[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZTargetMachine.cpp
blob73e01e3ec184427d6517d590181f4479b24d39e7
1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
11 #include "SystemZ.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetTransformInfo.h"
15 #include "TargetInfo/SystemZTargetInfo.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/MC/TargetRegistry.h"
23 #include "llvm/Support/CodeGen.h"
24 #include "llvm/Target/TargetLoweringObjectFile.h"
25 #include "llvm/Transforms/Scalar.h"
26 #include <memory>
27 #include <optional>
28 #include <string>
30 using namespace llvm;
32 // NOLINTNEXTLINE(readability-identifier-naming)
33 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeSystemZTarget() {
34 // Register the target.
35 RegisterTargetMachine<SystemZTargetMachine> X(getTheSystemZTarget());
36 auto &PR = *PassRegistry::getPassRegistry();
37 initializeSystemZElimComparePass(PR);
38 initializeSystemZShortenInstPass(PR);
39 initializeSystemZLongBranchPass(PR);
40 initializeSystemZLDCleanupPass(PR);
41 initializeSystemZShortenInstPass(PR);
42 initializeSystemZPostRewritePass(PR);
43 initializeSystemZTDCPassPass(PR);
44 initializeSystemZDAGToDAGISelPass(PR);
47 static std::string computeDataLayout(const Triple &TT) {
48 std::string Ret;
50 // Big endian.
51 Ret += "E";
53 // Data mangling.
54 Ret += DataLayout::getManglingComponent(TT);
56 // Make sure that global data has at least 16 bits of alignment by
57 // default, so that we can refer to it using LARL. We don't have any
58 // special requirements for stack variables though.
59 Ret += "-i1:8:16-i8:8:16";
61 // 64-bit integers are naturally aligned.
62 Ret += "-i64:64";
64 // 128-bit floats are aligned only to 64 bits.
65 Ret += "-f128:64";
67 // The DataLayout string always holds a vector alignment of 64 bits, see
68 // comment in clang/lib/Basic/Targets/SystemZ.h.
69 Ret += "-v128:64";
71 // We prefer 16 bits of aligned for all globals; see above.
72 Ret += "-a:8:16";
74 // Integer registers are 32 or 64 bits.
75 Ret += "-n32:64";
77 return Ret;
80 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
81 if (TT.isOSzOS())
82 return std::make_unique<TargetLoweringObjectFileGOFF>();
84 // Note: Some times run with -triple s390x-unknown.
85 // In this case, default to ELF unless z/OS specifically provided.
86 return std::make_unique<TargetLoweringObjectFileELF>();
89 static Reloc::Model getEffectiveRelocModel(std::optional<Reloc::Model> RM) {
90 // Static code is suitable for use in a dynamic executable; there is no
91 // separate DynamicNoPIC model.
92 if (!RM || *RM == Reloc::DynamicNoPIC)
93 return Reloc::Static;
94 return *RM;
97 // For SystemZ we define the models as follows:
99 // Small: BRASL can call any function and will use a stub if necessary.
100 // Locally-binding symbols will always be in range of LARL.
102 // Medium: BRASL can call any function and will use a stub if necessary.
103 // GOT slots and locally-defined text will always be in range
104 // of LARL, but other symbols might not be.
106 // Large: Equivalent to Medium for now.
108 // Kernel: Equivalent to Medium for now.
110 // This means that any PIC module smaller than 4GB meets the
111 // requirements of Small, so Small seems like the best default there.
113 // All symbols bind locally in a non-PIC module, so the choice is less
114 // obvious. There are two cases:
116 // - When creating an executable, PLTs and copy relocations allow
117 // us to treat external symbols as part of the executable.
118 // Any executable smaller than 4GB meets the requirements of Small,
119 // so that seems like the best default.
121 // - When creating JIT code, stubs will be in range of BRASL if the
122 // image is less than 4GB in size. GOT entries will likewise be
123 // in range of LARL. However, the JIT environment has no equivalent
124 // of copy relocs, so locally-binding data symbols might not be in
125 // the range of LARL. We need the Medium model in that case.
126 static CodeModel::Model
127 getEffectiveSystemZCodeModel(std::optional<CodeModel::Model> CM,
128 Reloc::Model RM, bool JIT) {
129 if (CM) {
130 if (*CM == CodeModel::Tiny)
131 report_fatal_error("Target does not support the tiny CodeModel", false);
132 if (*CM == CodeModel::Kernel)
133 report_fatal_error("Target does not support the kernel CodeModel", false);
134 return *CM;
136 if (JIT)
137 return RM == Reloc::PIC_ ? CodeModel::Small : CodeModel::Medium;
138 return CodeModel::Small;
141 SystemZTargetMachine::SystemZTargetMachine(const Target &T, const Triple &TT,
142 StringRef CPU, StringRef FS,
143 const TargetOptions &Options,
144 std::optional<Reloc::Model> RM,
145 std::optional<CodeModel::Model> CM,
146 CodeGenOptLevel OL, bool JIT)
147 : LLVMTargetMachine(
148 T, computeDataLayout(TT), TT, CPU, FS, Options,
149 getEffectiveRelocModel(RM),
150 getEffectiveSystemZCodeModel(CM, getEffectiveRelocModel(RM), JIT),
151 OL),
152 TLOF(createTLOF(getTargetTriple())) {
153 initAsmInfo();
156 SystemZTargetMachine::~SystemZTargetMachine() = default;
158 const SystemZSubtarget *
159 SystemZTargetMachine::getSubtargetImpl(const Function &F) const {
160 Attribute CPUAttr = F.getFnAttribute("target-cpu");
161 Attribute TuneAttr = F.getFnAttribute("tune-cpu");
162 Attribute FSAttr = F.getFnAttribute("target-features");
164 std::string CPU =
165 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
166 std::string TuneCPU =
167 TuneAttr.isValid() ? TuneAttr.getValueAsString().str() : CPU;
168 std::string FS =
169 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
171 // FIXME: This is related to the code below to reset the target options,
172 // we need to know whether the soft float and backchain flags are set on the
173 // function, so we can enable them as subtarget features.
