1 //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the RegBankSelect class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
13 #include "llvm/ADT/PostOrderIterator.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
17 #include "llvm/CodeGen/GlobalISel/Utils.h"
18 #include "llvm/CodeGen/MachineBasicBlock.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/RegisterBank.h"
27 #include "llvm/CodeGen/RegisterBankInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetPassConfig.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BlockFrequency.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "regbankselect"
54 static cl::opt
<RegBankSelect::Mode
> RegBankSelectMode(
55 cl::desc("Mode of the RegBankSelect pass"), cl::Hidden
, cl::Optional
,
56 cl::values(clEnumValN(RegBankSelect::Mode::Fast
, "regbankselect-fast",
57 "Run the Fast mode (default mapping)"),
58 clEnumValN(RegBankSelect::Mode::Greedy
, "regbankselect-greedy",
59 "Use the Greedy mode (best local mapping)")));
61 char RegBankSelect::ID
= 0;
63 INITIALIZE_PASS_BEGIN(RegBankSelect
, DEBUG_TYPE
,
64 "Assign register bank of generic virtual registers",
66 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
67 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
68 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
69 INITIALIZE_PASS_END(RegBankSelect
, DEBUG_TYPE
,
70 "Assign register bank of generic virtual registers", false,
73 RegBankSelect::RegBankSelect(Mode RunningMode
)
74 : MachineFunctionPass(ID
), OptMode(RunningMode
) {
75 if (RegBankSelectMode
.getNumOccurrences() != 0) {
76 OptMode
= RegBankSelectMode
;
77 if (RegBankSelectMode
!= RunningMode
)
78 LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
82 void RegBankSelect::init(MachineFunction
&MF
) {
83 RBI
= MF
.getSubtarget().getRegBankInfo();
84 assert(RBI
&& "Cannot work without RegisterBankInfo");
85 MRI
= &MF
.getRegInfo();
86 TRI
= MF
.getSubtarget().getRegisterInfo();
87 TPC
= &getAnalysis
<TargetPassConfig
>();
88 if (OptMode
!= Mode::Fast
) {
89 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
90 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
96 MORE
= std::make_unique
<MachineOptimizationRemarkEmitter
>(MF
, MBFI
);
99 void RegBankSelect::getAnalysisUsage(AnalysisUsage
&AU
) const {
100 if (OptMode
!= Mode::Fast
) {
101 // We could preserve the information from these two analysis but
102 // the APIs do not allow to do so yet.
103 AU
.addRequired
<MachineBlockFrequencyInfo
>();
104 AU
.addRequired
<MachineBranchProbabilityInfo
>();
106 AU
.addRequired
<TargetPassConfig
>();
107 getSelectionDAGFallbackAnalysisUsage(AU
);
108 MachineFunctionPass::getAnalysisUsage(AU
);
111 bool RegBankSelect::assignmentMatch(
112 Register Reg
, const RegisterBankInfo::ValueMapping
&ValMapping
,
113 bool &OnlyAssign
) const {
114 // By default we assume we will have to repair something.
116 // Each part of a break down needs to end up in a different register.
117 // In other word, Reg assignment does not match.
118 if (ValMapping
.NumBreakDowns
!= 1)
121 const RegisterBank
*CurRegBank
= RBI
->getRegBank(Reg
, *MRI
, *TRI
);
122 const RegisterBank
*DesiredRegBank
= ValMapping
.BreakDown
[0].RegBank
;
123 // Reg is free of assignment, a simple assignment will make the
124 // register bank to match.
125 OnlyAssign
= CurRegBank
== nullptr;
126 LLVM_DEBUG(dbgs() << "Does assignment already match: ";
127 if (CurRegBank
) dbgs() << *CurRegBank
; else dbgs() << "none";
128 dbgs() << " against ";
129 assert(DesiredRegBank
&& "The mapping must be valid");
130 dbgs() << *DesiredRegBank
<< '\n';);
131 return CurRegBank
== DesiredRegBank
;
134 bool RegBankSelect::repairReg(
135 MachineOperand
&MO
, const RegisterBankInfo::ValueMapping
&ValMapping
,
136 RegBankSelect::RepairingPlacement
&RepairPt
,
137 const iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> &NewVRegs
) {
139 assert(ValMapping
.NumBreakDowns
== (unsigned)size(NewVRegs
) &&
140 "need new vreg for each breakdown");
142 // An empty range of new register means no repairing.
143 assert(!NewVRegs
.empty() && "We should not have to repair");
146 if (ValMapping
.NumBreakDowns
== 1) {
147 // Assume we are repairing a use and thus, the original reg will be
148 // the source of the repairing.
149 Register Src
= MO
.getReg();
150 Register Dst
= *NewVRegs
.begin();
152 // If we repair a definition, swap the source and destination for
157 assert((RepairPt
.getNumInsertPoints() == 1 ||
158 Register::isPhysicalRegister(Dst
)) &&
159 "We are about to create several defs for Dst");
161 // Build the instruction used to repair, then clone it at the right
162 // places. Avoiding buildCopy bypasses the check that Src and Dst have the
163 // same types because the type is a placeholder when this function is called.
