[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / lib / Transforms / Utils / SimplifyLibCalls.cpp
blob52eef9ab58a4d928195e908d1d4b6fe568ce1313
1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the library calls simplifier. It does not implement
10 // any pass, but can't be used by other passes to do simplifications.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/AttributeMask.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/IntrinsicInst.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/TargetParser/Triple.h"
34 #include "llvm/Transforms/Utils/BuildLibCalls.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 #include "llvm/Transforms/Utils/SizeOpts.h"
38 #include <cmath>
40 using namespace llvm;
41 using namespace PatternMatch;
43 static cl::opt<bool>
44 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
45 cl::init(false),
46 cl::desc("Enable unsafe double to float "
47 "shrinking for math lib calls"));
49 // Enable conversion of operator new calls with a MemProf hot or cold hint
50 // to an operator new call that takes a hot/cold hint. Off by default since
51 // not all allocators currently support this extension.
52 static cl::opt<bool>
53 OptimizeHotColdNew("optimize-hot-cold-new", cl::Hidden, cl::init(false),
54 cl::desc("Enable hot/cold operator new library calls"));
56 namespace {
58 // Specialized parser to ensure the hint is an 8 bit value (we can't specify
59 // uint8_t to opt<> as that is interpreted to mean that we are passing a char
60 // option with a specific set of values.
61 struct HotColdHintParser : public cl::parser<unsigned> {
62 HotColdHintParser(cl::Option &O) : cl::parser<unsigned>(O) {}
64 bool parse(cl::Option &O, StringRef ArgName, StringRef Arg, unsigned &Value) {
65 if (Arg.getAsInteger(0, Value))
66 return O.error("'" + Arg + "' value invalid for uint argument!");
68 if (Value > 255)
69 return O.error("'" + Arg + "' value must be in the range [0, 255]!");
71 return false;
75 } // end anonymous namespace
77 // Hot/cold operator new takes an 8 bit hotness hint, where 0 is the coldest
78 // and 255 is the hottest. Default to 1 value away from the coldest and hottest
79 // hints, so that the compiler hinted allocations are slightly less strong than
80 // manually inserted hints at the two extremes.
81 static cl::opt<unsigned, false, HotColdHintParser> ColdNewHintValue(
82 "cold-new-hint-value", cl::Hidden, cl::init(1),
83 cl::desc("Value to pass to hot/cold operator new for cold allocation"));
84 static cl::opt<unsigned, false, HotColdHintParser> HotNewHintValue(
85 "hot-new-hint-value", cl::Hidden, cl::init(254),
86 cl::desc("Value to pass to hot/cold operator new for hot allocation"));
88 //===----------------------------------------------------------------------===//
89 // Helper Functions
90 //===----------------------------------------------------------------------===//
92 static bool ignoreCallingConv(LibFunc Func) {
93 return Func == LibFunc_abs || Func == LibFunc_labs ||
94 Func == LibFunc_llabs || Func == LibFunc_strlen;
97 /// Return true if it is only used in equality comparisons with With.
98 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
99 for (User *U : V->users()) {
100 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
101 if (IC->isEquality() && IC->getOperand(1) == With)
102 continue;
103 // Unknown instruction.
104 return false;
106 return true;
109 static bool callHasFloatingPointArgument(const CallInst *CI) {
110 return any_of(CI->operands(), [](const Use &OI) {
111 return OI->getType()->isFloatingPointTy();
115 static bool callHasFP128Argument(const CallInst *CI) {
116 return any_of(CI->operands(), [](const Use &OI) {
117 return OI->getType()->isFP128Ty();
121 // Convert the entire string Str representing an integer in Base, up to
122 // the terminating nul if present, to a constant according to the rules
123 // of strtoul[l] or, when AsSigned is set, of strtol[l]. On success
124 // return the result, otherwise null.
125 // The function assumes the string is encoded in ASCII and carefully
126 // avoids converting sequences (including "") that the corresponding
127 // library call might fail and set errno for.
128 static Value *convertStrToInt(CallInst *CI, StringRef &Str, Value *EndPtr,
129 uint64_t Base, bool AsSigned, IRBuilderBase &B) {
130 if (Base < 2 || Base > 36)
131 if (Base != 0)
132 // Fail for an invalid base (required by POSIX).
133 return nullptr;
135 // Current offset into the original string to reflect in EndPtr.
136 size_t Offset = 0;
137 // Strip leading whitespace.
138 for ( ; Offset != Str.size(); ++Offset)
139 if (!isSpace((unsigned char)Str[Offset])) {
140 Str = Str.substr(Offset);
141 break;
144 if (Str.empty())
145 // Fail for empty subject sequences (POSIX allows but doesn't require
146 // strtol[l]/strtoul[l] to fail with EINVAL).
147 return nullptr;
149 // Strip but remember the sign.
150 bool Negate = Str[0] == '-';
151 if (Str[0] == '-' || Str[0] == '+') {
152 Str = Str.drop_front();
153 if (Str.empty())
154 // Fail for a sign with nothing after it.
155 return nullptr;
156 ++Offset;
159 // Set Max to the absolute value of the minimum (for signed), or
160 // to the maximum (for unsigned) value representable in the type.
161 Type *RetTy = CI->getType();
162 unsigned NBits = RetTy->getPrimitiveSizeInBits();
163 uint64_t Max = AsSigned && Negate ? 1 : 0;
164 Max += AsSigned ? maxIntN(NBits) : maxUIntN(NBits);
166 // Autodetect Base if it's zero and consume the "0x" prefix.
167 if (Str.size() > 1) {
168 if (Str[0] == '0') {
169 if (toUpper((unsigned char)Str[1]) == 'X') {
170 if (Str.size() == 2 || (Base && Base != 16))
171 // Fail if Base doesn't allow the "0x" prefix or for the prefix
172 // alone that implementations like BSD set errno to EINVAL for.
173 return nullptr;
175 Str = Str.drop_front(2);
176 Offset += 2;
177 Base = 16;
179 else if (Base == 0)
180 Base = 8;
181 } else if (Base == 0)
182 Base = 10;
184 else if (Base == 0)
185 Base = 10;
187 // Convert the rest of the subject sequence, not including the sign,
188 // to its uint64_t representation (this assumes the source character
189 // set is ASCII).
190 uint64_t Result = 0;
191 for (unsigned i = 0; i != Str.size(); ++i) {
192 unsigned char DigVal = Str[i];
193 if (isDigit(DigVal))
194 DigVal = DigVal - '0';
195 else {
196 DigVal = toUpper(DigVal);
197 if (isAlpha(DigVal))
198 DigVal = DigVal - 'A' + 10;
199 else
200 return nullptr;
203 if (DigVal >= Base)
204 // Fail if the digit is not valid in the Base.
205 return nullptr;
207 // Add the digit and fail if the result is not representable in
208 // the (unsigned form of the) destination type.
209 bool VFlow;
210 Result = SaturatingMultiplyAdd(Result, Base, (uint64_t)DigVal, &VFlow);
211 if (VFlow || Result > Max)
212 return nullptr;
215 if (EndPtr) {
216 // Store the pointer to the end.
217 Value *Off = B.getInt64(Offset + Str.size());
218 Value *StrBeg = CI->getArgOperand(0);
219 Value *StrEnd = B.CreateInBoundsGEP(B.getInt8Ty(), StrBeg, Off, "endptr");
220 B.CreateStore(StrEnd, EndPtr);
223 if (Negate)
224 // Unsigned negation doesn't overflow.
225 Result = -Result;
227 return ConstantInt::get(RetTy, Result);
230 static bool isOnlyUsedInComparisonWithZero(Value *V) {
231 for (User *U : V->users()) {
232 if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
233 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
234 if (C->isNullValue())
235 continue;
236 // Unknown instruction.
237 return false;
239 return true;
242 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
243 const DataLayout &DL) {
244 if (!isOnlyUsedInComparisonWithZero(CI))
245 return false;
247 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL))
248 return false;
250 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
251 return false;
253 return true;
256 static void annotateDereferenceableBytes(CallInst *CI,
257 ArrayRef<unsigned> ArgNos,
258 uint64_t DereferenceableBytes) {
259 const Function *F = CI->getCaller();
260 if (!F)
261 return;
262 for (unsigned ArgNo : ArgNos) {
263 uint64_t DerefBytes = DereferenceableBytes;
264 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
265 if (!llvm::NullPointerIsDefined(F, AS) ||
266 CI->paramHasAttr(ArgNo, Attribute::NonNull))
267 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo),
268 DereferenceableBytes);
270 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) {
271 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
272 if (!llvm::NullPointerIsDefined(F, AS) ||
273 CI->paramHasAttr(ArgNo, Attribute::NonNull))
274 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
275 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
276 CI->getContext(), DerefBytes));
281 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI,
282 ArrayRef<unsigned> ArgNos) {
283 Function *F = CI->getCaller();
284 if (!F)
285 return;
287 for (unsigned ArgNo : ArgNos) {
288 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef))
289 CI->addParamAttr(ArgNo, Attribute::NoUndef);
291 if (!CI->paramHasAttr(ArgNo, Attribute::NonNull)) {
292 unsigned AS =
293 CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
294 if (llvm::NullPointerIsDefined(F, AS))
295 continue;
296 CI->addParamAttr(ArgNo, Attribute::NonNull);
299 annotateDereferenceableBytes(CI, ArgNo, 1);
303 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
304 Value *Size, const DataLayout &DL) {
305 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
306 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
307 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
308 } else if (isKnownNonZero(Size, DL)) {
309 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos);
310 const APInt *X, *Y;
311 uint64_t DerefMin = 1;
312 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
313 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
314 annotateDereferenceableBytes(CI, ArgNos, DerefMin);
319 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for
320 // easier chaining. Calls to emit* and B.createCall should probably be wrapped
321 // in this function when New is created to replace Old. Callers should take
322 // care to check Old.isMustTailCall() if they aren't replacing Old directly
323 // with New.
324 static Value *copyFlags(const CallInst &Old, Value *New) {
325 assert(!Old.isMustTailCall() && "do not copy musttail call flags");
326 assert(!Old.isNoTailCall() && "do not copy notail call flags");
327 if (auto *NewCI = dyn_cast_or_null<CallInst>(New))
328 NewCI->setTailCallKind(Old.getTailCallKind());
329 return New;
332 static Value *mergeAttributesAndFlags(CallInst *NewCI, const CallInst &Old) {
333 NewCI->setAttributes(AttributeList::get(
334 NewCI->getContext(), {NewCI->getAttributes(), Old.getAttributes()}));
335 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType()));
336 return copyFlags(Old, NewCI);
339 // Helper to avoid truncating the length if size_t is 32-bits.
340 static StringRef substr(StringRef Str, uint64_t Len) {
341 return Len >= Str.size() ? Str : Str.substr(0, Len);
344 //===----------------------------------------------------------------------===//
345 // String and Memory Library Call Optimizations
346 //===----------------------------------------------------------------------===//
348 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) {
349 // Extract some information from the instruction
350 Value *Dst = CI->getArgOperand(0);
351 Value *Src = CI->getArgOperand(1);
352 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
354 // See if we can get the length of the input string.
355 uint64_t Len = GetStringLength(Src);
356 if (Len)
357 annotateDereferenceableBytes(CI, 1, Len);
358 else
359 return nullptr;
360 --Len; // Unbias length.
362 // Handle the simple, do-nothing case: strcat(x, "") -> x
363 if (Len == 0)
364 return Dst;
366 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B));
369 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
370 IRBuilderBase &B) {
371 // We need to find the end of the destination string. That's where the
372 // memory is to be moved to. We just generate a call to strlen.
373 Value *DstLen = emitStrLen(Dst, B, DL, TLI);
374 if (!DstLen)
375 return nullptr;
377 // Now that we have the destination's length, we must index into the
378 // destination's pointer to get the actual memcpy destination (end of
379 // the string .. we're concatenating).
380 Value *CpyDst = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
382 // We have enough information to now generate the memcpy call to do the
383 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
384 B.CreateMemCpy(
385 CpyDst, Align(1), Src, Align(1),
386 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
387 return Dst;
390 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) {
391 // Extract some information from the instruction.
392 Value *Dst = CI->getArgOperand(0);
393 Value *Src = CI->getArgOperand(1);
394 Value *Size = CI->getArgOperand(2);
395 uint64_t Len;
396 annotateNonNullNoUndefBasedOnAccess(CI, 0);
397 if (isKnownNonZero(Size, DL))
398 annotateNonNullNoUndefBasedOnAccess(CI, 1);
400 // We don't do anything if length is not constant.
401 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
402 if (LengthArg) {
403 Len = LengthArg->getZExtValue();
404 // strncat(x, c, 0) -> x
405 if (!Len)
406 return Dst;
407 } else {
408 return nullptr;
411 // See if we can get the length of the input string.
412 uint64_t SrcLen = GetStringLength(Src);
413 if (SrcLen) {
414 annotateDereferenceableBytes(CI, 1, SrcLen);
415 --SrcLen; // Unbias length.
416 } else {
417 return nullptr;
420 // strncat(x, "", c) -> x
421 if (SrcLen == 0)
422 return Dst;
424 // We don't optimize this case.
425 if (Len < SrcLen)
426 return nullptr;
428 // strncat(x, s, c) -> strcat(x, s)
429 // s is constant so the strcat can be optimized further.
430 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B));
433 // Helper to transform memchr(S, C, N) == S to N && *S == C and, when
434 // NBytes is null, strchr(S, C) to *S == C. A precondition of the function
435 // is that either S is dereferenceable or the value of N is nonzero.
436 static Value* memChrToCharCompare(CallInst *CI, Value *NBytes,
437 IRBuilderBase &B, const DataLayout &DL)
439 Value *Src = CI->getArgOperand(0);
440 Value *CharVal = CI->getArgOperand(1);
442 // Fold memchr(A, C, N) == A to N && *A == C.
443 Type *CharTy = B.getInt8Ty();
444 Value *Char0 = B.CreateLoad(CharTy, Src);
445 CharVal = B.CreateTrunc(CharVal, CharTy);
446 Value *Cmp = B.CreateICmpEQ(Char0, CharVal, "char0cmp");
448 if (NBytes) {
449 Value *Zero = ConstantInt::get(NBytes->getType(), 0);
450 Value *And = B.CreateICmpNE(NBytes, Zero);
451 Cmp = B.CreateLogicalAnd(And, Cmp);
454 Value *NullPtr = Constant::getNullValue(CI->getType());
455 return B.CreateSelect(Cmp, Src, NullPtr);
458 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) {
459 Value *SrcStr = CI->getArgOperand(0);
460 Value *CharVal = CI->getArgOperand(1);
461 annotateNonNullNoUndefBasedOnAccess(CI, 0);
463 if (isOnlyUsedInEqualityComparison(CI, SrcStr))
464 return memChrToCharCompare(CI, nullptr, B, DL);
466 // If the second operand is non-constant, see if we can compute the length
467 // of the input string and turn this into memchr.
468 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
469 if (!CharC) {
470 uint64_t Len = GetStringLength(SrcStr);
471 if (Len)
472 annotateDereferenceableBytes(CI, 0, Len);
473 else
474 return nullptr;
476 Function *Callee = CI->getCalledFunction();
477 FunctionType *FT = Callee->getFunctionType();
478 unsigned IntBits = TLI->getIntSize();
479 if (!FT->getParamType(1)->isIntegerTy(IntBits)) // memchr needs 'int'.
480 return nullptr;
482 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
483 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
484 return copyFlags(*CI,
485 emitMemChr(SrcStr, CharVal, // include nul.
486 ConstantInt::get(SizeTTy, Len), B,
487 DL, TLI));
490 if (CharC->isZero()) {
491 Value *NullPtr = Constant::getNullValue(CI->getType());
492 if (isOnlyUsedInEqualityComparison(CI, NullPtr))
493 // Pre-empt the transformation to strlen below and fold
494 // strchr(A, '\0') == null to false.
495 return B.CreateIntToPtr(B.getTrue(), CI->getType());
498 // Otherwise, the character is a constant, see if the first argument is
499 // a string literal. If so, we can constant fold.
500 StringRef Str;
501 if (!getConstantStringInfo(SrcStr, Str)) {
502 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
503 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
504 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
505 return nullptr;
508 // Compute the offset, make sure to handle the case when we're searching for
509 // zero (a weird way to spell strlen).
510 size_t I = (0xFF & CharC->getSExtValue()) == 0
511 ? Str.size()
512 : Str.find(CharC->getSExtValue());
513 if (I == StringRef::npos) // Didn't find the char. strchr returns null.
514 return Constant::getNullValue(CI->getType());
516 // strchr(s+n,c) -> gep(s+n+i,c)
517 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
520 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) {
521 Value *SrcStr = CI->getArgOperand(0);
522 Value *CharVal = CI->getArgOperand(1);
523 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
524 annotateNonNullNoUndefBasedOnAccess(CI, 0);
526 StringRef Str;
527 if (!getConstantStringInfo(SrcStr, Str)) {
528 // strrchr(s, 0) -> strchr(s, 0)
529 if (CharC && CharC->isZero())
530 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI));
531 return nullptr;
534 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
535 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
537 // Try to expand strrchr to the memrchr nonstandard extension if it's
538 // available, or simply fail otherwise.
539 uint64_t NBytes = Str.size() + 1; // Include the terminating nul.
