[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Sema / SemaCoroutine.cpp
blobbee80db8d166a68eb4f3b7d457ca523273acc73e
1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ Coroutines.
11 // This file contains references to sections of the Coroutines TS, which
12 // can be found at http://wg21.link/coroutines.
14 //===----------------------------------------------------------------------===//
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Lex/Preprocessor.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Overload.h"
25 #include "clang/Sema/ScopeInfo.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "llvm/ADT/SmallSet.h"
29 using namespace clang;
30 using namespace sema;
32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
33 SourceLocation Loc, bool &Res) {
34 DeclarationName DN = S.PP.getIdentifierInfo(Name);
35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
36 // Suppress diagnostics when a private member is selected. The same warnings
37 // will be produced again when building the call.
38 LR.suppressDiagnostics();
39 Res = S.LookupQualifiedName(LR, RD);
40 return LR;
43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
44 SourceLocation Loc) {
45 bool Res;
46 lookupMember(S, Name, RD, Loc, Res);
47 return Res;
50 /// Look up the std::coroutine_traits<...>::promise_type for the given
51 /// function type.
52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
53 SourceLocation KwLoc) {
54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
55 const SourceLocation FuncLoc = FD->getLocation();
57 ClassTemplateDecl *CoroTraits =
58 S.lookupCoroutineTraits(KwLoc, FuncLoc);
59 if (!CoroTraits)
60 return QualType();
62 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
63 // to [dcl.fct.def.coroutine]3
64 TemplateArgumentListInfo Args(KwLoc, KwLoc);
65 auto AddArg = [&](QualType T) {
66 Args.addArgument(TemplateArgumentLoc(
67 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
69 AddArg(FnType->getReturnType());
70 // If the function is a non-static member function, add the type
71 // of the implicit object parameter before the formal parameters.
72 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
73 if (MD->isImplicitObjectMemberFunction()) {
74 // [over.match.funcs]4
75 // For non-static member functions, the type of the implicit object
76 // parameter is
77 // -- "lvalue reference to cv X" for functions declared without a
78 // ref-qualifier or with the & ref-qualifier
79 // -- "rvalue reference to cv X" for functions declared with the &&
80 // ref-qualifier
81 QualType T = MD->getFunctionObjectParameterType();
82 T = FnType->getRefQualifier() == RQ_RValue
83 ? S.Context.getRValueReferenceType(T)
84 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
85 AddArg(T);
88 for (QualType T : FnType->getParamTypes())
89 AddArg(T);
91 // Build the template-id.
92 QualType CoroTrait =
93 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
94 if (CoroTrait.isNull())
95 return QualType();
96 if (S.RequireCompleteType(KwLoc, CoroTrait,
97 diag::err_coroutine_type_missing_specialization))
98 return QualType();
100 auto *RD = CoroTrait->getAsCXXRecordDecl();
101 assert(RD && "specialization of class template is not a class?");
103 // Look up the ::promise_type member.
104 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
105 Sema::LookupOrdinaryName);
106 S.LookupQualifiedName(R, RD);
107 auto *Promise = R.getAsSingle<TypeDecl>();
108 if (!Promise) {
109 S.Diag(FuncLoc,
110 diag::err_implied_std_coroutine_traits_promise_type_not_found)
111 << RD;
112 return QualType();
114 // The promise type is required to be a class type.
115 QualType PromiseType = S.Context.getTypeDeclType(Promise);
117 auto buildElaboratedType = [&]() {
118 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace());
119 NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
120 CoroTrait.getTypePtr());
121 return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS,
122 PromiseType);
125 if (!PromiseType->getAsCXXRecordDecl()) {
126 S.Diag(FuncLoc,
127 diag::err_implied_std_coroutine_traits_promise_type_not_class)
128 << buildElaboratedType();
129 return QualType();
131 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
132 diag::err_coroutine_promise_type_incomplete))
133 return QualType();
135 return PromiseType;
138 /// Look up the std::coroutine_handle<PromiseType>.
139 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
140 SourceLocation Loc) {
141 if (PromiseType.isNull())
142 return QualType();
144 NamespaceDecl *CoroNamespace = S.getStdNamespace();
145 assert(CoroNamespace && "Should already be diagnosed");
147 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
148 Loc, Sema::LookupOrdinaryName);
149 if (!S.LookupQualifiedName(Result, CoroNamespace)) {
150 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
151 << "std::coroutine_handle";
152 return QualType();
155 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
156 if (!CoroHandle) {
157 Result.suppressDiagnostics();
158 // We found something weird. Complain about the first thing we found.
159 NamedDecl *Found = *Result.begin();
160 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
161 return QualType();
164 // Form template argument list for coroutine_handle<Promise>.
165 TemplateArgumentListInfo Args(Loc, Loc);
166 Args.addArgument(TemplateArgumentLoc(
167 TemplateArgument(PromiseType),
168 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
170 // Build the template-id.
171 QualType CoroHandleType =
172 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
173 if (CoroHandleType.isNull())
174 return QualType();
175 if (S.RequireCompleteType(Loc, CoroHandleType,
176 diag::err_coroutine_type_missing_specialization))
177 return QualType();
179 return CoroHandleType;
182 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
183 StringRef Keyword) {
184 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
185 // a function body.
186 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
187 // appear in a default argument." But the diagnostic QoI here could be
188 // improved to inform the user that default arguments specifically are not
189 // allowed.
190 auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
191 if (!FD) {
192 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
193 ? diag::err_coroutine_objc_method
194 : diag::err_coroutine_outside_function) << Keyword;
195 return false;
198 // An enumeration for mapping the diagnostic type to the correct diagnostic
199 // selection index.
200 enum InvalidFuncDiag {
201 DiagCtor = 0,
202 DiagDtor,
203 DiagMain,
204 DiagConstexpr,
205 DiagAutoRet,
206 DiagVarargs,
207 DiagConsteval,
209 bool Diagnosed = false;
210 auto DiagInvalid = [&](InvalidFuncDiag ID) {
211 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
212 Diagnosed = true;
213 return false;
216 // Diagnose when a constructor, destructor
217 // or the function 'main' are declared as a coroutine.
218 auto *MD = dyn_cast<CXXMethodDecl>(FD);
219 // [class.ctor]p11: "A constructor shall not be a coroutine."
220 if (MD && isa<CXXConstructorDecl>(MD))
221 return DiagInvalid(DiagCtor);
222 // [class.dtor]p17: "A destructor shall not be a coroutine."
223 else if (MD && isa<CXXDestructorDecl>(MD))
224 return DiagInvalid(DiagDtor);
225 // [basic.start.main]p3: "The function main shall not be a coroutine."
226 else if (FD->isMain())
227 return DiagInvalid(DiagMain);
229 // Emit a diagnostics for each of the following conditions which is not met.
230 // [expr.const]p2: "An expression e is a core constant expression unless the
231 // evaluation of e [...] would evaluate one of the following expressions:
232 // [...] an await-expression [...] a yield-expression."
233 if (FD->isConstexpr())
234 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
235 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
236 // placeholder type shall not be a coroutine."
237 if (FD->getReturnType()->isUndeducedType())
238 DiagInvalid(DiagAutoRet);
239 // [dcl.fct.def.coroutine]p1
240 // The parameter-declaration-clause of the coroutine shall not terminate with
241 // an ellipsis that is not part of a parameter-declaration.
242 if (FD->isVariadic())
243 DiagInvalid(DiagVarargs);
245 return !Diagnosed;
248 /// Build a call to 'operator co_await' if there is a suitable operator for
249 /// the given expression.
