[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Target / X86 / X86AvoidStoreForwardingBlocks.cpp
blob04931afdec51c3e4dee3ee43da7a1a6a0efb116d
1 //===- X86AvoidStoreForwardingBlocks.cpp - Avoid HW Store Forward Block ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // If a load follows a store and reloads data that the store has written to
10 // memory, Intel microarchitectures can in many cases forward the data directly
11 // from the store to the load, This "store forwarding" saves cycles by enabling
12 // the load to directly obtain the data instead of accessing the data from
13 // cache or memory.
14 // A "store forward block" occurs in cases that a store cannot be forwarded to
15 // the load. The most typical case of store forward block on Intel Core
16 // microarchitecture that a small store cannot be forwarded to a large load.
17 // The estimated penalty for a store forward block is ~13 cycles.
19 // This pass tries to recognize and handle cases where "store forward block"
20 // is created by the compiler when lowering memcpy calls to a sequence
21 // of a load and a store.
23 // The pass currently only handles cases where memcpy is lowered to
24 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
25 // breaking the memcpy should be possible since there is no atomicity
26 // guarantee for loads and stores to XMM/YMM.
28 // It could be better for performance to solve the problem by loading
29 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
30 // to memory, but this will result in a more conservative optimization since it
31 // requires we prove that all memory accesses between the blocking store and the
32 // load must alias/don't alias before we can move the store, whereas the
33 // transformation done here is correct regardless to other memory accesses.
34 //===----------------------------------------------------------------------===//
36 #include "X86.h"
37 #include "X86InstrInfo.h"
38 #include "X86Subtarget.h"
39 #include "llvm/Analysis/AliasAnalysis.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/MC/MCInstrDesc.h"
53 using namespace llvm;
55 #define DEBUG_TYPE "x86-avoid-SFB"
57 static cl::opt<bool> DisableX86AvoidStoreForwardBlocks(
58 "x86-disable-avoid-SFB", cl::Hidden,
59 cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
61 static cl::opt<unsigned> X86AvoidSFBInspectionLimit(
62 "x86-sfb-inspection-limit",
63 cl::desc("X86: Number of instructions backward to "
64 "inspect for store forwarding blocks."),
65 cl::init(20), cl::Hidden);
67 namespace {
69 using DisplacementSizeMap = std::map<int64_t, unsigned>;
71 class X86AvoidSFBPass : public MachineFunctionPass {
72 public:
73 static char ID;
74 X86AvoidSFBPass() : MachineFunctionPass(ID) { }
76 StringRef getPassName() const override {
77 return "X86 Avoid Store Forwarding Blocks";
80 bool runOnMachineFunction(MachineFunction &MF) override;
82 void getAnalysisUsage(AnalysisUsage &AU) const override {
83 MachineFunctionPass::getAnalysisUsage(AU);
84 AU.addRequired<AAResultsWrapperPass>();
87 private:
88 MachineRegisterInfo *MRI = nullptr;
89 const X86InstrInfo *TII = nullptr;
90 const X86RegisterInfo *TRI = nullptr;
91 SmallVector<std::pair<MachineInstr *, MachineInstr *>, 2>
92 BlockedLoadsStoresPairs;
93 SmallVector<MachineInstr *, 2> ForRemoval;
94 AliasAnalysis *AA = nullptr;
96 /// Returns couples of Load then Store to memory which look
97 /// like a memcpy.
98 void findPotentiallylBlockedCopies(MachineFunction &MF);
99 /// Break the memcpy's load and store into smaller copies
100 /// such that each memory load that was blocked by a smaller store
101 /// would now be copied separately.
102 void breakBlockedCopies(MachineInstr *LoadInst, MachineInstr *StoreInst,
103 const DisplacementSizeMap &BlockingStoresDispSizeMap);
104 /// Break a copy of size Size to smaller copies.
