1 //===- Writer.cpp ---------------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 #include "AArch64ErrataFix.h"
11 #include "ARMErrataFix.h"
12 #include "CallGraphSort.h"
14 #include "InputFiles.h"
15 #include "LinkerScript.h"
17 #include "OutputSections.h"
18 #include "Relocations.h"
19 #include "SymbolTable.h"
21 #include "SyntheticSections.h"
23 #include "lld/Common/Arrays.h"
24 #include "lld/Common/CommonLinkerContext.h"
25 #include "lld/Common/Filesystem.h"
26 #include "lld/Common/Strings.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/Support/BLAKE3.h"
30 #include "llvm/Support/Parallel.h"
31 #include "llvm/Support/RandomNumberGenerator.h"
32 #include "llvm/Support/TimeProfiler.h"
33 #include "llvm/Support/xxhash.h"
36 #define DEBUG_TYPE "lld"
39 using namespace llvm::ELF
;
40 using namespace llvm::object
;
41 using namespace llvm::support
;
42 using namespace llvm::support::endian
;
44 using namespace lld::elf
;
47 // The writer writes a SymbolTable result to a file.
48 template <class ELFT
> class Writer
{
50 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT
)
52 Writer(Ctx
&ctx
) : ctx(ctx
), buffer(ctx
.e
.outputBuffer
), tc(ctx
) {}
57 void addSectionSymbols();
59 void resolveShfLinkOrder();
60 void finalizeAddressDependentContent();
61 void optimizeBasicBlockJumps();
62 void sortInputSections();
63 void sortOrphanSections();
64 void finalizeSections();
65 void checkExecuteOnly();
66 void setReservedSymbolSections();
68 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> createPhdrs(Partition
&part
);
69 void addPhdrForSection(Partition
&part
, unsigned shType
, unsigned pType
,
71 void assignFileOffsets();
72 void assignFileOffsetsBinary();
73 void setPhdrs(Partition
&part
);
75 void fixSectionAlignments();
77 void writeTrapInstr();
80 void writeSectionsBinary();
84 std::unique_ptr
<FileOutputBuffer
> &buffer
;
85 // ThunkCreator holds Thunks that are used at writeTo time.
88 void addRelIpltSymbols();
89 void addStartEndSymbols();
90 void addStartStopSymbols(OutputSection
&osec
);
93 uint64_t sectionHeaderOff
;
95 } // anonymous namespace
97 template <class ELFT
> void elf::writeResult(Ctx
&ctx
) {
98 Writer
<ELFT
>(ctx
).run();
102 removeEmptyPTLoad(Ctx
&ctx
, SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> &phdrs
) {
103 auto it
= std::stable_partition(phdrs
.begin(), phdrs
.end(), [&](auto &p
) {
104 if (p
->p_type
!= PT_LOAD
)
108 uint64_t size
= p
->lastSec
->addr
+ p
->lastSec
->size
- p
->firstSec
->addr
;
112 // Clear OutputSection::ptLoad for sections contained in removed
114 DenseSet
<PhdrEntry
*> removed
;
115 for (auto it2
= it
; it2
!= phdrs
.end(); ++it2
)
116 removed
.insert(it2
->get());
117 for (OutputSection
*sec
: ctx
.outputSections
)
118 if (removed
.count(sec
->ptLoad
))
119 sec
->ptLoad
= nullptr;
120 phdrs
.erase(it
, phdrs
.end());
123 void elf::copySectionsIntoPartitions(Ctx
&ctx
) {
124 SmallVector
<InputSectionBase
*, 0> newSections
;
125 const size_t ehSize
= ctx
.ehInputSections
.size();
126 for (unsigned part
= 2; part
!= ctx
.partitions
.size() + 1; ++part
) {
127 for (InputSectionBase
*s
: ctx
.inputSections
) {
128 if (!(s
->flags
& SHF_ALLOC
) || !s
->isLive() || s
->type
!= SHT_NOTE
)
130 auto *copy
= make
<InputSection
>(cast
<InputSection
>(*s
));
131 copy
->partition
= part
;
132 newSections
.push_back(copy
);
134 for (size_t i
= 0; i
!= ehSize
; ++i
) {
135 assert(ctx
.ehInputSections
[i
]->isLive());
136 auto *copy
= make
<EhInputSection
>(*ctx
.ehInputSections
[i
]);
137 copy
->partition
= part
;
138 ctx
.ehInputSections
.push_back(copy
);
142 ctx
.inputSections
.insert(ctx
.inputSections
.end(), newSections
.begin(),
146 static Defined
*addOptionalRegular(Ctx
&ctx
, StringRef name
, SectionBase
*sec
,
147 uint64_t val
, uint8_t stOther
= STV_HIDDEN
) {
148 Symbol
*s
= ctx
.symtab
->find(name
);
149 if (!s
|| s
->isDefined() || s
->isCommon())
152 s
->resolve(ctx
, Defined
{ctx
, ctx
.internalFile
, StringRef(), STB_GLOBAL
,
153 stOther
, STT_NOTYPE
, val
,
155 s
->isUsedInRegularObj
= true;
156 return cast
<Defined
>(s
);
159 // The linker is expected to define some symbols depending on
160 // the linking result. This function defines such symbols.
161 void elf::addReservedSymbols(Ctx
&ctx
) {
162 if (ctx
.arg
.emachine
== EM_MIPS
) {
163 auto addAbsolute
= [&](StringRef name
) {
165 ctx
.symtab
->addSymbol(Defined
{ctx
, ctx
.internalFile
, name
, STB_GLOBAL
,
166 STV_HIDDEN
, STT_NOTYPE
, 0, 0, nullptr});
167 sym
->isUsedInRegularObj
= true;
168 return cast
<Defined
>(sym
);
170 // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
171 // so that it points to an absolute address which by default is relative
172 // to GOT. Default offset is 0x7ff0.
173 // See "Global Data Symbols" in Chapter 6 in the following document:
174 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
175 ctx
.sym
.mipsGp
= addAbsolute("_gp");
177 // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
178 // start of function and 'gp' pointer into GOT.
179 if (ctx
.symtab
->find("_gp_disp"))
180 ctx
.sym
.mipsGpDisp
= addAbsolute("_gp_disp");
182 // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
183 // pointer. This symbol is used in the code generated by .cpload pseudo-op
184 // in case of using -mno-shared option.
185 // https://sourceware.org/ml/binutils/2004-12/msg00094.html
186 if (ctx
.symtab
->find("__gnu_local_gp"))
187 ctx
.sym
.mipsLocalGp
= addAbsolute("__gnu_local_gp");
188 } else if (ctx
.arg
.emachine
== EM_PPC
) {
189 // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
190 // support Small Data Area, define it arbitrarily as 0.
191 addOptionalRegular(ctx
, "_SDA_BASE_", nullptr, 0, STV_HIDDEN
);
192 } else if (ctx
.arg
.emachine
== EM_PPC64
) {
193 addPPC64SaveRestore(ctx
);
196 // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
197 // combines the typical ELF GOT with the small data sections. It commonly
198 // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
199 // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
200 // represent the TOC base which is offset by 0x8000 bytes from the start of
202 // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
203 // correctness of some relocations depends on its value.
204 StringRef gotSymName
=
205 (ctx
.arg
.emachine
== EM_PPC64
) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
207 if (Symbol
*s
= ctx
.symtab
->find(gotSymName
)) {
208 if (s
->isDefined()) {
209 ErrAlways(ctx
) << s
->file
<< " cannot redefine linker defined symbol '"
210 << gotSymName
<< "'";
215 if (ctx
.arg
.emachine
== EM_PPC64
)
218 s
->resolve(ctx
, Defined
{ctx
, ctx
.internalFile
, StringRef(), STB_GLOBAL
,
219 STV_HIDDEN
, STT_NOTYPE
, gotOff
, /*size=*/0,
220 ctx
.out
.elfHeader
.get()});
221 ctx
.sym
.globalOffsetTable
= cast
<Defined
>(s
);
224 // __ehdr_start is the location of ELF file headers. Note that we define
225 // this symbol unconditionally even when using a linker script, which
226 // differs from the behavior implemented by GNU linker which only define
227 // this symbol if ELF headers are in the memory mapped segment.
228 addOptionalRegular(ctx
, "__ehdr_start", ctx
.out
.elfHeader
.get(), 0,
231 // __executable_start is not documented, but the expectation of at
232 // least the Android libc is that it points to the ELF header.
233 addOptionalRegular(ctx
, "__executable_start", ctx
.out
.elfHeader
.get(), 0,
236 // __dso_handle symbol is passed to cxa_finalize as a marker to identify
237 // each DSO. The address of the symbol doesn't matter as long as they are
238 // different in different DSOs, so we chose the start address of the DSO.
239 addOptionalRegular(ctx
, "__dso_handle", ctx
.out
.elfHeader
.get(), 0,
242 // If linker script do layout we do not need to create any standard symbols.
243 if (ctx
.script
->hasSectionsCommand
)
246 auto add
= [&](StringRef s
, int64_t pos
) {
247 return addOptionalRegular(ctx
, s
, ctx
.out
.elfHeader
.get(), pos
,
251 ctx
.sym
.bss
= add("__bss_start", 0);
252 ctx
.sym
.end1
= add("end", -1);
253 ctx
.sym
.end2
= add("_end", -1);
254 ctx
.sym
.etext1
= add("etext", -1);
255 ctx
.sym
.etext2
= add("_etext", -1);
256 ctx
.sym
.edata1
= add("edata", -1);
257 ctx
.sym
.edata2
= add("_edata", -1);
260 static void demoteDefined(Defined
&sym
, DenseMap
<SectionBase
*, size_t> &map
) {
262 for (auto [i
, sec
] : llvm::enumerate(sym
.file
->getSections()))
263 map
.try_emplace(sec
, i
);
264 // Change WEAK to GLOBAL so that if a scanned relocation references sym,
265 // maybeReportUndefined will report an error.
266 uint8_t binding
= sym
.isWeak() ? uint8_t(STB_GLOBAL
) : sym
.binding
;
267 Undefined(sym
.file
, sym
.getName(), binding
, sym
.stOther
, sym
.type
,
268 /*discardedSecIdx=*/map
.lookup(sym
.section
))
270 // Eliminate from the symbol table, otherwise we would leave an undefined
271 // symbol if the symbol is unreferenced in the absence of GC.
272 sym
.isUsedInRegularObj
= false;
275 // If all references to a DSO happen to be weak, the DSO is not added to
276 // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid
277 // dangling references to an unneeded DSO. Use a weak binding to avoid
278 // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols.
280 // In addition, demote symbols defined in discarded sections, so that
281 // references to /DISCARD/ discarded symbols will lead to errors.
282 static void demoteSymbolsAndComputeIsPreemptible(Ctx
&ctx
) {
283 llvm::TimeTraceScope
timeScope("Demote symbols");
284 DenseMap
<InputFile
*, DenseMap
<SectionBase
*, size_t>> sectionIndexMap
;
285 for (Symbol
*sym
: ctx
.symtab
->getSymbols()) {
286 if (auto *d
= dyn_cast
<Defined
>(sym
)) {
287 if (d
->section
&& !d
->section
->isLive())
288 demoteDefined(*d
, sectionIndexMap
[d
->file
]);
290 auto *s
= dyn_cast
<SharedSymbol
>(sym
);
291 if (sym
->isLazy() || (s
&& !cast
<SharedFile
>(s
->file
)->isNeeded
)) {
292 uint8_t binding
= sym
->isLazy() ? sym
->binding
: uint8_t(STB_WEAK
);
293 Undefined(ctx
.internalFile
, sym
->getName(), binding
, sym
->stOther
,
296 sym
->versionId
= VER_NDX_GLOBAL
;
300 sym
->isExported
= sym
->includeInDynsym(ctx
);
301 if (ctx
.arg
.hasDynSymTab
)
302 sym
->isPreemptible
= sym
->isExported
&& computeIsPreemptible(ctx
, *sym
);
306 static OutputSection
*findSection(Ctx
&ctx
, StringRef name
,
307 unsigned partition
= 1) {
308 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
309 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
310 if (osd
->osec
.name
== name
&& osd
->osec
.partition
== partition
)
315 // The main function of the writer.
316 template <class ELFT
> void Writer
<ELFT
>::run() {
317 // Now that we have a complete set of output sections. This function
318 // completes section contents. For example, we need to add strings
319 // to the string table, and add entries to .got and .plt.
320 // finalizeSections does that.
324 // If --compressed-debug-sections is specified, compress .debug_* sections.
325 // Do it right now because it changes the size of output sections.
326 for (OutputSection
*sec
: ctx
.outputSections
)
327 sec
->maybeCompress
<ELFT
>(ctx
);
329 if (ctx
.script
->hasSectionsCommand
)
330 ctx
.script
->allocateHeaders(ctx
.mainPart
->phdrs
);
332 // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
333 // 0 sized region. This has to be done late since only after assignAddresses
334 // we know the size of the sections.
335 for (Partition
&part
: ctx
.partitions
)
336 removeEmptyPTLoad(ctx
, part
.phdrs
);
338 if (!ctx
.arg
.oFormatBinary
)
341 assignFileOffsetsBinary();
343 for (Partition
&part
: ctx
.partitions
)
346 // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections()
347 // because the files may be useful in case checkSections() or openFile()
348 // fails, for example, due to an erroneous file size.
349 writeMapAndCref(ctx
);
351 // Handle --print-memory-usage option.
352 if (ctx
.arg
.printMemoryUsage
)
353 ctx
.script
->printMemoryUsage(ctx
.e
.outs());
355 if (ctx
.arg
.checkSections
)
358 // It does not make sense try to open the file if we have error already.
363 llvm::TimeTraceScope
timeScope("Write output file");
364 // Write the result down to a file.
369 if (!ctx
.arg
.oFormatBinary
) {
370 if (ctx
.arg
.zSeparate
!= SeparateSegmentKind::None
)
375 writeSectionsBinary();
378 // Backfill .note.gnu.build-id section content. This is done at last
379 // because the content is usually a hash value of the entire output file.
384 if (auto e
= buffer
->commit())
385 Err(ctx
) << "failed to write output '" << buffer
->getPath()
386 << "': " << std::move(e
);
388 if (!ctx
.arg
.cmseOutputLib
.empty())
389 writeARMCmseImportLib
<ELFT
>(ctx
);
393 template <class ELFT
, class RelTy
>
394 static void markUsedLocalSymbolsImpl(ObjFile
<ELFT
> *file
,
395 llvm::ArrayRef
<RelTy
> rels
) {
396 for (const RelTy
&rel
: rels
) {
397 Symbol
&sym
= file
->getRelocTargetSym(rel
);
403 // The function ensures that the "used" field of local symbols reflects the fact
404 // that the symbol is used in a relocation from a live section.
405 template <class ELFT
> static void markUsedLocalSymbols(Ctx
&ctx
) {
406 // With --gc-sections, the field is already filled.
407 // See MarkLive<ELFT>::resolveReloc().
408 if (ctx
.arg
.gcSections
)
410 for (ELFFileBase
*file
: ctx
.objectFiles
) {
411 ObjFile
<ELFT
> *f
= cast
<ObjFile
<ELFT
>>(file
);
412 for (InputSectionBase
*s
: f
->getSections()) {
413 InputSection
*isec
= dyn_cast_or_null
<InputSection
>(s
);
416 if (isec
->type
== SHT_REL
) {
417 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rel
>());
418 } else if (isec
->type
== SHT_RELA
) {
419 markUsedLocalSymbolsImpl(f
, isec
->getDataAs
<typename
ELFT::Rela
>());
420 } else if (isec
->type
== SHT_CREL
) {
421 // The is64=true variant also works with ELF32 since only the r_symidx
423 for (Elf_Crel_Impl
<true> r
: RelocsCrel
<true>(isec
->content_
)) {
424 Symbol
&sym
= file
->getSymbol(r
.r_symidx
);
433 static bool shouldKeepInSymtab(Ctx
&ctx
, const Defined
&sym
) {
437 // If --emit-reloc or -r is given, preserve symbols referenced by relocations
438 // from live sections.
