[llvm-shlib] Fix the version naming style of libLLVM for Windows (#85710)
[llvm-project.git] / llvm / tools / llvm-stress / llvm-stress.cpp
blob8cb7fce5c366b3254ff1cfed666ffb5835eadc9c
1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that generates random .ll files to stress-test
10 // different components in LLVM.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/FileSystem.h"
39 #include "llvm/Support/InitLLVM.h"
40 #include "llvm/Support/ToolOutputFile.h"
41 #include "llvm/Support/WithColor.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <memory>
48 #include <string>
49 #include <system_error>
50 #include <vector>
52 namespace llvm {
54 static cl::OptionCategory StressCategory("Stress Options");
56 static cl::opt<unsigned> SeedCL("seed", cl::desc("Seed used for randomness"),
57 cl::init(0), cl::cat(StressCategory));
59 static cl::opt<unsigned> SizeCL(
60 "size",
61 cl::desc("The estimated size of the generated function (# of instrs)"),
62 cl::init(100), cl::cat(StressCategory));
64 static cl::opt<std::string> OutputFilename("o",
65 cl::desc("Override output filename"),
66 cl::value_desc("filename"),
67 cl::cat(StressCategory));
69 static cl::list<StringRef> AdditionalScalarTypes(
70 "types", cl::CommaSeparated,
71 cl::desc("Additional IR scalar types "
72 "(always includes i1, i8, i16, i32, i64, float and double)"));
74 static cl::opt<bool> EnableScalableVectors(
75 "enable-scalable-vectors",
76 cl::desc("Generate IR involving scalable vector types"),
77 cl::init(false), cl::cat(StressCategory));
80 namespace {
82 /// A utility class to provide a pseudo-random number generator which is
83 /// the same across all platforms. This is somewhat close to the libc
84 /// implementation. Note: This is not a cryptographically secure pseudorandom
85 /// number generator.
86 class Random {
87 public:
88 /// C'tor
89 Random(unsigned _seed):Seed(_seed) {}
91 /// Return a random integer, up to a
92 /// maximum of 2**19 - 1.
93 uint32_t Rand() {
94 uint32_t Val = Seed + 0x000b07a1;
95 Seed = (Val * 0x3c7c0ac1);
96 // Only lowest 19 bits are random-ish.
97 return Seed & 0x7ffff;
100 /// Return a random 64 bit integer.
101 uint64_t Rand64() {
102 uint64_t Val = Rand() & 0xffff;
103 Val |= uint64_t(Rand() & 0xffff) << 16;
104 Val |= uint64_t(Rand() & 0xffff) << 32;
105 Val |= uint64_t(Rand() & 0xffff) << 48;
106 return Val;
109 /// Rand operator for STL algorithms.
110 ptrdiff_t operator()(ptrdiff_t y) {
111 return Rand64() % y;
114 /// Make this like a C++11 random device
115 using result_type = uint32_t ;
117 static constexpr result_type min() { return 0; }
118 static constexpr result_type max() { return 0x7ffff; }
120 uint32_t operator()() {
121 uint32_t Val = Rand();
122 assert(Val <= max() && "Random value out of range");
123 return Val;
126 private:
127 unsigned Seed;
130 /// Generate an empty function with a default argument list.
131 Function *GenEmptyFunction(Module *M) {
132 // Define a few arguments
133 LLVMContext &Context = M->getContext();
134 Type* ArgsTy[] = {
135 PointerType::get(Context, 0),
136 PointerType::get(Context, 0),
137 PointerType::get(Context, 0),
138 Type::getInt32Ty(Context),
139 Type::getInt64Ty(Context),
140 Type::getInt8Ty(Context)
143 auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false);
144 // Pick a unique name to describe the input parameters
145 Twine Name = "autogen_SD" + Twine{SeedCL};
146 auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M);
147 Func->setCallingConv(CallingConv::C);
148 return Func;
151 /// A base class, implementing utilities needed for
152 /// modifying and adding new random instructions.