105 void buildCopies(int Size, MachineInstr *LoadInst, int64_t LdDispImm,
106 MachineInstr *StoreInst, int64_t StDispImm,
107 int64_t LMMOffset, int64_t SMMOffset);
109 void buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode, int64_t LoadDisp,
110 MachineInstr *StoreInst, unsigned NStoreOpcode,
111 int64_t StoreDisp, unsigned Size, int64_t LMMOffset,
112 int64_t SMMOffset);
114 bool alias(const MachineMemOperand &Op1, const MachineMemOperand &Op2) const;
116 unsigned getRegSizeInBytes(MachineInstr *Inst);
119 } // end anonymous namespace
121 char X86AvoidSFBPass::ID = 0;
123 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking",
124 false, false)
125 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
126 INITIALIZE_PASS_END(X86AvoidSFBPass, DEBUG_TYPE, "Machine code sinking", false,
127 false)
129 FunctionPass *llvm::createX86AvoidStoreForwardingBlocks() {
130 return new X86AvoidSFBPass();
133 static bool isXMMLoadOpcode(unsigned Opcode) {
134 return Opcode == X86::MOVUPSrm || Opcode == X86::MOVAPSrm ||
135 Opcode == X86::VMOVUPSrm || Opcode == X86::VMOVAPSrm ||
136 Opcode == X86::VMOVUPDrm || Opcode == X86::VMOVAPDrm ||
137 Opcode == X86::VMOVDQUrm || Opcode == X86::VMOVDQArm ||
138 Opcode == X86::VMOVUPSZ128rm || Opcode == X86::VMOVAPSZ128rm ||
139 Opcode == X86::VMOVUPDZ128rm || Opcode == X86::VMOVAPDZ128rm ||
140 Opcode == X86::VMOVDQU64Z128rm || Opcode == X86::VMOVDQA64Z128rm ||
141 Opcode == X86::VMOVDQU32Z128rm || Opcode == X86::VMOVDQA32Z128rm;
143 static bool isYMMLoadOpcode(unsigned Opcode) {
144 return Opcode == X86::VMOVUPSYrm || Opcode == X86::VMOVAPSYrm ||
145 Opcode == X86::VMOVUPDYrm || Opcode == X86::VMOVAPDYrm ||
146 Opcode == X86::VMOVDQUYrm || Opcode == X86::VMOVDQAYrm ||
147 Opcode == X86::VMOVUPSZ256rm || Opcode == X86::VMOVAPSZ256rm ||
148 Opcode == X86::VMOVUPDZ256rm || Opcode == X86::VMOVAPDZ256rm ||
149 Opcode == X86::VMOVDQU64Z256rm || Opcode == X86::VMOVDQA64Z256rm ||
150 Opcode == X86::VMOVDQU32Z256rm || Opcode == X86::VMOVDQA32Z256rm;
153 static bool isPotentialBlockedMemCpyLd(unsigned Opcode) {
154 return isXMMLoadOpcode(Opcode) || isYMMLoadOpcode(Opcode);
157 static bool isPotentialBlockedMemCpyPair(unsigned LdOpcode, unsigned StOpcode) {
158 switch (LdOpcode) {
159 case X86::MOVUPSrm:
160 case X86::MOVAPSrm:
161 return StOpcode == X86::MOVUPSmr || StOpcode == X86::MOVAPSmr;
162 case X86::VMOVUPSrm:
163 case X86::VMOVAPSrm:
164 return StOpcode == X86::VMOVUPSmr || StOpcode == X86::VMOVAPSmr;
165 case X86::VMOVUPDrm:
166 case X86::VMOVAPDrm:
167 return StOpcode == X86::VMOVUPDmr || StOpcode == X86::VMOVAPDmr;
168 case X86::VMOVDQUrm:
169 case X86::VMOVDQArm:
170 return StOpcode == X86::VMOVDQUmr || StOpcode == X86::VMOVDQAmr;
171 case X86::VMOVUPSZ128rm:
172 case X86::VMOVAPSZ128rm:
173 return StOpcode == X86::VMOVUPSZ128mr || StOpcode == X86::VMOVAPSZ128mr;
174 case X86::VMOVUPDZ128rm:
175 case X86::VMOVAPDZ128rm:
176 return StOpcode == X86::VMOVUPDZ128mr || StOpcode == X86::VMOVAPDZ128mr;
177 case X86::VMOVUPSYrm:
178 case X86::VMOVAPSYrm:
179 return StOpcode == X86::VMOVUPSYmr || StOpcode == X86::VMOVAPSYmr;
180 case X86::VMOVUPDYrm:
181 case X86::VMOVAPDYrm:
182 return StOpcode == X86::VMOVUPDYmr || StOpcode == X86::VMOVAPDYmr;
