1 //===- X86AvoidStoreForwardingBlocks.cpp - Avoid HW Store Forward Block ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // If a load follows a store and reloads data that the store has written to
10 // memory, Intel microarchitectures can in many cases forward the data directly
11 // from the store to the load, This "store forwarding" saves cycles by enabling
12 // the load to directly obtain the data instead of accessing the data from
14 // A "store forward block" occurs in cases that a store cannot be forwarded to
15 // the load. The most typical case of store forward block on Intel Core
16 // microarchitecture that a small store cannot be forwarded to a large load.
17 // The estimated penalty for a store forward block is ~13 cycles.
19 // This pass tries to recognize and handle cases where "store forward block"
20 // is created by the compiler when lowering memcpy calls to a sequence
21 // of a load and a store.
23 // The pass currently only handles cases where memcpy is lowered to
24 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
25 // breaking the memcpy should be possible since there is no atomicity
26 // guarantee for loads and stores to XMM/YMM.
28 // It could be better for performance to solve the problem by loading
29 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
30 // to memory, but this will result in a more conservative optimization since it
31 // requires we prove that all memory accesses between the blocking store and the
32 // load must alias/don't alias before we can move the store, whereas the
33 // transformation done here is correct regardless to other memory accesses.
34 //===----------------------------------------------------------------------===//
37 #include "X86InstrInfo.h"
38 #include "X86Subtarget.h"
39 #include "llvm/Analysis/AliasAnalysis.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/MC/MCInstrDesc.h"
55 #define DEBUG_TYPE "x86-avoid-SFB"
57 static cl::opt
<bool> DisableX86AvoidStoreForwardBlocks(
58 "x86-disable-avoid-SFB", cl::Hidden
,
59 cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
61 static cl::opt
<unsigned> X86AvoidSFBInspectionLimit(
62 "x86-sfb-inspection-limit",
63 cl::desc("X86: Number of instructions backward to "
64 "inspect for store forwarding blocks."),
65 cl::init(20), cl::Hidden
);
69 using DisplacementSizeMap
= std::map
<int64_t, unsigned>;
71 class X86AvoidSFBPass
: public MachineFunctionPass
{
74 X86AvoidSFBPass() : MachineFunctionPass(ID
) { }
76 StringRef
getPassName() const override
{
77 return "X86 Avoid Store Forwarding Blocks";
80 bool runOnMachineFunction(MachineFunction
&MF
) override
;
82 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
83 MachineFunctionPass::getAnalysisUsage(AU
);
84 AU
.addRequired
<AAResultsWrapperPass
>();
88 MachineRegisterInfo
*MRI
= nullptr;
89 const X86InstrInfo
*TII
= nullptr;
90 const X86RegisterInfo
*TRI
= nullptr;
91 SmallVector
<std::pair
<MachineInstr
*, MachineInstr
*>, 2>
92 BlockedLoadsStoresPairs
;
93 SmallVector
<MachineInstr
*, 2> ForRemoval
;
94 AliasAnalysis
*AA
= nullptr;
96 /// Returns couples of Load then Store to memory which look
98 void findPotentiallylBlockedCopies(MachineFunction
&MF
);
99 /// Break the memcpy's load and store into smaller copies
100 /// such that each memory load that was blocked by a smaller store
101 /// would now be copied separately.
102 void breakBlockedCopies(MachineInstr
*LoadInst
, MachineInstr
*StoreInst
,
103 const DisplacementSizeMap
&BlockingStoresDispSizeMap
);
104 /// Break a copy of size Size to smaller copies.