250 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
251 UnresolvedLookupExpr *Lookup) {
252 UnresolvedSet<16> Functions;
253 Functions.append(Lookup->decls_begin(), Lookup->decls_end());
254 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
257 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
258 SourceLocation Loc, Expr *E) {
259 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
260 if (R.isInvalid())
261 return ExprError();
262 return SemaRef.BuildOperatorCoawaitCall(Loc, E,
263 cast<UnresolvedLookupExpr>(R.get()));
266 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
267 SourceLocation Loc) {
268 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
269 if (CoroHandleType.isNull())
270 return ExprError();
272 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
273 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
274 Sema::LookupOrdinaryName);
275 if (!S.LookupQualifiedName(Found, LookupCtx)) {
276 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
277 << "from_address";
278 return ExprError();
281 Expr *FramePtr =
282 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
284 CXXScopeSpec SS;
285 ExprResult FromAddr =
286 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
287 if (FromAddr.isInvalid())
288 return ExprError();
290 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
293 struct ReadySuspendResumeResult {
294 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
295 Expr *Results[3];
296 OpaqueValueExpr *OpaqueValue;
297 bool IsInvalid;
300 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
301 StringRef Name, MultiExprArg Args) {
302 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
304 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
305 CXXScopeSpec SS;
306 ExprResult Result = S.BuildMemberReferenceExpr(
307 Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
308 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
309 /*Scope=*/nullptr);
310 if (Result.isInvalid())
311 return ExprError();
313 // We meant exactly what we asked for. No need for typo correction.
314 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
315 S.clearDelayedTypo(TE);
316 S.Diag(Loc, diag::err_no_member)
317 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
318 << Base->getSourceRange();
319 return ExprError();
322 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc();
323 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr);
326 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
327 // on its address. This is to enable the support for coroutine-handle
328 // returning await_suspend that results in a guaranteed tail call to the target
329 // coroutine.
330 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
331 SourceLocation Loc) {
332 if (RetType->isReferenceType())
333 return nullptr;
334 Type const *T = RetType.getTypePtr();
335 if (!T->isClassType() && !T->isStructureType())
336 return nullptr;
338 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
339 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
340 // a private function in SemaExprCXX.cpp
342 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt);
343 if (AddressExpr.isInvalid())
344 return nullptr;
346 Expr *JustAddress = AddressExpr.get();
348 // FIXME: Without optimizations, the temporary result from `await_suspend()`
349 // may be put on the coroutine frame since the coroutine frame constructor
350 // will think the temporary variable will escape from the
351 // `coroutine_handle<>::address()` call. This is problematic since the
352 // coroutine should be considered to be suspended after it enters
353 // `await_suspend` so it shouldn't access/update the coroutine frame after
354 // that.
356 // See https://github.com/llvm/llvm-project/issues/65054 for the report.
358 // The long term solution may wrap the whole logic about `await-suspend`
359 // into a standalone function. This is similar to the proposed solution
360 // in tryMarkAwaitSuspendNoInline. See the comments there for details.
362 // The short term solution here is to mark `coroutine_handle<>::address()`
363 // function as always-inline so that the coroutine frame constructor won't
364 // think the temporary result is escaped incorrectly.
365 if (auto *FD = cast<CallExpr>(JustAddress)->getDirectCallee())
366 if (!FD->hasAttr<AlwaysInlineAttr>() && !FD->hasAttr<NoInlineAttr>())
367 FD->addAttr(AlwaysInlineAttr::CreateImplicit(S.getASTContext(),
368 FD->getLocation()));
370 // Check that the type of AddressExpr is void*
371 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
372 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
373 diag::warn_coroutine_handle_address_invalid_return_type)
374 << JustAddress->getType();
376 // Clean up temporary objects so that they don't live across suspension points
377 // unnecessarily. We choose to clean up before the call to
378 // __builtin_coro_resume so that the cleanup code are not inserted in-between
379 // the resume call and return instruction, which would interfere with the
380 // musttail call contract.
381 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
382 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
383 JustAddress);
386 /// The await_suspend call performed by co_await is essentially asynchronous
387 /// to the execution of the coroutine. Inlining it normally into an unsplit
388 /// coroutine can cause miscompilation because the coroutine CFG misrepresents
389 /// the true control flow of the program: things that happen in the
390 /// await_suspend are not guaranteed to happen prior to the resumption of the
391 /// coroutine, and things that happen after the resumption of the coroutine
392 /// (including its exit and the potential deallocation of the coroutine frame)
393 /// are not guaranteed to happen only after the end of await_suspend.
395 /// See https://github.com/llvm/llvm-project/issues/56301 and
396 /// https://reviews.llvm.org/D157070 for the example and the full discussion.
398 /// The short-term solution to this problem is to mark the call as uninlinable.
399 /// But we don't want to do this if the call is known to be trivial, which is
400 /// very common.
402 /// The long-term solution may introduce patterns like:
404 /// call @llvm.coro.await_suspend(ptr %awaiter, ptr %handle,
405 /// ptr @awaitSuspendFn)
407 /// Then it is much easier to perform the safety analysis in the middle end.
408 /// If it is safe to inline the call to awaitSuspend, we can replace it in the
409 /// CoroEarly pass. Otherwise we could replace it in the CoroSplit pass.
410 static void tryMarkAwaitSuspendNoInline(Sema &S, OpaqueValueExpr *Awaiter,
411 CallExpr *AwaitSuspend) {
412 // The method here to extract the awaiter decl is not precise.
413 // This is intentional. Since it is hard to perform the analysis in the
414 // frontend due to the complexity of C++'s type systems.
415 // And we prefer to perform such analysis in the middle end since it is
416 // easier to implement and more powerful.
417 CXXRecordDecl *AwaiterDecl =
418 Awaiter->getType().getNonReferenceType()->getAsCXXRecordDecl();
420 if (AwaiterDecl && AwaiterDecl->field_empty())
421 return;
423 FunctionDecl *FD = AwaitSuspend->getDirectCallee();
425 assert(FD);
427 // If the `await_suspend()` function is marked as `always_inline` explicitly,
428 // we should give the user the right to control the codegen.
429 if (FD->hasAttr<NoInlineAttr>() || FD->hasAttr<AlwaysInlineAttr>())
430 return;
432 // This is problematic if the user calls the await_suspend standalone. But on
433 // the on hand, it is not incorrect semantically since inlining is not part
434 // of the standard. On the other hand, it is relatively rare to call
435 // the await_suspend function standalone.
437 // And given we've already had the long-term plan, the current workaround
438 // looks relatively tolerant.
439 FD->addAttr(
440 NoInlineAttr::CreateImplicit(S.getASTContext(), FD->getLocation()));
443 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
444 /// expression.
445 /// The generated AST tries to clean up temporary objects as early as
446 /// possible so that they don't live across suspension points if possible.
447 /// Having temporary objects living across suspension points unnecessarily can
448 /// lead to large frame size, and also lead to memory corruptions if the
449 /// coroutine frame is destroyed after coming back from suspension. This is done
450 /// by wrapping both the await_ready call and the await_suspend call with
451 /// ExprWithCleanups. In the end of this function, we also need to explicitly
452 /// set cleanup state so that the CoawaitExpr is also wrapped with an
453 /// ExprWithCleanups to clean up the awaiter associated with the co_await
454 /// expression.
455 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
456 SourceLocation Loc, Expr *E) {
457 OpaqueValueExpr *Operand = new (S.Context)
458 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
460 // Assume valid until we see otherwise.
461 // Further operations are responsible for setting IsInalid to true.
462 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
464 using ACT = ReadySuspendResumeResult::AwaitCallType;
466 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
467 MultiExprArg Arg) -> Expr * {
468 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
469 if (Result.isInvalid()) {
470 Calls.IsInvalid = true;
471 return nullptr;
473 Calls.Results[CallType] = Result.get();
474 return Result.get();
477 CallExpr *AwaitReady = cast_or_null<CallExpr>(
478 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt));
479 if (!AwaitReady)
480 return Calls;
481 if (!AwaitReady->getType()->isDependentType()) {
482 // [expr.await]p3 [...]
