[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / IPO / Attributor.cpp
blobd8e290cbc8a4d04b6f2acfb3fca3210f0ca6edc7
1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an interprocedural pass that deduces and/or propagates
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO/Attributor.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CallGraph.h"
25 #include "llvm/Analysis/CallGraphSCCPass.h"
26 #include "llvm/Analysis/InlineCost.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/MustExecute.h"
29 #include "llvm/IR/AttributeMask.h"
30 #include "llvm/IR/Attributes.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/ConstantFold.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/GlobalValue.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/ValueHandle.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/DebugCounter.h"
46 #include "llvm/Support/FileSystem.h"
47 #include "llvm/Support/GraphWriter.h"
48 #include "llvm/Support/ModRef.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include "llvm/Transforms/Utils/Cloning.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include <cstdint>
54 #include <memory>
56 #ifdef EXPENSIVE_CHECKS
57 #include "llvm/IR/Verifier.h"
58 #endif
60 #include <cassert>
61 #include <optional>
62 #include <string>
64 using namespace llvm;
66 #define DEBUG_TYPE "attributor"
67 #define VERBOSE_DEBUG_TYPE DEBUG_TYPE "-verbose"
69 DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",
70 "Determine what attributes are manifested in the IR");
72 STATISTIC(NumFnDeleted, "Number of function deleted");
73 STATISTIC(NumFnWithExactDefinition,
74 "Number of functions with exact definitions");
75 STATISTIC(NumFnWithoutExactDefinition,
76 "Number of functions without exact definitions");
77 STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created");
78 STATISTIC(NumAttributesTimedOut,
79 "Number of abstract attributes timed out before fixpoint");
80 STATISTIC(NumAttributesValidFixpoint,
81 "Number of abstract attributes in a valid fixpoint state");
82 STATISTIC(NumAttributesManifested,
83 "Number of abstract attributes manifested in IR");
85 // TODO: Determine a good default value.
87 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
88 // (when run with the first 5 abstract attributes). The results also indicate
89 // that we never reach 32 iterations but always find a fixpoint sooner.
91 // This will become more evolved once we perform two interleaved fixpoint
92 // iterations: bottom-up and top-down.
93 static cl::opt<unsigned>
94 SetFixpointIterations("attributor-max-iterations", cl::Hidden,
95 cl::desc("Maximal number of fixpoint iterations."),
96 cl::init(32));
98 static cl::opt<unsigned>
99 MaxSpecializationPerCB("attributor-max-specializations-per-call-base",
100 cl::Hidden,
101 cl::desc("Maximal number of callees specialized for "
102 "a call base"),
103 cl::init(UINT32_MAX));
105 static cl::opt<unsigned, true> MaxInitializationChainLengthX(
106 "attributor-max-initialization-chain-length", cl::Hidden,
107 cl::desc(
108 "Maximal number of chained initializations (to avoid stack overflows)"),
109 cl::location(MaxInitializationChainLength), cl::init(1024));
110 unsigned llvm::MaxInitializationChainLength;
112 static cl::opt<bool> AnnotateDeclarationCallSites(
113 "attributor-annotate-decl-cs", cl::Hidden,
114 cl::desc("Annotate call sites of function declarations."), cl::init(false));
116 static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
117 cl::init(true), cl::Hidden);
119 static cl::opt<bool>
120 AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
121 cl::desc("Allow the Attributor to create shallow "
122 "wrappers for non-exact definitions."),
123 cl::init(false));
125 static cl::opt<bool>
126 AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
127 cl::desc("Allow the Attributor to use IP information "
128 "derived from non-exact functions via cloning"),
129 cl::init(false));
131 // These options can only used for debug builds.
132 #ifndef NDEBUG
133 static cl::list<std::string>
134 SeedAllowList("attributor-seed-allow-list", cl::Hidden,
135 cl::desc("Comma seperated list of attribute names that are "
136 "allowed to be seeded."),
137 cl::CommaSeparated);
139 static cl::list<std::string> FunctionSeedAllowList(
140 "attributor-function-seed-allow-list", cl::Hidden,
141 cl::desc("Comma seperated list of function names that are "
142 "allowed to be seeded."),
143 cl::CommaSeparated);
144 #endif
146 static cl::opt<bool>
147 DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
148 cl::desc("Dump the dependency graph to dot files."),
149 cl::init(false));
151 static cl::opt<std::string> DepGraphDotFileNamePrefix(
152 "attributor-depgraph-dot-filename-prefix", cl::Hidden,
153 cl::desc("The prefix used for the CallGraph dot file names."));
155 static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
156 cl::desc("View the dependency graph."),
157 cl::init(false));
159 static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
160 cl::desc("Print attribute dependencies"),
161 cl::init(false));
163 static cl::opt<bool> EnableCallSiteSpecific(
164 "attributor-enable-call-site-specific-deduction", cl::Hidden,
165 cl::desc("Allow the Attributor to do call site specific analysis"),
166 cl::init(false));
168 static cl::opt<bool>
169 PrintCallGraph("attributor-print-call-graph", cl::Hidden,
170 cl::desc("Print Attributor's internal call graph"),
171 cl::init(false));
173 static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
174 cl::Hidden,
175 cl::desc("Try to simplify all loads."),
176 cl::init(true));
178 static cl::opt<bool> CloseWorldAssumption(
179 "attributor-assume-closed-world", cl::Hidden,
180 cl::desc("Should a closed world be assumed, or not. Default if not set."));
182 /// Logic operators for the change status enum class.
184 ///{
185 ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
186 return L == ChangeStatus::CHANGED ? L : R;
188 ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
189 L = L | R;
190 return L;
192 ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
193 return L == ChangeStatus::UNCHANGED ? L : R;
195 ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
196 L = L & R;
197 return L;
199 ///}
201 bool AA::isGPU(const Module &M) {
202 Triple T(M.getTargetTriple());
203 return T.isAMDGPU() || T.isNVPTX();
206 bool AA::isNoSyncInst(Attributor &A, const Instruction &I,
207 const AbstractAttribute &QueryingAA) {
208 // We are looking for volatile instructions or non-relaxed atomics.
209 if (const auto *CB = dyn_cast<CallBase>(&I)) {
210 if (CB->hasFnAttr(Attribute::NoSync))
211 return true;
213 // Non-convergent and readnone imply nosync.
214 if (!CB->isConvergent() && !CB->mayReadOrWriteMemory())
215 return true;
217 if (AANoSync::isNoSyncIntrinsic(&I))
218 return true;
220 bool IsKnownNoSync;
221 return AA::hasAssumedIRAttr<Attribute::NoSync>(
222 A, &QueryingAA, IRPosition::callsite_function(*CB),
223 DepClassTy::OPTIONAL, IsKnownNoSync);
226 if (!I.mayReadOrWriteMemory())
227 return true;
229 return !I.isVolatile() && !AANoSync::isNonRelaxedAtomic(&I);
232 bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
233 const Value &V, bool ForAnalysisOnly) {
234 // TODO: See the AAInstanceInfo class comment.
235 if (!ForAnalysisOnly)
236 return false;
237 auto *InstanceInfoAA = A.getAAFor<AAInstanceInfo>(
238 QueryingAA, IRPosition::value(V), DepClassTy::OPTIONAL);
239 return InstanceInfoAA && InstanceInfoAA->isAssumedUniqueForAnalysis();
242 Constant *
243 AA::getInitialValueForObj(Attributor &A, const AbstractAttribute &QueryingAA,
244 Value &Obj, Type &Ty, const TargetLibraryInfo *TLI,
245 const DataLayout &DL, AA::RangeTy *RangePtr) {
246 if (isa<AllocaInst>(Obj))
247 return UndefValue::get(&Ty);
248 if (Constant *Init = getInitialValueOfAllocation(&Obj, TLI, &Ty))
249 return Init;
250 auto *GV = dyn_cast<GlobalVariable>(&Obj);
251 if (!GV)
252 return nullptr;
254 bool UsedAssumedInformation = false;
255 Constant *Initializer = nullptr;
256 if (A.hasGlobalVariableSimplificationCallback(*GV)) {
257 auto AssumedGV = A.getAssumedInitializerFromCallBack(
258 *GV, &QueryingAA, UsedAssumedInformation);
259 Initializer = *AssumedGV;
260 if (!Initializer)
261 return nullptr;
262 } else {
263 if (!GV->hasLocalLinkage() &&
264 (GV->isInterposable() || !(GV->isConstant() && GV->hasInitializer())))
265 return nullptr;
266 if (!GV->hasInitializer())
267 return UndefValue::get(&Ty);
269 if (!Initializer)
270 Initializer = GV->getInitializer();
273 if (RangePtr && !RangePtr->offsetOrSizeAreUnknown()) {
274 APInt Offset = APInt(64, RangePtr->Offset);
275 return ConstantFoldLoadFromConst(Initializer, &Ty, Offset, DL);
278 return ConstantFoldLoadFromUniformValue(Initializer, &Ty);
281 bool AA::isValidInScope(const Value &V, const Function *Scope) {
282 if (isa<Constant>(V))
283 return true;
284 if (auto *I = dyn_cast<Instruction>(&V))
285 return I->getFunction() == Scope;
286 if (auto *A = dyn_cast<Argument>(&V))
287 return A->getParent() == Scope;
288 return false;
291 bool AA::isValidAtPosition(const AA::ValueAndContext &VAC,
292 InformationCache &InfoCache) {
293 if (isa<Constant>(VAC.getValue()) || VAC.getValue() == VAC.getCtxI())
294 return true;
295 const Function *Scope = nullptr;
296 const Instruction *CtxI = VAC.getCtxI();
297 if (CtxI)
298 Scope = CtxI->getFunction();
299 if (auto *A = dyn_cast<Argument>(VAC.getValue()))
300 return A->getParent() == Scope;
301 if (auto *I = dyn_cast<Instruction>(VAC.getValue())) {
302 if (I->getFunction() == Scope) {
303 if (const DominatorTree *DT =
304 InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(
305 *Scope))
306 return DT->dominates(I, CtxI);
307 // Local dominance check mostly for the old PM passes.
308 if (CtxI && I->getParent() == CtxI->getParent())
309 return llvm::any_of(
310 make_range(I->getIterator(), I->getParent()->end()),
311 [&](const Instruction &AfterI) { return &AfterI == CtxI; });
314 return false;
317 Value *AA::getWithType(Value &V, Type &Ty) {
318 if (V.getType() == &Ty)
319 return &V;
320 if (isa<PoisonValue>(V))
321 return PoisonValue::get(&Ty);
322 if (isa<UndefValue>(V))
323 return UndefValue::get(&Ty);
324 if (auto *C = dyn_cast<Constant>(&V)) {
325 if (C->isNullValue())
326 return Constant::getNullValue(&Ty);
327 if (C->getType()->isPointerTy() && Ty.isPointerTy())
328 return ConstantExpr::getPointerCast(C, &Ty);
329 if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
330 if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
331 return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
332 if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
333 return ConstantFoldCastInstruction(Instruction::FPTrunc, C, &Ty);
336 return nullptr;
339 std::optional<Value *>
340 AA::combineOptionalValuesInAAValueLatice(const std::optional<Value *> &A,
341 const std::optional<Value *> &B,
342 Type *Ty) {
343 if (A == B)
344 return A;
345 if (!B)
346 return A;
347 if (*B == nullptr)
348 return nullptr;
349 if (!A)
350 return Ty ? getWithType(**B, *Ty) : nullptr;
351 if (*A == nullptr)
352 return nullptr;
353 if (!Ty)
354 Ty = (*A)->getType();
355 if (isa_and_nonnull<UndefValue>(*A))
356 return getWithType(**B, *Ty);
357 if (isa<UndefValue>(*B))
358 return A;
359 if (*A && *B && *A == getWithType(**B, *Ty))
360 return A;
361 return nullptr;
364 template <bool IsLoad, typename Ty>
365 static bool getPotentialCopiesOfMemoryValue(
366 Attributor &A, Ty &I, SmallSetVector<Value *, 4> &PotentialCopies,
367 SmallSetVector<Instruction *, 4> *PotentialValueOrigins,
368 const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
369 bool OnlyExact) {
370 LLVM_DEBUG(dbgs() << "Trying to determine the potential copies of " << I
371 << " (only exact: " << OnlyExact << ")\n";);
373 Value &Ptr = *I.getPointerOperand();
374 // Containers to remember the pointer infos and new copies while we are not
375 // sure that we can find all of them. If we abort we want to avoid spurious
376 // dependences and potential copies in the provided container.
377 SmallVector<const AAPointerInfo *> PIs;
378 SmallSetVector<Value *, 8> NewCopies;
379 SmallSetVector<Instruction *, 8> NewCopyOrigins;
381 const auto *TLI =
382 A.getInfoCache().getTargetLibraryInfoForFunction(*I.getFunction());
384 auto Pred = [&](Value &Obj) {
385 LLVM_DEBUG(dbgs() << "Visit underlying object " << Obj << "\n");
386 if (isa<UndefValue>(&Obj))
387 return true;
388 if (isa<ConstantPointerNull>(&Obj)) {
389 // A null pointer access can be undefined but any offset from null may
390 // be OK. We do not try to optimize the latter.
391 if (!NullPointerIsDefined(I.getFunction(),
392 Ptr.getType()->getPointerAddressSpace()) &&
393 A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation,
394 AA::Interprocedural) == &Obj)
395 return true;
396 LLVM_DEBUG(
397 dbgs() << "Underlying object is a valid nullptr, giving up.\n";);
398 return false;
400 // TODO: Use assumed noalias return.
401 if (!isa<AllocaInst>(&Obj) && !isa<GlobalVariable>(&Obj) &&
402 !(IsLoad ? isAllocationFn(&Obj, TLI) : isNoAliasCall(&Obj))) {
403 LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << Obj
404 << "\n";);
405 return false;
407 if (auto *GV = dyn_cast<GlobalVariable>(&Obj))
408 if (!GV->hasLocalLinkage() &&
409 !(GV->isConstant() && GV->hasInitializer())) {
410 LLVM_DEBUG(dbgs() << "Underlying object is global with external "
411 "linkage, not supported yet: "
412 << Obj << "\n";);
413 return false;
416 bool NullOnly = true;
417 bool NullRequired = false;
418 auto CheckForNullOnlyAndUndef = [&](std::optional<Value *> V,
419 bool IsExact) {
420 if (!V || *V == nullptr)
421 NullOnly = false;
422 else if (isa<UndefValue>(*V))
423 /* No op */;
424 else if (isa<Constant>(*V) && cast<Constant>(*V)->isNullValue())
425 NullRequired = !IsExact;
426 else
427 NullOnly = false;
430 auto AdjustWrittenValueType = [&](const AAPointerInfo::Access &Acc,
431 Value &V) {
432 Value *AdjV = AA::getWithType(V, *I.getType());
433 if (!AdjV) {
434 LLVM_DEBUG(dbgs() << "Underlying object written but stored value "
435 "cannot be converted to read type: "
436 << *Acc.getRemoteInst() << " : " << *I.getType()
437 << "\n";);
439 return AdjV;
442 auto SkipCB = [&](const AAPointerInfo::Access &Acc) {
443 if ((IsLoad && !Acc.isWriteOrAssumption()) || (!IsLoad && !Acc.isRead()))
444 return true;
445 if (IsLoad) {
446 if (Acc.isWrittenValueYetUndetermined())
447 return true;
448 if (PotentialValueOrigins && !isa<AssumeInst>(Acc.getRemoteInst()))
449 return false;
450 if (!Acc.isWrittenValueUnknown())
451 if (Value *V = AdjustWrittenValueType(Acc, *Acc.getWrittenValue()))
452 if (NewCopies.count(V)) {
453 NewCopyOrigins.insert(Acc.getRemoteInst());
454 return true;
456 if (auto *SI = dyn_cast<StoreInst>(Acc.getRemoteInst()))
457 if (Value *V = AdjustWrittenValueType(Acc, *SI->getValueOperand()))
458 if (NewCopies.count(V)) {
459 NewCopyOrigins.insert(Acc.getRemoteInst());
460 return true;
463 return false;
466 auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
467 if ((IsLoad && !Acc.isWriteOrAssumption()) || (!IsLoad && !Acc.isRead()))
468 return true;
469 if (IsLoad && Acc.isWrittenValueYetUndetermined())
470 return true;
471 CheckForNullOnlyAndUndef(Acc.getContent(), IsExact);
472 if (OnlyExact && !IsExact && !NullOnly &&
473 !isa_and_nonnull<UndefValue>(Acc.getWrittenValue())) {
474 LLVM_DEBUG(dbgs() << "Non exact access " << *Acc.getRemoteInst()
475 << ", abort!\n");
476 return false;
478 if (NullRequired && !NullOnly) {
479 LLVM_DEBUG(dbgs() << "Required all `null` accesses due to non exact "
480 "one, however found non-null one: "
481 << *Acc.getRemoteInst() << ", abort!\n");
482 return false;
484 if (IsLoad) {
485 assert(isa<LoadInst>(I) && "Expected load or store instruction only!");
486 if (!Acc.isWrittenValueUnknown()) {
487 Value *V = AdjustWrittenValueType(Acc, *Acc.getWrittenValue());
488 if (!V)
489 return false;
490 NewCopies.insert(V);
491 if (PotentialValueOrigins)
492 NewCopyOrigins.insert(Acc.getRemoteInst());
493 return true;
495 auto *SI = dyn_cast<StoreInst>(Acc.getRemoteInst());
496 if (!SI) {
497 LLVM_DEBUG(dbgs() << "Underlying object written through a non-store "
498 "instruction not supported yet: "
499 << *Acc.getRemoteInst() << "\n";);
500 return false;
502 Value *V = AdjustWrittenValueType(Acc, *SI->getValueOperand());
503 if (!V)
504 return false;
505 NewCopies.insert(V);
506 if (PotentialValueOrigins)
507 NewCopyOrigins.insert(SI);
508 } else {
509 assert(isa<StoreInst>(I) && "Expected load or store instruction only!");
510 auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
511 if (!LI && OnlyExact) {
512 LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "
513 "instruction not supported yet: "
514 << *Acc.getRemoteInst() << "\n";);
515 return false;
517 NewCopies.insert(Acc.getRemoteInst());
519 return true;
522 // If the value has been written to we don't need the initial value of the
523 // object.