105 void buildCopies(int Size
, MachineInstr
*LoadInst
, int64_t LdDispImm
,
106 MachineInstr
*StoreInst
, int64_t StDispImm
,
107 int64_t LMMOffset
, int64_t SMMOffset
);
109 void buildCopy(MachineInstr
*LoadInst
, unsigned NLoadOpcode
, int64_t LoadDisp
,
110 MachineInstr
*StoreInst
, unsigned NStoreOpcode
,
111 int64_t StoreDisp
, unsigned Size
, int64_t LMMOffset
,
114 bool alias(const MachineMemOperand
&Op1
, const MachineMemOperand
&Op2
) const;
116 unsigned getRegSizeInBytes(MachineInstr
*Inst
);
119 } // end anonymous namespace
121 char X86AvoidSFBPass::ID
= 0;
123 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass
, DEBUG_TYPE
, "Machine code sinking",
125 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
126 INITIALIZE_PASS_END(X86AvoidSFBPass
, DEBUG_TYPE
, "Machine code sinking", false,
129 FunctionPass
*llvm::createX86AvoidStoreForwardingBlocks() {
130 return new X86AvoidSFBPass();
133 static bool isXMMLoadOpcode(unsigned Opcode
) {
134 return Opcode
== X86::MOVUPSrm
|| Opcode
== X86::MOVAPSrm
||
135 Opcode
== X86::VMOVUPSrm
|| Opcode
== X86::VMOVAPSrm
||
136 Opcode
== X86::VMOVUPDrm
|| Opcode
== X86::VMOVAPDrm
||
137 Opcode
== X86::VMOVDQUrm
|| Opcode
== X86::VMOVDQArm
||
138 Opcode
== X86::VMOVUPSZ128rm
|| Opcode
== X86::VMOVAPSZ128rm
||
139 Opcode
== X86::VMOVUPDZ128rm
|| Opcode
== X86::VMOVAPDZ128rm
||
140 Opcode
== X86::VMOVDQU64Z128rm
|| Opcode
== X86::VMOVDQA64Z128rm
||
141 Opcode
== X86::VMOVDQU32Z128rm
|| Opcode
== X86::VMOVDQA32Z128rm
;
143 static bool isYMMLoadOpcode(unsigned Opcode
) {
144 return Opcode
== X86::VMOVUPSYrm
|| Opcode
== X86::VMOVAPSYrm
||
145 Opcode
== X86::VMOVUPDYrm
|| Opcode
== X86::VMOVAPDYrm
||
146 Opcode
== X86::VMOVDQUYrm
|| Opcode
== X86::VMOVDQAYrm
||
147 Opcode
== X86::VMOVUPSZ256rm
|| Opcode
== X86::VMOVAPSZ256rm
||
148 Opcode
== X86::VMOVUPDZ256rm
|| Opcode
== X86::VMOVAPDZ256rm
||
149 Opcode
== X86::VMOVDQU64Z256rm
|| Opcode
== X86::VMOVDQA64Z256rm
||
150 Opcode
== X86::VMOVDQU32Z256rm
|| Opcode
== X86::VMOVDQA32Z256rm
;
153 static bool isPotentialBlockedMemCpyLd(unsigned Opcode
) {
154 return isXMMLoadOpcode(Opcode
) || isYMMLoadOpcode(Opcode
);
157 static bool isPotentialBlockedMemCpyPair(unsigned LdOpcode
, unsigned StOpcode
) {
161 return StOpcode
== X86::MOVUPSmr
|| StOpcode
== X86::MOVAPSmr
;
164 return StOpcode
== X86::VMOVUPSmr
|| StOpcode
== X86::VMOVAPSmr
;
167 return StOpcode
== X86::VMOVUPDmr
|| StOpcode
== X86::VMOVAPDmr
;
170 return StOpcode
== X86::VMOVDQUmr
|| StOpcode
== X86::VMOVDQAmr
;
171 case X86::VMOVUPSZ128rm
:
172 case X86::VMOVAPSZ128rm
:
173 return StOpcode
== X86::VMOVUPSZ128mr
|| StOpcode
== X86::VMOVAPSZ128mr
;
174 case X86::VMOVUPDZ128rm
:
175 case X86::VMOVAPDZ128rm
:
176 return StOpcode
== X86::VMOVUPDZ128mr
|| StOpcode
== X86::VMOVAPDZ128mr
;
177 case X86::VMOVUPSYrm
:
178 case X86::VMOVAPSYrm
:
179 return StOpcode
== X86::VMOVUPSYmr
|| StOpcode
== X86::VMOVAPSYmr
;
180 case X86::VMOVUPDYrm
:
181 case X86::VMOVAPDYrm
:
182 return StOpcode
== X86::VMOVUPDYmr
|| StOpcode
