[WebAssembly] Add new target feature in support of 'extended-const' proposal
[llvm-project.git] / llvm / lib / CodeGen / InlineSpiller.cpp
blobc975013db8c8d6985c321cb7993668424da70134
1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/LiveInterval.h"
26 #include "llvm/CodeGen/LiveIntervalCalc.h"
27 #include "llvm/CodeGen/LiveIntervals.h"
28 #include "llvm/CodeGen/LiveRangeEdit.h"
29 #include "llvm/CodeGen/LiveStacks.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineInstrBundle.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineOperand.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/SlotIndexes.h"
42 #include "llvm/CodeGen/Spiller.h"
43 #include "llvm/CodeGen/StackMaps.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSubtargetInfo.h"
48 #include "llvm/CodeGen/VirtRegMap.h"
49 #include "llvm/Config/llvm-config.h"
50 #include "llvm/Support/BlockFrequency.h"
51 #include "llvm/Support/BranchProbability.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <iterator>
59 #include <tuple>
60 #include <utility>
61 #include <vector>
63 using namespace llvm;
65 #define DEBUG_TYPE "regalloc"
67 STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
68 STATISTIC(NumSnippets, "Number of spilled snippets");
69 STATISTIC(NumSpills, "Number of spills inserted");
70 STATISTIC(NumSpillsRemoved, "Number of spills removed");
71 STATISTIC(NumReloads, "Number of reloads inserted");
72 STATISTIC(NumReloadsRemoved, "Number of reloads removed");
73 STATISTIC(NumFolded, "Number of folded stack accesses");
74 STATISTIC(NumFoldedLoads, "Number of folded loads");
75 STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
77 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78 cl::desc("Disable inline spill hoisting"));
79 static cl::opt<bool>
80 RestrictStatepointRemat("restrict-statepoint-remat",
81 cl::init(false), cl::Hidden,
82 cl::desc("Restrict remat for statepoint operands"));
84 namespace {
86 class HoistSpillHelper : private LiveRangeEdit::Delegate {
87 MachineFunction &MF;
88 LiveIntervals &LIS;
89 LiveStacks &LSS;
90 AliasAnalysis *AA;
91 MachineDominatorTree &MDT;
92 MachineLoopInfo &Loops;
93 VirtRegMap &VRM;
94 MachineRegisterInfo &MRI;
95 const TargetInstrInfo &TII;
96 const TargetRegisterInfo &TRI;
97 const MachineBlockFrequencyInfo &MBFI;
99 InsertPointAnalysis IPA;
101 // Map from StackSlot to the LiveInterval of the original register.
102 // Note the LiveInterval of the original register may have been deleted
103 // after it is spilled. We keep a copy here to track the range where
104 // spills can be moved.
105 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
107 // Map from pair of (StackSlot and Original VNI) to a set of spills which
108 // have the same stackslot and have equal values defined by Original VNI.
109 // These spills are mergeable and are hoist candiates.
110 using MergeableSpillsMap =
111 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
112 MergeableSpillsMap MergeableSpills;
114 /// This is the map from original register to a set containing all its
115 /// siblings. To hoist a spill to another BB, we need to find out a live
116 /// sibling there and use it as the source of the new spill.
117 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
119 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
120 MachineBasicBlock &BB, Register &LiveReg);
122 void rmRedundantSpills(
123 SmallPtrSet<MachineInstr *, 16> &Spills,
124 SmallVectorImpl<MachineInstr *> &SpillsToRm,
125 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
127 void getVisitOrders(
128 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
129 SmallVectorImpl<MachineDomTreeNode *> &Orders,
130 SmallVectorImpl<MachineInstr *> &SpillsToRm,
131 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
132 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
134 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
135 SmallPtrSet<MachineInstr *, 16> &Spills,
136 SmallVectorImpl<MachineInstr *> &SpillsToRm,
137 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
139 public:
140 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
141 VirtRegMap &vrm)
142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143 LSS(pass.getAnalysis<LiveStacks>()),
144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145 MDT(pass.getAnalysis<MachineDominatorTree>()),
146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
148 TRI(*mf.getSubtarget().getRegisterInfo()),
149 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
150 IPA(LIS, mf.getNumBlockIDs()) {}
152 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
153 unsigned Original);
154 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
155 void hoistAllSpills();
156 void LRE_DidCloneVirtReg(Register, Register) override;
159 class InlineSpiller : public Spiller {
160 MachineFunction &MF;
161 LiveIntervals &LIS;
162 LiveStacks &LSS;
163 AliasAnalysis *AA;
164 MachineDominatorTree &MDT;
165 MachineLoopInfo &Loops;
166 VirtRegMap &VRM;
167 MachineRegisterInfo &MRI;
168 const TargetInstrInfo &TII;
169 const TargetRegisterInfo &TRI;
170 const MachineBlockFrequencyInfo &MBFI;
172 // Variables that are valid during spill(), but used by multiple methods.
173 LiveRangeEdit *Edit;
174 LiveInterval *StackInt;
175 int StackSlot;
176 Register Original;
178 // All registers to spill to StackSlot, including the main register.
179 SmallVector<Register, 8> RegsToSpill;
181 // All COPY instructions to/from snippets.
182 // They are ignored since both operands refer to the same stack slot.
183 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
185 // Values that failed to remat at some point.
186 SmallPtrSet<VNInfo*, 8> UsedValues;
188 // Dead defs generated during spilling.
189 SmallVector<MachineInstr*, 8> DeadDefs;
191 // Object records spills information and does the hoisting.
192 HoistSpillHelper HSpiller;
194 // Live range weight calculator.
