[DFAJumpThreading] Remove incoming StartBlock from all phis when unfolding select...
[llvm-project.git] / clang / lib / Sema / SemaExpr.cpp
blob4a4cb02b0e4a6d73173b4ef257c7bb5a9bfa3ddf
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for expressions.
11 //===----------------------------------------------------------------------===//
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Basic/TypeTraits.h"
39 #include "clang/Lex/LiteralSupport.h"
40 #include "clang/Lex/Preprocessor.h"
41 #include "clang/Sema/AnalysisBasedWarnings.h"
42 #include "clang/Sema/DeclSpec.h"
43 #include "clang/Sema/DelayedDiagnostic.h"
44 #include "clang/Sema/Designator.h"
45 #include "clang/Sema/EnterExpressionEvaluationContext.h"
46 #include "clang/Sema/Initialization.h"
47 #include "clang/Sema/Lookup.h"
48 #include "clang/Sema/Overload.h"
49 #include "clang/Sema/ParsedTemplate.h"
50 #include "clang/Sema/Scope.h"
51 #include "clang/Sema/ScopeInfo.h"
52 #include "clang/Sema/SemaFixItUtils.h"
53 #include "clang/Sema/SemaInternal.h"
54 #include "clang/Sema/Template.h"
55 #include "llvm/ADT/STLExtras.h"
56 #include "llvm/ADT/StringExtras.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/ConvertUTF.h"
59 #include "llvm/Support/SaveAndRestore.h"
60 #include "llvm/Support/TypeSize.h"
61 #include <optional>
63 using namespace clang;
64 using namespace sema;
66 /// Determine whether the use of this declaration is valid, without
67 /// emitting diagnostics.
68 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
69 // See if this is an auto-typed variable whose initializer we are parsing.
70 if (ParsingInitForAutoVars.count(D))
71 return false;
73 // See if this is a deleted function.
74 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
75 if (FD->isDeleted())
76 return false;
78 // If the function has a deduced return type, and we can't deduce it,
79 // then we can't use it either.
80 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
81 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
82 return false;
84 // See if this is an aligned allocation/deallocation function that is
85 // unavailable.
86 if (TreatUnavailableAsInvalid &&
87 isUnavailableAlignedAllocationFunction(*FD))
88 return false;
91 // See if this function is unavailable.
92 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
93 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
94 return false;
96 if (isa<UnresolvedUsingIfExistsDecl>(D))
97 return false;
99 return true;
102 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
103 // Warn if this is used but marked unused.
104 if (const auto *A = D->getAttr<UnusedAttr>()) {
105 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
106 // should diagnose them.
107 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
108 A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
109 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
110 if (DC && !DC->hasAttr<UnusedAttr>())
111 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
116 /// Emit a note explaining that this function is deleted.
117 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
118 assert(Decl && Decl->isDeleted());
120 if (Decl->isDefaulted()) {
121 // If the method was explicitly defaulted, point at that declaration.
122 if (!Decl->isImplicit())
123 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
125 // Try to diagnose why this special member function was implicitly
126 // deleted. This might fail, if that reason no longer applies.
127 DiagnoseDeletedDefaultedFunction(Decl);
128 return;
131 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
132 if (Ctor && Ctor->isInheritingConstructor())
133 return NoteDeletedInheritingConstructor(Ctor);
135 Diag(Decl->getLocation(), diag::note_availability_specified_here)
136 << Decl << 1;
139 /// Determine whether a FunctionDecl was ever declared with an
140 /// explicit storage class.
141 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
142 for (auto *I : D->redecls()) {
143 if (I->getStorageClass() != SC_None)
144 return true;
146 return false;
149 /// Check whether we're in an extern inline function and referring to a
150 /// variable or function with internal linkage (C11 6.7.4p3).
152 /// This is only a warning because we used to silently accept this code, but
153 /// in many cases it will not behave correctly. This is not enabled in C++ mode
154 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
155 /// and so while there may still be user mistakes, most of the time we can't
156 /// prove that there are errors.
157 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
158 const NamedDecl *D,
159 SourceLocation Loc) {
160 // This is disabled under C++; there are too many ways for this to fire in
161 // contexts where the warning is a false positive, or where it is technically
162 // correct but benign.
163 if (S.getLangOpts().CPlusPlus)
164 return;
166 // Check if this is an inlined function or method.
167 FunctionDecl *Current = S.getCurFunctionDecl();
168 if (!Current)
169 return;
170 if (!Current->isInlined())
171 return;
172 if (!Current->isExternallyVisible())
173 return;
175 // Check if the decl has internal linkage.
176 if (D->getFormalLinkage() != Linkage::Internal)
177 return;
179 // Downgrade from ExtWarn to Extension if
180 // (1) the supposedly external inline function is in the main file,
181 // and probably won't be included anywhere else.
182 // (2) the thing we're referencing is a pure function.
183 // (3) the thing we're referencing is another inline function.
184 // This last can give us false negatives, but it's better than warning on
185 // wrappers for simple C library functions.
186 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
187 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
188 if (!DowngradeWarning && UsedFn)
189 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
191 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
192 : diag::ext_internal_in_extern_inline)
193 << /*IsVar=*/!UsedFn << D;
195 S.MaybeSuggestAddingStaticToDecl(Current);
197 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
198 << D;
201 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
202 const FunctionDecl *First = Cur->getFirstDecl();
204 // Suggest "static" on the function, if possible.
205 if (!hasAnyExplicitStorageClass(First)) {
206 SourceLocation DeclBegin = First->getSourceRange().getBegin();
207 Diag(DeclBegin, diag::note_convert_inline_to_static)
208 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
212 /// Determine whether the use of this declaration is valid, and
213 /// emit any corresponding diagnostics.
215 /// This routine diagnoses various problems with referencing
216 /// declarations that can occur when using a declaration. For example,
217 /// it might warn if a deprecated or unavailable declaration is being
218 /// used, or produce an error (and return true) if a C++0x deleted
219 /// function is being used.
221 /// \returns true if there was an error (this declaration cannot be
222 /// referenced), false otherwise.
224 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
225 const ObjCInterfaceDecl *UnknownObjCClass,
226 bool ObjCPropertyAccess,
227 bool AvoidPartialAvailabilityChecks,
228 ObjCInterfaceDecl *ClassReceiver,
229 bool SkipTrailingRequiresClause) {
230 SourceLocation Loc = Locs.front();
231 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
232 // If there were any diagnostics suppressed by template argument deduction,
233 // emit them now.
234 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
235 if (Pos != SuppressedDiagnostics.end()) {
236 for (const PartialDiagnosticAt &Suppressed : Pos->second)
237 Diag(Suppressed.first, Suppressed.second);
239 // Clear out the list of suppressed diagnostics, so that we don't emit
240 // them again for this specialization. However, we don't obsolete this
241 // entry from the table, because we want to avoid ever emitting these
242 // diagnostics again.
243 Pos->second.clear();
246 // C++ [basic.start.main]p3:
247 // The function 'main' shall not be used within a program.
248 if (cast<FunctionDecl>(D)->isMain())
249 Diag(Loc, diag::ext_main_used);
251 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
254 // See if this is an auto-typed variable whose initializer we are parsing.
255 if (ParsingInitForAutoVars.count(D)) {
256 if (isa<BindingDecl>(D)) {
257 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
258 << D->getDeclName();
259 } else {
260 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
261 << D->getDeclName() << cast<VarDecl>(D)->getType();
263 return true;
266 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
267 // See if this is a deleted function.
268 if (FD->isDeleted()) {
269 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
270 if (Ctor && Ctor->isInheritingConstructor())
271 Diag(Loc, diag::err_deleted_inherited_ctor_use)
272 << Ctor->getParent()
273 << Ctor->getInheritedConstructor().getConstructor()->getParent();
274 else
275 Diag(Loc, diag::err_deleted_function_use);
276 NoteDeletedFunction(FD);
277 return true;
280 // [expr.prim.id]p4
281 // A program that refers explicitly or implicitly to a function with a
282 // trailing requires-clause whose constraint-expression is not satisfied,
283 // other than to declare it, is ill-formed. [...]
285 // See if this is a function with constraints that need to be satisfied.
286 // Check this before deducing the return type, as it might instantiate the
287 // definition.
288 if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
289 ConstraintSatisfaction Satisfaction;
290 if (CheckFunctionConstraints(FD, Satisfaction, Loc,
291 /*ForOverloadResolution*/ true))
292 // A diagnostic will have already been generated (non-constant
293 // constraint expression, for example)
294 return true;
295 if (!Satisfaction.IsSatisfied) {
296 Diag(Loc,
297 diag::err_reference_to_function_with_unsatisfied_constraints)
298 << D;
299 DiagnoseUnsatisfiedConstraint(Satisfaction);
300 return true;
304 // If the function has a deduced return type, and we can't deduce it,
305 // then we can't use it either.
306 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
307 DeduceReturnType(FD, Loc))
308 return true;
310 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
311 return true;
315 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
316 // Lambdas are only default-constructible or assignable in C++2a onwards.
317 if (MD->getParent()->isLambda() &&
318 ((isa<CXXConstructorDecl>(MD) &&
319 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
320 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
321 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
322 << !isa<CXXConstructorDecl>(MD);
326 auto getReferencedObjCProp = [](const NamedDecl *D) ->
327 const ObjCPropertyDecl * {
328 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
329 return MD->findPropertyDecl();
330 return nullptr;
332 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
333 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
334 return true;
335 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
336 return true;
339 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340 // Only the variables omp_in and omp_out are allowed in the combiner.
341 // Only the variables omp_priv and omp_orig are allowed in the
342 // initializer-clause.
343 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
344 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
345 isa<VarDecl>(D)) {
346 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
347 << getCurFunction()->HasOMPDeclareReductionCombiner;
348 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
349 return true;
352 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353 // List-items in map clauses on this construct may only refer to the declared
354 // variable var and entities that could be referenced by a procedure defined
355 // at the same location.