540 Value *Size = ConstantInt::get(SizeTTy, NBytes);
541 return copyFlags(*CI, emitMemRChr(SrcStr, CharVal, Size, B, DL, TLI));
544 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) {
545 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
546 if (Str1P == Str2P) // strcmp(x,x) -> 0
547 return ConstantInt::get(CI->getType(), 0);
549 StringRef Str1, Str2;
550 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
551 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
553 // strcmp(x, y) -> cnst (if both x and y are constant strings)
554 if (HasStr1 && HasStr2)
555 return ConstantInt::get(CI->getType(),
556 std::clamp(Str1.compare(Str2), -1, 1));
558 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
559 return B.CreateNeg(B.CreateZExt(
560 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
562 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
563 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
564 CI->getType());
566 // strcmp(P, "x") -> memcmp(P, "x", 2)
567 uint64_t Len1 = GetStringLength(Str1P);
568 if (Len1)
569 annotateDereferenceableBytes(CI, 0, Len1);
570 uint64_t Len2 = GetStringLength(Str2P);
571 if (Len2)
572 annotateDereferenceableBytes(CI, 1, Len2);
574 if (Len1 && Len2) {
575 return copyFlags(
576 *CI, emitMemCmp(Str1P, Str2P,
577 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
578 std::min(Len1, Len2)),
579 B, DL, TLI));
582 // strcmp to memcmp
583 if (!HasStr1 && HasStr2) {
584 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
585 return copyFlags(
586 *CI,
587 emitMemCmp(Str1P, Str2P,
588 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
589 B, DL, TLI));
590 } else if (HasStr1 && !HasStr2) {
591 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
592 return copyFlags(
593 *CI,
594 emitMemCmp(Str1P, Str2P,
595 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
596 B, DL, TLI));
599 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
600 return nullptr;
603 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
604 // arrays LHS and RHS and nonconstant Size.
605 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
606 Value *Size, bool StrNCmp,
607 IRBuilderBase &B, const DataLayout &DL);
609 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) {
610 Value *Str1P = CI->getArgOperand(0);
611 Value *Str2P = CI->getArgOperand(1);
612 Value *Size = CI->getArgOperand(2);
613 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
614 return ConstantInt::get(CI->getType(), 0);
616 if (isKnownNonZero(Size, DL))
617 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
618 // Get the length argument if it is constant.
619 uint64_t Length;
620 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
621 Length = LengthArg->getZExtValue();
622 else
623 return optimizeMemCmpVarSize(CI, Str1P, Str2P, Size, true, B, DL);
625 if (Length == 0) // strncmp(x,y,0) -> 0
626 return ConstantInt::get(CI->getType(), 0);
628 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
629 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI));
631 StringRef Str1, Str2;
632 bool HasStr1 = getConstantStringInfo(Str1P, Str1);
633 bool HasStr2 = getConstantStringInfo(Str2P, Str2);
635 // strncmp(x, y) -> cnst (if both x and y are constant strings)
636 if (HasStr1 && HasStr2) {
637 // Avoid truncating the 64-bit Length to 32 bits in ILP32.
638 StringRef SubStr1 = substr(Str1, Length);
639 StringRef SubStr2 = substr(Str2, Length);
640 return ConstantInt::get(CI->getType(),
641 std::clamp(SubStr1.compare(SubStr2), -1, 1));
644 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
645 return B.CreateNeg(B.CreateZExt(
646 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
648 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
649 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
650 CI->getType());
652 uint64_t Len1 = GetStringLength(Str1P);
653 if (Len1)
654 annotateDereferenceableBytes(CI, 0, Len1);
655 uint64_t Len2 = GetStringLength(Str2P);
656 if (Len2)
657 annotateDereferenceableBytes(CI, 1, Len2);
659 // strncmp to memcmp
660 if (!HasStr1 && HasStr2) {
661 Len2 = std::min(Len2, Length);
662 if (canTransformToMemCmp(CI, Str1P, Len2, DL))
663 return copyFlags(
664 *CI,
665 emitMemCmp(Str1P, Str2P,
666 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2),
667 B, DL, TLI));
668 } else if (HasStr1 && !HasStr2) {
669 Len1 = std::min(Len1, Length);
670 if (canTransformToMemCmp(CI, Str2P, Len1, DL))
671 return copyFlags(
672 *CI,
673 emitMemCmp(Str1P, Str2P,
674 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1),
675 B, DL, TLI));
678 return nullptr;
681 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) {
682 Value *Src = CI->getArgOperand(0);
683 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
684 uint64_t SrcLen = GetStringLength(Src);
685 if (SrcLen && Size) {
686 annotateDereferenceableBytes(CI, 0, SrcLen);
687 if (SrcLen <= Size->getZExtValue() + 1)
688 return copyFlags(*CI, emitStrDup(Src, B, TLI));
691 return nullptr;
694 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) {
695 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
696 if (Dst == Src) // strcpy(x,x) -> x
697 return Src;
699 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
700 // See if we can get the length of the input string.
701 uint64_t Len = GetStringLength(Src);
702 if (Len)
703 annotateDereferenceableBytes(CI, 1, Len);
704 else
705 return nullptr;
707 // We have enough information to now generate the memcpy call to do the
708 // copy for us. Make a memcpy to copy the nul byte with align = 1.
709 CallInst *NewCI =
710 B.CreateMemCpy(Dst, Align(1), Src, Align(1),
711 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
712 mergeAttributesAndFlags(NewCI, *CI);
713 return Dst;
716 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) {
717 Function *Callee = CI->getCalledFunction();
718 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
720 // stpcpy(d,s) -> strcpy(d,s) if the result is not used.
721 if (CI->use_empty())
722 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
724 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x)
725 Value *StrLen = emitStrLen(Src, B, DL, TLI);
726 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
729 // See if we can get the length of the input string.
730 uint64_t Len = GetStringLength(Src);
731 if (Len)
732 annotateDereferenceableBytes(CI, 1, Len);
733 else
734 return nullptr;
736 Type *PT = Callee->getFunctionType()->getParamType(0);
737 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
738 Value *DstEnd = B.CreateInBoundsGEP(
739 B.getInt8Ty(), Dst, ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
741 // We have enough information to now generate the memcpy call to do the
742 // copy for us. Make a memcpy to copy the nul byte with align = 1.
743 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV);
744 mergeAttributesAndFlags(NewCI, *CI);
745 return DstEnd;
748 // Optimize a call to size_t strlcpy(char*, const char*, size_t).
750 Value *LibCallSimplifier::optimizeStrLCpy(CallInst *CI, IRBuilderBase &B) {
751 Value *Size = CI->getArgOperand(2);
752 if (isKnownNonZero(Size, DL))
753 // Like snprintf, the function stores into the destination only when
754 // the size argument is nonzero.
755 annotateNonNullNoUndefBasedOnAccess(CI, 0);
756 // The function reads the source argument regardless of Size (it returns
757 // its length).
758 annotateNonNullNoUndefBasedOnAccess(CI, 1);
760 uint64_t NBytes;
761 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
762 NBytes = SizeC->getZExtValue();
763 else
764 return nullptr;
766 Value *Dst = CI->getArgOperand(0);
767 Value *Src = CI->getArgOperand(1);
768 if (NBytes <= 1) {
769 if (NBytes == 1)
770 // For a call to strlcpy(D, S, 1) first store a nul in *D.
771 B.CreateStore(B.getInt8(0), Dst);
773 // Transform strlcpy(D, S, 0) to a call to strlen(S).
774 return copyFlags(*CI, emitStrLen(Src, B, DL, TLI));
777 // Try to determine the length of the source, substituting its size
778 // when it's not nul-terminated (as it's required to be) to avoid
779 // reading past its end.
780 StringRef Str;
781 if (!getConstantStringInfo(Src, Str, /*TrimAtNul=*/false))
782 return nullptr;
784 uint64_t SrcLen = Str.find('\0');
785 // Set if the terminating nul should be copied by the call to memcpy
786 // below.
787 bool NulTerm = SrcLen < NBytes;
789 if (NulTerm)
790 // Overwrite NBytes with the number of bytes to copy, including
791 // the terminating nul.
792 NBytes = SrcLen + 1;
793 else {
794 // Set the length of the source for the function to return to its
795 // size, and cap NBytes at the same.
796 SrcLen = std::min(SrcLen, uint64_t(Str.size()));
797 NBytes = std::min(NBytes - 1, SrcLen);
800 if (SrcLen == 0) {
801 // Transform strlcpy(D, "", N) to (*D = '\0, 0).
802 B.CreateStore(B.getInt8(0), Dst);
803 return ConstantInt::get(CI->getType(), 0);
806 Function *Callee = CI->getCalledFunction();
807 Type *PT = Callee->getFunctionType()->getParamType(0);
808 // Transform strlcpy(D, S, N) to memcpy(D, S, N') where N' is the lower
809 // bound on strlen(S) + 1 and N, optionally followed by a nul store to
810 // D[N' - 1] if necessary.
811 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
812 ConstantInt::get(DL.getIntPtrType(PT), NBytes));
813 mergeAttributesAndFlags(NewCI, *CI);
815 if (!NulTerm) {
816 Value *EndOff = ConstantInt::get(CI->getType(), NBytes);
817 Value *EndPtr = B.CreateInBoundsGEP(B.getInt8Ty(), Dst, EndOff);
818 B.CreateStore(B.getInt8(0), EndPtr);
821 // Like snprintf, strlcpy returns the number of nonzero bytes that would
822 // have been copied if the bound had been sufficiently big (which in this
823 // case is strlen(Src)).
824 return ConstantInt::get(CI->getType(), SrcLen);
827 // Optimize a call CI to either stpncpy when RetEnd is true, or to strncpy
828 // otherwise.
829 Value *LibCallSimplifier::optimizeStringNCpy(CallInst *CI, bool RetEnd,
830 IRBuilderBase &B) {
831 Function *Callee = CI->getCalledFunction();
832 Value *Dst = CI->getArgOperand(0);
833 Value *Src = CI->getArgOperand(1);
834 Value *Size = CI->getArgOperand(2);
836 if (isKnownNonZero(Size, DL)) {
837 // Both st{p,r}ncpy(D, S, N) access the source and destination arrays
838 // only when N is nonzero.
839 annotateNonNullNoUndefBasedOnAccess(CI, 0);
840 annotateNonNullNoUndefBasedOnAccess(CI, 1);
843 // If the "bound" argument is known set N to it. Otherwise set it to
844 // UINT64_MAX and handle it later.
845 uint64_t N = UINT64_MAX;
846 if (ConstantInt *SizeC = dyn_cast<ConstantInt>(Size))
847 N = SizeC->getZExtValue();
849 if (N == 0)
850 // Fold st{p,r}ncpy(D, S, 0) to D.
851 return Dst;
853 if (N == 1) {
854 Type *CharTy = B.getInt8Ty();
855 Value *CharVal = B.CreateLoad(CharTy, Src, "stxncpy.char0");
856 B.CreateStore(CharVal, Dst);
857 if (!RetEnd)
858 // Transform strncpy(D, S, 1) to return (*D = *S), D.
859 return Dst;
861 // Transform stpncpy(D, S, 1) to return (*D = *S) ? D + 1 : D.
862 Value *ZeroChar = ConstantInt::get(CharTy, 0);
863 Value *Cmp = B.CreateICmpEQ(CharVal, ZeroChar, "stpncpy.char0cmp");
865 Value *Off1 = B.getInt32(1);
866 Value *EndPtr = B.CreateInBoundsGEP(CharTy, Dst, Off1, "stpncpy.end");
867 return B.CreateSelect(Cmp, Dst, EndPtr, "stpncpy.sel");
870 // If the length of the input string is known set SrcLen to it.
871 uint64_t SrcLen = GetStringLength(Src);
872 if (SrcLen)
873 annotateDereferenceableBytes(CI, 1, SrcLen);
874 else
875 return nullptr;
877 --SrcLen; // Unbias length.
879 if (SrcLen == 0) {
880 // Transform st{p,r}ncpy(D, "", N) to memset(D, '\0', N) for any N.
881 Align MemSetAlign =
882 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne();
883 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign);
884 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0));
885 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
886 CI->getContext(), 0, ArgAttrs));
887 copyFlags(*CI, NewCI);
888 return Dst;
891 if (N > SrcLen + 1) {
892 if (N > 128)
893 // Bail if N is large or unknown.
894 return nullptr;
896 // st{p,r}ncpy(D, "a", N) -> memcpy(D, "a\0\0\0", N) for N <= 128.
897 StringRef Str;
898 if (!getConstantStringInfo(Src, Str))
899 return nullptr;
900 std::string SrcStr = Str.str();
901 // Create a bigger, nul-padded array with the same length, SrcLen,
902 // as the original string.
903 SrcStr.resize(N, '\0');
904 Src = B.CreateGlobalString(SrcStr, "str");
907 Type *PT = Callee->getFunctionType()->getParamType(0);
908 // st{p,r}ncpy(D, S, N) -> memcpy(align 1 D, align 1 S, N) when both
909 // S and N are constant.
910 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1),
911 ConstantInt::get(DL.getIntPtrType(PT), N));
912 mergeAttributesAndFlags(NewCI, *CI);
913 if (!RetEnd)
914 return Dst;
916 // stpncpy(D, S, N) returns the address of the first null in D if it writes
917 // one, otherwise D + N.
918 Value *Off = B.getInt64(std::min(SrcLen, N));
919 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, Off, "endptr");
922 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B,
923 unsigned CharSize,
924 Value *Bound) {
925 Value *Src = CI->getArgOperand(0);
926 Type *CharTy = B.getIntNTy(CharSize);
928 if (isOnlyUsedInZeroEqualityComparison(CI) &&
929 (!Bound || isKnownNonZero(Bound, DL))) {
930 // Fold strlen:
931 // strlen(x) != 0 --> *x != 0
932 // strlen(x) == 0 --> *x == 0
933 // and likewise strnlen with constant N > 0:
934 // strnlen(x, N) != 0 --> *x != 0
935 // strnlen(x, N) == 0 --> *x == 0
936 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"),
937 CI->getType());
940 if (Bound) {
941 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) {
942 if (BoundCst->isZero())
943 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise.
944 return ConstantInt::get(CI->getType(), 0);
946 if (BoundCst->isOne()) {
947 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s.
948 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0");
949 Value *ZeroChar = ConstantInt::get(CharTy, 0);
950 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp");
951 return B.CreateZExt(Cmp, CI->getType());
956 if (uint64_t Len = GetStringLength(Src, CharSize)) {
957 Value *LenC = ConstantInt::get(CI->getType(), Len - 1);
958 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2
959 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound.
960 if (Bound)
961 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound);
962 return LenC;
965 if (Bound)
966 // Punt for strnlen for now.
967 return nullptr;
969 // If s is a constant pointer pointing to a string literal, we can fold
970 // strlen(s + x) to strlen(s) - x, when x is known to be in the range
971 // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
972 // We only try to simplify strlen when the pointer s points to an array
973 // of CharSize elements. Otherwise, we would need to scale the offset x before
974 // doing the subtraction. This will make the optimization more complex, and
975 // it's not very useful because calling strlen for a pointer of other types is
976 // very uncommon.
977 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
978 // TODO: Handle subobjects.
979 if (!isGEPBasedOnPointerToString(GEP, CharSize))
980 return nullptr;
982 ConstantDataArraySlice Slice;
983 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
984 uint64_t NullTermIdx;
985 if (Slice.Array == nullptr) {
986 NullTermIdx = 0;
987 } else {
988 NullTermIdx = ~((uint64_t)0);
989 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
990 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
991 NullTermIdx = I;
992 break;
995 // If the string does not have '\0', leave it to strlen to compute
996 // its length.
997 if (NullTermIdx == ~((uint64_t)0))
998 return nullptr;
1001 Value *Offset = GEP->getOperand(2);
1002 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
1003 uint64_t ArrSize =
1004 cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
1006 // If Offset is not provably in the range [0, NullTermIdx], we can still
1007 // optimize if we can prove that the program has undefined behavior when
1008 // Offset is outside that range. That is the case when GEP->getOperand(0)
1009 // is a pointer to an object whose memory extent is NullTermIdx+1.
1010 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) ||
1011 (isa<GlobalVariable>(GEP->getOperand(0)) &&
1012 NullTermIdx == ArrSize - 1)) {
1013 Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
1014 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
1015 Offset);
1020 // strlen(x?"foo":"bars") --> x ? 3 : 4
1021 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
1022 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
1023 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
1024 if (LenTrue && LenFalse) {
1025 ORE.emit([&]() {
1026 return OptimizationRemark("instcombine", "simplify-libcalls", CI)
1027 << "folded strlen(select) to select of constants";
1029 return B.CreateSelect(SI->getCondition(),
1030 ConstantInt::get(CI->getType(), LenTrue - 1),
1031 ConstantInt::get(CI->getType(), LenFalse - 1));
1035 return nullptr;
1038 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) {
1039 if (Value *V = optimizeStringLength(CI, B, 8))
1040 return V;
1041 annotateNonNullNoUndefBasedOnAccess(CI, 0);
1042 return nullptr;
1045 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) {
1046 Value *Bound = CI->getArgOperand(1);
1047 if (Value *V = optimizeStringLength(CI, B, 8, Bound))
1048 return V;
1050 if (isKnownNonZero(Bound, DL))
1051 annotateNonNullNoUndefBasedOnAccess(CI, 0);
1052 return nullptr;
1055 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) {
1056 Module &M = *CI->getModule();
1057 unsigned WCharSize = TLI->getWCharSize(M) * 8;
1058 // We cannot perform this optimization without wchar_size metadata.