439 if (sym
.used
&& ctx
.arg
.copyRelocs
)
442 // Exclude local symbols pointing to .ARM.exidx sections.
443 // They are probably mapping symbols "$d", which are optional for these
444 // sections. After merging the .ARM.exidx sections, some of these symbols
445 // may become dangling. The easiest way to avoid the issue is not to add
446 // them to the symbol table from the beginning.
447 if (ctx
.arg
.emachine
== EM_ARM
&& sym
.section
&&
448 sym
.section
->type
== SHT_ARM_EXIDX
)
451 if (ctx
.arg
.discard
== DiscardPolicy::None
)
453 if (ctx
.arg
.discard
== DiscardPolicy::All
)
456 // In ELF assembly .L symbols are normally discarded by the assembler.
457 // If the assembler fails to do so, the linker discards them if
458 // * --discard-locals is used.
459 // * The symbol is in a SHF_MERGE section, which is normally the reason for
460 // the assembler keeping the .L symbol.
461 if (sym
.getName().starts_with(".L") &&
462 (ctx
.arg
.discard
== DiscardPolicy::Locals
||
463 (sym
.section
&& (sym
.section
->flags
& SHF_MERGE
))))
468 bool elf::includeInSymtab(Ctx
&ctx
, const Symbol
&b
) {
469 if (auto *d
= dyn_cast
<Defined
>(&b
)) {
470 // Always include absolute symbols.
471 SectionBase
*sec
= d
->section
;
474 assert(sec
->isLive());
476 if (auto *s
= dyn_cast
<MergeInputSection
>(sec
))
477 return s
->getSectionPiece(d
->value
).live
;
480 return b
.used
|| !ctx
.arg
.gcSections
;
483 // Scan local symbols to:
485 // - demote symbols defined relative to /DISCARD/ discarded input sections so
486 // that relocations referencing them will lead to errors.
487 // - copy eligible symbols to .symTab
488 static void demoteAndCopyLocalSymbols(Ctx
&ctx
) {
489 llvm::TimeTraceScope
timeScope("Add local symbols");
490 for (ELFFileBase
*file
: ctx
.objectFiles
) {
491 DenseMap
<SectionBase
*, size_t> sectionIndexMap
;
492 for (Symbol
*b
: file
->getLocalSymbols()) {
493 assert(b
->isLocal() && "should have been caught in initializeSymbols()");
494 auto *dr
= dyn_cast
<Defined
>(b
);
498 if (dr
->section
&& !dr
->section
->isLive())
499 demoteDefined(*dr
, sectionIndexMap
);
500 else if (ctx
.in
.symTab
&& includeInSymtab(ctx
, *b
) &&
501 shouldKeepInSymtab(ctx
, *dr
))
502 ctx
.in
.symTab
->addSymbol(b
);
507 // Create a section symbol for each output section so that we can represent
508 // relocations that point to the section. If we know that no relocation is
509 // referring to a section (that happens if the section is a synthetic one), we
510 // don't create a section symbol for that section.
511 template <class ELFT
> void Writer
<ELFT
>::addSectionSymbols() {
512 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
) {
513 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
516 OutputSection
&osec
= osd
->osec
;
517 InputSectionBase
*isec
= nullptr;
518 // Iterate over all input sections and add a STT_SECTION symbol if any input
519 // section may be a relocation target.
520 for (SectionCommand
*cmd
: osec
.commands
) {
521 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
524 for (InputSectionBase
*s
: isd
->sections
) {
525 // Relocations are not using REL[A] section symbols.
526 if (isStaticRelSecType(s
->type
))
529 // Unlike other synthetic sections, mergeable output sections contain
530 // data copied from input sections, and there may be a relocation
531 // pointing to its contents if -r or --emit-reloc is given.
532 if (isa
<SyntheticSection
>(s
) && !(s
->flags
& SHF_MERGE
))
542 // Set the symbol to be relative to the output section so that its st_value
543 // equals the output section address. Note, there may be a gap between the
544 // start of the output section and isec.
545 ctx
.in
.symTab
->addSymbol(makeDefined(ctx
, isec
->file
, "", STB_LOCAL
,
546 /*stOther=*/0, STT_SECTION
,
547 /*value=*/0, /*size=*/0, &osec
));
551 // Today's loaders have a feature to make segments read-only after
552 // processing dynamic relocations to enhance security. PT_GNU_RELRO
553 // is defined for that.
555 // This function returns true if a section needs to be put into a
556 // PT_GNU_RELRO segment.
557 static bool isRelroSection(Ctx
&ctx
, const OutputSection
*sec
) {
563 uint64_t flags
= sec
->flags
;
565 // Non-allocatable or non-writable sections don't need RELRO because
566 // they are not writable or not even mapped to memory in the first place.
567 // RELRO is for sections that are essentially read-only but need to
568 // be writable only at process startup to allow dynamic linker to
569 // apply relocations.
570 if (!(flags
& SHF_ALLOC
) || !(flags
& SHF_WRITE
))
573 // Once initialized, TLS data segments are used as data templates
574 // for a thread-local storage. For each new thread, runtime
575 // allocates memory for a TLS and copy templates there. No thread
576 // are supposed to use templates directly. Thus, it can be in RELRO.
580 // .init_array, .preinit_array and .fini_array contain pointers to
581 // functions that are executed on process startup or exit. These
582 // pointers are set by the static linker, and they are not expected
583 // to change at runtime. But if you are an attacker, you could do
584 // interesting things by manipulating pointers in .fini_array, for
585 // example. So they are put into RELRO.
586 uint32_t type
= sec
->type
;
587 if (type
== SHT_INIT_ARRAY
|| type
== SHT_FINI_ARRAY
||
588 type
== SHT_PREINIT_ARRAY
)
591 // .got contains pointers to external symbols. They are resolved by
592 // the dynamic linker when a module is loaded into memory, and after
593 // that they are not expected to change. So, it can be in RELRO.
594 if (ctx
.in
.got
&& sec
== ctx
.in
.got
->getParent())
597 // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
598 // through r2 register, which is reserved for that purpose. Since r2 is used
599 // for accessing .got as well, .got and .toc need to be close enough in the
600 // virtual address space. Usually, .toc comes just after .got. Since we place
601 // .got into RELRO, .toc needs to be placed into RELRO too.
602 if (sec
->name
== ".toc")
605 // .got.plt contains pointers to external function symbols. They are
606 // by default resolved lazily, so we usually cannot put it into RELRO.
607 // However, if "-z now" is given, the lazy symbol resolution is
608 // disabled, which enables us to put it into RELRO.
609 if (sec
== ctx
.in
.gotPlt
->getParent())
612 if (ctx
.in
.relroPadding
&& sec
== ctx
.in
.relroPadding
->getParent())
615 // .dynamic section contains data for the dynamic linker, and
616 // there's no need to write to it at runtime, so it's better to put
618 if (sec
->name
== ".dynamic")
621 // Sections with some special names are put into RELRO. This is a
622 // bit unfortunate because section names shouldn't be significant in
623 // ELF in spirit. But in reality many linker features depend on
624 // magic section names.
625 StringRef s
= sec
->name
;
627 bool abiAgnostic
= s
== ".data.rel.ro" || s
== ".bss.rel.ro" ||
628 s
== ".ctors" || s
== ".dtors" || s
== ".jcr" ||
629 s
== ".eh_frame" || s
== ".fini_array" ||
630 s
== ".init_array" || s
== ".preinit_array";
633 ctx
.arg
.osabi
== ELFOSABI_OPENBSD
&& s
== ".openbsd.randomdata";
635 return abiAgnostic
|| abiSpecific
;
638 // We compute a rank for each section. The rank indicates where the
639 // section should be placed in the file. Instead of using simple
640 // numbers (0,1,2...), we use a series of flags. One for each decision
641 // point when placing the section.
642 // Using flags has two key properties:
643 // * It is easy to check if a give branch was taken.
644 // * It is easy two see how similar two ranks are (see getRankProximity).
646 RF_NOT_ADDR_SET
= 1 << 27,
647 RF_NOT_ALLOC
= 1 << 26,
648 RF_HIP_FATBIN
= 1 << 19,
649 RF_PARTITION
= 1 << 18, // Partition number (8 bits)
650 RF_LARGE_ALT
= 1 << 15,
652 RF_EXEC_WRITE
= 1 << 13,
656 RF_NOT_RELRO
= 1 << 9,
661 unsigned elf::getSectionRank(Ctx
&ctx
, OutputSection
&osec
) {
662 unsigned rank
= osec
.partition
* RF_PARTITION
;
664 // We want to put section specified by -T option first, so we
665 // can start assigning VA starting from them later.
666 if (ctx
.arg
.sectionStartMap
.count(osec
.name
))
668 rank
|= RF_NOT_ADDR_SET
;
670 // Allocatable sections go first to reduce the total PT_LOAD size and
671 // so debug info doesn't change addresses in actual code.
672 if (!(osec
.flags
& SHF_ALLOC
))
673 return rank
| RF_NOT_ALLOC
;
675 // Sort sections based on their access permission in the following
676 // order: R, RX, RXW, RW(RELRO), RW(non-RELRO).
678 // Read-only sections come first such that they go in the PT_LOAD covering the
679 // program headers at the start of the file.
681 // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro
682 // .bss.rel.ro) | .data .bss), where | marks where page alignment happens.
683 // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro
684 // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment
686 bool isExec
= osec
.flags
& SHF_EXECINSTR
;
687 bool isWrite
= osec
.flags
& SHF_WRITE
;
689 if (!isWrite
&& !isExec
) {
690 // Among PROGBITS sections, place .lrodata further from .text.
691 // For -z lrodata-after-bss, place .lrodata after .lbss like GNU ld. This
692 // layout has one extra PT_LOAD, but alleviates relocation overflow
693 // pressure for absolute relocations referencing small data from -fno-pic
694 // relocatable files.
695 if (osec
.flags
& SHF_X86_64_LARGE
&& ctx
.arg
.emachine
== EM_X86_64
)
696 rank
|= ctx
.arg
.zLrodataAfterBss
? RF_LARGE_ALT
: 0;
698 rank
|= ctx
.arg
.zLrodataAfterBss
? 0 : RF_LARGE
;
700 if (osec
.type
== SHT_LLVM_PART_EHDR
)
702 else if (osec
.type
== SHT_LLVM_PART_PHDR
)
704 else if (osec
.name
== ".interp")
706 // Put .note sections at the beginning so that they are likely to be
707 // included in a truncate core file. In particular, .note.gnu.build-id, if
708 // available, can identify the object file.
709 else if (osec
.type
== SHT_NOTE
)
711 // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to
712 // alleviate relocation overflow pressure. Large special sections such as
713 // .dynstr and .dynsym can be away from .text.
714 else if (osec
.type
!= SHT_PROGBITS
)
719 rank
|= isWrite
? RF_EXEC_WRITE
: RF_EXEC
;
722 // The TLS initialization block needs to be a single contiguous block. Place
723 // TLS sections directly before the other RELRO sections.
724 if (!(osec
.flags
& SHF_TLS
))
726 if (isRelroSection(ctx
, &osec
))
729 rank
|= RF_NOT_RELRO
;
730 // Place .ldata and .lbss after .bss. Making .bss closer to .text
731 // alleviates relocation overflow pressure.
732 // For -z lrodata-after-bss, place .lbss/.lrodata/.ldata after .bss.
733 // .bss/.lbss being adjacent reuses the NOBITS size optimization.
734 if (osec
.flags
& SHF_X86_64_LARGE
&& ctx
.arg
.emachine
== EM_X86_64
) {
735 rank
|= ctx
.arg
.zLrodataAfterBss
736 ? (osec
.type
== SHT_NOBITS
? 1 : RF_LARGE_ALT
)
741 // Within TLS sections, or within other RelRo sections, or within non-RelRo
742 // sections, place non-NOBITS sections first.
743 if (osec
.type
== SHT_NOBITS
)
746 // Put HIP fatbin related sections further away to avoid wasting relocation
747 // range to jump over them. Make sure .hip_fatbin is the furthest.
748 if (osec
.name
== ".hipFatBinSegment")
749 rank
|= RF_HIP_FATBIN
;
750 if (osec
.name
== ".hip_gpubin_handle")
751 rank
|= RF_HIP_FATBIN
| 2;
752 if (osec
.name
== ".hip_fatbin")
753 rank
|= RF_HIP_FATBIN
| RF_WRITE
| 3;
755 // Some architectures have additional ordering restrictions for sections
756 // within the same PT_LOAD.
757 if (ctx
.arg
.emachine
== EM_PPC64
) {
758 // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
759 // that we would like to make sure appear is a specific order to maximize
760 // their coverage by a single signed 16-bit offset from the TOC base
762 StringRef name
= osec
.name
;
765 else if (name
== ".toc")
769 if (ctx
.arg
.emachine
== EM_MIPS
) {
770 if (osec
.name
!= ".got")
772 // All sections with SHF_MIPS_GPREL flag should be grouped together
773 // because data in these sections is addressable with a gp relative address.
774 if (osec
.flags
& SHF_MIPS_GPREL
)
778 if (ctx
.arg
.emachine
== EM_RISCV
) {
779 // .sdata and .sbss are placed closer to make GP relaxation more profitable
781 StringRef name
= osec
.name
;
782 if (name
== ".sdata" || (osec
.type
== SHT_NOBITS
&& name
!= ".sbss"))
789 static bool compareSections(Ctx
&ctx
, const SectionCommand
*aCmd
,
790 const SectionCommand
*bCmd
) {
791 const OutputSection
*a
= &cast
<OutputDesc
>(aCmd
)->osec
;
792 const OutputSection
*b
= &cast
<OutputDesc
>(bCmd
)->osec
;
794 if (a
->sortRank
!= b
->sortRank
)
795 return a
->sortRank
< b
->sortRank
;
797 if (!(a
->sortRank
& RF_NOT_ADDR_SET
))
798 return ctx
.arg
.sectionStartMap
.lookup(a
->name
) <
799 ctx
.arg
.sectionStartMap
.lookup(b
->name
);
803 void PhdrEntry::add(OutputSection
*sec
) {
807 p_align
= std::max(p_align
, sec
->addralign
);
808 if (p_type
== PT_LOAD
)
812 // A statically linked position-dependent executable should only contain
813 // IRELATIVE relocations and no other dynamic relocations. Encapsulation symbols
814 // __rel[a]_iplt_{start,end} will be defined for .rel[a].dyn, to be
815 // processed by the libc runtime. Other executables or DSOs use dynamic tags
817 template <class ELFT
> void Writer
<ELFT
>::addRelIpltSymbols() {
821 // __rela_iplt_{start,end} are initially defined relative to dummy section 0.
822 // We'll override ctx.out.elfHeader with relaDyn later when we are sure that
823 // .rela.dyn will be present in the output.
824 std::string name
= ctx
.arg
.isRela
? "__rela_iplt_start" : "__rel_iplt_start";
825 ctx
.sym
.relaIpltStart
=
826 addOptionalRegular(ctx
, name
, ctx
.out
.elfHeader
.get(), 0, STV_HIDDEN
);
827 name
.replace(name
.size() - 5, 5, "end");
828 ctx
.sym
.relaIpltEnd
=
829 addOptionalRegular(ctx
, name
, ctx
.out
.elfHeader
.get(), 0, STV_HIDDEN
);
832 // This function generates assignments for predefined symbols (e.g. _end or
833 // _etext) and inserts them into the commands sequence to be processed at the
834 // appropriate time. This ensures that the value is going to be correct by the
835 // time any references to these symbols are processed and is equivalent to
836 // defining these symbols explicitly in the linker script.
837 template <class ELFT
> void Writer
<ELFT
>::setReservedSymbolSections() {
838 if (ctx
.sym
.globalOffsetTable
) {
839 // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
840 // to the start of the .got or .got.plt section.
841 InputSection
*sec
= ctx
.in
.gotPlt
.get();
842 if (!ctx
.target
->gotBaseSymInGotPlt
)
843 sec
= ctx
.in
.mipsGot
? cast
<InputSection
>(ctx
.in
.mipsGot
.get())
844 : cast
<InputSection
>(ctx
.in
.got
.get());
845 ctx
.sym
.globalOffsetTable
->section
= sec
;
848 // .rela_iplt_{start,end} mark the start and the end of the section containing
849 // IRELATIVE relocations.