183 case X86::VMOVDQUYrm:
184 case X86::VMOVDQAYrm:
185 return StOpcode == X86::VMOVDQUYmr || StOpcode == X86::VMOVDQAYmr;
186 case X86::VMOVUPSZ256rm:
187 case X86::VMOVAPSZ256rm:
188 return StOpcode == X86::VMOVUPSZ256mr || StOpcode == X86::VMOVAPSZ256mr;
189 case X86::VMOVUPDZ256rm:
190 case X86::VMOVAPDZ256rm:
191 return StOpcode == X86::VMOVUPDZ256mr || StOpcode == X86::VMOVAPDZ256mr;
192 case X86::VMOVDQU64Z128rm:
193 case X86::VMOVDQA64Z128rm:
194 return StOpcode == X86::VMOVDQU64Z128mr || StOpcode == X86::VMOVDQA64Z128mr;
195 case X86::VMOVDQU32Z128rm:
196 case X86::VMOVDQA32Z128rm:
197 return StOpcode == X86::VMOVDQU32Z128mr || StOpcode == X86::VMOVDQA32Z128mr;
198 case X86::VMOVDQU64Z256rm:
199 case X86::VMOVDQA64Z256rm:
200 return StOpcode == X86::VMOVDQU64Z256mr || StOpcode == X86::VMOVDQA64Z256mr;
201 case X86::VMOVDQU32Z256rm:
202 case X86::VMOVDQA32Z256rm:
203 return StOpcode == X86::VMOVDQU32Z256mr || StOpcode == X86::VMOVDQA32Z256mr;
204 default:
205 return false;
209 static bool isPotentialBlockingStoreInst(unsigned Opcode, unsigned LoadOpcode) {
210 bool PBlock = false;
211 PBlock |= Opcode == X86::MOV64mr || Opcode == X86::MOV64mi32 ||
212 Opcode == X86::MOV32mr || Opcode == X86::MOV32mi ||
213 Opcode == X86::MOV16mr || Opcode == X86::MOV16mi ||
214 Opcode == X86::MOV8mr || Opcode == X86::MOV8mi;
215 if (isYMMLoadOpcode(LoadOpcode))
216 PBlock |= Opcode == X86::VMOVUPSmr || Opcode == X86::VMOVAPSmr ||
217 Opcode == X86::VMOVUPDmr || Opcode == X86::VMOVAPDmr ||
218 Opcode == X86::VMOVDQUmr || Opcode == X86::VMOVDQAmr ||
219 Opcode == X86::VMOVUPSZ128mr || Opcode == X86::VMOVAPSZ128mr ||
220 Opcode == X86::VMOVUPDZ128mr || Opcode == X86::VMOVAPDZ128mr ||
221 Opcode == X86::VMOVDQU64Z128mr ||
222 Opcode == X86::VMOVDQA64Z128mr ||
223 Opcode == X86::VMOVDQU32Z128mr || Opcode == X86::VMOVDQA32Z128mr;
224 return PBlock;
227 static const int MOV128SZ = 16;
228 static const int MOV64SZ = 8;
229 static const int MOV32SZ = 4;
230 static const int MOV16SZ = 2;
231 static const int MOV8SZ = 1;
233 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode) {
234 switch (LoadOpcode) {
235 case X86::VMOVUPSYrm:
236 case X86::VMOVAPSYrm:
237 return X86::VMOVUPSrm;
238 case X86::VMOVUPDYrm:
239 case X86::VMOVAPDYrm:
240 return X86::VMOVUPDrm;
241 case X86::VMOVDQUYrm:
242 case X86::VMOVDQAYrm:
243 return X86::VMOVDQUrm;
244 case X86::VMOVUPSZ256rm:
245 case X86::VMOVAPSZ256rm:
246 return X86::VMOVUPSZ128rm;
247 case X86::VMOVUPDZ256rm:
248 case X86::VMOVAPDZ256rm:
249 return X86::VMOVUPDZ128rm;
250 case X86::VMOVDQU64Z256rm:
251 case X86::VMOVDQA64Z256rm:
252 return X86::VMOVDQU64Z128rm;
253 case X86::VMOVDQU32Z256rm:
254 case X86::VMOVDQA32Z256rm:
255 return X86::VMOVDQU32Z128rm;
256 default:
257 llvm_unreachable("Unexpected Load Instruction Opcode");
259 return 0;
262 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode) {
263 switch (StoreOpcode) {
264 case X86::VMOVUPSYmr:
265 case X86::VMOVAPSYmr:
266 return X86::VMOVUPSmr;
267 case X86::VMOVUPDYmr:
268 case X86::VMOVAPDYmr:
269 return X86::VMOVUPDmr;
270 case X86::VMOVDQUYmr:
271 case X86::VMOVDQAYmr:
272 return X86::VMOVDQUmr;
273 case X86::VMOVUPSZ256mr:
274 case X86::VMOVAPSZ256mr:
275 return X86::VMOVUPSZ128mr;
276 case X86::VMOVUPDZ256mr:
277 case X86::VMOVAPDZ256mr:
278 return X86::VMOVUPDZ128mr;
279 case X86::VMOVDQU64Z256mr:
280 case X86::VMOVDQA64Z256mr:
281 return X86::VMOVDQU64Z128mr;
282 case X86::VMOVDQU32Z256mr:
283 case X86::VMOVDQA32Z256mr:
284 return X86::VMOVDQU32Z128mr;
285 default:
286 llvm_unreachable("Unexpected Load Instruction Opcode");
288 return 0;
291 static int getAddrOffset(const MachineInstr *MI) {
292 const MCInstrDesc &Descl = MI->getDesc();
293 int AddrOffset = X86II::getMemoryOperandNo(Descl.TSFlags);
294 assert(AddrOffset != -1 && "Expected Memory Operand");
295 AddrOffset += X86II::getOperandBias(Descl);
296 return AddrOffset;
299 static MachineOperand &getBaseOperand(MachineInstr *MI) {
300 int AddrOffset = getAddrOffset(MI);
301 return MI->getOperand(AddrOffset + X86::AddrBaseReg);
304 static MachineOperand &getDispOperand(MachineInstr *MI) {
305 int AddrOffset = getAddrOffset(MI);
306 return MI->getOperand(AddrOffset + X86::AddrDisp);
309 // Relevant addressing modes contain only base register and immediate
310 // displacement or frameindex and immediate displacement.
311 // TODO: Consider expanding to other addressing modes in the future
312 static bool isRelevantAddressingMode(MachineInstr *MI) {
313 int AddrOffset = getAddrOffset(MI);
314 const MachineOperand &Base = getBaseOperand(MI);
315 const MachineOperand &Disp = getDispOperand(MI);
316 const MachineOperand &Scale = MI->getOperand(AddrOffset + X86::AddrScaleAmt);
317 const MachineOperand &Index = MI->getOperand(AddrOffset + X86::AddrIndexReg);
318 const MachineOperand &Segment = MI->getOperand(AddrOffset + X86::AddrSegmentReg);
320 if (!((Base.isReg() && Base.getReg() != X86::NoRegister) || Base.isFI()))
321 return false;
322 if (!Disp.isImm())
323 return false;
324 if (Scale.getImm() != 1)
325 return false;
326 if (!(Index.isReg() && Index.getReg() == X86::NoRegister))
327 return false;
328 if (!(Segment.isReg() && Segment.getReg() == X86::NoRegister))
329 return false;
330 return true;
333 // Collect potentially blocking stores.
334 // Limit the number of instructions backwards we want to inspect
335 // since the effect of store block won't be visible if the store
336 // and load instructions have enough instructions in between to
337 // keep the core busy.
338 static SmallVector<MachineInstr *, 2>
339 findPotentialBlockers(MachineInstr *LoadInst) {
340 SmallVector<MachineInstr *, 2> PotentialBlockers;
341 unsigned BlockCount = 0;
342 const unsigned InspectionLimit = X86AvoidSFBInspectionLimit;
343 for (auto PBInst = std::next(MachineBasicBlock::reverse_iterator(LoadInst)),
344 E = LoadInst->getParent()->rend();
345 PBInst != E; ++PBInst) {
346 if (PBInst->isMetaInstruction())
347 continue;
348 BlockCount++;
349 if (BlockCount >= InspectionLimit)
350 break;
351 MachineInstr &MI = *PBInst;
352 if (MI.getDesc().isCall())
353 return PotentialBlockers;
354 PotentialBlockers.push_back(&MI);
356 // If we didn't get to the instructions limit try predecessing blocks.
357 // Ideally we should traverse the predecessor blocks in depth with some
358 // coloring algorithm, but for now let's just look at the first order
359 // predecessors.