== X86::VMOVAPDYmr
;
183 case X86::VMOVDQUYrm
:
184 case X86::VMOVDQAYrm
:
185 return StOpcode
== X86::VMOVDQUYmr
|| StOpcode
== X86::VMOVDQAYmr
;
186 case X86::VMOVUPSZ256rm
:
187 case X86::VMOVAPSZ256rm
:
188 return StOpcode
== X86::VMOVUPSZ256mr
|| StOpcode
== X86::VMOVAPSZ256mr
;
189 case X86::VMOVUPDZ256rm
:
190 case X86::VMOVAPDZ256rm
:
191 return StOpcode
== X86::VMOVUPDZ256mr
|| StOpcode
== X86::VMOVAPDZ256mr
;
192 case X86::VMOVDQU64Z128rm
:
193 case X86::VMOVDQA64Z128rm
:
194 return StOpcode
== X86::VMOVDQU64Z128mr
|| StOpcode
== X86::VMOVDQA64Z128mr
;
195 case X86::VMOVDQU32Z128rm
:
196 case X86::VMOVDQA32Z128rm
:
197 return StOpcode
== X86::VMOVDQU32Z128mr
|| StOpcode
== X86::VMOVDQA32Z128mr
;
198 case X86::VMOVDQU64Z256rm
:
199 case X86::VMOVDQA64Z256rm
:
200 return StOpcode
== X86::VMOVDQU64Z256mr
|| StOpcode
== X86::VMOVDQA64Z256mr
;
201 case X86::VMOVDQU32Z256rm
:
202 case X86::VMOVDQA32Z256rm
:
203 return StOpcode
== X86::VMOVDQU32Z256mr
|| StOpcode
== X86::VMOVDQA32Z256mr
;
209 static bool isPotentialBlockingStoreInst(unsigned Opcode
, unsigned LoadOpcode
) {
211 PBlock
|= Opcode
== X86::MOV64mr
|| Opcode
== X86::MOV64mi32
||
212 Opcode
== X86::MOV32mr
|| Opcode
== X86::MOV32mi
||
213 Opcode
== X86::MOV16mr
|| Opcode
== X86::MOV16mi
||
214 Opcode
== X86::MOV8mr
|| Opcode
== X86::MOV8mi
;
215 if (isYMMLoadOpcode(LoadOpcode
))
216 PBlock
|= Opcode
== X86::VMOVUPSmr
|| Opcode
== X86::VMOVAPSmr
||
217 Opcode
== X86::VMOVUPDmr
|| Opcode
== X86::VMOVAPDmr
||
218 Opcode
== X86::VMOVDQUmr
|| Opcode
== X86::VMOVDQAmr
||
219 Opcode
== X86::VMOVUPSZ128mr
|| Opcode
== X86::VMOVAPSZ128mr
||
220 Opcode
== X86::VMOVUPDZ128mr
|| Opcode
== X86::VMOVAPDZ128mr
||
221 Opcode
== X86::VMOVDQU64Z128mr
||
222 Opcode
== X86::VMOVDQA64Z128mr
||
223 Opcode
== X86::VMOVDQU32Z128mr
|| Opcode
== X86::VMOVDQA32Z128mr
;
227 static const int MOV128SZ
= 16;
228 static const int MOV64SZ
= 8;
229 static const int MOV32SZ
= 4;
230 static const int MOV16SZ
= 2;
231 static const int MOV8SZ
= 1;
233 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode
) {
234 switch (LoadOpcode
) {
235 case X86::VMOVUPSYrm
:
236 case X86::VMOVAPSYrm
:
237 return X86::VMOVUPSrm
;
238 case X86::VMOVUPDYrm
:
239 case X86::VMOVAPDYrm
:
240 return X86::VMOVUPDrm
;
241 case X86::VMOVDQUYrm
:
242 case X86::VMOVDQAYrm
:
243 return X86::VMOVDQUrm
;
244 case X86::VMOVUPSZ256rm
:
245 case X86::VMOVAPSZ256rm
:
246 return X86::VMOVUPSZ128rm
;
247 case X86::VMOVUPDZ256rm
:
248 case X86::VMOVAPDZ256rm
:
249 return X86::VMOVUPDZ128rm
;
250 case X86::VMOVDQU64Z256rm
:
251 case X86::VMOVDQA64Z256rm
:
252 return X86::VMOVDQU64Z128rm
;
253 case X86::VMOVDQU32Z256rm
:
254 case X86::VMOVDQA32Z256rm
:
255 return X86::VMOVDQU32Z128rm
;
257 llvm_unreachable("Unexpected Load Instruction Opcode");
262 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode
) {
263 switch (StoreOpcode
) {
264 case X86::VMOVUPSYmr
:
265 case X86::VMOVAPSYmr
:
266 return X86::VMOVUPSmr
;
267 case X86::VMOVUPDYmr
:
268 case X86::VMOVAPDYmr
:
269 return X86::VMOVUPDmr