850 if (ctx
.sym
.relaIpltStart
) {
851 auto &dyn
= getIRelativeSection(ctx
);
852 if (dyn
.isNeeded()) {
853 ctx
.sym
.relaIpltStart
->section
= &dyn
;
854 ctx
.sym
.relaIpltEnd
->section
= &dyn
;
855 ctx
.sym
.relaIpltEnd
->value
= dyn
.getSize();
859 PhdrEntry
*last
= nullptr;
860 OutputSection
*lastRO
= nullptr;
861 auto isLarge
= [&ctx
= ctx
](OutputSection
*osec
) {
862 return ctx
.arg
.emachine
== EM_X86_64
&& osec
->flags
& SHF_X86_64_LARGE
;
864 for (Partition
&part
: ctx
.partitions
) {
865 for (auto &p
: part
.phdrs
) {
866 if (p
->p_type
!= PT_LOAD
)
869 if (!(p
->p_flags
& PF_W
) && p
->lastSec
&& !isLarge(p
->lastSec
))
875 // _etext is the first location after the last read-only loadable segment
876 // that does not contain large sections.
878 ctx
.sym
.etext1
->section
= lastRO
;
880 ctx
.sym
.etext2
->section
= lastRO
;
884 // _edata points to the end of the last non-large mapped initialized
886 OutputSection
*edata
= nullptr;
887 for (OutputSection
*os
: ctx
.outputSections
) {
888 if (os
->type
!= SHT_NOBITS
&& !isLarge(os
))
890 if (os
== last
->lastSec
)
895 ctx
.sym
.edata1
->section
= edata
;
897 ctx
.sym
.edata2
->section
= edata
;
899 // _end is the first location after the uninitialized data region.
901 ctx
.sym
.end1
->section
= last
->lastSec
;
903 ctx
.sym
.end2
->section
= last
->lastSec
;
907 // On RISC-V, set __bss_start to the start of .sbss if present.
908 OutputSection
*sbss
=
909 ctx
.arg
.emachine
== EM_RISCV
? findSection(ctx
, ".sbss") : nullptr;
910 ctx
.sym
.bss
->section
= sbss
? sbss
: findSection(ctx
, ".bss");
913 // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
914 // be equal to the _gp symbol's value.
915 if (ctx
.sym
.mipsGp
) {
916 // Find GP-relative section with the lowest address
917 // and use this address to calculate default _gp value.
918 for (OutputSection
*os
: ctx
.outputSections
) {
919 if (os
->flags
& SHF_MIPS_GPREL
) {
920 ctx
.sym
.mipsGp
->section
= os
;
921 ctx
.sym
.mipsGp
->value
= 0x7ff0;
928 // We want to find how similar two ranks are.
929 // The more branches in getSectionRank that match, the more similar they are.
930 // Since each branch corresponds to a bit flag, we can just use
931 // countLeadingZeros.
932 static int getRankProximity(OutputSection
*a
, SectionCommand
*b
) {
933 auto *osd
= dyn_cast
<OutputDesc
>(b
);
934 return (osd
&& osd
->osec
.hasInputSections
)
935 ? llvm::countl_zero(a
->sortRank
^ osd
->osec
.sortRank
)
939 // When placing orphan sections, we want to place them after symbol assignments
940 // so that an orphan after
944 // doesn't break the intended meaning of the begin/end symbols.
945 // We don't want to go over sections since findOrphanPos is the
946 // one in charge of deciding the order of the sections.
947 // We don't want to go over changes to '.', since doing so in
948 // rx_sec : { *(rx_sec) }
949 // . = ALIGN(0x1000);
950 // /* The RW PT_LOAD starts here*/
951 // rw_sec : { *(rw_sec) }
952 // would mean that the RW PT_LOAD would become unaligned.
953 static bool shouldSkip(SectionCommand
*cmd
) {
954 if (auto *assign
= dyn_cast
<SymbolAssignment
>(cmd
))
955 return assign
->name
!= ".";
959 // We want to place orphan sections so that they share as much
960 // characteristics with their neighbors as possible. For example, if
961 // both are rw, or both are tls.
962 static SmallVectorImpl
<SectionCommand
*>::iterator
963 findOrphanPos(Ctx
&ctx
, SmallVectorImpl
<SectionCommand
*>::iterator b
,
964 SmallVectorImpl
<SectionCommand
*>::iterator e
) {
965 // Place non-alloc orphan sections at the end. This matches how we assign file
966 // offsets to non-alloc sections.
967 OutputSection
*sec
= &cast
<OutputDesc
>(*e
)->osec
;
968 if (!(sec
->flags
& SHF_ALLOC
))
971 // As a special case, place .relro_padding before the SymbolAssignment using
972 // DATA_SEGMENT_RELRO_END, if present.
973 if (ctx
.in
.relroPadding
&& sec
== ctx
.in
.relroPadding
->getParent()) {
974 auto i
= std::find_if(b
, e
, [=](SectionCommand
*a
) {
975 if (auto *assign
= dyn_cast
<SymbolAssignment
>(a
))
976 return assign
->dataSegmentRelroEnd
;
983 // Find the most similar output section as the anchor. Rank Proximity is a
984 // value in the range [-1, 32] where [0, 32] indicates potential anchors (0:
985 // least similar; 32: identical). -1 means not an anchor.
987 // In the event of proximity ties, we select the first or last section
988 // depending on whether the orphan's rank is smaller.
991 for (auto j
= b
; j
!= e
; ++j
) {
992 int p
= getRankProximity(sec
, *j
);
994 (p
== maxP
&& cast
<OutputDesc
>(*j
)->osec
.sortRank
<= sec
->sortRank
)) {
1002 auto isOutputSecWithInputSections
= [](SectionCommand
*cmd
) {
1003 auto *osd
= dyn_cast
<OutputDesc
>(cmd
);
1004 return osd
&& osd
->osec
.hasInputSections
;
1007 // Then, scan backward or forward through the script for a suitable insertion
1008 // point. If i's rank is larger, the orphan section can be placed before i.
1010 // However, don't do this if custom program headers are defined. Otherwise,
1011 // adding the orphan to a previous segment can change its flags, for example,
1012 // making a read-only segment writable. If memory regions are defined, an
1013 // orphan section should continue the same region as the found section to
1014 // better resemble the behavior of GNU ld.
1016 ctx
.script
->hasPhdrsCommands() || !ctx
.script
->memoryRegions
.empty();
1017 if (cast
<OutputDesc
>(*i
)->osec
.sortRank
<= sec
->sortRank
|| mustAfter
) {
1018 for (auto j
= ++i
; j
!= e
; ++j
) {
1019 if (!isOutputSecWithInputSections(*j
))
1021 if (getRankProximity(sec
, *j
) != maxP
)
1027 if (isOutputSecWithInputSections(i
[-1]))
1031 // As a special case, if the orphan section is the last section, put
1032 // it at the very end, past any other commands.
1033 // This matches bfd's behavior and is convenient when the linker script fully
1034 // specifies the start of the file, but doesn't care about the end (the non
1035 // alloc sections for example).
1036 if (std::find_if(i
, e
, isOutputSecWithInputSections
) == e
)
1039 while (i
!= e
&& shouldSkip(*i
))
1044 // Adds random priorities to sections not already in the map.
1045 static void maybeShuffle(Ctx
&ctx
,
1046 DenseMap
<const InputSectionBase
*, int> &order
) {
1047 if (ctx
.arg
.shuffleSections
.empty())
1050 SmallVector
<InputSectionBase
*, 0> matched
, sections
= ctx
.inputSections
;
1051 matched
.reserve(sections
.size());
1052 for (const auto &patAndSeed
: ctx
.arg
.shuffleSections
) {
1054 for (InputSectionBase
*sec
: sections
)
1055 if (patAndSeed
.first
.match(sec
->name
))
1056 matched
.push_back(sec
);
1057 const uint32_t seed
= patAndSeed
.second
;
1058 if (seed
== UINT32_MAX
) {
1059 // If --shuffle-sections <section-glob>=-1, reverse the section order. The
1060 // section order is stable even if the number of sections changes. This is
1061 // useful to catch issues like static initialization order fiasco
1063 std::reverse(matched
.begin(), matched
.end());
1065 std::mt19937
g(seed
? seed
: std::random_device()());
1066 llvm::shuffle(matched
.begin(), matched
.end(), g
);
1069 for (InputSectionBase
*&sec
: sections
)
1070 if (patAndSeed
.first
.match(sec
->name
))
1074 // Existing priorities are < 0, so use priorities >= 0 for the missing
1077 for (InputSectionBase
*sec
: sections
) {
1078 if (order
.try_emplace(sec
, prio
).second
)
1083 // Builds section order for handling --symbol-ordering-file.
1084 static DenseMap
<const InputSectionBase
*, int> buildSectionOrder(Ctx
&ctx
) {
1085 DenseMap
<const InputSectionBase
*, int> sectionOrder
;
1086 // Use the rarely used option --call-graph-ordering-file to sort sections.
1087 if (!ctx
.arg
.callGraphProfile
.empty())
1088 return computeCallGraphProfileOrder(ctx
);
1090 if (ctx
.arg
.symbolOrderingFile
.empty())
1091 return sectionOrder
;
1093 struct SymbolOrderEntry
{
1098 // Build a map from symbols to their priorities. Symbols that didn't
1099 // appear in the symbol ordering file have the lowest priority 0.
1100 // All explicitly mentioned symbols have negative (higher) priorities.
1101 DenseMap
<CachedHashStringRef
, SymbolOrderEntry
> symbolOrder
;
1102 int priority
= -ctx
.arg
.symbolOrderingFile
.size();
1103 for (StringRef s
: ctx
.arg
.symbolOrderingFile
)
1104 symbolOrder
.insert({CachedHashStringRef(s
), {priority
++, false}});
1106 // Build a map from sections to their priorities.
1107 auto addSym
= [&](Symbol
&sym
) {
1108 auto it
= symbolOrder
.find(CachedHashStringRef(sym
.getName()));
1109 if (it
== symbolOrder
.end())
1111 SymbolOrderEntry
&ent
= it
->second
;
1114 maybeWarnUnorderableSymbol(ctx
, &sym
);
1116 if (auto *d
= dyn_cast
<Defined
>(&sym
)) {
1117 if (auto *sec
= dyn_cast_or_null
<InputSectionBase
>(d
->section
)) {
1118 int &priority
= sectionOrder
[cast
<InputSectionBase
>(sec
)];
1119 priority
= std::min(priority
, ent
.priority
);
1124 // We want both global and local symbols. We get the global ones from the
1125 // symbol table and iterate the object files for the local ones.
1126 for (Symbol
*sym
: ctx
.symtab
->getSymbols())
1129 for (ELFFileBase
*file
: ctx
.objectFiles
)
1130 for (Symbol
*sym
: file
->getLocalSymbols())
1133 if (ctx
.arg
.warnSymbolOrdering
)
1134 for (auto orderEntry
: symbolOrder
)
1135 if (!orderEntry
.second
.present
)
1136 Warn(ctx
) << "symbol ordering file: no such symbol: "
1137 << orderEntry
.first
.val();
1139 return sectionOrder
;
1142 // Sorts the sections in ISD according to the provided section order.
1144 sortISDBySectionOrder(Ctx
&ctx
, InputSectionDescription
*isd
,
1145 const DenseMap
<const InputSectionBase
*, int> &order
,
1146 bool executableOutputSection
) {
1147 SmallVector
<InputSection
*, 0> unorderedSections
;
1148 SmallVector
<std::pair
<InputSection
*, int>, 0> orderedSections
;
1149 uint64_t unorderedSize
= 0;
1150 uint64_t totalSize
= 0;
1152 for (InputSection
*isec
: isd
->sections
) {
1153 if (executableOutputSection
)
1154 totalSize
+= isec
->getSize();
1155 auto i
= order
.find(isec
);
1156 if (i
== order
.end()) {
1157 unorderedSections
.push_back(isec
);
1158 unorderedSize
+= isec
->getSize();
1161 orderedSections
.push_back({isec
, i
->second
});
1163 llvm::sort(orderedSections
, llvm::less_second());
1165 // Find an insertion point for the ordered section list in the unordered
1166 // section list. On targets with limited-range branches, this is the mid-point
1167 // of the unordered section list. This decreases the likelihood that a range
1168 // extension thunk will be needed to enter or exit the ordered region. If the
1169 // ordered section list is a list of hot functions, we can generally expect
1170 // the ordered functions to be called more often than the unordered functions,
1171 // making it more likely that any particular call will be within range, and
1172 // therefore reducing the number of thunks required.
1174 // For example, imagine that you have 8MB of hot code and 32MB of cold code.
1175 // If the layout is:
1180 // only the first 8-16MB of the cold code (depending on which hot function it
1181 // is actually calling) can call the hot code without a range extension thunk.
1182 // However, if we use this layout:
1188 // both the last 8-16MB of the first block of cold code and the first 8-16MB
1189 // of the second block of cold code can call the hot code without a thunk. So
1190 // we effectively double the amount of code that could potentially call into
1191 // the hot code without a thunk.
1193 // The above is not necessary if total size of input sections in this "isd"
1194 // is small. Note that we assume all input sections are executable if the
1195 // output section is executable (which is not always true but supposed to
1196 // cover most cases).
1198 if (executableOutputSection
&& !orderedSections
.empty() &&
1199 ctx
.target
->getThunkSectionSpacing() &&
1200 totalSize
>= ctx
.target
->getThunkSectionSpacing()) {
1201 uint64_t unorderedPos
= 0;
1202 for (; insPt
!= unorderedSections
.size(); ++insPt
) {
1203 unorderedPos
+= unorderedSections
[insPt
]->getSize();
1204 if (unorderedPos
> unorderedSize
/ 2)
1209 isd
->sections
.clear();
1210 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(0, insPt
))
1211 isd
->sections
.push_back(isec
);
1212 for (std::pair
<InputSection
*, int> p
: orderedSections
)
1213 isd
->sections
.push_back(p
.first
);
1214 for (InputSection
*isec
: ArrayRef(unorderedSections
).slice(insPt
))
1215 isd
->sections
.push_back(isec
);
1218 static void sortSection(Ctx
&ctx
, OutputSection
&osec
,
1219 const DenseMap
<const InputSectionBase
*, int> &order
) {
1220 StringRef name
= osec
.name
;
1222 // Never sort these.
1223 if (name
== ".init" || name
== ".fini")
1226 // Sort input sections by priority using the list provided by
1227 // --symbol-ordering-file or --shuffle-sections=. This is a least significant
1228 // digit radix sort. The sections may be sorted stably again by a more
1231 for (SectionCommand
*b
: osec
.commands
)
1232 if (auto *isd
= dyn_cast
<InputSectionDescription
>(b
))
1233 sortISDBySectionOrder(ctx
, isd
, order
, osec
.flags
& SHF_EXECINSTR
);
1235 if (ctx
.script
->hasSectionsCommand
)
1238 if (name
== ".init_array" || name
== ".fini_array") {
1239 osec
.sortInitFini();
1240 } else if (name
== ".ctors" || name
== ".dtors") {
1241 osec
.sortCtorsDtors();
1242 } else if (ctx
.arg
.emachine
== EM_PPC64
&& name
== ".toc") {
1243 // .toc is allocated just after .got and is accessed using GOT-relative
1244 // relocations. Object files compiled with small code model have an
1245 // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
1246 // To reduce the risk of relocation overflow, .toc contents are sorted so
1247 // that sections having smaller relocation offsets are at beginning of .toc
1248 assert(osec
.commands
.size() == 1);
1249 auto *isd
= cast
<InputSectionDescription
>(osec
.commands
[0]);
1250 llvm::stable_sort(isd
->sections
,
1251 [](const InputSection
*a
, const InputSection
*b
) -> bool {
1252 return a
->file
->ppc64SmallCodeModelTocRelocs
&&
1253 !b
->file
->ppc64SmallCodeModelTocRelocs
;
1258 // If no layout was provided by linker script, we want to apply default
1259 // sorting for special input sections. This also handles --symbol-ordering-file.