356 // [OpenMP 5.2] Also allow iterator declared variables.
357 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
358 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
359 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
360 << getOpenMPDeclareMapperVarName();
361 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
362 return true;
365 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
366 Diag(Loc, diag::err_use_of_empty_using_if_exists);
367 Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
368 return true;
371 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
372 AvoidPartialAvailabilityChecks, ClassReceiver);
374 DiagnoseUnusedOfDecl(*this, D, Loc);
376 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
378 if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
379 if (getLangOpts().getFPEvalMethod() !=
380 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
381 PP.getLastFPEvalPragmaLocation().isValid() &&
382 PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
383 Diag(D->getLocation(),
384 diag::err_type_available_only_in_default_eval_method)
385 << D->getName();
388 if (auto *VD = dyn_cast<ValueDecl>(D))
389 checkTypeSupport(VD->getType(), Loc, VD);
391 if (LangOpts.SYCLIsDevice ||
392 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
393 if (!Context.getTargetInfo().isTLSSupported())
394 if (const auto *VD = dyn_cast<VarDecl>(D))
395 if (VD->getTLSKind() != VarDecl::TLS_None)
396 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
399 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
400 !isUnevaluatedContext()) {
401 // C++ [expr.prim.req.nested] p3
402 // A local parameter shall only appear as an unevaluated operand
403 // (Clause 8) within the constraint-expression.
404 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
405 << D;
406 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
407 return true;
410 return false;
413 /// DiagnoseSentinelCalls - This routine checks whether a call or
414 /// message-send is to a declaration with the sentinel attribute, and
415 /// if so, it checks that the requirements of the sentinel are
416 /// satisfied.
417 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
418 ArrayRef<Expr *> Args) {
419 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
420 if (!attr)
421 return;
423 // The number of formal parameters of the declaration.
424 unsigned numFormalParams;
426 // The kind of declaration. This is also an index into a %select in
427 // the diagnostic.
428 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
430 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
431 numFormalParams = MD->param_size();
432 calleeType = CT_Method;
433 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
434 numFormalParams = FD->param_size();
435 calleeType = CT_Function;
436 } else if (isa<VarDecl>(D)) {
437 QualType type = cast<ValueDecl>(D)->getType();
438 const FunctionType *fn = nullptr;
439 if (const PointerType *ptr = type->getAs<PointerType>()) {
440 fn = ptr->getPointeeType()->getAs<FunctionType>();
441 if (!fn) return;
442 calleeType = CT_Function;
443 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
444 fn = ptr->getPointeeType()->castAs<FunctionType>();
445 calleeType = CT_Block;
446 } else {
447 return;
450 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
451 numFormalParams = proto->getNumParams();
452 } else {
453 numFormalParams = 0;
455 } else {
456 return;
459 // "nullPos" is the number of formal parameters at the end which
460 // effectively count as part of the variadic arguments. This is
461 // useful if you would prefer to not have *any* formal parameters,
462 // but the language forces you to have at least one.
463 unsigned nullPos = attr->getNullPos();
464 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
465 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
467 // The number of arguments which should follow the sentinel.
468 unsigned numArgsAfterSentinel = attr->getSentinel();
470 // If there aren't enough arguments for all the formal parameters,
471 // the sentinel, and the args after the sentinel, complain.
472 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
473 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
474 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
475 return;
478 // Otherwise, find the sentinel expression.
479 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
480 if (!sentinelExpr) return;
481 if (sentinelExpr->isValueDependent()) return;
482 if (Context.isSentinelNullExpr(sentinelExpr)) return;
484 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
485 // or 'NULL' if those are actually defined in the context. Only use
486 // 'nil' for ObjC methods, where it's much more likely that the
487 // variadic arguments form a list of object pointers.
488 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
489 std::string NullValue;
490 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
491 NullValue = "nil";
492 else if (getLangOpts().CPlusPlus11)
493 NullValue = "nullptr";
494 else if (PP.isMacroDefined("NULL"))
495 NullValue = "NULL";
496 else
497 NullValue = "(void*) 0";
499 if (MissingNilLoc.isInvalid())
500 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
501 else
502 Diag(MissingNilLoc, diag::warn_missing_sentinel)
503 << int(calleeType)
504 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
505 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
508 SourceRange Sema::getExprRange(Expr *E) const {
509 return E ? E->getSourceRange() : SourceRange();
512 //===----------------------------------------------------------------------===//
513 // Standard Promotions and Conversions
514 //===----------------------------------------------------------------------===//
516 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
517 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
518 // Handle any placeholder expressions which made it here.
519 if (E->hasPlaceholderType()) {
520 ExprResult result = CheckPlaceholderExpr(E);
521 if (result.isInvalid()) return ExprError();
522 E = result.get();
525 QualType Ty = E->getType();
526 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
528 if (Ty->isFunctionType()) {
529 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
530 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
531 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
532 return ExprError();
534 E = ImpCastExprToType(E, Context.getPointerType(Ty),
535 CK_FunctionToPointerDecay).get();
536 } else if (Ty->isArrayType()) {
537 // In C90 mode, arrays only promote to pointers if the array expression is
538 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
539 // type 'array of type' is converted to an expression that has type 'pointer
540 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
541 // that has type 'array of type' ...". The relevant change is "an lvalue"
542 // (C90) to "an expression" (C99).
544 // C++ 4.2p1:
545 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
546 // T" can be converted to an rvalue of type "pointer to T".
548 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
549 ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
550 CK_ArrayToPointerDecay);
551 if (Res.isInvalid())
552 return ExprError();
553 E = Res.get();
556 return E;
559 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
560 // Check to see if we are dereferencing a null pointer. If so,
561 // and if not volatile-qualified, this is undefined behavior that the
562 // optimizer will delete, so warn about it. People sometimes try to use this
563 // to get a deterministic trap and are surprised by clang's behavior. This
564 // only handles the pattern "*null", which is a very syntactic check.
565 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
566 if (UO && UO->getOpcode() == UO_Deref &&
567 UO->getSubExpr()->getType()->isPointerType()) {
568 const LangAS AS =
569 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
570 if ((!isTargetAddressSpace(AS) ||
571 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
572 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
573 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
574 !UO->getType().isVolatileQualified()) {
575 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
576 S.PDiag(diag::warn_indirection_through_null)
577 << UO->getSubExpr()->getSourceRange());
578 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
579 S.PDiag(diag::note_indirection_through_null));
584 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
585 SourceLocation AssignLoc,
586 const Expr* RHS) {
587 const ObjCIvarDecl *IV = OIRE->getDecl();
588 if (!IV)
589 return;
591 DeclarationName MemberName = IV->getDeclName();
592 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
593 if (!Member || !Member->isStr("isa"))
594 return;
596 const Expr *Base = OIRE->getBase();
597 QualType BaseType = Base->getType();
598 if (OIRE->isArrow())
599 BaseType = BaseType->getPointeeType();
600 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
601 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
602 ObjCInterfaceDecl *ClassDeclared = nullptr;
603 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
604 if (!ClassDeclared->getSuperClass()
605 && (*ClassDeclared->ivar_begin()) == IV) {
606 if (RHS) {
607 NamedDecl *ObjectSetClass =
608 S.LookupSingleName(S.TUScope,
609 &S.Context.Idents.get("object_setClass"),
610 SourceLocation(), S.LookupOrdinaryName);
611 if (ObjectSetClass) {
612 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
613 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
614 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
615 "object_setClass(")
616 << FixItHint::CreateReplacement(
617 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
618 << FixItHint::CreateInsertion(RHSLocEnd, ")");
620 else
621 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
622 } else {
623 NamedDecl *ObjectGetClass =
624 S.LookupSingleName(S.TUScope,
625 &S.Context.Idents.get("object_getClass"),
626 SourceLocation(), S.LookupOrdinaryName);
627 if (ObjectGetClass)
628 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
629 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
630 "object_getClass(")
631 << FixItHint::CreateReplacement(
632 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
633 else
634 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
636 S.Diag(IV->getLocation(), diag::note_ivar_decl);
641 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
642 // Handle any placeholder expressions which made it here.
643 if (E->hasPlaceholderType()) {
644 ExprResult result = CheckPlaceholderExpr(E);
645 if (result.isInvalid()) return ExprError();
646 E = result.get();
649 // C++ [conv.lval]p1:
650 // A glvalue of a non-function, non-array type T can be
651 // converted to a prvalue.
652 if (!E->isGLValue()) return E;
654 QualType T = E->getType();
655 assert(!T.isNull() && "r-value conversion on typeless expression?");
657 // lvalue-to-rvalue conversion cannot be applied to function or array types.
658 if (T->isFunctionType() || T->isArrayType())
659 return E;
661 // We don't want to throw lvalue-to-rvalue casts on top of
662 // expressions of certain types in C++.
663 if (getLangOpts().CPlusPlus &&
664 (E->getType() == Context.OverloadTy ||
665 T->isDependentType() ||
666 T->isRecordType()))
667 return E;
669 // The C standard is actually really unclear on this point, and
670 // DR106 tells us what the result should be but not why. It's
671 // generally best to say that void types just doesn't undergo
672 // lvalue-to-rvalue at all. Note that expressions of unqualified
673 // 'void' type are never l-values, but qualified void can be.
674 if (T->isVoidType())
675 return E;
677 // OpenCL usually rejects direct accesses to values of 'half' type.
678 if (getLangOpts().OpenCL &&
679 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
680 T->isHalfType()) {
681 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
682 << 0 << T;
683 return ExprError();
686 CheckForNullPointerDereference(*this, E);
687 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
688 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
689 &Context.Idents.get("object_getClass"),
690 SourceLocation(), LookupOrdinaryName);
691 if (ObjectGetClass)
692 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
693 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
694 << FixItHint::CreateReplacement(
695 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
696 else
697 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
699 else if (const ObjCIvarRefExpr *OIRE =
700 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
701 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
703 // C++ [conv.lval]p1:
704 // [...] If T is a non-class type, the type of the prvalue is the
705 // cv-unqualified version of T. Otherwise, the type of the
706 // rvalue is T.
