instruction *StartInst, Value *StartPtr,
310 uint64_t Size, InitializerBuilder &IB);
312 Instruction *insertBaseTaggedPointer(
313 const MapVector<AllocaInst *, memtag::AllocaInfo> &Allocas,
314 const DominatorTree *DT);
315 bool runOnFunction(Function &F) override;
317 StringRef getPassName() const override { return "AArch64 Stack Tagging"; }
319 private:
320 Function *F = nullptr;
321 Function *SetTagFunc = nullptr;
322 const DataLayout *DL = nullptr;
323 AAResults *AA = nullptr;
324 const StackSafetyGlobalInfo *SSI = nullptr;
326 void getAnalysisUsage(AnalysisUsage &AU) const override {
327 AU.setPreservesCFG();
328 if (UseStackSafety)
329 AU.addRequired<StackSafetyGlobalInfoWrapperPass>();
330 if (MergeInit)
331 AU.addRequired<AAResultsWrapperPass>();
335 } // end anonymous namespace
337 char AArch64StackTagging::ID = 0;
339 INITIALIZE_PASS_BEGIN(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
340 false, false)
341 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass)
343 INITIALIZE_PASS_END(AArch64StackTagging, DEBUG_TYPE, "AArch64 Stack Tagging",
344 false, false)
346 FunctionPass *llvm::createAArch64StackTaggingPass(bool IsOptNone) {
347 return new AArch64StackTagging(IsOptNone);
350 Instruction *AArch64StackTagging::collectInitializers(Instruction *StartInst,
351 Value *StartPtr,
352 uint64_t Size,
353 InitializerBuilder &IB) {
354 MemoryLocation AllocaLoc{StartPtr, Size};
355 Instruction *LastInst = StartInst;
356 BasicBlock::iterator BI(StartInst);
358 unsigned Count = 0;
359 for (; Count < ClScanLimit && !BI->isTerminator(); ++BI) {
360 if (!isa<DbgInfoIntrinsic>(*BI))
361 ++Count;
363 if (isNoModRef(AA->getModRefInfo(&*BI, AllocaLoc)))
364 continue;
366 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
367 // If the instruction is readnone, ignore it, otherwise bail out. We
368 // don't even allow readonly here because we don't want something like:
369 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
370 if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
371 break;
372 continue;
375 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
376 if (!NextStore->isSimple())
377 break;
379 // Check to see if this store is to a constant offset from the start ptr.
380 std::optional<int64_t> Offset =
381 NextStore->getPointerOperand()->getPointerOffsetFrom(StartPtr, *DL);
382 if (!Offset)
383 break;
385 if (!IB.addStore(*Offset, NextStore, DL))
386 break;
387 LastInst = NextStore;
388 } else {
389 MemSetInst *MSI = cast<MemSetInst>(BI);
391 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
392 break;
394 if (!isa<ConstantInt>(MSI->getValue()))
395 break;
397 // Check to see if this store is to a constant offset from the start ptr.
398 std::optional<int64_t> Offset =
399 MSI->getDest()->getPointerOffsetFrom(StartPtr, *DL);
400 if (!Offset)
401 break;
403 if (!IB.addMemSet(*Offset, MSI))
404 break;
405 LastInst = MSI;
408 return LastInst;
411 void AArch64StackTagging::tagAlloca(AllocaInst *AI, Instruction *InsertBefore,
412 Value *Ptr, uint64_t Size) {
413 auto SetTagZeroFunc =
414 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag_zero);
415 auto StgpFunc =
416 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_stgp);
418 InitializerBuilder IB(Size, DL, Ptr, SetTagFunc, SetTagZeroFunc, StgpFunc);
419 bool LittleEndian =
420 Triple(AI->getModule()->getTargetTriple()).isLittleEndian();
421 // Current implementation of initializer merging assumes little endianness.
422 if (MergeInit && !F->hasOptNone() && LittleEndian &&
423 Size < ClMergeInitSizeLimit) {
424 LLVM_DEBUG(dbgs() << "collecting initializers for " << *AI
425 << ", size = " << Size << "\n");
426 InsertBefore = collectInitializers(InsertBefore, Ptr, Size, IB);
429 IRBuilder<> IRB(InsertBefore);
430 IB.generate(IRB);
433 void AArch64StackTagging::untagAlloca(AllocaInst *AI, Instruction *InsertBefore,
434 uint64_t Size) {
435 IRBuilder<> IRB(InsertBefore);
436 IRB.CreateCall(SetTagFunc, {IRB.CreatePointerCast(AI, IRB.getPtrTy()),
437 ConstantInt::get(IRB.getInt64Ty(), Size)});
440 Instruction *AArch64StackTagging::insertBaseTaggedPointer(
441 const MapVector<AllocaInst *, memtag::AllocaInfo> &AllocasToInstrument,
442 const DominatorTree *DT) {
443 BasicBlock *PrologueBB = nullptr;
444 // Try sinking IRG as deep as possible to avoid hurting shrink wrap.