195 VirtRegAuxInfo &VRAI;
197 ~InlineSpiller() override = default;
199 public:
200 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
201 VirtRegAuxInfo &VRAI)
202 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
203 LSS(Pass.getAnalysis<LiveStacks>()),
204 AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
205 MDT(Pass.getAnalysis<MachineDominatorTree>()),
206 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
207 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
208 TRI(*MF.getSubtarget().getRegisterInfo()),
209 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
210 HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
212 void spill(LiveRangeEdit &) override;
213 void postOptimization() override;
215 private:
216 bool isSnippet(const LiveInterval &SnipLI);
217 void collectRegsToSpill();
219 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
221 bool isSibling(Register Reg);
222 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
223 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
225 void markValueUsed(LiveInterval*, VNInfo*);
226 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
227 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
228 void reMaterializeAll();
230 bool coalesceStackAccess(MachineInstr *MI, Register Reg);
231 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
232 MachineInstr *LoadMI = nullptr);
233 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
234 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
236 void spillAroundUses(Register Reg);
237 void spillAll();
240 } // end anonymous namespace
242 Spiller::~Spiller() = default;
244 void Spiller::anchor() {}
246 Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
247 MachineFunction &MF, VirtRegMap &VRM,
248 VirtRegAuxInfo &VRAI) {
249 return new InlineSpiller(Pass, MF, VRM, VRAI);
252 //===----------------------------------------------------------------------===//
253 // Snippets
254 //===----------------------------------------------------------------------===//
256 // When spilling a virtual register, we also spill any snippets it is connected
257 // to. The snippets are small live ranges that only have a single real use,
258 // leftovers from live range splitting. Spilling them enables memory operand
259 // folding or tightens the live range around the single use.
261 // This minimizes register pressure and maximizes the store-to-load distance for
262 // spill slots which can be important in tight loops.
264 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
265 /// otherwise return 0.
266 static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
267 if (!MI.isFullCopy())
268 return Register();
269 if (MI.getOperand(0).getReg() == Reg)
270 return MI.getOperand(1).getReg();
271 if (MI.getOperand(1).getReg() == Reg)
272 return MI.getOperand(0).getReg();
273 return Register();
276 static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
277 for (const MachineOperand &MO : MI.operands())
278 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
279 LIS.getInterval(MO.getReg());
282 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
283 /// It is assumed that SnipLI is a virtual register with the same original as
284 /// Edit->getReg().
285 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
286 Register Reg = Edit->getReg();
288 // A snippet is a tiny live range with only a single instruction using it
289 // besides copies to/from Reg or spills/fills. We accept:
291 // %snip = COPY %Reg / FILL fi#
292 // %snip = USE %snip
293 // %Reg = COPY %snip / SPILL %snip, fi#
295 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
296 return false;
298 MachineInstr *UseMI = nullptr;
300 // Check that all uses satisfy our criteria.
301 for (MachineRegisterInfo::reg_instr_nodbg_iterator
302 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
303 E = MRI.reg_instr_nodbg_end();
304 RI != E;) {
305 MachineInstr &MI = *RI++;
307 // Allow copies to/from Reg.
308 if (isFullCopyOf(MI, Reg))
309 continue;
311 // Allow stack slot loads.
312 int FI;
313 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
314 continue;
316 // Allow stack slot stores.
317 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
318 continue;
320 // Allow a single additional instruction.
321 if (UseMI && &MI != UseMI)
322 return false;
323 UseMI = &MI;
325 return true;
328 /// collectRegsToSpill - Collect live range snippets that only have a single
329 /// real use.
330 void InlineSpiller::collectRegsToSpill() {
331 Register Reg = Edit->getReg();
333 // Main register always spills.
334 RegsToSpill.assign(1, Reg);
335 SnippetCopies.clear();
337 // Snippets all have the same original, so there can't be any for an original
338 // register.
339 if (Original == Reg)
340 return;
342 for (MachineInstr &MI :
343 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
344 Register SnipReg = isFullCopyOf(MI, Reg);
345 if (!isSibling(SnipReg))
346 continue;
347 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
348 if (!isSnippet(SnipLI))
349 continue;
350 SnippetCopies.insert(&MI);
351 if (isRegToSpill(SnipReg))
352 continue;
353 RegsToSpill.push_back(SnipReg);
354 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
355 ++NumSnippets;
359 bool InlineSpiller::isSibling(Register Reg) {
360 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
363 /// It is beneficial to spill to earlier place in the same BB in case
364 /// as follows:
365 /// There is an alternative def earlier in the same MBB.
366 /// Hoist the spill as far as possible in SpillMBB. This can ease
367 /// register pressure:
369 /// x = def
370 /// y = use x
371 /// s = copy x
373 /// Hoisting the spill of s to immediately after the def removes the
374 /// interference between x and y:
376 /// x = def
377 /// spill x
378 /// y = use killed x
380 /// This hoist only helps when the copy kills its source.
382 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
383 MachineInstr &CopyMI) {
384 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
385 #ifndef NDEBUG
386 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
387 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
388 #endif
390 Register SrcReg = CopyMI.getOperand(1).getReg();
391 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
392 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
393 LiveQueryResult SrcQ = SrcLI.Query(Idx);
394 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
395 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
396 return false;
398 // Conservatively extend the stack slot range to the range of the original
399 // value. We may be able to do better with stack slot coloring by being more
400 // careful here.
401 assert(StackInt && "No stack slot assigned yet.");
402 LiveInterval &OrigLI = LIS.getInterval(Original);
403 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
404 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
405 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
406 << *StackInt << '\n');
408 // We are going to spill SrcVNI immediately after its def, so clear out
409 // any later spills of the same value.
410 eliminateRedundantSpills(SrcLI, SrcVNI);
412 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
413 MachineBasicBlock::iterator MII;
414 if (SrcVNI->isPHIDef())
415 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
416 else {
417 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
418 assert(DefMI && "Defining instruction disappeared");
419 MII = DefMI;
420 ++MII;
422 MachineInstrSpan MIS(MII, MBB);
423 // Insert spill without kill flag immediately after def.
424 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
425 MRI.getRegClass(SrcReg), &TRI);
426 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
427 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
428 getVDefInterval(MI, LIS);
429 --MII; // Point to store instruction.
430 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
432 // If there is only 1 store instruction is required for spill, add it
433 // to mergeable list. In X86 AMX, 2 intructions are required to store.
434 // We disable the merge for this case.
435 if (MIS.begin() == MII)
436 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
437 ++NumSpills;
438 return true;
441 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
442 /// redundant spills of this value in SLI.reg and sibling copies.
443 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
444 assert(VNI && "Missing value");
445 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
446 WorkList.push_back(std::make_pair(&SLI, VNI));
447 assert(StackInt && "No stack slot assigned yet.");
449 do {
450 LiveInterval *LI;
451 std::tie(LI, VNI) = WorkList.pop_back_val();
452 Register Reg = LI->reg();
453 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
454 << VNI->def << " in " << *LI << '\n');
456 // Regs to spill are taken care of.