708 // C99 6.3.2.1p2:
709 // If the lvalue has qualified type, the value has the unqualified
710 // version of the type of the lvalue; otherwise, the value has the
711 // type of the lvalue.
712 if (T.hasQualifiers())
713 T = T.getUnqualifiedType();
715 // Under the MS ABI, lock down the inheritance model now.
716 if (T->isMemberPointerType() &&
717 Context.getTargetInfo().getCXXABI().isMicrosoft())
718 (void)isCompleteType(E->getExprLoc(), T);
720 ExprResult Res = CheckLValueToRValueConversionOperand(E);
721 if (Res.isInvalid())
722 return Res;
723 E = Res.get();
725 // Loading a __weak object implicitly retains the value, so we need a cleanup to
726 // balance that.
727 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
728 Cleanup.setExprNeedsCleanups(true);
730 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
731 Cleanup.setExprNeedsCleanups(true);
733 // C++ [conv.lval]p3:
734 // If T is cv std::nullptr_t, the result is a null pointer constant.
735 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
736 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
737 CurFPFeatureOverrides());
739 // C11 6.3.2.1p2:
740 // ... if the lvalue has atomic type, the value has the non-atomic version
741 // of the type of the lvalue ...
742 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
743 T = Atomic->getValueType().getUnqualifiedType();
744 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
745 nullptr, VK_PRValue, FPOptionsOverride());
748 return Res;
751 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
752 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
753 if (Res.isInvalid())
754 return ExprError();
755 Res = DefaultLvalueConversion(Res.get());
756 if (Res.isInvalid())
757 return ExprError();
758 return Res;
761 /// CallExprUnaryConversions - a special case of an unary conversion
762 /// performed on a function designator of a call expression.
763 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
764 QualType Ty = E->getType();
765 ExprResult Res = E;
766 // Only do implicit cast for a function type, but not for a pointer
767 // to function type.
768 if (Ty->isFunctionType()) {
769 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
770 CK_FunctionToPointerDecay);
771 if (Res.isInvalid())
772 return ExprError();
774 Res = DefaultLvalueConversion(Res.get());
775 if (Res.isInvalid())
776 return ExprError();
777 return Res.get();
780 /// UsualUnaryConversions - Performs various conversions that are common to most
781 /// operators (C99 6.3). The conversions of array and function types are
782 /// sometimes suppressed. For example, the array->pointer conversion doesn't
783 /// apply if the array is an argument to the sizeof or address (&) operators.
784 /// In these instances, this routine should *not* be called.
785 ExprResult Sema::UsualUnaryConversions(Expr *E) {
786 // First, convert to an r-value.
787 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
788 if (Res.isInvalid())
789 return ExprError();
790 E = Res.get();
792 QualType Ty = E->getType();
793 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
795 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
796 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
797 (getLangOpts().getFPEvalMethod() !=
798 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
799 PP.getLastFPEvalPragmaLocation().isValid())) {
800 switch (EvalMethod) {
801 default:
802 llvm_unreachable("Unrecognized float evaluation method");
803 break;
804 case LangOptions::FEM_UnsetOnCommandLine:
805 llvm_unreachable("Float evaluation method should be set by now");
806 break;
807 case LangOptions::FEM_Double:
808 if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
809 // Widen the expression to double.
810 return Ty->isComplexType()
811 ? ImpCastExprToType(E,
812 Context.getComplexType(Context.DoubleTy),
813 CK_FloatingComplexCast)
814 : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
815 break;
816 case LangOptions::FEM_Extended:
817 if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
818 // Widen the expression to long double.
819 return Ty->isComplexType()
820 ? ImpCastExprToType(
821 E, Context.getComplexType(Context.LongDoubleTy),
822 CK_FloatingComplexCast)
823 : ImpCastExprToType(E, Context.LongDoubleTy,
824 CK_FloatingCast);
825 break;
829 // Half FP have to be promoted to float unless it is natively supported
830 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
831 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
833 // Try to perform integral promotions if the object has a theoretically
834 // promotable type.
835 if (Ty->isIntegralOrUnscopedEnumerationType()) {
836 // C99 6.3.1.1p2:
838 // The following may be used in an expression wherever an int or
839 // unsigned int may be used:
840 // - an object or expression with an integer type whose integer
841 // conversion rank is less than or equal to the rank of int
842 // and unsigned int.
843 // - A bit-field of type _Bool, int, signed int, or unsigned int.
845 // If an int can represent all values of the original type, the
846 // value is converted to an int; otherwise, it is converted to an
847 // unsigned int. These are called the integer promotions. All
848 // other types are unchanged by the integer promotions.
850 QualType PTy = Context.isPromotableBitField(E);
851 if (!PTy.isNull()) {
852 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
853 return E;
855 if (Context.isPromotableIntegerType(Ty)) {
856 QualType PT = Context.getPromotedIntegerType(Ty);
857 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
858 return E;
861 return E;
864 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
865 /// do not have a prototype. Arguments that have type float or __fp16
866 /// are promoted to double. All other argument types are converted by
867 /// UsualUnaryConversions().
868 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
869 QualType Ty = E->getType();
870 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
872 ExprResult Res = UsualUnaryConversions(E);
873 if (Res.isInvalid())
874 return ExprError();
875 E = Res.get();
877 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
878 // promote to double.
879 // Note that default argument promotion applies only to float (and
880 // half/fp16); it does not apply to _Float16.
881 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
882 if (BTy && (BTy->getKind() == BuiltinType::Half ||
883 BTy->getKind() == BuiltinType::Float)) {
884 if (getLangOpts().OpenCL &&
885 !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
886 if (BTy->getKind() == BuiltinType::Half) {
887 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
889 } else {
890 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
893 if (BTy &&
894 getLangOpts().getExtendIntArgs() ==
895 LangOptions::ExtendArgsKind::ExtendTo64 &&
896 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
897 Context.getTypeSizeInChars(BTy) <
898 Context.getTypeSizeInChars(Context.LongLongTy)) {
899 E = (Ty->isUnsignedIntegerType())
900 ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
901 .get()
902 : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
903 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
904 "Unexpected typesize for LongLongTy");
907 // C++ performs lvalue-to-rvalue conversion as a default argument
908 // promotion, even on class types, but note:
909 // C++11 [conv.lval]p2:
910 // When an lvalue-to-rvalue conversion occurs in an unevaluated
911 // operand or a subexpression thereof the value contained in the
912 // referenced object is not accessed. Otherwise, if the glvalue
913 // has a class type, the conversion copy-initializes a temporary
914 // of type T from the glvalue and the result of the conversion
915 // is a prvalue for the temporary.
916 // FIXME: add some way to gate this entire thing for correctness in
917 // potentially potentially evaluated contexts.
918 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
919 ExprResult Temp = PerformCopyInitialization(
920 InitializedEntity::InitializeTemporary(E->getType()),
921 E->getExprLoc(), E);
922 if (Temp.isInvalid())
923 return ExprError();
924 E = Temp.get();
927 return E;
930 /// Determine the degree of POD-ness for an expression.
931 /// Incomplete types are considered POD, since this check can be performed
932 /// when we're in an unevaluated context.
933 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
934 if (Ty->isIncompleteType()) {
935 // C++11 [expr.call]p7:
936 // After these conversions, if the argument does not have arithmetic,
937 // enumeration, pointer, pointer to member, or class type, the program
938 // is ill-formed.
940 // Since we've already performed array-to-pointer and function-to-pointer
941 // decay, the only such type in C++ is cv void. This also handles
942 // initializer lists as variadic arguments.
943 if (Ty->isVoidType())
944 return VAK_Invalid;
946 if (Ty->isObjCObjectType())
947 return VAK_Invalid;
948 return VAK_Valid;
951 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
952 return VAK_Invalid;
954 if (Context.getTargetInfo().getTriple().isWasm() &&
955 Ty.isWebAssemblyReferenceType()) {
956 return VAK_Invalid;
959 if (Ty.isCXX98PODType(Context))
960 return VAK_Valid;
962 // C++11 [expr.call]p7:
963 // Passing a potentially-evaluated argument of class type (Clause 9)
964 // having a non-trivial copy constructor, a non-trivial move constructor,
965 // or a non-trivial destructor, with no corresponding parameter,
966 // is conditionally-supported with implementation-defined semantics.
967 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
968 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
969 if (!Record->hasNonTrivialCopyConstructor() &&
970 !Record->hasNonTrivialMoveConstructor() &&
971 !Record->hasNonTrivialDestructor())
972 return VAK_ValidInCXX11;
974 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
975 return VAK_Valid;
977 if (Ty->isObjCObjectType())
978 return VAK_Invalid;
980 if (getLangOpts().MSVCCompat)
981 return VAK_MSVCUndefined;
983 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
984 // permitted to reject them. We should consider doing so.
985 return VAK_Undefined;
988 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
989 // Don't allow one to pass an Objective-C interface to a vararg.
990 const QualType &Ty = E->getType();
991 VarArgKind VAK = isValidVarArgType(Ty);
993 // Complain about passing non-POD types through varargs.
994 switch (VAK) {
995 case VAK_ValidInCXX11:
996 DiagRuntimeBehavior(
997 E->getBeginLoc(), nullptr,
998 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
999 [[fallthrough]];
1000 case VAK_Valid:
1001 if (Ty->isRecordType()) {
1002 // This is unlikely to be what the user intended. If the class has a
1003 // 'c_str' member function, the user probably meant to call that.