360 if (BlockCount < InspectionLimit) {
361 MachineBasicBlock *MBB = LoadInst->getParent();
362 int LimitLeft = InspectionLimit - BlockCount;
363 for (MachineBasicBlock *PMBB : MBB->predecessors()) {
364 int PredCount = 0;
365 for (MachineInstr &PBInst : llvm::reverse(*PMBB)) {
366 if (PBInst.isMetaInstruction())
367 continue;
368 PredCount++;
369 if (PredCount >= LimitLeft)
370 break;
371 if (PBInst.getDesc().isCall())
372 break;
373 PotentialBlockers.push_back(&PBInst);
377 return PotentialBlockers;
380 void X86AvoidSFBPass::buildCopy(MachineInstr *LoadInst, unsigned NLoadOpcode,
381 int64_t LoadDisp, MachineInstr *StoreInst,
382 unsigned NStoreOpcode, int64_t StoreDisp,
383 unsigned Size, int64_t LMMOffset,
384 int64_t SMMOffset) {
385 MachineOperand &LoadBase = getBaseOperand(LoadInst);
386 MachineOperand &StoreBase = getBaseOperand(StoreInst);
387 MachineBasicBlock *MBB = LoadInst->getParent();
388 MachineMemOperand *LMMO = *LoadInst->memoperands_begin();
389 MachineMemOperand *SMMO = *StoreInst->memoperands_begin();
391 Register Reg1 = MRI->createVirtualRegister(
392 TII->getRegClass(TII->get(NLoadOpcode), 0, TRI, *(MBB->getParent())));
393 MachineInstr *NewLoad =
394 BuildMI(*MBB, LoadInst, LoadInst->getDebugLoc(), TII->get(NLoadOpcode),
395 Reg1)
396 .add(LoadBase)
397 .addImm(1)
398 .addReg(X86::NoRegister)
399 .addImm(LoadDisp)
400 .addReg(X86::NoRegister)
401 .addMemOperand(
402 MBB->getParent()->getMachineMemOperand(LMMO, LMMOffset, Size));
403 if (LoadBase.isReg())
404 getBaseOperand(NewLoad).setIsKill(false);
405 LLVM_DEBUG(NewLoad->dump());
406 // If the load and store are consecutive, use the loadInst location to
407 // reduce register pressure.
408 MachineInstr *StInst = StoreInst;
409 auto PrevInstrIt = prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst),
410 MBB->instr_begin());
411 if (PrevInstrIt.getNodePtr() == LoadInst)
412 StInst = LoadInst;
413 MachineInstr *NewStore =
414 BuildMI(*MBB, StInst, StInst->getDebugLoc(), TII->get(NStoreOpcode))
415 .add(StoreBase)
416 .addImm(1)
417 .addReg(X86::NoRegister)
418 .addImm(StoreDisp)
419 .addReg(X86::NoRegister)
420 .addReg(Reg1)
421 .addMemOperand(
422 MBB->getParent()->getMachineMemOperand(SMMO, SMMOffset, Size));
423 if (StoreBase.isReg())
424 getBaseOperand(NewStore).setIsKill(false);
425 MachineOperand &StoreSrcVReg = StoreInst->getOperand(X86::AddrNumOperands);
426 assert(StoreSrcVReg.isReg() && "Expected virtual register");
427 NewStore->getOperand(X86::AddrNumOperands).setIsKill(StoreSrcVReg.isKill());
428 LLVM_DEBUG(NewStore->dump());
431 void X86AvoidSFBPass::buildCopies(int Size, MachineInstr *LoadInst,
432 int64_t LdDispImm, MachineInstr *StoreInst,
433 int64_t StDispImm, int64_t LMMOffset,
434 int64_t SMMOffset) {
435 int LdDisp = LdDispImm;
436 int StDisp = StDispImm;
437 while (Size > 0) {
438 if ((Size - MOV128SZ >= 0) && isYMMLoadOpcode(LoadInst->getOpcode())) {
439 Size = Size - MOV128SZ;
440 buildCopy(LoadInst, getYMMtoXMMLoadOpcode(LoadInst->getOpcode()), LdDisp,
441 StoreInst, getYMMtoXMMStoreOpcode(StoreInst->getOpcode()),
442 StDisp, MOV128SZ, LMMOffset, SMMOffset);
443 LdDisp += MOV128SZ;
444 StDisp += MOV128SZ;
445 LMMOffset += MOV128SZ;
446 SMMOffset += MOV128SZ;
447 continue;