483 // — await-ready is the expression e.await_ready(), contextually converted
484 // to bool.
485 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
486 if (Conv.isInvalid()) {
487 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
488 diag::note_await_ready_no_bool_conversion);
489 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
490 << AwaitReady->getDirectCallee() << E->getSourceRange();
491 Calls.IsInvalid = true;
492 } else
493 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
496 ExprResult CoroHandleRes =
497 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
498 if (CoroHandleRes.isInvalid()) {
499 Calls.IsInvalid = true;
500 return Calls;
502 Expr *CoroHandle = CoroHandleRes.get();
503 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
504 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
505 if (!AwaitSuspend)
506 return Calls;
507 if (!AwaitSuspend->getType()->isDependentType()) {
508 // [expr.await]p3 [...]
509 // - await-suspend is the expression e.await_suspend(h), which shall be
510 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
511 // type Z.
512 QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
514 // We need to mark await_suspend as noinline temporarily. See the comment
515 // of tryMarkAwaitSuspendNoInline for details.
516 tryMarkAwaitSuspendNoInline(S, Operand, AwaitSuspend);
518 // Support for coroutine_handle returning await_suspend.
519 if (Expr *TailCallSuspend =
520 maybeTailCall(S, RetType, AwaitSuspend, Loc))
521 // Note that we don't wrap the expression with ExprWithCleanups here
522 // because that might interfere with tailcall contract (e.g. inserting
523 // clean up instructions in-between tailcall and return). Instead
524 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
525 // call.
526 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
527 else {
528 // non-class prvalues always have cv-unqualified types
529 if (RetType->isReferenceType() ||
530 (!RetType->isBooleanType() && !RetType->isVoidType())) {
531 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
532 diag::err_await_suspend_invalid_return_type)
533 << RetType;
534 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
535 << AwaitSuspend->getDirectCallee();
536 Calls.IsInvalid = true;
537 } else
538 Calls.Results[ACT::ACT_Suspend] =
539 S.MaybeCreateExprWithCleanups(AwaitSuspend);
543 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt);
545 // Make sure the awaiter object gets a chance to be cleaned up.
546 S.Cleanup.setExprNeedsCleanups(true);
548 return Calls;
551 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
552 SourceLocation Loc, StringRef Name,
553 MultiExprArg Args) {
555 // Form a reference to the promise.
556 ExprResult PromiseRef = S.BuildDeclRefExpr(
557 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
558 if (PromiseRef.isInvalid())
559 return ExprError();
561 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
564 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
565 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
566 auto *FD = cast<FunctionDecl>(CurContext);
567 bool IsThisDependentType = [&] {
568 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD))
569 return MD->isImplicitObjectMemberFunction() &&
570 MD->getThisType()->isDependentType();
571 return false;
572 }();
574 QualType T = FD->getType()->isDependentType() || IsThisDependentType
575 ? Context.DependentTy
576 : lookupPromiseType(*this, FD, Loc);
577 if (T.isNull())
578 return nullptr;
580 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
581 &PP.getIdentifierTable().get("__promise"), T,
582 Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
583 VD->setImplicit();
584 CheckVariableDeclarationType(VD);
585 if (VD->isInvalidDecl())
586 return nullptr;
588 auto *ScopeInfo = getCurFunction();
590 // Build a list of arguments, based on the coroutine function's arguments,
591 // that if present will be passed to the promise type's constructor.
592 llvm::SmallVector<Expr *, 4> CtorArgExprs;
594 // Add implicit object parameter.
595 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
596 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
597 ExprResult ThisExpr = ActOnCXXThis(Loc);
598 if (ThisExpr.isInvalid())
599 return nullptr;
600 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
601 if (ThisExpr.isInvalid())
602 return nullptr;
603 CtorArgExprs.push_back(ThisExpr.get());
607 // Add the coroutine function's parameters.
608 auto &Moves = ScopeInfo->CoroutineParameterMoves;
609 for (auto *PD : FD->parameters()) {
610 if (PD->getType()->isDependentType())
611 continue;
613 auto RefExpr = ExprEmpty();
614 auto Move = Moves.find(PD);
615 assert(Move != Moves.end() &&
616 "Coroutine function parameter not inserted into move map");
617 // If a reference to the function parameter exists in the coroutine
618 // frame, use that reference.
619 auto *MoveDecl =
620 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
621 RefExpr =
622 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
623 ExprValueKind::VK_LValue, FD->getLocation());
624 if (RefExpr.isInvalid())
625 return nullptr;
626 CtorArgExprs.push_back(RefExpr.get());
629 // If we have a non-zero number of constructor arguments, try to use them.
630 // Otherwise, fall back to the promise type's default constructor.
631 if (!CtorArgExprs.empty()) {
632 // Create an initialization sequence for the promise type using the
633 // constructor arguments, wrapped in a parenthesized list expression.
634 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
635 CtorArgExprs, FD->getLocation());
636 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
637 InitializationKind Kind = InitializationKind::CreateForInit(
638 VD->getLocation(), /*DirectInit=*/true, PLE);
639 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
640 /*TopLevelOfInitList=*/false,
641 /*TreatUnavailableAsInvalid=*/false);
643 // [dcl.fct.def.coroutine]5.7
644 // promise-constructor-arguments is determined as follows: overload
645 // resolution is performed on a promise constructor call created by
646 // assembling an argument list q_1 ... q_n . If a viable constructor is
647 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
648 // , ..., q_n ), otherwise promise-constructor-arguments is empty.
649 if (InitSeq) {
650 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
651 if (Result.isInvalid()) {
652 VD->setInvalidDecl();
653 } else if (Result.get()) {
654 VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
655 VD->setInitStyle(VarDecl::CallInit);
656 CheckCompleteVariableDeclaration(VD);
658 } else
659 ActOnUninitializedDecl(VD);
660 } else
661 ActOnUninitializedDecl(VD);
663 FD->addDecl(VD);
664 return VD;
667 /// Check that this is a context in which a coroutine suspension can appear.
668 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
669 StringRef Keyword,
670 bool IsImplicit = false) {
671 if (!isValidCoroutineContext(S, Loc, Keyword))
672 return nullptr;
674 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
676 auto *ScopeInfo = S.getCurFunction();
677 assert(ScopeInfo && "missing function scope for function");
679 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
680 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
682 if (ScopeInfo->CoroutinePromise)
683 return ScopeInfo;
685 if (!S.buildCoroutineParameterMoves(Loc))
686 return nullptr;
688 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
689 if (!ScopeInfo->CoroutinePromise)
690 return nullptr;
692 return ScopeInfo;
695 /// Recursively check \p E and all its children to see if any call target
696 /// (including constructor call) is declared noexcept. Also any value returned
697 /// from the call has a noexcept destructor.
698 static void checkNoThrow(Sema &S, const Stmt *E,
699 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
700 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
701 // In the case of dtor, the call to dtor is implicit and hence we should
702 // pass nullptr to canCalleeThrow.
703 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
704 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
705 // co_await promise.final_suspend() could end up calling
706 // __builtin_coro_resume for symmetric transfer if await_suspend()
707 // returns a handle. In that case, even __builtin_coro_resume is not
708 // declared as noexcept and may throw, it does not throw _into_ the
709 // coroutine that just suspended, but rather throws back out from
710 // whoever called coroutine_handle::resume(), hence we claim that
711 // logically it does not throw.
712 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
713 return;
715 if (ThrowingDecls.empty()) {
716 // [dcl.fct.def.coroutine]p15
717 // The expression co_await promise.final_suspend() shall not be
718 // potentially-throwing ([except.spec]).