457 if (isRegToSpill(Reg))
458 continue;
460 // Add all of VNI's live range to StackInt.
461 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
462 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
464 // Find all spills and copies of VNI.
465 for (MachineInstr &MI :
466 llvm::make_early_inc_range(MRI.use_nodbg_instructions(Reg))) {
467 if (!MI.isCopy() && !MI.mayStore())
468 continue;
469 SlotIndex Idx = LIS.getInstructionIndex(MI);
470 if (LI->getVNInfoAt(Idx) != VNI)
471 continue;
473 // Follow sibling copies down the dominator tree.
474 if (Register DstReg = isFullCopyOf(MI, Reg)) {
475 if (isSibling(DstReg)) {
476 LiveInterval &DstLI = LIS.getInterval(DstReg);
477 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
478 assert(DstVNI && "Missing defined value");
479 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
480 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
482 continue;
485 // Erase spills.
486 int FI;
487 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
488 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
489 // eliminateDeadDefs won't normally remove stores, so switch opcode.
490 MI.setDesc(TII.get(TargetOpcode::KILL));
491 DeadDefs.push_back(&MI);
492 ++NumSpillsRemoved;
493 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
494 --NumSpills;
497 } while (!WorkList.empty());
500 //===----------------------------------------------------------------------===//
501 // Rematerialization
502 //===----------------------------------------------------------------------===//
504 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
505 /// instruction cannot be eliminated. See through snippet copies
506 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
507 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
508 WorkList.push_back(std::make_pair(LI, VNI));
509 do {
510 std::tie(LI, VNI) = WorkList.pop_back_val();
511 if (!UsedValues.insert(VNI).second)
512 continue;
514 if (VNI->isPHIDef()) {
515 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
516 for (MachineBasicBlock *P : MBB->predecessors()) {
517 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
518 if (PVNI)
519 WorkList.push_back(std::make_pair(LI, PVNI));
521 continue;
524 // Follow snippet copies.
525 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
526 if (!SnippetCopies.count(MI))
527 continue;
528 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
529 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy");
530 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
531 assert(SnipVNI && "Snippet undefined before copy");
532 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
533 } while (!WorkList.empty());
536 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
537 MachineInstr &MI) {
538 if (!RestrictStatepointRemat)
539 return true;
540 // Here's a quick explanation of the problem we're trying to handle here:
541 // * There are some pseudo instructions with more vreg uses than there are
542 // physical registers on the machine.
543 // * This is normally handled by spilling the vreg, and folding the reload
544 // into the user instruction. (Thus decreasing the number of used vregs
545 // until the remainder can be assigned to physregs.)
546 // * However, since we may try to spill vregs in any order, we can end up
547 // trying to spill each operand to the instruction, and then rematting it
548 // instead. When that happens, the new live intervals (for the remats) are
549 // expected to be trivially assignable (i.e. RS_Done). However, since we
550 // may have more remats than physregs, we're guaranteed to fail to assign
551 // one.
552 // At the moment, we only handle this for STATEPOINTs since they're the only
553 // pseudo op where we've seen this. If we start seeing other instructions
554 // with the same problem, we need to revisit this.
555 if (MI.getOpcode() != TargetOpcode::STATEPOINT)
556 return true;
557 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
558 // that number of physical registers is enough to cover all fixed arguments.
559 // If it is not true we need to revisit it.
560 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
561 EndIdx = MI.getNumOperands();
562 Idx < EndIdx; ++Idx) {
563 MachineOperand &MO = MI.getOperand(Idx);
564 if (MO.isReg() && MO.getReg() == VReg)
565 return false;
567 return true;
570 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
571 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
572 // Analyze instruction
573 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
574 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
576 if (!RI.Reads)
577 return false;
579 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
580 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
582 if (!ParentVNI) {
583 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
584 for (MachineOperand &MO : MI.operands())
585 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
586 MO.setIsUndef();
587 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
588 return true;
591 if (SnippetCopies.count(&MI))
592 return false;
594 LiveInterval &OrigLI = LIS.getInterval(Original);
595 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
596 LiveRangeEdit::Remat RM(ParentVNI);
597 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
599 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
600 markValueUsed(&VirtReg, ParentVNI);
601 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
602 return false;
605 // If the instruction also writes VirtReg.reg, it had better not require the
606 // same register for uses and defs.
607 if (RI.Tied) {
608 markValueUsed(&VirtReg, ParentVNI);
609 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
610 return false;
613 // Before rematerializing into a register for a single instruction, try to
614 // fold a load into the instruction. That avoids allocating a new register.
615 if (RM.OrigMI->canFoldAsLoad() &&
616 foldMemoryOperand(Ops, RM.OrigMI)) {
617 Edit->markRematerialized(RM.ParentVNI);
618 ++NumFoldedLoads;
619 return true;
622 // If we can't guarantee that we'll be able to actually assign the new vreg,
623 // we can't remat.
624 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
625 markValueUsed(&VirtReg, ParentVNI);
626 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
627 return false;
630 // Allocate a new register for the remat.
631 Register NewVReg = Edit->createFrom(Original);
633 // Finally we can rematerialize OrigMI before MI.
634 SlotIndex DefIdx =
635 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
637 // We take the DebugLoc from MI, since OrigMI may be attributed to a
638 // different source location.
639 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
640 NewMI->setDebugLoc(MI.getDebugLoc());
642 (void)DefIdx;
643 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
644 << *LIS.getInstructionFromIndex(DefIdx));
646 // Replace operands
647 for (const auto &OpPair : Ops) {
648 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
649 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
650 MO.setReg(NewVReg);
651 MO.setIsKill();
654 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n');
656 ++NumRemats;
657 return true;
660 /// reMaterializeAll - Try to rematerialize as many uses as possible,
661 /// and trim the live ranges after.
662 void InlineSpiller::reMaterializeAll() {
663 if (!Edit->anyRematerializable(AA))
664 return;
666 UsedValues.clear();
668 // Try to remat before all uses of snippets.
669 bool anyRemat = false;
670 for (Register Reg : RegsToSpill) {
671 LiveInterval &LI = LIS.getInterval(Reg);
672 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
673 // Debug values are not allowed to affect codegen.