449 if (Size - MOV64SZ >= 0) {
450 Size = Size - MOV64SZ;
451 buildCopy(LoadInst, X86::MOV64rm, LdDisp, StoreInst, X86::MOV64mr, StDisp,
452 MOV64SZ, LMMOffset, SMMOffset);
453 LdDisp += MOV64SZ;
454 StDisp += MOV64SZ;
455 LMMOffset += MOV64SZ;
456 SMMOffset += MOV64SZ;
457 continue;
459 if (Size - MOV32SZ >= 0) {
460 Size = Size - MOV32SZ;
461 buildCopy(LoadInst, X86::MOV32rm, LdDisp, StoreInst, X86::MOV32mr, StDisp,
462 MOV32SZ, LMMOffset, SMMOffset);
463 LdDisp += MOV32SZ;
464 StDisp += MOV32SZ;
465 LMMOffset += MOV32SZ;
466 SMMOffset += MOV32SZ;
467 continue;
469 if (Size - MOV16SZ >= 0) {
470 Size = Size - MOV16SZ;
471 buildCopy(LoadInst, X86::MOV16rm, LdDisp, StoreInst, X86::MOV16mr, StDisp,
472 MOV16SZ, LMMOffset, SMMOffset);
473 LdDisp += MOV16SZ;
474 StDisp += MOV16SZ;
475 LMMOffset += MOV16SZ;
476 SMMOffset += MOV16SZ;
477 continue;
479 if (Size - MOV8SZ >= 0) {
480 Size = Size - MOV8SZ;
481 buildCopy(LoadInst, X86::MOV8rm, LdDisp, StoreInst, X86::MOV8mr, StDisp,
482 MOV8SZ, LMMOffset, SMMOffset);
483 LdDisp += MOV8SZ;
484 StDisp += MOV8SZ;
485 LMMOffset += MOV8SZ;
486 SMMOffset += MOV8SZ;
487 continue;
490 assert(Size == 0 && "Wrong size division");
493 static void updateKillStatus(MachineInstr *LoadInst, MachineInstr *StoreInst) {
494 MachineOperand &LoadBase = getBaseOperand(LoadInst);
495 MachineOperand &StoreBase = getBaseOperand(StoreInst);
496 auto *StorePrevNonDbgInstr =
497 prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst),
498 LoadInst->getParent()->instr_begin())
499 .getNodePtr();
500 if (LoadBase.isReg()) {
501 MachineInstr *LastLoad = LoadInst->getPrevNode();
502 // If the original load and store to xmm/ymm were consecutive
503 // then the partial copies were also created in
504 // a consecutive order to reduce register pressure,
505 // and the location of the last load is before the last store.
506 if (StorePrevNonDbgInstr == LoadInst)
507 LastLoad = LoadInst->getPrevNode()->getPrevNode();
508 getBaseOperand(LastLoad).setIsKill(LoadBase.isKill());
510 if (StoreBase.isReg()) {
511 MachineInstr *StInst = StoreInst;
512 if (StorePrevNonDbgInstr == LoadInst)
513 StInst = LoadInst;
514 getBaseOperand(StInst->getPrevNode()).setIsKill(StoreBase.isKill());
518 bool X86AvoidSFBPass::alias(const MachineMemOperand &Op1,
519 const MachineMemOperand &Op2) const {
520 if (!Op1.getValue() || !Op2.getValue())
521 return true;
523 int64_t MinOffset = std::min(Op1.getOffset(), Op2.getOffset());
524 int64_t Overlapa = Op1.getSize() + Op1.getOffset() - MinOffset;
525 int64_t Overlapb = Op2.getSize() + Op2.getOffset() - MinOffset;
527 return !AA->isNoAlias(
528 MemoryLocation(Op1.getValue(), Overlapa, Op1.getAAInfo()),
529 MemoryLocation(Op2.getValue(), Overlapb, Op2.getAAInfo()));
532 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction &MF) {
533 for (auto &MBB : MF)
534 for (auto &MI : MBB) {
535 if (!isPotentialBlockedMemCpyLd(MI.getOpcode()))
536 continue;
537 int DefVR = MI.getOperand(0).getReg();
538 if (!MRI->hasOneNonDBGUse(DefVR))
539 continue;
540 for (MachineOperand &StoreMO :
541 llvm::make_early_inc_range(MRI->use_nodbg_operands(DefVR))) {
542 MachineInstr &StoreMI = *StoreMO.getParent();
543 // Skip cases where the memcpy may overlap.