720 // First time seeing an error, emit the error message.
721 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
722 diag::err_coroutine_promise_final_suspend_requires_nothrow);
724 ThrowingDecls.insert(D);
728 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
729 CXXConstructorDecl *Ctor = CE->getConstructor();
730 checkDeclNoexcept(Ctor);
731 // Check the corresponding destructor of the constructor.
732 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
733 } else if (auto *CE = dyn_cast<CallExpr>(E)) {
734 if (CE->isTypeDependent())
735 return;
737 checkDeclNoexcept(CE->getCalleeDecl());
738 QualType ReturnType = CE->getCallReturnType(S.getASTContext());
739 // Check the destructor of the call return type, if any.
740 if (ReturnType.isDestructedType() ==
741 QualType::DestructionKind::DK_cxx_destructor) {
742 const auto *T =
743 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
744 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
745 /*IsDtor=*/true);
747 } else
748 for (const auto *Child : E->children()) {
749 if (!Child)
750 continue;
751 checkNoThrow(S, Child, ThrowingDecls);
755 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
756 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
757 // We first collect all declarations that should not throw but not declared
758 // with noexcept. We then sort them based on the location before printing.
759 // This is to avoid emitting the same note multiple times on the same
760 // declaration, and also provide a deterministic order for the messages.
761 checkNoThrow(*this, FinalSuspend, ThrowingDecls);
762 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
763 ThrowingDecls.end()};
764 sort(SortedDecls, [](const Decl *A, const Decl *B) {
765 return A->getEndLoc() < B->getEndLoc();
767 for (const auto *D : SortedDecls) {
768 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
770 return ThrowingDecls.empty();
773 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
774 StringRef Keyword) {
775 if (!checkCoroutineContext(*this, KWLoc, Keyword))
776 return false;
777 auto *ScopeInfo = getCurFunction();
778 assert(ScopeInfo->CoroutinePromise);
780 // If we have existing coroutine statements then we have already built
781 // the initial and final suspend points.
782 if (!ScopeInfo->NeedsCoroutineSuspends)
783 return true;
785 ScopeInfo->setNeedsCoroutineSuspends(false);
787 auto *Fn = cast<FunctionDecl>(CurContext);
788 SourceLocation Loc = Fn->getLocation();
789 // Build the initial suspend point
790 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
791 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise,
792 Loc, Name, std::nullopt);
793 if (Operand.isInvalid())
794 return StmtError();
795 ExprResult Suspend =
796 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
797 if (Suspend.isInvalid())
798 return StmtError();
799 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
800 /*IsImplicit*/ true);
801 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
802 if (Suspend.isInvalid()) {
803 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
804 << ((Name == "initial_suspend") ? 0 : 1);
805 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
806 return StmtError();
808 return cast<Stmt>(Suspend.get());
811 StmtResult InitSuspend = buildSuspends("initial_suspend");
812 if (InitSuspend.isInvalid())
813 return true;
815 StmtResult FinalSuspend = buildSuspends("final_suspend");
816 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
817 return true;
819 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
821 return true;
824 // Recursively walks up the scope hierarchy until either a 'catch' or a function
825 // scope is found, whichever comes first.
826 static bool isWithinCatchScope(Scope *S) {
827 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
828 // lambdas that use 'co_await' are allowed. The loop below ends when a
829 // function scope is found in order to ensure the following behavior:
831 // void foo() { // <- function scope
832 // try { //
833 // co_await x; // <- 'co_await' is OK within a function scope
834 // } catch { // <- catch scope
835 // co_await x; // <- 'co_await' is not OK within a catch scope
836 // []() { // <- function scope
837 // co_await x; // <- 'co_await' is OK within a function scope
838 // }();
839 // }
840 // }
841 while (S && !S->isFunctionScope()) {
842 if (S->isCatchScope())
843 return true;
844 S = S->getParent();
846 return false;
849 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
850 // a *potentially evaluated* expression within the compound-statement of a
851 // function-body *outside of a handler* [...] A context within a function
852 // where an await-expression can appear is called a suspension context of the
853 // function."
854 static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
855 StringRef Keyword) {
856 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
857 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
858 // \c sizeof.
859 if (S.isUnevaluatedContext()) {
860 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
861 return false;
864 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
865 if (isWithinCatchScope(S.getCurScope())) {
866 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
867 return false;
870 return true;
873 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
874 if (!checkSuspensionContext(*this, Loc, "co_await"))
875 return ExprError();
877 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
878 CorrectDelayedTyposInExpr(E);
879 return ExprError();
882 if (E->hasPlaceholderType()) {
883 ExprResult R = CheckPlaceholderExpr(E);
884 if (R.isInvalid()) return ExprError();
885 E = R.get();
887 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
888 if (Lookup.isInvalid())
889 return ExprError();
890 return BuildUnresolvedCoawaitExpr(Loc, E,
891 cast<UnresolvedLookupExpr>(Lookup.get()));
894 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
895 DeclarationName OpName =
896 Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
897 LookupResult Operators(*this, OpName, SourceLocation(),
898 Sema::LookupOperatorName);
899 LookupName(Operators, S);
901 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
902 const auto &Functions = Operators.asUnresolvedSet();
903 bool IsOverloaded =
904 Functions.size() > 1 ||
905 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
906 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
907 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
908 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
909 Functions.begin(), Functions.end());
910 assert(CoawaitOp);
911 return CoawaitOp;
914 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
915 // DependentCoawaitExpr if needed.
916 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
917 UnresolvedLookupExpr *Lookup) {
918 auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
919 if (!FSI)
920 return ExprError();
922 if (Operand->hasPlaceholderType()) {
923 ExprResult R = CheckPlaceholderExpr(Operand);
924 if (R.isInvalid())
925 return ExprError();
926 Operand = R.get();
929 auto *Promise = FSI->CoroutinePromise;
930 if (Promise->getType()->isDependentType()) {
931 Expr *Res = new (Context)
932 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
933 return Res;
936 auto *RD = Promise->getType()->getAsCXXRecordDecl();
937 auto *Transformed = Operand;
938 if (lookupMember(*this, "await_transform", RD, Loc)) {
939 ExprResult R =
940 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
941 if (R.isInvalid()) {
942 Diag(Loc,
943 diag::note_coroutine_promise_implicit_await_transform_required_here)
944 << Operand->getSourceRange();
945 return ExprError();
947 Transformed = R.get();
949 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
950 if (Awaiter.isInvalid())
951 return ExprError();
953 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
956 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
957 Expr *Awaiter, bool IsImplicit) {
958 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
959 if (!Coroutine)
960 return ExprError();
962 if (Awaiter->hasPlaceholderType()) {
963 ExprResult R = CheckPlaceholderExpr(Awaiter);
964 if (R.isInvalid()) return ExprError();
965 Awaiter = R.get();
968 if (Awaiter->getType()->isDependentType()) {
969 Expr *Res = new (Context)
970 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
971 return Res;
974 // If the expression is a temporary, materialize it as an lvalue so that we
975 // can use it multiple times.
976 if (Awaiter->isPRValue())
977 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
979 // The location of the `co_await` token cannot be used when constructing
980 // the member call expressions since it's before the location of `Expr`, which
981 // is used as the start of the member call expression.
982 SourceLocation CallLoc = Awaiter->getExprLoc();
984 // Build the await_ready, await_suspend, await_resume calls.
985 ReadySuspendResumeResult RSS =
986 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
987 if (RSS.IsInvalid)
988 return ExprError();
990 Expr *Res = new (Context)
991 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
992 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
994 return Res;
997 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
998 if (!checkSuspensionContext(*this, Loc, "co_yield"))
999 return ExprError();
1001 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
1002 CorrectDelayedTyposInExpr(E);
1003 return ExprError();
1006 // Build yield_value call.