1004 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1005 PDiag(diag::warn_pass_class_arg_to_vararg)
1006 << Ty << CT << hasCStrMethod(E) << ".c_str()");
1008 break;
1010 case VAK_Undefined:
1011 case VAK_MSVCUndefined:
1012 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1013 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1014 << getLangOpts().CPlusPlus11 << Ty << CT);
1015 break;
1017 case VAK_Invalid:
1018 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1019 Diag(E->getBeginLoc(),
1020 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1021 << Ty << CT;
1022 else if (Ty->isObjCObjectType())
1023 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1024 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1025 << Ty << CT);
1026 else
1027 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1028 << isa<InitListExpr>(E) << Ty << CT;
1029 break;
1033 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1034 /// will create a trap if the resulting type is not a POD type.
1035 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1036 FunctionDecl *FDecl) {
1037 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1038 // Strip the unbridged-cast placeholder expression off, if applicable.
1039 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1040 (CT == VariadicMethod ||
1041 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1042 E = stripARCUnbridgedCast(E);
1044 // Otherwise, do normal placeholder checking.
1045 } else {
1046 ExprResult ExprRes = CheckPlaceholderExpr(E);
1047 if (ExprRes.isInvalid())
1048 return ExprError();
1049 E = ExprRes.get();
1053 ExprResult ExprRes = DefaultArgumentPromotion(E);
1054 if (ExprRes.isInvalid())
1055 return ExprError();
1057 // Copy blocks to the heap.
1058 if (ExprRes.get()->getType()->isBlockPointerType())
1059 maybeExtendBlockObject(ExprRes);
1061 E = ExprRes.get();
1063 // Diagnostics regarding non-POD argument types are
1064 // emitted along with format string checking in Sema::CheckFunctionCall().
1065 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1066 // Turn this into a trap.
1067 CXXScopeSpec SS;
1068 SourceLocation TemplateKWLoc;
1069 UnqualifiedId Name;
1070 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1071 E->getBeginLoc());
1072 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1073 /*HasTrailingLParen=*/true,
1074 /*IsAddressOfOperand=*/false);
1075 if (TrapFn.isInvalid())
1076 return ExprError();
1078 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1079 std::nullopt, E->getEndLoc());
1080 if (Call.isInvalid())
1081 return ExprError();
1083 ExprResult Comma =
1084 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1085 if (Comma.isInvalid())
1086 return ExprError();
1087 return Comma.get();
1090 if (!getLangOpts().CPlusPlus &&
1091 RequireCompleteType(E->getExprLoc(), E->getType(),
1092 diag::err_call_incomplete_argument))
1093 return ExprError();
1095 return E;
1098 /// Converts an integer to complex float type. Helper function of
1099 /// UsualArithmeticConversions()
1101 /// \return false if the integer expression is an integer type and is
1102 /// successfully converted to the complex type.
1103 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1104 ExprResult &ComplexExpr,
1105 QualType IntTy,
1106 QualType ComplexTy,
1107 bool SkipCast) {
1108 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1109 if (SkipCast) return false;
1110 if (IntTy->isIntegerType()) {
1111 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1112 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1113 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1114 CK_FloatingRealToComplex);
1115 } else {
1116 assert(IntTy->isComplexIntegerType());
1117 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1118 CK_IntegralComplexToFloatingComplex);
1120 return false;
1123 // This handles complex/complex, complex/float, or float/complex.
1124 // When both operands are complex, the shorter operand is converted to the
1125 // type of the longer, and that is the type of the result. This corresponds
1126 // to what is done when combining two real floating-point operands.
1127 // The fun begins when size promotion occur across type domains.
1128 // From H&S 6.3.4: When one operand is complex and the other is a real
1129 // floating-point type, the less precise type is converted, within it's
1130 // real or complex domain, to the precision of the other type. For example,
1131 // when combining a "long double" with a "double _Complex", the
1132 // "double _Complex" is promoted to "long double _Complex".
1133 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1134 QualType ShorterType,
1135 QualType LongerType,
1136 bool PromotePrecision) {
1137 bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1138 QualType Result =
1139 LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1141 if (PromotePrecision) {
1142 if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1143 Shorter =
1144 S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1145 } else {
1146 if (LongerIsComplex)
1147 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1148 Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1151 return Result;
1154 /// Handle arithmetic conversion with complex types. Helper function of
1155 /// UsualArithmeticConversions()
1156 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1157 ExprResult &RHS, QualType LHSType,
1158 QualType RHSType, bool IsCompAssign) {
1159 // if we have an integer operand, the result is the complex type.
1160 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1161 /*SkipCast=*/false))
1162 return LHSType;
1163 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1164 /*SkipCast=*/IsCompAssign))
1165 return RHSType;
1167 // Compute the rank of the two types, regardless of whether they are complex.
1168 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1169 if (Order < 0)
1170 // Promote the precision of the LHS if not an assignment.
1171 return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1172 /*PromotePrecision=*/!IsCompAssign);
1173 // Promote the precision of the RHS unless it is already the same as the LHS.
1174 return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1175 /*PromotePrecision=*/Order > 0);
1178 /// Handle arithmetic conversion from integer to float. Helper function
1179 /// of UsualArithmeticConversions()
1180 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1181 ExprResult &IntExpr,
1182 QualType FloatTy, QualType IntTy,
1183 bool ConvertFloat, bool ConvertInt) {
1184 if (IntTy->isIntegerType()) {
1185 if (ConvertInt)
1186 // Convert intExpr to the lhs floating point type.
1187 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1188 CK_IntegralToFloating);
1189 return FloatTy;
1192 // Convert both sides to the appropriate complex float.
1193 assert(IntTy->isComplexIntegerType());
1194 QualType result = S.Context.getComplexType(FloatTy);
1196 // _Complex int -> _Complex float
1197 if (ConvertInt)
1198 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1199 CK_IntegralComplexToFloatingComplex);
1201 // float -> _Complex float
1202 if (ConvertFloat)
1203 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1204 CK_FloatingRealToComplex);
1206 return result;
1209 /// Handle arithmethic conversion with floating point types. Helper
1210 /// function of UsualArithmeticConversions()
1211 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1212 ExprResult &RHS, QualType LHSType,
1213 QualType RHSType, bool IsCompAssign) {
1214 bool LHSFloat = LHSType->isRealFloatingType();
1215 bool RHSFloat = RHSType->isRealFloatingType();
1217 // N1169 4.1.4: If one of the operands has a floating type and the other
1218 // operand has a fixed-point type, the fixed-point operand
1219 // is converted to the floating type [...]
1220 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1221 if (LHSFloat)
1222 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1223 else if (!IsCompAssign)
1224 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1225 return LHSFloat ? LHSType : RHSType;
1228 // If we have two real floating types, convert the smaller operand
1229 // to the bigger result.
1230 if (LHSFloat && RHSFloat) {
1231 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1232 if (order > 0) {
1233 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1234 return LHSType;
1237 assert(order < 0 && "illegal float comparison");
1238 if (!IsCompAssign)
1239 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1240 return RHSType;
1243 if (LHSFloat) {
1244 // Half FP has to be promoted to float unless it is natively supported
1245 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1246 LHSType = S.Context.FloatTy;
1248 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1249 /*ConvertFloat=*/!IsCompAssign,
1250 /*ConvertInt=*/ true);
1252 assert(RHSFloat);
1253 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1254 /*ConvertFloat=*/ true,
1255 /*ConvertInt=*/!IsCompAssign);
1258 /// Diagnose attempts to convert between __float128, __ibm128 and
1259 /// long double if there is no support for such conversion.
1260 /// Helper function of UsualArithmeticConversions().
1261 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1262 QualType RHSType) {
1263 // No issue if either is not a floating point type.
1264 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1265 return false;
1267 // No issue if both have the same 128-bit float semantics.
1268 auto *LHSComplex = LHSType->getAs<ComplexType>();
1269 auto *RHSComplex = RHSType->getAs<ComplexType>();
1271 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1272 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1274 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1275 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1277 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1278 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1279 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1280 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1281 return false;
1283 return true;
1286 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1288 namespace {
1289 /// These helper callbacks are placed in an anonymous namespace to
1290 /// permit their use as function template parameters.
1291 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1292 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1295 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1296 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1297 CK_IntegralComplexCast);
1301 /// Handle integer arithmetic conversions. Helper function of
1302 /// UsualArithmeticConversions()
1303 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1304 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1305 ExprResult &RHS, QualType LHSType,
1306 QualType RHSType, bool IsCompAssign) {
1307 // The rules for this case are in C99 6.3.1.8
1308 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1309 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1310 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1311 if (LHSSigned == RHSSigned) {
1312 // Same signedness; use the higher-ranked type
1313 if (order >= 0) {
1314 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1315 return LHSType;
1316 } else if (!IsCompAssign)
1317 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1318 return RHSType;
1319 } else if (order != (LHSSigned ? 1 : -1)) {
1320 // The unsigned type has greater than or equal rank to the
1321 // signed type, so use the unsigned type
1322 if (RHSSigned) {
1323 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1324 return LHSType;
1325 } else if (!IsCompAssign)
1326 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1327 return RHSType;
1328 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1329 // The two types are different widths; if we are here, that
1330 // means the signed type is larger than the unsigned type, so
1331 // use the signed type.
1332 if (LHSSigned) {
1333 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1334 return LHSType;
1335 } else if (!IsCompAssign)
1336 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1337 return RHSType;
1338 } else {
1339 // The signed type is higher-ranked than the unsigned type,
1340 // but isn't actually any bigger (like unsigned int and long
1341 // on most 32-bit systems). Use the unsigned type corresponding
1342 // to the signed type.