524 bool HasBeenWrittenTo = false;
526 AA::RangeTy Range;
527 auto *PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(Obj),
528 DepClassTy::NONE);
529 if (!PI || !PI->forallInterferingAccesses(
530 A, QueryingAA, I,
531 /* FindInterferingWrites */ IsLoad,
532 /* FindInterferingReads */ !IsLoad, CheckAccess,
533 HasBeenWrittenTo, Range, SkipCB)) {
534 LLVM_DEBUG(
535 dbgs()
536 << "Failed to verify all interfering accesses for underlying object: "
537 << Obj << "\n");
538 return false;
541 if (IsLoad && !HasBeenWrittenTo && !Range.isUnassigned()) {
542 const DataLayout &DL = A.getDataLayout();
543 Value *InitialValue = AA::getInitialValueForObj(
544 A, QueryingAA, Obj, *I.getType(), TLI, DL, &Range);
545 if (!InitialValue) {
546 LLVM_DEBUG(dbgs() << "Could not determine required initial value of "
547 "underlying object, abort!\n");
548 return false;
550 CheckForNullOnlyAndUndef(InitialValue, /* IsExact */ true);
551 if (NullRequired && !NullOnly) {
552 LLVM_DEBUG(dbgs() << "Non exact access but initial value that is not "
553 "null or undef, abort!\n");
554 return false;
557 NewCopies.insert(InitialValue);
558 if (PotentialValueOrigins)
559 NewCopyOrigins.insert(nullptr);
562 PIs.push_back(PI);
564 return true;
567 const auto *AAUO = A.getAAFor<AAUnderlyingObjects>(
568 QueryingAA, IRPosition::value(Ptr), DepClassTy::OPTIONAL);
569 if (!AAUO || !AAUO->forallUnderlyingObjects(Pred)) {
570 LLVM_DEBUG(
571 dbgs() << "Underlying objects stored into could not be determined\n";);
572 return false;
575 // Only if we were successful collection all potential copies we record
576 // dependences (on non-fix AAPointerInfo AAs). We also only then modify the
577 // given PotentialCopies container.
578 for (const auto *PI : PIs) {
579 if (!PI->getState().isAtFixpoint())
580 UsedAssumedInformation = true;
581 A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
583 PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
584 if (PotentialValueOrigins)
585 PotentialValueOrigins->insert(NewCopyOrigins.begin(), NewCopyOrigins.end());
587 return true;
590 bool AA::getPotentiallyLoadedValues(
591 Attributor &A, LoadInst &LI, SmallSetVector<Value *, 4> &PotentialValues,
592 SmallSetVector<Instruction *, 4> &PotentialValueOrigins,
593 const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
594 bool OnlyExact) {
595 return getPotentialCopiesOfMemoryValue</* IsLoad */ true>(
596 A, LI, PotentialValues, &PotentialValueOrigins, QueryingAA,
597 UsedAssumedInformation, OnlyExact);
600 bool AA::getPotentialCopiesOfStoredValue(
601 Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
602 const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation,
603 bool OnlyExact) {
604 return getPotentialCopiesOfMemoryValue</* IsLoad */ false>(
605 A, SI, PotentialCopies, nullptr, QueryingAA, UsedAssumedInformation,
606 OnlyExact);
609 static bool isAssumedReadOnlyOrReadNone(Attributor &A, const IRPosition &IRP,
610 const AbstractAttribute &QueryingAA,
611 bool RequireReadNone, bool &IsKnown) {
612 if (RequireReadNone) {
613 if (AA::hasAssumedIRAttr<Attribute::ReadNone>(
614 A, &QueryingAA, IRP, DepClassTy::OPTIONAL, IsKnown,
615 /* IgnoreSubsumingPositions */ true))
616 return true;
617 } else if (AA::hasAssumedIRAttr<Attribute::ReadOnly>(
618 A, &QueryingAA, IRP, DepClassTy::OPTIONAL, IsKnown,
619 /* IgnoreSubsumingPositions */ true))
620 return true;
622 IRPosition::Kind Kind = IRP.getPositionKind();
623 if (Kind == IRPosition::IRP_FUNCTION || Kind == IRPosition::IRP_CALL_SITE) {
624 const auto *MemLocAA =
625 A.getAAFor<AAMemoryLocation>(QueryingAA, IRP, DepClassTy::NONE);
626 if (MemLocAA && MemLocAA->isAssumedReadNone()) {
627 IsKnown = MemLocAA->isKnownReadNone();
628 if (!IsKnown)
629 A.recordDependence(*MemLocAA, QueryingAA, DepClassTy::OPTIONAL);
630 return true;
634 const auto *MemBehaviorAA =
635 A.getAAFor<AAMemoryBehavior>(QueryingAA, IRP, DepClassTy::NONE);
636 if (MemBehaviorAA &&
637 (MemBehaviorAA->isAssumedReadNone() ||
638 (!RequireReadNone && MemBehaviorAA->isAssumedReadOnly()))) {
639 IsKnown = RequireReadNone ? MemBehaviorAA->isKnownReadNone()
640 : MemBehaviorAA->isKnownReadOnly();
641 if (!IsKnown)
642 A.recordDependence(*MemBehaviorAA, QueryingAA, DepClassTy::OPTIONAL);
643 return true;
646 return false;
649 bool AA::isAssumedReadOnly(Attributor &A, const IRPosition &IRP,
650 const AbstractAttribute &QueryingAA, bool &IsKnown) {
651 return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
652 /* RequireReadNone */ false, IsKnown);
654 bool AA::isAssumedReadNone(Attributor &A, const IRPosition &IRP,
655 const AbstractAttribute &QueryingAA, bool &IsKnown) {
656 return isAssumedReadOnlyOrReadNone(A, IRP, QueryingAA,
657 /* RequireReadNone */ true, IsKnown);
660 static bool
661 isPotentiallyReachable(Attributor &A, const Instruction &FromI,
662 const Instruction *ToI, const Function &ToFn,
663 const AbstractAttribute &QueryingAA,
664 const AA::InstExclusionSetTy *ExclusionSet,
665 std::function<bool(const Function &F)> GoBackwardsCB) {
666 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
667 dbgs() << "[AA] isPotentiallyReachable @" << ToFn.getName() << " from "
668 << FromI << " [GBCB: " << bool(GoBackwardsCB) << "][#ExS: "
669 << (ExclusionSet ? std::to_string(ExclusionSet->size()) : "none")
670 << "]\n";
671 if (ExclusionSet)
672 for (auto *ES : *ExclusionSet)
673 dbgs() << *ES << "\n";
676 // We know kernels (generally) cannot be called from within the module. Thus,
677 // for reachability we would need to step back from a kernel which would allow
678 // us to reach anything anyway. Even if a kernel is invoked from another
679 // kernel, values like allocas and shared memory are not accessible. We
680 // implicitly check for this situation to avoid costly lookups.
681 if (GoBackwardsCB && &ToFn != FromI.getFunction() &&
682 !GoBackwardsCB(*FromI.getFunction()) && ToFn.hasFnAttribute("kernel") &&
683 FromI.getFunction()->hasFnAttribute("kernel")) {
684 LLVM_DEBUG(dbgs() << "[AA] assume kernel cannot be reached from within the "
685 "module; success\n";);
686 return false;
689 // If we can go arbitrarily backwards we will eventually reach an entry point
690 // that can reach ToI. Only if a set of blocks through which we cannot go is
691 // provided, or once we track internal functions not accessible from the
692 // outside, it makes sense to perform backwards analysis in the absence of a
693 // GoBackwardsCB.
694 if (!GoBackwardsCB && !ExclusionSet) {
695 LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI
696 << " is not checked backwards and does not have an "
697 "exclusion set, abort\n");
698 return true;
701 SmallPtrSet<const Instruction *, 8> Visited;
702 SmallVector<const Instruction *> Worklist;
703 Worklist.push_back(&FromI);
705 while (!Worklist.empty()) {
706 const Instruction *CurFromI = Worklist.pop_back_val();
707 if (!Visited.insert(CurFromI).second)
708 continue;
710 const Function *FromFn = CurFromI->getFunction();
711 if (FromFn == &ToFn) {
712 if (!ToI)
713 return true;
714 LLVM_DEBUG(dbgs() << "[AA] check " << *ToI << " from " << *CurFromI
715 << " intraprocedurally\n");
716 const auto *ReachabilityAA = A.getAAFor<AAIntraFnReachability>(
717 QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
718 bool Result = !ReachabilityAA || ReachabilityAA->isAssumedReachable(
719 A, *CurFromI, *ToI, ExclusionSet);
720 LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " "
721 << (Result ? "can potentially " : "cannot ") << "reach "
722 << *ToI << " [Intra]\n");
723 if (Result)
724 return true;
727 bool Result = true;
728 if (!ToFn.isDeclaration() && ToI) {
729 const auto *ToReachabilityAA = A.getAAFor<AAIntraFnReachability>(
730 QueryingAA, IRPosition::function(ToFn), DepClassTy::OPTIONAL);
731 const Instruction &EntryI = ToFn.getEntryBlock().front();
732 Result = !ToReachabilityAA || ToReachabilityAA->isAssumedReachable(
733 A, EntryI, *ToI, ExclusionSet);
734 LLVM_DEBUG(dbgs() << "[AA] Entry " << EntryI << " of @" << ToFn.getName()
735 << " " << (Result ? "can potentially " : "cannot ")
736 << "reach @" << *ToI << " [ToFn]\n");
739 if (Result) {
740 // The entry of the ToFn can reach the instruction ToI. If the current
741 // instruction is already known to reach the ToFn.
742 const auto *FnReachabilityAA = A.getAAFor<AAInterFnReachability>(
743 QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
744 Result = !FnReachabilityAA || FnReachabilityAA->instructionCanReach(
745 A, *CurFromI, ToFn, ExclusionSet);
746 LLVM_DEBUG(dbgs() << "[AA] " << *CurFromI << " in @" << FromFn->getName()
747 << " " << (Result ? "can potentially " : "cannot ")
748 << "reach @" << ToFn.getName() << " [FromFn]\n");
749 if (Result)
750 return true;
753 // TODO: Check assumed nounwind.
754 const auto *ReachabilityAA = A.getAAFor<AAIntraFnReachability>(
755 QueryingAA, IRPosition::function(*FromFn), DepClassTy::OPTIONAL);
756 auto ReturnInstCB = [&](Instruction &Ret) {
757 bool Result = !ReachabilityAA || ReachabilityAA->isAssumedReachable(
758 A, *CurFromI, Ret, ExclusionSet);
759 LLVM_DEBUG(dbgs() << "[AA][Ret] " << *CurFromI << " "
760 << (Result ? "can potentially " : "cannot ") << "reach "
761 << Ret << " [Intra]\n");
762 return !Result;
765 // Check if we can reach returns.
766 bool UsedAssumedInformation = false;
767 if (A.checkForAllInstructions(ReturnInstCB, FromFn, &QueryingAA,
768 {Instruction::Ret}, UsedAssumedInformation)) {
769 LLVM_DEBUG(dbgs() << "[AA] No return is reachable, done\n");
770 continue;
773 if (!GoBackwardsCB) {
774 LLVM_DEBUG(dbgs() << "[AA] check @" << ToFn.getName() << " from " << FromI
775 << " is not checked backwards, abort\n");
776 return true;
779 // If we do not go backwards from the FromFn we are done here and so far we
780 // could not find a way to reach ToFn/ToI.
781 if (!GoBackwardsCB(*FromFn))
782 continue;
784 LLVM_DEBUG(dbgs() << "Stepping backwards to the call sites of @"
785 << FromFn->getName() << "\n");
787 auto CheckCallSite = [&](AbstractCallSite ACS) {
788 CallBase *CB = ACS.getInstruction();
789 if (!CB)
790 return false;
792 if (isa<InvokeInst>(CB))
793 return false;
795 Instruction *Inst = CB->getNextNonDebugInstruction();
796 Worklist.push_back(Inst);
797 return true;
800 Result = !A.checkForAllCallSites(CheckCallSite, *FromFn,
801 /* RequireAllCallSites */ true,
802 &QueryingAA, UsedAssumedInformation);
803 if (Result) {
804 LLVM_DEBUG(dbgs() << "[AA] stepping back to call sites from " << *CurFromI
805 << " in @" << FromFn->getName()
806 << " failed, give up\n");
807 return true;
810 LLVM_DEBUG(dbgs() << "[AA] stepped back to call sites from " << *CurFromI
811 << " in @" << FromFn->getName()
812 << " worklist size is: " << Worklist.size() << "\n");
814 return false;
817 bool AA::isPotentiallyReachable(
818 Attributor &A, const Instruction &FromI, const Instruction &ToI,
819 const AbstractAttribute &QueryingAA,
820 const AA::InstExclusionSetTy *ExclusionSet,
821 std::function<bool(const Function &F)> GoBackwardsCB) {
822 const Function *ToFn = ToI.getFunction();
823 return ::isPotentiallyReachable(A, FromI, &ToI, *ToFn, QueryingAA,
824 ExclusionSet, GoBackwardsCB);
827 bool AA::isPotentiallyReachable(
828 Attributor &A, const Instruction &FromI, const Function &ToFn,
829 const AbstractAttribute &QueryingAA,
830 const AA::InstExclusionSetTy *ExclusionSet,
831 std::function<bool(const Function &F)> GoBackwardsCB) {
832 return ::isPotentiallyReachable(A, FromI, /* ToI */ nullptr, ToFn, QueryingAA,
833 ExclusionSet, GoBackwardsCB);
836 bool AA::isAssumedThreadLocalObject(Attributor &A, Value &Obj,
837 const AbstractAttribute &QueryingAA) {
838 if (isa<UndefValue>(Obj))
839 return true;
840 if (isa<AllocaInst>(Obj)) {
841 InformationCache &InfoCache = A.getInfoCache();
842 if (!InfoCache.stackIsAccessibleByOtherThreads()) {
843 LLVM_DEBUG(
844 dbgs() << "[AA] Object '" << Obj
845 << "' is thread local; stack objects are thread local.\n");
846 return true;
848 bool IsKnownNoCapture;
849 bool IsAssumedNoCapture = AA::hasAssumedIRAttr<Attribute::NoCapture>(
850 A, &QueryingAA, IRPosition::value(Obj), DepClassTy::OPTIONAL,
851 IsKnownNoCapture);
852 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj << "' is "
853 << (IsAssumedNoCapture ? "" : "not") << " thread local; "
854 << (IsAssumedNoCapture ? "non-" : "")
855 << "captured stack object.\n");
856 return IsAssumedNoCapture;
858 if (auto *GV = dyn_cast<GlobalVariable>(&Obj)) {
859 if (GV->isConstant()) {
860 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
861 << "' is thread local; constant global\n");
862 return true;
864 if (GV->isThreadLocal()) {
865 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
866 << "' is thread local; thread local global\n");
867 return true;
871 if (A.getInfoCache().targetIsGPU()) {
872 if (Obj.getType()->getPointerAddressSpace() ==
873 (int)AA::GPUAddressSpace::Local) {
874 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
875 << "' is thread local; GPU local memory\n");
876 return true;
878 if (Obj.getType()->getPointerAddressSpace() ==
879 (int)AA::GPUAddressSpace::Constant) {
880 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj
881 << "' is thread local; GPU constant memory\n");
882 return true;
886 LLVM_DEBUG(dbgs() << "[AA] Object '" << Obj << "' is not thread local\n");
887 return false;
890 bool AA::isPotentiallyAffectedByBarrier(Attributor &A, const Instruction &I,
891 const AbstractAttribute &QueryingAA) {
892 if (!I.mayHaveSideEffects() && !I.mayReadFromMemory())
893 return false;
895 SmallSetVector<const Value *, 8> Ptrs;
897 auto AddLocationPtr = [&](std::optional<MemoryLocation> Loc) {
898 if (!Loc || !Loc->Ptr) {
899 LLVM_DEBUG(
900 dbgs() << "[AA] Access to unknown location; -> requires barriers\n");
901 return false;
903 Ptrs.insert(Loc->Ptr);
904 return true;
907 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&I)) {
908 if (!AddLocationPtr(MemoryLocation::getForDest(MI)))
909 return true;
910 if (const MemTransferInst *MTI = dyn_cast<MemTransferInst>(&I))
911 if (!AddLocationPtr(MemoryLocation::getForSource(MTI)))
912 return true;
913 } else if (!AddLocationPtr(MemoryLocation::getOrNone(&I)))
914 return true;
916 return isPotentiallyAffectedByBarrier(A, Ptrs.getArrayRef(), QueryingAA, &I);
919 bool AA::isPotentiallyAffectedByBarrier(Attributor &A,
920 ArrayRef<const Value *> Ptrs,
921 const AbstractAttribute &QueryingAA,
922 const Instruction *CtxI) {
923 for (const Value *Ptr : Ptrs) {
924 if (!Ptr) {
925 LLVM_DEBUG(dbgs() << "[AA] nullptr; -> requires barriers\n");
926 return true;
929 auto Pred = [&](Value &Obj) {
930 if (AA::isAssumedThreadLocalObject(A, Obj, QueryingAA))
931 return true;
932 LLVM_DEBUG(dbgs() << "[AA] Access to '" << Obj << "' via '" << *Ptr
933 << "'; -> requires barrier\n");
934 return false;
937 const auto *UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>(
938 QueryingAA, IRPosition::value(*Ptr), DepClassTy::OPTIONAL);
939 if (!UnderlyingObjsAA || !UnderlyingObjsAA->forallUnderlyingObjects(Pred))
940 return true;
942 return false;
945 /// Return true if \p New is equal or worse than \p Old.
946 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
947 if (!Old.isIntAttribute())
948 return true;
950 return Old.getValueAsInt() >= New.getValueAsInt();
953 /// Return true if the information provided by \p Attr was added to the
954 /// attribute set \p AttrSet. This is only the case if it was not already
955 /// present in \p AttrSet.
956 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
957 AttributeSet AttrSet, bool ForceReplace,
958 AttrBuilder &AB) {
960 if (Attr.isEnumAttribute()) {
961 Attribute::AttrKind Kind = Attr.getKindAsEnum();
962 if (AttrSet.hasAttribute(Kind))
963 return false;
964 AB.addAttribute(Kind);
965 return true;
967 if (Attr.isStringAttribute()) {
968 StringRef Kind = Attr.getKindAsString();
969 if (AttrSet.hasAttribute(Kind)) {
970 if (!ForceReplace)
971 return false;
973 AB.addAttribute(Kind, Attr.getValueAsString());
974 return true;
976 if (Attr.isIntAttribute()) {
977 Attribute::AttrKind Kind = Attr.getKindAsEnum();
978 if (!ForceReplace && Kind == Attribute::Memory) {
979 MemoryEffects ME = Attr.getMemoryEffects() & AttrSet.getMemoryEffects();
980 if (ME == AttrSet.getMemoryEffects())
981 return false;
982 AB.addMemoryAttr(ME);
983 return true;
985 if (AttrSet.hasAttribute(Kind)) {
986 if (!ForceReplace && isEqualOrWorse(Attr, AttrSet.getAttribute(Kind)))
987 return false;
989 AB.addAttribute(Attr);
990 return true;
993 llvm_unreachable("Expected enum or string attribute!");
996 Argument *IRPosition::getAssociatedArgument() const {
997 if (getPositionKind() == IRP_ARGUMENT)
998 return cast<Argument>(&getAnchorValue());
1000 // Not an Argument and no argument number means this is not a call site
1001 // argument, thus we cannot find a callback argument to return.
1002 int ArgNo = getCallSiteArgNo();
1003 if (ArgNo < 0)
1004 return nullptr;
1006 // Use abstract call sites to make the connection between the call site
1007 // values and the ones in callbacks. If a callback was found that makes use
1008 // of the underlying call site operand, we want the corresponding callback
1009 // callee argument and not the direct callee argument.