1260 template <class ELFT
> void Writer
<ELFT
>::sortInputSections() {
1261 // Build the order once since it is expensive.
1262 DenseMap
<const InputSectionBase
*, int> order
= buildSectionOrder(ctx
);
1263 maybeShuffle(ctx
, order
);
1264 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1265 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1266 sortSection(ctx
, osd
->osec
, order
);
1269 template <class ELFT
> void Writer
<ELFT
>::sortSections() {
1270 llvm::TimeTraceScope
timeScope("Sort sections");
1272 // Don't sort if using -r. It is not necessary and we want to preserve the
1273 // relative order for SHF_LINK_ORDER sections.
1274 if (ctx
.arg
.relocatable
) {
1275 ctx
.script
->adjustOutputSections();
1279 sortInputSections();
1281 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1282 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1283 osd
->osec
.sortRank
= getSectionRank(ctx
, osd
->osec
);
1284 if (!ctx
.script
->hasSectionsCommand
) {
1285 // OutputDescs are mostly contiguous, but may be interleaved with
1286 // SymbolAssignments in the presence of INSERT commands.
1287 auto mid
= std::stable_partition(
1288 ctx
.script
->sectionCommands
.begin(), ctx
.script
->sectionCommands
.end(),
1289 [](SectionCommand
*cmd
) { return isa
<OutputDesc
>(cmd
); });
1291 ctx
.script
->sectionCommands
.begin(), mid
,
1292 [&ctx
= ctx
](auto *l
, auto *r
) { return compareSections(ctx
, l
, r
); });
1295 // Process INSERT commands and update output section attributes. From this
1296 // point onwards the order of script->sectionCommands is fixed.
1297 ctx
.script
->processInsertCommands();
1298 ctx
.script
->adjustOutputSections();
1300 if (ctx
.script
->hasSectionsCommand
)
1301 sortOrphanSections();
1303 ctx
.script
->adjustSectionsAfterSorting();
1306 template <class ELFT
> void Writer
<ELFT
>::sortOrphanSections() {
1307 // Orphan sections are sections present in the input files which are
1308 // not explicitly placed into the output file by the linker script.
1310 // The sections in the linker script are already in the correct
1311 // order. We have to figuere out where to insert the orphan
1314 // The order of the sections in the script is arbitrary and may not agree with
1315 // compareSections. This means that we cannot easily define a strict weak
1316 // ordering. To see why, consider a comparison of a section in the script and
1317 // one not in the script. We have a two simple options:
1318 // * Make them equivalent (a is not less than b, and b is not less than a).
1319 // The problem is then that equivalence has to be transitive and we can
1320 // have sections a, b and c with only b in a script and a less than c
1321 // which breaks this property.
1322 // * Use compareSectionsNonScript. Given that the script order doesn't have
1323 // to match, we can end up with sections a, b, c, d where b and c are in the
1324 // script and c is compareSectionsNonScript less than b. In which case d
1325 // can be equivalent to c, a to b and d < a. As a concrete example:
1326 // .a (rx) # not in script
1327 // .b (rx) # in script
1328 // .c (ro) # in script
1329 // .d (ro) # not in script
1331 // The way we define an order then is:
1332 // * Sort only the orphan sections. They are in the end right now.
1333 // * Move each orphan section to its preferred position. We try
1334 // to put each section in the last position where it can share
1337 // There is some ambiguity as to where exactly a new entry should be
1338 // inserted, because Commands contains not only output section
1339 // commands but also other types of commands such as symbol assignment
1340 // expressions. There's no correct answer here due to the lack of the
1341 // formal specification of the linker script. We use heuristics to
1342 // determine whether a new output command should be added before or
1343 // after another commands. For the details, look at shouldSkip
1346 auto i
= ctx
.script
->sectionCommands
.begin();
1347 auto e
= ctx
.script
->sectionCommands
.end();
1348 auto nonScriptI
= std::find_if(i
, e
, [](SectionCommand
*cmd
) {
1349 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1350 return osd
->osec
.sectionIndex
== UINT32_MAX
;
1354 // Sort the orphan sections.
1355 std::stable_sort(nonScriptI
, e
, [&ctx
= ctx
](auto *l
, auto *r
) {
1356 return compareSections(ctx
, l
, r
);
1359 // As a horrible special case, skip the first . assignment if it is before any
1360 // section. We do this because it is common to set a load address by starting
1361 // the script with ". = 0xabcd" and the expectation is that every section is
1363 auto firstSectionOrDotAssignment
=
1364 std::find_if(i
, e
, [](SectionCommand
*cmd
) { return !shouldSkip(cmd
); });
1365 if (firstSectionOrDotAssignment
!= e
&&
1366 isa
<SymbolAssignment
>(**firstSectionOrDotAssignment
))
1367 ++firstSectionOrDotAssignment
;
1368 i
= firstSectionOrDotAssignment
;
1370 while (nonScriptI
!= e
) {
1371 auto pos
= findOrphanPos(ctx
, i
, nonScriptI
);
1372 OutputSection
*orphan
= &cast
<OutputDesc
>(*nonScriptI
)->osec
;
1374 // As an optimization, find all sections with the same sort rank
1375 // and insert them with one rotate.
1376 unsigned rank
= orphan
->sortRank
;
1377 auto end
= std::find_if(nonScriptI
+ 1, e
, [=](SectionCommand
*cmd
) {
1378 return cast
<OutputDesc
>(cmd
)->osec
.sortRank
!= rank
;
1380 std::rotate(pos
, nonScriptI
, end
);
1385 static bool compareByFilePosition(InputSection
*a
, InputSection
*b
) {
1386 InputSection
*la
= a
->flags
& SHF_LINK_ORDER
? a
->getLinkOrderDep() : nullptr;
1387 InputSection
*lb
= b
->flags
& SHF_LINK_ORDER
? b
->getLinkOrderDep() : nullptr;
1388 // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
1389 // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
1392 OutputSection
*aOut
= la
->getParent();
1393 OutputSection
*bOut
= lb
->getParent();
1396 return la
->outSecOff
< lb
->outSecOff
;
1397 if (aOut
->addr
== bOut
->addr
)
1398 return aOut
->sectionIndex
< bOut
->sectionIndex
;
1399 return aOut
->addr
< bOut
->addr
;
1402 template <class ELFT
> void Writer
<ELFT
>::resolveShfLinkOrder() {
1403 llvm::TimeTraceScope
timeScope("Resolve SHF_LINK_ORDER");
1404 for (OutputSection
*sec
: ctx
.outputSections
) {
1405 if (!(sec
->flags
& SHF_LINK_ORDER
))
1408 // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
1409 // this processing inside the ARMExidxsyntheticsection::finalizeContents().
1410 if (!ctx
.arg
.relocatable
&& ctx
.arg
.emachine
== EM_ARM
&&
1411 sec
->type
== SHT_ARM_EXIDX
)
1414 // Link order may be distributed across several InputSectionDescriptions.
1415 // Sorting is performed separately.
1416 SmallVector
<InputSection
**, 0> scriptSections
;
1417 SmallVector
<InputSection
*, 0> sections
;
1418 for (SectionCommand
*cmd
: sec
->commands
) {
1419 auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
);
1422 bool hasLinkOrder
= false;
1423 scriptSections
.clear();
1425 for (InputSection
*&isec
: isd
->sections
) {
1426 if (isec
->flags
& SHF_LINK_ORDER
) {
1427 InputSection
*link
= isec
->getLinkOrderDep();
1428 if (link
&& !link
->getParent())
1429 ErrAlways(ctx
) << isec
<< ": sh_link points to discarded section "
1431 hasLinkOrder
= true;
1433 scriptSections
.push_back(&isec
);
1434 sections
.push_back(isec
);
1436 if (hasLinkOrder
&& errCount(ctx
) == 0) {
1437 llvm::stable_sort(sections
, compareByFilePosition
);
1438 for (int i
= 0, n
= sections
.size(); i
!= n
; ++i
)
1439 *scriptSections
[i
] = sections
[i
];
1445 static void finalizeSynthetic(Ctx
&ctx
, SyntheticSection
*sec
) {
1446 if (sec
&& sec
->isNeeded() && sec
->getParent()) {
1447 llvm::TimeTraceScope
timeScope("Finalize synthetic sections", sec
->name
);
1448 sec
->finalizeContents();
1452 static bool canInsertPadding(OutputSection
*sec
) {
1453 StringRef s
= sec
->name
;
1454 return s
== ".bss" || s
== ".data" || s
== ".data.rel.ro" || s
== ".lbss" ||
1455 s
== ".ldata" || s
== ".lrodata" || s
== ".ltext" || s
== ".rodata" ||
1456 s
.starts_with(".text");
1459 static void randomizeSectionPadding(Ctx
&ctx
) {
1460 std::mt19937
g(*ctx
.arg
.randomizeSectionPadding
);
1461 PhdrEntry
*curPtLoad
= nullptr;
1462 for (OutputSection
*os
: ctx
.outputSections
) {
1463 if (!canInsertPadding(os
))
1465 for (SectionCommand
*bc
: os
->commands
) {
1466 if (auto *isd
= dyn_cast
<InputSectionDescription
>(bc
)) {
1467 SmallVector
<InputSection
*, 0> tmp
;
1468 if (os
->ptLoad
!= curPtLoad
) {
1469 tmp
.push_back(make
<RandomizePaddingSection
>(
1470 ctx
, g() % ctx
.arg
.maxPageSize
, os
));
1471 curPtLoad
= os
->ptLoad
;
1473 for (InputSection
*isec
: isd
->sections
) {
1474 // Probability of inserting padding is 1 in 16.
1477 make
<RandomizePaddingSection
>(ctx
, isec
->addralign
, os
));
1478 tmp
.push_back(isec
);
1480 isd
->sections
= std::move(tmp
);
1486 // We need to generate and finalize the content that depends on the address of
1487 // InputSections. As the generation of the content may also alter InputSection
1488 // addresses we must converge to a fixed point. We do that here. See the comment
1489 // in Writer<ELFT>::finalizeSections().
1490 template <class ELFT
> void Writer
<ELFT
>::finalizeAddressDependentContent() {
1491 llvm::TimeTraceScope
timeScope("Finalize address dependent content");
1492 AArch64Err843419Patcher
a64p(ctx
);
1493 ARMErr657417Patcher
a32p(ctx
);
1494 ctx
.script
->assignAddresses();
1496 // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
1497 // do require the relative addresses of OutputSections because linker scripts
1498 // can assign Virtual Addresses to OutputSections that are not monotonically
1499 // increasing. Anything here must be repeatable, since spilling may change
1501 const auto finalizeOrderDependentContent
= [this] {
1502 for (Partition
&part
: ctx
.partitions
)
1503 finalizeSynthetic(ctx
, part
.armExidx
.get());
1504 resolveShfLinkOrder();
1506 finalizeOrderDependentContent();
1508 // Converts call x@GDPLT to call __tls_get_addr
1509 if (ctx
.arg
.emachine
== EM_HEXAGON
)
1510 hexagonTLSSymbolUpdate(ctx
);
1512 if (ctx
.arg
.randomizeSectionPadding
)
1513 randomizeSectionPadding(ctx
);
1515 uint32_t pass
= 0, assignPasses
= 0;
1517 bool changed
= ctx
.target
->needsThunks
1518 ? tc
.createThunks(pass
, ctx
.outputSections
)
1519 : ctx
.target
->relaxOnce(pass
);
1520 bool spilled
= ctx
.script
->spillSections();
1524 // With Thunk Size much smaller than branch range we expect to
1525 // converge quickly; if we get to 30 something has gone wrong.
1526 if (changed
&& pass
>= 30) {
1527 Err(ctx
) << (ctx
.target
->needsThunks
? "thunk creation not converged"
1528 : "relaxation not converged");
1532 if (ctx
.arg
.fixCortexA53Errata843419
) {
1534 ctx
.script
->assignAddresses();
1535 changed
|= a64p
.createFixes();
1537 if (ctx
.arg
.fixCortexA8
) {
1539 ctx
.script
->assignAddresses();
1540 changed
|= a32p
.createFixes();
1543 finalizeSynthetic(ctx
, ctx
.in
.got
.get());
1545 ctx
.in
.mipsGot
->updateAllocSize(ctx
);
1547 for (Partition
&part
: ctx
.partitions
) {
1548 // The R_AARCH64_AUTH_RELATIVE has a smaller addend field as bits [63:32]
1549 // encode the signing schema. We've put relocations in .relr.auth.dyn
1550 // during RelocationScanner::processAux, but the target VA for some of
1551 // them might be wider than 32 bits. We can only know the final VA at this
1552 // point, so move relocations with large values from .relr.auth.dyn to
1553 // .rela.dyn. See also AArch64::relocate.
1554 if (part
.relrAuthDyn
) {
1555 auto it
= llvm::remove_if(
1556 part
.relrAuthDyn
->relocs
, [this, &part
](const RelativeReloc
&elem
) {
1557 const Relocation
&reloc
= elem
.inputSec
->relocs()[elem
.relocIdx
];
1558 if (isInt
<32>(reloc
.sym
->getVA(ctx
, reloc
.addend
)))
1560 part
.relaDyn
->addReloc({R_AARCH64_AUTH_RELATIVE
, elem
.inputSec
,
1562 DynamicReloc::AddendOnlyWithTargetVA
,
1563 *reloc
.sym
, reloc
.addend
, R_ABS
});
1566 changed
|= (it
!= part
.relrAuthDyn
->relocs
.end());
1567 part
.relrAuthDyn
->relocs
.erase(it
, part
.relrAuthDyn
->relocs
.end());
1570 changed
|= part
.relaDyn
->updateAllocSize(ctx
);
1572 changed
|= part
.relrDyn
->updateAllocSize(ctx
);
1573 if (part
.relrAuthDyn
)
1574 changed
|= part
.relrAuthDyn
->updateAllocSize(ctx
);
1575 if (part
.memtagGlobalDescriptors
)
1576 changed
|= part
.memtagGlobalDescriptors
->updateAllocSize(ctx
);
1579 std::pair
<const OutputSection
*, const Defined
*> changes
=
1580 ctx
.script
->assignAddresses();
1582 // Some symbols may be dependent on section addresses. When we break the
1583 // loop, the symbol values are finalized because a previous
1584 // assignAddresses() finalized section addresses.
1585 if (!changes
.first
&& !changes
.second
)
1587 if (++assignPasses
== 5) {
1589 Err(ctx
) << "address (0x" << Twine::utohexstr(changes
.first
->addr
)
1590 << ") of section '" << changes
.first
->name
1591 << "' does not converge";
1593 Err(ctx
) << "assignment to symbol " << changes
.second
1594 << " does not converge";
1597 } else if (spilled
) {
1598 // Spilling can change relative section order.
1599 finalizeOrderDependentContent();
1602 if (!ctx
.arg
.relocatable
)
1603 ctx
.target
->finalizeRelax(pass
);
1605 if (ctx
.arg
.relocatable
)
1606 for (OutputSection
*sec
: ctx
.outputSections
)
1609 // If addrExpr is set, the address may not be a multiple of the alignment.
1610 // Warn because this is error-prone.
1611 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1612 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1613 OutputSection
*osec
= &osd
->osec
;
1614 if (osec
->addr
% osec
->addralign
!= 0)
1615 Warn(ctx
) << "address (0x" << Twine::utohexstr(osec
->addr
)
1616 << ") of section " << osec
->name
1617 << " is not a multiple of alignment (" << osec
->addralign
1621 // Sizes are no longer allowed to grow, so all allowable spills have been
1622 // taken. Remove any leftover potential spills.
1623 ctx
.script
->erasePotentialSpillSections();
1626 // If Input Sections have been shrunk (basic block sections) then
1627 // update symbol values and sizes associated with these sections. With basic
1628 // block sections, input sections can shrink when the jump instructions at
1629 // the end of the section are relaxed.