;
270 case X86::VMOVDQUYmr
:
271 case X86::VMOVDQAYmr
:
272 return X86::VMOVDQUmr
;
273 case X86::VMOVUPSZ256mr
:
274 case X86::VMOVAPSZ256mr
:
275 return X86::VMOVUPSZ128mr
;
276 case X86::VMOVUPDZ256mr
:
277 case X86::VMOVAPDZ256mr
:
278 return X86::VMOVUPDZ128mr
;
279 case X86::VMOVDQU64Z256mr
:
280 case X86::VMOVDQA64Z256mr
:
281 return X86::VMOVDQU64Z128mr
;
282 case X86::VMOVDQU32Z256mr
:
283 case X86::VMOVDQA32Z256mr
:
284 return X86::VMOVDQU32Z128mr
;
286 llvm_unreachable("Unexpected Load Instruction Opcode");
291 static int getAddrOffset(const MachineInstr
*MI
) {
292 const MCInstrDesc
&Descl
= MI
->getDesc();
293 int AddrOffset
= X86II::getMemoryOperandNo(Descl
.TSFlags
);
294 assert(AddrOffset
!= -1 && "Expected Memory Operand");
295 AddrOffset
+= X86II::getOperandBias(Descl
);
299 static MachineOperand
&getBaseOperand(MachineInstr
*MI
) {
300 int AddrOffset
= getAddrOffset(MI
);
301 return MI
->getOperand(AddrOffset
+ X86::AddrBaseReg
);
304 static MachineOperand
&getDispOperand(MachineInstr
*MI
) {
305 int AddrOffset
= getAddrOffset(MI
);
306 return MI
->getOperand(AddrOffset
+ X86::AddrDisp
);
309 // Relevant addressing modes contain only base register and immediate
310 // displacement or frameindex and immediate displacement.
311 // TODO: Consider expanding to other addressing modes in the future
312 static bool isRelevantAddressingMode(MachineInstr
*MI
) {
313 int AddrOffset
= getAddrOffset(MI
);
314 const MachineOperand
&Base
= getBaseOperand(MI
);
315 const MachineOperand
&Disp
= getDispOperand(MI
);
316 const MachineOperand
&Scale
= MI
->getOperand(AddrOffset
+ X86::AddrScaleAmt
);
317 const MachineOperand
&Index
= MI
->getOperand(AddrOffset
+ X86::AddrIndexReg
);
318 const MachineOperand
&Segment
= MI
->getOperand(AddrOffset
+ X86::AddrSegmentReg
);
320 if (!((Base
.isReg() && Base
.getReg() != X86::NoRegister
) || Base
.isFI()))
324 if (Scale
.getImm() != 1)
326 if (!(Index
.isReg() && Index
.getReg() == X86::NoRegister
))
328 if (!(Segment
.isReg() && Segment
.getReg() == X86::NoRegister
))
333 // Collect potentially blocking stores.
334 // Limit the number of instructions backwards we want to inspect
335 // since the effect of store block won't be visible if the store
336 // and load instructions have enough instructions in between to
337 // keep the core busy.
338 static SmallVector
<MachineInstr
*, 2>
339 findPotentialBlockers(MachineInstr
*LoadInst
) {
340 SmallVector
<MachineInstr
*, 2> PotentialBlockers
;
341 unsigned BlockCount
= 0;
342 const unsigned InspectionLimit
= X86AvoidSFBInspectionLimit
;
343 for (auto PBInst
= std::next(MachineBasicBlock::reverse_iterator(LoadInst
)),
344 E
= LoadInst
->getParent()->rend();
345 PBInst
!= E
; ++PBInst
) {
346 if (PBInst
->isMetaInstruction())
349 if (BlockCount
>= InspectionLimit
)
351 MachineInstr
&MI
= *PBInst
;
352 if (MI
.getDesc().isCall())
353 return PotentialBlockers
;
354 PotentialBlockers
.push_back(&MI
);
356 // If we didn't get to the instructions limit try predecessing blocks.