544 if (StoreMI.getParent() == MI.getParent() &&
545 isPotentialBlockedMemCpyPair(MI.getOpcode(), StoreMI.getOpcode()) &&
546 isRelevantAddressingMode(&MI) &&
547 isRelevantAddressingMode(&StoreMI) &&
548 MI.hasOneMemOperand() && StoreMI.hasOneMemOperand()) {
549 if (!alias(**MI.memoperands_begin(), **StoreMI.memoperands_begin()))
550 BlockedLoadsStoresPairs.push_back(std::make_pair(&MI, &StoreMI));
556 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr *LoadInst) {
557 const auto *TRC = TII->getRegClass(TII->get(LoadInst->getOpcode()), 0, TRI,
558 *LoadInst->getParent()->getParent());
559 return TRI->getRegSizeInBits(*TRC) / 8;
562 void X86AvoidSFBPass::breakBlockedCopies(
563 MachineInstr *LoadInst, MachineInstr *StoreInst,
564 const DisplacementSizeMap &BlockingStoresDispSizeMap) {
565 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
566 int64_t StDispImm = getDispOperand(StoreInst).getImm();
567 int64_t LMMOffset = 0;
568 int64_t SMMOffset = 0;
570 int64_t LdDisp1 = LdDispImm;
571 int64_t LdDisp2 = 0;
572 int64_t StDisp1 = StDispImm;
573 int64_t StDisp2 = 0;
574 unsigned Size1 = 0;
575 unsigned Size2 = 0;
576 int64_t LdStDelta = StDispImm - LdDispImm;
578 for (auto DispSizePair : BlockingStoresDispSizeMap) {
579 LdDisp2 = DispSizePair.first;
580 StDisp2 = DispSizePair.first + LdStDelta;
581 Size2 = DispSizePair.second;
582 // Avoid copying overlapping areas.
583 if (LdDisp2 < LdDisp1) {
584 int OverlapDelta = LdDisp1 - LdDisp2;
585 LdDisp2 += OverlapDelta;
586 StDisp2 += OverlapDelta;
587 Size2 -= OverlapDelta;
589 Size1 = LdDisp2 - LdDisp1;
591 // Build a copy for the point until the current blocking store's
592 // displacement.
593 buildCopies(Size1, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
594 SMMOffset);
595 // Build a copy for the current blocking store.
596 buildCopies(Size2, LoadInst, LdDisp2, StoreInst, StDisp2, LMMOffset + Size1,
597 SMMOffset + Size1);
598 LdDisp1 = LdDisp2 + Size2;
599 StDisp1 = StDisp2 + Size2;
600 LMMOffset += Size1 + Size2;
601 SMMOffset += Size1 + Size2;
603 unsigned Size3 = (LdDispImm + getRegSizeInBytes(LoadInst)) - LdDisp1;
604 buildCopies(Size3, LoadInst, LdDisp1, StoreInst, StDisp1, LMMOffset,
605 LMMOffset);
608 static bool hasSameBaseOpValue(MachineInstr *LoadInst,
609 MachineInstr *StoreInst) {
610 const MachineOperand &LoadBase = getBaseOperand(LoadInst);
611 const MachineOperand &StoreBase = getBaseOperand(StoreInst);
612 if (LoadBase.isReg() != StoreBase.isReg())
613 return false;
614 if (LoadBase.isReg())
615 return LoadBase.getReg() == StoreBase.getReg();
616 return LoadBase.getIndex() == StoreBase.getIndex();
619 static bool isBlockingStore(int64_t LoadDispImm, unsigned LoadSize,
620 int64_t StoreDispImm, unsigned StoreSize) {
621 return ((StoreDispImm >= LoadDispImm) &&
622 (StoreDispImm <= LoadDispImm + (LoadSize - StoreSize)));
625 // Keep track of all stores blocking a load
626 static void
627 updateBlockingStoresDispSizeMap(DisplacementSizeMap &BlockingStoresDispSizeMap,
628 int64_t DispImm, unsigned Size) {
629 if (BlockingStoresDispSizeMap.count(DispImm)) {
630 // Choose the smallest blocking store starting at this displacement.