164 MI
= MIRBuilder
.buildInstrNoInsert(TargetOpcode::COPY
)
167 LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src
) << " to: " << printReg(Dst
)
170 // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT
172 assert(ValMapping
.partsAllUniform() && "irregular breakdowns not supported");
174 LLT RegTy
= MRI
->getType(MO
.getReg());
177 if (RegTy
.isVector()) {
178 if (ValMapping
.NumBreakDowns
== RegTy
.getNumElements())
179 MergeOp
= TargetOpcode::G_BUILD_VECTOR
;
182 (ValMapping
.BreakDown
[0].Length
* ValMapping
.NumBreakDowns
==
183 RegTy
.getSizeInBits()) &&
184 (ValMapping
.BreakDown
[0].Length
% RegTy
.getScalarSizeInBits() ==
186 "don't understand this value breakdown");
188 MergeOp
= TargetOpcode::G_CONCAT_VECTORS
;
191 MergeOp
= TargetOpcode::G_MERGE_VALUES
;
194 MIRBuilder
.buildInstrNoInsert(MergeOp
)
195 .addDef(MO
.getReg());
197 for (Register SrcReg
: NewVRegs
)
198 MergeBuilder
.addUse(SrcReg
);
202 MachineInstrBuilder UnMergeBuilder
=
203 MIRBuilder
.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES
);
204 for (Register DefReg
: NewVRegs
)
205 UnMergeBuilder
.addDef(DefReg
);
207 UnMergeBuilder
.addUse(MO
.getReg());
212 if (RepairPt
.getNumInsertPoints() != 1)
213 report_fatal_error("need testcase to support multiple insertion points");
216 // Check if MI is legal. if not, we need to legalize all the
217 // instructions we are going to insert.
218 std::unique_ptr
<MachineInstr
*[]> NewInstrs(
219 new MachineInstr
*[RepairPt
.getNumInsertPoints()]);
222 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
227 CurMI
= MIRBuilder
.getMF().CloneMachineInstr(MI
);
228 InsertPt
->insert(*CurMI
);
229 NewInstrs
[Idx
++] = CurMI
;
233 // Legalize NewInstrs if need be.
237 uint64_t RegBankSelect::getRepairCost(
238 const MachineOperand
&MO
,
239 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
240 assert(MO
.isReg() && "We should only repair register operand");
241 assert(ValMapping
.NumBreakDowns
&& "Nothing to map??");
243 bool IsSameNumOfValues
= ValMapping
.NumBreakDowns
== 1;
244 const RegisterBank
*CurRegBank
= RBI
->getRegBank(MO
.getReg(), *MRI
, *TRI
);
245 // If MO does not have a register bank, we should have just been
246 // able to set one unless we have to break the value down.
247 assert(CurRegBank
|| MO
.isDef());
249 // Def: Val <- NewDefs
250 // Same number of values: copy
251 // Different number: Val = build_sequence Defs1, Defs2, ...
252 // Use: NewSources <- Val.
253 // Same number of values: copy.
254 // Different number: Src1, Src2, ... =
255 // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
256 // We should remember that this value is available somewhere else to
257 // coalesce the value.
259 if (ValMapping
.NumBreakDowns
!= 1)
260 return RBI
->getBreakDownCost(ValMapping
, CurRegBank
);
262 if (IsSameNumOfValues
) {
263 const RegisterBank
*DesiredRegBank
= ValMapping
.BreakDown
[0].RegBank
;
264 // If we repair a definition, swap the source and destination for
267 std::swap(CurRegBank
, DesiredRegBank
);
268 // TODO: It may be possible to actually avoid the copy.
269 // If we repair something where the source is defined by a copy
270 // and the source of that copy is on the right bank, we can reuse
273 // RegToRepair<BankA> = copy AlternativeSrc<BankB>
274 // = op RegToRepair<BankA>
275 // We can simply propagate AlternativeSrc instead of copying RegToRepair
276 // into a new virtual register.
277 // We would also need to propagate this information in the
278 // repairing placement.
279 unsigned Cost
= RBI
->copyCost(*DesiredRegBank
, *CurRegBank
,
280 RBI
->getSizeInBits(MO
.getReg(), *MRI
, *TRI
));
281 // TODO: use a dedicated constant for ImpossibleCost.
282 if (Cost
!= std::numeric_limits
<unsigned>::max())
284 // Return the legalization cost of that repairing.
286 return std::numeric_limits
<unsigned>::max();
289 const RegisterBankInfo::InstructionMapping
&RegBankSelect::findBestMapping(
290 MachineInstr
&MI
, RegisterBankInfo::InstructionMappings
&PossibleMappings
,
291 SmallVectorImpl
<RepairingPlacement
> &RepairPts
) {
292 assert(!PossibleMappings
.empty() &&
293 "Do not know how to map this instruction");
295 const RegisterBankInfo::InstructionMapping
*BestMapping
= nullptr;
296 MappingCost Cost
= MappingCost::ImpossibleCost();
297 SmallVector
<RepairingPlacement
, 4> LocalRepairPts
;
298 for (const RegisterBankInfo::InstructionMapping
*CurMapping
:
300 MappingCost CurCost
=
301 computeMapping(MI
, *CurMapping
, LocalRepairPts
, &Cost
);
302 if (CurCost
< Cost
) {
303 LLVM_DEBUG(dbgs() << "New best: " << CurCost
<< '\n');
305 BestMapping
= CurMapping
;
307 for (RepairingPlacement
&RepairPt
: LocalRepairPts
)
308 RepairPts
.emplace_back(std::move(RepairPt
));
311 if (!BestMapping
&& !TPC
->isGlobalISelAbortEnabled()) {
312 // If none of the mapping worked that means they are all impossible.