1010 std::optional<Argument *> CBCandidateArg;
1011 SmallVector<const Use *, 4> CallbackUses;
1012 const auto &CB = cast<CallBase>(getAnchorValue());
1013 AbstractCallSite::getCallbackUses(CB, CallbackUses);
1014 for (const Use *U : CallbackUses) {
1015 AbstractCallSite ACS(U);
1016 assert(ACS && ACS.isCallbackCall());
1017 if (!ACS.getCalledFunction())
1018 continue;
1020 for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
1022 // Test if the underlying call site operand is argument number u of the
1023 // callback callee.
1024 if (ACS.getCallArgOperandNo(u) != ArgNo)
1025 continue;
1027 assert(ACS.getCalledFunction()->arg_size() > u &&
1028 "ACS mapped into var-args arguments!");
1029 if (CBCandidateArg) {
1030 CBCandidateArg = nullptr;
1031 break;
1033 CBCandidateArg = ACS.getCalledFunction()->getArg(u);
1037 // If we found a unique callback candidate argument, return it.
1038 if (CBCandidateArg && *CBCandidateArg)
1039 return *CBCandidateArg;
1041 // If no callbacks were found, or none used the underlying call site operand
1042 // exclusively, use the direct callee argument if available.
1043 auto *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
1044 if (Callee && Callee->arg_size() > unsigned(ArgNo))
1045 return Callee->getArg(ArgNo);
1047 return nullptr;
1050 ChangeStatus AbstractAttribute::update(Attributor &A) {
1051 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
1052 if (getState().isAtFixpoint())
1053 return HasChanged;
1055 LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
1057 HasChanged = updateImpl(A);
1059 LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
1060 << "\n");
1062 return HasChanged;
1065 Attributor::Attributor(SetVector<Function *> &Functions,
1066 InformationCache &InfoCache,
1067 AttributorConfig Configuration)
1068 : Allocator(InfoCache.Allocator), Functions(Functions),
1069 InfoCache(InfoCache), Configuration(Configuration) {
1070 if (!isClosedWorldModule())
1071 return;
1072 for (Function *Fn : Functions)
1073 if (Fn->hasAddressTaken(/*PutOffender=*/nullptr,
1074 /*IgnoreCallbackUses=*/false,
1075 /*IgnoreAssumeLikeCalls=*/true,
1076 /*IgnoreLLVMUsed=*/true,
1077 /*IgnoreARCAttachedCall=*/false,
1078 /*IgnoreCastedDirectCall=*/true))
1079 InfoCache.IndirectlyCallableFunctions.push_back(Fn);
1082 bool Attributor::getAttrsFromAssumes(const IRPosition &IRP,
1083 Attribute::AttrKind AK,
1084 SmallVectorImpl<Attribute> &Attrs) {
1085 assert(IRP.getPositionKind() != IRPosition::IRP_INVALID &&
1086 "Did expect a valid position!");
1087 MustBeExecutedContextExplorer *Explorer =
1088 getInfoCache().getMustBeExecutedContextExplorer();
1089 if (!Explorer)
1090 return false;
1092 Value &AssociatedValue = IRP.getAssociatedValue();
1094 const Assume2KnowledgeMap &A2K =
1095 getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
1097 // Check if we found any potential assume use, if not we don't need to create
1098 // explorer iterators.
1099 if (A2K.empty())
1100 return false;
1102 LLVMContext &Ctx = AssociatedValue.getContext();
1103 unsigned AttrsSize = Attrs.size();
1104 auto EIt = Explorer->begin(IRP.getCtxI()),
1105 EEnd = Explorer->end(IRP.getCtxI());
1106 for (const auto &It : A2K)
1107 if (Explorer->findInContextOf(It.first, EIt, EEnd))
1108 Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
1109 return AttrsSize != Attrs.size();
1112 template <typename DescTy>
1113 ChangeStatus
1114 Attributor::updateAttrMap(const IRPosition &IRP, ArrayRef<DescTy> AttrDescs,
1115 function_ref<bool(const DescTy &, AttributeSet,
1116 AttributeMask &, AttrBuilder &)>
1117 CB) {
1118 if (AttrDescs.empty())
1119 return ChangeStatus::UNCHANGED;
1120 switch (IRP.getPositionKind()) {
1121 case IRPosition::IRP_FLOAT:
1122 case IRPosition::IRP_INVALID:
1123 return ChangeStatus::UNCHANGED;
1124 default:
1125 break;
1128 AttributeList AL;
1129 Value *AttrListAnchor = IRP.getAttrListAnchor();
1130 auto It = AttrsMap.find(AttrListAnchor);
1131 if (It == AttrsMap.end())
1132 AL = IRP.getAttrList();
1133 else
1134 AL = It->getSecond();
1136 LLVMContext &Ctx = IRP.getAnchorValue().getContext();
1137 auto AttrIdx = IRP.getAttrIdx();
1138 AttributeSet AS = AL.getAttributes(AttrIdx);
1139 AttributeMask AM;
1140 AttrBuilder AB(Ctx);
1142 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
1143 for (const DescTy &AttrDesc : AttrDescs)
1144 if (CB(AttrDesc, AS, AM, AB))
1145 HasChanged = ChangeStatus::CHANGED;
1147 if (HasChanged == ChangeStatus::UNCHANGED)
1148 return ChangeStatus::UNCHANGED;
1150 AL = AL.removeAttributesAtIndex(Ctx, AttrIdx, AM);
1151 AL = AL.addAttributesAtIndex(Ctx, AttrIdx, AB);
1152 AttrsMap[AttrListAnchor] = AL;
1153 return ChangeStatus::CHANGED;
1156 bool Attributor::hasAttr(const IRPosition &IRP,
1157 ArrayRef<Attribute::AttrKind> AttrKinds,
1158 bool IgnoreSubsumingPositions,
1159 Attribute::AttrKind ImpliedAttributeKind) {
1160 bool Implied = false;
1161 bool HasAttr = false;
1162 auto HasAttrCB = [&](const Attribute::AttrKind &Kind, AttributeSet AttrSet,
1163 AttributeMask &, AttrBuilder &) {
1164 if (AttrSet.hasAttribute(Kind)) {
1165 Implied |= Kind != ImpliedAttributeKind;
1166 HasAttr = true;
1168 return false;
1170 for (const IRPosition &EquivIRP : SubsumingPositionIterator(IRP)) {
1171 updateAttrMap<Attribute::AttrKind>(EquivIRP, AttrKinds, HasAttrCB);
1172 if (HasAttr)
1173 break;
1174 // The first position returned by the SubsumingPositionIterator is
1175 // always the position itself. If we ignore subsuming positions we
1176 // are done after the first iteration.
1177 if (IgnoreSubsumingPositions)
1178 break;
1179 Implied = true;
1181 if (!HasAttr) {
1182 Implied = true;
1183 SmallVector<Attribute> Attrs;
1184 for (Attribute::AttrKind AK : AttrKinds)
1185 if (getAttrsFromAssumes(IRP, AK, Attrs)) {
1186 HasAttr = true;
1187 break;
1191 // Check if we should manifest the implied attribute kind at the IRP.
1192 if (ImpliedAttributeKind != Attribute::None && HasAttr && Implied)
1193 manifestAttrs(IRP, {Attribute::get(IRP.getAnchorValue().getContext(),
1194 ImpliedAttributeKind)});
1195 return HasAttr;
1198 void Attributor::getAttrs(const IRPosition &IRP,
1199 ArrayRef<Attribute::AttrKind> AttrKinds,
1200 SmallVectorImpl<Attribute> &Attrs,
1201 bool IgnoreSubsumingPositions) {
1202 auto CollectAttrCB = [&](const Attribute::AttrKind &Kind,
1203 AttributeSet AttrSet, AttributeMask &,
1204 AttrBuilder &) {
1205 if (AttrSet.hasAttribute(Kind))
1206 Attrs.push_back(AttrSet.getAttribute(Kind));
1207 return false;
1209 for (const IRPosition &EquivIRP : SubsumingPositionIterator(IRP)) {
1210 updateAttrMap<Attribute::AttrKind>(EquivIRP, AttrKinds, CollectAttrCB);
1211 // The first position returned by the SubsumingPositionIterator is
1212 // always the position itself. If we ignore subsuming positions we
1213 // are done after the first iteration.
1214 if (IgnoreSubsumingPositions)
1215 break;
1217 for (Attribute::AttrKind AK : AttrKinds)
1218 getAttrsFromAssumes(IRP, AK, Attrs);
1221 ChangeStatus Attributor::removeAttrs(const IRPosition &IRP,
1222 ArrayRef<Attribute::AttrKind> AttrKinds) {
1223 auto RemoveAttrCB = [&](const Attribute::AttrKind &Kind, AttributeSet AttrSet,
1224 AttributeMask &AM, AttrBuilder &) {
1225 if (!AttrSet.hasAttribute(Kind))
1226 return false;
1227 AM.addAttribute(Kind);
1228 return true;
1230 return updateAttrMap<Attribute::AttrKind>(IRP, AttrKinds, RemoveAttrCB);
1233 ChangeStatus Attributor::removeAttrs(const IRPosition &IRP,
1234 ArrayRef<StringRef> Attrs) {
1235 auto RemoveAttrCB = [&](StringRef Attr, AttributeSet AttrSet,
1236 AttributeMask &AM, AttrBuilder &) -> bool {
1237 if (!AttrSet.hasAttribute(Attr))
1238 return false;
1239 AM.addAttribute(Attr);
1240 return true;
1243 return updateAttrMap<StringRef>(IRP, Attrs, RemoveAttrCB);
1246 ChangeStatus Attributor::manifestAttrs(const IRPosition &IRP,
1247 ArrayRef<Attribute> Attrs,
1248 bool ForceReplace) {
1249 LLVMContext &Ctx = IRP.getAnchorValue().getContext();
1250 auto AddAttrCB = [&](const Attribute &Attr, AttributeSet AttrSet,
1251 AttributeMask &, AttrBuilder &AB) {
1252 return addIfNotExistent(Ctx, Attr, AttrSet, ForceReplace, AB);
1254 return updateAttrMap<Attribute>(IRP, Attrs, AddAttrCB);
1257 const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
1258 const IRPosition
1259 IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
1261 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
1262 IRPositions.emplace_back(IRP);
1264 // Helper to determine if operand bundles on a call site are benign or
1265 // potentially problematic. We handle only llvm.assume for now.
1266 auto CanIgnoreOperandBundles = [](const CallBase &CB) {
1267 return (isa<IntrinsicInst>(CB) &&
1268 cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
1271 const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
1272 switch (IRP.getPositionKind()) {
1273 case IRPosition::IRP_INVALID:
1274 case IRPosition::IRP_FLOAT:
1275 case IRPosition::IRP_FUNCTION:
1276 return;
1277 case IRPosition::IRP_ARGUMENT:
1278 case IRPosition::IRP_RETURNED:
1279 IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
1280 return;
1281 case IRPosition::IRP_CALL_SITE:
1282 assert(CB && "Expected call site!");
1283 // TODO: We need to look at the operand bundles similar to the redirection
1284 // in CallBase.
1285 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
1286 if (auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand()))
1287 IRPositions.emplace_back(IRPosition::function(*Callee));
1288 return;
1289 case IRPosition::IRP_CALL_SITE_RETURNED:
1290 assert(CB && "Expected call site!");
1291 // TODO: We need to look at the operand bundles similar to the redirection
1292 // in CallBase.
1293 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
1294 if (auto *Callee =
1295 dyn_cast_if_present<Function>(CB->getCalledOperand())) {
1296 IRPositions.emplace_back(IRPosition::returned(*Callee));
1297 IRPositions.emplace_back(IRPosition::function(*Callee));
1298 for (const Argument &Arg : Callee->args())
1299 if (Arg.hasReturnedAttr()) {
1300 IRPositions.emplace_back(
1301 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
1302 IRPositions.emplace_back(
1303 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
1304 IRPositions.emplace_back(IRPosition::argument(Arg));
1308 IRPositions.emplace_back(IRPosition::callsite_function(*CB));
1309 return;
1310 case IRPosition::IRP_CALL_SITE_ARGUMENT: {
1311 assert(CB && "Expected call site!");
1312 // TODO: We need to look at the operand bundles similar to the redirection
1313 // in CallBase.
1314 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
1315 auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand());
1316 if (Callee) {
1317 if (Argument *Arg = IRP.getAssociatedArgument())
1318 IRPositions.emplace_back(IRPosition::argument(*Arg));
1319 IRPositions.emplace_back(IRPosition::function(*Callee));
1322 IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
1323 return;
1328 void IRPosition::verify() {
1329 #ifdef EXPENSIVE_CHECKS
1330 switch (getPositionKind()) {
1331 case IRP_INVALID:
1332 assert((CBContext == nullptr) &&
1333 "Invalid position must not have CallBaseContext!");
1334 assert(!Enc.getOpaqueValue() &&
1335 "Expected a nullptr for an invalid position!");
1336 return;
1337 case IRP_FLOAT:
1338 assert((!isa<Argument>(&getAssociatedValue())) &&
1339 "Expected specialized kind for argument values!");
1340 return;
1341 case IRP_RETURNED:
1342 assert(isa<Function>(getAsValuePtr()) &&
1343 "Expected function for a 'returned' position!");
1344 assert(getAsValuePtr() == &getAssociatedValue() &&
1345 "Associated value mismatch!");
1346 return;
1347 case IRP_CALL_SITE_RETURNED:
1348 assert((CBContext == nullptr) &&
1349 "'call site returned' position must not have CallBaseContext!");
1350 assert((isa<CallBase>(getAsValuePtr())) &&
1351 "Expected call base for 'call site returned' position!");
1352 assert(getAsValuePtr() == &getAssociatedValue() &&
1353 "Associated value mismatch!");
1354 return;
1355 case IRP_CALL_SITE:
1356 assert((CBContext == nullptr) &&
1357 "'call site function' position must not have CallBaseContext!");
1358 assert((isa<CallBase>(getAsValuePtr())) &&
1359 "Expected call base for 'call site function' position!");
1360 assert(getAsValuePtr() == &getAssociatedValue() &&
1361 "Associated value mismatch!");
1362 return;
1363 case IRP_FUNCTION:
1364 assert(isa<Function>(getAsValuePtr()) &&
1365 "Expected function for a 'function' position!");
1366 assert(getAsValuePtr() == &getAssociatedValue() &&
1367 "Associated value mismatch!");
1368 return;
1369 case IRP_ARGUMENT:
1370 assert(isa<Argument>(getAsValuePtr()) &&
1371 "Expected argument for a 'argument' position!");
1372 assert(getAsValuePtr() == &getAssociatedValue() &&
1373 "Associated value mismatch!");
1374 return;
1375 case IRP_CALL_SITE_ARGUMENT: {
1376 assert((CBContext == nullptr) &&
1377 "'call site argument' position must not have CallBaseContext!");
1378 Use *U = getAsUsePtr();
1379 (void)U; // Silence unused variable warning.
1380 assert(U && "Expected use for a 'call site argument' position!");
1381 assert(isa<CallBase>(U->getUser()) &&
1382 "Expected call base user for a 'call site argument' position!");
1383 assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&
1384 "Expected call base argument operand for a 'call site argument' "
1385 "position");
1386 assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==
1387 unsigned(getCallSiteArgNo()) &&
1388 "Argument number mismatch!");
1389 assert(U->get() == &getAssociatedValue() && "Associated value mismatch!");
1390 return;
1393 #endif
1396 std::optional<Constant *>
1397 Attributor::getAssumedConstant(const IRPosition &IRP,
1398 const AbstractAttribute &AA,
1399 bool &UsedAssumedInformation) {
1400 // First check all callbacks provided by outside AAs. If any of them returns
1401 // a non-null value that is different from the associated value, or
1402 // std::nullopt, we assume it's simplified.
1403 for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
1404 std::optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
1405 if (!SimplifiedV)
1406 return std::nullopt;
1407 if (isa_and_nonnull<Constant>(*SimplifiedV))
1408 return cast<Constant>(*SimplifiedV);
1409 return nullptr;
1411 if (auto *C = dyn_cast<Constant>(&IRP.getAssociatedValue()))
1412 return C;
1413 SmallVector<AA::ValueAndContext> Values;
1414 if (getAssumedSimplifiedValues(IRP, &AA, Values,
1415 AA::ValueScope::Interprocedural,
1416 UsedAssumedInformation)) {
1417 if (Values.empty())
1418 return std::nullopt;
1419 if (auto *C = dyn_cast_or_null<Constant>(
1420 AAPotentialValues::getSingleValue(*this, AA, IRP, Values)))
1421 return C;
1423 return nullptr;
1426 std::optional<Value *> Attributor::getAssumedSimplified(
1427 const IRPosition &IRP, const AbstractAttribute *AA,
1428 bool &UsedAssumedInformation, AA::ValueScope S) {
1429 // First check all callbacks provided by outside AAs. If any of them returns
1430 // a non-null value that is different from the associated value, or
1431 // std::nullopt, we assume it's simplified.
1432 for (auto &CB : SimplificationCallbacks.lookup(IRP))
1433 return CB(IRP, AA, UsedAssumedInformation);
1435 SmallVector<AA::ValueAndContext> Values;
1436 if (!getAssumedSimplifiedValues(IRP, AA, Values, S, UsedAssumedInformation))
1437 return &IRP.getAssociatedValue();
1438 if (Values.empty())
1439 return std::nullopt;
1440 if (AA)
1441 if (Value *V = AAPotentialValues::getSingleValue(*this, *AA, IRP, Values))
1442 return V;
1443 if (IRP.getPositionKind() == IRPosition::IRP_RETURNED ||
1444 IRP.getPositionKind() == IRPosition::IRP_CALL_SITE_RETURNED)
1445 return nullptr;
1446 return &IRP.getAssociatedValue();
1449 bool Attributor::getAssumedSimplifiedValues(
1450 const IRPosition &InitialIRP, const AbstractAttribute *AA,
1451 SmallVectorImpl<AA::ValueAndContext> &Values, AA::ValueScope S,
1452 bool &UsedAssumedInformation, bool RecurseForSelectAndPHI) {
1453 SmallPtrSet<Value *, 8> Seen;
1454 SmallVector<IRPosition, 8> Worklist;
1455 Worklist.push_back(InitialIRP);
1456 while (!Worklist.empty()) {
1457 const IRPosition &IRP = Worklist.pop_back_val();
1459 // First check all callbacks provided by outside AAs. If any of them returns
1460 // a non-null value that is different from the associated value, or
1461 // std::nullopt, we assume it's simplified.
1462 int NV = Values.size();
1463 const auto &SimplificationCBs = SimplificationCallbacks.lookup(IRP);
1464 for (const auto &CB : SimplificationCBs) {
1465 std::optional<Value *> CBResult = CB(IRP, AA, UsedAssumedInformation);
1466 if (!CBResult.has_value())
1467 continue;
1468 Value *V = *CBResult;
1469 if (!V)
1470 return false;
1471 if ((S & AA::ValueScope::Interprocedural) ||
1472 AA::isValidInScope(*V, IRP.getAnchorScope()))
1473 Values.push_back(AA::ValueAndContext{*V, nullptr});
1474 else
1475 return false;
1477 if (SimplificationCBs.empty()) {
1478 // If no high-level/outside simplification occurred, use
1479 // AAPotentialValues.