357 // Ideally we should traverse the predecessor blocks in depth with some
358 // coloring algorithm, but for now let's just look at the first order
360 if (BlockCount
< InspectionLimit
) {
361 MachineBasicBlock
*MBB
= LoadInst
->getParent();
362 int LimitLeft
= InspectionLimit
- BlockCount
;
363 for (MachineBasicBlock
*PMBB
: MBB
->predecessors()) {
365 for (MachineInstr
&PBInst
: llvm::reverse(*PMBB
)) {
366 if (PBInst
.isMetaInstruction())
369 if (PredCount
>= LimitLeft
)
371 if (PBInst
.getDesc().isCall())
373 PotentialBlockers
.push_back(&PBInst
);
377 return PotentialBlockers
;
380 void X86AvoidSFBPass::buildCopy(MachineInstr
*LoadInst
, unsigned NLoadOpcode
,
381 int64_t LoadDisp
, MachineInstr
*StoreInst
,
382 unsigned NStoreOpcode
, int64_t StoreDisp
,
383 unsigned Size
, int64_t LMMOffset
,
385 MachineOperand
&LoadBase
= getBaseOperand(LoadInst
);
386 MachineOperand
&StoreBase
= getBaseOperand(StoreInst
);
387 MachineBasicBlock
*MBB
= LoadInst
->getParent();
388 MachineMemOperand
*LMMO
= *LoadInst
->memoperands_begin();
389 MachineMemOperand
*SMMO
= *StoreInst
->memoperands_begin();
391 Register Reg1
= MRI
->createVirtualRegister(
392 TII
->getRegClass(TII
->get(NLoadOpcode
), 0, TRI
, *(MBB
->getParent())));
393 MachineInstr
*NewLoad
=
394 BuildMI(*MBB
, LoadInst
, LoadInst
->getDebugLoc(), TII
->get(NLoadOpcode
),
398 .addReg(X86::NoRegister
)
400 .addReg(X86::NoRegister
)
402 MBB
->getParent()->getMachineMemOperand(LMMO
, LMMOffset
, Size
));
403 if (LoadBase
.isReg())
404 getBaseOperand(NewLoad
).setIsKill(false);
405 LLVM_DEBUG(NewLoad
->dump());
406 // If the load and store are consecutive, use the loadInst location to
407 // reduce register pressure.
408 MachineInstr
*StInst
= StoreInst
;
409 auto PrevInstrIt
= prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst
),
411 if (PrevInstrIt
.getNodePtr() == LoadInst
)
413 MachineInstr
*NewStore
=
414 BuildMI(*MBB
, StInst
, StInst
->getDebugLoc(), TII
->get(NStoreOpcode
))
417 .addReg(X86::NoRegister
)
419 .addReg(X86::NoRegister
)
422 MBB
->getParent()->getMachineMemOperand(SMMO
, SMMOffset
, Size
));
423 if (StoreBase
.isReg())
424 getBaseOperand(NewStore
).setIsKill(false);
425 MachineOperand
&StoreSrcVReg
= StoreInst
->getOperand(X86::AddrNumOperands
);
426 assert(StoreSrcVReg
.isReg() && "Expected virtual register");
427 NewStore
->getOperand(X86::AddrNumOperands
).setIsKill(StoreSrcVReg
.isKill());
428 LLVM_DEBUG(NewStore
->dump());
431 void X86AvoidSFBPass::buildCopies(int Size
, MachineInstr
*LoadInst
,
432 int64_t LdDispImm
, MachineInstr
*StoreInst
,
433 int64_t StDispImm
, int64_t LMMOffset
,
435 int LdDisp
= LdDispImm
;
436 int StDisp
= StDispImm
;
438 if ((Size
- MOV128SZ
>= 0) && isYMMLoadOpcode(LoadInst
->getOpcode())) {
439 Size
= Size
- MOV128SZ
;
440 buildCopy(LoadInst
, getYMMtoXMMLoadOpcode(LoadInst
->getOpcode()), LdDisp
,
441 StoreInst
, getYMMtoXMMStoreOpcode(StoreInst
->getOpcode()),
442 StDisp
, MOV128SZ
, LMMOffset
, SMMOffset