1007 ExprResult Awaitable = buildPromiseCall(
1008 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
1009 if (Awaitable.isInvalid())
1010 return ExprError();
1012 // Build 'operator co_await' call.
1013 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
1014 if (Awaitable.isInvalid())
1015 return ExprError();
1017 return BuildCoyieldExpr(Loc, Awaitable.get());
1019 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
1020 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
1021 if (!Coroutine)
1022 return ExprError();
1024 if (E->hasPlaceholderType()) {
1025 ExprResult R = CheckPlaceholderExpr(E);
1026 if (R.isInvalid()) return ExprError();
1027 E = R.get();
1030 Expr *Operand = E;
1032 if (E->getType()->isDependentType()) {
1033 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
1034 return Res;
1037 // If the expression is a temporary, materialize it as an lvalue so that we
1038 // can use it multiple times.
1039 if (E->isPRValue())
1040 E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
1042 // Build the await_ready, await_suspend, await_resume calls.
1043 ReadySuspendResumeResult RSS = buildCoawaitCalls(
1044 *this, Coroutine->CoroutinePromise, Loc, E);
1045 if (RSS.IsInvalid)
1046 return ExprError();
1048 Expr *Res =
1049 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
1050 RSS.Results[2], RSS.OpaqueValue);
1052 return Res;
1055 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
1056 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
1057 CorrectDelayedTyposInExpr(E);
1058 return StmtError();
1060 return BuildCoreturnStmt(Loc, E);
1063 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
1064 bool IsImplicit) {
1065 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
1066 if (!FSI)
1067 return StmtError();
1069 if (E && E->hasPlaceholderType() &&
1070 !E->hasPlaceholderType(BuiltinType::Overload)) {
1071 ExprResult R = CheckPlaceholderExpr(E);
1072 if (R.isInvalid()) return StmtError();
1073 E = R.get();
1076 VarDecl *Promise = FSI->CoroutinePromise;
1077 ExprResult PC;
1078 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
1079 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
1080 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
1081 } else {
1082 E = MakeFullDiscardedValueExpr(E).get();
1083 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt);
1085 if (PC.isInvalid())
1086 return StmtError();
1088 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
1090 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1091 return Res;
1094 /// Look up the std::nothrow object.
1095 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1096 NamespaceDecl *Std = S.getStdNamespace();
1097 assert(Std && "Should already be diagnosed");
1099 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1100 Sema::LookupOrdinaryName);
1101 if (!S.LookupQualifiedName(Result, Std)) {
1102 // <coroutine> is not requred to include <new>, so we couldn't omit
1103 // the check here.
1104 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1105 return nullptr;
1108 auto *VD = Result.getAsSingle<VarDecl>();
1109 if (!VD) {
1110 Result.suppressDiagnostics();
1111 // We found something weird. Complain about the first thing we found.
1112 NamedDecl *Found = *Result.begin();
1113 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1114 return nullptr;
1117 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1118 if (DR.isInvalid())
1119 return nullptr;
1121 return DR.get();
1124 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1125 SourceLocation Loc) {
1126 EnumDecl *StdAlignValT = S.getStdAlignValT();
1127 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1128 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
1131 // Find an appropriate delete for the promise.
1132 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1133 FunctionDecl *&OperatorDelete) {
1134 DeclarationName DeleteName =
1135 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1137 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1138 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1140 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1142 // [dcl.fct.def.coroutine]p12
1143 // The deallocation function's name is looked up by searching for it in the
1144 // scope of the promise type. If nothing is found, a search is performed in
1145 // the global scope.
1146 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1147 /*Diagnose*/ true, /*WantSize*/ true,
1148 /*WantAligned*/ Overaligned))
1149 return false;
1151 // [dcl.fct.def.coroutine]p12
1152 // If both a usual deallocation function with only a pointer parameter and a
1153 // usual deallocation function with both a pointer parameter and a size
1154 // parameter are found, then the selected deallocation function shall be the
1155 // one with two parameters. Otherwise, the selected deallocation function
1156 // shall be the function with one parameter.
1157 if (!OperatorDelete) {
1158 // Look for a global declaration.
1159 // Coroutines can always provide their required size.
1160 const bool CanProvideSize = true;
1161 // Sema::FindUsualDeallocationFunction will try to find the one with two
1162 // parameters first. It will return the deallocation function with one
1163 // parameter if failed.
1164 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1165 Overaligned, DeleteName);
1167 if (!OperatorDelete)
1168 return false;
1171 S.MarkFunctionReferenced(Loc, OperatorDelete);
1172 return true;
1176 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1177 FunctionScopeInfo *Fn = getCurFunction();
1178 assert(Fn && Fn->isCoroutine() && "not a coroutine");
1179 if (!Body) {
1180 assert(FD->isInvalidDecl() &&
1181 "a null body is only allowed for invalid declarations");
1182 return;
1184 // We have a function that uses coroutine keywords, but we failed to build
1185 // the promise type.
1186 if (!Fn->CoroutinePromise)
1187 return FD->setInvalidDecl();
1189 if (isa<CoroutineBodyStmt>(Body)) {
1190 // Nothing todo. the body is already a transformed coroutine body statement.
1191 return;
1194 // The always_inline attribute doesn't reliably apply to a coroutine,
1195 // because the coroutine will be split into pieces and some pieces
1196 // might be called indirectly, as in a virtual call. Even the ramp
1197 // function cannot be inlined at -O0, due to pipeline ordering
1198 // problems (see https://llvm.org/PR53413). Tell the user about it.
1199 if (FD->hasAttr<AlwaysInlineAttr>())
1200 Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1202 // The design of coroutines means we cannot allow use of VLAs within one, so
1203 // diagnose if we've seen a VLA in the body of this function.
1204 if (Fn->FirstVLALoc.isValid())
1205 Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported);
1207 // [stmt.return.coroutine]p1:
1208 // A coroutine shall not enclose a return statement ([stmt.return]).
1209 if (Fn->FirstReturnLoc.isValid()) {
1210 assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1211 "first coroutine location not set");
1212 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1213 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1214 << Fn->getFirstCoroutineStmtKeyword();
1217 // Coroutines will get splitted into pieces. The GNU address of label
1218 // extension wouldn't be meaningful in coroutines.
1219 for (AddrLabelExpr *ALE : Fn->AddrLabels)
1220 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1222 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1223 if (Builder.isInvalid() || !Builder.buildStatements())
1224 return FD->setInvalidDecl();
1226 // Build body for the coroutine wrapper statement.
1227 Body = CoroutineBodyStmt::Create(Context, Builder);
1230 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
1231 if (auto *CS = dyn_cast<CompoundStmt>(Body))
1232 return CS;
1234 // The body of the coroutine may be a try statement if it is in
1235 // 'function-try-block' syntax. Here we wrap it into a compound
1236 // statement for consistency.