1480 const auto *PotentialValuesAA =
1481 getOrCreateAAFor<AAPotentialValues>(IRP, AA, DepClassTy::OPTIONAL);
1482 if (PotentialValuesAA && PotentialValuesAA->getAssumedSimplifiedValues(*this, Values, S)) {
1483 UsedAssumedInformation |= !PotentialValuesAA->isAtFixpoint();
1484 } else if (IRP.getPositionKind() != IRPosition::IRP_RETURNED) {
1485 Values.push_back({IRP.getAssociatedValue(), IRP.getCtxI()});
1486 } else {
1487 // TODO: We could visit all returns and add the operands.
1488 return false;
1492 if (!RecurseForSelectAndPHI)
1493 break;
1495 for (int I = NV, E = Values.size(); I < E; ++I) {
1496 Value *V = Values[I].getValue();
1497 if (!isa<PHINode>(V) && !isa<SelectInst>(V))
1498 continue;
1499 if (!Seen.insert(V).second)
1500 continue;
1501 // Move the last element to this slot.
1502 Values[I] = Values[E - 1];
1503 // Eliminate the last slot, adjust the indices.
1504 Values.pop_back();
1505 --E;
1506 --I;
1507 // Add a new value (select or phi) to the worklist.
1508 Worklist.push_back(IRPosition::value(*V));
1511 return true;
1514 std::optional<Value *> Attributor::translateArgumentToCallSiteContent(
1515 std::optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
1516 bool &UsedAssumedInformation) {
1517 if (!V)
1518 return V;
1519 if (*V == nullptr || isa<Constant>(*V))
1520 return V;
1521 if (auto *Arg = dyn_cast<Argument>(*V))
1522 if (CB.getCalledOperand() == Arg->getParent() &&
1523 CB.arg_size() > Arg->getArgNo())
1524 if (!Arg->hasPointeeInMemoryValueAttr())
1525 return getAssumedSimplified(
1526 IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
1527 UsedAssumedInformation, AA::Intraprocedural);
1528 return nullptr;
1531 Attributor::~Attributor() {
1532 // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
1533 // thus we cannot delete them. We can, and want to, destruct them though.
1534 for (auto &It : AAMap) {
1535 AbstractAttribute *AA = It.getSecond();
1536 AA->~AbstractAttribute();
1540 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
1541 const AAIsDead *FnLivenessAA,
1542 bool &UsedAssumedInformation,
1543 bool CheckBBLivenessOnly, DepClassTy DepClass) {
1544 if (!Configuration.UseLiveness)
1545 return false;
1546 const IRPosition &IRP = AA.getIRPosition();
1547 if (!Functions.count(IRP.getAnchorScope()))
1548 return false;
1549 return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
1550 CheckBBLivenessOnly, DepClass);
1553 bool Attributor::isAssumedDead(const Use &U,
1554 const AbstractAttribute *QueryingAA,
1555 const AAIsDead *FnLivenessAA,
1556 bool &UsedAssumedInformation,
1557 bool CheckBBLivenessOnly, DepClassTy DepClass) {
1558 if (!Configuration.UseLiveness)
1559 return false;
1560 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
1561 if (!UserI)
1562 return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
1563 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1565 if (auto *CB = dyn_cast<CallBase>(UserI)) {
1566 // For call site argument uses we can check if the argument is
1567 // unused/dead.
1568 if (CB->isArgOperand(&U)) {
1569 const IRPosition &CSArgPos =
1570 IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
1571 return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
1572 UsedAssumedInformation, CheckBBLivenessOnly,
1573 DepClass);
1575 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
1576 const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
1577 return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
1578 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1579 } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
1580 BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
1581 return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
1582 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1583 } else if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
1584 if (!CheckBBLivenessOnly && SI->getPointerOperand() != U.get()) {
1585 const IRPosition IRP = IRPosition::inst(*SI);
1586 const AAIsDead *IsDeadAA =
1587 getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1588 if (IsDeadAA && IsDeadAA->isRemovableStore()) {
1589 if (QueryingAA)
1590 recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1591 if (!IsDeadAA->isKnown(AAIsDead::IS_REMOVABLE))
1592 UsedAssumedInformation = true;
1593 return true;
1598 return isAssumedDead(IRPosition::inst(*UserI), QueryingAA, FnLivenessAA,
1599 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
1602 bool Attributor::isAssumedDead(const Instruction &I,
1603 const AbstractAttribute *QueryingAA,
1604 const AAIsDead *FnLivenessAA,
1605 bool &UsedAssumedInformation,
1606 bool CheckBBLivenessOnly, DepClassTy DepClass,
1607 bool CheckForDeadStore) {
1608 if (!Configuration.UseLiveness)
1609 return false;
1610 const IRPosition::CallBaseContext *CBCtx =
1611 QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
1613 if (ManifestAddedBlocks.contains(I.getParent()))
1614 return false;
1616 const Function &F = *I.getFunction();
1617 if (!FnLivenessAA || FnLivenessAA->getAnchorScope() != &F)
1618 FnLivenessAA = getOrCreateAAFor<AAIsDead>(IRPosition::function(F, CBCtx),
1619 QueryingAA, DepClassTy::NONE);
1621 // Don't use recursive reasoning.
1622 if (!FnLivenessAA || QueryingAA == FnLivenessAA)
1623 return false;
1625 // If we have a context instruction and a liveness AA we use it.
1626 if (CheckBBLivenessOnly ? FnLivenessAA->isAssumedDead(I.getParent())
1627 : FnLivenessAA->isAssumedDead(&I)) {
1628 if (QueryingAA)
1629 recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1630 if (!FnLivenessAA->isKnownDead(&I))
1631 UsedAssumedInformation = true;
1632 return true;
1635 if (CheckBBLivenessOnly)
1636 return false;
1638 const IRPosition IRP = IRPosition::inst(I, CBCtx);
1639 const AAIsDead *IsDeadAA =
1640 getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1642 // Don't use recursive reasoning.
1643 if (!IsDeadAA || QueryingAA == IsDeadAA)
1644 return false;
1646 if (IsDeadAA->isAssumedDead()) {
1647 if (QueryingAA)
1648 recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1649 if (!IsDeadAA->isKnownDead())
1650 UsedAssumedInformation = true;
1651 return true;
1654 if (CheckForDeadStore && isa<StoreInst>(I) && IsDeadAA->isRemovableStore()) {
1655 if (QueryingAA)
1656 recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1657 if (!IsDeadAA->isKnownDead())
1658 UsedAssumedInformation = true;
1659 return true;
1662 return false;
1665 bool Attributor::isAssumedDead(const IRPosition &IRP,
1666 const AbstractAttribute *QueryingAA,
1667 const AAIsDead *FnLivenessAA,
1668 bool &UsedAssumedInformation,
1669 bool CheckBBLivenessOnly, DepClassTy DepClass) {
1670 if (!Configuration.UseLiveness)
1671 return false;
1672 // Don't check liveness for constants, e.g. functions, used as (floating)
1673 // values since the context instruction and such is here meaningless.
1674 if (IRP.getPositionKind() == IRPosition::IRP_FLOAT &&
1675 isa<Constant>(IRP.getAssociatedValue())) {
1676 return false;
1679 Instruction *CtxI = IRP.getCtxI();
1680 if (CtxI &&
1681 isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
1682 /* CheckBBLivenessOnly */ true,
1683 CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
1684 return true;
1686 if (CheckBBLivenessOnly)
1687 return false;
1689 // If we haven't succeeded we query the specific liveness info for the IRP.
1690 const AAIsDead *IsDeadAA;
1691 if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
1692 IsDeadAA = getOrCreateAAFor<AAIsDead>(
1693 IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
1694 QueryingAA, DepClassTy::NONE);
1695 else
1696 IsDeadAA = getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
1698 // Don't use recursive reasoning.
1699 if (!IsDeadAA || QueryingAA == IsDeadAA)
1700 return false;
1702 if (IsDeadAA->isAssumedDead()) {
1703 if (QueryingAA)
1704 recordDependence(*IsDeadAA, *QueryingAA, DepClass);
1705 if (!IsDeadAA->isKnownDead())
1706 UsedAssumedInformation = true;
1707 return true;
1710 return false;
1713 bool Attributor::isAssumedDead(const BasicBlock &BB,
1714 const AbstractAttribute *QueryingAA,
1715 const AAIsDead *FnLivenessAA,
1716 DepClassTy DepClass) {
1717 if (!Configuration.UseLiveness)
1718 return false;
1719 const Function &F = *BB.getParent();
1720 if (!FnLivenessAA || FnLivenessAA->getAnchorScope() != &F)
1721 FnLivenessAA = getOrCreateAAFor<AAIsDead>(IRPosition::function(F),
1722 QueryingAA, DepClassTy::NONE);
1724 // Don't use recursive reasoning.
1725 if (!FnLivenessAA || QueryingAA == FnLivenessAA)
1726 return false;
1728 if (FnLivenessAA->isAssumedDead(&BB)) {
1729 if (QueryingAA)
1730 recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
1731 return true;
1734 return false;
1737 bool Attributor::checkForAllCallees(
1738 function_ref<bool(ArrayRef<const Function *>)> Pred,
1739 const AbstractAttribute &QueryingAA, const CallBase &CB) {
1740 if (const Function *Callee = dyn_cast<Function>(CB.getCalledOperand()))
1741 return Pred(Callee);
1743 const auto *CallEdgesAA = getAAFor<AACallEdges>(
1744 QueryingAA, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
1745 if (!CallEdgesAA || CallEdgesAA->hasUnknownCallee())
1746 return false;
1748 const auto &Callees = CallEdgesAA->getOptimisticEdges();
1749 return Pred(Callees.getArrayRef());
1752 bool Attributor::checkForAllUses(
1753 function_ref<bool(const Use &, bool &)> Pred,
1754 const AbstractAttribute &QueryingAA, const Value &V,
1755 bool CheckBBLivenessOnly, DepClassTy LivenessDepClass,
1756 bool IgnoreDroppableUses,
1757 function_ref<bool(const Use &OldU, const Use &NewU)> EquivalentUseCB) {
1759 // Check virtual uses first.
1760 for (VirtualUseCallbackTy &CB : VirtualUseCallbacks.lookup(&V))
1761 if (!CB(*this, &QueryingAA))
1762 return false;
1764 // Check the trivial case first as it catches void values.
1765 if (V.use_empty())
1766 return true;
1768 const IRPosition &IRP = QueryingAA.getIRPosition();
1769 SmallVector<const Use *, 16> Worklist;
1770 SmallPtrSet<const Use *, 16> Visited;
1772 auto AddUsers = [&](const Value &V, const Use *OldUse) {
1773 for (const Use &UU : V.uses()) {
1774 if (OldUse && EquivalentUseCB && !EquivalentUseCB(*OldUse, UU)) {
1775 LLVM_DEBUG(dbgs() << "[Attributor] Potential copy was "
1776 "rejected by the equivalence call back: "
1777 << *UU << "!\n");
1778 return false;
1781 Worklist.push_back(&UU);
1783 return true;
1786 AddUsers(V, /* OldUse */ nullptr);
1788 LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()
1789 << " initial uses to check\n");
1791 const Function *ScopeFn = IRP.getAnchorScope();
1792 const auto *LivenessAA =
1793 ScopeFn ? getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1794 DepClassTy::NONE)
1795 : nullptr;
1797 while (!Worklist.empty()) {
1798 const Use *U = Worklist.pop_back_val();
1799 if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1800 continue;
1801 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
1802 if (auto *Fn = dyn_cast<Function>(U->getUser()))
1803 dbgs() << "[Attributor] Check use: " << **U << " in " << Fn->getName()
1804 << "\n";
1805 else
1806 dbgs() << "[Attributor] Check use: " << **U << " in " << *U->getUser()
1807 << "\n";
1809 bool UsedAssumedInformation = false;
1810 if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1811 CheckBBLivenessOnly, LivenessDepClass)) {
1812 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1813 dbgs() << "[Attributor] Dead use, skip!\n");
1814 continue;
1816 if (IgnoreDroppableUses && U->getUser()->isDroppable()) {
1817 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1818 dbgs() << "[Attributor] Droppable user, skip!\n");
1819 continue;
1822 if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1823 if (&SI->getOperandUse(0) == U) {
1824 if (!Visited.insert(U).second)
1825 continue;
1826 SmallSetVector<Value *, 4> PotentialCopies;
1827 if (AA::getPotentialCopiesOfStoredValue(
1828 *this, *SI, PotentialCopies, QueryingAA, UsedAssumedInformation,
1829 /* OnlyExact */ true)) {
1830 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1831 dbgs()
1832 << "[Attributor] Value is stored, continue with "
1833 << PotentialCopies.size()
1834 << " potential copies instead!\n");
1835 for (Value *PotentialCopy : PotentialCopies)
1836 if (!AddUsers(*PotentialCopy, U))
1837 return false;
1838 continue;
1843 bool Follow = false;
1844 if (!Pred(*U, Follow))
1845 return false;
1846 if (!Follow)
1847 continue;
1849 User &Usr = *U->getUser();
1850 AddUsers(Usr, /* OldUse */ nullptr);
1852 auto *RI = dyn_cast<ReturnInst>(&Usr);
1853 if (!RI)
1854 continue;
1856 Function &F = *RI->getFunction();
1857 auto CallSitePred = [&](AbstractCallSite ACS) {
1858 return AddUsers(*ACS.getInstruction(), U);
1860 if (!checkForAllCallSites(CallSitePred, F, /* RequireAllCallSites */ true,
1861 &QueryingAA, UsedAssumedInformation)) {
1862 LLVM_DEBUG(dbgs() << "[Attributor] Could not follow return instruction "
1863 "to all call sites: "
1864 << *RI << "\n");
1865 return false;
1869 return true;
1872 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1873 const AbstractAttribute &QueryingAA,
1874 bool RequireAllCallSites,
1875 bool &UsedAssumedInformation) {
1876 // We can try to determine information from
1877 // the call sites. However, this is only possible all call sites are known,
1878 // hence the function has internal linkage.
1879 const IRPosition &IRP = QueryingAA.getIRPosition();
1880 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1881 if (!AssociatedFunction) {
1882 LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRP
1883 << "\n");
1884 return false;
1887 return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1888 &QueryingAA, UsedAssumedInformation);
1891 bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1892 const Function &Fn,
1893 bool RequireAllCallSites,
1894 const AbstractAttribute *QueryingAA,
1895 bool &UsedAssumedInformation,
1896 bool CheckPotentiallyDead) {
1897 if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1898 LLVM_DEBUG(
1899 dbgs()
1900 << "[Attributor] Function " << Fn.getName()
1901 << " has no internal linkage, hence not all call sites are known\n");
1902 return false;
1904 // Check virtual uses first.
1905 for (VirtualUseCallbackTy &CB : VirtualUseCallbacks.lookup(&Fn))
1906 if (!CB(*this, QueryingAA))
1907 return false;
1909 SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1910 for (unsigned u = 0; u < Uses.size(); ++u) {
1911 const Use &U = *Uses[u];
1912 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
1913 if (auto *Fn = dyn_cast<Function>(U))
1914 dbgs() << "[Attributor] Check use: " << Fn->getName() << " in "
1915 << *U.getUser() << "\n";
1916 else
1917 dbgs() << "[Attributor] Check use: " << *U << " in " << *U.getUser()
1918 << "\n";
1920 if (!CheckPotentiallyDead &&
1921 isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1922 /* CheckBBLivenessOnly */ true)) {
1923 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
1924 dbgs() << "[Attributor] Dead use, skip!\n");
1925 continue;
1927 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1928 if (CE->isCast() && CE->getType()->isPointerTy()) {
1929 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, {
1930 dbgs() << "[Attributor] Use, is constant cast expression, add "
1931 << CE->getNumUses() << " uses of that expression instead!\n";
1933 for (const Use &CEU : CE->uses())
1934 Uses.push_back(&CEU);
1935 continue;
1939 AbstractCallSite ACS(&U);
1940 if (!ACS) {
1941 LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()
1942 << " has non call site use " << *U.get() << " in "
1943 << *U.getUser() << "\n");
1944 // BlockAddress users are allowed.
1945 if (isa<BlockAddress>(U.getUser()))
1946 continue;
1947 return false;
1950 const Use *EffectiveUse =
1951 ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1952 if (!ACS.isCallee(EffectiveUse)) {
1953 if (!RequireAllCallSites) {
1954 LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1955 << " is not a call of " << Fn.getName()
1956 << ", skip use\n");
1957 continue;
1959 LLVM_DEBUG(dbgs() << "[Attributor] User " << *EffectiveUse->getUser()
1960 << " is an invalid use of " << Fn.getName() << "\n");
1961 return false;
1964 // Make sure the arguments that can be matched between the call site and the
1965 // callee argee on their type. It is unlikely they do not and it doesn't
1966 // make sense for all attributes to know/care about this.
1967 assert(&Fn == ACS.getCalledFunction() && "Expected known callee");
1968 unsigned MinArgsParams =
1969 std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1970 for (unsigned u = 0; u < MinArgsParams; ++u) {
1971 Value *CSArgOp = ACS.getCallArgOperand(u);
1972 if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1973 LLVM_DEBUG(
1974 dbgs() << "[Attributor] Call site / callee argument type mismatch ["
1975 << u << "@" << Fn.getName() << ": "
1976 << *Fn.getArg(u)->getType() << " vs. "
1977 << *ACS.getCallArgOperand(u)->getType() << "\n");
1978 return false;
1982 if (Pred(ACS))
1983 continue;
1985 LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
1986 << *ACS.getInstruction() << "\n");
1987 return false;
1990 return true;
1993 bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1994 // TODO: Maintain a cache of Values that are
1995 // on the pathway from a Argument to a Instruction that would effect the
1996 // liveness/return state etc.
1997 return EnableCallSiteSpecific;
2000 bool Attributor::checkForAllReturnedValues(function_ref<bool(Value &)> Pred,
2001 const AbstractAttribute &QueryingAA,
2002 AA::ValueScope S,
2003 bool RecurseForSelectAndPHI) {
2005 const IRPosition &IRP = QueryingAA.getIRPosition();
2006 const Function *AssociatedFunction = IRP.getAssociatedFunction();
2007 if (!AssociatedFunction)
2008 return false;
2010 bool UsedAssumedInformation = false;
2011 SmallVector<AA::ValueAndContext> Values;
2012 if (!getAssumedSimplifiedValues(
2013 IRPosition::returned(*AssociatedFunction), &QueryingAA, Values, S,
2014 UsedAssumedInformation, RecurseForSelectAndPHI))
2015 return false;
2017 return llvm::all_of(Values, [&](const AA::ValueAndContext &VAC) {
2018 return Pred(*VAC.getValue());
2022 static bool checkForAllInstructionsImpl(
2023 Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
2024 function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
2025 const AAIsDead *LivenessAA, ArrayRef<unsigned> Opcodes,
2026 bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
2027 bool CheckPotentiallyDead = false) {
2028 for (unsigned Opcode : Opcodes) {
2029 // Check if we have instructions with this opcode at all first.
2030 auto *Insts = OpcodeInstMap.lookup(Opcode);
2031 if (!Insts)
2032 continue;
2034 for (Instruction *I : *Insts) {
2035 // Skip dead instructions.