);
445 LMMOffset
+= MOV128SZ
;
446 SMMOffset
+= MOV128SZ
;
449 if (Size
- MOV64SZ
>= 0) {
450 Size
= Size
- MOV64SZ
;
451 buildCopy(LoadInst
, X86::MOV64rm
, LdDisp
, StoreInst
, X86::MOV64mr
, StDisp
,
452 MOV64SZ
, LMMOffset
, SMMOffset
);
455 LMMOffset
+= MOV64SZ
;
456 SMMOffset
+= MOV64SZ
;
459 if (Size
- MOV32SZ
>= 0) {
460 Size
= Size
- MOV32SZ
;
461 buildCopy(LoadInst
, X86::MOV32rm
, LdDisp
, StoreInst
, X86::MOV32mr
, StDisp
,
462 MOV32SZ
, LMMOffset
, SMMOffset
);
465 LMMOffset
+= MOV32SZ
;
466 SMMOffset
+= MOV32SZ
;
469 if (Size
- MOV16SZ
>= 0) {
470 Size
= Size
- MOV16SZ
;
471 buildCopy(LoadInst
, X86::MOV16rm
, LdDisp
, StoreInst
, X86::MOV16mr
, StDisp
,
472 MOV16SZ
, LMMOffset
, SMMOffset
);
475 LMMOffset
+= MOV16SZ
;
476 SMMOffset
+= MOV16SZ
;
479 if (Size
- MOV8SZ
>= 0) {
480 Size
= Size
- MOV8SZ
;
481 buildCopy(LoadInst
, X86::MOV8rm
, LdDisp
, StoreInst
, X86::MOV8mr
, StDisp
,
482 MOV8SZ
, LMMOffset
, SMMOffset
);
490 assert(Size
== 0 && "Wrong size division");
493 static void updateKillStatus(MachineInstr
*LoadInst
, MachineInstr
*StoreInst
) {
494 MachineOperand
&LoadBase
= getBaseOperand(LoadInst
);
495 MachineOperand
&StoreBase
= getBaseOperand(StoreInst
);
496 auto *StorePrevNonDbgInstr
=
497 prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst
),
498 LoadInst
->getParent()->instr_begin())
500 if (LoadBase
.isReg()) {
501 MachineInstr
*LastLoad
= LoadInst
->getPrevNode();
502 // If the original load and store to xmm/ymm were consecutive
503 // then the partial copies were also created in
504 // a consecutive order to reduce register pressure,
505 // and the location of the last load is before the last store.
506 if (StorePrevNonDbgInstr
== LoadInst
)
507 LastLoad
= LoadInst
->getPrevNode()->getPrevNode();
508 getBaseOperand(LastLoad
).setIsKill(LoadBase
.isKill());
510 if (StoreBase
.isReg()) {
511 MachineInstr
*StInst
= StoreInst
;
512 if (StorePrevNonDbgInstr
== LoadInst
)
514 getBaseOperand(StInst
->getPrevNode()).setIsKill(StoreBase
.isKill());
518 bool X86AvoidSFBPass::alias(const MachineMemOperand
&Op1
,
519 const MachineMemOperand
&Op2
) const {
520 if (!Op1
.getValue() || !Op2
.getValue())
523 int64_t MinOffset
= std::min(Op1
.getOffset(), Op2
.getOffset());
524 int64_t Overlapa
= Op1
.getSize() + Op1
.getOffset() - MinOffset
;
525 int64_t Overlapb
= Op2
.getSize() + Op2
.getOffset() - MinOffset
;
527 return !AA
->isNoAlias(
528 MemoryLocation(Op1
.getValue(), Overlapa
, Op1
.getAAInfo()),
529 MemoryLocation(Op2
.getValue(), Overlapb
, Op2
.getAAInfo()));
532 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction
&MF
) {
534 for (auto &MI
: MBB
) {
535 if (!isPotentialBlockedMemCpyLd(MI
.getOpcode()))
537 int DefVR
= MI
.getOperand(0).getReg();
538 if (!MRI
->hasOneNonDBGUse(DefVR
))
540 for (MachineOperand
&StoreMO
:
541 llvm::make_early_inc_range(MRI
->use_nodbg_operands(DefVR
))) {
542 MachineInstr
&StoreMI
= *StoreMO
.getParent();
543 // Skip cases where the memcpy may overlap.