1237 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type");
1238 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(),
1239 SourceLocation(), SourceLocation());
1242 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1243 sema::FunctionScopeInfo &Fn,
1244 Stmt *Body)
1245 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1246 IsPromiseDependentType(
1247 !Fn.CoroutinePromise ||
1248 Fn.CoroutinePromise->getType()->isDependentType()) {
1249 this->Body = buildCoroutineBody(Body, S.getASTContext());
1251 for (auto KV : Fn.CoroutineParameterMoves)
1252 this->ParamMovesVector.push_back(KV.second);
1253 this->ParamMoves = this->ParamMovesVector;
1255 if (!IsPromiseDependentType) {
1256 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1257 assert(PromiseRecordDecl && "Type should have already been checked");
1259 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1262 bool CoroutineStmtBuilder::buildStatements() {
1263 assert(this->IsValid && "coroutine already invalid");
1264 this->IsValid = makeReturnObject();
1265 if (this->IsValid && !IsPromiseDependentType)
1266 buildDependentStatements();
1267 return this->IsValid;
1270 bool CoroutineStmtBuilder::buildDependentStatements() {
1271 assert(this->IsValid && "coroutine already invalid");
1272 assert(!this->IsPromiseDependentType &&
1273 "coroutine cannot have a dependent promise type");
1274 this->IsValid = makeOnException() && makeOnFallthrough() &&
1275 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1276 makeNewAndDeleteExpr();
1277 return this->IsValid;
1280 bool CoroutineStmtBuilder::makePromiseStmt() {
1281 // Form a declaration statement for the promise declaration, so that AST
1282 // visitors can more easily find it.
1283 StmtResult PromiseStmt =
1284 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1285 if (PromiseStmt.isInvalid())
1286 return false;
1288 this->Promise = PromiseStmt.get();
1289 return true;
1292 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1293 if (Fn.hasInvalidCoroutineSuspends())
1294 return false;
1295 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1296 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1297 return true;
1300 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1301 CXXRecordDecl *PromiseRecordDecl,
1302 FunctionScopeInfo &Fn) {
1303 auto Loc = E->getExprLoc();
1304 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1305 auto *Decl = DeclRef->getDecl();
1306 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1307 if (Method->isStatic())
1308 return true;
1309 else
1310 Loc = Decl->getLocation();
1314 S.Diag(
1315 Loc,
1316 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1317 << PromiseRecordDecl;
1318 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1319 << Fn.getFirstCoroutineStmtKeyword();
1320 return false;
1323 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1324 assert(!IsPromiseDependentType &&
1325 "cannot make statement while the promise type is dependent");
1327 // [dcl.fct.def.coroutine]p10
1328 // If a search for the name get_return_object_on_allocation_failure in
1329 // the scope of the promise type ([class.member.lookup]) finds any
1330 // declarations, then the result of a call to an allocation function used to
1331 // obtain storage for the coroutine state is assumed to return nullptr if it
1332 // fails to obtain storage, ... If the allocation function returns nullptr,
1333 // ... and the return value is obtained by a call to
1334 // T::get_return_object_on_allocation_failure(), where T is the
1335 // promise type.
1336 DeclarationName DN =
1337 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1338 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1339 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1340 return true;
1342 CXXScopeSpec SS;
1343 ExprResult DeclNameExpr =
1344 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1345 if (DeclNameExpr.isInvalid())
1346 return false;
1348 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1349 return false;
1351 ExprResult ReturnObjectOnAllocationFailure =
1352 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1353 if (ReturnObjectOnAllocationFailure.isInvalid())
1354 return false;
1356 StmtResult ReturnStmt =
1357 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1358 if (ReturnStmt.isInvalid()) {
1359 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1360 << DN;
1361 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1362 << Fn.getFirstCoroutineStmtKeyword();
1363 return false;
1366 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1367 return true;
1370 // Collect placement arguments for allocation function of coroutine FD.
1371 // Return true if we collect placement arguments succesfully. Return false,
1372 // otherwise.
1373 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1374 SmallVectorImpl<Expr *> &PlacementArgs) {
1375 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1376 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
1377 ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1378 if (ThisExpr.isInvalid())
1379 return false;
1380 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1381 if (ThisExpr.isInvalid())
1382 return false;
1383 PlacementArgs.push_back(ThisExpr.get());
1387 for (auto *PD : FD.parameters()) {
1388 if (PD->getType()->isDependentType())
1389 continue;
1391 // Build a reference to the parameter.
1392 auto PDLoc = PD->getLocation();
1393 ExprResult PDRefExpr =
1394 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1395 ExprValueKind::VK_LValue, PDLoc);
1396 if (PDRefExpr.isInvalid())
1397 return false;
1399 PlacementArgs.push_back(PDRefExpr.get());
1402 return true;
1405 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1406 // Form and check allocation and deallocation calls.
1407 assert(!IsPromiseDependentType &&
1408 "cannot make statement while the promise type is dependent");
1409 QualType PromiseType = Fn.CoroutinePromise->getType();
1411 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1412 return false;
1414 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1416 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1417 // parameter list composed of the requested size of the coroutine state being
1418 // allocated, followed by the coroutine function's arguments. If a matching
1419 // allocation function exists, use it. Otherwise, use an allocation function
1420 // that just takes the requested size.
1422 // [dcl.fct.def.coroutine]p9
1423 // An implementation may need to allocate additional storage for a
1424 // coroutine.
1425 // This storage is known as the coroutine state and is obtained by calling a
1426 // non-array allocation function ([basic.stc.dynamic.allocation]). The
1427 // allocation function's name is looked up by searching for it in the scope of
1428 // the promise type.
1429 // - If any declarations are found, overload resolution is performed on a
1430 // function call created by assembling an argument list. The first argument is
1431 // the amount of space requested, and has type std::size_t. The
1432 // lvalues p1 ... pn are the succeeding arguments.
1434 // ...where "p1 ... pn" are defined earlier as:
1436 // [dcl.fct.def.coroutine]p3
1437 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1438 // Pn>`
1439 // , where R is the return type of the function, and `P1, ..., Pn` are the
1440 // sequence of types of the non-object function parameters, preceded by the
1441 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1442 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1443 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1444 // the i-th non-object function parameter for a non-static member function,
1445 // and p_i denotes the i-th function parameter otherwise. For a non-static
1446 // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1447 // lvalue that denotes the parameter copy corresponding to p_i.
1449 FunctionDecl *OperatorNew = nullptr;
1450 SmallVector<Expr *, 1> PlacementArgs;
1452 const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1453 DeclarationName NewName =
1454 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1455 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1457 if (PromiseType->isRecordType())
1458 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1460 return !R.empty() && !R.isAmbiguous();
1461 }();
1463 // Helper function to indicate whether the last lookup found the aligned
1464 // allocation function.
1465 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1466 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1467 Sema::AFS_Both,
1468 bool WithoutPlacementArgs = false,
1469 bool ForceNonAligned = false) {
1470 // [dcl.fct.def.coroutine]p9
1471 // The allocation function's name is looked up by searching for it in the
1472 // scope of the promise type.
1473 // - If any declarations are found, ...
1474 // - If no declarations are found in the scope of the promise type, a search
1475 // is performed in the global scope.
1476 if (NewScope == Sema::AFS_Both)
1477 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1479 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
1480 FunctionDecl *UnusedResult = nullptr;
1481 S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
1482 /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1483 /*isArray*/ false, PassAlignment,
1484 WithoutPlacementArgs ? MultiExprArg{}
1485 : PlacementArgs,
1486 OperatorNew, UnusedResult, /*Diagnose*/ false);
1489 // We don't expect to call to global operator new with (size, p0, …, pn).
1490 // So if we choose to lookup the allocation function in global scope, we
1491 // shouldn't lookup placement arguments.
1492 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1493 return false;
1495 LookupAllocationFunction();
1497 if (PromiseContainsNew && !PlacementArgs.empty()) {
1498 // [dcl.fct.def.coroutine]p9
1499 // If no viable function is found ([over.match.viable]), overload
1500 // resolution
1501 // is performed again on a function call created by passing just the amount
1502 // of space required as an argument of type std::size_t.
1504 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1505 // Otherwise, overload resolution is performed again on a function call
1506 // created
1507 // by passing the amount of space requested as an argument of type
1508 // std::size_t as the first argument, and the requested alignment as
1509 // an argument of type std:align_val_t as the second argument.