2036 if (A && !CheckPotentiallyDead &&
2037 A->isAssumedDead(IRPosition::inst(*I), QueryingAA, LivenessAA,
2038 UsedAssumedInformation, CheckBBLivenessOnly)) {
2039 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
2040 dbgs() << "[Attributor] Instruction " << *I
2041 << " is potentially dead, skip!\n";);
2042 continue;
2045 if (!Pred(*I))
2046 return false;
2049 return true;
2052 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
2053 const Function *Fn,
2054 const AbstractAttribute *QueryingAA,
2055 ArrayRef<unsigned> Opcodes,
2056 bool &UsedAssumedInformation,
2057 bool CheckBBLivenessOnly,
2058 bool CheckPotentiallyDead) {
2059 // Since we need to provide instructions we have to have an exact definition.
2060 if (!Fn || Fn->isDeclaration())
2061 return false;
2063 const IRPosition &QueryIRP = IRPosition::function(*Fn);
2064 const auto *LivenessAA =
2065 CheckPotentiallyDead && QueryingAA
2066 ? (getAAFor<AAIsDead>(*QueryingAA, QueryIRP, DepClassTy::NONE))
2067 : nullptr;
2069 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2070 if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, QueryingAA,
2071 LivenessAA, Opcodes, UsedAssumedInformation,
2072 CheckBBLivenessOnly, CheckPotentiallyDead))
2073 return false;
2075 return true;
2078 bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
2079 const AbstractAttribute &QueryingAA,
2080 ArrayRef<unsigned> Opcodes,
2081 bool &UsedAssumedInformation,
2082 bool CheckBBLivenessOnly,
2083 bool CheckPotentiallyDead) {
2084 const IRPosition &IRP = QueryingAA.getIRPosition();
2085 const Function *AssociatedFunction = IRP.getAssociatedFunction();
2086 return checkForAllInstructions(Pred, AssociatedFunction, &QueryingAA, Opcodes,
2087 UsedAssumedInformation, CheckBBLivenessOnly,
2088 CheckPotentiallyDead);
2091 bool Attributor::checkForAllReadWriteInstructions(
2092 function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
2093 bool &UsedAssumedInformation) {
2094 TimeTraceScope TS("checkForAllReadWriteInstructions");
2096 const Function *AssociatedFunction =
2097 QueryingAA.getIRPosition().getAssociatedFunction();
2098 if (!AssociatedFunction)
2099 return false;
2101 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
2102 const auto *LivenessAA =
2103 getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
2105 for (Instruction *I :
2106 InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
2107 // Skip dead instructions.
2108 if (isAssumedDead(IRPosition::inst(*I), &QueryingAA, LivenessAA,
2109 UsedAssumedInformation))
2110 continue;
2112 if (!Pred(*I))
2113 return false;
2116 return true;
2119 void Attributor::runTillFixpoint() {
2120 TimeTraceScope TimeScope("Attributor::runTillFixpoint");
2121 LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
2122 << DG.SyntheticRoot.Deps.size()
2123 << " abstract attributes.\n");
2125 // Now that all abstract attributes are collected and initialized we start
2126 // the abstract analysis.
2128 unsigned IterationCounter = 1;
2129 unsigned MaxIterations =
2130 Configuration.MaxFixpointIterations.value_or(SetFixpointIterations);
2132 SmallVector<AbstractAttribute *, 32> ChangedAAs;
2133 SetVector<AbstractAttribute *> Worklist, InvalidAAs;
2134 Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
2136 do {
2137 // Remember the size to determine new attributes.
2138 size_t NumAAs = DG.SyntheticRoot.Deps.size();
2139 LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
2140 << ", Worklist size: " << Worklist.size() << "\n");
2142 // For invalid AAs we can fix dependent AAs that have a required dependence,
2143 // thereby folding long dependence chains in a single step without the need
2144 // to run updates.
2145 for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
2146 AbstractAttribute *InvalidAA = InvalidAAs[u];
2148 // Check the dependences to fast track invalidation.
2149 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
2150 dbgs() << "[Attributor] InvalidAA: " << *InvalidAA
2151 << " has " << InvalidAA->Deps.size()
2152 << " required & optional dependences\n");
2153 for (auto &DepIt : InvalidAA->Deps) {
2154 AbstractAttribute *DepAA = cast<AbstractAttribute>(DepIt.getPointer());
2155 if (DepIt.getInt() == unsigned(DepClassTy::OPTIONAL)) {
2156 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE,
2157 dbgs() << " - recompute: " << *DepAA);
2158 Worklist.insert(DepAA);
2159 continue;
2161 DEBUG_WITH_TYPE(VERBOSE_DEBUG_TYPE, dbgs()
2162 << " - invalidate: " << *DepAA);
2163 DepAA->getState().indicatePessimisticFixpoint();
2164 assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!");
2165 if (!DepAA->getState().isValidState())
2166 InvalidAAs.insert(DepAA);
2167 else
2168 ChangedAAs.push_back(DepAA);
2170 InvalidAA->Deps.clear();
2173 // Add all abstract attributes that are potentially dependent on one that
2174 // changed to the work list.
2175 for (AbstractAttribute *ChangedAA : ChangedAAs) {
2176 for (auto &DepIt : ChangedAA->Deps)
2177 Worklist.insert(cast<AbstractAttribute>(DepIt.getPointer()));
2178 ChangedAA->Deps.clear();
2181 LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
2182 << ", Worklist+Dependent size: " << Worklist.size()
2183 << "\n");
2185 // Reset the changed and invalid set.
2186 ChangedAAs.clear();
2187 InvalidAAs.clear();
2189 // Update all abstract attribute in the work list and record the ones that
2190 // changed.
2191 for (AbstractAttribute *AA : Worklist) {
2192 const auto &AAState = AA->getState();
2193 if (!AAState.isAtFixpoint())
2194 if (updateAA(*AA) == ChangeStatus::CHANGED)
2195 ChangedAAs.push_back(AA);
2197 // Use the InvalidAAs vector to propagate invalid states fast transitively
2198 // without requiring updates.
2199 if (!AAState.isValidState())
2200 InvalidAAs.insert(AA);
2203 // Add attributes to the changed set if they have been created in the last
2204 // iteration.
2205 ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
2206 DG.SyntheticRoot.end());
2208 // Reset the work list and repopulate with the changed abstract attributes.
2209 // Note that dependent ones are added above.
2210 Worklist.clear();
2211 Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
2212 Worklist.insert(QueryAAsAwaitingUpdate.begin(),
2213 QueryAAsAwaitingUpdate.end());
2214 QueryAAsAwaitingUpdate.clear();
2216 } while (!Worklist.empty() && (IterationCounter++ < MaxIterations));
2218 if (IterationCounter > MaxIterations && !Functions.empty()) {
2219 auto Remark = [&](OptimizationRemarkMissed ORM) {
2220 return ORM << "Attributor did not reach a fixpoint after "
2221 << ore::NV("Iterations", MaxIterations) << " iterations.";
2223 Function *F = Functions.front();
2224 emitRemark<OptimizationRemarkMissed>(F, "FixedPoint", Remark);
2227 LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
2228 << IterationCounter << "/" << MaxIterations
2229 << " iterations\n");
2231 // Reset abstract arguments not settled in a sound fixpoint by now. This
2232 // happens when we stopped the fixpoint iteration early. Note that only the
2233 // ones marked as "changed" *and* the ones transitively depending on them
2234 // need to be reverted to a pessimistic state. Others might not be in a
2235 // fixpoint state but we can use the optimistic results for them anyway.
2236 SmallPtrSet<AbstractAttribute *, 32> Visited;
2237 for (unsigned u = 0; u < ChangedAAs.size(); u++) {
2238 AbstractAttribute *ChangedAA = ChangedAAs[u];
2239 if (!Visited.insert(ChangedAA).second)
2240 continue;
2242 AbstractState &State = ChangedAA->getState();
2243 if (!State.isAtFixpoint()) {
2244 State.indicatePessimisticFixpoint();
2246 NumAttributesTimedOut++;
2249 for (auto &DepIt : ChangedAA->Deps)
2250 ChangedAAs.push_back(cast<AbstractAttribute>(DepIt.getPointer()));
2251 ChangedAA->Deps.clear();
2254 LLVM_DEBUG({
2255 if (!Visited.empty())
2256 dbgs() << "\n[Attributor] Finalized " << Visited.size()
2257 << " abstract attributes.\n";
2261 void Attributor::registerForUpdate(AbstractAttribute &AA) {
2262 assert(AA.isQueryAA() &&
2263 "Non-query AAs should not be required to register for updates!");
2264 QueryAAsAwaitingUpdate.insert(&AA);
2267 ChangeStatus Attributor::manifestAttributes() {
2268 TimeTraceScope TimeScope("Attributor::manifestAttributes");
2269 size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
2271 unsigned NumManifested = 0;
2272 unsigned NumAtFixpoint = 0;
2273 ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
2274 for (auto &DepAA : DG.SyntheticRoot.Deps) {
2275 AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
2276 AbstractState &State = AA->getState();
2278 // If there is not already a fixpoint reached, we can now take the
2279 // optimistic state. This is correct because we enforced a pessimistic one
2280 // on abstract attributes that were transitively dependent on a changed one
2281 // already above.
2282 if (!State.isAtFixpoint())
2283 State.indicateOptimisticFixpoint();
2285 // We must not manifest Attributes that use Callbase info.
2286 if (AA->hasCallBaseContext())
2287 continue;
2288 // If the state is invalid, we do not try to manifest it.
2289 if (!State.isValidState())
2290 continue;
2292 if (AA->getCtxI() && !isRunOn(*AA->getAnchorScope()))
2293 continue;
2295 // Skip dead code.
2296 bool UsedAssumedInformation = false;
2297 if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
2298 /* CheckBBLivenessOnly */ true))
2299 continue;
2300 // Check if the manifest debug counter that allows skipping manifestation of
2301 // AAs
2302 if (!DebugCounter::shouldExecute(ManifestDBGCounter))
2303 continue;
2304 // Manifest the state and record if we changed the IR.
2305 ChangeStatus LocalChange = AA->manifest(*this);
2306 if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
2307 AA->trackStatistics();
2308 LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AA
2309 << "\n");
2311 ManifestChange = ManifestChange | LocalChange;
2313 NumAtFixpoint++;
2314 NumManifested += (LocalChange == ChangeStatus::CHANGED);
2317 (void)NumManifested;
2318 (void)NumAtFixpoint;
2319 LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
2320 << " arguments while " << NumAtFixpoint
2321 << " were in a valid fixpoint state\n");
2323 NumAttributesManifested += NumManifested;
2324 NumAttributesValidFixpoint += NumAtFixpoint;
2326 (void)NumFinalAAs;
2327 if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
2328 auto DepIt = DG.SyntheticRoot.Deps.begin();
2329 for (unsigned u = 0; u < NumFinalAAs; ++u)
2330 ++DepIt;
2331 for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size();
2332 ++u, ++DepIt) {
2333 errs() << "Unexpected abstract attribute: "
2334 << cast<AbstractAttribute>(DepIt->getPointer()) << " :: "
2335 << cast<AbstractAttribute>(DepIt->getPointer())
2336 ->getIRPosition()
2337 .getAssociatedValue()
2338 << "\n";
2340 llvm_unreachable("Expected the final number of abstract attributes to "
2341 "remain unchanged!");
2344 for (auto &It : AttrsMap) {
2345 AttributeList &AL = It.getSecond();
2346 const IRPosition &IRP =
2347 isa<Function>(It.getFirst())
2348 ? IRPosition::function(*cast<Function>(It.getFirst()))
2349 : IRPosition::callsite_function(*cast<CallBase>(It.getFirst()));
2350 IRP.setAttrList(AL);
2353 return ManifestChange;
2356 void Attributor::identifyDeadInternalFunctions() {
2357 // Early exit if we don't intend to delete functions.
2358 if (!Configuration.DeleteFns)
2359 return;
2361 // To avoid triggering an assertion in the lazy call graph we will not delete
2362 // any internal library functions. We should modify the assertion though and
2363 // allow internals to be deleted.
2364 const auto *TLI =
2365 isModulePass()
2366 ? nullptr
2367 : getInfoCache().getTargetLibraryInfoForFunction(*Functions.back());
2368 LibFunc LF;
2370 // Identify dead internal functions and delete them. This happens outside
2371 // the other fixpoint analysis as we might treat potentially dead functions
2372 // as live to lower the number of iterations. If they happen to be dead, the
2373 // below fixpoint loop will identify and eliminate them.
2375 SmallVector<Function *, 8> InternalFns;
2376 for (Function *F : Functions)
2377 if (F->hasLocalLinkage() && (isModulePass() || !TLI->getLibFunc(*F, LF)))
2378 InternalFns.push_back(F);
2380 SmallPtrSet<Function *, 8> LiveInternalFns;
2381 bool FoundLiveInternal = true;
2382 while (FoundLiveInternal) {
2383 FoundLiveInternal = false;
2384 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
2385 Function *F = InternalFns[u];
2386 if (!F)
2387 continue;
2389 bool UsedAssumedInformation = false;
2390 if (checkForAllCallSites(
2391 [&](AbstractCallSite ACS) {
2392 Function *Callee = ACS.getInstruction()->getFunction();
2393 return ToBeDeletedFunctions.count(Callee) ||
2394 (Functions.count(Callee) && Callee->hasLocalLinkage() &&
2395 !LiveInternalFns.count(Callee));
2397 *F, true, nullptr, UsedAssumedInformation)) {
2398 continue;
2401 LiveInternalFns.insert(F);
2402 InternalFns[u] = nullptr;
2403 FoundLiveInternal = true;
2407 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
2408 if (Function *F = InternalFns[u])
2409 ToBeDeletedFunctions.insert(F);
2412 ChangeStatus Attributor::cleanupIR() {
2413 TimeTraceScope TimeScope("Attributor::cleanupIR");
2414 // Delete stuff at the end to avoid invalid references and a nice order.
2415 LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "
2416 << ToBeDeletedFunctions.size() << " functions and "
2417 << ToBeDeletedBlocks.size() << " blocks and "
2418 << ToBeDeletedInsts.size() << " instructions and "
2419 << ToBeChangedValues.size() << " values and "
2420 << ToBeChangedUses.size() << " uses. To insert "
2421 << ToBeChangedToUnreachableInsts.size()
2422 << " unreachables.\n"
2423 << "Preserve manifest added " << ManifestAddedBlocks.size()
2424 << " blocks\n");
2426 SmallVector<WeakTrackingVH, 32> DeadInsts;
2427 SmallVector<Instruction *, 32> TerminatorsToFold;
2429 auto ReplaceUse = [&](Use *U, Value *NewV) {
2430 Value *OldV = U->get();
2432 // If we plan to replace NewV we need to update it at this point.
2433 do {
2434 const auto &Entry = ToBeChangedValues.lookup(NewV);
2435 if (!get<0>(Entry))
2436 break;
2437 NewV = get<0>(Entry);
2438 } while (true);
2440 Instruction *I = dyn_cast<Instruction>(U->getUser());
2441 assert((!I || isRunOn(*I->getFunction())) &&
2442 "Cannot replace an instruction outside the current SCC!");
2444 // Do not replace uses in returns if the value is a must-tail call we will
2445 // not delete.
2446 if (auto *RI = dyn_cast_or_null<ReturnInst>(I)) {
2447 if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
2448 if (CI->isMustTailCall() && !ToBeDeletedInsts.count(CI))
2449 return;
2450 // If we rewrite a return and the new value is not an argument, strip the
2451 // `returned` attribute as it is wrong now.
2452 if (!isa<Argument>(NewV))
2453 for (auto &Arg : RI->getFunction()->args())
2454 Arg.removeAttr(Attribute::Returned);
2457 LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()
2458 << " instead of " << *OldV << "\n");
2459 U->set(NewV);
2461 if (Instruction *I = dyn_cast<Instruction>(OldV)) {
2462 CGModifiedFunctions.insert(I->getFunction());
2463 if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
2464 isInstructionTriviallyDead(I))
2465 DeadInsts.push_back(I);
2467 if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
2468 auto *CB = cast<CallBase>(U->getUser());
2469 if (CB->isArgOperand(U)) {
2470 unsigned Idx = CB->getArgOperandNo(U);
2471 CB->removeParamAttr(Idx, Attribute::NoUndef);
2472 auto *Callee = dyn_cast_if_present<Function>(CB->getCalledOperand());
2473 if (Callee && Callee->arg_size() > Idx)
2474 Callee->removeParamAttr(Idx, Attribute::NoUndef);
2477 if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
2478 Instruction *UserI = cast<Instruction>(U->getUser());
2479 if (isa<UndefValue>(NewV)) {
2480 ToBeChangedToUnreachableInsts.insert(UserI);
2481 } else {
2482 TerminatorsToFold.push_back(UserI);
2487 for (auto &It : ToBeChangedUses) {
2488 Use *U = It.first;
2489 Value *NewV = It.second;
2490 ReplaceUse(U, NewV);
2493 SmallVector<Use *, 4> Uses;
2494 for (auto &It : ToBeChangedValues) {
2495 Value *OldV = It.first;
2496 auto [NewV, Done] = It.second;
2497 Uses.clear();
2498 for (auto &U : OldV->uses())
2499 if (Done || !U.getUser()->isDroppable())
2500 Uses.push_back(&U);
2501 for (Use *U : Uses) {
2502 if (auto *I = dyn_cast<Instruction>(U->getUser()))
2503 if (!isRunOn(*I->getFunction()))
2504 continue;
2505 ReplaceUse(U, NewV);
2509 for (const auto &V : InvokeWithDeadSuccessor)
2510 if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
2511 assert(isRunOn(*II->getFunction()) &&
2512 "Cannot replace an invoke outside the current SCC!");
2513 bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
2514 bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
2515 bool Invoke2CallAllowed =
2516 !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
2517 assert((UnwindBBIsDead || NormalBBIsDead) &&
2518 "Invoke does not have dead successors!");
2519 BasicBlock *BB = II->getParent();
2520 BasicBlock *NormalDestBB = II->getNormalDest();
2521 if (UnwindBBIsDead) {
2522 Instruction *NormalNextIP = &NormalDestBB->front();
2523 if (Invoke2CallAllowed) {
2524 changeToCall(II);
2525 NormalNextIP = BB->getTerminator();
2527 if (NormalBBIsDead)
2528 ToBeChangedToUnreachableInsts.insert(NormalNextIP);
2529 } else {
2530 assert(NormalBBIsDead && "Broken invariant!");
2531 if (!NormalDestBB->getUniquePredecessor())
2532 NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
2533 ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
2536 for (Instruction *I : TerminatorsToFold) {
2537 assert(isRunOn(*I->getFunction()) &&
2538 "Cannot replace a terminator outside the current SCC!");
2539 CGModifiedFunctions.insert(I->getFunction());
2540 ConstantFoldTerminator(I->getParent());
2542 for (const auto &V : ToBeChangedToUnreachableInsts)
2543 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2544 LLVM_DEBUG(dbgs() << "[Attributor] Change to unreachable: " << *I
2545 << "\n");
2546 assert(isRunOn(*I->getFunction()) &&
2547 "Cannot replace an instruction outside the current SCC!");
2548 CGModifiedFunctions.insert(I->getFunction());
2549 changeToUnreachable(I);
2552 for (const auto &V : ToBeDeletedInsts) {
2553 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
2554 if (auto *CB = dyn_cast<CallBase>(I)) {
2555 assert((isa<IntrinsicInst>(CB) || isRunOn(*I->getFunction())) &&
2556 "Cannot delete an instruction outside the current SCC!");
2557 if (!isa<IntrinsicInst>(CB))
2558 Configuration.CGUpdater.removeCallSite(*CB);
2560 I->dropDroppableUses();
2561 CGModifiedFunctions.insert(I->getFunction());
2562 if (!I->getType()->isVoidTy())
2563 I->replaceAllUsesWith(UndefValue::get(I->getType()));
2564 if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
2565 DeadInsts.push_back(I);
2566 else
2567 I->eraseFromParent();
2571 llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) { return !I; });
2573 LLVM_DEBUG({
2574 dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";
2575 for (auto &I : DeadInsts)
2576 if (I)
2577 dbgs() << " - " << *I << "\n";
2580 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
2582 if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
2583 SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
2584 ToBeDeletedBBs.reserve(NumDeadBlocks);
2585 for (BasicBlock *BB : ToBeDeletedBlocks) {
2586 assert(isRunOn(*BB->getParent()) &&
2587 "Cannot delete a block outside the current SCC!");
2588 CGModifiedFunctions.insert(BB->getParent());
2589 // Do not delete BBs added during manifests of AAs.