313 // Thus, pick the first one and set an impossible repairing point.
314 // It will trigger the failed isel mode.
315 BestMapping
= *PossibleMappings
.begin();
316 RepairPts
.emplace_back(
317 RepairingPlacement(MI
, 0, *TRI
, *this, RepairingPlacement::Impossible
));
319 assert(BestMapping
&& "No suitable mapping for instruction");
323 void RegBankSelect::tryAvoidingSplit(
324 RegBankSelect::RepairingPlacement
&RepairPt
, const MachineOperand
&MO
,
325 const RegisterBankInfo::ValueMapping
&ValMapping
) const {
326 const MachineInstr
&MI
= *MO
.getParent();
327 assert(RepairPt
.hasSplit() && "We should not have to adjust for split");
328 // Splitting should only occur for PHIs or between terminators,
329 // because we only do local repairing.
330 assert((MI
.isPHI() || MI
.isTerminator()) && "Why do we split?");
332 assert(&MI
.getOperand(RepairPt
.getOpIdx()) == &MO
&&
333 "Repairing placement does not match operand");
335 // If we need splitting for phis, that means it is because we
336 // could not find an insertion point before the terminators of
337 // the predecessor block for this argument. In other words,
338 // the input value is defined by one of the terminators.
339 assert((!MI
.isPHI() || !MO
.isDef()) && "Need split for phi def?");
341 // We split to repair the use of a phi or a terminator.
343 if (MI
.isTerminator()) {
344 assert(&MI
!= &(*MI
.getParent()->getFirstTerminator()) &&
345 "Need to split for the first terminator?!");
347 // For the PHI case, the split may not be actually required.
348 // In the copy case, a phi is already a copy on the incoming edge,
349 // therefore there is no need to split.
350 if (ValMapping
.NumBreakDowns
== 1)
351 // This is a already a copy, there is nothing to do.
352 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Reassign
);
357 // At this point, we need to repair a defintion of a terminator.
359 // Technically we need to fix the def of MI on all outgoing
360 // edges of MI to keep the repairing local. In other words, we
361 // will create several definitions of the same register. This
362 // does not work for SSA unless that definition is a physical
364 // However, there are other cases where we can get away with
365 // that while still keeping the repairing local.
366 assert(MI
.isTerminator() && MO
.isDef() &&
367 "This code is for the def of a terminator");
369 // Since we use RPO traversal, if we need to repair a definition
370 // this means this definition could be:
371 // 1. Used by PHIs (i.e., this VReg has been visited as part of the
372 // uses of a phi.), or
373 // 2. Part of a target specific instruction (i.e., the target applied
374 // some register class constraints when creating the instruction.)
375 // If the constraints come for #2, the target said that another mapping
376 // is supported so we may just drop them. Indeed, if we do not change
377 // the number of registers holding that value, the uses will get fixed
378 // when we get to them.
379 // Uses in PHIs may have already been proceeded though.
380 // If the constraints come for #1, then, those are weak constraints and
381 // no actual uses may rely on them. However, the problem remains mainly
382 // the same as for #2. If the value stays in one register, we could
383 // just switch the register bank of the definition, but we would need to
384 // account for a repairing cost for each phi we silently change.
386 // In any case, if the value needs to be broken down into several
387 // registers, the repairing is not local anymore as we need to patch
388 // every uses to rebuild the value in just one register.
391 // - If the value is in a physical register, we can do the split and
393 // Otherwise if the value is in a virtual register:
394 // - If the value remains in one register, we do not have to split
395 // just switching the register bank would do, but we need to account
396 // in the repairing cost all the phi we changed.
397 // - If the value spans several registers, then we cannot do a local
400 // Check if this is a physical or virtual register.
401 Register Reg
= MO
.getReg();
402 if (Register::isPhysicalRegister(Reg
)) {
403 // We are going to split every outgoing edges.
404 // Check that this is possible.
405 // FIXME: The machine representation is currently broken
406 // since it also several terminators in one basic block.
407 // Because of that we would technically need a way to get
408 // the targets of just one terminator to know which edges
410 // Assert that we do not hit the ill-formed representation.
412 // If there are other terminators before that one, some of
413 // the outgoing edges may not be dominated by this definition.
414 assert(&MI
== &(*MI
.getParent()->getFirstTerminator()) &&
415 "Do not know which outgoing edges are relevant");
416 const MachineInstr
*Next
= MI
.getNextNode();
417 assert((!Next
|| Next
->isUnconditionalBranch()) &&
418 "Do not know where each terminator ends up");
420 // If the next terminator uses Reg, this means we have
421 // to split right after MI and thus we need a way to ask
422 // which outgoing edges are affected.
423 assert(!Next
->readsRegister(Reg
) && "Need to split between terminators");
424 // We will split all the edges and repair there.