674 if (MI.isDebugValue())
675 continue;
677 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
678 "instruction that isn't a DBG_VALUE");
680 anyRemat |= reMaterializeFor(LI, MI);
683 if (!anyRemat)
684 return;
686 // Remove any values that were completely rematted.
687 for (Register Reg : RegsToSpill) {
688 LiveInterval &LI = LIS.getInterval(Reg);
689 for (VNInfo *VNI : llvm::make_range(LI.vni_begin(), LI.vni_end())) {
690 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
691 continue;
692 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
693 MI->addRegisterDead(Reg, &TRI);
694 if (!MI->allDefsAreDead())
695 continue;
696 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
697 DeadDefs.push_back(MI);
701 // Eliminate dead code after remat. Note that some snippet copies may be
702 // deleted here.
703 if (DeadDefs.empty())
704 return;
705 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
706 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
708 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
709 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
710 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
711 // removed, PHI VNI are still left in the LiveInterval.
712 // So to get rid of unused reg, we need to check whether it has non-dbg
713 // reference instead of whether it has non-empty interval.
714 unsigned ResultPos = 0;
715 for (Register Reg : RegsToSpill) {
716 if (MRI.reg_nodbg_empty(Reg)) {
717 Edit->eraseVirtReg(Reg);
718 continue;
721 assert(LIS.hasInterval(Reg) &&
722 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
723 "Empty and not used live-range?!");
725 RegsToSpill[ResultPos++] = Reg;
727 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
728 LLVM_DEBUG(dbgs() << RegsToSpill.size()
729 << " registers to spill after remat.\n");
732 //===----------------------------------------------------------------------===//
733 // Spilling
734 //===----------------------------------------------------------------------===//
736 /// If MI is a load or store of StackSlot, it can be removed.
737 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
738 int FI = 0;
739 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
740 bool IsLoad = InstrReg;
741 if (!IsLoad)
742 InstrReg = TII.isStoreToStackSlot(*MI, FI);
744 // We have a stack access. Is it the right register and slot?
745 if (InstrReg != Reg || FI != StackSlot)
746 return false;
748 if (!IsLoad)
749 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
751 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
752 LIS.RemoveMachineInstrFromMaps(*MI);
753 MI->eraseFromParent();
755 if (IsLoad) {
756 ++NumReloadsRemoved;
757 --NumReloads;
758 } else {
759 ++NumSpillsRemoved;
760 --NumSpills;
763 return true;
766 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
767 LLVM_DUMP_METHOD
768 // Dump the range of instructions from B to E with their slot indexes.
769 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
770 MachineBasicBlock::iterator E,
771 LiveIntervals const &LIS,
772 const char *const header,
773 Register VReg = Register()) {
774 char NextLine = '\n';
775 char SlotIndent = '\t';
777 if (std::next(B) == E) {
778 NextLine = ' ';
779 SlotIndent = ' ';
782 dbgs() << '\t' << header << ": " << NextLine;
784 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
785 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
787 // If a register was passed in and this instruction has it as a
788 // destination that is marked as an early clobber, print the
789 // early-clobber slot index.
790 if (VReg) {
791 MachineOperand *MO = I->findRegisterDefOperand(VReg);
792 if (MO && MO->isEarlyClobber())
793 Idx = Idx.getRegSlot(true);
796 dbgs() << SlotIndent << Idx << '\t' << *I;
799 #endif
801 /// foldMemoryOperand - Try folding stack slot references in Ops into their
802 /// instructions.
804 /// @param Ops Operand indices from AnalyzeVirtRegInBundle().
805 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
806 /// @return True on success.
807 bool InlineSpiller::
808 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
809 MachineInstr *LoadMI) {
810 if (Ops.empty())
811 return false;
812 // Don't attempt folding in bundles.
813 MachineInstr *MI = Ops.front().first;
814 if (Ops.back().first != MI || MI->isBundled())
815 return false;
817 bool WasCopy = MI->isCopy();
818 Register ImpReg;
820 // TII::foldMemoryOperand will do what we need here for statepoint
821 // (fold load into use and remove corresponding def). We will replace
822 // uses of removed def with loads (spillAroundUses).
823 // For that to work we need to untie def and use to pass it through
824 // foldMemoryOperand and signal foldPatchpoint that it is allowed to
825 // fold them.
826 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
828 // Spill subregs if the target allows it.
829 // We always want to spill subregs for stackmap/patchpoint pseudos.
830 bool SpillSubRegs = TII.isSubregFoldable() ||
831 MI->getOpcode() == TargetOpcode::STATEPOINT ||
832 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
833 MI->getOpcode() == TargetOpcode::STACKMAP;
835 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
836 // operands.
837 SmallVector<unsigned, 8> FoldOps;
838 for (const auto &OpPair : Ops) {
839 unsigned Idx = OpPair.second;
840 assert(MI == OpPair.first && "Instruction conflict during operand folding");
841 MachineOperand &MO = MI->getOperand(Idx);
842 if (MO.isImplicit()) {
843 ImpReg = MO.getReg();
844 continue;
847 if (!SpillSubRegs && MO.getSubReg())
848 return false;
849 // We cannot fold a load instruction into a def.
850 if (LoadMI && MO.isDef())
851 return false;
852 // Tied use operands should not be passed to foldMemoryOperand.
853 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
854 FoldOps.push_back(Idx);
857 // If we only have implicit uses, we won't be able to fold that.
858 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
859 if (FoldOps.empty())
860 return false;
862 MachineInstrSpan MIS(MI, MI->getParent());
864 SmallVector<std::pair<unsigned, unsigned> > TiedOps;
865 if (UntieRegs)
866 for (unsigned Idx : FoldOps) {
867 MachineOperand &MO = MI->getOperand(Idx);
868 if (!MO.isTied())
869 continue;
870 unsigned Tied = MI->findTiedOperandIdx(Idx);
871 if (MO.isUse())
872 TiedOps.emplace_back(Tied, Idx);
873 else {
874 assert(MO.isDef() && "Tied to not use and def?");
875 TiedOps.emplace_back(Idx, Tied);
877 MI->untieRegOperand(Idx);
880 MachineInstr *FoldMI =
881 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
882 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
883 if (!FoldMI) {
884 // Re-tie operands.