544 if (StoreMI
.getParent() == MI
.getParent() &&
545 isPotentialBlockedMemCpyPair(MI
.getOpcode(), StoreMI
.getOpcode()) &&
546 isRelevantAddressingMode(&MI
) &&
547 isRelevantAddressingMode(&StoreMI
) &&
548 MI
.hasOneMemOperand() && StoreMI
.hasOneMemOperand()) {
549 if (!alias(**MI
.memoperands_begin(), **StoreMI
.memoperands_begin()))
550 BlockedLoadsStoresPairs
.push_back(std::make_pair(&MI
, &StoreMI
));
556 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr
*LoadInst
) {
557 const auto *TRC
= TII
->getRegClass(TII
->get(LoadInst
->getOpcode()), 0, TRI
,
558 *LoadInst
->getParent()->getParent());
559 return TRI
->getRegSizeInBits(*TRC
) / 8;
562 void X86AvoidSFBPass::breakBlockedCopies(
563 MachineInstr
*LoadInst
, MachineInstr
*StoreInst
,
564 const DisplacementSizeMap
&BlockingStoresDispSizeMap
) {
565 int64_t LdDispImm
= getDispOperand(LoadInst
).getImm();
566 int64_t StDispImm
= getDispOperand(StoreInst
).getImm();
567 int64_t LMMOffset
= 0;
568 int64_t SMMOffset
= 0;
570 int64_t LdDisp1
= LdDispImm
;
572 int64_t StDisp1
= StDispImm
;
576 int64_t LdStDelta
= StDispImm
- LdDispImm
;
578 for (auto DispSizePair
: BlockingStoresDispSizeMap
) {
579 LdDisp2
= DispSizePair
.first
;
580 StDisp2
= DispSizePair
.first
+ LdStDelta
;
581 Size2
= DispSizePair
.second
;
582 // Avoid copying overlapping areas.
583 if (LdDisp2
< LdDisp1
) {
584 int OverlapDelta
= LdDisp1
- LdDisp2
;
585 LdDisp2
+= OverlapDelta
;
586 StDisp2
+= OverlapDelta
;
587 Size2
-= OverlapDelta
;
589 Size1
= LdDisp2
- LdDisp1
;
591 // Build a copy for the point until the current blocking store's
593 buildCopies(Size1
, LoadInst
, LdDisp1
, StoreInst
, StDisp1
, LMMOffset
,
595 // Build a copy for the current blocking store.
596 buildCopies(Size2
, LoadInst
, LdDisp2
, StoreInst
, StDisp2
, LMMOffset
+ Size1
,
598 LdDisp1
= LdDisp2
+ Size2
;
599 StDisp1
= StDisp2
+ Size2
;
600 LMMOffset
+= Size1
+ Size2
;
601 SMMOffset
+= Size1
+ Size2
;
603 unsigned Size3
= (LdDispImm
+ getRegSizeInBytes(LoadInst
)) - LdDisp1
;
604 buildCopies(Size3
, LoadInst
, LdDisp1
, StoreInst
, StDisp1
, LMMOffset
,
608 static bool hasSameBaseOpValue(MachineInstr
*LoadInst
,
609 MachineInstr
*StoreInst
) {
610 const MachineOperand
&LoadBase
= getBaseOperand(LoadInst
);
611 const MachineOperand
&StoreBase
= getBaseOperand(StoreInst
);
612 if (LoadBase
.isReg() != StoreBase
.isReg())
614 if (LoadBase
.isReg())
615 return LoadBase
.getReg() == StoreBase
.getReg();
616 return LoadBase
.getIndex() == StoreBase
.getIndex();
619 static bool isBlockingStore(int64_t LoadDispImm
, unsigned LoadSize
,
620 int64_t StoreDispImm
, unsigned StoreSize
) {
621 return ((StoreDispImm
>= LoadDispImm
) &&
622 (StoreDispImm
<= LoadDispImm
+ (LoadSize
- StoreSize
)));
625 // Keep track of all stores blocking a load
627 updateBlockingStoresDispSizeMap(DisplacementSizeMap
&BlockingStoresDispSizeMap
,
628 int64_t DispImm
, unsigned Size
) {
629 if (BlockingStoresDispSizeMap
.count(DispImm
)) {
630 // Choose the smallest blocking store starting at this displacement.