426 // This is a virtual register defined by a terminator.
427 if (ValMapping
.NumBreakDowns
== 1) {
428 // There is nothing to repair, but we may actually lie on
429 // the repairing cost because of the PHIs already proceeded
430 // as already stated.
431 // Though the code will be correct.
432 assert(false && "Repairing cost may not be accurate");
434 // We need to do non-local repairing. Basically, patch all
435 // the uses (i.e., phis) that we already proceeded.
436 // For now, just say this mapping is not possible.
437 RepairPt
.switchTo(RepairingPlacement::RepairingKind::Impossible
);
442 RegBankSelect::MappingCost
RegBankSelect::computeMapping(
443 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
444 SmallVectorImpl
<RepairingPlacement
> &RepairPts
,
445 const RegBankSelect::MappingCost
*BestCost
) {
446 assert((MBFI
|| !BestCost
) && "Costs comparison require MBFI");
448 if (!InstrMapping
.isValid())
449 return MappingCost::ImpossibleCost();
451 // If mapped with InstrMapping, MI will have the recorded cost.
452 MappingCost
Cost(MBFI
? MBFI
->getBlockFreq(MI
.getParent()) : 1);
453 bool Saturated
= Cost
.addLocalCost(InstrMapping
.getCost());
454 assert(!Saturated
&& "Possible mapping saturated the cost");
455 LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI
);
456 LLVM_DEBUG(dbgs() << "With: " << InstrMapping
<< '\n');
458 if (BestCost
&& Cost
> *BestCost
) {
459 LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n");
463 // Moreover, to realize this mapping, the register bank of each operand must
464 // match this mapping. In other words, we may need to locally reassign the
465 // register banks. Account for that repairing cost as well.
466 // In this context, local means in the surrounding of MI.
467 for (unsigned OpIdx
= 0, EndOpIdx
= InstrMapping
.getNumOperands();
468 OpIdx
!= EndOpIdx
; ++OpIdx
) {
469 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
472 Register Reg
= MO
.getReg();
475 LLVM_DEBUG(dbgs() << "Opd" << OpIdx
<< '\n');
476 const RegisterBankInfo::ValueMapping
&ValMapping
=
477 InstrMapping
.getOperandMapping(OpIdx
);
478 // If Reg is already properly mapped, this is free.
480 if (assignmentMatch(Reg
, ValMapping
, Assign
)) {
481 LLVM_DEBUG(dbgs() << "=> is free (match).\n");
485 LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n");
486 RepairPts
.emplace_back(RepairingPlacement(MI
, OpIdx
, *TRI
, *this,
487 RepairingPlacement::Reassign
));
491 // Find the insertion point for the repairing code.
492 RepairPts
.emplace_back(
493 RepairingPlacement(MI
, OpIdx
, *TRI
, *this, RepairingPlacement::Insert
));
494 RepairingPlacement
&RepairPt
= RepairPts
.back();
496 // If we need to split a basic block to materialize this insertion point,
497 // we may give a higher cost to this mapping.
498 // Nevertheless, we may get away with the split, so try that first.
499 if (RepairPt
.hasSplit())
500 tryAvoidingSplit(RepairPt
, MO
, ValMapping
);
502 // Check that the materialization of the repairing is possible.
503 if (!RepairPt
.canMaterialize()) {
504 LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n");
505 return MappingCost::ImpossibleCost();
508 // Account for the split cost and repair cost.
509 // Unless the cost is already saturated or we do not care about the cost.
510 if (!BestCost
|| Saturated
)
513 // To get accurate information we need MBFI and MBPI.
514 // Thus, if we end up here this information should be here.
515 assert(MBFI
&& MBPI
&& "Cost computation requires MBFI and MBPI");
517 // FIXME: We will have to rework the repairing cost model.
518 // The repairing cost depends on the register bank that MO has.
519 // However, when we break down the value into different values,
520 // MO may not have a register bank while still needing repairing.
521 // For the fast mode, we don't compute the cost so that is fine,
522 // but still for the repairing code, we will have to make a choice.
523 // For the greedy mode, we should choose greedily what is the best
524 // choice based on the next use of MO.
526 // Sums up the repairing cost of MO at each insertion point.
527 uint64_t RepairCost
= getRepairCost(MO
, ValMapping
);
529 // This is an impossible to repair cost.
530 if (RepairCost
== std::numeric_limits
<unsigned>::max())
531 return MappingCost::ImpossibleCost();
533 // Bias used for splitting: 5%.
534 const uint64_t PercentageForBias
= 5;
535 uint64_t Bias
= (RepairCost
* PercentageForBias
+ 99) / 100;
536 // We should not need more than a couple of instructions to repair
537 // an assignment. In other words, the computation should not
538 // overflow because the repairing cost is free of basic block
540 assert(((RepairCost
< RepairCost
* PercentageForBias
) &&
541 (RepairCost
* PercentageForBias
<
542 RepairCost
* PercentageForBias
+ 99)) &&
543 "Repairing involves more than a billion of instructions?!");
544 for (const std::unique_ptr
<InsertPoint
> &InsertPt
: RepairPt
) {
545 assert(InsertPt
->canMaterialize() && "We should not have made it here");
546 // We will applied some basic block frequency and those uses uint64_t.