2590 if (ManifestAddedBlocks.contains(BB))
2591 continue;
2592 ToBeDeletedBBs.push_back(BB);
2594 // Actually we do not delete the blocks but squash them into a single
2595 // unreachable but untangling branches that jump here is something we need
2596 // to do in a more generic way.
2597 detachDeadBlocks(ToBeDeletedBBs, nullptr);
2600 identifyDeadInternalFunctions();
2602 // Rewrite the functions as requested during manifest.
2603 ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
2605 for (Function *Fn : CGModifiedFunctions)
2606 if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
2607 Configuration.CGUpdater.reanalyzeFunction(*Fn);
2609 for (Function *Fn : ToBeDeletedFunctions) {
2610 if (!Functions.count(Fn))
2611 continue;
2612 Configuration.CGUpdater.removeFunction(*Fn);
2615 if (!ToBeChangedUses.empty())
2616 ManifestChange = ChangeStatus::CHANGED;
2618 if (!ToBeChangedToUnreachableInsts.empty())
2619 ManifestChange = ChangeStatus::CHANGED;
2621 if (!ToBeDeletedFunctions.empty())
2622 ManifestChange = ChangeStatus::CHANGED;
2624 if (!ToBeDeletedBlocks.empty())
2625 ManifestChange = ChangeStatus::CHANGED;
2627 if (!ToBeDeletedInsts.empty())
2628 ManifestChange = ChangeStatus::CHANGED;
2630 if (!InvokeWithDeadSuccessor.empty())
2631 ManifestChange = ChangeStatus::CHANGED;
2633 if (!DeadInsts.empty())
2634 ManifestChange = ChangeStatus::CHANGED;
2636 NumFnDeleted += ToBeDeletedFunctions.size();
2638 LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()
2639 << " functions after manifest.\n");
2641 #ifdef EXPENSIVE_CHECKS
2642 for (Function *F : Functions) {
2643 if (ToBeDeletedFunctions.count(F))
2644 continue;
2645 assert(!verifyFunction(*F, &errs()) && "Module verification failed!");
2647 #endif
2649 return ManifestChange;
2652 ChangeStatus Attributor::run() {
2653 TimeTraceScope TimeScope("Attributor::run");
2654 AttributorCallGraph ACallGraph(*this);
2656 if (PrintCallGraph)
2657 ACallGraph.populateAll();
2659 Phase = AttributorPhase::UPDATE;
2660 runTillFixpoint();
2662 // dump graphs on demand
2663 if (DumpDepGraph)
2664 DG.dumpGraph();
2666 if (ViewDepGraph)
2667 DG.viewGraph();
2669 if (PrintDependencies)
2670 DG.print();
2672 Phase = AttributorPhase::MANIFEST;
2673 ChangeStatus ManifestChange = manifestAttributes();
2675 Phase = AttributorPhase::CLEANUP;
2676 ChangeStatus CleanupChange = cleanupIR();
2678 if (PrintCallGraph)
2679 ACallGraph.print();
2681 return ManifestChange | CleanupChange;
2684 ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
2685 TimeTraceScope TimeScope("updateAA", [&]() {
2686 return AA.getName() + std::to_string(AA.getIRPosition().getPositionKind());
2688 assert(Phase == AttributorPhase::UPDATE &&
2689 "We can update AA only in the update stage!");
2691 // Use a new dependence vector for this update.
2692 DependenceVector DV;
2693 DependenceStack.push_back(&DV);
2695 auto &AAState = AA.getState();
2696 ChangeStatus CS = ChangeStatus::UNCHANGED;
2697 bool UsedAssumedInformation = false;
2698 if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
2699 /* CheckBBLivenessOnly */ true))
2700 CS = AA.update(*this);
2702 if (!AA.isQueryAA() && DV.empty() && !AA.getState().isAtFixpoint()) {
2703 // If the AA did not rely on outside information but changed, we run it
2704 // again to see if it found a fixpoint. Most AAs do but we don't require
2705 // them to. Hence, it might take the AA multiple iterations to get to a
2706 // fixpoint even if it does not rely on outside information, which is fine.
2707 ChangeStatus RerunCS = ChangeStatus::UNCHANGED;
2708 if (CS == ChangeStatus::CHANGED)
2709 RerunCS = AA.update(*this);
2711 // If the attribute did not change during the run or rerun, and it still did
2712 // not query any non-fix information, the state will not change and we can
2713 // indicate that right at this point.
2714 if (RerunCS == ChangeStatus::UNCHANGED && !AA.isQueryAA() && DV.empty())
2715 AAState.indicateOptimisticFixpoint();
2718 if (!AAState.isAtFixpoint())
2719 rememberDependences();
2721 // Verify the stack was used properly, that is we pop the dependence vector we
2722 // put there earlier.
2723 DependenceVector *PoppedDV = DependenceStack.pop_back_val();
2724 (void)PoppedDV;
2725 assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!");
2727 return CS;
2730 void Attributor::createShallowWrapper(Function &F) {
2731 assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!");
2733 Module &M = *F.getParent();
2734 LLVMContext &Ctx = M.getContext();
2735 FunctionType *FnTy = F.getFunctionType();
2737 Function *Wrapper =
2738 Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
2739 F.setName(""); // set the inside function anonymous
2740 M.getFunctionList().insert(F.getIterator(), Wrapper);
2742 F.setLinkage(GlobalValue::InternalLinkage);
2744 F.replaceAllUsesWith(Wrapper);
2745 assert(F.use_empty() && "Uses remained after wrapper was created!");
2747 // Move the COMDAT section to the wrapper.
2748 // TODO: Check if we need to keep it for F as well.
2749 Wrapper->setComdat(F.getComdat());
2750 F.setComdat(nullptr);
2752 // Copy all metadata and attributes but keep them on F as well.
2753 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2754 F.getAllMetadata(MDs);
2755 for (auto MDIt : MDs)
2756 Wrapper->addMetadata(MDIt.first, *MDIt.second);
2757 Wrapper->setAttributes(F.getAttributes());
2759 // Create the call in the wrapper.
2760 BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
2762 SmallVector<Value *, 8> Args;
2763 Argument *FArgIt = F.arg_begin();
2764 for (Argument &Arg : Wrapper->args()) {
2765 Args.push_back(&Arg);
2766 Arg.setName((FArgIt++)->getName());
2769 CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
2770 CI->setTailCall(true);
2771 CI->addFnAttr(Attribute::NoInline);
2772 ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
2774 NumFnShallowWrappersCreated++;
2777 bool Attributor::isInternalizable(Function &F) {
2778 if (F.isDeclaration() || F.hasLocalLinkage() ||
2779 GlobalValue::isInterposableLinkage(F.getLinkage()))
2780 return false;
2781 return true;
2784 Function *Attributor::internalizeFunction(Function &F, bool Force) {
2785 if (!AllowDeepWrapper && !Force)
2786 return nullptr;
2787 if (!isInternalizable(F))
2788 return nullptr;
2790 SmallPtrSet<Function *, 2> FnSet = {&F};
2791 DenseMap<Function *, Function *> InternalizedFns;
2792 internalizeFunctions(FnSet, InternalizedFns);
2794 return InternalizedFns[&F];
2797 bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
2798 DenseMap<Function *, Function *> &FnMap) {
2799 for (Function *F : FnSet)
2800 if (!Attributor::isInternalizable(*F))
2801 return false;
2803 FnMap.clear();
2804 // Generate the internalized version of each function.
2805 for (Function *F : FnSet) {
2806 Module &M = *F->getParent();
2807 FunctionType *FnTy = F->getFunctionType();
2809 // Create a copy of the current function
2810 Function *Copied =
2811 Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
2812 F->getName() + ".internalized");
2813 ValueToValueMapTy VMap;
2814 auto *NewFArgIt = Copied->arg_begin();
2815 for (auto &Arg : F->args()) {
2816 auto ArgName = Arg.getName();
2817 NewFArgIt->setName(ArgName);
2818 VMap[&Arg] = &(*NewFArgIt++);
2820 SmallVector<ReturnInst *, 8> Returns;
2822 // Copy the body of the original function to the new one
2823 CloneFunctionInto(Copied, F, VMap,
2824 CloneFunctionChangeType::LocalChangesOnly, Returns);
2826 // Set the linakage and visibility late as CloneFunctionInto has some
2827 // implicit requirements.
2828 Copied->setVisibility(GlobalValue::DefaultVisibility);
2829 Copied->setLinkage(GlobalValue::PrivateLinkage);
2831 // Copy metadata
2832 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
2833 F->getAllMetadata(MDs);
2834 for (auto MDIt : MDs)
2835 if (!Copied->hasMetadata())
2836 Copied->addMetadata(MDIt.first, *MDIt.second);
2838 M.getFunctionList().insert(F->getIterator(), Copied);
2839 Copied->setDSOLocal(true);
2840 FnMap[F] = Copied;
2843 // Replace all uses of the old function with the new internalized function
2844 // unless the caller is a function that was just internalized.
2845 for (Function *F : FnSet) {
2846 auto &InternalizedFn = FnMap[F];
2847 auto IsNotInternalized = [&](Use &U) -> bool {
2848 if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2849 return !FnMap.lookup(CB->getCaller());
2850 return false;
2852 F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2855 return true;
2858 bool Attributor::isValidFunctionSignatureRewrite(
2859 Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2861 if (!Configuration.RewriteSignatures)
2862 return false;
2864 Function *Fn = Arg.getParent();
2865 auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2866 // Forbid the call site to cast the function return type. If we need to
2867 // rewrite these functions we need to re-create a cast for the new call site
2868 // (if the old had uses).
2869 if (!ACS.getCalledFunction() ||
2870 ACS.getInstruction()->getType() !=
2871 ACS.getCalledFunction()->getReturnType())
2872 return false;
2873 if (cast<CallBase>(ACS.getInstruction())->getCalledOperand()->getType() !=
2874 Fn->getType())
2875 return false;
2876 if (ACS.getNumArgOperands() != Fn->arg_size())
2877 return false;
2878 // Forbid must-tail calls for now.
2879 return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2882 // Avoid var-arg functions for now.
2883 if (Fn->isVarArg()) {
2884 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n");
2885 return false;
2888 // Avoid functions with complicated argument passing semantics.
2889 AttributeList FnAttributeList = Fn->getAttributes();
2890 if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2891 FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2892 FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2893 FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2894 LLVM_DEBUG(
2895 dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n");
2896 return false;
2899 // Avoid callbacks for now.
2900 bool UsedAssumedInformation = false;
2901 if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2902 UsedAssumedInformation,
2903 /* CheckPotentiallyDead */ true)) {
2904 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n");
2905 return false;
2908 auto InstPred = [](Instruction &I) {
2909 if (auto *CI = dyn_cast<CallInst>(&I))
2910 return !CI->isMustTailCall();
2911 return true;
2914 // Forbid must-tail calls for now.
2915 // TODO:
2916 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2917 if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2918 nullptr, {Instruction::Call},
2919 UsedAssumedInformation)) {
2920 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n");
2921 return false;
2924 return true;
2927 bool Attributor::registerFunctionSignatureRewrite(
2928 Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2929 ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2930 ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2931 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2932 << Arg.getParent()->getName() << " with "
2933 << ReplacementTypes.size() << " replacements\n");
2934 assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&
2935 "Cannot register an invalid rewrite");
2937 Function *Fn = Arg.getParent();
2938 SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2939 ArgumentReplacementMap[Fn];
2940 if (ARIs.empty())
2941 ARIs.resize(Fn->arg_size());
2943 // If we have a replacement already with less than or equal new arguments,
2944 // ignore this request.
2945 std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2946 if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2947 LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n");
2948 return false;
2951 // If we have a replacement already but we like the new one better, delete
2952 // the old.
2953 ARI.reset();
2955 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "
2956 << Arg.getParent()->getName() << " with "
2957 << ReplacementTypes.size() << " replacements\n");
2959 // Remember the replacement.
2960 ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2961 std::move(CalleeRepairCB),
2962 std::move(ACSRepairCB)));
2964 return true;
2967 bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2968 bool Result = true;
2969 #ifndef NDEBUG
2970 if (SeedAllowList.size() != 0)
2971 Result = llvm::is_contained(SeedAllowList, AA.getName());
2972 Function *Fn = AA.getAnchorScope();
2973 if (FunctionSeedAllowList.size() != 0 && Fn)
2974 Result &= llvm::is_contained(FunctionSeedAllowList, Fn->getName());
2975 #endif
2976 return Result;
2979 ChangeStatus Attributor::rewriteFunctionSignatures(
2980 SmallSetVector<Function *, 8> &ModifiedFns) {
2981 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2983 for (auto &It : ArgumentReplacementMap) {
2984 Function *OldFn = It.getFirst();
2986 // Deleted functions do not require rewrites.
2987 if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2988 continue;
2990 const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2991 It.getSecond();
2992 assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!");
2994 SmallVector<Type *, 16> NewArgumentTypes;
2995 SmallVector<AttributeSet, 16> NewArgumentAttributes;
2997 // Collect replacement argument types and copy over existing attributes.
2998 AttributeList OldFnAttributeList = OldFn->getAttributes();
2999 for (Argument &Arg : OldFn->args()) {
3000 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
3001 ARIs[Arg.getArgNo()]) {
3002 NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
3003 ARI->ReplacementTypes.end());
3004 NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
3005 AttributeSet());
3006 } else {
3007 NewArgumentTypes.push_back(Arg.getType());
3008 NewArgumentAttributes.push_back(
3009 OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
3013 uint64_t LargestVectorWidth = 0;
3014 for (auto *I : NewArgumentTypes)
3015 if (auto *VT = dyn_cast<llvm::VectorType>(I))
3016 LargestVectorWidth =
3017 std::max(LargestVectorWidth,
3018 VT->getPrimitiveSizeInBits().getKnownMinValue());
3020 FunctionType *OldFnTy = OldFn->getFunctionType();
3021 Type *RetTy = OldFnTy->getReturnType();
3023 // Construct the new function type using the new arguments types.
3024 FunctionType *NewFnTy =
3025 FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
3027 LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()
3028 << "' from " << *OldFn->getFunctionType() << " to "
3029 << *NewFnTy << "\n");
3031 // Create the new function body and insert it into the module.
3032 Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
3033 OldFn->getAddressSpace(), "");
3034 Functions.insert(NewFn);
3035 OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
3036 NewFn->takeName(OldFn);
3037 NewFn->copyAttributesFrom(OldFn);
3039 // Patch the pointer to LLVM function in debug info descriptor.
3040 NewFn->setSubprogram(OldFn->getSubprogram());
3041 OldFn->setSubprogram(nullptr);
3043 // Recompute the parameter attributes list based on the new arguments for
3044 // the function.
3045 LLVMContext &Ctx = OldFn->getContext();
3046 NewFn->setAttributes(AttributeList::get(
3047 Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
3048 NewArgumentAttributes));
3049 AttributeFuncs::updateMinLegalVectorWidthAttr(*NewFn, LargestVectorWidth);
3051 // Remove argmem from the memory effects if we have no more pointer
3052 // arguments, or they are readnone.
3053 MemoryEffects ME = NewFn->getMemoryEffects();
3054 int ArgNo = -1;
3055 if (ME.doesAccessArgPointees() && all_of(NewArgumentTypes, [&](Type *T) {
3056 ++ArgNo;
3057 return !T->isPtrOrPtrVectorTy() ||
3058 NewFn->hasParamAttribute(ArgNo, Attribute::ReadNone);
3059 })) {
3060 NewFn->setMemoryEffects(ME - MemoryEffects::argMemOnly());
3063 // Since we have now created the new function, splice the body of the old
3064 // function right into the new function, leaving the old rotting hulk of the
3065 // function empty.
3066 NewFn->splice(NewFn->begin(), OldFn);
3068 // Fixup block addresses to reference new function.
3069 SmallVector<BlockAddress *, 8u> BlockAddresses;
3070 for (User *U : OldFn->users())
3071 if (auto *BA = dyn_cast<BlockAddress>(U))
3072 BlockAddresses.push_back(BA);
3073 for (auto *BA : BlockAddresses)
3074 BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
3076 // Set of all "call-like" instructions that invoke the old function mapped
3077 // to their new replacements.
3078 SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
3080 // Callback to create a new "call-like" instruction for a given one.
3081 auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
3082 CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
3083 const AttributeList &OldCallAttributeList = OldCB->getAttributes();
3085 // Collect the new argument operands for the replacement call site.
3086 SmallVector<Value *, 16> NewArgOperands;
3087 SmallVector<AttributeSet, 16> NewArgOperandAttributes;
3088 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
3089 unsigned NewFirstArgNum = NewArgOperands.size();
3090 (void)NewFirstArgNum; // only used inside assert.
3091 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
3092 ARIs[OldArgNum]) {
3093 if (ARI->ACSRepairCB)
3094 ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
3095 assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==
3096 NewArgOperands.size() &&
3097 "ACS repair callback did not provide as many operand as new "
3098 "types were registered!");
3099 // TODO: Exose the attribute set to the ACS repair callback
3100 NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
3101 AttributeSet());
3102 } else {
3103 NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
3104 NewArgOperandAttributes.push_back(
3105 OldCallAttributeList.getParamAttrs(OldArgNum));
3109 assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&
3110 "Mismatch # argument operands vs. # argument operand attributes!");
3111 assert(NewArgOperands.size() == NewFn->arg_size() &&
3112 "Mismatch # argument operands vs. # function arguments!");
3114 SmallVector<OperandBundleDef, 4> OperandBundleDefs;
3115 OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
3117 // Create a new call or invoke instruction to replace the old one.