1059 if (WCharSize == 0)
1060 return nullptr;
1062 return optimizeStringLength(CI, B, WCharSize);
1065 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) {
1066 StringRef S1, S2;
1067 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1068 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1070 // strpbrk(s, "") -> nullptr
1071 // strpbrk("", s) -> nullptr
1072 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1073 return Constant::getNullValue(CI->getType());
1075 // Constant folding.
1076 if (HasS1 && HasS2) {
1077 size_t I = S1.find_first_of(S2);
1078 if (I == StringRef::npos) // No match.
1079 return Constant::getNullValue(CI->getType());
1081 return B.CreateInBoundsGEP(B.getInt8Ty(), CI->getArgOperand(0),
1082 B.getInt64(I), "strpbrk");
1085 // strpbrk(s, "a") -> strchr(s, 'a')
1086 if (HasS2 && S2.size() == 1)
1087 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI));
1089 return nullptr;
1092 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) {
1093 Value *EndPtr = CI->getArgOperand(1);
1094 if (isa<ConstantPointerNull>(EndPtr)) {
1095 // With a null EndPtr, this function won't capture the main argument.
1096 // It would be readonly too, except that it still may write to errno.
1097 CI->addParamAttr(0, Attribute::NoCapture);
1100 return nullptr;
1103 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) {
1104 StringRef S1, S2;
1105 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1106 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1108 // strspn(s, "") -> 0
1109 // strspn("", s) -> 0
1110 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
1111 return Constant::getNullValue(CI->getType());
1113 // Constant folding.
1114 if (HasS1 && HasS2) {
1115 size_t Pos = S1.find_first_not_of(S2);
1116 if (Pos == StringRef::npos)
1117 Pos = S1.size();
1118 return ConstantInt::get(CI->getType(), Pos);
1121 return nullptr;
1124 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) {
1125 StringRef S1, S2;
1126 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
1127 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
1129 // strcspn("", s) -> 0
1130 if (HasS1 && S1.empty())
1131 return Constant::getNullValue(CI->getType());
1133 // Constant folding.
1134 if (HasS1 && HasS2) {
1135 size_t Pos = S1.find_first_of(S2);
1136 if (Pos == StringRef::npos)
1137 Pos = S1.size();
1138 return ConstantInt::get(CI->getType(), Pos);
1141 // strcspn(s, "") -> strlen(s)
1142 if (HasS2 && S2.empty())
1143 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI));
1145 return nullptr;
1148 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) {
1149 // fold strstr(x, x) -> x.
1150 if (CI->getArgOperand(0) == CI->getArgOperand(1))
1151 return CI->getArgOperand(0);
1153 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
1154 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
1155 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
1156 if (!StrLen)
1157 return nullptr;
1158 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
1159 StrLen, B, DL, TLI);
1160 if (!StrNCmp)
1161 return nullptr;
1162 for (User *U : llvm::make_early_inc_range(CI->users())) {
1163 ICmpInst *Old = cast<ICmpInst>(U);
1164 Value *Cmp =
1165 B.CreateICmp(Old->getPredicate(), StrNCmp,
1166 ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
1167 replaceAllUsesWith(Old, Cmp);
1169 return CI;
1172 // See if either input string is a constant string.
1173 StringRef SearchStr, ToFindStr;
1174 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
1175 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
1177 // fold strstr(x, "") -> x.
1178 if (HasStr2 && ToFindStr.empty())
1179 return CI->getArgOperand(0);
1181 // If both strings are known, constant fold it.
1182 if (HasStr1 && HasStr2) {
1183 size_t Offset = SearchStr.find(ToFindStr);
1185 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
1186 return Constant::getNullValue(CI->getType());
1188 // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
1189 return B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), CI->getArgOperand(0),
1190 Offset, "strstr");
1193 // fold strstr(x, "y") -> strchr(x, 'y').
1194 if (HasStr2 && ToFindStr.size() == 1) {
1195 return emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
1198 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
1199 return nullptr;
1202 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) {
1203 Value *SrcStr = CI->getArgOperand(0);
1204 Value *Size = CI->getArgOperand(2);
1205 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1206 Value *CharVal = CI->getArgOperand(1);
1207 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1208 Value *NullPtr = Constant::getNullValue(CI->getType());
1210 if (LenC) {
1211 if (LenC->isZero())
1212 // Fold memrchr(x, y, 0) --> null.
1213 return NullPtr;
1215 if (LenC->isOne()) {
1216 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y,
1217 // constant or otherwise.
1218 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0");
1219 // Slice off the character's high end bits.
1220 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1221 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp");
1222 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel");
1226 StringRef Str;
1227 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1228 return nullptr;
1230 if (Str.size() == 0)
1231 // If the array is empty fold memrchr(A, C, N) to null for any value
1232 // of C and N on the basis that the only valid value of N is zero
1233 // (otherwise the call is undefined).
1234 return NullPtr;
1236 uint64_t EndOff = UINT64_MAX;
1237 if (LenC) {
1238 EndOff = LenC->getZExtValue();
1239 if (Str.size() < EndOff)
1240 // Punt out-of-bounds accesses to sanitizers and/or libc.
1241 return nullptr;
1244 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) {
1245 // Fold memrchr(S, C, N) for a constant C.
1246 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff);
1247 if (Pos == StringRef::npos)
1248 // When the character is not in the source array fold the result
1249 // to null regardless of Size.
1250 return NullPtr;
1252 if (LenC)
1253 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos.
1254 return B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos));
1256 if (Str.find(Str[Pos]) == Pos) {
1257 // When there is just a single occurrence of C in S, i.e., the one
1258 // in Str[Pos], fold
1259 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos
1260 // for nonconstant N.
1261 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1262 "memrchr.cmp");
1263 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr,
1264 B.getInt64(Pos), "memrchr.ptr_plus");
1265 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel");
1269 // Truncate the string to search at most EndOff characters.
1270 Str = Str.substr(0, EndOff);
1271 if (Str.find_first_not_of(Str[0]) != StringRef::npos)
1272 return nullptr;
1274 // If the source array consists of all equal characters, then for any
1275 // C and N (whether in bounds or not), fold memrchr(S, C, N) to
1276 // N != 0 && *S == C ? S + N - 1 : null
1277 Type *SizeTy = Size->getType();
1278 Type *Int8Ty = B.getInt8Ty();
1279 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1280 // Slice off the sought character's high end bits.
1281 CharVal = B.CreateTrunc(CharVal, Int8Ty);
1282 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal);
1283 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0);
1284 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1));
1285 Value *SrcPlus =
1286 B.CreateInBoundsGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus");
1287 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel");
1290 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) {
1291 Value *SrcStr = CI->getArgOperand(0);
1292 Value *Size = CI->getArgOperand(2);
1294 if (isKnownNonZero(Size, DL)) {
1295 annotateNonNullNoUndefBasedOnAccess(CI, 0);
1296 if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1297 return memChrToCharCompare(CI, Size, B, DL);
1300 Value *CharVal = CI->getArgOperand(1);
1301 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal);
1302 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1303 Value *NullPtr = Constant::getNullValue(CI->getType());
1305 // memchr(x, y, 0) -> null
1306 if (LenC) {
1307 if (LenC->isZero())
1308 return NullPtr;
1310 if (LenC->isOne()) {
1311 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y,
1312 // constant or otherwise.
1313 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0");
1314 // Slice off the character's high end bits.
1315 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty());
1316 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp");
1317 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel");
1321 StringRef Str;
1322 if (!getConstantStringInfo(SrcStr, Str, /*TrimAtNul=*/false))
1323 return nullptr;
1325 if (CharC) {
1326 size_t Pos = Str.find(CharC->getZExtValue());
1327 if (Pos == StringRef::npos)
1328 // When the character is not in the source array fold the result
1329 // to null regardless of Size.
1330 return NullPtr;
1332 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos
1333 // When the constant Size is less than or equal to the character
1334 // position also fold the result to null.
1335 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos),
1336 "memchr.cmp");
1337 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos),
1338 "memchr.ptr");
1339 return B.CreateSelect(Cmp, NullPtr, SrcPlus);
1342 if (Str.size() == 0)
1343 // If the array is empty fold memchr(A, C, N) to null for any value
1344 // of C and N on the basis that the only valid value of N is zero
1345 // (otherwise the call is undefined).
1346 return NullPtr;
1348 if (LenC)
1349 Str = substr(Str, LenC->getZExtValue());
1351 size_t Pos = Str.find_first_not_of(Str[0]);
1352 if (Pos == StringRef::npos
1353 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) {
1354 // If the source array consists of at most two consecutive sequences
1355 // of the same characters, then for any C and N (whether in bounds or
1356 // not), fold memchr(S, C, N) to
1357 // N != 0 && *S == C ? S : null
1358 // or for the two sequences to:
1359 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null)
1360 // ^Sel2 ^Sel1 are denoted above.
1361 // The latter makes it also possible to fold strchr() calls with strings
1362 // of the same characters.
1363 Type *SizeTy = Size->getType();
1364 Type *Int8Ty = B.getInt8Ty();
1366 // Slice off the sought character's high end bits.
1367 CharVal = B.CreateTrunc(CharVal, Int8Ty);
1369 Value *Sel1 = NullPtr;
1370 if (Pos != StringRef::npos) {
1371 // Handle two consecutive sequences of the same characters.
1372 Value *PosVal = ConstantInt::get(SizeTy, Pos);
1373 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]);
1374 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos);
1375 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal);
1376 Value *And = B.CreateAnd(CEqSPos, NGtPos);
1377 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal);
1378 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1");
1381 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]);
1382 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal);
1383 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0));
1384 Value *And = B.CreateAnd(NNeZ, CEqS0);
1385 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2");
1388 if (!LenC) {
1389 if (isOnlyUsedInEqualityComparison(CI, SrcStr))
1390 // S is dereferenceable so it's safe to load from it and fold
1391 // memchr(S, C, N) == S to N && *S == C for any C and N.
1392 // TODO: This is safe even for nonconstant S.
1393 return memChrToCharCompare(CI, Size, B, DL);
1395 // From now on we need a constant length and constant array.
1396 return nullptr;
1399 bool OptForSize = CI->getFunction()->hasOptSize() ||
1400 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
1401 PGSOQueryType::IRPass);
1403 // If the char is variable but the input str and length are not we can turn
1404 // this memchr call into a simple bit field test. Of course this only works
1405 // when the return value is only checked against null.
1407 // It would be really nice to reuse switch lowering here but we can't change
1408 // the CFG at this point.
1410 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
1411 // != 0
1412 // after bounds check.
1413 if (OptForSize || Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI))
1414 return nullptr;
1416 unsigned char Max =
1417 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
1418 reinterpret_cast<const unsigned char *>(Str.end()));
1420 // Make sure the bit field we're about to create fits in a register on the
1421 // target.
1422 // FIXME: On a 64 bit architecture this prevents us from using the
1423 // interesting range of alpha ascii chars. We could do better by emitting
1424 // two bitfields or shifting the range by 64 if no lower chars are used.
1425 if (!DL.fitsInLegalInteger(Max + 1)) {
1426 // Build chain of ORs
1427 // Transform:
1428 // memchr("abcd", C, 4) != nullptr
1429 // to:
1430 // (C == 'a' || C == 'b' || C == 'c' || C == 'd') != 0
1431 std::string SortedStr = Str.str();
1432 llvm::sort(SortedStr);
1433 // Compute the number of of non-contiguous ranges.
1434 unsigned NonContRanges = 1;
1435 for (size_t i = 1; i < SortedStr.size(); ++i) {
1436 if (SortedStr[i] > SortedStr[i - 1] + 1) {
1437 NonContRanges++;
1441 // Restrict this optimization to profitable cases with one or two range
1442 // checks.
1443 if (NonContRanges > 2)
1444 return nullptr;
1446 SmallVector<Value *> CharCompares;
1447 for (unsigned char C : SortedStr)
1448 CharCompares.push_back(
1449 B.CreateICmpEQ(CharVal, ConstantInt::get(CharVal->getType(), C)));
1451 return B.CreateIntToPtr(B.CreateOr(CharCompares), CI->getType());
1454 // For the bit field use a power-of-2 type with at least 8 bits to avoid
1455 // creating unnecessary illegal types.
1456 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
1458 // Now build the bit field.
1459 APInt Bitfield(Width, 0);
1460 for (char C : Str)
1461 Bitfield.setBit((unsigned char)C);
1462 Value *BitfieldC = B.getInt(Bitfield);
1464 // Adjust width of "C" to the bitfield width, then mask off the high bits.
1465 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType());
1466 C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
1468 // First check that the bit field access is within bounds.
1469 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
1470 "memchr.bounds");
1472 // Create code that checks if the given bit is set in the field.
1473 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
1474 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
1476 // Finally merge both checks and cast to pointer type. The inttoptr
1477 // implicitly zexts the i1 to intptr type.
1478 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"),
1479 CI->getType());
1482 // Optimize a memcmp or, when StrNCmp is true, strncmp call CI with constant
1483 // arrays LHS and RHS and nonconstant Size.
1484 static Value *optimizeMemCmpVarSize(CallInst *CI, Value *LHS, Value *RHS,
1485 Value *Size, bool StrNCmp,
1486 IRBuilderBase &B, const DataLayout &DL) {
1487 if (LHS == RHS) // memcmp(s,s,x) -> 0
1488 return Constant::getNullValue(CI->getType());
1490 StringRef LStr, RStr;
1491 if (!getConstantStringInfo(LHS, LStr, /*TrimAtNul=*/false) ||
1492 !getConstantStringInfo(RHS, RStr, /*TrimAtNul=*/false))
1493 return nullptr;
1495 // If the contents of both constant arrays are known, fold a call to
1496 // memcmp(A, B, N) to
1497 // N <= Pos ? 0 : (A < B ? -1 : B < A ? +1 : 0)
1498 // where Pos is the first mismatch between A and B, determined below.
1500 uint64_t Pos = 0;
1501 Value *Zero = ConstantInt::get(CI->getType(), 0);
1502 for (uint64_t MinSize = std::min(LStr.size(), RStr.size()); ; ++Pos) {
1503 if (Pos == MinSize ||
1504 (StrNCmp && (LStr[Pos] == '\0' && RStr[Pos] == '\0'))) {
1505 // One array is a leading part of the other of equal or greater
1506 // size, or for strncmp, the arrays are equal strings.
1507 // Fold the result to zero. Size is assumed to be in bounds, since
1508 // otherwise the call would be undefined.
1509 return Zero;
1512 if (LStr[Pos] != RStr[Pos])
1513 break;
1516 // Normalize the result.
1517 typedef unsigned char UChar;
1518 int IRes = UChar(LStr[Pos]) < UChar(RStr[Pos]) ? -1 : 1;
1519 Value *MaxSize = ConstantInt::get(Size->getType(), Pos);
1520 Value *Cmp = B.CreateICmp(ICmpInst::ICMP_ULE, Size, MaxSize);
1521 Value *Res = ConstantInt::get(CI->getType(), IRes);
1522 return B.CreateSelect(Cmp, Zero, Res);
1525 // Optimize a memcmp call CI with constant size Len.
1526 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
1527 uint64_t Len, IRBuilderBase &B,
1528 const DataLayout &DL) {
1529 if (Len == 0) // memcmp(s1,s2,0) -> 0
1530 return Constant::getNullValue(CI->getType());
1532 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
1533 if (Len == 1) {
1534 Value *LHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), LHS, "lhsc"),
1535 CI->getType(), "lhsv");
1536 Value *RHSV = B.CreateZExt(B.CreateLoad(B.getInt8Ty(), RHS, "rhsc"),
1537 CI->getType(), "rhsv");
1538 return B.CreateSub(LHSV, RHSV, "chardiff");
1541 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1542 // TODO: The case where both inputs are constants does not need to be limited
1543 // to legal integers or equality comparison. See block below this.
1544 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1545 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1546 Align PrefAlignment = DL.getPrefTypeAlign(IntType);
1548 // First, see if we can fold either argument to a constant.
1549 Value *LHSV = nullptr;
1550 if (auto *LHSC = dyn_cast<Constant>(LHS))
1551 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1553 Value *RHSV = nullptr;
1554 if (auto *RHSC = dyn_cast<Constant>(RHS))
1555 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1557 // Don't generate unaligned loads. If either source is constant data,
1558 // alignment doesn't matter for that source because there is no load.
1559 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1560 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1561 if (!LHSV)
1562 LHSV = B.CreateLoad(IntType, LHS, "lhsv");
1563 if (!RHSV)
1564 RHSV = B.CreateLoad(IntType, RHS, "rhsv");
1565 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1569 return nullptr;
1572 // Most simplifications for memcmp also apply to bcmp.
1573 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1574 IRBuilderBase &B) {
1575 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1576 Value *Size = CI->getArgOperand(2);
1578 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1580 if (Value *Res = optimizeMemCmpVarSize(CI, LHS, RHS, Size, false, B, DL))
1581 return Res;
1583 // Handle constant Size.
1584 ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1585 if (!LenC)
1586 return nullptr;
1588 return optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL);
1591 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) {
1592 Module *M = CI->getModule();
1593 if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1594 return V;
1596 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1597 // bcmp can be more efficient than memcmp because it only has to know that
1598 // there is a difference, not how different one is to the other.