547 if (!InsertPt
->isSplit())
548 Saturated
= Cost
.addLocalCost(RepairCost
);
550 uint64_t CostForInsertPt
= RepairCost
;
551 // Again we shouldn't overflow here givent that
552 // CostForInsertPt is frequency free at this point.
553 assert(CostForInsertPt
+ Bias
> CostForInsertPt
&&
554 "Repairing + split bias overflows");
555 CostForInsertPt
+= Bias
;
556 uint64_t PtCost
= InsertPt
->frequency(*this) * CostForInsertPt
;
557 // Check if we just overflowed.
558 if ((Saturated
= PtCost
< CostForInsertPt
))
561 Saturated
= Cost
.addNonLocalCost(PtCost
);
564 // Stop looking into what it takes to repair, this is already
566 if (BestCost
&& Cost
> *BestCost
) {
567 LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n");
571 // No need to accumulate more cost information.
572 // We need to still gather the repairing information though.
577 LLVM_DEBUG(dbgs() << "Total cost is: " << Cost
<< "\n");
581 bool RegBankSelect::applyMapping(
582 MachineInstr
&MI
, const RegisterBankInfo::InstructionMapping
&InstrMapping
,
583 SmallVectorImpl
<RegBankSelect::RepairingPlacement
> &RepairPts
) {
584 // OpdMapper will hold all the information needed for the rewriting.
585 RegisterBankInfo::OperandsMapper
OpdMapper(MI
, InstrMapping
, *MRI
);
587 // First, place the repairing code.
588 for (RepairingPlacement
&RepairPt
: RepairPts
) {
589 if (!RepairPt
.canMaterialize() ||
590 RepairPt
.getKind() == RepairingPlacement::Impossible
)
592 assert(RepairPt
.getKind() != RepairingPlacement::None
&&
593 "This should not make its way in the list");
594 unsigned OpIdx
= RepairPt
.getOpIdx();
595 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
596 const RegisterBankInfo::ValueMapping
&ValMapping
=
597 InstrMapping
.getOperandMapping(OpIdx
);
598 Register Reg
= MO
.getReg();
600 switch (RepairPt
.getKind()) {
601 case RepairingPlacement::Reassign
:
602 assert(ValMapping
.NumBreakDowns
== 1 &&
603 "Reassignment should only be for simple mapping");
604 MRI
->setRegBank(Reg
, *ValMapping
.BreakDown
[0].RegBank
);
606 case RepairingPlacement::Insert
:
607 OpdMapper
.createVRegs(OpIdx
);
608 if (!repairReg(MO
, ValMapping
, RepairPt
, OpdMapper
.getVRegs(OpIdx
)))
612 llvm_unreachable("Other kind should not happen");
616 // Second, rewrite the instruction.
617 LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper
<< '\n');
618 RBI
->applyMapping(OpdMapper
);
623 bool RegBankSelect::assignInstr(MachineInstr
&MI
) {
624 LLVM_DEBUG(dbgs() << "Assign: " << MI
);
626 unsigned Opc
= MI
.getOpcode();
627 if (isPreISelGenericOptimizationHint(Opc
)) {
628 assert((Opc
== TargetOpcode::G_ASSERT_ZEXT
||
629 Opc
== TargetOpcode::G_ASSERT_SEXT
||
630 Opc
== TargetOpcode::G_ASSERT_ALIGN
) &&
631 "Unexpected hint opcode!");
632 // The only correct mapping for these is to always use the source register
634 const RegisterBank
*RB
= MRI
->getRegBankOrNull(MI
.getOperand(1).getReg());
635 // We can assume every instruction above this one has a selected register
637 assert(RB
&& "Expected source register to have a register bank?");
638 LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n");
639 MRI
->setRegBank(MI
.getOperand(0).getReg(), *RB
);
643 // Remember the repairing placement for all the operands.
644 SmallVector
<RepairingPlacement
, 4> RepairPts
;
646 const RegisterBankInfo::InstructionMapping
*BestMapping
;
647 if (OptMode
== RegBankSelect::Mode::Fast
) {
648 BestMapping
= &RBI
->getInstrMapping(MI
);
649 MappingCost DefaultCost
= computeMapping(MI
, *BestMapping
, RepairPts
);
651 if (DefaultCost
== MappingCost::ImpossibleCost())
654 RegisterBankInfo::InstructionMappings PossibleMappings
=
655 RBI
->getInstrPossibleMappings(MI
);
656 if (PossibleMappings
.empty())
658 BestMapping
= &findBestMapping(MI
, PossibleMappings
, RepairPts
);
660 // Make sure the mapping is valid for MI.
661 assert(BestMapping
->verify(MI
) && "Invalid instruction mapping");
663 LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping
<< '\n');
665 // After this call, MI may not be valid anymore.
667 return applyMapping(MI
, *BestMapping
, RepairPts
);
670 bool RegBankSelect::runOnMachineFunction(MachineFunction
&MF
) {
671 // If the ISel pipeline failed, do not bother running that pass.