1343 QualType result =
1344 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1345 RHS = (*doRHSCast)(S, RHS.get(), result);
1346 if (!IsCompAssign)
1347 LHS = (*doLHSCast)(S, LHS.get(), result);
1348 return result;
1352 /// Handle conversions with GCC complex int extension. Helper function
1353 /// of UsualArithmeticConversions()
1354 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1355 ExprResult &RHS, QualType LHSType,
1356 QualType RHSType,
1357 bool IsCompAssign) {
1358 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1359 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1361 if (LHSComplexInt && RHSComplexInt) {
1362 QualType LHSEltType = LHSComplexInt->getElementType();
1363 QualType RHSEltType = RHSComplexInt->getElementType();
1364 QualType ScalarType =
1365 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1366 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1368 return S.Context.getComplexType(ScalarType);
1371 if (LHSComplexInt) {
1372 QualType LHSEltType = LHSComplexInt->getElementType();
1373 QualType ScalarType =
1374 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1375 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1376 QualType ComplexType = S.Context.getComplexType(ScalarType);
1377 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1378 CK_IntegralRealToComplex);
1380 return ComplexType;
1383 assert(RHSComplexInt);
1385 QualType RHSEltType = RHSComplexInt->getElementType();
1386 QualType ScalarType =
1387 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1388 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1389 QualType ComplexType = S.Context.getComplexType(ScalarType);
1391 if (!IsCompAssign)
1392 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1393 CK_IntegralRealToComplex);
1394 return ComplexType;
1397 /// Return the rank of a given fixed point or integer type. The value itself
1398 /// doesn't matter, but the values must be increasing with proper increasing
1399 /// rank as described in N1169 4.1.1.
1400 static unsigned GetFixedPointRank(QualType Ty) {
1401 const auto *BTy = Ty->getAs<BuiltinType>();
1402 assert(BTy && "Expected a builtin type.");
1404 switch (BTy->getKind()) {
1405 case BuiltinType::ShortFract:
1406 case BuiltinType::UShortFract:
1407 case BuiltinType::SatShortFract:
1408 case BuiltinType::SatUShortFract:
1409 return 1;
1410 case BuiltinType::Fract:
1411 case BuiltinType::UFract:
1412 case BuiltinType::SatFract:
1413 case BuiltinType::SatUFract:
1414 return 2;
1415 case BuiltinType::LongFract:
1416 case BuiltinType::ULongFract:
1417 case BuiltinType::SatLongFract:
1418 case BuiltinType::SatULongFract:
1419 return 3;
1420 case BuiltinType::ShortAccum:
1421 case BuiltinType::UShortAccum:
1422 case BuiltinType::SatShortAccum:
1423 case BuiltinType::SatUShortAccum:
1424 return 4;
1425 case BuiltinType::Accum:
1426 case BuiltinType::UAccum:
1427 case BuiltinType::SatAccum:
1428 case BuiltinType::SatUAccum:
1429 return 5;
1430 case BuiltinType::LongAccum:
1431 case BuiltinType::ULongAccum:
1432 case BuiltinType::SatLongAccum:
1433 case BuiltinType::SatULongAccum:
1434 return 6;
1435 default:
1436 if (BTy->isInteger())
1437 return 0;
1438 llvm_unreachable("Unexpected fixed point or integer type");
1442 /// handleFixedPointConversion - Fixed point operations between fixed
1443 /// point types and integers or other fixed point types do not fall under
1444 /// usual arithmetic conversion since these conversions could result in loss
1445 /// of precsision (N1169 4.1.4). These operations should be calculated with
1446 /// the full precision of their result type (N1169 4.1.6.2.1).
1447 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1448 QualType RHSTy) {
1449 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1450 "Expected at least one of the operands to be a fixed point type");
1451 assert((LHSTy->isFixedPointOrIntegerType() ||
1452 RHSTy->isFixedPointOrIntegerType()) &&
1453 "Special fixed point arithmetic operation conversions are only "
1454 "applied to ints or other fixed point types");
1456 // If one operand has signed fixed-point type and the other operand has
1457 // unsigned fixed-point type, then the unsigned fixed-point operand is
1458 // converted to its corresponding signed fixed-point type and the resulting
1459 // type is the type of the converted operand.
1460 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1461 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1462 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1463 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1465 // The result type is the type with the highest rank, whereby a fixed-point
1466 // conversion rank is always greater than an integer conversion rank; if the
1467 // type of either of the operands is a saturating fixedpoint type, the result
1468 // type shall be the saturating fixed-point type corresponding to the type
1469 // with the highest rank; the resulting value is converted (taking into
1470 // account rounding and overflow) to the precision of the resulting type.
1471 // Same ranks between signed and unsigned types are resolved earlier, so both
1472 // types are either signed or both unsigned at this point.
1473 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1474 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1476 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1478 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1479 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1481 return ResultTy;
1484 /// Check that the usual arithmetic conversions can be performed on this pair of
1485 /// expressions that might be of enumeration type.
1486 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1487 SourceLocation Loc,
1488 Sema::ArithConvKind ACK) {
1489 // C++2a [expr.arith.conv]p1:
1490 // If one operand is of enumeration type and the other operand is of a
1491 // different enumeration type or a floating-point type, this behavior is
1492 // deprecated ([depr.arith.conv.enum]).
1494 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1495 // Eventually we will presumably reject these cases (in C++23 onwards?).
1496 QualType L = LHS->getType(), R = RHS->getType();
1497 bool LEnum = L->isUnscopedEnumerationType(),
1498 REnum = R->isUnscopedEnumerationType();
1499 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1500 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1501 (REnum && L->isFloatingType())) {
1502 S.Diag(Loc, S.getLangOpts().CPlusPlus20
1503 ? diag::warn_arith_conv_enum_float_cxx20
1504 : diag::warn_arith_conv_enum_float)
1505 << LHS->getSourceRange() << RHS->getSourceRange()
1506 << (int)ACK << LEnum << L << R;
1507 } else if (!IsCompAssign && LEnum && REnum &&
1508 !S.Context.hasSameUnqualifiedType(L, R)) {
1509 unsigned DiagID;
1510 if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1511 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1512 // If either enumeration type is unnamed, it's less likely that the
1513 // user cares about this, but this situation is still deprecated in
1514 // C++2a. Use a different warning group.
1515 DiagID = S.getLangOpts().CPlusPlus20
1516 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1517 : diag::warn_arith_conv_mixed_anon_enum_types;
1518 } else if (ACK == Sema::ACK_Conditional) {
1519 // Conditional expressions are separated out because they have
1520 // historically had a different warning flag.
1521 DiagID = S.getLangOpts().CPlusPlus20
1522 ? diag::warn_conditional_mixed_enum_types_cxx20
1523 : diag::warn_conditional_mixed_enum_types;
1524 } else if (ACK == Sema::ACK_Comparison) {
1525 // Comparison expressions are separated out because they have
1526 // historically had a different warning flag.
1527 DiagID = S.getLangOpts().CPlusPlus20
1528 ? diag::warn_comparison_mixed_enum_types_cxx20
1529 : diag::warn_comparison_mixed_enum_types;
1530 } else {
1531 DiagID = S.getLangOpts().CPlusPlus20
1532 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1533 : diag::warn_arith_conv_mixed_enum_types;
1535 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1536 << (int)ACK << L << R;
1540 /// UsualArithmeticConversions - Performs various conversions that are common to
1541 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1542 /// routine returns the first non-arithmetic type found. The client is
1543 /// responsible for emitting appropriate error diagnostics.
1544 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1545 SourceLocation Loc,
1546 ArithConvKind ACK) {
1547 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1549 if (ACK != ACK_CompAssign) {
1550 LHS = UsualUnaryConversions(LHS.get());
1551 if (LHS.isInvalid())
1552 return QualType();
1555 RHS = UsualUnaryConversions(RHS.get());
1556 if (RHS.isInvalid())
1557 return QualType();
1559 // For conversion purposes, we ignore any qualifiers.
1560 // For example, "const float" and "float" are equivalent.
1561 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1562 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1564 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1565 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1566 LHSType = AtomicLHS->getValueType();
1568 // If both types are identical, no conversion is needed.
1569 if (Context.hasSameType(LHSType, RHSType))
1570 return Context.getCommonSugaredType(LHSType, RHSType);
1572 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1573 // The caller can deal with this (e.g. pointer + int).
1574 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1575 return QualType();
1577 // Apply unary and bitfield promotions to the LHS's type.
1578 QualType LHSUnpromotedType = LHSType;
1579 if (Context.isPromotableIntegerType(LHSType))
1580 LHSType = Context.getPromotedIntegerType(LHSType);
1581 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1582 if (!LHSBitfieldPromoteTy.isNull())
1583 LHSType = LHSBitfieldPromoteTy;
1584 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1585 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1587 // If both types are identical, no conversion is needed.
1588 if (Context.hasSameType(LHSType, RHSType))
1589 return Context.getCommonSugaredType(LHSType, RHSType);
1591 // At this point, we have two different arithmetic types.
1593 // Diagnose attempts to convert between __ibm128, __float128 and long double
1594 // where such conversions currently can't be handled.
1595 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1596 return QualType();
1598 // Handle complex types first (C99 6.3.1.8p1).
1599 if (LHSType->isComplexType() || RHSType->isComplexType())
1600 return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1601 ACK == ACK_CompAssign);
1603 // Now handle "real" floating types (i.e. float, double, long double).
1604 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1605 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1606 ACK == ACK_CompAssign);
1608 // Handle GCC complex int extension.
1609 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1610 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1611 ACK == ACK_CompAssign);
1613 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1614 return handleFixedPointConversion(*this, LHSType, RHSType);
1616 // Finally, we have two differing integer types.
1617 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1618 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1621 //===----------------------------------------------------------------------===//
1622 // Semantic Analysis for various Expression Types
1623 //===----------------------------------------------------------------------===//
1626 ExprResult Sema::ActOnGenericSelectionExpr(
1627 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1628 bool PredicateIsExpr, void *ControllingExprOrType,
1629 ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1630 unsigned NumAssocs = ArgTypes.size();
1631 assert(NumAssocs == ArgExprs.size());
1633 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1634 for (unsigned i = 0; i < NumAssocs; ++i) {
1635 if (ArgTypes[i])
1636 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1637 else
1638 Types[i] = nullptr;
1641 // If we have a controlling type, we need to convert it from a parsed type
1642 // into a semantic type and then pass that along.