153 struct Modifier {
154 /// Used to store the randomly generated values.
155 using PieceTable = std::vector<Value *>;
157 public:
158 /// C'tor
159 Modifier(BasicBlock *Block, PieceTable *PT, Random *R)
160 : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) {
161 ScalarTypes.assign({Type::getInt1Ty(Context), Type::getInt8Ty(Context),
162 Type::getInt16Ty(Context), Type::getInt32Ty(Context),
163 Type::getInt64Ty(Context), Type::getFloatTy(Context),
164 Type::getDoubleTy(Context)});
166 for (auto &Arg : AdditionalScalarTypes) {
167 Type *Ty = nullptr;
168 if (Arg == "half")
169 Ty = Type::getHalfTy(Context);
170 else if (Arg == "fp128")
171 Ty = Type::getFP128Ty(Context);
172 else if (Arg == "x86_fp80")
173 Ty = Type::getX86_FP80Ty(Context);
174 else if (Arg == "ppc_fp128")
175 Ty = Type::getPPC_FP128Ty(Context);
176 else if (Arg == "x86_mmx")
177 Ty = Type::getX86_MMXTy(Context);
178 else if (Arg.starts_with("i")) {
179 unsigned N = 0;
180 Arg.drop_front().getAsInteger(10, N);
181 if (N > 0)
182 Ty = Type::getIntNTy(Context, N);
184 if (!Ty) {
185 errs() << "Invalid IR scalar type: '" << Arg << "'!\n";
186 exit(1);
189 ScalarTypes.push_back(Ty);
193 /// virtual D'tor to silence warnings.
194 virtual ~Modifier() = default;
196 /// Add a new instruction.
197 virtual void Act() = 0;
199 /// Add N new instructions,
200 virtual void ActN(unsigned n) {
201 for (unsigned i=0; i<n; ++i)
202 Act();
205 protected:
206 /// Return a random integer.
207 uint32_t getRandom() {
208 return Ran->Rand();
211 /// Return a random value from the list of known values.
212 Value *getRandomVal() {
213 assert(PT->size());
214 return PT->at(getRandom() % PT->size());
217 Constant *getRandomConstant(Type *Tp) {
218 if (Tp->isIntegerTy()) {
219 if (getRandom() & 1)
220 return ConstantInt::getAllOnesValue(Tp);
221 return ConstantInt::getNullValue(Tp);
222 } else if (Tp->isFloatingPointTy()) {
223 if (getRandom() & 1)
224 return ConstantFP::getAllOnesValue(Tp);
225 return ConstantFP::getZero(Tp);
227 return UndefValue::get(Tp);
230 /// Return a random value with a known type.
231 Value *getRandomValue(Type *Tp) {
232 unsigned index = getRandom();
233 for (unsigned i=0; i<PT->size(); ++i) {
234 Value *V = PT->at((index + i) % PT->size());
235 if (V->getType() == Tp)
236 return V;
239 // If the requested type was not found, generate a constant value.
240 if (Tp->isIntegerTy()) {
241 if (getRandom() & 1)
242 return ConstantInt::getAllOnesValue(Tp);
243 return ConstantInt::getNullValue(Tp);
244 } else if (Tp->isFloatingPointTy()) {
245 if (getRandom() & 1)
246 return ConstantFP::getAllOnesValue(Tp);
247 return ConstantFP::getZero(Tp);
248 } else if (auto *VTp = dyn_cast<FixedVectorType>(Tp)) {
249 std::vector<Constant*> TempValues;
250 TempValues.reserve(VTp->getNumElements());
251 for (unsigned i = 0; i < VTp->getNumElements(); ++i)
252 TempValues.push_back(getRandomConstant(VTp->getScalarType()));
254 ArrayRef<Constant*> VectorValue(TempValues);
255 return ConstantVector::get(VectorValue);
258 return UndefValue::get(Tp);
261 /// Return a random value of any pointer type.