3118 CallBase *NewCB;
3119 if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
3120 NewCB =
3121 InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
3122 NewArgOperands, OperandBundleDefs, "", OldCB);
3123 } else {
3124 auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
3125 "", OldCB);
3126 NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
3127 NewCB = NewCI;
3130 // Copy over various properties and the new attributes.
3131 NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
3132 NewCB->setCallingConv(OldCB->getCallingConv());
3133 NewCB->takeName(OldCB);
3134 NewCB->setAttributes(AttributeList::get(
3135 Ctx, OldCallAttributeList.getFnAttrs(),
3136 OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
3138 AttributeFuncs::updateMinLegalVectorWidthAttr(*NewCB->getCaller(),
3139 LargestVectorWidth);
3141 CallSitePairs.push_back({OldCB, NewCB});
3142 return true;
3145 // Use the CallSiteReplacementCreator to create replacement call sites.
3146 bool UsedAssumedInformation = false;
3147 bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
3148 true, nullptr, UsedAssumedInformation,
3149 /* CheckPotentiallyDead */ true);
3150 (void)Success;
3151 assert(Success && "Assumed call site replacement to succeed!");
3153 // Rewire the arguments.
3154 Argument *OldFnArgIt = OldFn->arg_begin();
3155 Argument *NewFnArgIt = NewFn->arg_begin();
3156 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
3157 ++OldArgNum, ++OldFnArgIt) {
3158 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
3159 ARIs[OldArgNum]) {
3160 if (ARI->CalleeRepairCB)
3161 ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
3162 if (ARI->ReplacementTypes.empty())
3163 OldFnArgIt->replaceAllUsesWith(
3164 PoisonValue::get(OldFnArgIt->getType()));
3165 NewFnArgIt += ARI->ReplacementTypes.size();
3166 } else {
3167 NewFnArgIt->takeName(&*OldFnArgIt);
3168 OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
3169 ++NewFnArgIt;
3173 // Eliminate the instructions *after* we visited all of them.
3174 for (auto &CallSitePair : CallSitePairs) {
3175 CallBase &OldCB = *CallSitePair.first;
3176 CallBase &NewCB = *CallSitePair.second;
3177 assert(OldCB.getType() == NewCB.getType() &&
3178 "Cannot handle call sites with different types!");
3179 ModifiedFns.insert(OldCB.getFunction());
3180 Configuration.CGUpdater.replaceCallSite(OldCB, NewCB);
3181 OldCB.replaceAllUsesWith(&NewCB);
3182 OldCB.eraseFromParent();
3185 // Replace the function in the call graph (if any).
3186 Configuration.CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
3188 // If the old function was modified and needed to be reanalyzed, the new one
3189 // does now.
3190 if (ModifiedFns.remove(OldFn))
3191 ModifiedFns.insert(NewFn);
3193 Changed = ChangeStatus::CHANGED;
3196 return Changed;
3199 void InformationCache::initializeInformationCache(const Function &CF,
3200 FunctionInfo &FI) {
3201 // As we do not modify the function here we can remove the const
3202 // withouth breaking implicit assumptions. At the end of the day, we could
3203 // initialize the cache eagerly which would look the same to the users.
3204 Function &F = const_cast<Function &>(CF);
3206 // Walk all instructions to find interesting instructions that might be
3207 // queried by abstract attributes during their initialization or update.
3208 // This has to happen before we create attributes.
3210 DenseMap<const Value *, std::optional<short>> AssumeUsesMap;
3212 // Add \p V to the assume uses map which track the number of uses outside of
3213 // "visited" assumes. If no outside uses are left the value is added to the
3214 // assume only use vector.
3215 auto AddToAssumeUsesMap = [&](const Value &V) -> void {
3216 SmallVector<const Instruction *> Worklist;
3217 if (auto *I = dyn_cast<Instruction>(&V))
3218 Worklist.push_back(I);
3219 while (!Worklist.empty()) {
3220 const Instruction *I = Worklist.pop_back_val();
3221 std::optional<short> &NumUses = AssumeUsesMap[I];
3222 if (!NumUses)
3223 NumUses = I->getNumUses();
3224 NumUses = *NumUses - /* this assume */ 1;
3225 if (*NumUses != 0)
3226 continue;
3227 AssumeOnlyValues.insert(I);
3228 for (const Value *Op : I->operands())
3229 if (auto *OpI = dyn_cast<Instruction>(Op))
3230 Worklist.push_back(OpI);
3234 for (Instruction &I : instructions(&F)) {
3235 bool IsInterestingOpcode = false;
3237 // To allow easy access to all instructions in a function with a given
3238 // opcode we store them in the InfoCache. As not all opcodes are interesting
3239 // to concrete attributes we only cache the ones that are as identified in
3240 // the following switch.
3241 // Note: There are no concrete attributes now so this is initially empty.
3242 switch (I.getOpcode()) {
3243 default:
3244 assert(!isa<CallBase>(&I) &&
3245 "New call base instruction type needs to be known in the "
3246 "Attributor.");
3247 break;
3248 case Instruction::Call:
3249 // Calls are interesting on their own, additionally:
3250 // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
3251 // For `must-tail` calls we remember the caller and callee.
3252 if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
3253 AssumeOnlyValues.insert(Assume);
3254 fillMapFromAssume(*Assume, KnowledgeMap);
3255 AddToAssumeUsesMap(*Assume->getArgOperand(0));
3256 } else if (cast<CallInst>(I).isMustTailCall()) {
3257 FI.ContainsMustTailCall = true;
3258 if (auto *Callee = dyn_cast_if_present<Function>(
3259 cast<CallInst>(I).getCalledOperand()))
3260 getFunctionInfo(*Callee).CalledViaMustTail = true;
3262 [[fallthrough]];
3263 case Instruction::CallBr:
3264 case Instruction::Invoke:
3265 case Instruction::CleanupRet:
3266 case Instruction::CatchSwitch:
3267 case Instruction::AtomicRMW:
3268 case Instruction::AtomicCmpXchg:
3269 case Instruction::Br:
3270 case Instruction::Resume:
3271 case Instruction::Ret:
3272 case Instruction::Load:
3273 // The alignment of a pointer is interesting for loads.
3274 case Instruction::Store:
3275 // The alignment of a pointer is interesting for stores.
3276 case Instruction::Alloca:
3277 case Instruction::AddrSpaceCast:
3278 IsInterestingOpcode = true;
3280 if (IsInterestingOpcode) {
3281 auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
3282 if (!Insts)
3283 Insts = new (Allocator) InstructionVectorTy();
3284 Insts->push_back(&I);
3286 if (I.mayReadOrWriteMemory())
3287 FI.RWInsts.push_back(&I);
3290 if (F.hasFnAttribute(Attribute::AlwaysInline) &&
3291 isInlineViable(F).isSuccess())
3292 InlineableFunctions.insert(&F);
3295 InformationCache::FunctionInfo::~FunctionInfo() {
3296 // The instruction vectors are allocated using a BumpPtrAllocator, we need to
3297 // manually destroy them.
3298 for (auto &It : OpcodeInstMap)
3299 It.getSecond()->~InstructionVectorTy();
3302 const ArrayRef<Function *>
3303 InformationCache::getIndirectlyCallableFunctions(Attributor &A) const {
3304 assert(A.isClosedWorldModule() && "Cannot see all indirect callees!");
3305 return IndirectlyCallableFunctions;
3308 void Attributor::recordDependence(const AbstractAttribute &FromAA,
3309 const AbstractAttribute &ToAA,
3310 DepClassTy DepClass) {
3311 if (DepClass == DepClassTy::NONE)
3312 return;
3313 // If we are outside of an update, thus before the actual fixpoint iteration
3314 // started (= when we create AAs), we do not track dependences because we will
3315 // put all AAs into the initial worklist anyway.
3316 if (DependenceStack.empty())
3317 return;
3318 if (FromAA.getState().isAtFixpoint())
3319 return;
3320 DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
3323 void Attributor::rememberDependences() {
3324 assert(!DependenceStack.empty() && "No dependences to remember!");
3326 for (DepInfo &DI : *DependenceStack.back()) {
3327 assert((DI.DepClass == DepClassTy::REQUIRED ||
3328 DI.DepClass == DepClassTy::OPTIONAL) &&
3329 "Expected required or optional dependence (1 bit)!");
3330 auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
3331 DepAAs.insert(AbstractAttribute::DepTy(
3332 const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
3336 template <Attribute::AttrKind AK, typename AAType>
3337 void Attributor::checkAndQueryIRAttr(const IRPosition &IRP,
3338 AttributeSet Attrs) {
3339 bool IsKnown;
3340 if (!Attrs.hasAttribute(AK))
3341 if (!Configuration.Allowed || Configuration.Allowed->count(&AAType::ID))
3342 if (!AA::hasAssumedIRAttr<AK>(*this, nullptr, IRP, DepClassTy::NONE,
3343 IsKnown))
3344 getOrCreateAAFor<AAType>(IRP);
3347 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
3348 if (!VisitedFunctions.insert(&F).second)
3349 return;
3350 if (F.isDeclaration())
3351 return;
3353 // In non-module runs we need to look at the call sites of a function to
3354 // determine if it is part of a must-tail call edge. This will influence what
3355 // attributes we can derive.
3356 InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
3357 if (!isModulePass() && !FI.CalledViaMustTail) {
3358 for (const Use &U : F.uses())
3359 if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
3360 if (CB->isCallee(&U) && CB->isMustTailCall())
3361 FI.CalledViaMustTail = true;
3364 IRPosition FPos = IRPosition::function(F);
3365 bool IsIPOAmendable = isFunctionIPOAmendable(F);
3366 auto Attrs = F.getAttributes();
3367 auto FnAttrs = Attrs.getFnAttrs();
3369 // Check for dead BasicBlocks in every function.
3370 // We need dead instruction detection because we do not want to deal with
3371 // broken IR in which SSA rules do not apply.
3372 getOrCreateAAFor<AAIsDead>(FPos);
3374 // Every function might contain instructions that cause "undefined
3375 // behavior".
3376 getOrCreateAAFor<AAUndefinedBehavior>(FPos);
3378 // Every function might be applicable for Heap-To-Stack conversion.
3379 if (EnableHeapToStack)
3380 getOrCreateAAFor<AAHeapToStack>(FPos);
3382 // Every function might be "must-progress".
3383 checkAndQueryIRAttr<Attribute::MustProgress, AAMustProgress>(FPos, FnAttrs);
3385 // Every function might be "no-free".
3386 checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(FPos, FnAttrs);
3388 // Every function might be "will-return".
3389 checkAndQueryIRAttr<Attribute::WillReturn, AAWillReturn>(FPos, FnAttrs);
3391 // Every function might be marked "nosync"
3392 checkAndQueryIRAttr<Attribute::NoSync, AANoSync>(FPos, FnAttrs);
3394 // Everything that is visible from the outside (=function, argument, return
3395 // positions), cannot be changed if the function is not IPO amendable. We can
3396 // however analyse the code inside.
3397 if (IsIPOAmendable) {
3399 // Every function can be nounwind.
3400 checkAndQueryIRAttr<Attribute::NoUnwind, AANoUnwind>(FPos, FnAttrs);
3402 // Every function might be "no-return".
3403 checkAndQueryIRAttr<Attribute::NoReturn, AANoReturn>(FPos, FnAttrs);
3405 // Every function might be "no-recurse".
3406 checkAndQueryIRAttr<Attribute::NoRecurse, AANoRecurse>(FPos, FnAttrs);
3408 // Every function can be "non-convergent".
3409 if (Attrs.hasFnAttr(Attribute::Convergent))
3410 getOrCreateAAFor<AANonConvergent>(FPos);
3412 // Every function might be "readnone/readonly/writeonly/...".
3413 getOrCreateAAFor<AAMemoryBehavior>(FPos);
3415 // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
3416 getOrCreateAAFor<AAMemoryLocation>(FPos);
3418 // Every function can track active assumptions.
3419 getOrCreateAAFor<AAAssumptionInfo>(FPos);
3421 // If we're not using a dynamic mode for float, there's nothing worthwhile
3422 // to infer. This misses the edge case denormal-fp-math="dynamic" and
3423 // denormal-fp-math-f32=something, but that likely has no real world use.
3424 DenormalMode Mode = F.getDenormalMode(APFloat::IEEEsingle());
3425 if (Mode.Input == DenormalMode::Dynamic ||
3426 Mode.Output == DenormalMode::Dynamic)
3427 getOrCreateAAFor<AADenormalFPMath>(FPos);
3429 // Return attributes are only appropriate if the return type is non void.
3430 Type *ReturnType = F.getReturnType();
3431 if (!ReturnType->isVoidTy()) {
3432 IRPosition RetPos = IRPosition::returned(F);
3433 AttributeSet RetAttrs = Attrs.getRetAttrs();
3435 // Every returned value might be dead.
3436 getOrCreateAAFor<AAIsDead>(RetPos);
3438 // Every function might be simplified.
3439 bool UsedAssumedInformation = false;
3440 getAssumedSimplified(RetPos, nullptr, UsedAssumedInformation,
3441 AA::Intraprocedural);
3443 // Every returned value might be marked noundef.
3444 checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(RetPos, RetAttrs);
3446 if (ReturnType->isPointerTy()) {
3448 // Every function with pointer return type might be marked align.
3449 getOrCreateAAFor<AAAlign>(RetPos);
3451 // Every function with pointer return type might be marked nonnull.
3452 checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(RetPos, RetAttrs);
3454 // Every function with pointer return type might be marked noalias.
3455 checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(RetPos, RetAttrs);
3457 // Every function with pointer return type might be marked
3458 // dereferenceable.
3459 getOrCreateAAFor<AADereferenceable>(RetPos);
3460 } else if (AttributeFuncs::isNoFPClassCompatibleType(ReturnType)) {
3461 getOrCreateAAFor<AANoFPClass>(RetPos);
3466 for (Argument &Arg : F.args()) {
3467 IRPosition ArgPos = IRPosition::argument(Arg);
3468 auto ArgNo = Arg.getArgNo();
3469 AttributeSet ArgAttrs = Attrs.getParamAttrs(ArgNo);
3471 if (!IsIPOAmendable) {
3472 if (Arg.getType()->isPointerTy())
3473 // Every argument with pointer type might be marked nofree.
3474 checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(ArgPos, ArgAttrs);
3475 continue;
3478 // Every argument might be simplified. We have to go through the
3479 // Attributor interface though as outside AAs can register custom
3480 // simplification callbacks.
3481 bool UsedAssumedInformation = false;
3482 getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation,
3483 AA::Intraprocedural);
3485 // Every argument might be dead.
3486 getOrCreateAAFor<AAIsDead>(ArgPos);
3488 // Every argument might be marked noundef.
3489 checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(ArgPos, ArgAttrs);
3491 if (Arg.getType()->isPointerTy()) {
3492 // Every argument with pointer type might be marked nonnull.
3493 checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(ArgPos, ArgAttrs);
3495 // Every argument with pointer type might be marked noalias.
3496 checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(ArgPos, ArgAttrs);
3498 // Every argument with pointer type might be marked dereferenceable.
3499 getOrCreateAAFor<AADereferenceable>(ArgPos);
3501 // Every argument with pointer type might be marked align.
3502 getOrCreateAAFor<AAAlign>(ArgPos);
3504 // Every argument with pointer type might be marked nocapture.
3505 checkAndQueryIRAttr<Attribute::NoCapture, AANoCapture>(ArgPos, ArgAttrs);
3507 // Every argument with pointer type might be marked
3508 // "readnone/readonly/writeonly/..."
3509 getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
3511 // Every argument with pointer type might be marked nofree.
3512 checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(ArgPos, ArgAttrs);
3514 // Every argument with pointer type might be privatizable (or
3515 // promotable)
3516 getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
3517 } else if (AttributeFuncs::isNoFPClassCompatibleType(Arg.getType())) {
3518 getOrCreateAAFor<AANoFPClass>(ArgPos);
3522 auto CallSitePred = [&](Instruction &I) -> bool {
3523 auto &CB = cast<CallBase>(I);
3524 IRPosition CBInstPos = IRPosition::inst(CB);
3525 IRPosition CBFnPos = IRPosition::callsite_function(CB);
3527 // Call sites might be dead if they do not have side effects and no live
3528 // users. The return value might be dead if there are no live users.
3529 getOrCreateAAFor<AAIsDead>(CBInstPos);
3531 Function *Callee = dyn_cast_if_present<Function>(CB.getCalledOperand());
3532 // TODO: Even if the callee is not known now we might be able to simplify
3533 // the call/callee.
3534 if (!Callee) {
3535 getOrCreateAAFor<AAIndirectCallInfo>(CBFnPos);
3536 return true;
3539 // Every call site can track active assumptions.
3540 getOrCreateAAFor<AAAssumptionInfo>(CBFnPos);
3542 // Skip declarations except if annotations on their call sites were
3543 // explicitly requested.
3544 if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
3545 !Callee->hasMetadata(LLVMContext::MD_callback))
3546 return true;
3548 if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
3549 IRPosition CBRetPos = IRPosition::callsite_returned(CB);
3550 bool UsedAssumedInformation = false;
3551 getAssumedSimplified(CBRetPos, nullptr, UsedAssumedInformation,
3552 AA::Intraprocedural);
3554 if (AttributeFuncs::isNoFPClassCompatibleType(Callee->getReturnType()))
3555 getOrCreateAAFor<AANoFPClass>(CBInstPos);
3558 const AttributeList &CBAttrs = CBFnPos.getAttrList();
3559 for (int I = 0, E = CB.arg_size(); I < E; ++I) {
3561 IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
3562 AttributeSet CBArgAttrs = CBAttrs.getParamAttrs(I);
3564 // Every call site argument might be dead.
3565 getOrCreateAAFor<AAIsDead>(CBArgPos);
3567 // Call site argument might be simplified. We have to go through the
3568 // Attributor interface though as outside AAs can register custom
3569 // simplification callbacks.
3570 bool UsedAssumedInformation = false;
3571 getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation,
3572 AA::Intraprocedural);
3574 // Every call site argument might be marked "noundef".
3575 checkAndQueryIRAttr<Attribute::NoUndef, AANoUndef>(CBArgPos, CBArgAttrs);
3577 Type *ArgTy = CB.getArgOperand(I)->getType();
3579 if (!ArgTy->isPointerTy()) {
3580 if (AttributeFuncs::isNoFPClassCompatibleType(ArgTy))
3581 getOrCreateAAFor<AANoFPClass>(CBArgPos);
3583 continue;
3586 // Call site argument attribute "non-null".
3587 checkAndQueryIRAttr<Attribute::NonNull, AANonNull>(CBArgPos, CBArgAttrs);
3589 // Call site argument attribute "nocapture".
3590 checkAndQueryIRAttr<Attribute::NoCapture, AANoCapture>(CBArgPos,
3591 CBArgAttrs);
3593 // Call site argument attribute "no-alias".
3594 checkAndQueryIRAttr<Attribute::NoAlias, AANoAlias>(CBArgPos, CBArgAttrs);
3596 // Call site argument attribute "dereferenceable".
3597 getOrCreateAAFor<AADereferenceable>(CBArgPos);
3599 // Call site argument attribute "align".
3600 getOrCreateAAFor<AAAlign>(CBArgPos);
3602 // Call site argument attribute
3603 // "readnone/readonly/writeonly/..."