885 for (auto Tied : TiedOps)
886 MI->tieOperands(Tied.first, Tied.second);
887 return false;
890 // Remove LIS for any dead defs in the original MI not in FoldMI.
891 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
892 if (!MO->isReg())
893 continue;
894 Register Reg = MO->getReg();
895 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
896 continue;
898 // Skip non-Defs, including undef uses and internal reads.
899 if (MO->isUse())
900 continue;
901 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
902 if (RI.FullyDefined)
903 continue;
904 // FoldMI does not define this physreg. Remove the LI segment.
905 assert(MO->isDead() && "Cannot fold physreg def");
906 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
907 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
910 int FI;
911 if (TII.isStoreToStackSlot(*MI, FI) &&
912 HSpiller.rmFromMergeableSpills(*MI, FI))
913 --NumSpills;
914 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
915 // Update the call site info.
916 if (MI->isCandidateForCallSiteEntry())
917 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
919 // If we've folded a store into an instruction labelled with debug-info,
920 // record a substitution from the old operand to the memory operand. Handle
921 // the simple common case where operand 0 is the one being folded, plus when
922 // the destination operand is also a tied def. More values could be
923 // substituted / preserved with more analysis.
924 if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
925 // Helper lambda.
926 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
927 // Substitute old operand zero to the new instructions memory operand.
928 unsigned OldOperandNum = Ops[0].second;
929 unsigned NewNum = FoldMI->getDebugInstrNum();
930 unsigned OldNum = MI->getDebugInstrNum();
931 MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
932 {NewNum, MachineFunction::DebugOperandMemNumber});
935 const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
936 if (Ops.size() == 1 && Op0.isDef()) {
937 MakeSubstitution();
938 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
939 Op0.getReg() == MI->getOperand(1).getReg()) {
940 MakeSubstitution();
942 } else if (MI->peekDebugInstrNum()) {
943 // This is a debug-labelled instruction, but the operand being folded isn't
944 // at operand zero. Most likely this means it's a load being folded in.
945 // Substitute any register defs from operand zero up to the one being
946 // folded -- past that point, we don't know what the new operand indexes
947 // will be.
948 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
951 MI->eraseFromParent();
953 // Insert any new instructions other than FoldMI into the LIS maps.
954 assert(!MIS.empty() && "Unexpected empty span of instructions!");
955 for (MachineInstr &MI : MIS)
956 if (&MI != FoldMI)
957 LIS.InsertMachineInstrInMaps(MI);
959 // TII.foldMemoryOperand may have left some implicit operands on the
960 // instruction. Strip them.
961 if (ImpReg)
962 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
963 MachineOperand &MO = FoldMI->getOperand(i - 1);
964 if (!MO.isReg() || !MO.isImplicit())
965 break;
966 if (MO.getReg() == ImpReg)
967 FoldMI->RemoveOperand(i - 1);
970 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
971 "folded"));
973 if (!WasCopy)
974 ++NumFolded;
975 else if (Ops.front().second == 0) {
976 ++NumSpills;
977 // If there is only 1 store instruction is required for spill, add it
978 // to mergeable list. In X86 AMX, 2 intructions are required to store.
979 // We disable the merge for this case.
980 if (std::distance(MIS.begin(), MIS.end()) <= 1)
981 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
982 } else
983 ++NumReloads;
984 return true;
987 void InlineSpiller::insertReload(Register NewVReg,
988 SlotIndex Idx,
989 MachineBasicBlock::iterator MI) {
990 MachineBasicBlock &MBB = *MI->getParent();
992 MachineInstrSpan MIS(MI, &MBB);
993 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
994 MRI.getRegClass(NewVReg), &TRI);
996 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
998 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
999 NewVReg));
1000 ++NumReloads;
1003 /// Check if \p Def fully defines a VReg with an undefined value.
1004 /// If that's the case, that means the value of VReg is actually
1005 /// not relevant.
1006 static bool isRealSpill(const MachineInstr &Def) {
1007 if (!Def.isImplicitDef())
1008 return true;
1009 assert(Def.getNumOperands() == 1 &&
1010 "Implicit def with more than one definition");
1011 // We can say that the VReg defined by Def is undef, only if it is
1012 // fully defined by Def. Otherwise, some of the lanes may not be
1013 // undef and the value of the VReg matters.
1014 return Def.getOperand(0).getSubReg();
1017 /// insertSpill - Insert a spill of NewVReg after MI.
1018 void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1019 MachineBasicBlock::iterator MI) {
1020 // Spill are not terminators, so inserting spills after terminators will
1021 // violate invariants in MachineVerifier.
1022 assert(!MI->isTerminator() && "Inserting a spill after a terminator");
1023 MachineBasicBlock &MBB = *MI->getParent();
1025 MachineInstrSpan MIS(MI, &MBB);
1026 MachineBasicBlock::iterator SpillBefore = std::next(MI);
1027 bool IsRealSpill = isRealSpill(*MI);
1029 if (IsRealSpill)
1030 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1031 MRI.getRegClass(NewVReg), &TRI);
1032 else
1033 // Don't spill undef value.
1034 // Anything works for undef, in particular keeping the memory
1035 // uninitialized is a viable option and it saves code size and
1036 // run time.
1037 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1038 .addReg(NewVReg, getKillRegState(isKill));
1040 MachineBasicBlock::iterator Spill = std::next(MI);
1041 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1042 for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1043 getVDefInterval(MI, LIS);
1045 LLVM_DEBUG(
1046 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"));
1047 ++NumSpills;
1048 // If there is only 1 store instruction is required for spill, add it
1049 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1050 // We disable the merge for this case.
1051 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1052 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1055 /// spillAroundUses - insert spill code around each use of Reg.
1056 void InlineSpiller::spillAroundUses(Register Reg) {
1057 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
1058 LiveInterval &OldLI = LIS.getInterval(Reg);
1060 // Iterate over instructions using Reg.
1061 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1062 // Debug values are not allowed to affect codegen.
1063 if (MI.isDebugValue()) {
1064 // Modify DBG_VALUE now that the value is in a spill slot.