1643 if (!PredicateIsExpr) {
1644 TypeSourceInfo *ControllingType;
1645 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1646 &ControllingType);
1647 assert(ControllingType && "couldn't get the type out of the parser");
1648 ControllingExprOrType = ControllingType;
1651 ExprResult ER = CreateGenericSelectionExpr(
1652 KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1653 llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1654 delete [] Types;
1655 return ER;
1658 ExprResult Sema::CreateGenericSelectionExpr(
1659 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1660 bool PredicateIsExpr, void *ControllingExprOrType,
1661 ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1662 unsigned NumAssocs = Types.size();
1663 assert(NumAssocs == Exprs.size());
1664 assert(ControllingExprOrType &&
1665 "Must have either a controlling expression or a controlling type");
1667 Expr *ControllingExpr = nullptr;
1668 TypeSourceInfo *ControllingType = nullptr;
1669 if (PredicateIsExpr) {
1670 // Decay and strip qualifiers for the controlling expression type, and
1671 // handle placeholder type replacement. See committee discussion from WG14
1672 // DR423.
1673 EnterExpressionEvaluationContext Unevaluated(
1674 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1675 ExprResult R = DefaultFunctionArrayLvalueConversion(
1676 reinterpret_cast<Expr *>(ControllingExprOrType));
1677 if (R.isInvalid())
1678 return ExprError();
1679 ControllingExpr = R.get();
1680 } else {
1681 // The extension form uses the type directly rather than converting it.
1682 ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1683 if (!ControllingType)
1684 return ExprError();
1687 bool TypeErrorFound = false,
1688 IsResultDependent = ControllingExpr
1689 ? ControllingExpr->isTypeDependent()
1690 : ControllingType->getType()->isDependentType(),
1691 ContainsUnexpandedParameterPack =
1692 ControllingExpr
1693 ? ControllingExpr->containsUnexpandedParameterPack()
1694 : ControllingType->getType()->containsUnexpandedParameterPack();
1696 // The controlling expression is an unevaluated operand, so side effects are
1697 // likely unintended.
1698 if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1699 ControllingExpr->HasSideEffects(Context, false))
1700 Diag(ControllingExpr->getExprLoc(),
1701 diag::warn_side_effects_unevaluated_context);
1703 for (unsigned i = 0; i < NumAssocs; ++i) {
1704 if (Exprs[i]->containsUnexpandedParameterPack())
1705 ContainsUnexpandedParameterPack = true;
1707 if (Types[i]) {
1708 if (Types[i]->getType()->containsUnexpandedParameterPack())
1709 ContainsUnexpandedParameterPack = true;
1711 if (Types[i]->getType()->isDependentType()) {
1712 IsResultDependent = true;
1713 } else {
1714 // We relax the restriction on use of incomplete types and non-object
1715 // types with the type-based extension of _Generic. Allowing incomplete
1716 // objects means those can be used as "tags" for a type-safe way to map
1717 // to a value. Similarly, matching on function types rather than
1718 // function pointer types can be useful. However, the restriction on VM
1719 // types makes sense to retain as there are open questions about how
1720 // the selection can be made at compile time.
1722 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1723 // complete object type other than a variably modified type."
1724 unsigned D = 0;
1725 if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1726 D = diag::err_assoc_type_incomplete;
1727 else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1728 D = diag::err_assoc_type_nonobject;
1729 else if (Types[i]->getType()->isVariablyModifiedType())
1730 D = diag::err_assoc_type_variably_modified;
1731 else if (ControllingExpr) {
1732 // Because the controlling expression undergoes lvalue conversion,
1733 // array conversion, and function conversion, an association which is
1734 // of array type, function type, or is qualified can never be
1735 // reached. We will warn about this so users are less surprised by
1736 // the unreachable association. However, we don't have to handle
1737 // function types; that's not an object type, so it's handled above.
1739 // The logic is somewhat different for C++ because C++ has different
1740 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1741 // If T is a non-class type, the type of the prvalue is the cv-
1742 // unqualified version of T. Otherwise, the type of the prvalue is T.
1743 // The result of these rules is that all qualified types in an
1744 // association in C are unreachable, and in C++, only qualified non-
1745 // class types are unreachable.
1747 // NB: this does not apply when the first operand is a type rather
1748 // than an expression, because the type form does not undergo
1749 // conversion.
1750 unsigned Reason = 0;
1751 QualType QT = Types[i]->getType();
1752 if (QT->isArrayType())
1753 Reason = 1;
1754 else if (QT.hasQualifiers() &&
1755 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1756 Reason = 2;
1758 if (Reason)
1759 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1760 diag::warn_unreachable_association)
1761 << QT << (Reason - 1);
1764 if (D != 0) {
1765 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1766 << Types[i]->getTypeLoc().getSourceRange()
1767 << Types[i]->getType();
1768 TypeErrorFound = true;
1771 // C11 6.5.1.1p2 "No two generic associations in the same generic
1772 // selection shall specify compatible types."
1773 for (unsigned j = i+1; j < NumAssocs; ++j)
1774 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1775 Context.typesAreCompatible(Types[i]->getType(),
1776 Types[j]->getType())) {
1777 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1778 diag::err_assoc_compatible_types)
1779 << Types[j]->getTypeLoc().getSourceRange()
1780 << Types[j]->getType()
1781 << Types[i]->getType();
1782 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1783 diag::note_compat_assoc)
1784 << Types[i]->getTypeLoc().getSourceRange()
1785 << Types[i]->getType();
1786 TypeErrorFound = true;
1791 if (TypeErrorFound)
1792 return ExprError();
1794 // If we determined that the generic selection is result-dependent, don't
1795 // try to compute the result expression.
1796 if (IsResultDependent) {
1797 if (ControllingExpr)
1798 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1799 Types, Exprs, DefaultLoc, RParenLoc,
1800 ContainsUnexpandedParameterPack);
1801 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1802 Exprs, DefaultLoc, RParenLoc,
1803 ContainsUnexpandedParameterPack);
1806 SmallVector<unsigned, 1> CompatIndices;
1807 unsigned DefaultIndex = -1U;
1808 // Look at the canonical type of the controlling expression in case it was a
1809 // deduced type like __auto_type. However, when issuing diagnostics, use the
1810 // type the user wrote in source rather than the canonical one.
1811 for (unsigned i = 0; i < NumAssocs; ++i) {
1812 if (!Types[i])
1813 DefaultIndex = i;
1814 else if (ControllingExpr &&
1815 Context.typesAreCompatible(
1816 ControllingExpr->getType().getCanonicalType(),
1817 Types[i]->getType()))
1818 CompatIndices.push_back(i);
1819 else if (ControllingType &&
1820 Context.typesAreCompatible(
1821 ControllingType->getType().getCanonicalType(),
1822 Types[i]->getType()))
1823 CompatIndices.push_back(i);
1826 auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1827 TypeSourceInfo *ControllingType) {
1828 // We strip parens here because the controlling expression is typically
1829 // parenthesized in macro definitions.
1830 if (ControllingExpr)
1831 ControllingExpr = ControllingExpr->IgnoreParens();
1833 SourceRange SR = ControllingExpr
1834 ? ControllingExpr->getSourceRange()
1835 : ControllingType->getTypeLoc().getSourceRange();
1836 QualType QT = ControllingExpr ? ControllingExpr->getType()
1837 : ControllingType->getType();
1839 return std::make_pair(SR, QT);
1842 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1843 // type compatible with at most one of the types named in its generic
1844 // association list."
1845 if (CompatIndices.size() > 1) {
1846 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1847 SourceRange SR = P.first;
1848 Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1849 << SR << P.second << (unsigned)CompatIndices.size();
1850 for (unsigned I : CompatIndices) {
1851 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1852 diag::note_compat_assoc)
1853 << Types[I]->getTypeLoc().getSourceRange()
1854 << Types[I]->getType();
1856 return ExprError();
1859 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1860 // its controlling expression shall have type compatible with exactly one of
1861 // the types named in its generic association list."
1862 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1863 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1864 SourceRange SR = P.first;
1865 Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1866 return ExprError();
1869 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1870 // type name that is compatible with the type of the controlling expression,
1871 // then the result expression of the generic selection is the expression
1872 // in that generic association. Otherwise, the result expression of the
1873 // generic selection is the expression in the default generic association."
1874 unsigned ResultIndex =
1875 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1877 if (ControllingExpr) {
1878 return GenericSelectionExpr::Create(
1879 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1880 ContainsUnexpandedParameterPack, ResultIndex);
1882 return GenericSelectionExpr::Create(
1883 Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1884 ContainsUnexpandedParameterPack, ResultIndex);
1887 static PredefinedExpr::IdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1888 switch (Kind) {
1889 default:
1890 llvm_unreachable("unexpected TokenKind");
1891 case tok::kw___func__:
1892 return PredefinedExpr::Func; // [C99 6.4.2.2]
1893 case tok::kw___FUNCTION__:
1894 return PredefinedExpr::Function;
1895 case tok::kw___FUNCDNAME__:
1896 return PredefinedExpr::FuncDName; // [MS]
1897 case tok::kw___FUNCSIG__:
1898 return PredefinedExpr::FuncSig; // [MS]
1899 case tok::kw_L__FUNCTION__:
1900 return PredefinedExpr::LFunction; // [MS]
1901 case tok::kw_L__FUNCSIG__:
1902 return PredefinedExpr::LFuncSig; // [MS]
1903 case tok::kw___PRETTY_FUNCTION__:
1904 return PredefinedExpr::PrettyFunction; // [GNU]
1908 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1909 /// to determine the value of a PredefinedExpr. This can be either a
1910 /// block, lambda, captured statement, function, otherwise a nullptr.