1599 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) &&
1600 isOnlyUsedInZeroEqualityComparison(CI)) {
1601 Value *LHS = CI->getArgOperand(0);
1602 Value *RHS = CI->getArgOperand(1);
1603 Value *Size = CI->getArgOperand(2);
1604 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI));
1607 return nullptr;
1610 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) {
1611 return optimizeMemCmpBCmpCommon(CI, B);
1614 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) {
1615 Value *Size = CI->getArgOperand(2);
1616 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1617 if (isa<IntrinsicInst>(CI))
1618 return nullptr;
1620 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1621 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1),
1622 CI->getArgOperand(1), Align(1), Size);
1623 mergeAttributesAndFlags(NewCI, *CI);
1624 return CI->getArgOperand(0);
1627 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) {
1628 Value *Dst = CI->getArgOperand(0);
1629 Value *Src = CI->getArgOperand(1);
1630 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1631 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1632 StringRef SrcStr;
1633 if (CI->use_empty() && Dst == Src)
1634 return Dst;
1635 // memccpy(d, s, c, 0) -> nullptr
1636 if (N) {
1637 if (N->isNullValue())
1638 return Constant::getNullValue(CI->getType());
1639 if (!getConstantStringInfo(Src, SrcStr, /*TrimAtNul=*/false) ||
1640 // TODO: Handle zeroinitializer.
1641 !StopChar)
1642 return nullptr;
1643 } else {
1644 return nullptr;
1647 // Wrap arg 'c' of type int to char
1648 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1649 if (Pos == StringRef::npos) {
1650 if (N->getZExtValue() <= SrcStr.size()) {
1651 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1),
1652 CI->getArgOperand(3)));
1653 return Constant::getNullValue(CI->getType());
1655 return nullptr;
1658 Value *NewN =
1659 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1660 // memccpy -> llvm.memcpy
1661 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN));
1662 return Pos + 1 <= N->getZExtValue()
1663 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1664 : Constant::getNullValue(CI->getType());
1667 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) {
1668 Value *Dst = CI->getArgOperand(0);
1669 Value *N = CI->getArgOperand(2);
1670 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1671 CallInst *NewCI =
1672 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N);
1673 // Propagate attributes, but memcpy has no return value, so make sure that
1674 // any return attributes are compliant.
1675 // TODO: Attach return value attributes to the 1st operand to preserve them?
1676 mergeAttributesAndFlags(NewCI, *CI);
1677 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1680 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) {
1681 Value *Size = CI->getArgOperand(2);
1682 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1683 if (isa<IntrinsicInst>(CI))
1684 return nullptr;
1686 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1687 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1),
1688 CI->getArgOperand(1), Align(1), Size);
1689 mergeAttributesAndFlags(NewCI, *CI);
1690 return CI->getArgOperand(0);
1693 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) {
1694 Value *Size = CI->getArgOperand(2);
1695 annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1696 if (isa<IntrinsicInst>(CI))
1697 return nullptr;
1699 // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1700 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1701 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1));
1702 mergeAttributesAndFlags(NewCI, *CI);
1703 return CI->getArgOperand(0);
1706 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) {
1707 if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1708 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI));
1710 return nullptr;
1713 // When enabled, replace operator new() calls marked with a hot or cold memprof
1714 // attribute with an operator new() call that takes a __hot_cold_t parameter.
1715 // Currently this is supported by the open source version of tcmalloc, see:
1716 // https://github.com/google/tcmalloc/blob/master/tcmalloc/new_extension.h
1717 Value *LibCallSimplifier::optimizeNew(CallInst *CI, IRBuilderBase &B,
1718 LibFunc &Func) {
1719 if (!OptimizeHotColdNew)
1720 return nullptr;
1722 uint8_t HotCold;
1723 if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "cold")
1724 HotCold = ColdNewHintValue;
1725 else if (CI->getAttributes().getFnAttr("memprof").getValueAsString() == "hot")
1726 HotCold = HotNewHintValue;
1727 else
1728 return nullptr;
1730 switch (Func) {
1731 case LibFunc_Znwm:
1732 return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1733 LibFunc_Znwm12__hot_cold_t, HotCold);
1734 case LibFunc_Znam:
1735 return emitHotColdNew(CI->getArgOperand(0), B, TLI,
1736 LibFunc_Znam12__hot_cold_t, HotCold);
1737 case LibFunc_ZnwmRKSt9nothrow_t:
1738 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B,
1739 TLI, LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t,
1740 HotCold);
1741 case LibFunc_ZnamRKSt9nothrow_t:
1742 return emitHotColdNewNoThrow(CI->getArgOperand(0), CI->getArgOperand(1), B,
1743 TLI, LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t,
1744 HotCold);
1745 case LibFunc_ZnwmSt11align_val_t:
1746 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B,
1747 TLI, LibFunc_ZnwmSt11align_val_t12__hot_cold_t,
1748 HotCold);
1749 case LibFunc_ZnamSt11align_val_t:
1750 return emitHotColdNewAligned(CI->getArgOperand(0), CI->getArgOperand(1), B,
1751 TLI, LibFunc_ZnamSt11align_val_t12__hot_cold_t,
1752 HotCold);
1753 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
1754 return emitHotColdNewAlignedNoThrow(
1755 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1756 TLI, LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1757 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
1758 return emitHotColdNewAlignedNoThrow(
1759 CI->getArgOperand(0), CI->getArgOperand(1), CI->getArgOperand(2), B,
1760 TLI, LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, HotCold);
1761 default:
1762 return nullptr;
1766 //===----------------------------------------------------------------------===//
1767 // Math Library Optimizations
1768 //===----------------------------------------------------------------------===//
1770 // Replace a libcall \p CI with a call to intrinsic \p IID
1771 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B,
1772 Intrinsic::ID IID) {
1773 // Propagate fast-math flags from the existing call to the new call.
1774 IRBuilderBase::FastMathFlagGuard Guard(B);
1775 B.setFastMathFlags(CI->getFastMathFlags());
1777 Module *M = CI->getModule();
1778 Value *V = CI->getArgOperand(0);
1779 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1780 CallInst *NewCall = B.CreateCall(F, V);
1781 NewCall->takeName(CI);
1782 return copyFlags(*CI, NewCall);
1785 /// Return a variant of Val with float type.
1786 /// Currently this works in two cases: If Val is an FPExtension of a float
1787 /// value to something bigger, simply return the operand.
1788 /// If Val is a ConstantFP but can be converted to a float ConstantFP without
1789 /// loss of precision do so.
1790 static Value *valueHasFloatPrecision(Value *Val) {
1791 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1792 Value *Op = Cast->getOperand(0);
1793 if (Op->getType()->isFloatTy())
1794 return Op;
1796 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1797 APFloat F = Const->getValueAPF();
1798 bool losesInfo;
1799 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1800 &losesInfo);
1801 if (!losesInfo)
1802 return ConstantFP::get(Const->getContext(), F);
1804 return nullptr;
1807 /// Shrink double -> float functions.
1808 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B,
1809 bool isBinary, const TargetLibraryInfo *TLI,
1810 bool isPrecise = false) {
1811 Function *CalleeFn = CI->getCalledFunction();
1812 if (!CI->getType()->isDoubleTy() || !CalleeFn)
1813 return nullptr;
1815 // If not all the uses of the function are converted to float, then bail out.
1816 // This matters if the precision of the result is more important than the
1817 // precision of the arguments.
1818 if (isPrecise)
1819 for (User *U : CI->users()) {
1820 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1821 if (!Cast || !Cast->getType()->isFloatTy())
1822 return nullptr;
1825 // If this is something like 'g((double) float)', convert to 'gf(float)'.
1826 Value *V[2];
1827 V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1828 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1829 if (!V[0] || (isBinary && !V[1]))
1830 return nullptr;
1832 // If call isn't an intrinsic, check that it isn't within a function with the
1833 // same name as the float version of this call, otherwise the result is an
1834 // infinite loop. For example, from MinGW-w64:
1836 // float expf(float val) { return (float) exp((double) val); }
1837 StringRef CalleeName = CalleeFn->getName();
1838 bool IsIntrinsic = CalleeFn->isIntrinsic();
1839 if (!IsIntrinsic) {
1840 StringRef CallerName = CI->getFunction()->getName();
1841 if (!CallerName.empty() && CallerName.back() == 'f' &&
1842 CallerName.size() == (CalleeName.size() + 1) &&
1843 CallerName.starts_with(CalleeName))
1844 return nullptr;
1847 // Propagate the math semantics from the current function to the new function.
1848 IRBuilderBase::FastMathFlagGuard Guard(B);
1849 B.setFastMathFlags(CI->getFastMathFlags());
1851 // g((double) float) -> (double) gf(float)
1852 Value *R;
1853 if (IsIntrinsic) {
1854 Module *M = CI->getModule();
1855 Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1856 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1857 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1858 } else {
1859 AttributeList CalleeAttrs = CalleeFn->getAttributes();
1860 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B,
1861 CalleeAttrs)
1862 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs);
1864 return B.CreateFPExt(R, B.getDoubleTy());
1867 /// Shrink double -> float for unary functions.
1868 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1869 const TargetLibraryInfo *TLI,
1870 bool isPrecise = false) {
1871 return optimizeDoubleFP(CI, B, false, TLI, isPrecise);
1874 /// Shrink double -> float for binary functions.
1875 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B,
1876 const TargetLibraryInfo *TLI,
1877 bool isPrecise = false) {
1878 return optimizeDoubleFP(CI, B, true, TLI, isPrecise);
1881 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1882 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) {
1883 if (!CI->isFast())
1884 return nullptr;
1886 // Propagate fast-math flags from the existing call to new instructions.
1887 IRBuilderBase::FastMathFlagGuard Guard(B);
1888 B.setFastMathFlags(CI->getFastMathFlags());
1890 Value *Real, *Imag;
1891 if (CI->arg_size() == 1) {
1892 Value *Op = CI->getArgOperand(0);
1893 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1894 Real = B.CreateExtractValue(Op, 0, "real");
1895 Imag = B.CreateExtractValue(Op, 1, "imag");
1896 } else {
1897 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!");
1898 Real = CI->getArgOperand(0);
1899 Imag = CI->getArgOperand(1);
1902 Value *RealReal = B.CreateFMul(Real, Real);
1903 Value *ImagImag = B.CreateFMul(Imag, Imag);
1905 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1906 CI->getType());
1907 return copyFlags(
1908 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"));
1911 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1912 IRBuilderBase &B) {
1913 if (!isa<FPMathOperator>(Call))
1914 return nullptr;
1916 IRBuilderBase::FastMathFlagGuard Guard(B);
1917 B.setFastMathFlags(Call->getFastMathFlags());
1919 // TODO: Can this be shared to also handle LLVM intrinsics?
1920 Value *X;
1921 switch (Func) {
1922 case LibFunc_sin:
1923 case LibFunc_sinf:
1924 case LibFunc_sinl:
1925 case LibFunc_tan:
1926 case LibFunc_tanf:
1927 case LibFunc_tanl:
1928 // sin(-X) --> -sin(X)
1929 // tan(-X) --> -tan(X)
1930 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1931 return B.CreateFNeg(
1932 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X)));
1933 break;
1934 case LibFunc_cos:
1935 case LibFunc_cosf:
1936 case LibFunc_cosl:
1937 // cos(-X) --> cos(X)
1938 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1939 return copyFlags(*Call,
1940 B.CreateCall(Call->getCalledFunction(), X, "cos"));
1941 break;
1942 default:
1943 break;
1945 return nullptr;
1948 // Return a properly extended integer (DstWidth bits wide) if the operation is
1949 // an itofp.
1950 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) {
1951 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1952 Value *Op = cast<Instruction>(I2F)->getOperand(0);
1953 // Make sure that the exponent fits inside an "int" of size DstWidth,
1954 // thus avoiding any range issues that FP has not.
1955 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1956 if (BitWidth < DstWidth ||
1957 (BitWidth == DstWidth && isa<SIToFPInst>(I2F)))
1958 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth))
1959 : B.CreateZExt(Op, B.getIntNTy(DstWidth));
1962 return nullptr;
1965 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1966 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1967 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1968 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) {
1969 Module *M = Pow->getModule();
1970 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1971 Module *Mod = Pow->getModule();
1972 Type *Ty = Pow->getType();
1973 bool Ignored;
1975 // Evaluate special cases related to a nested function as the base.
1977 // pow(exp(x), y) -> exp(x * y)
1978 // pow(exp2(x), y) -> exp2(x * y)
1979 // If exp{,2}() is used only once, it is better to fold two transcendental
1980 // math functions into one. If used again, exp{,2}() would still have to be
1981 // called with the original argument, then keep both original transcendental
1982 // functions. However, this transformation is only safe with fully relaxed
1983 // math semantics, since, besides rounding differences, it changes overflow
1984 // and underflow behavior quite dramatically. For example:
1985 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1986 // Whereas:
1987 // exp(1000 * 0.001) = exp(1)
1988 // TODO: Loosen the requirement for fully relaxed math semantics.
1989 // TODO: Handle exp10() when more targets have it available.
1990 CallInst *BaseFn = dyn_cast<CallInst>(Base);
1991 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1992 LibFunc LibFn;
1994 Function *CalleeFn = BaseFn->getCalledFunction();
1995 if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
1996 isLibFuncEmittable(M, TLI, LibFn)) {
1997 StringRef ExpName;
1998 Intrinsic::ID ID;
1999 Value *ExpFn;
2000 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
2002 switch (LibFn) {
2003 default:
2004 return nullptr;
2005 case LibFunc_expf:
2006 case LibFunc_exp:
2007 case LibFunc_expl:
2008 ExpName = TLI->getName(LibFunc_exp);
2009 ID = Intrinsic::exp;
2010 LibFnFloat = LibFunc_expf;
2011 LibFnDouble = LibFunc_exp;
2012 LibFnLongDouble = LibFunc_expl;
2013 break;
2014 case LibFunc_exp2f:
2015 case LibFunc_exp2:
2016 case LibFunc_exp2l:
2017 ExpName = TLI->getName(LibFunc_exp2);
2018 ID = Intrinsic::exp2;
2019 LibFnFloat = LibFunc_exp2f;
2020 LibFnDouble = LibFunc_exp2;
2021 LibFnLongDouble = LibFunc_exp2l;
2022 break;
2025 // Create new exp{,2}() with the product as its argument.
2026 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
2027 ExpFn = BaseFn->doesNotAccessMemory()
2028 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
2029 FMul, ExpName)
2030 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
2031 LibFnLongDouble, B,
2032 BaseFn->getAttributes());
2034 // Since the new exp{,2}() is different from the original one, dead code
2035 // elimination cannot be trusted to remove it, since it may have side
2036 // effects (e.g., errno). When the only consumer for the original
2037 // exp{,2}() is pow(), then it has to be explicitly erased.
2038 substituteInParent(BaseFn, ExpFn);
2039 return ExpFn;
2043 // Evaluate special cases related to a constant base.
2045 const APFloat *BaseF;
2046 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
2047 return nullptr;
2049 AttributeList NoAttrs; // Attributes are only meaningful on the original call
2051 // pow(2.0, itofp(x)) -> ldexp(1.0, x)
2052 // TODO: This does not work for vectors because there is no ldexp intrinsic.
2053 if (!Ty->isVectorTy() && match(Base, m_SpecificFP(2.0)) &&
2054 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
2055 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2056 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2057 return copyFlags(*Pow,
2058 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI,
2059 TLI, LibFunc_ldexp, LibFunc_ldexpf,
2060 LibFunc_ldexpl, B, NoAttrs));
2063 // pow(2.0 ** n, x) -> exp2(n * x)
2064 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
2065 APFloat BaseR = APFloat(1.0);
2066 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
2067 BaseR = BaseR / *BaseF;
2068 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
2069 const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
2070 APSInt NI(64, false);
2071 if ((IsInteger || IsReciprocal) &&
2072 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
2073 APFloat::opOK &&
2074 NI > 1 && NI.isPowerOf2()) {
2075 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
2076 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
2077 if (Pow->doesNotAccessMemory())
2078 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
2079 Mod, Intrinsic::exp2, Ty),
2080 FMul, "exp2"));
2081 else
2082 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2083 LibFunc_exp2f,
2084 LibFunc_exp2l, B, NoAttrs));
2088 // pow(10.0, x) -> exp10(x)
2089 // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
2090 if (match(Base, m_SpecificFP(10.0)) &&
2091 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
2092 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10,
2093 LibFunc_exp10f, LibFunc_exp10l,
2094 B, NoAttrs));
2096 // pow(x, y) -> exp2(log2(x) * y)
2097 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() &&
2098 !BaseF->isNegative()) {
2099 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN.
2100 // Luckily optimizePow has already handled the x == 1 case.
2101 assert(!match(Base, m_FPOne()) &&
2102 "pow(1.0, y) should have been simplified earlier!");
2104 Value *Log = nullptr;
2105 if (Ty->isFloatTy())
2106 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
2107 else if (Ty->isDoubleTy())
2108 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
2110 if (Log) {
2111 Value *FMul = B.CreateFMul(Log, Expo, "mul");
2112 if (Pow->doesNotAccessMemory())
2113 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration(
2114 Mod, Intrinsic::exp2, Ty),
2115 FMul, "exp2"));
2116 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f,
2117 LibFunc_exp2l))
2118 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2,
2119 LibFunc_exp2f,
2120 LibFunc_exp2l, B, NoAttrs));
2124 return nullptr;
2127 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
2128 Module *M, IRBuilderBase &B,
2129 const TargetLibraryInfo *TLI) {
2130 // If errno is never set, then use the intrinsic for sqrt().
2131 if (NoErrno) {
2132 Function *SqrtFn =
2133 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
2134 return B.CreateCall(SqrtFn, V, "sqrt");
2137 // Otherwise, use the libcall for sqrt().