1065 MachineBasicBlock *MBB = MI.getParent();
1066 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI);
1067 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1068 MBB->erase(MI);
1069 continue;
1072 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
1073 "instruction that isn't a DBG_VALUE");
1075 // Ignore copies to/from snippets. We'll delete them.
1076 if (SnippetCopies.count(&MI))
1077 continue;
1079 // Stack slot accesses may coalesce away.
1080 if (coalesceStackAccess(&MI, Reg))
1081 continue;
1083 // Analyze instruction.
1084 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1085 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1087 // Find the slot index where this instruction reads and writes OldLI.
1088 // This is usually the def slot, except for tied early clobbers.
1089 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1090 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1091 if (SlotIndex::isSameInstr(Idx, VNI->def))
1092 Idx = VNI->def;
1094 // Check for a sibling copy.
1095 Register SibReg = isFullCopyOf(MI, Reg);
1096 if (SibReg && isSibling(SibReg)) {
1097 // This may actually be a copy between snippets.
1098 if (isRegToSpill(SibReg)) {
1099 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI);
1100 SnippetCopies.insert(&MI);
1101 continue;
1103 if (RI.Writes) {
1104 if (hoistSpillInsideBB(OldLI, MI)) {
1105 // This COPY is now dead, the value is already in the stack slot.
1106 MI.getOperand(0).setIsDead();
1107 DeadDefs.push_back(&MI);
1108 continue;
1110 } else {
1111 // This is a reload for a sib-reg copy. Drop spills downstream.
1112 LiveInterval &SibLI = LIS.getInterval(SibReg);
1113 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1114 // The COPY will fold to a reload below.
1118 // Attempt to fold memory ops.
1119 if (foldMemoryOperand(Ops))
1120 continue;
1122 // Create a new virtual register for spill/fill.
1123 // FIXME: Infer regclass from instruction alone.
1124 Register NewVReg = Edit->createFrom(Reg);
1126 if (RI.Reads)
1127 insertReload(NewVReg, Idx, &MI);
1129 // Rewrite instruction operands.
1130 bool hasLiveDef = false;
1131 for (const auto &OpPair : Ops) {
1132 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1133 MO.setReg(NewVReg);
1134 if (MO.isUse()) {
1135 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1136 MO.setIsKill();
1137 } else {
1138 if (!MO.isDead())
1139 hasLiveDef = true;
1142 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n');
1144 // FIXME: Use a second vreg if instruction has no tied ops.
1145 if (RI.Writes)
1146 if (hasLiveDef)
1147 insertSpill(NewVReg, true, &MI);
1151 /// spillAll - Spill all registers remaining after rematerialization.
1152 void InlineSpiller::spillAll() {
1153 // Update LiveStacks now that we are committed to spilling.
1154 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1155 StackSlot = VRM.assignVirt2StackSlot(Original);
1156 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1157 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1158 } else
1159 StackInt = &LSS.getInterval(StackSlot);
1161 if (Original != Edit->getReg())
1162 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1164 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1165 for (Register Reg : RegsToSpill)
1166 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1167 StackInt->getValNumInfo(0));
1168 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1170 // Spill around uses of all RegsToSpill.
1171 for (Register Reg : RegsToSpill)
1172 spillAroundUses(Reg);
1174 // Hoisted spills may cause dead code.
1175 if (!DeadDefs.empty()) {
1176 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1177 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1180 // Finally delete the SnippetCopies.
1181 for (Register Reg : RegsToSpill) {
1182 for (MachineInstr &MI :
1183 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1184 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1185 // FIXME: Do this with a LiveRangeEdit callback.
1186 LIS.RemoveMachineInstrFromMaps(MI);
1187 MI.eraseFromParent();
1191 // Delete all spilled registers.
1192 for (Register Reg : RegsToSpill)
1193 Edit->eraseVirtReg(Reg);
1196 void InlineSpiller::spill(LiveRangeEdit &edit) {
1197 ++NumSpilledRanges;
1198 Edit = &edit;
1199 assert(!Register::isStackSlot(edit.getReg()) &&
1200 "Trying to spill a stack slot.");
1201 // Share a stack slot among all descendants of Original.
1202 Original = VRM.getOriginal(edit.getReg());
1203 StackSlot = VRM.getStackSlot(Original);
1204 StackInt = nullptr;
1206 LLVM_DEBUG(dbgs() << "Inline spilling "
1207 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1208 << ':' << edit.getParent() << "\nFrom original "
1209 << printReg(Original) << '\n');
1210 assert(edit.getParent().isSpillable() &&
1211 "Attempting to spill already spilled value.");
1212 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1214 collectRegsToSpill();
1215 reMaterializeAll();
1217 // Remat may handle everything.
1218 if (!RegsToSpill.empty())
1219 spillAll();
1221 Edit->calculateRegClassAndHint(MF, VRAI);
1224 /// Optimizations after all the reg selections and spills are done.
1225 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1227 /// When a spill is inserted, add the spill to MergeableSpills map.
1228 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1229 unsigned Original) {
1230 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1231 LiveInterval &OrigLI = LIS.getInterval(Original);
1232 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1233 // LiveInterval may be cleared after all its references are spilled.
1234 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1235 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1236 LI->assign(OrigLI, Allocator);
1237 StackSlotToOrigLI[StackSlot] = std::move(LI);
1239 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1240 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1241 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1242 MergeableSpills[MIdx].insert(&Spill);
1245 /// When a spill is removed, remove the spill from MergeableSpills map.
1246 /// Return true if the spill is removed successfully.
1247 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1248 int StackSlot) {
1249 auto It = StackSlotToOrigLI.find(StackSlot);
1250 if (It == StackSlotToOrigLI.end())
1251 return false;
1252 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1253 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1254 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1255 return MergeableSpills[MIdx].erase(&Spill);
1258 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1259 /// i.e., there should be a living sibling of OrigReg at the insert point.
1260 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1261 MachineBasicBlock &BB, Register &LiveReg) {
1262 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1263 // The original def could be after the last insert point in the root block,
1264 // we can't hoist to here.
1265 if (Idx < OrigVNI.def) {
1266 // TODO: We could be better here. If LI is not alive in landing pad
1267 // we could hoist spill after LIP.