1911 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1912 while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1913 DC = DC->getParent();
1914 return cast_or_null<Decl>(DC);
1917 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1918 /// location of the token and the offset of the ud-suffix within it.
1919 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1920 unsigned Offset) {
1921 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1922 S.getLangOpts());
1925 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1926 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1927 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1928 IdentifierInfo *UDSuffix,
1929 SourceLocation UDSuffixLoc,
1930 ArrayRef<Expr*> Args,
1931 SourceLocation LitEndLoc) {
1932 assert(Args.size() <= 2 && "too many arguments for literal operator");
1934 QualType ArgTy[2];
1935 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1936 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1937 if (ArgTy[ArgIdx]->isArrayType())
1938 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1941 DeclarationName OpName =
1942 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1943 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1944 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1946 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1947 if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1948 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1949 /*AllowStringTemplatePack*/ false,
1950 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1951 return ExprError();
1953 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1956 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1957 // StringToks needs backing storage as it doesn't hold array elements itself
1958 std::vector<Token> ExpandedToks;
1959 if (getLangOpts().MicrosoftExt)
1960 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1962 StringLiteralParser Literal(StringToks, PP,
1963 StringLiteralEvalMethod::Unevaluated);
1964 if (Literal.hadError)
1965 return ExprError();
1967 SmallVector<SourceLocation, 4> StringTokLocs;
1968 for (const Token &Tok : StringToks)
1969 StringTokLocs.push_back(Tok.getLocation());
1971 StringLiteral *Lit = StringLiteral::Create(
1972 Context, Literal.GetString(), StringLiteral::Unevaluated, false, {},
1973 &StringTokLocs[0], StringTokLocs.size());
1975 if (!Literal.getUDSuffix().empty()) {
1976 SourceLocation UDSuffixLoc =
1977 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1978 Literal.getUDSuffixOffset());
1979 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1982 return Lit;
1985 std::vector<Token>
1986 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1987 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1988 // local macros that expand to string literals that may be concatenated.
1989 // These macros are expanded here (in Sema), because StringLiteralParser
1990 // (in Lex) doesn't know the enclosing function (because it hasn't been
1991 // parsed yet).
1992 assert(getLangOpts().MicrosoftExt);
1994 // Note: Although function local macros are defined only inside functions,
1995 // we ensure a valid `CurrentDecl` even outside of a function. This allows
1996 // expansion of macros into empty string literals without additional checks.
1997 Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
1998 if (!CurrentDecl)
1999 CurrentDecl = Context.getTranslationUnitDecl();
2001 std::vector<Token> ExpandedToks;
2002 ExpandedToks.reserve(Toks.size());
2003 for (const Token &Tok : Toks) {
2004 if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2005 assert(tok::isStringLiteral(Tok.getKind()));
2006 ExpandedToks.emplace_back(Tok);
2007 continue;
2009 if (isa<TranslationUnitDecl>(CurrentDecl))
2010 Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2011 // Stringify predefined expression
2012 Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2013 << Tok.getKind();
2014 SmallString<64> Str;
2015 llvm::raw_svector_ostream OS(Str);
2016 Token &Exp = ExpandedToks.emplace_back();
2017 Exp.startToken();
2018 if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2019 Tok.getKind() == tok::kw_L__FUNCSIG__) {
2020 OS << 'L';
2021 Exp.setKind(tok::wide_string_literal);
2022 } else {
2023 Exp.setKind(tok::string_literal);
2025 OS << '"'
2026 << Lexer::Stringify(PredefinedExpr::ComputeName(
2027 getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2028 << '"';
2029 PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2031 return ExpandedToks;
2034 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
2035 /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
2036 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
2037 /// multiple tokens. However, the common case is that StringToks points to one
2038 /// string.
2040 ExprResult
2041 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2042 assert(!StringToks.empty() && "Must have at least one string!");
2044 // StringToks needs backing storage as it doesn't hold array elements itself
2045 std::vector<Token> ExpandedToks;
2046 if (getLangOpts().MicrosoftExt)
2047 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2049 StringLiteralParser Literal(StringToks, PP);
2050 if (Literal.hadError)
2051 return ExprError();
2053 SmallVector<SourceLocation, 4> StringTokLocs;
2054 for (const Token &Tok : StringToks)
2055 StringTokLocs.push_back(Tok.getLocation());
2057 QualType CharTy = Context.CharTy;
2058 StringLiteral::StringKind Kind = StringLiteral::Ordinary;
2059 if (Literal.isWide()) {
2060 CharTy = Context.getWideCharType();
2061 Kind = StringLiteral::Wide;
2062 } else if (Literal.isUTF8()) {
2063 if (getLangOpts().Char8)
2064 CharTy = Context.Char8Ty;
2065 Kind = StringLiteral::UTF8;
2066 } else if (Literal.isUTF16()) {
2067 CharTy = Context.Char16Ty;
2068 Kind = StringLiteral::UTF16;
2069 } else if (Literal.isUTF32()) {
2070 CharTy = Context.Char32Ty;
2071 Kind = StringLiteral::UTF32;
2072 } else if (Literal.isPascal()) {
2073 CharTy = Context.UnsignedCharTy;
2076 // Warn on initializing an array of char from a u8 string literal; this
2077 // becomes ill-formed in C++2a.
2078 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
2079 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
2080 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
2082 // Create removals for all 'u8' prefixes in the string literal(s). This
2083 // ensures C++2a compatibility (but may change the program behavior when
2084 // built by non-Clang compilers for which the execution character set is
2085 // not always UTF-8).
2086 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
2087 SourceLocation RemovalDiagLoc;
2088 for (const Token &Tok : StringToks) {
2089 if (Tok.getKind() == tok::utf8_string_literal) {
2090 if (RemovalDiagLoc.isInvalid())
2091 RemovalDiagLoc = Tok.getLocation();
2092 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2093 Tok.getLocation(),
2094 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2095 getSourceManager(), getLangOpts())));
2098 Diag(RemovalDiagLoc, RemovalDiag);
2101 QualType StrTy =
2102 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2104 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2105 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2106 Kind, Literal.Pascal, StrTy,
2107 &StringTokLocs[0],
2108 StringTokLocs.size());
2109 if (Literal.getUDSuffix().empty())
2110 return Lit;
2112 // We're building a user-defined literal.
2113 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2114 SourceLocation UDSuffixLoc =
2115 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2116 Literal.getUDSuffixOffset());
2118 // Make sure we're allowed user-defined literals here.
2119 if (!UDLScope)
2120 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2122 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2123 // operator "" X (str, len)
2124 QualType SizeType = Context.getSizeType();
2126 DeclarationName OpName =
2127 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2128 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2129 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2131 QualType ArgTy[] = {
2132 Context.getArrayDecayedType(StrTy), SizeType
2135 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2136 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2137 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2138 /*AllowStringTemplatePack*/ true,
2139 /*DiagnoseMissing*/ true, Lit)) {
2141 case LOLR_Cooked: {
2142 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2143 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2144 StringTokLocs[0]);
2145 Expr *Args[] = { Lit, LenArg };
2147 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2150 case LOLR_Template: {
2151 TemplateArgumentListInfo ExplicitArgs;
2152 TemplateArgument Arg(Lit);
2153 TemplateArgumentLocInfo ArgInfo(Lit);
2154 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2155 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2156 StringTokLocs.back(), &ExplicitArgs);
2159 case LOLR_StringTemplatePack: {
2160 TemplateArgumentListInfo ExplicitArgs;
2162 unsigned CharBits = Context.getIntWidth(CharTy);
2163 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2164 llvm::APSInt Value(CharBits, CharIsUnsigned);
2166 TemplateArgument TypeArg(CharTy);
2167 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2168 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2170 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2171 Value = Lit->getCodeUnit(I);
2172 TemplateArgument Arg(Context, Value, CharTy);
2173 TemplateArgumentLocInfo ArgInfo;
2174 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2176 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2177 StringTokLocs.back(), &ExplicitArgs);
2179 case LOLR_Raw:
2180 case LOLR_ErrorNoDiagnostic:
2181 llvm_unreachable("unexpected literal operator lookup result");
2182 case LOLR_Error:
2183 return ExprError();
2185 llvm_unreachable("unexpected literal operator lookup result");
2188 DeclRefExpr *
2189 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2190 SourceLocation Loc,
2191 const CXXScopeSpec *SS) {
2192 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2193 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2196 DeclRefExpr *
2197 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2198 const DeclarationNameInfo &NameInfo,
2199 const CXXScopeSpec *SS, NamedDecl *FoundD,
2200 SourceLocation TemplateKWLoc,
2201 const TemplateArgumentListInfo *TemplateArgs) {
2202 NestedNameSpecifierLoc NNS =
2203 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2204 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2205 TemplateArgs);
2208 // CUDA/HIP: Check whether a captured reference variable is referencing a
2209 // host variable in a device or host device lambda.
2210 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2211 VarDecl *VD) {
2212 if (!S.getLangOpts().CUDA || !VD->hasInit())
2213 return false;
2214 assert(VD->getType()->isReferenceType());
2216 // Check whether the reference variable is referencing a host variable.
2217 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2218 if (!DRE)
2219 return false;
2220 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2221 if (!Referee || !Referee->hasGlobalStorage() ||
2222 Referee->hasAttr<CUDADeviceAttr>())
2223 return false;
2225 // Check whether the current function is a device or host device lambda.
2226 // Check whether the reference variable is a capture by getDeclContext()
2227 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2228 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2229 if (MD && MD->getParent()->isLambda() &&
2230 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2231 VD->getDeclContext() != MD)
2232 return true;
2234 return false;
2237 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2238 // A declaration named in an unevaluated operand never constitutes an odr-use.
2239 if (isUnevaluatedContext())
2240 return NOUR_Unevaluated;
2242 // C++2a [basic.def.odr]p4:
2243 // A variable x whose name appears as a potentially-evaluated expression e
2244 // is odr-used by e unless [...] x is a reference that is usable in
2245 // constant expressions.