1510 if (!OperatorNew ||
1511 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1512 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1513 /*WithoutPlacementArgs*/ true);
1516 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1517 // Otherwise, overload resolution is performed again on a function call
1518 // created
1519 // by passing the amount of space requested as an argument of type
1520 // std::size_t as the first argument, and the lvalues p1 ... pn as the
1521 // succeeding arguments. Otherwise, overload resolution is performed again
1522 // on a function call created by passing just the amount of space required as
1523 // an argument of type std::size_t.
1525 // So within the proposed change in P2014RO, the priority order of aligned
1526 // allocation functions wiht promise_type is:
1528 // void* operator new( std::size_t, std::align_val_t, placement_args... );
1529 // void* operator new( std::size_t, std::align_val_t);
1530 // void* operator new( std::size_t, placement_args... );
1531 // void* operator new( std::size_t);
1533 // Helper variable to emit warnings.
1534 bool FoundNonAlignedInPromise = false;
1535 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
1536 if (!OperatorNew || !PassAlignment) {
1537 FoundNonAlignedInPromise = OperatorNew;
1539 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1540 /*WithoutPlacementArgs*/ false,
1541 /*ForceNonAligned*/ true);
1543 if (!OperatorNew && !PlacementArgs.empty())
1544 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1545 /*WithoutPlacementArgs*/ true,
1546 /*ForceNonAligned*/ true);
1549 bool IsGlobalOverload =
1550 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1551 // If we didn't find a class-local new declaration and non-throwing new
1552 // was is required then we need to lookup the non-throwing global operator
1553 // instead.
1554 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1555 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1556 if (!StdNoThrow)
1557 return false;
1558 PlacementArgs = {StdNoThrow};
1559 OperatorNew = nullptr;
1560 LookupAllocationFunction(Sema::AFS_Global);
1563 // If we found a non-aligned allocation function in the promise_type,
1564 // it indicates the user forgot to update the allocation function. Let's emit
1565 // a warning here.
1566 if (FoundNonAlignedInPromise) {
1567 S.Diag(OperatorNew->getLocation(),
1568 diag::warn_non_aligned_allocation_function)
1569 << &FD;
1572 if (!OperatorNew) {
1573 if (PromiseContainsNew)
1574 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1575 else if (RequiresNoThrowAlloc)
1576 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1577 << &FD << S.getLangOpts().CoroAlignedAllocation;
1579 return false;
1582 if (RequiresNoThrowAlloc) {
1583 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1584 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1585 S.Diag(OperatorNew->getLocation(),
1586 diag::err_coroutine_promise_new_requires_nothrow)
1587 << OperatorNew;
1588 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1589 << OperatorNew;
1590 return false;
1594 FunctionDecl *OperatorDelete = nullptr;
1595 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1596 // FIXME: We should add an error here. According to:
1597 // [dcl.fct.def.coroutine]p12
1598 // If no usual deallocation function is found, the program is ill-formed.
1599 return false;
1602 Expr *FramePtr =
1603 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1605 Expr *FrameSize =
1606 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1608 Expr *FrameAlignment = nullptr;
1610 if (S.getLangOpts().CoroAlignedAllocation) {
1611 FrameAlignment =
1612 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1614 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1615 if (!AlignValTy)
1616 return false;
1618 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
1619 FrameAlignment, SourceRange(Loc, Loc),
1620 SourceRange(Loc, Loc))
1621 .get();
1624 // Make new call.
1625 ExprResult NewRef =
1626 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1627 if (NewRef.isInvalid())
1628 return false;
1630 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1631 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
1632 NewArgs.push_back(FrameAlignment);
1634 if (OperatorNew->getNumParams() > NewArgs.size())
1635 llvm::append_range(NewArgs, PlacementArgs);
1637 ExprResult NewExpr =
1638 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1639 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1640 if (NewExpr.isInvalid())
1641 return false;
1643 // Make delete call.
1645 QualType OpDeleteQualType = OperatorDelete->getType();
1647 ExprResult DeleteRef =
1648 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1649 if (DeleteRef.isInvalid())
1650 return false;
1652 Expr *CoroFree =
1653 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1655 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1657 // [dcl.fct.def.coroutine]p12
1658 // The selected deallocation function shall be called with the address of
1659 // the block of storage to be reclaimed as its first argument. If a
1660 // deallocation function with a parameter of type std::size_t is
1661 // used, the size of the block is passed as the corresponding argument.
1662 const auto *OpDeleteType =
1663 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1664 if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
1665 S.getASTContext().hasSameUnqualifiedType(
1666 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
1667 DeleteArgs.push_back(FrameSize);
1669 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1670 // If deallocation function lookup finds a usual deallocation function with
1671 // a pointer parameter, size parameter and alignment parameter then this
1672 // will be the selected deallocation function, otherwise if lookup finds a
1673 // usual deallocation function with both a pointer parameter and a size
1674 // parameter, then this will be the selected deallocation function.
1675 // Otherwise, if lookup finds a usual deallocation function with only a
1676 // pointer parameter, then this will be the selected deallocation
1677 // function.
1679 // So we are not forced to pass alignment to the deallocation function.
1680 if (S.getLangOpts().CoroAlignedAllocation &&
1681 OpDeleteType->getNumParams() > DeleteArgs.size() &&
1682 S.getASTContext().hasSameUnqualifiedType(
1683 OpDeleteType->getParamType(DeleteArgs.size()),
1684 FrameAlignment->getType()))
1685 DeleteArgs.push_back(FrameAlignment);
1687 ExprResult DeleteExpr =
1688 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1689 DeleteExpr =
1690 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1691 if (DeleteExpr.isInvalid())
1692 return false;
1694 this->Allocate = NewExpr.get();
1695 this->Deallocate = DeleteExpr.get();
1697 return true;
1700 bool CoroutineStmtBuilder::makeOnFallthrough() {
1701 assert(!IsPromiseDependentType &&
1702 "cannot make statement while the promise type is dependent");
1704 // [dcl.fct.def.coroutine]/p6
1705 // If searches for the names return_void and return_value in the scope of
1706 // the promise type each find any declarations, the program is ill-formed.
1707 // [Note 1: If return_void is found, flowing off the end of a coroutine is
1708 // equivalent to a co_return with no operand. Otherwise, flowing off the end
1709 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1710 // end note]
1711 bool HasRVoid, HasRValue;
1712 LookupResult LRVoid =
1713 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1714 LookupResult LRValue =
1715 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1717 StmtResult Fallthrough;
1718 if (HasRVoid && HasRValue) {
1719 // FIXME Improve this diagnostic
1720 S.Diag(FD.getLocation(),
1721 diag::err_coroutine_promise_incompatible_return_functions)
1722 << PromiseRecordDecl;
1723 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1724 diag::note_member_first_declared_here)
1725 << LRVoid.getLookupName();
1726 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1727 diag::note_member_first_declared_here)
1728 << LRValue.getLookupName();
1729 return false;
1730 } else if (!HasRVoid && !HasRValue) {
1731 // We need to set 'Fallthrough'. Otherwise the other analysis part might
1732 // think the coroutine has defined a return_value method. So it might emit
1733 // **false** positive warning. e.g.,
1735 // promise_without_return_func foo() {
1736 // co_await something();
1737 // }
1739 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1740 // co_return statements, which isn't correct.
1741 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1742 if (Fallthrough.isInvalid())
1743 return false;
1744 } else if (HasRVoid) {
1745 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1746 /*IsImplicit*/false);
1747 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1748 if (Fallthrough.isInvalid())
1749 return false;
1752 this->OnFallthrough = Fallthrough.get();
1753 return true;
1756 bool CoroutineStmtBuilder::makeOnException() {
1757 // Try to form 'p.unhandled_exception();'
1758 assert(!IsPromiseDependentType &&
1759 "cannot make statement while the promise type is dependent");
1761 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1763 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1764 auto DiagID =
1765 RequireUnhandledException
1766 ? diag::err_coroutine_promise_unhandled_exception_required
1767 : diag::
1768 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1769 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1770 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1771 << PromiseRecordDecl;
1772 return !RequireUnhandledException;
1775 // If exceptions are disabled, don't try to build OnException.