631 if (BlockingStoresDispSizeMap
[DispImm
] > Size
)
632 BlockingStoresDispSizeMap
[DispImm
] = Size
;
635 BlockingStoresDispSizeMap
[DispImm
] = Size
;
638 // Remove blocking stores contained in each other.
640 removeRedundantBlockingStores(DisplacementSizeMap
&BlockingStoresDispSizeMap
) {
641 if (BlockingStoresDispSizeMap
.size() <= 1)
644 SmallVector
<std::pair
<int64_t, unsigned>, 0> DispSizeStack
;
645 for (auto DispSizePair
: BlockingStoresDispSizeMap
) {
646 int64_t CurrDisp
= DispSizePair
.first
;
647 unsigned CurrSize
= DispSizePair
.second
;
648 while (DispSizeStack
.size()) {
649 int64_t PrevDisp
= DispSizeStack
.back().first
;
650 unsigned PrevSize
= DispSizeStack
.back().second
;
651 if (CurrDisp
+ CurrSize
> PrevDisp
+ PrevSize
)
653 DispSizeStack
.pop_back();
655 DispSizeStack
.push_back(DispSizePair
);
657 BlockingStoresDispSizeMap
.clear();
658 for (auto Disp
: DispSizeStack
)
659 BlockingStoresDispSizeMap
.insert(Disp
);
662 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction
&MF
) {
663 bool Changed
= false;
665 if (DisableX86AvoidStoreForwardBlocks
|| skipFunction(MF
.getFunction()) ||
666 !MF
.getSubtarget
<X86Subtarget
>().is64Bit())
669 MRI
= &MF
.getRegInfo();
670 assert(MRI
->isSSA() && "Expected MIR to be in SSA form");
671 TII
= MF
.getSubtarget
<X86Subtarget
>().getInstrInfo();
672 TRI
= MF
.getSubtarget
<X86Subtarget
>().getRegisterInfo();
673 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
674 LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
675 // Look for a load then a store to XMM/YMM which look like a memcpy
676 findPotentiallylBlockedCopies(MF
);
678 for (auto LoadStoreInstPair
: BlockedLoadsStoresPairs
) {
679 MachineInstr
*LoadInst
= LoadStoreInstPair
.first
;
680 int64_t LdDispImm
= getDispOperand(LoadInst
).getImm();
681 DisplacementSizeMap BlockingStoresDispSizeMap
;
683 SmallVector
<MachineInstr
*, 2> PotentialBlockers
=
684 findPotentialBlockers(LoadInst
);
685 for (auto *PBInst
: PotentialBlockers
) {
686 if (!isPotentialBlockingStoreInst(PBInst
->getOpcode(),
687 LoadInst
->getOpcode()) ||
688 !isRelevantAddressingMode(PBInst
) || !PBInst
->hasOneMemOperand())
690 int64_t PBstDispImm
= getDispOperand(PBInst
).getImm();
691 unsigned PBstSize
= (*PBInst
->memoperands_begin())->getSize();
692 // This check doesn't cover all cases, but it will suffice for now.
693 // TODO: take branch probability into consideration, if the blocking
694 // store is in an unreached block, breaking the memcopy could lose
696 if (hasSameBaseOpValue(LoadInst
, PBInst
) &&
697 isBlockingStore(LdDispImm
, getRegSizeInBytes(LoadInst
), PBstDispImm
,
699 updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap
, PBstDispImm
,
703 if (BlockingStoresDispSizeMap
.empty())
706 // We found a store forward block, break the memcpy's load and store
707 // into smaller copies such that each smaller store that was causing
708 // a store block would now be copied separately.
709 MachineInstr
*StoreInst
= LoadStoreInstPair
.second
;
710 LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
711 LLVM_DEBUG(LoadInst
->dump());
712 LLVM_DEBUG(StoreInst
->dump());
713 LLVM_DEBUG(dbgs() << "Replaced with:\n");
714 removeRedundantBlockingStores(BlockingStoresDispSizeMap
);
715 breakBlockedCopies(LoadInst
, StoreInst
, BlockingStoresDispSizeMap
);
716 updateKillStatus(LoadInst
, StoreInst
);
717 ForRemoval
.push_back(LoadInst
);
718 ForRemoval
.push_back(StoreInst
);
720 for (auto *RemovedInst
: ForRemoval
) {
721 RemovedInst
->eraseFromParent();
724 BlockedLoadsStoresPairs
.clear();
725 LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);