2138 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf,
2139 LibFunc_sqrtl))
2140 // TODO: We also should check that the target can in fact lower the sqrt()
2141 // libcall. We currently have no way to ask this question, so we ask if
2142 // the target has a sqrt() libcall, which is not exactly the same.
2143 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
2144 LibFunc_sqrtl, B, Attrs);
2146 return nullptr;
2149 /// Use square root in place of pow(x, +/-0.5).
2150 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) {
2151 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
2152 Module *Mod = Pow->getModule();
2153 Type *Ty = Pow->getType();
2155 const APFloat *ExpoF;
2156 if (!match(Expo, m_APFloat(ExpoF)) ||
2157 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
2158 return nullptr;
2160 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
2161 // so that requires fast-math-flags (afn or reassoc).
2162 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
2163 return nullptr;
2165 // If we have a pow() library call (accesses memory) and we can't guarantee
2166 // that the base is not an infinity, give up:
2167 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting
2168 // errno), but sqrt(-Inf) is required by various standards to set errno.
2169 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() &&
2170 !isKnownNeverInfinity(Base, DL, TLI, 0, AC, Pow))
2171 return nullptr;
2173 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), Mod, B,
2174 TLI);
2175 if (!Sqrt)
2176 return nullptr;
2178 // Handle signed zero base by expanding to fabs(sqrt(x)).
2179 if (!Pow->hasNoSignedZeros()) {
2180 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
2181 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
2184 Sqrt = copyFlags(*Pow, Sqrt);
2186 // Handle non finite base by expanding to
2187 // (x == -infinity ? +infinity : sqrt(x)).
2188 if (!Pow->hasNoInfs()) {
2189 Value *PosInf = ConstantFP::getInfinity(Ty),
2190 *NegInf = ConstantFP::getInfinity(Ty, true);
2191 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
2192 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
2195 // If the exponent is negative, then get the reciprocal.
2196 if (ExpoF->isNegative())
2197 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
2199 return Sqrt;
2202 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
2203 IRBuilderBase &B) {
2204 Value *Args[] = {Base, Expo};
2205 Type *Types[] = {Base->getType(), Expo->getType()};
2206 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types);
2207 return B.CreateCall(F, Args);
2210 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) {
2211 Value *Base = Pow->getArgOperand(0);
2212 Value *Expo = Pow->getArgOperand(1);
2213 Function *Callee = Pow->getCalledFunction();
2214 StringRef Name = Callee->getName();
2215 Type *Ty = Pow->getType();
2216 Module *M = Pow->getModule();
2217 bool AllowApprox = Pow->hasApproxFunc();
2218 bool Ignored;
2220 // Propagate the math semantics from the call to any created instructions.
2221 IRBuilderBase::FastMathFlagGuard Guard(B);
2222 B.setFastMathFlags(Pow->getFastMathFlags());
2223 // Evaluate special cases related to the base.
2225 // pow(1.0, x) -> 1.0
2226 if (match(Base, m_FPOne()))
2227 return Base;
2229 if (Value *Exp = replacePowWithExp(Pow, B))
2230 return Exp;
2232 // Evaluate special cases related to the exponent.
2234 // pow(x, -1.0) -> 1.0 / x
2235 if (match(Expo, m_SpecificFP(-1.0)))
2236 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
2238 // pow(x, +/-0.0) -> 1.0
2239 if (match(Expo, m_AnyZeroFP()))
2240 return ConstantFP::get(Ty, 1.0);
2242 // pow(x, 1.0) -> x
2243 if (match(Expo, m_FPOne()))
2244 return Base;
2246 // pow(x, 2.0) -> x * x
2247 if (match(Expo, m_SpecificFP(2.0)))
2248 return B.CreateFMul(Base, Base, "square");
2250 if (Value *Sqrt = replacePowWithSqrt(Pow, B))
2251 return Sqrt;
2253 // If we can approximate pow:
2254 // pow(x, n) -> powi(x, n) * sqrt(x) if n has exactly a 0.5 fraction
2255 // pow(x, n) -> powi(x, n) if n is a constant signed integer value
2256 const APFloat *ExpoF;
2257 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) &&
2258 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) {
2259 APFloat ExpoA(abs(*ExpoF));
2260 APFloat ExpoI(*ExpoF);
2261 Value *Sqrt = nullptr;
2262 if (!ExpoA.isInteger()) {
2263 APFloat Expo2 = ExpoA;
2264 // To check if ExpoA is an integer + 0.5, we add it to itself. If there
2265 // is no floating point exception and the result is an integer, then
2266 // ExpoA == integer + 0.5
2267 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
2268 return nullptr;
2270 if (!Expo2.isInteger())
2271 return nullptr;
2273 if (ExpoI.roundToIntegral(APFloat::rmTowardNegative) !=
2274 APFloat::opInexact)
2275 return nullptr;
2276 if (!ExpoI.isInteger())
2277 return nullptr;
2278 ExpoF = &ExpoI;
2280 Sqrt = getSqrtCall(Base, AttributeList(), Pow->doesNotAccessMemory(), M,
2281 B, TLI);
2282 if (!Sqrt)
2283 return nullptr;
2286 // 0.5 fraction is now optionally handled.
2287 // Do pow -> powi for remaining integer exponent
2288 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false);
2289 if (ExpoF->isInteger() &&
2290 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
2291 APFloat::opOK) {
2292 Value *PowI = copyFlags(
2293 *Pow,
2294 createPowWithIntegerExponent(
2295 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo),
2296 M, B));
2298 if (PowI && Sqrt)
2299 return B.CreateFMul(PowI, Sqrt);
2301 return PowI;
2305 // powf(x, itofp(y)) -> powi(x, y)
2306 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
2307 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize()))
2308 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B));
2311 // Shrink pow() to powf() if the arguments are single precision,
2312 // unless the result is expected to be double precision.
2313 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
2314 hasFloatVersion(M, Name)) {
2315 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true))
2316 return Shrunk;
2319 return nullptr;
2322 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) {
2323 Module *M = CI->getModule();
2324 Function *Callee = CI->getCalledFunction();
2325 StringRef Name = Callee->getName();
2326 Value *Ret = nullptr;
2327 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
2328 hasFloatVersion(M, Name))
2329 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2331 // Bail out for vectors because the code below only expects scalars.
2332 // TODO: This could be allowed if we had a ldexp intrinsic (D14327).
2333 Type *Ty = CI->getType();
2334 if (Ty->isVectorTy())
2335 return Ret;
2337 // exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize
2338 // exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize
2339 Value *Op = CI->getArgOperand(0);
2340 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
2341 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
2342 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) {
2343 IRBuilderBase::FastMathFlagGuard Guard(B);
2344 B.setFastMathFlags(CI->getFastMathFlags());
2345 return copyFlags(
2346 *CI, emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
2347 LibFunc_ldexp, LibFunc_ldexpf,
2348 LibFunc_ldexpl, B, AttributeList()));
2352 return Ret;
2355 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) {
2356 Module *M = CI->getModule();
2358 // If we can shrink the call to a float function rather than a double
2359 // function, do that first.
2360 Function *Callee = CI->getCalledFunction();
2361 StringRef Name = Callee->getName();
2362 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name))
2363 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI))
2364 return Ret;
2366 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
2367 // the intrinsics for improved optimization (for example, vectorization).
2368 // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
2369 // From the C standard draft WG14/N1256:
2370 // "Ideally, fmax would be sensitive to the sign of zero, for example
2371 // fmax(-0.0, +0.0) would return +0; however, implementation in software
2372 // might be impractical."
2373 IRBuilderBase::FastMathFlagGuard Guard(B);
2374 FastMathFlags FMF = CI->getFastMathFlags();
2375 FMF.setNoSignedZeros();
2376 B.setFastMathFlags(FMF);
2378 Intrinsic::ID IID = Callee->getName().starts_with("fmin") ? Intrinsic::minnum
2379 : Intrinsic::maxnum;
2380 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
2381 return copyFlags(
2382 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)}));
2385 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) {
2386 Function *LogFn = Log->getCalledFunction();
2387 StringRef LogNm = LogFn->getName();
2388 Intrinsic::ID LogID = LogFn->getIntrinsicID();
2389 Module *Mod = Log->getModule();
2390 Type *Ty = Log->getType();
2391 Value *Ret = nullptr;
2393 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm))
2394 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true);
2396 // The earlier call must also be 'fast' in order to do these transforms.
2397 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
2398 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
2399 return Ret;
2401 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
2403 // This is only applicable to log(), log2(), log10().
2404 if (TLI->getLibFunc(LogNm, LogLb))
2405 switch (LogLb) {
2406 case LibFunc_logf:
2407 LogID = Intrinsic::log;
2408 ExpLb = LibFunc_expf;
2409 Exp2Lb = LibFunc_exp2f;
2410 Exp10Lb = LibFunc_exp10f;
2411 PowLb = LibFunc_powf;
2412 break;
2413 case LibFunc_log:
2414 LogID = Intrinsic::log;
2415 ExpLb = LibFunc_exp;
2416 Exp2Lb = LibFunc_exp2;
2417 Exp10Lb = LibFunc_exp10;
2418 PowLb = LibFunc_pow;
2419 break;
2420 case LibFunc_logl:
2421 LogID = Intrinsic::log;
2422 ExpLb = LibFunc_expl;
2423 Exp2Lb = LibFunc_exp2l;
2424 Exp10Lb = LibFunc_exp10l;
2425 PowLb = LibFunc_powl;
2426 break;
2427 case LibFunc_log2f:
2428 LogID = Intrinsic::log2;
2429 ExpLb = LibFunc_expf;
2430 Exp2Lb = LibFunc_exp2f;
2431 Exp10Lb = LibFunc_exp10f;
2432 PowLb = LibFunc_powf;
2433 break;
2434 case LibFunc_log2:
2435 LogID = Intrinsic::log2;
2436 ExpLb = LibFunc_exp;
2437 Exp2Lb = LibFunc_exp2;
2438 Exp10Lb = LibFunc_exp10;
2439 PowLb = LibFunc_pow;
2440 break;
2441 case LibFunc_log2l:
2442 LogID = Intrinsic::log2;
2443 ExpLb = LibFunc_expl;
2444 Exp2Lb = LibFunc_exp2l;
2445 Exp10Lb = LibFunc_exp10l;
2446 PowLb = LibFunc_powl;
2447 break;
2448 case LibFunc_log10f:
2449 LogID = Intrinsic::log10;
2450 ExpLb = LibFunc_expf;
2451 Exp2Lb = LibFunc_exp2f;
2452 Exp10Lb = LibFunc_exp10f;
2453 PowLb = LibFunc_powf;
2454 break;
2455 case LibFunc_log10:
2456 LogID = Intrinsic::log10;
2457 ExpLb = LibFunc_exp;
2458 Exp2Lb = LibFunc_exp2;
2459 Exp10Lb = LibFunc_exp10;
2460 PowLb = LibFunc_pow;
2461 break;
2462 case LibFunc_log10l:
2463 LogID = Intrinsic::log10;
2464 ExpLb = LibFunc_expl;
2465 Exp2Lb = LibFunc_exp2l;
2466 Exp10Lb = LibFunc_exp10l;
2467 PowLb = LibFunc_powl;
2468 break;
2469 default:
2470 return Ret;
2472 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
2473 LogID == Intrinsic::log10) {
2474 if (Ty->getScalarType()->isFloatTy()) {
2475 ExpLb = LibFunc_expf;
2476 Exp2Lb = LibFunc_exp2f;
2477 Exp10Lb = LibFunc_exp10f;
2478 PowLb = LibFunc_powf;
2479 } else if (Ty->getScalarType()->isDoubleTy()) {
2480 ExpLb = LibFunc_exp;
2481 Exp2Lb = LibFunc_exp2;
2482 Exp10Lb = LibFunc_exp10;
2483 PowLb = LibFunc_pow;
2484 } else
2485 return Ret;
2486 } else
2487 return Ret;
2489 IRBuilderBase::FastMathFlagGuard Guard(B);
2490 B.setFastMathFlags(FastMathFlags::getFast());
2492 Intrinsic::ID ArgID = Arg->getIntrinsicID();
2493 LibFunc ArgLb = NotLibFunc;
2494 TLI->getLibFunc(*Arg, ArgLb);
2496 // log(pow(x,y)) -> y*log(x)
2497 AttributeList NoAttrs;
2498 if (ArgLb == PowLb || ArgID == Intrinsic::pow || ArgID == Intrinsic::powi) {
2499 Value *LogX =
2500 Log->doesNotAccessMemory()
2501 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2502 Arg->getOperand(0), "log")
2503 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, NoAttrs);
2504 Value *Y = Arg->getArgOperand(1);
2505 // Cast exponent to FP if integer.
2506 if (ArgID == Intrinsic::powi)
2507 Y = B.CreateSIToFP(Y, Ty, "cast");
2508 Value *MulY = B.CreateFMul(Y, LogX, "mul");
2509 // Since pow() may have side effects, e.g. errno,
2510 // dead code elimination may not be trusted to remove it.
2511 substituteInParent(Arg, MulY);
2512 return MulY;
2515 // log(exp{,2,10}(y)) -> y*log({e,2,10})
2516 // TODO: There is no exp10() intrinsic yet.
2517 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
2518 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
2519 Constant *Eul;
2520 if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
2521 // FIXME: Add more precise value of e for long double.
2522 Eul = ConstantFP::get(Log->getType(), numbers::e);
2523 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
2524 Eul = ConstantFP::get(Log->getType(), 2.0);
2525 else
2526 Eul = ConstantFP::get(Log->getType(), 10.0);
2527 Value *LogE = Log->doesNotAccessMemory()
2528 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2529 Eul, "log")
2530 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, NoAttrs);
2531 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2532 // Since exp() may have side effects, e.g. errno,
2533 // dead code elimination may not be trusted to remove it.
2534 substituteInParent(Arg, MulY);
2535 return MulY;
2538 return Ret;
2541 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) {
2542 Module *M = CI->getModule();
2543 Function *Callee = CI->getCalledFunction();
2544 Value *Ret = nullptr;
2545 // TODO: Once we have a way (other than checking for the existince of the
2546 // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2547 // condition below.
2548 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) &&
2549 (Callee->getName() == "sqrt" ||
2550 Callee->getIntrinsicID() == Intrinsic::sqrt))
2551 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2553 if (!CI->isFast())
2554 return Ret;
2556 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2557 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2558 return Ret;
2560 // We're looking for a repeated factor in a multiplication tree,
2561 // so we can do this fold: sqrt(x * x) -> fabs(x);
2562 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2563 Value *Op0 = I->getOperand(0);
2564 Value *Op1 = I->getOperand(1);
2565 Value *RepeatOp = nullptr;
2566 Value *OtherOp = nullptr;
2567 if (Op0 == Op1) {
2568 // Simple match: the operands of the multiply are identical.
2569 RepeatOp = Op0;
2570 } else {
2571 // Look for a more complicated pattern: one of the operands is itself
2572 // a multiply, so search for a common factor in that multiply.
2573 // Note: We don't bother looking any deeper than this first level or for
2574 // variations of this pattern because instcombine's visitFMUL and/or the
2575 // reassociation pass should give us this form.
2576 Value *OtherMul0, *OtherMul1;
2577 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2578 // Pattern: sqrt((x * y) * z)
2579 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2580 // Matched: sqrt((x * x) * z)
2581 RepeatOp = OtherMul0;
2582 OtherOp = Op1;
2586 if (!RepeatOp)
2587 return Ret;
2589 // Fast math flags for any created instructions should match the sqrt
2590 // and multiply.
2591 IRBuilderBase::FastMathFlagGuard Guard(B);
2592 B.setFastMathFlags(I->getFastMathFlags());
2594 // If we found a repeated factor, hoist it out of the square root and
2595 // replace it with the fabs of that factor.
2596 Type *ArgType = I->getType();
2597 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2598 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2599 if (OtherOp) {
2600 // If we found a non-repeated factor, we still need to get its square
2601 // root. We then multiply that by the value that was simplified out
2602 // of the square root calculation.
2603 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2604 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2605 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall));
2607 return copyFlags(*CI, FabsCall);
2610 // TODO: Generalize to handle any trig function and its inverse.
2611 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) {
2612 Module *M = CI->getModule();
2613 Function *Callee = CI->getCalledFunction();
2614 Value *Ret = nullptr;
2615 StringRef Name = Callee->getName();
2616 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name))
2617 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true);
2619 Value *Op1 = CI->getArgOperand(0);
2620 auto *OpC = dyn_cast<CallInst>(Op1);
2621 if (!OpC)
2622 return Ret;
2624 // Both calls must be 'fast' in order to remove them.
2625 if (!CI->isFast() || !OpC->isFast())
2626 return Ret;
2628 // tan(atan(x)) -> x
2629 // tanf(atanf(x)) -> x
2630 // tanl(atanl(x)) -> x
2631 LibFunc Func;
2632 Function *F = OpC->getCalledFunction();
2633 if (F && TLI->getLibFunc(F->getName(), Func) &&
2634 isLibFuncEmittable(M, TLI, Func) &&
2635 ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2636 (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2637 (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2638 Ret = OpC->getArgOperand(0);
2639 return Ret;
2642 static bool isTrigLibCall(CallInst *CI) {
2643 // We can only hope to do anything useful if we can ignore things like errno
2644 // and floating-point exceptions.
2645 // We already checked the prototype.