1776 if (!S.getLangOpts().CXXExceptions)
1777 return true;
1779 ExprResult UnhandledException = buildPromiseCall(
1780 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt);
1781 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1782 /*DiscardedValue*/ false);
1783 if (UnhandledException.isInvalid())
1784 return false;
1786 // Since the body of the coroutine will be wrapped in try-catch, it will
1787 // be incompatible with SEH __try if present in a function.
1788 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1789 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1790 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1791 << Fn.getFirstCoroutineStmtKeyword();
1792 return false;
1795 this->OnException = UnhandledException.get();
1796 return true;
1799 bool CoroutineStmtBuilder::makeReturnObject() {
1800 // [dcl.fct.def.coroutine]p7
1801 // The expression promise.get_return_object() is used to initialize the
1802 // returned reference or prvalue result object of a call to a coroutine.
1803 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1804 "get_return_object", std::nullopt);
1805 if (ReturnObject.isInvalid())
1806 return false;
1808 this->ReturnValue = ReturnObject.get();
1809 return true;
1812 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1813 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1814 auto *MethodDecl = MbrRef->getMethodDecl();
1815 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1816 << MethodDecl;
1818 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1819 << Fn.getFirstCoroutineStmtKeyword();
1822 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1823 assert(!IsPromiseDependentType &&
1824 "cannot make statement while the promise type is dependent");
1825 assert(this->ReturnValue && "ReturnValue must be already formed");
1827 QualType const GroType = this->ReturnValue->getType();
1828 assert(!GroType->isDependentType() &&
1829 "get_return_object type must no longer be dependent");
1831 QualType const FnRetType = FD.getReturnType();
1832 assert(!FnRetType->isDependentType() &&
1833 "get_return_object type must no longer be dependent");
1835 // The call to get_­return_­object is sequenced before the call to
1836 // initial_­suspend and is invoked at most once, but there are caveats
1837 // regarding on whether the prvalue result object may be initialized
1838 // directly/eager or delayed, depending on the types involved.
1840 // More info at https://github.com/cplusplus/papers/issues/1414
1841 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType);
1843 if (FnRetType->isVoidType()) {
1844 ExprResult Res =
1845 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1846 if (Res.isInvalid())
1847 return false;
1849 if (!GroMatchesRetType)
1850 this->ResultDecl = Res.get();
1851 return true;
1854 if (GroType->isVoidType()) {
1855 // Trigger a nice error message.
1856 InitializedEntity Entity =
1857 InitializedEntity::InitializeResult(Loc, FnRetType);
1858 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1859 noteMemberDeclaredHere(S, ReturnValue, Fn);
1860 return false;
1863 StmtResult ReturnStmt;
1864 clang::VarDecl *GroDecl = nullptr;
1865 if (GroMatchesRetType) {
1866 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1867 } else {
1868 GroDecl = VarDecl::Create(
1869 S.Context, &FD, FD.getLocation(), FD.getLocation(),
1870 &S.PP.getIdentifierTable().get("__coro_gro"), GroType,
1871 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
1872 GroDecl->setImplicit();
1874 S.CheckVariableDeclarationType(GroDecl);
1875 if (GroDecl->isInvalidDecl())
1876 return false;
1878 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
1879 ExprResult Res =
1880 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1881 if (Res.isInvalid())
1882 return false;
1884 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
1885 if (Res.isInvalid())
1886 return false;
1888 S.AddInitializerToDecl(GroDecl, Res.get(),
1889 /*DirectInit=*/false);
1891 S.FinalizeDeclaration(GroDecl);
1893 // Form a declaration statement for the return declaration, so that AST
1894 // visitors can more easily find it.
1895 StmtResult GroDeclStmt =
1896 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
1897 if (GroDeclStmt.isInvalid())
1898 return false;
1900 this->ResultDecl = GroDeclStmt.get();
1902 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1903 if (declRef.isInvalid())
1904 return false;
1906 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
1909 if (ReturnStmt.isInvalid()) {
1910 noteMemberDeclaredHere(S, ReturnValue, Fn);
1911 return false;
1914 if (!GroMatchesRetType &&
1915 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1916 GroDecl->setNRVOVariable(true);
1918 this->ReturnStmt = ReturnStmt.get();
1919 return true;
1922 // Create a static_cast\<T&&>(expr).
1923 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1924 if (T.isNull())
1925 T = E->getType();
1926 QualType TargetType = S.BuildReferenceType(
1927 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1928 SourceLocation ExprLoc = E->getBeginLoc();
1929 TypeSourceInfo *TargetLoc =
1930 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1932 return S
1933 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1934 SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1935 .get();
1938 /// Build a variable declaration for move parameter.
1939 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1940 IdentifierInfo *II) {
1941 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1942 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1943 TInfo, SC_None);
1944 Decl->setImplicit();
1945 return Decl;
1948 // Build statements that move coroutine function parameters to the coroutine
1949 // frame, and store them on the function scope info.
1950 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1951 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1952 auto *FD = cast<FunctionDecl>(CurContext);
1954 auto *ScopeInfo = getCurFunction();
1955 if (!ScopeInfo->CoroutineParameterMoves.empty())
1956 return false;
1958 // [dcl.fct.def.coroutine]p13
1959 // When a coroutine is invoked, after initializing its parameters
1960 // ([expr.call]), a copy is created for each coroutine parameter. For a
1961 // parameter of type cv T, the copy is a variable of type cv T with
1962 // automatic storage duration that is direct-initialized from an xvalue of
1963 // type T referring to the parameter.
1964 for (auto *PD : FD->parameters()) {
1965 if (PD->getType()->isDependentType())
1966 continue;
1968 // Preserve the referenced state for unused parameter diagnostics.
1969 bool DeclReferenced = PD->isReferenced();
1971 ExprResult PDRefExpr =
1972 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1973 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1975 PD->setReferenced(DeclReferenced);
1977 if (PDRefExpr.isInvalid())
1978 return false;
1980 Expr *CExpr = nullptr;
1981 if (PD->getType()->getAsCXXRecordDecl() ||
1982 PD->getType()->isRValueReferenceType())
1983 CExpr = castForMoving(*this, PDRefExpr.get());
1984 else
1985 CExpr = PDRefExpr.get();
1986 // [dcl.fct.def.coroutine]p13
1987 // The initialization and destruction of each parameter copy occurs in the
1988 // context of the called coroutine.
1989 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1990 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1992 // Convert decl to a statement.
1993 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1994 if (Stmt.isInvalid())
1995 return false;
1997 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1999 return true;
2002 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
2003 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
2004 if (!Res)
2005 return StmtError();
2006 return Res;
2009 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
2010 SourceLocation FuncLoc) {
2011 if (StdCoroutineTraitsCache)
2012 return StdCoroutineTraitsCache;
2014 IdentifierInfo const &TraitIdent =
2015 PP.getIdentifierTable().get("coroutine_traits");
2017 NamespaceDecl *StdSpace = getStdNamespace();
2018 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
2019 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
2021 if (!Found) {
2022 // The goggles, we found nothing!
2023 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
2024 << "std::coroutine_traits";
2025 return nullptr;
2028 // coroutine_traits is required to be a class template.
2029 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
2030 if (!StdCoroutineTraitsCache) {
2031 Result.suppressDiagnostics();
2032 NamedDecl *Found = *Result.begin();
2033 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
2034 return nullptr;
2037 return StdCoroutineTraitsCache;