3604 if (!CBAttrs.hasParamAttr(I, Attribute::ReadNone))
3605 getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
3607 // Call site argument attribute "nofree".
3608 checkAndQueryIRAttr<Attribute::NoFree, AANoFree>(CBArgPos, CBArgAttrs);
3610 return true;
3613 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
3614 [[maybe_unused]] bool Success;
3615 bool UsedAssumedInformation = false;
3616 Success = checkForAllInstructionsImpl(
3617 nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
3618 {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
3619 (unsigned)Instruction::Call},
3620 UsedAssumedInformation);
3621 assert(Success && "Expected the check call to be successful!");
3623 auto LoadStorePred = [&](Instruction &I) -> bool {
3624 if (auto *LI = dyn_cast<LoadInst>(&I)) {
3625 getOrCreateAAFor<AAAlign>(IRPosition::value(*LI->getPointerOperand()));
3626 if (SimplifyAllLoads)
3627 getAssumedSimplified(IRPosition::value(I), nullptr,
3628 UsedAssumedInformation, AA::Intraprocedural);
3629 getOrCreateAAFor<AAAddressSpace>(
3630 IRPosition::value(*LI->getPointerOperand()));
3631 } else {
3632 auto &SI = cast<StoreInst>(I);
3633 getOrCreateAAFor<AAIsDead>(IRPosition::inst(I));
3634 getAssumedSimplified(IRPosition::value(*SI.getValueOperand()), nullptr,
3635 UsedAssumedInformation, AA::Intraprocedural);
3636 getOrCreateAAFor<AAAlign>(IRPosition::value(*SI.getPointerOperand()));
3637 getOrCreateAAFor<AAAddressSpace>(
3638 IRPosition::value(*SI.getPointerOperand()));
3640 return true;
3642 Success = checkForAllInstructionsImpl(
3643 nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
3644 {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
3645 UsedAssumedInformation);
3646 assert(Success && "Expected the check call to be successful!");
3648 // AllocaInstPredicate
3649 auto AAAllocationInfoPred = [&](Instruction &I) -> bool {
3650 getOrCreateAAFor<AAAllocationInfo>(IRPosition::value(I));
3651 return true;
3654 Success = checkForAllInstructionsImpl(
3655 nullptr, OpcodeInstMap, AAAllocationInfoPred, nullptr, nullptr,
3656 {(unsigned)Instruction::Alloca}, UsedAssumedInformation);
3657 assert(Success && "Expected the check call to be successful!");
3660 bool Attributor::isClosedWorldModule() const {
3661 if (CloseWorldAssumption.getNumOccurrences())
3662 return CloseWorldAssumption;
3663 return isModulePass() && Configuration.IsClosedWorldModule;
3666 /// Helpers to ease debugging through output streams and print calls.
3668 ///{
3669 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
3670 return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
3673 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
3674 switch (AP) {
3675 case IRPosition::IRP_INVALID:
3676 return OS << "inv";
3677 case IRPosition::IRP_FLOAT:
3678 return OS << "flt";
3679 case IRPosition::IRP_RETURNED:
3680 return OS << "fn_ret";
3681 case IRPosition::IRP_CALL_SITE_RETURNED:
3682 return OS << "cs_ret";
3683 case IRPosition::IRP_FUNCTION:
3684 return OS << "fn";
3685 case IRPosition::IRP_CALL_SITE:
3686 return OS << "cs";
3687 case IRPosition::IRP_ARGUMENT:
3688 return OS << "arg";
3689 case IRPosition::IRP_CALL_SITE_ARGUMENT:
3690 return OS << "cs_arg";
3692 llvm_unreachable("Unknown attribute position!");
3695 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
3696 const Value &AV = Pos.getAssociatedValue();
3697 OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
3698 << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
3700 if (Pos.hasCallBaseContext())
3701 OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
3702 return OS << "}";
3705 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
3706 OS << "range-state(" << S.getBitWidth() << ")<";
3707 S.getKnown().print(OS);
3708 OS << " / ";
3709 S.getAssumed().print(OS);
3710 OS << ">";
3712 return OS << static_cast<const AbstractState &>(S);
3715 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
3716 return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
3719 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
3720 AA.print(OS);
3721 return OS;
3724 raw_ostream &llvm::operator<<(raw_ostream &OS,
3725 const PotentialConstantIntValuesState &S) {
3726 OS << "set-state(< {";
3727 if (!S.isValidState())
3728 OS << "full-set";
3729 else {
3730 for (const auto &It : S.getAssumedSet())
3731 OS << It << ", ";
3732 if (S.undefIsContained())
3733 OS << "undef ";
3735 OS << "} >)";
3737 return OS;
3740 raw_ostream &llvm::operator<<(raw_ostream &OS,
3741 const PotentialLLVMValuesState &S) {
3742 OS << "set-state(< {";
3743 if (!S.isValidState())
3744 OS << "full-set";
3745 else {
3746 for (const auto &It : S.getAssumedSet()) {
3747 if (auto *F = dyn_cast<Function>(It.first.getValue()))
3748 OS << "@" << F->getName() << "[" << int(It.second) << "], ";
3749 else
3750 OS << *It.first.getValue() << "[" << int(It.second) << "], ";
3752 if (S.undefIsContained())
3753 OS << "undef ";
3755 OS << "} >)";
3757 return OS;
3760 void AbstractAttribute::print(Attributor *A, raw_ostream &OS) const {
3761 OS << "[";
3762 OS << getName();
3763 OS << "] for CtxI ";
3765 if (auto *I = getCtxI()) {
3766 OS << "'";
3767 I->print(OS);
3768 OS << "'";
3769 } else
3770 OS << "<<null inst>>";
3772 OS << " at position " << getIRPosition() << " with state " << getAsStr(A)
3773 << '\n';
3776 void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
3777 print(OS);
3779 for (const auto &DepAA : Deps) {
3780 auto *AA = DepAA.getPointer();
3781 OS << " updates ";
3782 AA->print(OS);
3785 OS << '\n';
3788 raw_ostream &llvm::operator<<(raw_ostream &OS,
3789 const AAPointerInfo::Access &Acc) {
3790 OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
3791 if (Acc.getLocalInst() != Acc.getRemoteInst())
3792 OS << " via " << *Acc.getLocalInst();
3793 if (Acc.getContent()) {
3794 if (*Acc.getContent())
3795 OS << " [" << **Acc.getContent() << "]";
3796 else
3797 OS << " [ <unknown> ]";
3799 return OS;
3801 ///}
3803 /// ----------------------------------------------------------------------------
3804 /// Pass (Manager) Boilerplate
3805 /// ----------------------------------------------------------------------------
3807 static bool runAttributorOnFunctions(InformationCache &InfoCache,
3808 SetVector<Function *> &Functions,
3809 AnalysisGetter &AG,
3810 CallGraphUpdater &CGUpdater,
3811 bool DeleteFns, bool IsModulePass) {
3812 if (Functions.empty())
3813 return false;
3815 LLVM_DEBUG({
3816 dbgs() << "[Attributor] Run on module with " << Functions.size()
3817 << " functions:\n";
3818 for (Function *Fn : Functions)
3819 dbgs() << " - " << Fn->getName() << "\n";
3822 // Create an Attributor and initially empty information cache that is filled
3823 // while we identify default attribute opportunities.
3824 AttributorConfig AC(CGUpdater);
3825 AC.IsModulePass = IsModulePass;
3826 AC.DeleteFns = DeleteFns;
3828 /// Tracking callback for specialization of indirect calls.
3829 DenseMap<CallBase *, std::unique_ptr<SmallPtrSet<Function *, 8>>>
3830 IndirectCalleeTrackingMap;
3831 if (MaxSpecializationPerCB.getNumOccurrences()) {
3832 AC.IndirectCalleeSpecializationCallback =
3833 [&](Attributor &, const AbstractAttribute &AA, CallBase &CB,
3834 Function &Callee) {
3835 if (MaxSpecializationPerCB == 0)
3836 return false;
3837 auto &Set = IndirectCalleeTrackingMap[&CB];
3838 if (!Set)
3839 Set = std::make_unique<SmallPtrSet<Function *, 8>>();
3840 if (Set->size() >= MaxSpecializationPerCB)
3841 return Set->contains(&Callee);
3842 Set->insert(&Callee);
3843 return true;
3847 Attributor A(Functions, InfoCache, AC);
3849 // Create shallow wrappers for all functions that are not IPO amendable
3850 if (AllowShallowWrappers)
3851 for (Function *F : Functions)
3852 if (!A.isFunctionIPOAmendable(*F))
3853 Attributor::createShallowWrapper(*F);
3855 // Internalize non-exact functions
3856 // TODO: for now we eagerly internalize functions without calculating the
3857 // cost, we need a cost interface to determine whether internalizing
3858 // a function is "beneficial"
3859 if (AllowDeepWrapper) {
3860 unsigned FunSize = Functions.size();
3861 for (unsigned u = 0; u < FunSize; u++) {
3862 Function *F = Functions[u];
3863 if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
3864 !GlobalValue::isInterposableLinkage(F->getLinkage())) {
3865 Function *NewF = Attributor::internalizeFunction(*F);
3866 assert(NewF && "Could not internalize function.");
3867 Functions.insert(NewF);
3869 // Update call graph
3870 CGUpdater.replaceFunctionWith(*F, *NewF);
3871 for (const Use &U : NewF->uses())
3872 if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
3873 auto *CallerF = CB->getCaller();
3874 CGUpdater.reanalyzeFunction(*CallerF);
3880 for (Function *F : Functions) {
3881 if (F->hasExactDefinition())
3882 NumFnWithExactDefinition++;
3883 else
3884 NumFnWithoutExactDefinition++;
3886 // We look at internal functions only on-demand but if any use is not a
3887 // direct call or outside the current set of analyzed functions, we have
3888 // to do it eagerly.
3889 if (F->hasLocalLinkage()) {
3890 if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
3891 const auto *CB = dyn_cast<CallBase>(U.getUser());
3892 return CB && CB->isCallee(&U) &&
3893 Functions.count(const_cast<Function *>(CB->getCaller()));
3895 continue;
3898 // Populate the Attributor with abstract attribute opportunities in the
3899 // function and the information cache with IR information.
3900 A.identifyDefaultAbstractAttributes(*F);
3903 ChangeStatus Changed = A.run();
3905 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
3906 << " functions, result: " << Changed << ".\n");
3907 return Changed == ChangeStatus::CHANGED;
3910 static bool runAttributorLightOnFunctions(InformationCache &InfoCache,
3911 SetVector<Function *> &Functions,
3912 AnalysisGetter &AG,
3913 CallGraphUpdater &CGUpdater,
3914 FunctionAnalysisManager &FAM,
3915 bool IsModulePass) {
3916 if (Functions.empty())
3917 return false;
3919 LLVM_DEBUG({
3920 dbgs() << "[AttributorLight] Run on module with " << Functions.size()
3921 << " functions:\n";
3922 for (Function *Fn : Functions)
3923 dbgs() << " - " << Fn->getName() << "\n";
3926 // Create an Attributor and initially empty information cache that is filled
3927 // while we identify default attribute opportunities.
3928 AttributorConfig AC(CGUpdater);
3929 AC.IsModulePass = IsModulePass;
3930 AC.DeleteFns = false;
3931 DenseSet<const char *> Allowed(
3932 {&AAWillReturn::ID, &AANoUnwind::ID, &AANoRecurse::ID, &AANoSync::ID,
3933 &AANoFree::ID, &AANoReturn::ID, &AAMemoryLocation::ID,
3934 &AAMemoryBehavior::ID, &AAUnderlyingObjects::ID, &AANoCapture::ID,
3935 &AAInterFnReachability::ID, &AAIntraFnReachability::ID, &AACallEdges::ID,
3936 &AANoFPClass::ID, &AAMustProgress::ID, &AANonNull::ID});
3937 AC.Allowed = &Allowed;
3938 AC.UseLiveness = false;
3940 Attributor A(Functions, InfoCache, AC);
3942 for (Function *F : Functions) {
3943 if (F->hasExactDefinition())
3944 NumFnWithExactDefinition++;
3945 else
3946 NumFnWithoutExactDefinition++;
3948 // We look at internal functions only on-demand but if any use is not a
3949 // direct call or outside the current set of analyzed functions, we have
3950 // to do it eagerly.
3951 if (F->hasLocalLinkage()) {
3952 if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
3953 const auto *CB = dyn_cast<CallBase>(U.getUser());
3954 return CB && CB->isCallee(&U) &&
3955 Functions.count(const_cast<Function *>(CB->getCaller()));
3957 continue;
3960 // Populate the Attributor with abstract attribute opportunities in the
3961 // function and the information cache with IR information.
3962 A.identifyDefaultAbstractAttributes(*F);
3965 ChangeStatus Changed = A.run();
3967 if (Changed == ChangeStatus::CHANGED) {
3968 // Invalidate analyses for modified functions so that we don't have to
3969 // invalidate all analyses for all functions in this SCC.
3970 PreservedAnalyses FuncPA;
3971 // We haven't changed the CFG for modified functions.
3972 FuncPA.preserveSet<CFGAnalyses>();
3973 for (Function *Changed : A.getModifiedFunctions()) {
3974 FAM.invalidate(*Changed, FuncPA);
3975 // Also invalidate any direct callers of changed functions since analyses
3976 // may care about attributes of direct callees. For example, MemorySSA
3977 // cares about whether or not a call's callee modifies memory and queries
3978 // that through function attributes.
3979 for (auto *U : Changed->users()) {
3980 if (auto *Call = dyn_cast<CallBase>(U)) {
3981 if (Call->getCalledFunction() == Changed)
3982 FAM.invalidate(*Call->getFunction(), FuncPA);
3987 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()
3988 << " functions, result: " << Changed << ".\n");
3989 return Changed == ChangeStatus::CHANGED;
3992 void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
3994 void AADepGraph::dumpGraph() {
3995 static std::atomic<int> CallTimes;
3996 std::string Prefix;
3998 if (!DepGraphDotFileNamePrefix.empty())
3999 Prefix = DepGraphDotFileNamePrefix;
4000 else
4001 Prefix = "dep_graph";
4002 std::string Filename =
4003 Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
4005 outs() << "Dependency graph dump to " << Filename << ".\n";
4007 std::error_code EC;
4009 raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
4010 if (!EC)
4011 llvm::WriteGraph(File, this);
4013 CallTimes++;
4016 void AADepGraph::print() {
4017 for (auto DepAA : SyntheticRoot.Deps)
4018 cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
4021 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
4022 FunctionAnalysisManager &FAM =
4023 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4024 AnalysisGetter AG(FAM);
4026 SetVector<Function *> Functions;
4027 for (Function &F : M)
4028 Functions.insert(&F);
4030 CallGraphUpdater CGUpdater;
4031 BumpPtrAllocator Allocator;
4032 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
4033 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
4034 /* DeleteFns */ true, /* IsModulePass */ true)) {
4035 // FIXME: Think about passes we will preserve and add them here.
4036 return PreservedAnalyses::none();
4038 return PreservedAnalyses::all();
4041 PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
4042 CGSCCAnalysisManager &AM,
4043 LazyCallGraph &CG,
4044 CGSCCUpdateResult &UR) {
4045 FunctionAnalysisManager &FAM =
4046 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
4047 AnalysisGetter AG(FAM);
4049 SetVector<Function *> Functions;
4050 for (LazyCallGraph::Node &N : C)
4051 Functions.insert(&N.getFunction());
4053 if (Functions.empty())
4054 return PreservedAnalyses::all();
4056 Module &M = *Functions.back()->getParent();
4057 CallGraphUpdater CGUpdater;
4058 CGUpdater.initialize(CG, C, AM, UR);
4059 BumpPtrAllocator Allocator;
4060 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
4061 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
4062 /* DeleteFns */ false,
4063 /* IsModulePass */ false)) {
4064 // FIXME: Think about passes we will preserve and add them here.
4065 PreservedAnalyses PA;
4066 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
4067 return PA;
4069 return PreservedAnalyses::all();
4072 PreservedAnalyses AttributorLightPass::run(Module &M,
4073 ModuleAnalysisManager &AM) {
4074 FunctionAnalysisManager &FAM =
4075 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
4076 AnalysisGetter AG(FAM, /* CachedOnly */ true);
4078 SetVector<Function *> Functions;
4079 for (Function &F : M)
4080 Functions.insert(&F);
4082 CallGraphUpdater CGUpdater;
4083 BumpPtrAllocator Allocator;
4084 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
4085 if (runAttributorLightOnFunctions(InfoCache, Functions, AG, CGUpdater, FAM,
4086 /* IsModulePass */ true)) {
4087 PreservedAnalyses PA;
4088 // We have not added or removed functions.
4089 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
4090 // We already invalidated all relevant function analyses above.
4091 PA.preserveSet<AllAnalysesOn<Function>>();
4092 return PA;
4094 return PreservedAnalyses::all();
4097 PreservedAnalyses AttributorLightCGSCCPass::run(LazyCallGraph::SCC &C,
4098 CGSCCAnalysisManager &AM,
4099 LazyCallGraph &CG,
4100 CGSCCUpdateResult &UR) {
4101 FunctionAnalysisManager &FAM =
4102 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
4103 AnalysisGetter AG(FAM);
4105 SetVector<Function *> Functions;
4106 for (LazyCallGraph::Node &N : C)
4107 Functions.insert(&N.getFunction());
4109 if (Functions.empty())
4110 return PreservedAnalyses::all();
4112 Module &M = *Functions.back()->getParent();
4113 CallGraphUpdater CGUpdater;
4114 CGUpdater.initialize(CG, C, AM, UR);
4115 BumpPtrAllocator Allocator;
4116 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
4117 if (runAttributorLightOnFunctions(InfoCache, Functions, AG, CGUpdater, FAM,
4118 /* IsModulePass */ false)) {
4119 PreservedAnalyses PA;
4120 // We have not added or removed functions.
4121 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
4122 // We already invalidated all relevant function analyses above.
4123 PA.preserveSet<AllAnalysesOn<Function>>();
4124 return PA;
4126 return PreservedAnalyses::all();
4128 namespace llvm {
4130 template <> struct GraphTraits<AADepGraphNode *> {
4131 using NodeRef = AADepGraphNode *;
4132 using DepTy = PointerIntPair<AADepGraphNode *, 1>;
4133 using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
4135 static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
4136 static NodeRef DepGetVal(const DepTy &DT) { return DT.getPointer(); }
4138 using ChildIteratorType =
4139 mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>;
4140 using ChildEdgeIteratorType = AADepGraphNode::DepSetTy::iterator;
4142 static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
4144 static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
4147 template <>
4148 struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
4149 static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
4151 using nodes_iterator =
4152 mapped_iterator<AADepGraphNode::DepSetTy::iterator, decltype(&DepGetVal)>;
4154 static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
4156 static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
4159 template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
4160 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
4162 static std::string getNodeLabel(const AADepGraphNode *Node,
4163 const AADepGraph *DG) {
4164 std::string AAString;
4165 raw_string_ostream O(AAString);
4166 Node->print(O);
4167 return AAString;
4171 } // end namespace llvm