262 Value *getRandomPointerValue() {
263 unsigned index = getRandom();
264 for (unsigned i=0; i<PT->size(); ++i) {
265 Value *V = PT->at((index + i) % PT->size());
266 if (V->getType()->isPointerTy())
267 return V;
269 return UndefValue::get(pickPointerType());
272 /// Return a random value of any vector type.
273 Value *getRandomVectorValue() {
274 unsigned index = getRandom();
275 for (unsigned i=0; i<PT->size(); ++i) {
276 Value *V = PT->at((index + i) % PT->size());
277 if (V->getType()->isVectorTy())
278 return V;
280 return UndefValue::get(pickVectorType());
283 /// Pick a random type.
284 Type *pickType() {
285 return (getRandom() & 1) ? pickVectorType() : pickScalarType();
288 /// Pick a random pointer type.
289 Type *pickPointerType() {
290 Type *Ty = pickType();
291 return PointerType::get(Ty, 0);
294 /// Pick a random vector type.
295 Type *pickVectorType(VectorType *VTy = nullptr) {
297 // Vectors of x86mmx are illegal; keep trying till we get something else.
298 Type *Ty;
299 do {
300 Ty = pickScalarType();
301 } while (Ty->isX86_MMXTy());
303 if (VTy)
304 return VectorType::get(Ty, VTy->getElementCount());
306 // Select either fixed length or scalable vectors with 50% probability
307 // (only if scalable vectors are enabled)
308 bool Scalable = EnableScalableVectors && getRandom() & 1;
310 // Pick a random vector width in the range 2**0 to 2**4.
311 // by adding two randoms we are generating a normal-like distribution
312 // around 2**3.
313 unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3));
314 return VectorType::get(Ty, width, Scalable);
317 /// Pick a random scalar type.
318 Type *pickScalarType() {
319 return ScalarTypes[getRandom() % ScalarTypes.size()];
322 /// Basic block to populate
323 BasicBlock *BB;
325 /// Value table
326 PieceTable *PT;
328 /// Random number generator
329 Random *Ran;
331 /// Context
332 LLVMContext &Context;
334 std::vector<Type *> ScalarTypes;
337 struct LoadModifier: public Modifier {
338 LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R)
339 : Modifier(BB, PT, R) {}
341 void Act() override {
342 // Try to use predefined pointers. If non-exist, use undef pointer value;
343 Value *Ptr = getRandomPointerValue();
344 Type *Ty = pickType();
345 Value *V = new LoadInst(Ty, Ptr, "L", BB->getTerminator());
346 PT->push_back(V);
350 struct StoreModifier: public Modifier {
351 StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R)
352 : Modifier(BB, PT, R) {}
354 void Act() override {
355 // Try to use predefined pointers. If non-exist, use undef pointer value;
356 Value *Ptr = getRandomPointerValue();
357 Type *ValTy = pickType();
359 // Do not store vectors of i1s because they are unsupported
360 // by the codegen.
361 if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
362 return;
364 Value *Val = getRandomValue(ValTy);
365 new StoreInst(Val, Ptr, BB->getTerminator());
369 struct BinModifier: public Modifier {
370 BinModifier(BasicBlock *BB, PieceTable *PT, Random *R)
371 : Modifier(BB, PT, R) {}
373 void Act() override {
374 Value *Val0 = getRandomVal();
375 Value *Val1 = getRandomValue(Val0->getType());
377 // Don't handle pointer types.
378 if (Val0->getType()->isPointerTy() ||
379 Val1->getType()->isPointerTy())
380 return;
382 // Don't handle i1 types.