672 if (MF
.getProperties().hasProperty(
673 MachineFunctionProperties::Property::FailedISel
))
676 LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF
.getName() << '\n');
677 const Function
&F
= MF
.getFunction();
678 Mode SaveOptMode
= OptMode
;
680 OptMode
= Mode::Fast
;
684 // Check that our input is fully legal: we require the function to have the
685 // Legalized property, so it should be.
686 // FIXME: This should be in the MachineVerifier.
687 if (!DisableGISelLegalityCheck
)
688 if (const MachineInstr
*MI
= machineFunctionIsIllegal(MF
)) {
689 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
690 "instruction is not legal", *MI
);
695 // Walk the function and assign register banks to all operands.
696 // Use a RPOT to make sure all registers are assigned before we choose
697 // the best mapping of the current instruction.
698 ReversePostOrderTraversal
<MachineFunction
*> RPOT(&MF
);
699 for (MachineBasicBlock
*MBB
: RPOT
) {
700 // Set a sensible insertion point so that subsequent calls to
702 MIRBuilder
.setMBB(*MBB
);
703 SmallVector
<MachineInstr
*> WorkList(
704 make_pointer_range(reverse(MBB
->instrs())));
706 while (!WorkList
.empty()) {
707 MachineInstr
&MI
= *WorkList
.pop_back_val();
709 // Ignore target-specific post-isel instructions: they should use proper
711 if (isTargetSpecificOpcode(MI
.getOpcode()) && !MI
.isPreISelOpcode())
714 // Ignore inline asm instructions: they should use physical
715 // registers/regclasses
716 if (MI
.isInlineAsm())
719 // Ignore debug info.
720 if (MI
.isDebugInstr())
723 // Ignore IMPLICIT_DEF which must have a regclass.
724 if (MI
.isImplicitDef())
727 if (!assignInstr(MI
)) {
728 reportGISelFailure(MF
, *TPC
, *MORE
, "gisel-regbankselect",
729 "unable to map instruction", MI
);
735 OptMode
= SaveOptMode
;
739 //------------------------------------------------------------------------------
740 // Helper Classes Implementation
741 //------------------------------------------------------------------------------
742 RegBankSelect::RepairingPlacement::RepairingPlacement(
743 MachineInstr
&MI
, unsigned OpIdx
, const TargetRegisterInfo
&TRI
, Pass
&P
,
744 RepairingPlacement::RepairingKind Kind
)
745 // Default is, we are going to insert code to repair OpIdx.
746 : Kind(Kind
), OpIdx(OpIdx
),
747 CanMaterialize(Kind
!= RepairingKind::Impossible
), P(P
) {
748 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
749 assert(MO
.isReg() && "Trying to repair a non-reg operand");
751 if (Kind
!= RepairingKind::Insert
)
754 // Repairings for definitions happen after MI, uses happen before.
755 bool Before
= !MO
.isDef();
757 // Check if we are done with MI.
758 if (!MI
.isPHI() && !MI
.isTerminator()) {
759 addInsertPoint(MI
, Before
);
760 // We are done with the initialization.
764 // Now, look for the special cases.
766 // - PHI must be the first instructions:
767 // * Before, we have to split the related incoming edge.
768 // * After, move the insertion point past the last phi.
770 MachineBasicBlock::iterator It
= MI
.getParent()->getFirstNonPHI();
771 if (It
!= MI
.getParent()->end())
772 addInsertPoint(*It
, /*Before*/ true);
774 addInsertPoint(*(--It
), /*Before*/ false);
777 // We repair a use of a phi, we may need to split the related edge.
778 MachineBasicBlock
&Pred
= *MI
.getOperand(OpIdx
+ 1).getMBB();
779 // Check if we can move the insertion point prior to the
780 // terminators of the predecessor.
781 Register Reg
= MO
.getReg();
782 MachineBasicBlock::iterator It
= Pred
.getLastNonDebugInstr();
783 for (auto Begin
= Pred
.begin(); It
!= Begin
&& It
->isTerminator(); --It
)
784 if (It
->modifiesRegister(Reg
, &TRI
)) {
785 // We cannot hoist the repairing code in the predecessor.
787 addInsertPoint(Pred
, *MI
.getParent());
790 // At this point, we can insert in Pred.
792 // - If It is invalid, Pred is empty and we can insert in Pred
794 // - If It is valid, It is the first non-terminator, insert after It.
795 if (It
== Pred
.end())
796 addInsertPoint(Pred
, /*Beginning*/ false);
798 addInsertPoint(*It
, /*Before*/ false);
800 // - Terminators must be the last instructions:
801 // * Before, move the insert point before the first terminator.
802 // * After, we have to split the outcoming edges.
804 // Check whether Reg is defined by any terminator.
805 MachineBasicBlock::reverse_iterator It
= MI
;
806 auto REnd
= MI
.getParent()->rend();
808 for (; It
!= REnd
&& It
->isTerminator(); ++It
) {
809 assert(!It
->modifiesRegister(MO
.getReg(), &TRI
) &&
810 "copy insertion in middle of terminators not handled");
814 addInsertPoint(*MI
.getParent()->begin(), true);
818 // We are sure to be right before the first terminator.
819 addInsertPoint(*It
, /*Before*/ false);
822 // Make sure Reg is not redefined by other terminators, otherwise
823 // we do not know how to split.