174 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
175 if (SoftFloat)
176 FS += FS.empty() ? "+soft-float" : ",+soft-float";
177 bool BackChain = F.hasFnAttribute("backchain");
178 if (BackChain)
179 FS += FS.empty() ? "+backchain" : ",+backchain";
181 auto &I = SubtargetMap[CPU + TuneCPU + FS];
182 if (!I) {
183 // This needs to be done before we create a new subtarget since any
184 // creation will depend on the TM and the code generation flags on the
185 // function that reside in TargetOptions.
186 resetTargetOptions(F);
187 I = std::make_unique<SystemZSubtarget>(TargetTriple, CPU, TuneCPU, FS,
188 *this);
191 return I.get();
194 namespace {
196 /// SystemZ Code Generator Pass Configuration Options.
197 class SystemZPassConfig : public TargetPassConfig {
198 public:
199 SystemZPassConfig(SystemZTargetMachine &TM, PassManagerBase &PM)
200 : TargetPassConfig(TM, PM) {}
202 SystemZTargetMachine &getSystemZTargetMachine() const {
203 return getTM<SystemZTargetMachine>();
206 ScheduleDAGInstrs *
207 createPostMachineScheduler(MachineSchedContext *C) const override {
208 return new ScheduleDAGMI(C,
209 std::make_unique<SystemZPostRASchedStrategy>(C),
210 /*RemoveKillFlags=*/true);
213 void addIRPasses() override;
214 bool addInstSelector() override;
215 bool addILPOpts() override;
216 void addPreRegAlloc() override;
217 void addPostRewrite() override;
218 void addPostRegAlloc() override;
219 void addPreSched2() override;
220 void addPreEmitPass() override;
223 } // end anonymous namespace
225 void SystemZPassConfig::addIRPasses() {
226 if (getOptLevel() != CodeGenOptLevel::None) {
227 addPass(createSystemZTDCPass());
228 addPass(createLoopDataPrefetchPass());
231 addPass(createAtomicExpandPass());
233 TargetPassConfig::addIRPasses();
236 bool SystemZPassConfig::addInstSelector() {
237 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
239 if (getOptLevel() != CodeGenOptLevel::None)
240 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
242 return false;
245 bool SystemZPassConfig::addILPOpts() {
246 addPass(&EarlyIfConverterID);
247 return true;
250 void SystemZPassConfig::addPreRegAlloc() {
251 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
254 void SystemZPassConfig::addPostRewrite() {
255 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
258 void SystemZPassConfig::addPostRegAlloc() {
259 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
260 // is not called).
261 if (getOptLevel() == CodeGenOptLevel::None)
262 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
265 void SystemZPassConfig::addPreSched2() {
266 if (getOptLevel() != CodeGenOptLevel::None)
267 addPass(&IfConverterID);
270 void SystemZPassConfig::addPreEmitPass() {
271 // Do instruction shortening before compare elimination because some
272 // vector instructions will be shortened into opcodes that compare
273 // elimination recognizes.
274 if (getOptLevel() != CodeGenOptLevel::None)
275 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
277 // We eliminate comparisons here rather than earlier because some
278 // transformations can change the set of available CC values and we
279 // generally want those transformations to have priority. This is
280 // especially true in the commonest case where the result of the comparison
281 // is used by a single in-range branch instruction, since we will then
282 // be able to fuse the compare and the branch instead.
284 // For example, two-address NILF can sometimes be converted into
285 // three-address RISBLG. NILF produces a CC value that indicates whether
286 // the low word is zero, but RISBLG does not modify CC at all. On the
287 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
288 // The CC value produced by NILL isn't useful for our purposes, but the
289 // value produced by RISBG can be used for any comparison with zero
290 // (not just equality). So there are some transformations that lose
291 // CC values (while still being worthwhile) and others that happen to make
292 // the CC result more useful than it was originally.
294 // Another reason is that we only want to use BRANCH ON COUNT in cases
295 // where we know that the count register is not going to be spilled.
297 // Doing it so late makes it more likely that a register will be reused
298 // between the comparison and the branch, but it isn't clear whether
299 // preventing that would be a win or not.
300 if (getOptLevel() != CodeGenOptLevel::None)
301 addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
302 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
304 // Do final scheduling after all other optimizations, to get an
305 // optimal input for the decoder (branch relaxation must happen
306 // after block placement).
307 if (getOptLevel() != CodeGenOptLevel::None)
308 addPass(&PostMachineSchedulerID);
311 TargetPassConfig *SystemZTargetMachine::createPassConfig(PassManagerBase &PM) {
312 return new SystemZPassConfig(*this, PM);
315 TargetTransformInfo
316 SystemZTargetMachine::getTargetTransformInfo(const Function &F) const {
317 return TargetTransformInfo(SystemZTTIImpl(this, F));
320 MachineFunctionInfo *SystemZTargetMachine::createMachineFunctionInfo(
321 BumpPtrAllocator &Allocator, const Function &F,
322 const TargetSubtargetInfo *STI) const {
323 return SystemZMachineFunctionInfo::create<SystemZMachineFunctionInfo>(
324 Allocator, F, STI);