383 if (Val0->getType()->getScalarSizeInBits() == 1)
384 return;
386 bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
387 Instruction* Term = BB->getTerminator();
388 unsigned R = getRandom() % (isFloat ? 7 : 13);
389 Instruction::BinaryOps Op;
391 switch (R) {
392 default: llvm_unreachable("Invalid BinOp");
393 case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
394 case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
395 case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
396 case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
397 case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
398 case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
399 case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
400 case 7: {Op = Instruction::Shl; break; }
401 case 8: {Op = Instruction::LShr; break; }
402 case 9: {Op = Instruction::AShr; break; }
403 case 10:{Op = Instruction::And; break; }
404 case 11:{Op = Instruction::Or; break; }
405 case 12:{Op = Instruction::Xor; break; }
408 PT->push_back(BinaryOperator::Create(Op, Val0, Val1, "B", Term));
412 /// Generate constant values.
413 struct ConstModifier: public Modifier {
414 ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R)
415 : Modifier(BB, PT, R) {}
417 void Act() override {
418 Type *Ty = pickType();
420 if (Ty->isVectorTy()) {
421 switch (getRandom() % 2) {
422 case 0: if (Ty->isIntOrIntVectorTy())
423 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
424 break;
425 case 1: if (Ty->isIntOrIntVectorTy())
426 return PT->push_back(ConstantVector::getNullValue(Ty));
430 if (Ty->isFloatingPointTy()) {
431 // Generate 128 random bits, the size of the (currently)
432 // largest floating-point types.
433 uint64_t RandomBits[2];
434 for (unsigned i = 0; i < 2; ++i)
435 RandomBits[i] = Ran->Rand64();
437 APInt RandomInt(Ty->getPrimitiveSizeInBits(), ArrayRef(RandomBits));
438 APFloat RandomFloat(Ty->getFltSemantics(), RandomInt);
440 if (getRandom() & 1)
441 return PT->push_back(ConstantFP::getZero(Ty));
442 return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
445 if (Ty->isIntegerTy()) {
446 switch (getRandom() % 7) {
447 case 0:
448 return PT->push_back(ConstantInt::get(
449 Ty, APInt::getAllOnes(Ty->getPrimitiveSizeInBits())));
450 case 1:
451 return PT->push_back(
452 ConstantInt::get(Ty, APInt::getZero(Ty->getPrimitiveSizeInBits())));
453 case 2:
454 case 3:
455 case 4:
456 case 5:
457 case 6:
458 PT->push_back(ConstantInt::get(Ty, getRandom()));
464 struct AllocaModifier: public Modifier {
465 AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R)
466 : Modifier(BB, PT, R) {}
468 void Act() override {
469 Type *Tp = pickType();
470 const DataLayout &DL = BB->getModule()->getDataLayout();
471 PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(),
472 "A", BB->getFirstNonPHI()));
476 struct ExtractElementModifier: public Modifier {
477 ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
478 : Modifier(BB, PT, R) {}
480 void Act() override {
481 Value *Val0 = getRandomVectorValue();
482 Value *V = ExtractElementInst::Create(
483 Val0,
484 getRandomValue(Type::getInt32Ty(BB->getContext())),
485 "E", BB->getTerminator());
486 return PT->push_back(V);
490 struct ShuffModifier: public Modifier {
491 ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R)
492 : Modifier(BB, PT, R) {}
494 void Act() override {
495 Value *Val0 = getRandomVectorValue();
496 Value *Val1 = getRandomValue(Val0->getType());
498 // Can't express arbitrary shufflevectors for scalable vectors
499 if (isa<ScalableVectorType>(Val0->getType()))
500 return;
502 unsigned Width = cast<FixedVectorType>(Val0->getType())->getNumElements();
503 std::vector<Constant*> Idxs;
505 Type *I32 = Type::getInt32Ty(BB->getContext());
506 for (unsigned i=0; i<Width; ++i) {
507 Constant *CI = ConstantInt::get(I32, getRandom() % (Width*2));
508 // Pick some undef values.