2646 return CI->doesNotThrow() && CI->doesNotAccessMemory();
2649 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg,
2650 bool UseFloat, Value *&Sin, Value *&Cos,
2651 Value *&SinCos, const TargetLibraryInfo *TLI) {
2652 Module *M = OrigCallee->getParent();
2653 Type *ArgTy = Arg->getType();
2654 Type *ResTy;
2655 StringRef Name;
2657 Triple T(OrigCallee->getParent()->getTargetTriple());
2658 if (UseFloat) {
2659 Name = "__sincospif_stret";
2661 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2662 // x86_64 can't use {float, float} since that would be returned in both
2663 // xmm0 and xmm1, which isn't what a real struct would do.
2664 ResTy = T.getArch() == Triple::x86_64
2665 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2))
2666 : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2667 } else {
2668 Name = "__sincospi_stret";
2669 ResTy = StructType::get(ArgTy, ArgTy);
2672 if (!isLibFuncEmittable(M, TLI, Name))
2673 return false;
2674 LibFunc TheLibFunc;
2675 TLI->getLibFunc(Name, TheLibFunc);
2676 FunctionCallee Callee = getOrInsertLibFunc(
2677 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy);
2679 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2680 // If the argument is an instruction, it must dominate all uses so put our
2681 // sincos call there.
2682 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2683 } else {
2684 // Otherwise (e.g. for a constant) the beginning of the function is as
2685 // good a place as any.
2686 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2687 B.SetInsertPoint(&EntryBB, EntryBB.begin());
2690 SinCos = B.CreateCall(Callee, Arg, "sincospi");
2692 if (SinCos->getType()->isStructTy()) {
2693 Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2694 Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2695 } else {
2696 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2697 "sinpi");
2698 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2699 "cospi");
2702 return true;
2705 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, bool IsSin, IRBuilderBase &B) {
2706 // Make sure the prototype is as expected, otherwise the rest of the
2707 // function is probably invalid and likely to abort.
2708 if (!isTrigLibCall(CI))
2709 return nullptr;
2711 Value *Arg = CI->getArgOperand(0);
2712 SmallVector<CallInst *, 1> SinCalls;
2713 SmallVector<CallInst *, 1> CosCalls;
2714 SmallVector<CallInst *, 1> SinCosCalls;
2716 bool IsFloat = Arg->getType()->isFloatTy();
2718 // Look for all compatible sinpi, cospi and sincospi calls with the same
2719 // argument. If there are enough (in some sense) we can make the
2720 // substitution.
2721 Function *F = CI->getFunction();
2722 for (User *U : Arg->users())
2723 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2725 // It's only worthwhile if both sinpi and cospi are actually used.
2726 if (SinCalls.empty() || CosCalls.empty())
2727 return nullptr;
2729 Value *Sin, *Cos, *SinCos;
2730 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos,
2731 SinCos, TLI))
2732 return nullptr;
2734 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2735 Value *Res) {
2736 for (CallInst *C : Calls)
2737 replaceAllUsesWith(C, Res);
2740 replaceTrigInsts(SinCalls, Sin);
2741 replaceTrigInsts(CosCalls, Cos);
2742 replaceTrigInsts(SinCosCalls, SinCos);
2744 return IsSin ? Sin : Cos;
2747 void LibCallSimplifier::classifyArgUse(
2748 Value *Val, Function *F, bool IsFloat,
2749 SmallVectorImpl<CallInst *> &SinCalls,
2750 SmallVectorImpl<CallInst *> &CosCalls,
2751 SmallVectorImpl<CallInst *> &SinCosCalls) {
2752 auto *CI = dyn_cast<CallInst>(Val);
2753 if (!CI || CI->use_empty())
2754 return;
2756 // Don't consider calls in other functions.
2757 if (CI->getFunction() != F)
2758 return;
2760 Module *M = CI->getModule();
2761 Function *Callee = CI->getCalledFunction();
2762 LibFunc Func;
2763 if (!Callee || !TLI->getLibFunc(*Callee, Func) ||
2764 !isLibFuncEmittable(M, TLI, Func) ||
2765 !isTrigLibCall(CI))
2766 return;
2768 if (IsFloat) {
2769 if (Func == LibFunc_sinpif)
2770 SinCalls.push_back(CI);
2771 else if (Func == LibFunc_cospif)
2772 CosCalls.push_back(CI);
2773 else if (Func == LibFunc_sincospif_stret)
2774 SinCosCalls.push_back(CI);
2775 } else {
2776 if (Func == LibFunc_sinpi)
2777 SinCalls.push_back(CI);
2778 else if (Func == LibFunc_cospi)
2779 CosCalls.push_back(CI);
2780 else if (Func == LibFunc_sincospi_stret)
2781 SinCosCalls.push_back(CI);
2785 //===----------------------------------------------------------------------===//
2786 // Integer Library Call Optimizations
2787 //===----------------------------------------------------------------------===//
2789 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) {
2790 // All variants of ffs return int which need not be 32 bits wide.
2791 // ffs{,l,ll}(x) -> x != 0 ? (int)llvm.cttz(x)+1 : 0
2792 Type *RetType = CI->getType();
2793 Value *Op = CI->getArgOperand(0);
2794 Type *ArgType = Op->getType();
2795 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2796 Intrinsic::cttz, ArgType);
2797 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2798 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2799 V = B.CreateIntCast(V, RetType, false);
2801 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2802 return B.CreateSelect(Cond, V, ConstantInt::get(RetType, 0));
2805 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) {
2806 // All variants of fls return int which need not be 32 bits wide.
2807 // fls{,l,ll}(x) -> (int)(sizeInBits(x) - llvm.ctlz(x, false))
2808 Value *Op = CI->getArgOperand(0);
2809 Type *ArgType = Op->getType();
2810 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2811 Intrinsic::ctlz, ArgType);
2812 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2813 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2815 return B.CreateIntCast(V, CI->getType(), false);
2818 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) {
2819 // abs(x) -> x <s 0 ? -x : x
2820 // The negation has 'nsw' because abs of INT_MIN is undefined.
2821 Value *X = CI->getArgOperand(0);
2822 Value *IsNeg = B.CreateIsNeg(X);
2823 Value *NegX = B.CreateNSWNeg(X, "neg");
2824 return B.CreateSelect(IsNeg, NegX, X);
2827 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) {
2828 // isdigit(c) -> (c-'0') <u 10
2829 Value *Op = CI->getArgOperand(0);
2830 Type *ArgType = Op->getType();
2831 Op = B.CreateSub(Op, ConstantInt::get(ArgType, '0'), "isdigittmp");
2832 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 10), "isdigit");
2833 return B.CreateZExt(Op, CI->getType());
2836 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) {
2837 // isascii(c) -> c <u 128
2838 Value *Op = CI->getArgOperand(0);
2839 Type *ArgType = Op->getType();
2840 Op = B.CreateICmpULT(Op, ConstantInt::get(ArgType, 128), "isascii");
2841 return B.CreateZExt(Op, CI->getType());
2844 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) {
2845 // toascii(c) -> c & 0x7f
2846 return B.CreateAnd(CI->getArgOperand(0),
2847 ConstantInt::get(CI->getType(), 0x7F));
2850 // Fold calls to atoi, atol, and atoll.
2851 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) {
2852 CI->addParamAttr(0, Attribute::NoCapture);
2854 StringRef Str;
2855 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2856 return nullptr;
2858 return convertStrToInt(CI, Str, nullptr, 10, /*AsSigned=*/true, B);
2861 // Fold calls to strtol, strtoll, strtoul, and strtoull.
2862 Value *LibCallSimplifier::optimizeStrToInt(CallInst *CI, IRBuilderBase &B,
2863 bool AsSigned) {
2864 Value *EndPtr = CI->getArgOperand(1);
2865 if (isa<ConstantPointerNull>(EndPtr)) {
2866 // With a null EndPtr, this function won't capture the main argument.
2867 // It would be readonly too, except that it still may write to errno.
2868 CI->addParamAttr(0, Attribute::NoCapture);
2869 EndPtr = nullptr;
2870 } else if (!isKnownNonZero(EndPtr, DL))
2871 return nullptr;
2873 StringRef Str;
2874 if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2875 return nullptr;
2877 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2878 return convertStrToInt(CI, Str, EndPtr, CInt->getSExtValue(), AsSigned, B);
2881 return nullptr;
2884 //===----------------------------------------------------------------------===//
2885 // Formatting and IO Library Call Optimizations
2886 //===----------------------------------------------------------------------===//
2888 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2890 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B,
2891 int StreamArg) {
2892 Function *Callee = CI->getCalledFunction();
2893 // Error reporting calls should be cold, mark them as such.
2894 // This applies even to non-builtin calls: it is only a hint and applies to
2895 // functions that the frontend might not understand as builtins.
2897 // This heuristic was suggested in:
2898 // Improving Static Branch Prediction in a Compiler
2899 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2900 // Proceedings of PACT'98, Oct. 1998, IEEE
2901 if (!CI->hasFnAttr(Attribute::Cold) &&
2902 isReportingError(Callee, CI, StreamArg)) {
2903 CI->addFnAttr(Attribute::Cold);
2906 return nullptr;
2909 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2910 if (!Callee || !Callee->isDeclaration())
2911 return false;
2913 if (StreamArg < 0)
2914 return true;
2916 // These functions might be considered cold, but only if their stream
2917 // argument is stderr.
2919 if (StreamArg >= (int)CI->arg_size())
2920 return false;
2921 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2922 if (!LI)
2923 return false;
2924 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2925 if (!GV || !GV->isDeclaration())
2926 return false;
2927 return GV->getName() == "stderr";
2930 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) {
2931 // Check for a fixed format string.
2932 StringRef FormatStr;
2933 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2934 return nullptr;
2936 // Empty format string -> noop.
2937 if (FormatStr.empty()) // Tolerate printf's declared void.
2938 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2940 // Do not do any of the following transformations if the printf return value
2941 // is used, in general the printf return value is not compatible with either
2942 // putchar() or puts().
2943 if (!CI->use_empty())
2944 return nullptr;
2946 Type *IntTy = CI->getType();
2947 // printf("x") -> putchar('x'), even for "%" and "%%".
2948 if (FormatStr.size() == 1 || FormatStr == "%%") {
2949 // Convert the character to unsigned char before passing it to putchar
2950 // to avoid host-specific sign extension in the IR. Putchar converts
2951 // it to unsigned char regardless.
2952 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)FormatStr[0]);
2953 return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2956 // Try to remove call or emit putchar/puts.
2957 if (FormatStr == "%s" && CI->arg_size() > 1) {
2958 StringRef OperandStr;
2959 if (!getConstantStringInfo(CI->getOperand(1), OperandStr))
2960 return nullptr;
2961 // printf("%s", "") --> NOP
2962 if (OperandStr.empty())
2963 return (Value *)CI;
2964 // printf("%s", "a") --> putchar('a')
2965 if (OperandStr.size() == 1) {
2966 // Convert the character to unsigned char before passing it to putchar
2967 // to avoid host-specific sign extension in the IR. Putchar converts
2968 // it to unsigned char regardless.
2969 Value *IntChar = ConstantInt::get(IntTy, (unsigned char)OperandStr[0]);
2970 return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
2972 // printf("%s", str"\n") --> puts(str)
2973 if (OperandStr.back() == '\n') {
2974 OperandStr = OperandStr.drop_back();
2975 Value *GV = B.CreateGlobalString(OperandStr, "str");
2976 return copyFlags(*CI, emitPutS(GV, B, TLI));
2978 return nullptr;
2981 // printf("foo\n") --> puts("foo")
2982 if (FormatStr.back() == '\n' &&
2983 !FormatStr.contains('%')) { // No format characters.
2984 // Create a string literal with no \n on it. We expect the constant merge
2985 // pass to be run after this pass, to merge duplicate strings.
2986 FormatStr = FormatStr.drop_back();
2987 Value *GV = B.CreateGlobalString(FormatStr, "str");
2988 return copyFlags(*CI, emitPutS(GV, B, TLI));
2991 // Optimize specific format strings.
2992 // printf("%c", chr) --> putchar(chr)
2993 if (FormatStr == "%c" && CI->arg_size() > 1 &&
2994 CI->getArgOperand(1)->getType()->isIntegerTy()) {
2995 // Convert the argument to the type expected by putchar, i.e., int, which
2996 // need not be 32 bits wide but which is the same as printf's return type.
2997 Value *IntChar = B.CreateIntCast(CI->getArgOperand(1), IntTy, false);
2998 return copyFlags(*CI, emitPutChar(IntChar, B, TLI));
3001 // printf("%s\n", str) --> puts(str)
3002 if (FormatStr == "%s\n" && CI->arg_size() > 1 &&
3003 CI->getArgOperand(1)->getType()->isPointerTy())
3004 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI));
3005 return nullptr;
3008 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) {
3010 Module *M = CI->getModule();
3011 Function *Callee = CI->getCalledFunction();
3012 FunctionType *FT = Callee->getFunctionType();
3013 if (Value *V = optimizePrintFString(CI, B)) {
3014 return V;
3017 annotateNonNullNoUndefBasedOnAccess(CI, 0);
3019 // printf(format, ...) -> iprintf(format, ...) if no floating point
3020 // arguments.
3021 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) &&
3022 !callHasFloatingPointArgument(CI)) {
3023 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT,
3024 Callee->getAttributes());
3025 CallInst *New = cast<CallInst>(CI->clone());
3026 New->setCalledFunction(IPrintFFn);
3027 B.Insert(New);
3028 return New;
3031 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
3032 // arguments.
3033 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) &&
3034 !callHasFP128Argument(CI)) {
3035 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT,
3036 Callee->getAttributes());
3037 CallInst *New = cast<CallInst>(CI->clone());
3038 New->setCalledFunction(SmallPrintFFn);
3039 B.Insert(New);
3040 return New;
3043 return nullptr;
3046 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI,
3047 IRBuilderBase &B) {
3048 // Check for a fixed format string.
3049 StringRef FormatStr;
3050 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3051 return nullptr;
3053 // If we just have a format string (nothing else crazy) transform it.
3054 Value *Dest = CI->getArgOperand(0);
3055 if (CI->arg_size() == 2) {
3056 // Make sure there's no % in the constant array. We could try to handle
3057 // %% -> % in the future if we cared.
3058 if (FormatStr.contains('%'))
3059 return nullptr; // we found a format specifier, bail out.
3061 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
3062 B.CreateMemCpy(
3063 Dest, Align(1), CI->getArgOperand(1), Align(1),
3064 ConstantInt::get(DL.getIntPtrType(CI->getContext()),
3065 FormatStr.size() + 1)); // Copy the null byte.
3066 return ConstantInt::get(CI->getType(), FormatStr.size());
3069 // The remaining optimizations require the format string to be "%s" or "%c"
3070 // and have an extra operand.
3071 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3072 return nullptr;
3074 // Decode the second character of the format string.
3075 if (FormatStr[1] == 'c') {
3076 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3077 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3078 return nullptr;
3079 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
3080 Value *Ptr = Dest;
3081 B.CreateStore(V, Ptr);
3082 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3083 B.CreateStore(B.getInt8(0), Ptr);
3085 return ConstantInt::get(CI->getType(), 1);
3088 if (FormatStr[1] == 's') {
3089 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
3090 // strlen(str)+1)
3091 if (!CI->getArgOperand(2)->getType()->isPointerTy())
3092 return nullptr;
3094 if (CI->use_empty())
3095 // sprintf(dest, "%s", str) -> strcpy(dest, str)
3096 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI));
3098 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2));
3099 if (SrcLen) {
3100 B.CreateMemCpy(
3101 Dest, Align(1), CI->getArgOperand(2), Align(1),
3102 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen));
3103 // Returns total number of characters written without null-character.
3104 return ConstantInt::get(CI->getType(), SrcLen - 1);
3105 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) {
3106 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest
3107 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest);
3108 return B.CreateIntCast(PtrDiff, CI->getType(), false);
3111 bool OptForSize = CI->getFunction()->hasOptSize() ||
3112 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3113 PGSOQueryType::IRPass);
3114 if (OptForSize)
3115 return nullptr;
3117 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
3118 if (!Len)
3119 return nullptr;
3120 Value *IncLen =
3121 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
3122 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen);
3124 // The sprintf result is the unincremented number of bytes in the string.
3125 return B.CreateIntCast(Len, CI->getType(), false);
3127 return nullptr;
3130 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) {
3131 Module *M = CI->getModule();
3132 Function *Callee = CI->getCalledFunction();
3133 FunctionType *FT = Callee->getFunctionType();
3134 if (Value *V = optimizeSPrintFString(CI, B)) {
3135 return V;
3138 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1});
3140 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
3141 // point arguments.
3142 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) &&
3143 !callHasFloatingPointArgument(CI)) {
3144 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf,
3145 FT, Callee->getAttributes());
3146 CallInst *New = cast<CallInst>(CI->clone());
3147 New->setCalledFunction(SIPrintFFn);
3148 B.Insert(New);
3149 return New;
3152 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
3153 // floating point arguments.
3154 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) &&
3155 !callHasFP128Argument(CI)) {
3156 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT,
3157 Callee->getAttributes());
3158 CallInst *New = cast<CallInst>(CI->clone());
3159 New->setCalledFunction(SmallSPrintFFn);
3160 B.Insert(New);
3161 return New;
3164 return nullptr;
3167 // Transform an snprintf call CI with the bound N to format the string Str
3168 // either to a call to memcpy, or to single character a store, or to nothing,
3169 // and fold the result to a constant. A nonnull StrArg refers to the string
3170 // argument being formatted. Otherwise the call is one with N < 2 and
3171 // the "%c" directive to format a single character.