1630 static void fixSymbolsAfterShrinking(Ctx
&ctx
) {
1631 for (InputFile
*File
: ctx
.objectFiles
) {
1632 parallelForEach(File
->getSymbols(), [&](Symbol
*Sym
) {
1633 auto *def
= dyn_cast
<Defined
>(Sym
);
1637 const SectionBase
*sec
= def
->section
;
1641 const InputSectionBase
*inputSec
= dyn_cast
<InputSectionBase
>(sec
);
1642 if (!inputSec
|| !inputSec
->bytesDropped
)
1645 const size_t OldSize
= inputSec
->content().size();
1646 const size_t NewSize
= OldSize
- inputSec
->bytesDropped
;
1648 if (def
->value
> NewSize
&& def
->value
<= OldSize
) {
1649 LLVM_DEBUG(llvm::dbgs()
1650 << "Moving symbol " << Sym
->getName() << " from "
1651 << def
->value
<< " to "
1652 << def
->value
- inputSec
->bytesDropped
<< " bytes\n");
1653 def
->value
-= inputSec
->bytesDropped
;
1657 if (def
->value
+ def
->size
> NewSize
&& def
->value
<= OldSize
&&
1658 def
->value
+ def
->size
<= OldSize
) {
1659 LLVM_DEBUG(llvm::dbgs()
1660 << "Shrinking symbol " << Sym
->getName() << " from "
1661 << def
->size
<< " to " << def
->size
- inputSec
->bytesDropped
1663 def
->size
-= inputSec
->bytesDropped
;
1669 // If basic block sections exist, there are opportunities to delete fall thru
1670 // jumps and shrink jump instructions after basic block reordering. This
1671 // relaxation pass does that. It is only enabled when --optimize-bb-jumps
1673 template <class ELFT
> void Writer
<ELFT
>::optimizeBasicBlockJumps() {
1674 assert(ctx
.arg
.optimizeBBJumps
);
1675 SmallVector
<InputSection
*, 0> storage
;
1677 ctx
.script
->assignAddresses();
1678 // For every output section that has executable input sections, this
1679 // does the following:
1680 // 1. Deletes all direct jump instructions in input sections that
1681 // jump to the following section as it is not required.
1682 // 2. If there are two consecutive jump instructions, it checks
1683 // if they can be flipped and one can be deleted.
1684 for (OutputSection
*osec
: ctx
.outputSections
) {
1685 if (!(osec
->flags
& SHF_EXECINSTR
))
1687 ArrayRef
<InputSection
*> sections
= getInputSections(*osec
, storage
);
1688 size_t numDeleted
= 0;
1689 // Delete all fall through jump instructions. Also, check if two
1690 // consecutive jump instructions can be flipped so that a fall
1691 // through jmp instruction can be deleted.
1692 for (size_t i
= 0, e
= sections
.size(); i
!= e
; ++i
) {
1693 InputSection
*next
= i
+ 1 < sections
.size() ? sections
[i
+ 1] : nullptr;
1694 InputSection
&sec
= *sections
[i
];
1695 numDeleted
+= ctx
.target
->deleteFallThruJmpInsn(sec
, sec
.file
, next
);
1697 if (numDeleted
> 0) {
1698 ctx
.script
->assignAddresses();
1699 LLVM_DEBUG(llvm::dbgs()
1700 << "Removing " << numDeleted
<< " fall through jumps\n");
1704 fixSymbolsAfterShrinking(ctx
);
1706 for (OutputSection
*osec
: ctx
.outputSections
)
1707 for (InputSection
*is
: getInputSections(*osec
, storage
))
1711 // In order to allow users to manipulate linker-synthesized sections,
1712 // we had to add synthetic sections to the input section list early,
1713 // even before we make decisions whether they are needed. This allows
1714 // users to write scripts like this: ".mygot : { .got }".
1716 // Doing it has an unintended side effects. If it turns out that we
1717 // don't need a .got (for example) at all because there's no
1718 // relocation that needs a .got, we don't want to emit .got.
1720 // To deal with the above problem, this function is called after
1721 // scanRelocations is called to remove synthetic sections that turn
1723 static void removeUnusedSyntheticSections(Ctx
&ctx
) {
1724 // All input synthetic sections that can be empty are placed after
1725 // all regular ones. Reverse iterate to find the first synthetic section
1726 // after a non-synthetic one which will be our starting point.
1728 llvm::find_if(llvm::reverse(ctx
.inputSections
), [](InputSectionBase
*s
) {
1729 return !isa
<SyntheticSection
>(s
);
1732 // Remove unused synthetic sections from ctx.inputSections;
1733 DenseSet
<InputSectionBase
*> unused
;
1735 std::remove_if(start
, ctx
.inputSections
.end(), [&](InputSectionBase
*s
) {
1736 auto *sec
= cast
<SyntheticSection
>(s
);
1737 if (sec
->getParent() && sec
->isNeeded())
1739 // .relr.auth.dyn relocations may be moved to .rela.dyn in
1740 // finalizeAddressDependentContent, making .rela.dyn no longer empty.
1741 // Conservatively keep .rela.dyn. .relr.auth.dyn can be made empty, but
1742 // we would fail to remove it here.
1743 if (ctx
.arg
.emachine
== EM_AARCH64
&& ctx
.arg
.relrPackDynRelocs
&&
1744 sec
== ctx
.mainPart
->relaDyn
.get())
1749 ctx
.inputSections
.erase(end
, ctx
.inputSections
.end());
1751 // Remove unused synthetic sections from the corresponding input section
1752 // description and orphanSections.
1753 for (auto *sec
: unused
)
1754 if (OutputSection
*osec
= cast
<SyntheticSection
>(sec
)->getParent())
1755 for (SectionCommand
*cmd
: osec
->commands
)
1756 if (auto *isd
= dyn_cast
<InputSectionDescription
>(cmd
))
1757 llvm::erase_if(isd
->sections
, [&](InputSection
*isec
) {
1758 return unused
.count(isec
);
1760 llvm::erase_if(ctx
.script
->orphanSections
, [&](const InputSectionBase
*sec
) {
1761 return unused
.count(sec
);
1765 // Create output section objects and add them to OutputSections.
1766 template <class ELFT
> void Writer
<ELFT
>::finalizeSections() {
1767 if (!ctx
.arg
.relocatable
) {
1768 ctx
.out
.preinitArray
= findSection(ctx
, ".preinit_array");
1769 ctx
.out
.initArray
= findSection(ctx
, ".init_array");
1770 ctx
.out
.finiArray
= findSection(ctx
, ".fini_array");
1772 // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
1773 // symbols for sections, so that the runtime can get the start and end
1774 // addresses of each section by section name. Add such symbols.
1775 addStartEndSymbols();
1776 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1777 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
))
1778 addStartStopSymbols(osd
->osec
);
1780 // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
1781 // It should be okay as no one seems to care about the type.
1782 // Even the author of gold doesn't remember why gold behaves that way.
1783 // https://sourceware.org/ml/binutils/2002-03/msg00360.html
1784 if (ctx
.mainPart
->dynamic
->parent
) {
1785 Symbol
*s
= ctx
.symtab
->addSymbol(Defined
{
1786 ctx
, ctx
.internalFile
, "_DYNAMIC", STB_WEAK
, STV_HIDDEN
, STT_NOTYPE
,
1787 /*value=*/0, /*size=*/0, ctx
.mainPart
->dynamic
.get()});
1788 s
->isUsedInRegularObj
= true;
1791 // Define __rel[a]_iplt_{start,end} symbols if needed.
1792 addRelIpltSymbols();
1794 // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
1795 // should only be defined in an executable. If .sdata does not exist, its
1796 // value/section does not matter but it has to be relative, so set its
1797 // st_shndx arbitrarily to 1 (ctx.out.elfHeader).
1798 if (ctx
.arg
.emachine
== EM_RISCV
) {
1799 if (!ctx
.arg
.shared
) {
1800 OutputSection
*sec
= findSection(ctx
, ".sdata");
1801 addOptionalRegular(ctx
, "__global_pointer$",
1802 sec
? sec
: ctx
.out
.elfHeader
.get(), 0x800,
1804 // Set riscvGlobalPointer to be used by the optional global pointer
1806 if (ctx
.arg
.relaxGP
) {
1807 Symbol
*s
= ctx
.symtab
->find("__global_pointer$");
1808 if (s
&& s
->isDefined())
1809 ctx
.sym
.riscvGlobalPointer
= cast
<Defined
>(s
);
1814 if (ctx
.arg
.emachine
== EM_386
|| ctx
.arg
.emachine
== EM_X86_64
) {
1815 // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
1818 // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
1820 // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address
1821 // in the TLS block).
1823 // 2) is special cased in @tpoff computation. To satisfy 1), we define it
1824 // as an absolute symbol of zero. This is different from GNU linkers which
1825 // define _TLS_MODULE_BASE_ relative to the first TLS section.
1826 Symbol
*s
= ctx
.symtab
->find("_TLS_MODULE_BASE_");
1827 if (s
&& s
->isUndefined()) {
1828 s
->resolve(ctx
, Defined
{ctx
, ctx
.internalFile
, StringRef(), STB_GLOBAL
,
1829 STV_HIDDEN
, STT_TLS
, /*value=*/0, 0,
1830 /*section=*/nullptr});
1831 ctx
.sym
.tlsModuleBase
= cast
<Defined
>(s
);
1835 // This responsible for splitting up .eh_frame section into
1836 // pieces. The relocation scan uses those pieces, so this has to be
1839 llvm::TimeTraceScope
timeScope("Finalize .eh_frame");
1840 for (Partition
&part
: ctx
.partitions
)
1841 finalizeSynthetic(ctx
, part
.ehFrame
.get());
1845 demoteSymbolsAndComputeIsPreemptible(ctx
);
1847 if (ctx
.arg
.copyRelocs
&& ctx
.arg
.discard
!= DiscardPolicy::None
)
1848 markUsedLocalSymbols
<ELFT
>(ctx
);
1849 demoteAndCopyLocalSymbols(ctx
);
1851 if (ctx
.arg
.copyRelocs
)
1852 addSectionSymbols();
1854 // Change values of linker-script-defined symbols from placeholders (assigned
1855 // by declareSymbols) to actual definitions.
1856 ctx
.script
->processSymbolAssignments();
1858 if (!ctx
.arg
.relocatable
) {
1859 llvm::TimeTraceScope
timeScope("Scan relocations");
1860 // Scan relocations. This must be done after every symbol is declared so
1861 // that we can correctly decide if a dynamic relocation is needed. This is
1862 // called after processSymbolAssignments() because it needs to know whether
1863 // a linker-script-defined symbol is absolute.
1864 scanRelocations
<ELFT
>(ctx
);
1865 reportUndefinedSymbols(ctx
);
1866 postScanRelocations(ctx
);
1868 if (ctx
.in
.plt
&& ctx
.in
.plt
->isNeeded())
1869 ctx
.in
.plt
->addSymbols();
1870 if (ctx
.in
.iplt
&& ctx
.in
.iplt
->isNeeded())
1871 ctx
.in
.iplt
->addSymbols();
1873 if (ctx
.arg
.unresolvedSymbolsInShlib
!= UnresolvedPolicy::Ignore
) {
1875 ctx
.arg
.unresolvedSymbolsInShlib
== UnresolvedPolicy::ReportError
&&
1876 !ctx
.arg
.noinhibitExec
1879 // Error on undefined symbols in a shared object, if all of its DT_NEEDED
1880 // entries are seen. These cases would otherwise lead to runtime errors
1881 // reported by the dynamic linker.
1883 // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker
1884 // to catch more cases. That is too much for us. Our approach resembles
1885 // the one used in ld.gold, achieves a good balance to be useful but not
1888 // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol
1889 // is overridden by a hidden visibility Defined (which is later discarded
1890 // due to GC), don't report the diagnostic. However, this may indicate an
1891 // unintended SharedSymbol.
1892 for (SharedFile
*file
: ctx
.sharedFiles
) {
1893 bool allNeededIsKnown
=
1894 llvm::all_of(file
->dtNeeded
, [&](StringRef needed
) {
1895 return ctx
.symtab
->soNames
.count(CachedHashStringRef(needed
));
1897 if (!allNeededIsKnown
)
1899 for (Symbol
*sym
: file
->requiredSymbols
) {
1900 if (sym
->dsoDefined
)
1902 if (sym
->isUndefined() && !sym
->isWeak()) {
1903 ELFSyncStream(ctx
, diag
)
1904 << "undefined reference: " << sym
<< "\n>>> referenced by "
1905 << file
<< " (disallowed by --no-allow-shlib-undefined)";
1906 } else if (sym
->isDefined() &&
1907 sym
->computeBinding(ctx
) == STB_LOCAL
) {
1908 ELFSyncStream(ctx
, diag
)
1909 << "non-exported symbol '" << sym
<< "' in '" << sym
->file
1910 << "' is referenced by DSO '" << file
<< "'";
1918 llvm::TimeTraceScope
timeScope("Add symbols to symtabs");
1919 // Now that we have defined all possible global symbols including linker-
1920 // synthesized ones. Visit all symbols to give the finishing touches.
1921 for (Symbol
*sym
: ctx
.symtab
->getSymbols()) {
1922 if (!sym
->isUsedInRegularObj
|| !includeInSymtab(ctx
, *sym
))
1924 if (!ctx
.arg
.relocatable
)
1925 sym
->binding
= sym
->computeBinding(ctx
);
1927 ctx
.in
.symTab
->addSymbol(sym
);
1929 // computeBinding might localize a linker-synthesized hidden symbol
1930 // (e.g. __global_pointer$) that was considered exported.
1931 if (sym
->isExported
&& !sym
->isLocal()) {
1932 ctx
.partitions
[sym
->partition
- 1].dynSymTab
->addSymbol(sym
);
1933 if (auto *file
= dyn_cast
<SharedFile
>(sym
->file
))
1934 if (file
->isNeeded
&& !sym
->isUndefined())
1935 addVerneed(ctx
, *sym
);
1939 // We also need to scan the dynamic relocation tables of the other
1940 // partitions and add any referenced symbols to the partition's dynsym.
1941 for (Partition
&part
:
1942 MutableArrayRef
<Partition
>(ctx
.partitions
).slice(1)) {
1943 DenseSet
<Symbol
*> syms
;
1944 for (const SymbolTableEntry
&e
: part
.dynSymTab
->getSymbols())
1946 for (DynamicReloc
&reloc
: part
.relaDyn
->relocs
)
1947 if (reloc
.sym
&& reloc
.needsDynSymIndex() &&
1948 syms
.insert(reloc
.sym
).second
)
1949 part
.dynSymTab
->addSymbol(reloc
.sym
);
1954 ctx
.in
.mipsGot
->build();
1956 removeUnusedSyntheticSections(ctx
);
1957 ctx
.script
->diagnoseOrphanHandling();
1958 ctx
.script
->diagnoseMissingSGSectionAddress();
1962 // Create a list of OutputSections, assign sectionIndex, and populate
1963 // ctx.in.shStrTab. If -z nosectionheader is specified, drop non-ALLOC
1965 for (SectionCommand
*cmd
: ctx
.script
->sectionCommands
)
1966 if (auto *osd
= dyn_cast
<OutputDesc
>(cmd
)) {
1967 OutputSection
*osec
= &osd
->osec
;
1968 if (!ctx
.in
.shStrTab
&& !(osec
->flags
& SHF_ALLOC
))
1970 ctx
.outputSections
.push_back(osec
);
1971 osec
->sectionIndex
= ctx
.outputSections
.size();
1972 if (ctx
.in
.shStrTab
)
1973 osec
->shName
= ctx
.in
.shStrTab
->addString(osec
->name
);
1976 // Prefer command line supplied address over other constraints.
1977 for (OutputSection
*sec
: ctx
.outputSections
) {
1978 auto i
= ctx
.arg
.sectionStartMap
.find(sec
->name
);
1979 if (i
!= ctx
.arg
.sectionStartMap
.end())
1980 sec
->addrExpr
= [=] { return i
->second
; };
1983 // With the ctx.outputSections available check for GDPLT relocations
1984 // and add __tls_get_addr symbol if needed.