509 if (!(getRandom() % 5))
510 CI = UndefValue::get(I32);
511 Idxs.push_back(CI);
514 Constant *Mask = ConstantVector::get(Idxs);
516 Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
517 BB->getTerminator());
518 PT->push_back(V);
522 struct InsertElementModifier: public Modifier {
523 InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
524 : Modifier(BB, PT, R) {}
526 void Act() override {
527 Value *Val0 = getRandomVectorValue();
528 Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
530 Value *V = InsertElementInst::Create(
531 Val0, Val1,
532 getRandomValue(Type::getInt32Ty(BB->getContext())),
533 "I", BB->getTerminator());
534 return PT->push_back(V);
538 struct CastModifier: public Modifier {
539 CastModifier(BasicBlock *BB, PieceTable *PT, Random *R)
540 : Modifier(BB, PT, R) {}
542 void Act() override {
543 Value *V = getRandomVal();
544 Type *VTy = V->getType();
545 Type *DestTy = pickScalarType();
547 // Handle vector casts vectors.
548 if (VTy->isVectorTy())
549 DestTy = pickVectorType(cast<VectorType>(VTy));
551 // no need to cast.
552 if (VTy == DestTy) return;
554 // Pointers:
555 if (VTy->isPointerTy()) {
556 if (!DestTy->isPointerTy())
557 DestTy = PointerType::get(DestTy, 0);
558 return PT->push_back(
559 new BitCastInst(V, DestTy, "PC", BB->getTerminator()));
562 unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
563 unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
565 // Generate lots of bitcasts.
566 if ((getRandom() & 1) && VSize == DestSize) {
567 return PT->push_back(
568 new BitCastInst(V, DestTy, "BC", BB->getTerminator()));
571 // Both types are integers:
572 if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) {
573 if (VSize > DestSize) {
574 return PT->push_back(
575 new TruncInst(V, DestTy, "Tr", BB->getTerminator()));
576 } else {
577 assert(VSize < DestSize && "Different int types with the same size?");
578 if (getRandom() & 1)
579 return PT->push_back(
580 new ZExtInst(V, DestTy, "ZE", BB->getTerminator()));
581 return PT->push_back(new SExtInst(V, DestTy, "Se", BB->getTerminator()));
585 // Fp to int.
586 if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) {
587 if (getRandom() & 1)
588 return PT->push_back(
589 new FPToSIInst(V, DestTy, "FC", BB->getTerminator()));
590 return PT->push_back(new FPToUIInst(V, DestTy, "FC", BB->getTerminator()));
593 // Int to fp.
594 if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) {
595 if (getRandom() & 1)
596 return PT->push_back(
597 new SIToFPInst(V, DestTy, "FC", BB->getTerminator()));
598 return PT->push_back(new UIToFPInst(V, DestTy, "FC", BB->getTerminator()));
601 // Both floats.
602 if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) {
603 if (VSize > DestSize) {
604 return PT->push_back(
605 new FPTruncInst(V, DestTy, "Tr", BB->getTerminator()));
606 } else if (VSize < DestSize) {
607 return PT->push_back(
608 new FPExtInst(V, DestTy, "ZE", BB->getTerminator()));
610 // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
611 // for which there is no defined conversion. So do nothing.
616 struct SelectModifier: public Modifier {
617 SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R)
618 : Modifier(BB, PT, R) {}
620 void Act() override {
621 // Try a bunch of different select configuration until a valid one is found.
622 Value *Val0 = getRandomVal();
623 Value *Val1 = getRandomValue(Val0->getType());
625 Type *CondTy = Type::getInt1Ty(Context);
627 // If the value type is a vector, and we allow vector select, then in 50%
628 // of the cases generate a vector select.