445 for (auto &I : AllocasToInstrument) {
446 const memtag::AllocaInfo &Info = I.second;
447 AllocaInst *AI = Info.AI;
448 if (!PrologueBB) {
449 PrologueBB = AI->getParent();
450 continue;
452 PrologueBB = DT->findNearestCommonDominator(PrologueBB, AI->getParent());
454 assert(PrologueBB);
456 IRBuilder<> IRB(&PrologueBB->front());
457 Function *IRG_SP =
458 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_irg_sp);
459 Instruction *Base =
460 IRB.CreateCall(IRG_SP, {Constant::getNullValue(IRB.getInt64Ty())});
461 Base->setName("basetag");
462 return Base;
465 // FIXME: check for MTE extension
466 bool AArch64StackTagging::runOnFunction(Function &Fn) {
467 if (!Fn.hasFnAttribute(Attribute::SanitizeMemTag))
468 return false;
470 if (UseStackSafety)
471 SSI = &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult();
472 F = &Fn;
473 DL = &Fn.getParent()->getDataLayout();
474 if (MergeInit)
475 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
477 memtag::StackInfoBuilder SIB(SSI);
478 for (Instruction &I : instructions(F))
479 SIB.visit(I);
480 memtag::StackInfo &SInfo = SIB.get();
482 if (SInfo.AllocasToInstrument.empty())
483 return false;
485 std::unique_ptr<DominatorTree> DeleteDT;
486 DominatorTree *DT = nullptr;
487 if (auto *P = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
488 DT = &P->getDomTree();
490 if (DT == nullptr) {
491 DeleteDT = std::make_unique<DominatorTree>(*F);
492 DT = DeleteDT.get();
495 std::unique_ptr<PostDominatorTree> DeletePDT;
496 PostDominatorTree *PDT = nullptr;
497 if (auto *P = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>())
498 PDT = &P->getPostDomTree();
500 if (PDT == nullptr) {
501 DeletePDT = std::make_unique<PostDominatorTree>(*F);
502 PDT = DeletePDT.get();
505 std::unique_ptr<LoopInfo> DeleteLI;
506 LoopInfo *LI = nullptr;
507 if (auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>()) {
508 LI = &LIWP->getLoopInfo();
509 } else {
510 DeleteLI = std::make_unique<LoopInfo>(*DT);
511 LI = DeleteLI.get();
514 SetTagFunc =
515 Intrinsic::getDeclaration(F->getParent(), Intrinsic::aarch64_settag);
517 Instruction *Base = insertBaseTaggedPointer(SInfo.AllocasToInstrument, DT);
519 int NextTag = 0;
520 for (auto &I : SInfo.AllocasToInstrument) {
521 memtag::AllocaInfo &Info = I.second;
522 assert(Info.AI && SIB.isInterestingAlloca(*Info.AI));
523 TrackingVH<Instruction> OldAI = Info.AI;
524 memtag::alignAndPadAlloca(Info, kTagGranuleSize);
525 AllocaInst *AI = Info.AI;
526 int Tag = NextTag;
527 NextTag = (NextTag + 1) % 16;
528 // Replace alloca with tagp(alloca).
529 IRBuilder<> IRB(Info.AI->getNextNode());
530 Function *TagP = Intrinsic::getDeclaration(
531 F->getParent(), Intrinsic::aarch64_tagp, {Info.AI->getType()});
532 Instruction *TagPCall =
533 IRB.CreateCall(TagP, {Constant::getNullValue(Info.AI->getType()), Base,
534 ConstantInt::get(IRB.getInt64Ty(), Tag)});
535 if (Info.AI->hasName())
536 TagPCall->setName(Info.AI->getName() + ".tag");
537 Info.AI->replaceAllUsesWith(TagPCall);
538 TagPCall->setOperand(0, Info.AI);
540 // Calls to functions that may return twice (e.g. setjmp) confuse the
541 // postdominator analysis, and will leave us to keep memory tagged after
542 // function return. Work around this by always untagging at every return
543 // statement if return_twice functions are called.
544 bool StandardLifetime =
545 SInfo.UnrecognizedLifetimes.empty() &&
546 memtag::isStandardLifetime(Info.LifetimeStart, Info.LifetimeEnd, DT, LI,
547 ClMaxLifetimes) &&
548 !SInfo.CallsReturnTwice;
549 if (StandardLifetime) {
550 IntrinsicInst *Start = Info.LifetimeStart[0];
551 uint64_t Size =
552 cast<ConstantInt>(Start->getArgOperand(0))->getZExtValue();
553 Size = alignTo(Size, kTagGranuleSize);
554 tagAlloca(AI, Start->getNextNode(), Start->getArgOperand(1), Size);
556 auto TagEnd = [&](Instruction *Node) { untagAlloca(AI, Node, Size); };
557 if (!DT || !PDT ||
558 !memtag::forAllReachableExits(*DT, *PDT, *LI, Start, Info.LifetimeEnd,
559 SInfo.RetVec, TagEnd)) {
560 for (auto *End : Info.LifetimeEnd)
561 End->eraseFromParent();
563 } else {
564 uint64_t Size = *Info.AI->getAllocationSize(*DL);
565 Value *Ptr = IRB.CreatePointerCast(TagPCall, IRB.getPtrTy());
566 tagAlloca(AI, &*IRB.GetInsertPoint(), Ptr, Size);
567 for (auto *RI : SInfo.RetVec) {
568 untagAlloca(AI, RI, Size);
570 // We may have inserted tag/untag outside of any lifetime interval.
571 // Remove all lifetime intrinsics for this alloca.
572 for (auto *II : Info.LifetimeStart)
573 II->eraseFromParent();
574 for (auto *II : Info.LifetimeEnd)
575 II->eraseFromParent();
578 // Fixup debug intrinsics to point to the new alloca.
579 for (auto *DVI : Info.DbgVariableIntrinsics)
580 DVI->replaceVariableLocationOp(OldAI, Info.AI);
583 // If we have instrumented at least one alloca, all unrecognized lifetime
584 // intrinsics have to go.
585 for (auto *I : SInfo.UnrecognizedLifetimes)
586 I->eraseFromParent();
588 return true;