1268 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n");
1269 return false;
1271 Register OrigReg = OrigLI.reg();
1272 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1273 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1275 for (const Register &SibReg : Siblings) {
1276 LiveInterval &LI = LIS.getInterval(SibReg);
1277 VNInfo *VNI = LI.getVNInfoAt(Idx);
1278 if (VNI) {
1279 LiveReg = SibReg;
1280 return true;
1283 return false;
1286 /// Remove redundant spills in the same BB. Save those redundant spills in
1287 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1288 void HoistSpillHelper::rmRedundantSpills(
1289 SmallPtrSet<MachineInstr *, 16> &Spills,
1290 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1291 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1292 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1293 // another spill inside. If a BB contains more than one spill, only keep the
1294 // earlier spill with smaller SlotIndex.
1295 for (const auto CurrentSpill : Spills) {
1296 MachineBasicBlock *Block = CurrentSpill->getParent();
1297 MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1298 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1299 if (PrevSpill) {
1300 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1301 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1302 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1303 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1304 SpillsToRm.push_back(SpillToRm);
1305 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1306 } else {
1307 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1310 for (const auto SpillToRm : SpillsToRm)
1311 Spills.erase(SpillToRm);
1314 /// Starting from \p Root find a top-down traversal order of the dominator
1315 /// tree to visit all basic blocks containing the elements of \p Spills.
1316 /// Redundant spills will be found and put into \p SpillsToRm at the same
1317 /// time. \p SpillBBToSpill will be populated as part of the process and
1318 /// maps a basic block to the first store occurring in the basic block.
1319 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1320 void HoistSpillHelper::getVisitOrders(
1321 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1322 SmallVectorImpl<MachineDomTreeNode *> &Orders,
1323 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1324 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1325 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1326 // The set contains all the possible BB nodes to which we may hoist
1327 // original spills.
1328 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1329 // Save the BB nodes on the path from the first BB node containing
1330 // non-redundant spill to the Root node.
1331 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1332 // All the spills to be hoisted must originate from a single def instruction
1333 // to the OrigReg. It means the def instruction should dominate all the spills
1334 // to be hoisted. We choose the BB where the def instruction is located as
1335 // the Root.
1336 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1337 // For every node on the dominator tree with spill, walk up on the dominator
1338 // tree towards the Root node until it is reached. If there is other node
1339 // containing spill in the middle of the path, the previous spill saw will
1340 // be redundant and the node containing it will be removed. All the nodes on
1341 // the path starting from the first node with non-redundant spill to the Root
1342 // node will be added to the WorkSet, which will contain all the possible
1343 // locations where spills may be hoisted to after the loop below is done.
1344 for (const auto Spill : Spills) {
1345 MachineBasicBlock *Block = Spill->getParent();
1346 MachineDomTreeNode *Node = MDT[Block];
1347 MachineInstr *SpillToRm = nullptr;
1348 while (Node != RootIDomNode) {
1349 // If Node dominates Block, and it already contains a spill, the spill in
1350 // Block will be redundant.
1351 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1352 SpillToRm = SpillBBToSpill[MDT[Block]];
1353 break;
1354 /// If we see the Node already in WorkSet, the path from the Node to
1355 /// the Root node must already be traversed by another spill.
1356 /// Then no need to repeat.
1357 } else if (WorkSet.count(Node)) {
1358 break;
1359 } else {
1360 NodesOnPath.insert(Node);
1362 Node = Node->getIDom();
1364 if (SpillToRm) {
1365 SpillsToRm.push_back(SpillToRm);
1366 } else {
1367 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1368 // set the initial status before hoisting start. The value of BBs
1369 // containing original spills is set to 0, in order to descriminate
1370 // with BBs containing hoisted spills which will be inserted to
1371 // SpillsToKeep later during hoisting.
1372 SpillsToKeep[MDT[Block]] = 0;
1373 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1375 NodesOnPath.clear();
1378 // Sort the nodes in WorkSet in top-down order and save the nodes
1379 // in Orders. Orders will be used for hoisting in runHoistSpills.
1380 unsigned idx = 0;
1381 Orders.push_back(MDT.getBase().getNode(Root));
1382 do {
1383 MachineDomTreeNode *Node = Orders[idx++];
1384 for (MachineDomTreeNode *Child : Node->children()) {
1385 if (WorkSet.count(Child))
1386 Orders.push_back(Child);
1388 } while (idx != Orders.size());
1389 assert(Orders.size() == WorkSet.size() &&
1390 "Orders have different size with WorkSet");
1392 #ifndef NDEBUG
1393 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1394 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1395 for (; RIt != Orders.rend(); RIt++)
1396 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1397 LLVM_DEBUG(dbgs() << "\n");
1398 #endif
1401 /// Try to hoist spills according to BB hotness. The spills to removed will
1402 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1403 /// \p SpillsToIns.
1404 void HoistSpillHelper::runHoistSpills(
1405 LiveInterval &OrigLI, VNInfo &OrigVNI,
1406 SmallPtrSet<MachineInstr *, 16> &Spills,
1407 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1408 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1409 // Visit order of dominator tree nodes.
1410 SmallVector<MachineDomTreeNode *, 32> Orders;
1411 // SpillsToKeep contains all the nodes where spills are to be inserted
1412 // during hoisting. If the spill to be inserted is an original spill
1413 // (not a hoisted one), the value of the map entry is 0. If the spill
1414 // is a hoisted spill, the value of the map entry is the VReg to be used
1415 // as the source of the spill.
1416 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1417 // Map from BB to the first spill inside of it.
1418 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1420 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1422 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1423 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1424 SpillBBToSpill);
1426 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1427 // nodes set and the cost of all the spills inside those nodes.
1428 // The nodes set are the locations where spills are to be inserted
1429 // in the subtree of current node.
1430 using NodesCostPair =
1431 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1432 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1434 // Iterate Orders set in reverse order, which will be a bottom-up order
1435 // in the dominator tree. Once we visit a dom tree node, we know its
1436 // children have already been visited and the spill locations in the
1437 // subtrees of all the children have been determined.
1438 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1439 for (; RIt != Orders.rend(); RIt++) {
1440 MachineBasicBlock *Block = (*RIt)->getBlock();
1442 // If Block contains an original spill, simply continue.
1443 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1444 SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1445 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1446 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1447 continue;
1450 // Collect spills in subtree of current node (*RIt) to
1451 // SpillsInSubTreeMap[*RIt].first.