1985 if (ctx
.arg
.emachine
== EM_HEXAGON
&&
1986 hexagonNeedsTLSSymbol(ctx
.outputSections
)) {
1988 ctx
.symtab
->addSymbol(Undefined
{ctx
.internalFile
, "__tls_get_addr",
1989 STB_GLOBAL
, STV_DEFAULT
, STT_NOTYPE
});
1990 sym
->isPreemptible
= true;
1991 ctx
.partitions
[0].dynSymTab
->addSymbol(sym
);
1994 // This is a bit of a hack. A value of 0 means undef, so we set it
1995 // to 1 to make __ehdr_start defined. The section number is not
1996 // particularly relevant.
1997 ctx
.out
.elfHeader
->sectionIndex
= 1;
1998 ctx
.out
.elfHeader
->size
= sizeof(typename
ELFT::Ehdr
);
2000 // Binary and relocatable output does not have PHDRS.
2001 // The headers have to be created before finalize as that can influence the
2002 // image base and the dynamic section on mips includes the image base.
2003 if (!ctx
.arg
.relocatable
&& !ctx
.arg
.oFormatBinary
) {
2004 for (Partition
&part
: ctx
.partitions
) {
2005 part
.phdrs
= ctx
.script
->hasPhdrsCommands() ? ctx
.script
->createPhdrs()
2006 : createPhdrs(part
);
2007 if (ctx
.arg
.emachine
== EM_ARM
) {
2008 // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
2009 addPhdrForSection(part
, SHT_ARM_EXIDX
, PT_ARM_EXIDX
, PF_R
);
2011 if (ctx
.arg
.emachine
== EM_MIPS
) {
2012 // Add separate segments for MIPS-specific sections.
2013 addPhdrForSection(part
, SHT_MIPS_REGINFO
, PT_MIPS_REGINFO
, PF_R
);
2014 addPhdrForSection(part
, SHT_MIPS_OPTIONS
, PT_MIPS_OPTIONS
, PF_R
);
2015 addPhdrForSection(part
, SHT_MIPS_ABIFLAGS
, PT_MIPS_ABIFLAGS
, PF_R
);
2017 if (ctx
.arg
.emachine
== EM_RISCV
)
2018 addPhdrForSection(part
, SHT_RISCV_ATTRIBUTES
, PT_RISCV_ATTRIBUTES
,
2021 ctx
.out
.programHeaders
->size
=
2022 sizeof(Elf_Phdr
) * ctx
.mainPart
->phdrs
.size();
2024 // Find the TLS segment. This happens before the section layout loop so that
2025 // Android relocation packing can look up TLS symbol addresses. We only need
2026 // to care about the main partition here because all TLS symbols were moved
2027 // to the main partition (see MarkLive.cpp).
2028 for (auto &p
: ctx
.mainPart
->phdrs
)
2029 if (p
->p_type
== PT_TLS
)
2030 ctx
.tlsPhdr
= p
.get();
2033 // Some symbols are defined in term of program headers. Now that we
2034 // have the headers, we can find out which sections they point to.
2035 setReservedSymbolSections();
2037 if (ctx
.script
->noCrossRefs
.size()) {
2038 llvm::TimeTraceScope
timeScope("Check NOCROSSREFS");
2039 checkNoCrossRefs
<ELFT
>(ctx
);
2043 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
2045 finalizeSynthetic(ctx
, ctx
.in
.bss
.get());
2046 finalizeSynthetic(ctx
, ctx
.in
.bssRelRo
.get());
2047 finalizeSynthetic(ctx
, ctx
.in
.symTabShndx
.get());
2048 finalizeSynthetic(ctx
, ctx
.in
.shStrTab
.get());
2049 finalizeSynthetic(ctx
, ctx
.in
.strTab
.get());
2050 finalizeSynthetic(ctx
, ctx
.in
.got
.get());
2051 finalizeSynthetic(ctx
, ctx
.in
.mipsGot
.get());
2052 finalizeSynthetic(ctx
, ctx
.in
.igotPlt
.get());
2053 finalizeSynthetic(ctx
, ctx
.in
.gotPlt
.get());
2054 finalizeSynthetic(ctx
, ctx
.in
.relaPlt
.get());
2055 finalizeSynthetic(ctx
, ctx
.in
.plt
.get());
2056 finalizeSynthetic(ctx
, ctx
.in
.iplt
.get());
2057 finalizeSynthetic(ctx
, ctx
.in
.ppc32Got2
.get());
2058 finalizeSynthetic(ctx
, ctx
.in
.partIndex
.get());
2060 // Dynamic section must be the last one in this list and dynamic
2061 // symbol table section (dynSymTab) must be the first one.
2062 for (Partition
&part
: ctx
.partitions
) {
2064 part
.relaDyn
->mergeRels();
2065 // Compute DT_RELACOUNT to be used by part.dynamic.
2066 part
.relaDyn
->partitionRels();
2067 finalizeSynthetic(ctx
, part
.relaDyn
.get());
2070 part
.relrDyn
->mergeRels();
2071 finalizeSynthetic(ctx
, part
.relrDyn
.get());
2073 if (part
.relrAuthDyn
) {
2074 part
.relrAuthDyn
->mergeRels();
2075 finalizeSynthetic(ctx
, part
.relrAuthDyn
.get());
2078 finalizeSynthetic(ctx
, part
.dynSymTab
.get());
2079 finalizeSynthetic(ctx
, part
.gnuHashTab
.get());
2080 finalizeSynthetic(ctx
, part
.hashTab
.get());
2081 finalizeSynthetic(ctx
, part
.verDef
.get());
2082 finalizeSynthetic(ctx
, part
.ehFrameHdr
.get());
2083 finalizeSynthetic(ctx
, part
.verSym
.get());
2084 finalizeSynthetic(ctx
, part
.verNeed
.get());
2085 finalizeSynthetic(ctx
, part
.dynamic
.get());
2089 if (!ctx
.script
->hasSectionsCommand
&& !ctx
.arg
.relocatable
)
2090 fixSectionAlignments();
2093 // 1) Create "thunks":
2094 // Jump instructions in many ISAs have small displacements, and therefore
2095 // they cannot jump to arbitrary addresses in memory. For example, RISC-V
2096 // JAL instruction can target only +-1 MiB from PC. It is a linker's
2097 // responsibility to create and insert small pieces of code between
2098 // sections to extend the ranges if jump targets are out of range. Such
2099 // code pieces are called "thunks".
2101 // We add thunks at this stage. We couldn't do this before this point
2102 // because this is the earliest point where we know sizes of sections and
2103 // their layouts (that are needed to determine if jump targets are in
2106 // 2) Update the sections. We need to generate content that depends on the
2107 // address of InputSections. For example, MIPS GOT section content or
2108 // android packed relocations sections content.
2110 // 3) Assign the final values for the linker script symbols. Linker scripts
2111 // sometimes using forward symbol declarations. We want to set the correct
2112 // values. They also might change after adding the thunks.
2113 finalizeAddressDependentContent();
2115 // All information needed for OutputSection part of Map file is available.
2120 llvm::TimeTraceScope
timeScope("Finalize synthetic sections");
2121 // finalizeAddressDependentContent may have added local symbols to the
2122 // static symbol table.
2123 finalizeSynthetic(ctx
, ctx
.in
.symTab
.get());
2124 finalizeSynthetic(ctx
, ctx
.in
.debugNames
.get());
2125 finalizeSynthetic(ctx
, ctx
.in
.ppc64LongBranchTarget
.get());
2126 finalizeSynthetic(ctx
, ctx
.in
.armCmseSGSection
.get());
2129 // Relaxation to delete inter-basic block jumps created by basic block
2130 // sections. Run after ctx.in.symTab is finalized as optimizeBasicBlockJumps
2131 // can relax jump instructions based on symbol offset.
2132 if (ctx
.arg
.optimizeBBJumps
)
2133 optimizeBasicBlockJumps();
2135 // Fill other section headers. The dynamic table is finalized
2136 // at the end because some tags like RELSZ depend on result
2137 // of finalizing other sections.
2138 for (OutputSection
*sec
: ctx
.outputSections
)
2141 ctx
.script
->checkFinalScriptConditions();
2143 if (ctx
.arg
.emachine
== EM_ARM
&& !ctx
.arg
.isLE
&& ctx
.arg
.armBe8
) {
2144 addArmInputSectionMappingSymbols(ctx
);
2145 sortArmMappingSymbols(ctx
);
2149 // Ensure data sections are not mixed with executable sections when
2150 // --execute-only is used. --execute-only make pages executable but not
2152 template <class ELFT
> void Writer
<ELFT
>::checkExecuteOnly() {
2153 if (!ctx
.arg
.executeOnly
)
2156 SmallVector
<InputSection
*, 0> storage
;
2157 for (OutputSection
*osec
: ctx
.outputSections
)
2158 if (osec
->flags
& SHF_EXECINSTR
)
2159 for (InputSection
*isec
: getInputSections(*osec
, storage
))
2160 if (!(isec
->flags
& SHF_EXECINSTR
))
2161 ErrAlways(ctx
) << "cannot place " << isec
<< " into " << osec
->name
2162 << ": --execute-only does not support intermingling "
2166 // The linker is expected to define SECNAME_start and SECNAME_end
2167 // symbols for a few sections. This function defines them.
2168 template <class ELFT
> void Writer
<ELFT
>::addStartEndSymbols() {
2169 // If the associated output section does not exist, there is ambiguity as to
2170 // how we define _start and _end symbols for an init/fini section. Users
2171 // expect no "undefined symbol" linker errors and loaders expect equal
2172 // st_value but do not particularly care whether the symbols are defined or
2173 // not. We retain the output section so that the section indexes will be
2175 auto define
= [=](StringRef start
, StringRef end
, OutputSection
*os
) {
2177 Defined
*startSym
= addOptionalRegular(ctx
, start
, os
, 0);
2178 Defined
*stopSym
= addOptionalRegular(ctx
, end
, os
, -1);
2179 if (startSym
|| stopSym
)
2180 os
->usedInExpression
= true;
2182 addOptionalRegular(ctx
, start
, ctx
.out
.elfHeader
.get(), 0);
2183 addOptionalRegular(ctx
, end
, ctx
.out
.elfHeader
.get(), 0);
2187 define("__preinit_array_start", "__preinit_array_end", ctx
.out
.preinitArray
);
2188 define("__init_array_start", "__init_array_end", ctx
.out
.initArray
);
2189 define("__fini_array_start", "__fini_array_end", ctx
.out
.finiArray
);
2191 // As a special case, don't unnecessarily retain .ARM.exidx, which would
2192 // create an empty PT_ARM_EXIDX.
2193 if (OutputSection
*sec
= findSection(ctx
, ".ARM.exidx"))
2194 define("__exidx_start", "__exidx_end", sec
);
2197 // If a section name is valid as a C identifier (which is rare because of
2198 // the leading '.'), linkers are expected to define __start_<secname> and
2199 // __stop_<secname> symbols. They are at beginning and end of the section,
2200 // respectively. This is not requested by the ELF standard, but GNU ld and
2201 // gold provide the feature, and used by many programs.
2202 template <class ELFT
>
2203 void Writer
<ELFT
>::addStartStopSymbols(OutputSection
&osec
) {
2204 StringRef s
= osec
.name
;
2205 if (!isValidCIdentifier(s
))
2207 StringSaver
&ss
= ctx
.saver
;
2208 Defined
*startSym
= addOptionalRegular(ctx
, ss
.save("__start_" + s
), &osec
, 0,
2209 ctx
.arg
.zStartStopVisibility
);
2210 Defined
*stopSym
= addOptionalRegular(ctx
, ss
.save("__stop_" + s
), &osec
, -1,
2211 ctx
.arg
.zStartStopVisibility
);
2212 if (startSym
|| stopSym
)
2213 osec
.usedInExpression
= true;
2216 static bool needsPtLoad(OutputSection
*sec
) {
2217 if (!(sec
->flags
& SHF_ALLOC
))
2220 // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
2221 // responsible for allocating space for them, not the PT_LOAD that
2222 // contains the TLS initialization image.
2223 if ((sec
->flags
& SHF_TLS
) && sec
->type
== SHT_NOBITS
)
2228 // Adjust phdr flags according to certain options.
2229 static uint64_t computeFlags(Ctx
&ctx
, uint64_t flags
) {
2231 return PF_R
| PF_W
| PF_X
;
2232 if (ctx
.arg
.executeOnly
&& (flags
& PF_X
))
2233 return flags
& ~PF_R
;
2237 // Decide which program headers to create and which sections to include in each
2239 template <class ELFT
>
2240 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0>
2241 Writer
<ELFT
>::createPhdrs(Partition
&part
) {
2242 SmallVector
<std::unique_ptr
<PhdrEntry
>, 0> ret
;
2243 auto addHdr
= [&, &ctx
= ctx
](unsigned type
, unsigned flags
) -> PhdrEntry
* {
2244 ret
.push_back(std::make_unique
<PhdrEntry
>(ctx
, type
, flags
));
2245 return ret
.back().get();
2248 unsigned partNo
= part
.getNumber(ctx
);
2249 bool isMain
= partNo
== 1;
2251 // Add the first PT_LOAD segment for regular output sections.
2252 uint64_t flags
= computeFlags(ctx
, PF_R
);
2253 PhdrEntry
*load
= nullptr;
2255 // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
2257 if (!ctx
.arg
.nmagic
&& !ctx
.arg
.omagic
) {
2258 // The first phdr entry is PT_PHDR which describes the program header
2261 addHdr(PT_PHDR
, PF_R
)->add(ctx
.out
.programHeaders
.get());
2263 addHdr(PT_PHDR
, PF_R
)->add(part
.programHeaders
->getParent());
2265 // PT_INTERP must be the second entry if exists.
2266 if (OutputSection
*cmd
= findSection(ctx
, ".interp", partNo
))
2267 addHdr(PT_INTERP
, cmd
->getPhdrFlags())->add(cmd
);
2269 // Add the headers. We will remove them if they don't fit.
2270 // In the other partitions the headers are ordinary sections, so they don't
2271 // need to be added here.
2273 load
= addHdr(PT_LOAD
, flags
);
2274 load
->add(ctx
.out
.elfHeader
.get());
2275 load
->add(ctx
.out
.programHeaders
.get());
2279 // PT_GNU_RELRO includes all sections that should be marked as
2280 // read-only by dynamic linker after processing relocations.
2281 // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
2282 // an error message if more than one PT_GNU_RELRO PHDR is required.
2283 auto relRo
= std::make_unique
<PhdrEntry
>(ctx
, PT_GNU_RELRO
, PF_R
);
2284 bool inRelroPhdr
= false;
2285 OutputSection
*relroEnd
= nullptr;
2286 for (OutputSection
*sec
: ctx
.outputSections
) {
2287 if (sec
->partition
!= partNo
|| !needsPtLoad(sec
))
2289 if (isRelroSection(ctx
, sec
)) {
2294 ErrAlways(ctx
) << "section: " << sec
->name
2295 << " is not contiguous with other relro" << " sections";
2296 } else if (inRelroPhdr
) {
2297 inRelroPhdr
= false;
2303 for (OutputSection
*sec
: ctx
.outputSections
) {
2304 if (!needsPtLoad(sec
))
2307 // Normally, sections in partitions other than the current partition are
2308 // ignored. But partition number 255 is a special case: it contains the
2309 // partition end marker (.part.end). It needs to be added to the main
2310 // partition so that a segment is created for it in the main partition,
2311 // which will cause the dynamic loader to reserve space for the other
2313 if (sec
->partition
!= partNo
) {
2314 if (isMain
&& sec
->partition
== 255)
2315 addHdr(PT_LOAD
, computeFlags(ctx
, sec
->getPhdrFlags()))->add(sec
);
2319 // Segments are contiguous memory regions that has the same attributes
2320 // (e.g. executable or writable). There is one phdr for each segment.
2321 // Therefore, we need to create a new phdr when the next section has
2322 // incompatible flags or is loaded at a discontiguous address or memory
2323 // region using AT or AT> linker script command, respectively.