631 if (BlockingStoresDispSizeMap[DispImm] > Size)
632 BlockingStoresDispSizeMap[DispImm] = Size;
634 } else
635 BlockingStoresDispSizeMap[DispImm] = Size;
638 // Remove blocking stores contained in each other.
639 static void
640 removeRedundantBlockingStores(DisplacementSizeMap &BlockingStoresDispSizeMap) {
641 if (BlockingStoresDispSizeMap.size() <= 1)
642 return;
644 SmallVector<std::pair<int64_t, unsigned>, 0> DispSizeStack;
645 for (auto DispSizePair : BlockingStoresDispSizeMap) {
646 int64_t CurrDisp = DispSizePair.first;
647 unsigned CurrSize = DispSizePair.second;
648 while (DispSizeStack.size()) {
649 int64_t PrevDisp = DispSizeStack.back().first;
650 unsigned PrevSize = DispSizeStack.back().second;
651 if (CurrDisp + CurrSize > PrevDisp + PrevSize)
652 break;
653 DispSizeStack.pop_back();
655 DispSizeStack.push_back(DispSizePair);
657 BlockingStoresDispSizeMap.clear();
658 for (auto Disp : DispSizeStack)
659 BlockingStoresDispSizeMap.insert(Disp);
662 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction &MF) {
663 bool Changed = false;
665 if (DisableX86AvoidStoreForwardBlocks || skipFunction(MF.getFunction()) ||
666 !MF.getSubtarget<X86Subtarget>().is64Bit())
667 return false;
669 MRI = &MF.getRegInfo();
670 assert(MRI->isSSA() && "Expected MIR to be in SSA form");
671 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
672 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
673 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
674 LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
675 // Look for a load then a store to XMM/YMM which look like a memcpy
676 findPotentiallylBlockedCopies(MF);
678 for (auto LoadStoreInstPair : BlockedLoadsStoresPairs) {
679 MachineInstr *LoadInst = LoadStoreInstPair.first;
680 int64_t LdDispImm = getDispOperand(LoadInst).getImm();
681 DisplacementSizeMap BlockingStoresDispSizeMap;
683 SmallVector<MachineInstr *, 2> PotentialBlockers =
684 findPotentialBlockers(LoadInst);
685 for (auto *PBInst : PotentialBlockers) {
686 if (!isPotentialBlockingStoreInst(PBInst->getOpcode(),
687 LoadInst->getOpcode()) ||
688 !isRelevantAddressingMode(PBInst) || !PBInst->hasOneMemOperand())
689 continue;
690 int64_t PBstDispImm = getDispOperand(PBInst).getImm();
691 unsigned PBstSize = (*PBInst->memoperands_begin())->getSize();
692 // This check doesn't cover all cases, but it will suffice for now.
693 // TODO: take branch probability into consideration, if the blocking
694 // store is in an unreached block, breaking the memcopy could lose
695 // performance.
696 if (hasSameBaseOpValue(LoadInst, PBInst) &&
697 isBlockingStore(LdDispImm, getRegSizeInBytes(LoadInst), PBstDispImm,
698 PBstSize))
699 updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap, PBstDispImm,
700 PBstSize);
703 if (BlockingStoresDispSizeMap.empty())
704 continue;
706 // We found a store forward block, break the memcpy's load and store
707 // into smaller copies such that each smaller store that was causing
708 // a store block would now be copied separately.
709 MachineInstr *StoreInst = LoadStoreInstPair.second;
710 LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
711 LLVM_DEBUG(LoadInst->dump());
712 LLVM_DEBUG(StoreInst->dump());
713 LLVM_DEBUG(dbgs() << "Replaced with:\n");
714 removeRedundantBlockingStores(BlockingStoresDispSizeMap);
715 breakBlockedCopies(LoadInst, StoreInst, BlockingStoresDispSizeMap);
716 updateKillStatus(LoadInst, StoreInst);
717 ForRemoval.push_back(LoadInst);
718 ForRemoval.push_back(StoreInst);
720 for (auto *RemovedInst : ForRemoval) {
721 RemovedInst->eraseFromParent();
723 ForRemoval.clear();
724 BlockedLoadsStoresPairs.clear();
725 LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);
727 return Changed;