1452 for (MachineDomTreeNode *Child : (*RIt)->children()) {
1453 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1454 continue;
1455 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1456 // should be placed before getting the begin and end iterators of
1457 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1458 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1459 // and the map grows and then the original buckets in the map are moved.
1460 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1461 SpillsInSubTreeMap[*RIt].first;
1462 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1463 SubTreeCost += SpillsInSubTreeMap[Child].second;
1464 auto BI = SpillsInSubTreeMap[Child].first.begin();
1465 auto EI = SpillsInSubTreeMap[Child].first.end();
1466 SpillsInSubTree.insert(BI, EI);
1467 SpillsInSubTreeMap.erase(Child);
1470 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1471 SpillsInSubTreeMap[*RIt].first;
1472 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1473 // No spills in subtree, simply continue.
1474 if (SpillsInSubTree.empty())
1475 continue;
1477 // Check whether Block is a possible candidate to insert spill.
1478 Register LiveReg;
1479 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1480 continue;
1482 // If there are multiple spills that could be merged, bias a little
1483 // to hoist the spill.
1484 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1485 ? BranchProbability(9, 10)
1486 : BranchProbability(1, 1);
1487 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1488 // Hoist: Move spills to current Block.
1489 for (const auto SpillBB : SpillsInSubTree) {
1490 // When SpillBB is a BB contains original spill, insert the spill
1491 // to SpillsToRm.
1492 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1493 !SpillsToKeep[SpillBB]) {
1494 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1495 SpillsToRm.push_back(SpillToRm);
1497 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1498 SpillsToKeep.erase(SpillBB);
1500 // Current Block is the BB containing the new hoisted spill. Add it to
1501 // SpillsToKeep. LiveReg is the source of the new spill.
1502 SpillsToKeep[*RIt] = LiveReg;
1503 LLVM_DEBUG({
1504 dbgs() << "spills in BB: ";
1505 for (const auto Rspill : SpillsInSubTree)
1506 dbgs() << Rspill->getBlock()->getNumber() << " ";
1507 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1508 << "\n";
1510 SpillsInSubTree.clear();
1511 SpillsInSubTree.insert(*RIt);
1512 SubTreeCost = MBFI.getBlockFreq(Block);
1515 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1516 // save them to SpillsToIns.
1517 for (const auto &Ent : SpillsToKeep) {
1518 if (Ent.second)
1519 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1523 /// For spills with equal values, remove redundant spills and hoist those left
1524 /// to less hot spots.
1526 /// Spills with equal values will be collected into the same set in
1527 /// MergeableSpills when spill is inserted. These equal spills are originated
1528 /// from the same defining instruction and are dominated by the instruction.
1529 /// Before hoisting all the equal spills, redundant spills inside in the same
1530 /// BB are first marked to be deleted. Then starting from the spills left, walk
1531 /// up on the dominator tree towards the Root node where the define instruction
1532 /// is located, mark the dominated spills to be deleted along the way and
1533 /// collect the BB nodes on the path from non-dominated spills to the define
1534 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1535 /// where we are considering to hoist the spills. We iterate the WorkSet in
1536 /// bottom-up order, and for each node, we will decide whether to hoist spills
1537 /// inside its subtree to that node. In this way, we can get benefit locally
1538 /// even if hoisting all the equal spills to one cold place is impossible.
1539 void HoistSpillHelper::hoistAllSpills() {
1540 SmallVector<Register, 4> NewVRegs;
1541 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1543 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1544 Register Reg = Register::index2VirtReg(i);
1545 Register Original = VRM.getPreSplitReg(Reg);
1546 if (!MRI.def_empty(Reg))
1547 Virt2SiblingsMap[Original].insert(Reg);
1550 // Each entry in MergeableSpills contains a spill set with equal values.
1551 for (auto &Ent : MergeableSpills) {
1552 int Slot = Ent.first.first;
1553 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1554 VNInfo *OrigVNI = Ent.first.second;
1555 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1556 if (Ent.second.empty())
1557 continue;
1559 LLVM_DEBUG({
1560 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1561 << "Equal spills in BB: ";
1562 for (const auto spill : EqValSpills)
1563 dbgs() << spill->getParent()->getNumber() << " ";
1564 dbgs() << "\n";
1567 // SpillsToRm is the spill set to be removed from EqValSpills.
1568 SmallVector<MachineInstr *, 16> SpillsToRm;
1569 // SpillsToIns is the spill set to be newly inserted after hoisting.
1570 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1572 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1574 LLVM_DEBUG({
1575 dbgs() << "Finally inserted spills in BB: ";
1576 for (const auto &Ispill : SpillsToIns)
1577 dbgs() << Ispill.first->getNumber() << " ";
1578 dbgs() << "\nFinally removed spills in BB: ";
1579 for (const auto Rspill : SpillsToRm)
1580 dbgs() << Rspill->getParent()->getNumber() << " ";
1581 dbgs() << "\n";
1584 // Stack live range update.
1585 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1586 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1587 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1588 StackIntvl.getValNumInfo(0));
1590 // Insert hoisted spills.
1591 for (auto const &Insert : SpillsToIns) {
1592 MachineBasicBlock *BB = Insert.first;
1593 Register LiveReg = Insert.second;
1594 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1595 MachineInstrSpan MIS(MII, BB);
1596 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1597 MRI.getRegClass(LiveReg), &TRI);
1598 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1599 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1600 getVDefInterval(MI, LIS);
1601 ++NumSpills;
1604 // Remove redundant spills or change them to dead instructions.
1605 NumSpills -= SpillsToRm.size();
1606 for (auto const RMEnt : SpillsToRm) {
1607 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1608 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1609 MachineOperand &MO = RMEnt->getOperand(i - 1);
1610 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1611 RMEnt->RemoveOperand(i - 1);
1614 Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1618 /// For VirtReg clone, the \p New register should have the same physreg or
1619 /// stackslot as the \p old register.
1620 void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1621 if (VRM.hasPhys(Old))
1622 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1623 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1624 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1625 else
1626 llvm_unreachable("VReg should be assigned either physreg or stackslot");
1627 if (VRM.hasShape(Old))
1628 VRM.assignVirt2Shape(New, VRM.getShape(Old));