2325 // As an exception, we don't create a separate load segment for the ELF
2326 // headers, even if the first "real" output has an AT or AT> attribute.
2328 // In addition, NOBITS sections should only be placed at the end of a LOAD
2329 // segment (since it's represented as p_filesz < p_memsz). If we have a
2330 // not-NOBITS section after a NOBITS, we create a new LOAD for the latter
2331 // even if flags match, so as not to require actually writing the
2332 // supposed-to-be-NOBITS section to the output file. (However, we cannot do
2333 // so when hasSectionsCommand, since we cannot introduce the extra alignment
2334 // needed to create a new LOAD)
2335 uint64_t newFlags
= computeFlags(ctx
, sec
->getPhdrFlags());
2336 // When --no-rosegment is specified, RO and RX sections are compatible.
2337 uint32_t incompatible
= flags
^ newFlags
;
2338 if (ctx
.arg
.singleRoRx
&& !(newFlags
& PF_W
))
2339 incompatible
&= ~PF_X
;
2343 bool sameLMARegion
=
2344 load
&& !sec
->lmaExpr
&& sec
->lmaRegion
== load
->firstSec
->lmaRegion
;
2345 if (load
&& sec
!= relroEnd
&&
2346 sec
->memRegion
== load
->firstSec
->memRegion
&&
2347 (sameLMARegion
|| load
->lastSec
== ctx
.out
.programHeaders
.get()) &&
2348 (ctx
.script
->hasSectionsCommand
|| sec
->type
== SHT_NOBITS
||
2349 load
->lastSec
->type
!= SHT_NOBITS
)) {
2350 load
->p_flags
|= newFlags
;
2352 load
= addHdr(PT_LOAD
, newFlags
);
2359 // Add a TLS segment if any.
2360 auto tlsHdr
= std::make_unique
<PhdrEntry
>(ctx
, PT_TLS
, PF_R
);
2361 for (OutputSection
*sec
: ctx
.outputSections
)
2362 if (sec
->partition
== partNo
&& sec
->flags
& SHF_TLS
)
2364 if (tlsHdr
->firstSec
)
2365 ret
.push_back(std::move(tlsHdr
));
2367 // Add an entry for .dynamic.
2368 if (OutputSection
*sec
= part
.dynamic
->getParent())
2369 addHdr(PT_DYNAMIC
, sec
->getPhdrFlags())->add(sec
);
2371 if (relRo
->firstSec
)
2372 ret
.push_back(std::move(relRo
));
2374 // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
2375 if (part
.ehFrame
->isNeeded() && part
.ehFrameHdr
&&
2376 part
.ehFrame
->getParent() && part
.ehFrameHdr
->getParent())
2377 addHdr(PT_GNU_EH_FRAME
, part
.ehFrameHdr
->getParent()->getPhdrFlags())
2378 ->add(part
.ehFrameHdr
->getParent());
2380 if (ctx
.arg
.osabi
== ELFOSABI_OPENBSD
) {
2381 // PT_OPENBSD_MUTABLE makes the dynamic linker fill the segment with
2382 // zero data, like bss, but it can be treated differently.
2383 if (OutputSection
*cmd
= findSection(ctx
, ".openbsd.mutable", partNo
))
2384 addHdr(PT_OPENBSD_MUTABLE
, cmd
->getPhdrFlags())->add(cmd
);
2386 // PT_OPENBSD_RANDOMIZE makes the dynamic linker fill the segment
2387 // with random data.
2388 if (OutputSection
*cmd
= findSection(ctx
, ".openbsd.randomdata", partNo
))
2389 addHdr(PT_OPENBSD_RANDOMIZE
, cmd
->getPhdrFlags())->add(cmd
);
2391 // PT_OPENBSD_SYSCALLS makes the kernel and dynamic linker register
2392 // system call sites.
2393 if (OutputSection
*cmd
= findSection(ctx
, ".openbsd.syscalls", partNo
))
2394 addHdr(PT_OPENBSD_SYSCALLS
, cmd
->getPhdrFlags())->add(cmd
);
2397 if (ctx
.arg
.zGnustack
!= GnuStackKind::None
) {
2398 // PT_GNU_STACK is a special section to tell the loader to make the
2399 // pages for the stack non-executable. If you really want an executable
2400 // stack, you can pass -z execstack, but that's not recommended for
2401 // security reasons.
2402 unsigned perm
= PF_R
| PF_W
;
2403 if (ctx
.arg
.zGnustack
== GnuStackKind::Exec
)
2405 addHdr(PT_GNU_STACK
, perm
)->p_memsz
= ctx
.arg
.zStackSize
;
2408 // PT_OPENBSD_NOBTCFI is an OpenBSD-specific header to mark that the
2409 // executable is expected to violate branch-target CFI checks.
2410 if (ctx
.arg
.zNoBtCfi
)
2411 addHdr(PT_OPENBSD_NOBTCFI
, PF_X
);
2413 // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
2414 // is expected to perform W^X violations, such as calling mprotect(2) or
2415 // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
2417 if (ctx
.arg
.zWxneeded
)
2418 addHdr(PT_OPENBSD_WXNEEDED
, PF_X
);
2420 if (OutputSection
*cmd
= findSection(ctx
, ".note.gnu.property", partNo
))
2421 addHdr(PT_GNU_PROPERTY
, PF_R
)->add(cmd
);
2423 // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
2425 PhdrEntry
*note
= nullptr;
2426 for (OutputSection
*sec
: ctx
.outputSections
) {
2427 if (sec
->partition
!= partNo
)
2429 if (sec
->type
== SHT_NOTE
&& (sec
->flags
& SHF_ALLOC
)) {
2430 if (!note
|| sec
->lmaExpr
|| note
->lastSec
->addralign
!= sec
->addralign
)
2431 note
= addHdr(PT_NOTE
, PF_R
);
2440 template <class ELFT
>
2441 void Writer
<ELFT
>::addPhdrForSection(Partition
&part
, unsigned shType
,
2442 unsigned pType
, unsigned pFlags
) {
2443 unsigned partNo
= part
.getNumber(ctx
);
2444 auto i
= llvm::find_if(ctx
.outputSections
, [=](OutputSection
*cmd
) {
2445 return cmd
->partition
== partNo
&& cmd
->type
== shType
;
2447 if (i
== ctx
.outputSections
.end())
2450 auto entry
= std::make_unique
<PhdrEntry
>(ctx
, pType
, pFlags
);
2452 part
.phdrs
.push_back(std::move(entry
));
2455 // Place the first section of each PT_LOAD to a different page (of maxPageSize).
2456 // This is achieved by assigning an alignment expression to addrExpr of each
2458 template <class ELFT
> void Writer
<ELFT
>::fixSectionAlignments() {
2459 const PhdrEntry
*prev
;
2460 auto pageAlign
= [&, &ctx
= this->ctx
](const PhdrEntry
*p
) {
2461 OutputSection
*cmd
= p
->firstSec
;
2464 cmd
->alignExpr
= [align
= cmd
->addralign
]() { return align
; };
2465 if (!cmd
->addrExpr
) {
2466 // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
2467 // padding in the file contents.
2469 // When -z separate-code is used we must not have any overlap in pages
2470 // between an executable segment and a non-executable segment. We align to
2471 // the next maximum page size boundary on transitions between executable
2472 // and non-executable segments.
2474 // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
2475 // sections will be extracted to a separate file. Align to the next
2476 // maximum page size boundary so that we can find the ELF header at the
2477 // start. We cannot benefit from overlapping p_offset ranges with the
2478 // previous segment anyway.
2479 if (ctx
.arg
.zSeparate
== SeparateSegmentKind::Loadable
||
2480 (ctx
.arg
.zSeparate
== SeparateSegmentKind::Code
&& prev
&&
2481 (prev
->p_flags
& PF_X
) != (p
->p_flags
& PF_X
)) ||
2482 cmd
->type
== SHT_LLVM_PART_EHDR
)
2483 cmd
->addrExpr
= [&ctx
= this->ctx
] {
2484 return alignToPowerOf2(ctx
.script
->getDot(), ctx
.arg
.maxPageSize
);
2486 // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
2487 // it must be the RW. Align to p_align(PT_TLS) to make sure
2488 // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
2489 // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
2490 // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
2491 // be congruent to 0 modulo p_align(PT_TLS).
2493 // Technically this is not required, but as of 2019, some dynamic loaders
2494 // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
2495 // x86-64) doesn't make runtime address congruent to p_vaddr modulo
2496 // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
2497 // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
2498 // blocks correctly. We need to keep the workaround for a while.
2499 else if (ctx
.tlsPhdr
&& ctx
.tlsPhdr
->firstSec
== p
->firstSec
)
2500 cmd
->addrExpr
= [&ctx
] {
2501 return alignToPowerOf2(ctx
.script
->getDot(), ctx
.arg
.maxPageSize
) +
2502 alignToPowerOf2(ctx
.script
->getDot() % ctx
.arg
.maxPageSize
,
2503 ctx
.tlsPhdr
->p_align
);
2506 cmd
->addrExpr
= [&ctx
] {
2507 return alignToPowerOf2(ctx
.script
->getDot(), ctx
.arg
.maxPageSize
) +
2508 ctx
.script
->getDot() % ctx
.arg
.maxPageSize
;
2513 for (Partition
&part
: ctx
.partitions
) {
2515 for (auto &p
: part
.phdrs
)
2516 if (p
->p_type
== PT_LOAD
&& p
->firstSec
) {
2523 // Compute an in-file position for a given section. The file offset must be the
2524 // same with its virtual address modulo the page size, so that the loader can
2525 // load executables without any address adjustment.
2526 static uint64_t computeFileOffset(Ctx
&ctx
, OutputSection
*os
, uint64_t off
) {
2527 // The first section in a PT_LOAD has to have congruent offset and address
2528 // modulo the maximum page size.
2529 if (os
->ptLoad
&& os
->ptLoad
->firstSec
== os
)
2530 return alignTo(off
, os
->ptLoad
->p_align
, os
->addr
);
2532 // File offsets are not significant for .bss sections other than the first one
2533 // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
2534 // increasing rather than setting to zero.
2535 if (os
->type
== SHT_NOBITS
&& (!ctx
.tlsPhdr
|| ctx
.tlsPhdr
->firstSec
!= os
))
2538 // If the section is not in a PT_LOAD, we just have to align it.
2540 return alignToPowerOf2(off
, os
->addralign
);
2542 // If two sections share the same PT_LOAD the file offset is calculated
2543 // using this formula: Off2 = Off1 + (VA2 - VA1).
2544 OutputSection
*first
= os
->ptLoad
->firstSec
;
2545 return first
->offset
+ os
->addr
- first
->addr
;
2548 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsetsBinary() {
2549 // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
2550 auto needsOffset
= [](OutputSection
&sec
) {
2551 return sec
.type
!= SHT_NOBITS
&& (sec
.flags
& SHF_ALLOC
) && sec
.size
> 0;
2553 uint64_t minAddr
= UINT64_MAX
;
2554 for (OutputSection
*sec
: ctx
.outputSections
)
2555 if (needsOffset(*sec
)) {
2556 sec
->offset
= sec
->getLMA();
2557 minAddr
= std::min(minAddr
, sec
->offset
);
2560 // Sections are laid out at LMA minus minAddr.
2562 for (OutputSection
*sec
: ctx
.outputSections
)
2563 if (needsOffset(*sec
)) {
2564 sec
->offset
-= minAddr
;
2565 fileSize
= std::max(fileSize
, sec
->offset
+ sec
->size
);
2569 static std::string
rangeToString(uint64_t addr
, uint64_t len
) {
2570 return "[0x" + utohexstr(addr
) + ", 0x" + utohexstr(addr
+ len
- 1) + "]";
2573 // Assign file offsets to output sections.
2574 template <class ELFT
> void Writer
<ELFT
>::assignFileOffsets() {
2575 ctx
.out
.programHeaders
->offset
= ctx
.out
.elfHeader
->size
;
2576 uint64_t off
= ctx
.out
.elfHeader
->size
+ ctx
.out
.programHeaders
->size
;
2578 PhdrEntry
*lastRX
= nullptr;
2579 for (Partition
&part
: ctx
.partitions
)
2580 for (auto &p
: part
.phdrs
)
2581 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2584 // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
2585 // will not occupy file offsets contained by a PT_LOAD.
2586 for (OutputSection
*sec
: ctx
.outputSections
) {
2587 if (!(sec
->flags
& SHF_ALLOC
))
2589 off
= computeFileOffset(ctx
, sec
, off
);
2591 if (sec
->type
!= SHT_NOBITS
)
2594 // If this is a last section of the last executable segment and that
2595 // segment is the last loadable segment, align the offset of the
2596 // following section to avoid loading non-segments parts of the file.
2597 if (ctx
.arg
.zSeparate
!= SeparateSegmentKind::None
&& lastRX
&&
2598 lastRX
->lastSec
== sec
)
2599 off
= alignToPowerOf2(off
, ctx
.arg
.maxPageSize
);
2601 for (OutputSection
*osec
: ctx
.outputSections
) {
2602 if (osec
->flags
& SHF_ALLOC
)
2604 osec
->offset
= alignToPowerOf2(off
, osec
->addralign
);
2605 off
= osec
->offset
+ osec
->size
;
2608 sectionHeaderOff
= alignToPowerOf2(off
, ctx
.arg
.wordsize
);
2610 sectionHeaderOff
+ (ctx
.outputSections
.size() + 1) * sizeof(Elf_Shdr
);
2612 // Our logic assumes that sections have rising VA within the same segment.
2613 // With use of linker scripts it is possible to violate this rule and get file
2614 // offset overlaps or overflows. That should never happen with a valid script
2615 // which does not move the location counter backwards and usually scripts do
2616 // not do that. Unfortunately, there are apps in the wild, for example, Linux
2617 // kernel, which control segment distribution explicitly and move the counter
2618 // backwards, so we have to allow doing that to support linking them. We
2619 // perform non-critical checks for overlaps in checkSectionOverlap(), but here
2620 // we want to prevent file size overflows because it would crash the linker.
2621 for (OutputSection
*sec
: ctx
.outputSections
) {
2622 if (sec
->type
== SHT_NOBITS
)
2624 if ((sec
->offset
> fileSize
) || (sec
->offset
+ sec
->size
> fileSize
))
2625 ErrAlways(ctx
) << "unable to place section " << sec
->name
2626 << " at file offset "
2627 << rangeToString(sec
->offset
, sec
->size
)
2628 << "; check your linker script for overflows";
2632 // Finalize the program headers. We call this function after we assign
2633 // file offsets and VAs to all sections.
2634 template <class ELFT
> void Writer
<ELFT
>::setPhdrs(Partition
&part
) {
2635 for (std::unique_ptr
<PhdrEntry
> &p
: part
.phdrs
) {
2636 OutputSection
*first
= p
->firstSec
;
2637 OutputSection
*last
= p
->lastSec
;
2639 // .ARM.exidx sections may not be within a single .ARM.exidx
2640 // output section. We always want to describe just the
2641 // SyntheticSection.
2642 if (part
.armExidx
&& p
->p_type
== PT_ARM_EXIDX
) {
2643 p
->p_filesz
= part
.armExidx
->getSize();
2644 p
->p_memsz
= p
->p_filesz
;
2645 p
->p_offset
= first
->offset
+ part
.armExidx
->outSecOff
;
2646 p
->p_vaddr
= first
->addr
+ part
.armExidx
->outSecOff
;
2647 p
->p_align
= part
.armExidx
->addralign
;
2649 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2652 p
->p_paddr
= first
->getLMA() + part
.armExidx
->outSecOff
;
2657 p
->p_filesz
= last
->offset
- first
->offset
;
2658 if (last
->type
!= SHT_NOBITS
)
2659 p
->p_filesz
+= last
->size
;
2661 p
->p_memsz
= last
->addr
+ last
->size
- first
->addr
;
2662 p
->p_offset
= first
->offset
;
2663 p
->p_vaddr
= first
->addr
;
2665 // File offsets in partitions other than the main partition are relative
2666 // to the offset of the ELF headers. Perform that adjustment now.