824 for (MachineBasicBlock::iterator It
= MI
, End
= MI
.getParent()->end();
826 // The machine verifier should reject this kind of code.
827 assert(It
->modifiesRegister(MO
.getReg(), &TRI
) &&
828 "Do not know where to split");
829 // Split each outcoming edges.
830 MachineBasicBlock
&Src
= *MI
.getParent();
831 for (auto &Succ
: Src
.successors())
832 addInsertPoint(Src
, Succ
);
836 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr
&MI
,
838 addInsertPoint(*new InstrInsertPoint(MI
, Before
));
841 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&MBB
,
843 addInsertPoint(*new MBBInsertPoint(MBB
, Beginning
));
846 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock
&Src
,
847 MachineBasicBlock
&Dst
) {
848 addInsertPoint(*new EdgeInsertPoint(Src
, Dst
, P
));
851 void RegBankSelect::RepairingPlacement::addInsertPoint(
852 RegBankSelect::InsertPoint
&Point
) {
853 CanMaterialize
&= Point
.canMaterialize();
854 HasSplit
|= Point
.isSplit();
855 InsertPoints
.emplace_back(&Point
);
858 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr
&Instr
,
860 : Instr(Instr
), Before(Before
) {
861 // Since we do not support splitting, we do not need to update
862 // liveness and such, so do not do anything with P.
863 assert((!Before
|| !Instr
.isPHI()) &&
864 "Splitting before phis requires more points");
865 assert((!Before
|| !Instr
.getNextNode() || !Instr
.getNextNode()->isPHI()) &&
866 "Splitting between phis does not make sense");
869 void RegBankSelect::InstrInsertPoint::materialize() {
871 // Slice and return the beginning of the new block.
872 // If we need to split between the terminators, we theoritically
873 // need to know where the first and second set of terminators end
874 // to update the successors properly.
875 // Now, in pratice, we should have a maximum of 2 branch
876 // instructions; one conditional and one unconditional. Therefore
877 // we know how to update the successor by looking at the target of
878 // the unconditional branch.
879 // If we end up splitting at some point, then, we should update
880 // the liveness information and such. I.e., we would need to
882 // The machine verifier should actually make sure such cases
884 llvm_unreachable("Not yet implemented");
886 // Otherwise the insertion point is just the current or next
887 // instruction depending on Before. I.e., there is nothing to do
891 bool RegBankSelect::InstrInsertPoint::isSplit() const {
892 // If the insertion point is after a terminator, we need to split.
894 return Instr
.isTerminator();
895 // If we insert before an instruction that is after a terminator,
896 // we are still after a terminator.
897 return Instr
.getPrevNode() && Instr
.getPrevNode()->isTerminator();
900 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass
&P
) const {
901 // Even if we need to split, because we insert between terminators,
902 // this split has actually the same frequency as the instruction.
903 const MachineBlockFrequencyInfo
*MBFI
=
904 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
907 return MBFI
->getBlockFreq(Instr
.getParent()).getFrequency();
910 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass
&P
) const {
911 const MachineBlockFrequencyInfo
*MBFI
=
912 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
915 return MBFI
->getBlockFreq(&MBB
).getFrequency();
918 void RegBankSelect::EdgeInsertPoint::materialize() {
919 // If we end up repairing twice at the same place before materializing the
920 // insertion point, we may think we have to split an edge twice.
921 // We should have a factory for the insert point such that identical points
922 // are the same instance.
923 assert(Src
.isSuccessor(DstOrSplit
) && DstOrSplit
->isPredecessor(&Src
) &&
924 "This point has already been split");
925 MachineBasicBlock
*NewBB
= Src
.SplitCriticalEdge(DstOrSplit
, P
);
926 assert(NewBB
&& "Invalid call to materialize");
927 // We reuse the destination block to hold the information of the new block.
931 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass
&P
) const {
932 const MachineBlockFrequencyInfo
*MBFI
=
933 P
.getAnalysisIfAvailable
<MachineBlockFrequencyInfo
>();
937 return MBFI
->getBlockFreq(DstOrSplit
).getFrequency();
939 const MachineBranchProbabilityInfo
*MBPI
=
940 P
.getAnalysisIfAvailable
<MachineBranchProbabilityInfo
>();
943 // The basic block will be on the edge.
944 return (MBFI
->getBlockFreq(&Src
) * MBPI
->getEdgeProbability(&Src
, DstOrSplit
))
948 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
949 // If this is not a critical edge, we should not have used this insert
950 // point. Indeed, either the successor or the predecessor should
952 assert(Src
.succ_size() > 1 && DstOrSplit
->pred_size() > 1 &&
953 "Edge is not critical");
954 return Src
.canSplitCriticalEdge(DstOrSplit
);
957 RegBankSelect::MappingCost::MappingCost(const BlockFrequency
&LocalFreq
)
958 : LocalFreq(LocalFreq
.getFrequency()) {}
960 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost
) {
961 // Check if this overflows.
962 if (LocalCost
+ Cost
< LocalCost
) {
967 return isSaturated();
970 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost
) {
971 // Check if this overflows.