3172 Value *LibCallSimplifier::emitSnPrintfMemCpy(CallInst *CI, Value *StrArg,
3173 StringRef Str, uint64_t N,
3174 IRBuilderBase &B) {
3175 assert(StrArg || (N < 2 && Str.size() == 1));
3177 unsigned IntBits = TLI->getIntSize();
3178 uint64_t IntMax = maxIntN(IntBits);
3179 if (Str.size() > IntMax)
3180 // Bail if the string is longer than INT_MAX. POSIX requires
3181 // implementations to set errno to EOVERFLOW in this case, in
3182 // addition to when N is larger than that (checked by the caller).
3183 return nullptr;
3185 Value *StrLen = ConstantInt::get(CI->getType(), Str.size());
3186 if (N == 0)
3187 return StrLen;
3189 // Set to the number of bytes to copy fron StrArg which is also
3190 // the offset of the terinating nul.
3191 uint64_t NCopy;
3192 if (N > Str.size())
3193 // Copy the full string, including the terminating nul (which must
3194 // be present regardless of the bound).
3195 NCopy = Str.size() + 1;
3196 else
3197 NCopy = N - 1;
3199 Value *DstArg = CI->getArgOperand(0);
3200 if (NCopy && StrArg)
3201 // Transform the call to lvm.memcpy(dst, fmt, N).
3202 copyFlags(
3203 *CI,
3204 B.CreateMemCpy(
3205 DstArg, Align(1), StrArg, Align(1),
3206 ConstantInt::get(DL.getIntPtrType(CI->getContext()), NCopy)));
3208 if (N > Str.size())
3209 // Return early when the whole format string, including the final nul,
3210 // has been copied.
3211 return StrLen;
3213 // Otherwise, when truncating the string append a terminating nul.
3214 Type *Int8Ty = B.getInt8Ty();
3215 Value *NulOff = B.getIntN(IntBits, NCopy);
3216 Value *DstEnd = B.CreateInBoundsGEP(Int8Ty, DstArg, NulOff, "endptr");
3217 B.CreateStore(ConstantInt::get(Int8Ty, 0), DstEnd);
3218 return StrLen;
3221 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI,
3222 IRBuilderBase &B) {
3223 // Check for size
3224 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3225 if (!Size)
3226 return nullptr;
3228 uint64_t N = Size->getZExtValue();
3229 uint64_t IntMax = maxIntN(TLI->getIntSize());
3230 if (N > IntMax)
3231 // Bail if the bound exceeds INT_MAX. POSIX requires implementations
3232 // to set errno to EOVERFLOW in this case.
3233 return nullptr;
3235 Value *DstArg = CI->getArgOperand(0);
3236 Value *FmtArg = CI->getArgOperand(2);
3238 // Check for a fixed format string.
3239 StringRef FormatStr;
3240 if (!getConstantStringInfo(FmtArg, FormatStr))
3241 return nullptr;
3243 // If we just have a format string (nothing else crazy) transform it.
3244 if (CI->arg_size() == 3) {
3245 if (FormatStr.contains('%'))
3246 // Bail if the format string contains a directive and there are
3247 // no arguments. We could handle "%%" in the future.
3248 return nullptr;
3250 return emitSnPrintfMemCpy(CI, FmtArg, FormatStr, N, B);
3253 // The remaining optimizations require the format string to be "%s" or "%c"
3254 // and have an extra operand.
3255 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() != 4)
3256 return nullptr;
3258 // Decode the second character of the format string.
3259 if (FormatStr[1] == 'c') {
3260 if (N <= 1) {
3261 // Use an arbitary string of length 1 to transform the call into
3262 // either a nul store (N == 1) or a no-op (N == 0) and fold it
3263 // to one.
3264 StringRef CharStr("*");
3265 return emitSnPrintfMemCpy(CI, nullptr, CharStr, N, B);
3268 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
3269 if (!CI->getArgOperand(3)->getType()->isIntegerTy())
3270 return nullptr;
3271 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
3272 Value *Ptr = DstArg;
3273 B.CreateStore(V, Ptr);
3274 Ptr = B.CreateInBoundsGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
3275 B.CreateStore(B.getInt8(0), Ptr);
3276 return ConstantInt::get(CI->getType(), 1);
3279 if (FormatStr[1] != 's')
3280 return nullptr;
3282 Value *StrArg = CI->getArgOperand(3);
3283 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
3284 StringRef Str;
3285 if (!getConstantStringInfo(StrArg, Str))
3286 return nullptr;
3288 return emitSnPrintfMemCpy(CI, StrArg, Str, N, B);
3291 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) {
3292 if (Value *V = optimizeSnPrintFString(CI, B)) {
3293 return V;
3296 if (isKnownNonZero(CI->getOperand(1), DL))
3297 annotateNonNullNoUndefBasedOnAccess(CI, 0);
3298 return nullptr;
3301 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI,
3302 IRBuilderBase &B) {
3303 optimizeErrorReporting(CI, B, 0);
3305 // All the optimizations depend on the format string.
3306 StringRef FormatStr;
3307 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
3308 return nullptr;
3310 // Do not do any of the following transformations if the fprintf return
3311 // value is used, in general the fprintf return value is not compatible
3312 // with fwrite(), fputc() or fputs().
3313 if (!CI->use_empty())
3314 return nullptr;
3316 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
3317 if (CI->arg_size() == 2) {
3318 // Could handle %% -> % if we cared.
3319 if (FormatStr.contains('%'))
3320 return nullptr; // We found a format specifier.
3322 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3323 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3324 return copyFlags(
3325 *CI, emitFWrite(CI->getArgOperand(1),
3326 ConstantInt::get(SizeTTy, FormatStr.size()),
3327 CI->getArgOperand(0), B, DL, TLI));
3330 // The remaining optimizations require the format string to be "%s" or "%c"
3331 // and have an extra operand.
3332 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3)
3333 return nullptr;
3335 // Decode the second character of the format string.
3336 if (FormatStr[1] == 'c') {
3337 // fprintf(F, "%c", chr) --> fputc((int)chr, F)
3338 if (!CI->getArgOperand(2)->getType()->isIntegerTy())
3339 return nullptr;
3340 Type *IntTy = B.getIntNTy(TLI->getIntSize());
3341 Value *V = B.CreateIntCast(CI->getArgOperand(2), IntTy, /*isSigned*/ true,
3342 "chari");
3343 return copyFlags(*CI, emitFPutC(V, CI->getArgOperand(0), B, TLI));
3346 if (FormatStr[1] == 's') {
3347 // fprintf(F, "%s", str) --> fputs(str, F)
3348 if (!CI->getArgOperand(2)->getType()->isPointerTy())
3349 return nullptr;
3350 return copyFlags(
3351 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI));
3353 return nullptr;
3356 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) {
3357 Module *M = CI->getModule();
3358 Function *Callee = CI->getCalledFunction();
3359 FunctionType *FT = Callee->getFunctionType();
3360 if (Value *V = optimizeFPrintFString(CI, B)) {
3361 return V;
3364 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
3365 // floating point arguments.
3366 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) &&
3367 !callHasFloatingPointArgument(CI)) {
3368 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf,
3369 FT, Callee->getAttributes());
3370 CallInst *New = cast<CallInst>(CI->clone());
3371 New->setCalledFunction(FIPrintFFn);
3372 B.Insert(New);
3373 return New;
3376 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
3377 // 128-bit floating point arguments.
3378 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) &&
3379 !callHasFP128Argument(CI)) {
3380 auto SmallFPrintFFn =
3381 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT,
3382 Callee->getAttributes());
3383 CallInst *New = cast<CallInst>(CI->clone());
3384 New->setCalledFunction(SmallFPrintFFn);
3385 B.Insert(New);
3386 return New;
3389 return nullptr;
3392 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) {
3393 optimizeErrorReporting(CI, B, 3);
3395 // Get the element size and count.
3396 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
3397 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
3398 if (SizeC && CountC) {
3399 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
3401 // If this is writing zero records, remove the call (it's a noop).
3402 if (Bytes == 0)
3403 return ConstantInt::get(CI->getType(), 0);
3405 // If this is writing one byte, turn it into fputc.
3406 // This optimisation is only valid, if the return value is unused.
3407 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
3408 Value *Char = B.CreateLoad(B.getInt8Ty(), CI->getArgOperand(0), "char");
3409 Type *IntTy = B.getIntNTy(TLI->getIntSize());
3410 Value *Cast = B.CreateIntCast(Char, IntTy, /*isSigned*/ true, "chari");
3411 Value *NewCI = emitFPutC(Cast, CI->getArgOperand(3), B, TLI);
3412 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
3416 return nullptr;
3419 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) {
3420 optimizeErrorReporting(CI, B, 1);
3422 // Don't rewrite fputs to fwrite when optimising for size because fwrite
3423 // requires more arguments and thus extra MOVs are required.
3424 bool OptForSize = CI->getFunction()->hasOptSize() ||
3425 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
3426 PGSOQueryType::IRPass);
3427 if (OptForSize)
3428 return nullptr;
3430 // We can't optimize if return value is used.
3431 if (!CI->use_empty())
3432 return nullptr;
3434 // fputs(s,F) --> fwrite(s,strlen(s),1,F)
3435 uint64_t Len = GetStringLength(CI->getArgOperand(0));
3436 if (!Len)
3437 return nullptr;
3439 // Known to have no uses (see above).
3440 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3441 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3442 return copyFlags(
3443 *CI,
3444 emitFWrite(CI->getArgOperand(0),
3445 ConstantInt::get(SizeTTy, Len - 1),
3446 CI->getArgOperand(1), B, DL, TLI));
3449 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) {
3450 annotateNonNullNoUndefBasedOnAccess(CI, 0);
3451 if (!CI->use_empty())
3452 return nullptr;
3454 // Check for a constant string.
3455 // puts("") -> putchar('\n')
3456 StringRef Str;
3457 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) {
3458 // putchar takes an argument of the same type as puts returns, i.e.,
3459 // int, which need not be 32 bits wide.
3460 Type *IntTy = CI->getType();
3461 return copyFlags(*CI, emitPutChar(ConstantInt::get(IntTy, '\n'), B, TLI));
3464 return nullptr;
3467 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) {
3468 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
3469 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1),
3470 CI->getArgOperand(0), Align(1),
3471 CI->getArgOperand(2)));
3474 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) {
3475 SmallString<20> FloatFuncName = FuncName;
3476 FloatFuncName += 'f';
3477 return isLibFuncEmittable(M, TLI, FloatFuncName);
3480 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
3481 IRBuilderBase &Builder) {
3482 Module *M = CI->getModule();
3483 LibFunc Func;
3484 Function *Callee = CI->getCalledFunction();
3485 // Check for string/memory library functions.
3486 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3487 // Make sure we never change the calling convention.
3488 assert(
3489 (ignoreCallingConv(Func) ||
3490 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) &&
3491 "Optimizing string/memory libcall would change the calling convention");
3492 switch (Func) {
3493 case LibFunc_strcat:
3494 return optimizeStrCat(CI, Builder);
3495 case LibFunc_strncat:
3496 return optimizeStrNCat(CI, Builder);
3497 case LibFunc_strchr:
3498 return optimizeStrChr(CI, Builder);
3499 case LibFunc_strrchr:
3500 return optimizeStrRChr(CI, Builder);
3501 case LibFunc_strcmp:
3502 return optimizeStrCmp(CI, Builder);
3503 case LibFunc_strncmp:
3504 return optimizeStrNCmp(CI, Builder);
3505 case LibFunc_strcpy:
3506 return optimizeStrCpy(CI, Builder);
3507 case LibFunc_stpcpy:
3508 return optimizeStpCpy(CI, Builder);
3509 case LibFunc_strlcpy:
3510 return optimizeStrLCpy(CI, Builder);
3511 case LibFunc_stpncpy:
3512 return optimizeStringNCpy(CI, /*RetEnd=*/true, Builder);
3513 case LibFunc_strncpy:
3514 return optimizeStringNCpy(CI, /*RetEnd=*/false, Builder);
3515 case LibFunc_strlen:
3516 return optimizeStrLen(CI, Builder);
3517 case LibFunc_strnlen:
3518 return optimizeStrNLen(CI, Builder);
3519 case LibFunc_strpbrk:
3520 return optimizeStrPBrk(CI, Builder);
3521 case LibFunc_strndup:
3522 return optimizeStrNDup(CI, Builder);
3523 case LibFunc_strtol:
3524 case LibFunc_strtod:
3525 case LibFunc_strtof:
3526 case LibFunc_strtoul:
3527 case LibFunc_strtoll:
3528 case LibFunc_strtold:
3529 case LibFunc_strtoull:
3530 return optimizeStrTo(CI, Builder);
3531 case LibFunc_strspn:
3532 return optimizeStrSpn(CI, Builder);
3533 case LibFunc_strcspn:
3534 return optimizeStrCSpn(CI, Builder);
3535 case LibFunc_strstr:
3536 return optimizeStrStr(CI, Builder);
3537 case LibFunc_memchr:
3538 return optimizeMemChr(CI, Builder);
3539 case LibFunc_memrchr:
3540 return optimizeMemRChr(CI, Builder);
3541 case LibFunc_bcmp:
3542 return optimizeBCmp(CI, Builder);
3543 case LibFunc_memcmp:
3544 return optimizeMemCmp(CI, Builder);
3545 case LibFunc_memcpy:
3546 return optimizeMemCpy(CI, Builder);
3547 case LibFunc_memccpy:
3548 return optimizeMemCCpy(CI, Builder);
3549 case LibFunc_mempcpy:
3550 return optimizeMemPCpy(CI, Builder);
3551 case LibFunc_memmove:
3552 return optimizeMemMove(CI, Builder);
3553 case LibFunc_memset:
3554 return optimizeMemSet(CI, Builder);
3555 case LibFunc_realloc:
3556 return optimizeRealloc(CI, Builder);
3557 case LibFunc_wcslen:
3558 return optimizeWcslen(CI, Builder);
3559 case LibFunc_bcopy:
3560 return optimizeBCopy(CI, Builder);
3561 case LibFunc_Znwm:
3562 case LibFunc_ZnwmRKSt9nothrow_t:
3563 case LibFunc_ZnwmSt11align_val_t:
3564 case LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t:
3565 case LibFunc_Znam:
3566 case LibFunc_ZnamRKSt9nothrow_t:
3567 case LibFunc_ZnamSt11align_val_t:
3568 case LibFunc_ZnamSt11align_val_tRKSt9nothrow_t:
3569 return optimizeNew(CI, Builder, Func);
3570 default:
3571 break;
3574 return nullptr;
3577 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
3578 LibFunc Func,
3579 IRBuilderBase &Builder) {
3580 const Module *M = CI->getModule();
3582 // Don't optimize calls that require strict floating point semantics.
3583 if (CI->isStrictFP())
3584 return nullptr;
3586 if (Value *V = optimizeTrigReflections(CI, Func, Builder))
3587 return V;
3589 switch (Func) {
3590 case LibFunc_sinpif:
3591 case LibFunc_sinpi:
3592 return optimizeSinCosPi(CI, /*IsSin*/true, Builder);
3593 case LibFunc_cospif:
3594 case LibFunc_cospi:
3595 return optimizeSinCosPi(CI, /*IsSin*/false, Builder);
3596 case LibFunc_powf:
3597 case LibFunc_pow:
3598 case LibFunc_powl:
3599 return optimizePow(CI, Builder);
3600 case LibFunc_exp2l:
3601 case LibFunc_exp2:
3602 case LibFunc_exp2f:
3603 return optimizeExp2(CI, Builder);
3604 case LibFunc_fabsf:
3605 case LibFunc_fabs:
3606 case LibFunc_fabsl:
3607 return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
3608 case LibFunc_sqrtf:
3609 case LibFunc_sqrt:
3610 case LibFunc_sqrtl:
3611 return optimizeSqrt(CI, Builder);
3612 case LibFunc_logf:
3613 case LibFunc_log:
3614 case LibFunc_logl:
3615 case LibFunc_log10f:
3616 case LibFunc_log10:
3617 case LibFunc_log10l:
3618 case LibFunc_log1pf:
3619 case LibFunc_log1p:
3620 case LibFunc_log1pl:
3621 case LibFunc_log2f:
3622 case LibFunc_log2:
3623 case LibFunc_log2l:
3624 case LibFunc_logbf:
3625 case LibFunc_logb:
3626 case LibFunc_logbl:
3627 return optimizeLog(CI, Builder);
3628 case LibFunc_tan:
3629 case LibFunc_tanf:
3630 case LibFunc_tanl:
3631 return optimizeTan(CI, Builder);
3632 case LibFunc_ceil:
3633 return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
3634 case LibFunc_floor:
3635 return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3636 case LibFunc_round:
3637 return replaceUnaryCall(CI, Builder, Intrinsic::round);
3638 case LibFunc_roundeven:
3639 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven);
3640 case LibFunc_nearbyint:
3641 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3642 case LibFunc_rint:
3643 return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3644 case LibFunc_trunc:
3645 return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3646 case LibFunc_acos:
3647 case LibFunc_acosh:
3648 case LibFunc_asin:
3649 case LibFunc_asinh:
3650 case LibFunc_atan:
3651 case LibFunc_atanh:
3652 case LibFunc_cbrt:
3653 case LibFunc_cosh:
3654 case LibFunc_exp:
3655 case LibFunc_exp10:
3656 case LibFunc_expm1:
3657 case LibFunc_cos:
3658 case LibFunc_sin:
3659 case LibFunc_sinh:
3660 case LibFunc_tanh:
3661 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName()))
3662 return optimizeUnaryDoubleFP(CI, Builder, TLI, true);
3663 return nullptr;
3664 case LibFunc_copysign:
3665 if (hasFloatVersion(M, CI->getCalledFunction()->getName()))
3666 return optimizeBinaryDoubleFP(CI, Builder, TLI);
3667 return nullptr;
3668 case LibFunc_fminf:
3669 case LibFunc_fmin:
3670 case LibFunc_fminl:
3671 case LibFunc_fmaxf:
3672 case LibFunc_fmax:
3673 case LibFunc_fmaxl:
3674 return optimizeFMinFMax(CI, Builder);
3675 case LibFunc_cabs:
3676 case LibFunc_cabsf:
3677 case LibFunc_cabsl:
3678 return optimizeCAbs(CI, Builder);
3679 default:
3680 return nullptr;
3684 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) {
3685 Module *M = CI->getModule();
3686 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe.");
3688 // TODO: Split out the code below that operates on FP calls so that
3689 // we can all non-FP calls with the StrictFP attribute to be
3690 // optimized.