2668 p
->p_offset
-= part
.elfHeader
->getParent()->offset
;
2671 p
->p_paddr
= first
->getLMA();
2676 // A helper struct for checkSectionOverlap.
2678 struct SectionOffset
{
2684 // Check whether sections overlap for a specific address range (file offsets,
2685 // load and virtual addresses).
2686 static void checkOverlap(Ctx
&ctx
, StringRef name
,
2687 std::vector
<SectionOffset
> §ions
,
2688 bool isVirtualAddr
) {
2689 llvm::sort(sections
, [=](const SectionOffset
&a
, const SectionOffset
&b
) {
2690 return a
.offset
< b
.offset
;
2693 // Finding overlap is easy given a vector is sorted by start position.
2694 // If an element starts before the end of the previous element, they overlap.
2695 for (size_t i
= 1, end
= sections
.size(); i
< end
; ++i
) {
2696 SectionOffset a
= sections
[i
- 1];
2697 SectionOffset b
= sections
[i
];
2698 if (b
.offset
>= a
.offset
+ a
.sec
->size
)
2701 // If both sections are in OVERLAY we allow the overlapping of virtual
2702 // addresses, because it is what OVERLAY was designed for.
2703 if (isVirtualAddr
&& a
.sec
->inOverlay
&& b
.sec
->inOverlay
)
2706 Err(ctx
) << "section " << a
.sec
->name
<< " " << name
2707 << " range overlaps with " << b
.sec
->name
<< "\n>>> "
2708 << a
.sec
->name
<< " range is "
2709 << rangeToString(a
.offset
, a
.sec
->size
) << "\n>>> " << b
.sec
->name
2710 << " range is " << rangeToString(b
.offset
, b
.sec
->size
);
2714 // Check for overlapping sections and address overflows.
2716 // In this function we check that none of the output sections have overlapping
2717 // file offsets. For SHF_ALLOC sections we also check that the load address
2718 // ranges and the virtual address ranges don't overlap
2719 template <class ELFT
> void Writer
<ELFT
>::checkSections() {
2720 // First, check that section's VAs fit in available address space for target.
2721 for (OutputSection
*os
: ctx
.outputSections
)
2722 if ((os
->addr
+ os
->size
< os
->addr
) ||
2723 (!ELFT::Is64Bits
&& os
->addr
+ os
->size
> uint64_t(UINT32_MAX
) + 1))
2724 Err(ctx
) << "section " << os
->name
<< " at 0x"
2725 << utohexstr(os
->addr
, true) << " of size 0x"
2726 << utohexstr(os
->size
, true)
2727 << " exceeds available address space";
2729 // Check for overlapping file offsets. In this case we need to skip any
2730 // section marked as SHT_NOBITS. These sections don't actually occupy space in
2731 // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
2732 // binary is specified only add SHF_ALLOC sections are added to the output
2733 // file so we skip any non-allocated sections in that case.
2734 std::vector
<SectionOffset
> fileOffs
;
2735 for (OutputSection
*sec
: ctx
.outputSections
)
2736 if (sec
->size
> 0 && sec
->type
!= SHT_NOBITS
&&
2737 (!ctx
.arg
.oFormatBinary
|| (sec
->flags
& SHF_ALLOC
)))
2738 fileOffs
.push_back({sec
, sec
->offset
});
2739 checkOverlap(ctx
, "file", fileOffs
, false);
2741 // When linking with -r there is no need to check for overlapping virtual/load
2742 // addresses since those addresses will only be assigned when the final
2743 // executable/shared object is created.
2744 if (ctx
.arg
.relocatable
)
2747 // Checking for overlapping virtual and load addresses only needs to take
2748 // into account SHF_ALLOC sections since others will not be loaded.
2749 // Furthermore, we also need to skip SHF_TLS sections since these will be
2750 // mapped to other addresses at runtime and can therefore have overlapping
2751 // ranges in the file.
2752 std::vector
<SectionOffset
> vmas
;
2753 for (OutputSection
*sec
: ctx
.outputSections
)
2754 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2755 vmas
.push_back({sec
, sec
->addr
});
2756 checkOverlap(ctx
, "virtual address", vmas
, true);
2758 // Finally, check that the load addresses don't overlap. This will usually be
2759 // the same as the virtual addresses but can be different when using a linker
2760 // script with AT().
2761 std::vector
<SectionOffset
> lmas
;
2762 for (OutputSection
*sec
: ctx
.outputSections
)
2763 if (sec
->size
> 0 && (sec
->flags
& SHF_ALLOC
) && !(sec
->flags
& SHF_TLS
))
2764 lmas
.push_back({sec
, sec
->getLMA()});
2765 checkOverlap(ctx
, "load address", lmas
, false);
2768 // The entry point address is chosen in the following ways.
2770 // 1. the '-e' entry command-line option;
2771 // 2. the ENTRY(symbol) command in a linker control script;
2772 // 3. the value of the symbol _start, if present;
2773 // 4. the number represented by the entry symbol, if it is a number;
2774 // 5. the address 0.
2775 static uint64_t getEntryAddr(Ctx
&ctx
) {
2777 if (Symbol
*b
= ctx
.symtab
->find(ctx
.arg
.entry
))
2778 return b
->getVA(ctx
);
2782 if (to_integer(ctx
.arg
.entry
, addr
))
2786 if (ctx
.arg
.warnMissingEntry
)
2787 Warn(ctx
) << "cannot find entry symbol " << ctx
.arg
.entry
2788 << "; not setting start address";
2792 static uint16_t getELFType(Ctx
&ctx
) {
2795 if (ctx
.arg
.relocatable
)
2800 template <class ELFT
> void Writer
<ELFT
>::writeHeader() {
2801 writeEhdr
<ELFT
>(ctx
, ctx
.bufferStart
, *ctx
.mainPart
);
2802 writePhdrs
<ELFT
>(ctx
.bufferStart
+ sizeof(Elf_Ehdr
), *ctx
.mainPart
);
2804 auto *eHdr
= reinterpret_cast<Elf_Ehdr
*>(ctx
.bufferStart
);
2805 eHdr
->e_type
= getELFType(ctx
);
2806 eHdr
->e_entry
= getEntryAddr(ctx
);
2808 // If -z nosectionheader is specified, omit the section header table.
2809 if (!ctx
.in
.shStrTab
)
2811 eHdr
->e_shoff
= sectionHeaderOff
;
2813 // Write the section header table.
2815 // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
2816 // and e_shstrndx fields. When the value of one of these fields exceeds
2817 // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
2818 // use fields in the section header at index 0 to store
2819 // the value. The sentinel values and fields are:
2820 // e_shnum = 0, SHdrs[0].sh_size = number of sections.
2821 // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
2822 auto *sHdrs
= reinterpret_cast<Elf_Shdr
*>(ctx
.bufferStart
+ eHdr
->e_shoff
);
2823 size_t num
= ctx
.outputSections
.size() + 1;
2824 if (num
>= SHN_LORESERVE
)
2825 sHdrs
->sh_size
= num
;
2827 eHdr
->e_shnum
= num
;
2829 uint32_t strTabIndex
= ctx
.in
.shStrTab
->getParent()->sectionIndex
;
2830 if (strTabIndex
>= SHN_LORESERVE
) {
2831 sHdrs
->sh_link
= strTabIndex
;
2832 eHdr
->e_shstrndx
= SHN_XINDEX
;
2834 eHdr
->e_shstrndx
= strTabIndex
;
2837 for (OutputSection
*sec
: ctx
.outputSections
)
2838 sec
->writeHeaderTo
<ELFT
>(++sHdrs
);
2841 // Open a result file.
2842 template <class ELFT
> void Writer
<ELFT
>::openFile() {
2843 uint64_t maxSize
= ctx
.arg
.is64
? INT64_MAX
: UINT32_MAX
;
2844 if (fileSize
!= size_t(fileSize
) || maxSize
< fileSize
) {
2846 raw_string_ostream
s(msg
);
2847 s
<< "output file too large: " << fileSize
<< " bytes\n"
2848 << "section sizes:\n";
2849 for (OutputSection
*os
: ctx
.outputSections
)
2850 s
<< os
->name
<< ' ' << os
->size
<< "\n";
2851 ErrAlways(ctx
) << msg
;
2855 unlinkAsync(ctx
.arg
.outputFile
);
2857 if (!ctx
.arg
.relocatable
)
2858 flags
|= FileOutputBuffer::F_executable
;
2859 if (!ctx
.arg
.mmapOutputFile
)
2860 flags
|= FileOutputBuffer::F_no_mmap
;
2861 Expected
<std::unique_ptr
<FileOutputBuffer
>> bufferOrErr
=
2862 FileOutputBuffer::create(ctx
.arg
.outputFile
, fileSize
, flags
);
2865 ErrAlways(ctx
) << "failed to open " << ctx
.arg
.outputFile
<< ": "
2866 << bufferOrErr
.takeError();
2869 buffer
= std::move(*bufferOrErr
);
2870 ctx
.bufferStart
= buffer
->getBufferStart();
2873 template <class ELFT
> void Writer
<ELFT
>::writeSectionsBinary() {
2874 parallel::TaskGroup tg
;
2875 for (OutputSection
*sec
: ctx
.outputSections
)
2876 if (sec
->flags
& SHF_ALLOC
)
2877 sec
->writeTo
<ELFT
>(ctx
, ctx
.bufferStart
+ sec
->offset
, tg
);
2880 static void fillTrap(std::array
<uint8_t, 4> trapInstr
, uint8_t *i
,
2882 for (; i
+ 4 <= end
; i
+= 4)
2883 memcpy(i
, trapInstr
.data(), 4);
2886 // Fill the last page of executable segments with trap instructions
2887 // instead of leaving them as zero. Even though it is not required by any
2888 // standard, it is in general a good thing to do for security reasons.
2890 // We'll leave other pages in segments as-is because the rest will be
2891 // overwritten by output sections.
2892 template <class ELFT
> void Writer
<ELFT
>::writeTrapInstr() {
2893 for (Partition
&part
: ctx
.partitions
) {
2894 // Fill the last page.
2895 for (std::unique_ptr
<PhdrEntry
> &p
: part
.phdrs
)
2896 if (p
->p_type
== PT_LOAD
&& (p
->p_flags
& PF_X
))
2898 ctx
.target
->trapInstr
,
2899 ctx
.bufferStart
+ alignDown(p
->firstSec
->offset
+ p
->p_filesz
, 4),
2900 ctx
.bufferStart
+ alignToPowerOf2(p
->firstSec
->offset
+ p
->p_filesz
,
2901 ctx
.arg
.maxPageSize
));
2903 // Round up the file size of the last segment to the page boundary iff it is
2904 // an executable segment to ensure that other tools don't accidentally
2905 // trim the instruction padding (e.g. when stripping the file).
2906 PhdrEntry
*last
= nullptr;
2907 for (std::unique_ptr
<PhdrEntry
> &p
: part
.phdrs
)
2908 if (p
->p_type
== PT_LOAD
)
2911 if (last
&& (last
->p_flags
& PF_X
))
2912 last
->p_memsz
= last
->p_filesz
=
2913 alignToPowerOf2(last
->p_filesz
, ctx
.arg
.maxPageSize
);
2917 // Write section contents to a mmap'ed file.
2918 template <class ELFT
> void Writer
<ELFT
>::writeSections() {
2919 llvm::TimeTraceScope
timeScope("Write sections");
2922 // In -r or --emit-relocs mode, write the relocation sections first as in
2923 // ELf_Rel targets we might find out that we need to modify the relocated
2924 // section while doing it.
2925 parallel::TaskGroup tg
;
2926 for (OutputSection
*sec
: ctx
.outputSections
)
2927 if (isStaticRelSecType(sec
->type
))
2928 sec
->writeTo
<ELFT
>(ctx
, ctx
.bufferStart
+ sec
->offset
, tg
);
2931 parallel::TaskGroup tg
;
2932 for (OutputSection
*sec
: ctx
.outputSections
)
2933 if (!isStaticRelSecType(sec
->type
))
2934 sec
->writeTo
<ELFT
>(ctx
, ctx
.bufferStart
+ sec
->offset
, tg
);
2937 // Finally, check that all dynamic relocation addends were written correctly.
2938 if (ctx
.arg
.checkDynamicRelocs
&& ctx
.arg
.writeAddends
) {
2939 for (OutputSection
*sec
: ctx
.outputSections
)
2940 if (isStaticRelSecType(sec
->type
))
2941 sec
->checkDynRelAddends(ctx
);
2945 // Computes a hash value of Data using a given hash function.
2946 // In order to utilize multiple cores, we first split data into 1MB
2947 // chunks, compute a hash for each chunk, and then compute a hash value
2948 // of the hash values.
2950 computeHash(llvm::MutableArrayRef
<uint8_t> hashBuf
,
2951 llvm::ArrayRef
<uint8_t> data
,
2952 std::function
<void(uint8_t *dest
, ArrayRef
<uint8_t> arr
)> hashFn
) {
2953 std::vector
<ArrayRef
<uint8_t>> chunks
= split(data
, 1024 * 1024);
2954 const size_t hashesSize
= chunks
.size() * hashBuf
.size();
2955 std::unique_ptr
<uint8_t[]> hashes(new uint8_t[hashesSize
]);
2957 // Compute hash values.
2958 parallelFor(0, chunks
.size(), [&](size_t i
) {
2959 hashFn(hashes
.get() + i
* hashBuf
.size(), chunks
[i
]);
2962 // Write to the final output buffer.
2963 hashFn(hashBuf
.data(), ArrayRef(hashes
.get(), hashesSize
));
2966 template <class ELFT
> void Writer
<ELFT
>::writeBuildId() {
2967 if (!ctx
.mainPart
->buildId
|| !ctx
.mainPart
->buildId
->getParent())
2970 if (ctx
.arg
.buildId
== BuildIdKind::Hexstring
) {
2971 for (Partition
&part
: ctx
.partitions
)
2972 part
.buildId
->writeBuildId(ctx
.arg
.buildIdVector
);
2976 // Compute a hash of all sections of the output file.
2977 size_t hashSize
= ctx
.mainPart
->buildId
->hashSize
;
2978 std::unique_ptr
<uint8_t[]> buildId(new uint8_t[hashSize
]);
2979 MutableArrayRef
<uint8_t> output(buildId
.get(), hashSize
);
2980 llvm::ArrayRef
<uint8_t> input
{ctx
.bufferStart
, size_t(fileSize
)};
2982 // Fedora introduced build ID as "approximation of true uniqueness across all
2983 // binaries that might be used by overlapping sets of people". It does not
2984 // need some security goals that some hash algorithms strive to provide, e.g.
2985 // (second-)preimage and collision resistance. In practice people use 'md5'
2986 // and 'sha1' just for different lengths. Implement them with the more
2987 // efficient BLAKE3.
2988 switch (ctx
.arg
.buildId
) {
2989 case BuildIdKind::Fast
:
2990 computeHash(output
, input
, [](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2991 write64le(dest
, xxh3_64bits(arr
));
2994 case BuildIdKind::Md5
:
2995 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
2996 memcpy(dest
, BLAKE3::hash
<16>(arr
).data(), hashSize
);
2999 case BuildIdKind::Sha1
:
3000 computeHash(output
, input
, [&](uint8_t *dest
, ArrayRef
<uint8_t> arr
) {
3001 memcpy(dest
, BLAKE3::hash
<20>(arr
).data(), hashSize
);
3004 case BuildIdKind::Uuid
:
3005 if (auto ec
= llvm::getRandomBytes(buildId
.get(), hashSize
))
3006 ErrAlways(ctx
) << "entropy source failure: " << ec
.message();
3009 llvm_unreachable("unknown BuildIdKind");
3011 for (Partition
&part
: ctx
.partitions
)
3012 part
.buildId
->writeBuildId(output
);
3015 template void elf::writeResult
<ELF32LE
>(Ctx
&);
3016 template void elf::writeResult
<ELF32BE
>(Ctx
&);
3017 template void elf::writeResult
<ELF64LE
>(Ctx
&);
3018 template void elf::writeResult
<ELF64BE
>(Ctx
&);