972 if (NonLocalCost
+ Cost
< NonLocalCost
) {
976 NonLocalCost
+= Cost
;
977 return isSaturated();
980 bool RegBankSelect::MappingCost::isSaturated() const {
981 return LocalCost
== UINT64_MAX
- 1 && NonLocalCost
== UINT64_MAX
&&
982 LocalFreq
== UINT64_MAX
;
985 void RegBankSelect::MappingCost::saturate() {
986 *this = ImpossibleCost();
990 RegBankSelect::MappingCost
RegBankSelect::MappingCost::ImpossibleCost() {
991 return MappingCost(UINT64_MAX
, UINT64_MAX
, UINT64_MAX
);
994 bool RegBankSelect::MappingCost::operator<(const MappingCost
&Cost
) const {
995 // Sort out the easy cases.
998 // If one is impossible to realize the other is cheaper unless it is
999 // impossible as well.
1000 if ((*this == ImpossibleCost()) || (Cost
== ImpossibleCost()))
1001 return (*this == ImpossibleCost()) < (Cost
== ImpossibleCost());
1002 // If one is saturated the other is cheaper, unless it is saturated
1004 if (isSaturated() || Cost
.isSaturated())
1005 return isSaturated() < Cost
.isSaturated();
1006 // At this point we know both costs hold sensible values.
1008 // If both values have a different base frequency, there is no much
1009 // we can do but to scale everything.
1010 // However, if they have the same base frequency we can avoid making
1011 // complicated computation.
1012 uint64_t ThisLocalAdjust
;
1013 uint64_t OtherLocalAdjust
;
1014 if (LLVM_LIKELY(LocalFreq
== Cost
.LocalFreq
)) {
1016 // At this point, we know the local costs are comparable.
1017 // Do the case that do not involve potential overflow first.
1018 if (NonLocalCost
== Cost
.NonLocalCost
)
1019 // Since the non-local costs do not discriminate on the result,
1020 // just compare the local costs.
1021 return LocalCost
< Cost
.LocalCost
;
1023 // The base costs are comparable so we may only keep the relative
1024 // value to increase our chances of avoiding overflows.
1025 ThisLocalAdjust
= 0;
1026 OtherLocalAdjust
= 0;
1027 if (LocalCost
< Cost
.LocalCost
)
1028 OtherLocalAdjust
= Cost
.LocalCost
- LocalCost
;
1030 ThisLocalAdjust
= LocalCost
- Cost
.LocalCost
;
1032 ThisLocalAdjust
= LocalCost
;
1033 OtherLocalAdjust
= Cost
.LocalCost
;
1036 // The non-local costs are comparable, just keep the relative value.
1037 uint64_t ThisNonLocalAdjust
= 0;
1038 uint64_t OtherNonLocalAdjust
= 0;
1039 if (NonLocalCost
< Cost
.NonLocalCost
)
1040 OtherNonLocalAdjust
= Cost
.NonLocalCost
- NonLocalCost
;
1042 ThisNonLocalAdjust
= NonLocalCost
- Cost
.NonLocalCost
;
1043 // Scale everything to make them comparable.
1044 uint64_t ThisScaledCost
= ThisLocalAdjust
* LocalFreq
;
1045 // Check for overflow on that operation.
1046 bool ThisOverflows
= ThisLocalAdjust
&& (ThisScaledCost
< ThisLocalAdjust
||
1047 ThisScaledCost
< LocalFreq
);
1048 uint64_t OtherScaledCost
= OtherLocalAdjust
* Cost
.LocalFreq
;
1049 // Check for overflow on the last operation.
1050 bool OtherOverflows
=
1052 (OtherScaledCost
< OtherLocalAdjust
|| OtherScaledCost
< Cost
.LocalFreq
);
1053 // Add the non-local costs.
1054 ThisOverflows
|= ThisNonLocalAdjust
&&
1055 ThisScaledCost
+ ThisNonLocalAdjust
< ThisNonLocalAdjust
;
1056 ThisScaledCost
+= ThisNonLocalAdjust
;
1057 OtherOverflows
|= OtherNonLocalAdjust
&&
1058 OtherScaledCost
+ OtherNonLocalAdjust
< OtherNonLocalAdjust
;
1059 OtherScaledCost
+= OtherNonLocalAdjust
;
1060 // If both overflows, we cannot compare without additional
1061 // precision, e.g., APInt. Just give up on that case.
1062 if (ThisOverflows
&& OtherOverflows
)
1064 // If one overflows but not the other, we can still compare.
1065 if (ThisOverflows
|| OtherOverflows
)
1066 return ThisOverflows
< OtherOverflows
;
1067 // Otherwise, just compare the values.
1068 return ThisScaledCost
< OtherScaledCost
;
1071 bool RegBankSelect::MappingCost::operator==(const MappingCost
&Cost
) const {
1072 return LocalCost
== Cost
.LocalCost
&& NonLocalCost
== Cost
.NonLocalCost
&&
1073 LocalFreq
== Cost
.LocalFreq
;
1076 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1077 LLVM_DUMP_METHOD
void RegBankSelect::MappingCost::dump() const {
1083 void RegBankSelect::MappingCost::print(raw_ostream
&OS
) const {
1084 if (*this == ImpossibleCost()) {
1088 if (isSaturated()) {
1092 OS
<< LocalFreq
<< " * " << LocalCost
<< " + " << NonLocalCost
;