3691 if (CI->isNoBuiltin())
3692 return nullptr;
3694 LibFunc Func;
3695 Function *Callee = CI->getCalledFunction();
3696 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
3698 SmallVector<OperandBundleDef, 2> OpBundles;
3699 CI->getOperandBundlesAsDefs(OpBundles);
3701 IRBuilderBase::OperandBundlesGuard Guard(Builder);
3702 Builder.setDefaultOperandBundles(OpBundles);
3704 // Command-line parameter overrides instruction attribute.
3705 // This can't be moved to optimizeFloatingPointLibCall() because it may be
3706 // used by the intrinsic optimizations.
3707 if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3708 UnsafeFPShrink = EnableUnsafeFPShrink;
3709 else if (isa<FPMathOperator>(CI) && CI->isFast())
3710 UnsafeFPShrink = true;
3712 // First, check for intrinsics.
3713 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3714 if (!IsCallingConvC)
3715 return nullptr;
3716 // The FP intrinsics have corresponding constrained versions so we don't
3717 // need to check for the StrictFP attribute here.
3718 switch (II->getIntrinsicID()) {
3719 case Intrinsic::pow:
3720 return optimizePow(CI, Builder);
3721 case Intrinsic::exp2:
3722 return optimizeExp2(CI, Builder);
3723 case Intrinsic::log:
3724 case Intrinsic::log2:
3725 case Intrinsic::log10:
3726 return optimizeLog(CI, Builder);
3727 case Intrinsic::sqrt:
3728 return optimizeSqrt(CI, Builder);
3729 case Intrinsic::memset:
3730 return optimizeMemSet(CI, Builder);
3731 case Intrinsic::memcpy:
3732 return optimizeMemCpy(CI, Builder);
3733 case Intrinsic::memmove:
3734 return optimizeMemMove(CI, Builder);
3735 default:
3736 return nullptr;
3740 // Also try to simplify calls to fortified library functions.
3741 if (Value *SimplifiedFortifiedCI =
3742 FortifiedSimplifier.optimizeCall(CI, Builder))
3743 return SimplifiedFortifiedCI;
3745 // Then check for known library functions.
3746 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) {
3747 // We never change the calling convention.
3748 if (!ignoreCallingConv(Func) && !IsCallingConvC)
3749 return nullptr;
3750 if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3751 return V;
3752 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3753 return V;
3754 switch (Func) {
3755 case LibFunc_ffs:
3756 case LibFunc_ffsl:
3757 case LibFunc_ffsll:
3758 return optimizeFFS(CI, Builder);
3759 case LibFunc_fls:
3760 case LibFunc_flsl:
3761 case LibFunc_flsll:
3762 return optimizeFls(CI, Builder);
3763 case LibFunc_abs:
3764 case LibFunc_labs:
3765 case LibFunc_llabs:
3766 return optimizeAbs(CI, Builder);
3767 case LibFunc_isdigit:
3768 return optimizeIsDigit(CI, Builder);
3769 case LibFunc_isascii:
3770 return optimizeIsAscii(CI, Builder);
3771 case LibFunc_toascii:
3772 return optimizeToAscii(CI, Builder);
3773 case LibFunc_atoi:
3774 case LibFunc_atol:
3775 case LibFunc_atoll:
3776 return optimizeAtoi(CI, Builder);
3777 case LibFunc_strtol:
3778 case LibFunc_strtoll:
3779 return optimizeStrToInt(CI, Builder, /*AsSigned=*/true);
3780 case LibFunc_strtoul:
3781 case LibFunc_strtoull:
3782 return optimizeStrToInt(CI, Builder, /*AsSigned=*/false);
3783 case LibFunc_printf:
3784 return optimizePrintF(CI, Builder);
3785 case LibFunc_sprintf:
3786 return optimizeSPrintF(CI, Builder);
3787 case LibFunc_snprintf:
3788 return optimizeSnPrintF(CI, Builder);
3789 case LibFunc_fprintf:
3790 return optimizeFPrintF(CI, Builder);
3791 case LibFunc_fwrite:
3792 return optimizeFWrite(CI, Builder);
3793 case LibFunc_fputs:
3794 return optimizeFPuts(CI, Builder);
3795 case LibFunc_puts:
3796 return optimizePuts(CI, Builder);
3797 case LibFunc_perror:
3798 return optimizeErrorReporting(CI, Builder);
3799 case LibFunc_vfprintf:
3800 case LibFunc_fiprintf:
3801 return optimizeErrorReporting(CI, Builder, 0);
3802 default:
3803 return nullptr;
3806 return nullptr;
3809 LibCallSimplifier::LibCallSimplifier(
3810 const DataLayout &DL, const TargetLibraryInfo *TLI, AssumptionCache *AC,
3811 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3812 ProfileSummaryInfo *PSI,
3813 function_ref<void(Instruction *, Value *)> Replacer,
3814 function_ref<void(Instruction *)> Eraser)
3815 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), AC(AC), ORE(ORE), BFI(BFI),
3816 PSI(PSI), Replacer(Replacer), Eraser(Eraser) {}
3818 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3819 // Indirect through the replacer used in this instance.
3820 Replacer(I, With);
3823 void LibCallSimplifier::eraseFromParent(Instruction *I) {
3824 Eraser(I);
3827 // TODO:
3828 // Additional cases that we need to add to this file:
3830 // cbrt:
3831 // * cbrt(expN(X)) -> expN(x/3)
3832 // * cbrt(sqrt(x)) -> pow(x,1/6)
3833 // * cbrt(cbrt(x)) -> pow(x,1/9)
3835 // exp, expf, expl:
3836 // * exp(log(x)) -> x
3838 // log, logf, logl:
3839 // * log(exp(x)) -> x
3840 // * log(exp(y)) -> y*log(e)
3841 // * log(exp10(y)) -> y*log(10)
3842 // * log(sqrt(x)) -> 0.5*log(x)
3844 // pow, powf, powl:
3845 // * pow(sqrt(x),y) -> pow(x,y*0.5)
3846 // * pow(pow(x,y),z)-> pow(x,y*z)
3848 // signbit:
3849 // * signbit(cnst) -> cnst'
3850 // * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3852 // sqrt, sqrtf, sqrtl:
3853 // * sqrt(expN(x)) -> expN(x*0.5)
3854 // * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3855 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3858 //===----------------------------------------------------------------------===//
3859 // Fortified Library Call Optimizations
3860 //===----------------------------------------------------------------------===//
3862 bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(
3863 CallInst *CI, unsigned ObjSizeOp, std::optional<unsigned> SizeOp,
3864 std::optional<unsigned> StrOp, std::optional<unsigned> FlagOp) {
3865 // If this function takes a flag argument, the implementation may use it to
3866 // perform extra checks. Don't fold into the non-checking variant.
3867 if (FlagOp) {
3868 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3869 if (!Flag || !Flag->isZero())
3870 return false;
3873 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3874 return true;
3876 if (ConstantInt *ObjSizeCI =
3877 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3878 if (ObjSizeCI->isMinusOne())
3879 return true;
3880 // If the object size wasn't -1 (unknown), bail out if we were asked to.
3881 if (OnlyLowerUnknownSize)
3882 return false;
3883 if (StrOp) {
3884 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3885 // If the length is 0 we don't know how long it is and so we can't
3886 // remove the check.
3887 if (Len)
3888 annotateDereferenceableBytes(CI, *StrOp, Len);
3889 else
3890 return false;
3891 return ObjSizeCI->getZExtValue() >= Len;
3894 if (SizeOp) {
3895 if (ConstantInt *SizeCI =
3896 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3897 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3900 return false;
3903 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3904 IRBuilderBase &B) {
3905 if (isFortifiedCallFoldable(CI, 3, 2)) {
3906 CallInst *NewCI =
3907 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3908 Align(1), CI->getArgOperand(2));
3909 mergeAttributesAndFlags(NewCI, *CI);
3910 return CI->getArgOperand(0);
3912 return nullptr;
3915 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3916 IRBuilderBase &B) {
3917 if (isFortifiedCallFoldable(CI, 3, 2)) {
3918 CallInst *NewCI =
3919 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1),
3920 Align(1), CI->getArgOperand(2));
3921 mergeAttributesAndFlags(NewCI, *CI);
3922 return CI->getArgOperand(0);
3924 return nullptr;
3927 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3928 IRBuilderBase &B) {
3929 if (isFortifiedCallFoldable(CI, 3, 2)) {
3930 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3931 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3932 CI->getArgOperand(2), Align(1));
3933 mergeAttributesAndFlags(NewCI, *CI);
3934 return CI->getArgOperand(0);
3936 return nullptr;
3939 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI,
3940 IRBuilderBase &B) {
3941 const DataLayout &DL = CI->getModule()->getDataLayout();
3942 if (isFortifiedCallFoldable(CI, 3, 2))
3943 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3944 CI->getArgOperand(2), B, DL, TLI)) {
3945 return mergeAttributesAndFlags(cast<CallInst>(Call), *CI);
3947 return nullptr;
3950 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3951 IRBuilderBase &B,
3952 LibFunc Func) {
3953 const DataLayout &DL = CI->getModule()->getDataLayout();
3954 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3955 *ObjSize = CI->getArgOperand(2);
3957 // __stpcpy_chk(x,x,...) -> x+strlen(x)
3958 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3959 Value *StrLen = emitStrLen(Src, B, DL, TLI);
3960 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3963 // If a) we don't have any length information, or b) we know this will
3964 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3965 // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3966 // TODO: It might be nice to get a maximum length out of the possible
3967 // string lengths for varying.
3968 if (isFortifiedCallFoldable(CI, 2, std::nullopt, 1)) {
3969 if (Func == LibFunc_strcpy_chk)
3970 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI));
3971 else
3972 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI));
3975 if (OnlyLowerUnknownSize)
3976 return nullptr;
3978 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3979 uint64_t Len = GetStringLength(Src);
3980 if (Len)
3981 annotateDereferenceableBytes(CI, 1, Len);
3982 else
3983 return nullptr;
3985 unsigned SizeTBits = TLI->getSizeTSize(*CI->getModule());
3986 Type *SizeTTy = IntegerType::get(CI->getContext(), SizeTBits);
3987 Value *LenV = ConstantInt::get(SizeTTy, Len);
3988 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3989 // If the function was an __stpcpy_chk, and we were able to fold it into
3990 // a __memcpy_chk, we still need to return the correct end pointer.
3991 if (Ret && Func == LibFunc_stpcpy_chk)
3992 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst,
3993 ConstantInt::get(SizeTTy, Len - 1));
3994 return copyFlags(*CI, cast<CallInst>(Ret));
3997 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI,
3998 IRBuilderBase &B) {
3999 if (isFortifiedCallFoldable(CI, 1, std::nullopt, 0))
4000 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B,
4001 CI->getModule()->getDataLayout(), TLI));
4002 return nullptr;
4005 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
4006 IRBuilderBase &B,
4007 LibFunc Func) {
4008 if (isFortifiedCallFoldable(CI, 3, 2)) {
4009 if (Func == LibFunc_strncpy_chk)
4010 return copyFlags(*CI,
4011 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4012 CI->getArgOperand(2), B, TLI));
4013 else
4014 return copyFlags(*CI,
4015 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4016 CI->getArgOperand(2), B, TLI));
4019 return nullptr;
4022 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
4023 IRBuilderBase &B) {
4024 if (isFortifiedCallFoldable(CI, 4, 3))
4025 return copyFlags(
4026 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4027 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI));
4029 return nullptr;
4032 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
4033 IRBuilderBase &B) {
4034 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2)) {
4035 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5));
4036 return copyFlags(*CI,
4037 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4038 CI->getArgOperand(4), VariadicArgs, B, TLI));
4041 return nullptr;
4044 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
4045 IRBuilderBase &B) {
4046 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1)) {
4047 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4));
4048 return copyFlags(*CI,
4049 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4050 VariadicArgs, B, TLI));
4053 return nullptr;
4056 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
4057 IRBuilderBase &B) {
4058 if (isFortifiedCallFoldable(CI, 2))
4059 return copyFlags(
4060 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI));
4062 return nullptr;
4065 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
4066 IRBuilderBase &B) {
4067 if (isFortifiedCallFoldable(CI, 3))
4068 return copyFlags(*CI,
4069 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
4070 CI->getArgOperand(2), B, TLI));
4072 return nullptr;
4075 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
4076 IRBuilderBase &B) {
4077 if (isFortifiedCallFoldable(CI, 3))
4078 return copyFlags(*CI,
4079 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
4080 CI->getArgOperand(2), B, TLI));
4082 return nullptr;
4085 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
4086 IRBuilderBase &B) {
4087 if (isFortifiedCallFoldable(CI, 3))
4088 return copyFlags(*CI,
4089 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
4090 CI->getArgOperand(2), B, TLI));
4092 return nullptr;
4095 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
4096 IRBuilderBase &B) {
4097 if (isFortifiedCallFoldable(CI, 3, 1, std::nullopt, 2))
4098 return copyFlags(
4099 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
4100 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI));
4102 return nullptr;
4105 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
4106 IRBuilderBase &B) {
4107 if (isFortifiedCallFoldable(CI, 2, std::nullopt, std::nullopt, 1))
4108 return copyFlags(*CI,
4109 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
4110 CI->getArgOperand(4), B, TLI));
4112 return nullptr;
4115 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI,
4116 IRBuilderBase &Builder) {
4117 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
4118 // Some clang users checked for _chk libcall availability using:
4119 // __has_builtin(__builtin___memcpy_chk)
4120 // When compiling with -fno-builtin, this is always true.
4121 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
4122 // end up with fortified libcalls, which isn't acceptable in a freestanding
4123 // environment which only provides their non-fortified counterparts.
4125 // Until we change clang and/or teach external users to check for availability
4126 // differently, disregard the "nobuiltin" attribute and TLI::has.
4128 // PR23093.
4130 LibFunc Func;
4131 Function *Callee = CI->getCalledFunction();
4132 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI);
4134 SmallVector<OperandBundleDef, 2> OpBundles;
4135 CI->getOperandBundlesAsDefs(OpBundles);
4137 IRBuilderBase::OperandBundlesGuard Guard(Builder);
4138 Builder.setDefaultOperandBundles(OpBundles);
4140 // First, check that this is a known library functions and that the prototype
4141 // is correct.
4142 if (!TLI->getLibFunc(*Callee, Func))
4143 return nullptr;
4145 // We never change the calling convention.
4146 if (!ignoreCallingConv(Func) && !IsCallingConvC)
4147 return nullptr;
4149 switch (Func) {
4150 case LibFunc_memcpy_chk:
4151 return optimizeMemCpyChk(CI, Builder);
4152 case LibFunc_mempcpy_chk:
4153 return optimizeMemPCpyChk(CI, Builder);
4154 case LibFunc_memmove_chk:
4155 return optimizeMemMoveChk(CI, Builder);
4156 case LibFunc_memset_chk:
4157 return optimizeMemSetChk(CI, Builder);
4158 case LibFunc_stpcpy_chk:
4159 case LibFunc_strcpy_chk:
4160 return optimizeStrpCpyChk(CI, Builder, Func);
4161 case LibFunc_strlen_chk:
4162 return optimizeStrLenChk(CI, Builder);
4163 case LibFunc_stpncpy_chk:
4164 case LibFunc_strncpy_chk:
4165 return optimizeStrpNCpyChk(CI, Builder, Func);
4166 case LibFunc_memccpy_chk:
4167 return optimizeMemCCpyChk(CI, Builder);
4168 case LibFunc_snprintf_chk:
4169 return optimizeSNPrintfChk(CI, Builder);
4170 case LibFunc_sprintf_chk:
4171 return optimizeSPrintfChk(CI, Builder);
4172 case LibFunc_strcat_chk:
4173 return optimizeStrCatChk(CI, Builder);
4174 case LibFunc_strlcat_chk:
4175 return optimizeStrLCat(CI, Builder);
4176 case LibFunc_strncat_chk:
4177 return optimizeStrNCatChk(CI, Builder);
4178 case LibFunc_strlcpy_chk:
4179 return optimizeStrLCpyChk(CI, Builder);
4180 case LibFunc_vsnprintf_chk:
4181 return optimizeVSNPrintfChk(CI, Builder);
4182 case LibFunc_vsprintf_chk:
4183 return optimizeVSPrintfChk(CI, Builder);
4184 default:
4185 break;
4187 return nullptr;
4190 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
4191 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
4192 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}