629 if (auto *VTy = dyn_cast<VectorType>(Val0->getType()))
630 if (getRandom() & 1)
631 CondTy = VectorType::get(CondTy, VTy->getElementCount());
633 Value *Cond = getRandomValue(CondTy);
634 Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl", BB->getTerminator());
635 return PT->push_back(V);
639 struct CmpModifier: public Modifier {
640 CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R)
641 : Modifier(BB, PT, R) {}
643 void Act() override {
644 Value *Val0 = getRandomVal();
645 Value *Val1 = getRandomValue(Val0->getType());
647 if (Val0->getType()->isPointerTy()) return;
648 bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
650 int op;
651 if (fp) {
652 op = getRandom() %
653 (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
654 CmpInst::FIRST_FCMP_PREDICATE;
655 } else {
656 op = getRandom() %
657 (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
658 CmpInst::FIRST_ICMP_PREDICATE;
661 Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
662 (CmpInst::Predicate)op, Val0, Val1, "Cmp",
663 BB->getTerminator());
664 return PT->push_back(V);
668 } // end anonymous namespace
670 static void FillFunction(Function *F, Random &R) {
671 // Create a legal entry block.
672 BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
673 ReturnInst::Create(F->getContext(), BB);
675 // Create the value table.
676 Modifier::PieceTable PT;
678 // Consider arguments as legal values.
679 for (auto &arg : F->args())
680 PT.push_back(&arg);
682 // List of modifiers which add new random instructions.
683 std::vector<std::unique_ptr<Modifier>> Modifiers;
684 Modifiers.emplace_back(new LoadModifier(BB, &PT, &R));
685 Modifiers.emplace_back(new StoreModifier(BB, &PT, &R));
686 auto SM = Modifiers.back().get();
687 Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R));
688 Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R));
689 Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R));
690 Modifiers.emplace_back(new BinModifier(BB, &PT, &R));
691 Modifiers.emplace_back(new CastModifier(BB, &PT, &R));
692 Modifiers.emplace_back(new SelectModifier(BB, &PT, &R));
693 Modifiers.emplace_back(new CmpModifier(BB, &PT, &R));
695 // Generate the random instructions
696 AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas
697 ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants
699 for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i)
700 for (auto &Mod : Modifiers)
701 Mod->Act();
703 SM->ActN(5); // Throw in a few stores.
706 static void IntroduceControlFlow(Function *F, Random &R) {
707 std::vector<Instruction*> BoolInst;
708 for (auto &Instr : F->front()) {
709 if (Instr.getType() == IntegerType::getInt1Ty(F->getContext()))
710 BoolInst.push_back(&Instr);
713 llvm::shuffle(BoolInst.begin(), BoolInst.end(), R);
715 for (auto *Instr : BoolInst) {
716 BasicBlock *Curr = Instr->getParent();
717 BasicBlock::iterator Loc = Instr->getIterator();
718 BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
719 Instr->moveBefore(Curr->getTerminator());
720 if (Curr != &F->getEntryBlock()) {
721 BranchInst::Create(Curr, Next, Instr, Curr->getTerminator());
722 Curr->getTerminator()->eraseFromParent();
727 } // end namespace llvm
729 int main(int argc, char **argv) {
730 using namespace llvm;
732 InitLLVM X(argc, argv);
733 cl::HideUnrelatedOptions({&StressCategory, &getColorCategory()});
734 cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
736 LLVMContext Context;
737 auto M = std::make_unique<Module>("/tmp/autogen.bc", Context);
738 Function *F = GenEmptyFunction(M.get());
740 // Pick an initial seed value
741 Random R(SeedCL);
742 // Generate lots of random instructions inside a single basic block.
743 FillFunction(F, R);
744 // Break the basic block into many loops.
745 IntroduceControlFlow(F, R);
747 // Figure out what stream we are supposed to write to...
748 std::unique_ptr<ToolOutputFile> Out;
749 // Default to standard output.
750 if (OutputFilename.empty())
751 OutputFilename = "-";
753 std::error_code EC;
754 Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::OF_None));
755 if (EC) {
756 errs() << EC.message() << '\n';
757 return 1;
760 // Check that the generated module is accepted by the verifier.
761 if (verifyModule(*M.get(), &Out->os()))
762 report_fatal_error("Broken module found, compilation aborted!");
764 // Output textual IR.
765 M->print(Out->os(), nullptr);
767 Out->keep();
769 return 0;