2246 // CUDA/HIP:
2247 // If a reference variable referencing a host variable is captured in a
2248 // device or host device lambda, the value of the referee must be copied
2249 // to the capture and the reference variable must be treated as odr-use
2250 // since the value of the referee is not known at compile time and must
2251 // be loaded from the captured.
2252 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2253 if (VD->getType()->isReferenceType() &&
2254 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2255 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2256 VD->isUsableInConstantExpressions(Context))
2257 return NOUR_Constant;
2260 // All remaining non-variable cases constitute an odr-use. For variables, we
2261 // need to wait and see how the expression is used.
2262 return NOUR_None;
2265 /// BuildDeclRefExpr - Build an expression that references a
2266 /// declaration that does not require a closure capture.
2267 DeclRefExpr *
2268 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2269 const DeclarationNameInfo &NameInfo,
2270 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2271 SourceLocation TemplateKWLoc,
2272 const TemplateArgumentListInfo *TemplateArgs) {
2273 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2274 NeedToCaptureVariable(D, NameInfo.getLoc());
2276 DeclRefExpr *E = DeclRefExpr::Create(
2277 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2278 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2279 MarkDeclRefReferenced(E);
2281 // C++ [except.spec]p17:
2282 // An exception-specification is considered to be needed when:
2283 // - in an expression, the function is the unique lookup result or
2284 // the selected member of a set of overloaded functions.
2286 // We delay doing this until after we've built the function reference and
2287 // marked it as used so that:
2288 // a) if the function is defaulted, we get errors from defining it before /
2289 // instead of errors from computing its exception specification, and
2290 // b) if the function is a defaulted comparison, we can use the body we
2291 // build when defining it as input to the exception specification
2292 // computation rather than computing a new body.
2293 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2294 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2295 if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2296 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2300 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2301 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2302 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2303 getCurFunction()->recordUseOfWeak(E);
2305 const auto *FD = dyn_cast<FieldDecl>(D);
2306 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2307 FD = IFD->getAnonField();
2308 if (FD) {
2309 UnusedPrivateFields.remove(FD);
2310 // Just in case we're building an illegal pointer-to-member.
2311 if (FD->isBitField())
2312 E->setObjectKind(OK_BitField);
2315 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2316 // designates a bit-field.
2317 if (const auto *BD = dyn_cast<BindingDecl>(D))
2318 if (const auto *BE = BD->getBinding())
2319 E->setObjectKind(BE->getObjectKind());
2321 return E;
2324 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2325 /// possibly a list of template arguments.
2327 /// If this produces template arguments, it is permitted to call
2328 /// DecomposeTemplateName.
2330 /// This actually loses a lot of source location information for
2331 /// non-standard name kinds; we should consider preserving that in
2332 /// some way.
2333 void
2334 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2335 TemplateArgumentListInfo &Buffer,
2336 DeclarationNameInfo &NameInfo,
2337 const TemplateArgumentListInfo *&TemplateArgs) {
2338 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2339 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2340 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2342 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2343 Id.TemplateId->NumArgs);
2344 translateTemplateArguments(TemplateArgsPtr, Buffer);
2346 TemplateName TName = Id.TemplateId->Template.get();
2347 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2348 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2349 TemplateArgs = &Buffer;
2350 } else {
2351 NameInfo = GetNameFromUnqualifiedId(Id);
2352 TemplateArgs = nullptr;
2356 static void emitEmptyLookupTypoDiagnostic(
2357 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2358 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2359 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2360 DeclContext *Ctx =
2361 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2362 if (!TC) {
2363 // Emit a special diagnostic for failed member lookups.
2364 // FIXME: computing the declaration context might fail here (?)
2365 if (Ctx)
2366 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2367 << SS.getRange();
2368 else
2369 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2370 return;
2373 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2374 bool DroppedSpecifier =
2375 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2376 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2377 ? diag::note_implicit_param_decl
2378 : diag::note_previous_decl;
2379 if (!Ctx)
2380 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2381 SemaRef.PDiag(NoteID));
2382 else
2383 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2384 << Typo << Ctx << DroppedSpecifier
2385 << SS.getRange(),
2386 SemaRef.PDiag(NoteID));
2389 /// Diagnose a lookup that found results in an enclosing class during error
2390 /// recovery. This usually indicates that the results were found in a dependent
2391 /// base class that could not be searched as part of a template definition.
2392 /// Always issues a diagnostic (though this may be only a warning in MS
2393 /// compatibility mode).
2395 /// Return \c true if the error is unrecoverable, or \c false if the caller
2396 /// should attempt to recover using these lookup results.
2397 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2398 // During a default argument instantiation the CurContext points
2399 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2400 // function parameter list, hence add an explicit check.
2401 bool isDefaultArgument =
2402 !CodeSynthesisContexts.empty() &&
2403 CodeSynthesisContexts.back().Kind ==
2404 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2405 const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2406 bool isInstance = CurMethod && CurMethod->isInstance() &&
2407 R.getNamingClass() == CurMethod->getParent() &&
2408 !isDefaultArgument;
2410 // There are two ways we can find a class-scope declaration during template
2411 // instantiation that we did not find in the template definition: if it is a
2412 // member of a dependent base class, or if it is declared after the point of
2413 // use in the same class. Distinguish these by comparing the class in which
2414 // the member was found to the naming class of the lookup.
2415 unsigned DiagID = diag::err_found_in_dependent_base;
2416 unsigned NoteID = diag::note_member_declared_at;
2417 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2418 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2419 : diag::err_found_later_in_class;
2420 } else if (getLangOpts().MSVCCompat) {
2421 DiagID = diag::ext_found_in_dependent_base;
2422 NoteID = diag::note_dependent_member_use;
2425 if (isInstance) {
2426 // Give a code modification hint to insert 'this->'.
2427 Diag(R.getNameLoc(), DiagID)
2428 << R.getLookupName()
2429 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2430 CheckCXXThisCapture(R.getNameLoc());
2431 } else {
2432 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2433 // they're not shadowed).
2434 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2437 for (const NamedDecl *D : R)
2438 Diag(D->getLocation(), NoteID);
2440 // Return true if we are inside a default argument instantiation
2441 // and the found name refers to an instance member function, otherwise
2442 // the caller will try to create an implicit member call and this is wrong
2443 // for default arguments.
2445 // FIXME: Is this special case necessary? We could allow the caller to
2446 // diagnose this.
2447 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2448 Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2449 return true;
2452 // Tell the callee to try to recover.
2453 return false;
2456 /// Diagnose an empty lookup.
2458 /// \return false if new lookup candidates were found
2459 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2460 CorrectionCandidateCallback &CCC,
2461 TemplateArgumentListInfo *ExplicitTemplateArgs,
2462 ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2463 TypoExpr **Out) {
2464 DeclarationName Name = R.getLookupName();
2466 unsigned diagnostic = diag::err_undeclared_var_use;
2467 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2468 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2469 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2470 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2471 diagnostic = diag::err_undeclared_use;
2472 diagnostic_suggest = diag::err_undeclared_use_suggest;
2475 // If the original lookup was an unqualified lookup, fake an
2476 // unqualified lookup. This is useful when (for example) the
2477 // original lookup would not have found something because it was a
2478 // dependent name.
2479 DeclContext *DC =
2480 LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2481 while (DC) {
2482 if (isa<CXXRecordDecl>(DC)) {
2483 LookupQualifiedName(R, DC);
2485 if (!R.empty()) {
2486 // Don't give errors about ambiguities in this lookup.
2487 R.suppressDiagnostics();
2489 // If there's a best viable function among the results, only mention
2490 // that one in the notes.
2491 OverloadCandidateSet Candidates(R.getNameLoc(),
2492 OverloadCandidateSet::CSK_Normal);
2493 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2494 OverloadCandidateSet::iterator Best;
2495 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2496 OR_Success) {
2497 R.clear();
2498 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2499 R.resolveKind();
2502 return DiagnoseDependentMemberLookup(R);
2505 R.clear();
2508 DC = DC->getLookupParent();
2511 // We didn't find anything, so try to correct for a typo.
2512 TypoCorrection Corrected;
2513 if (S && Out) {
2514 SourceLocation TypoLoc = R.getNameLoc();
2515 assert(!ExplicitTemplateArgs &&
2516 "Diagnosing an empty lookup with explicit template args!");
2517 *Out = CorrectTypoDelayed(
2518 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2519 [=](const TypoCorrection &TC) {
2520 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2521 diagnostic, diagnostic_suggest);
2523 nullptr, CTK_ErrorRecovery, LookupCtx);
2524 if (*Out)
2525 return true;
2526 } else if (S && (Corrected =
2527 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2528 &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2529 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2530 bool DroppedSpecifier =
2531 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2532 R.setLookupName(Corrected.getCorrection());
2534 bool AcceptableWithRecovery = false;
2535 bool AcceptableWithoutRecovery = false;
2536 NamedDecl *ND = Corrected.getFoundDecl();
2537 if (ND) {
2538 if (Corrected.isOverloaded()) {
2539 OverloadCandidateSet OCS(R.getNameLoc(),
2540 OverloadCandidateSet::CSK_Normal);
2541 OverloadCandidateSet::iterator Best;
2542 for (NamedDecl *CD : Corrected) {
2543 if (FunctionTemplateDecl *FTD =
2544 dyn_cast<FunctionTemplateDecl>(CD))
2545 AddTemplateOverloadCandidate(
2546 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2547 Args, OCS);
2548 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2549 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2550 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2551 Args, OCS);
2553 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2554 case OR_Success:
2555 ND = Best->FoundDecl;
2556 Corrected.setCorrectionDecl(ND);
2557 break;
2558 default:
2559 // FIXME: Arbitrarily pick the first declaration for the note.
2560 Corrected.setCorrectionDecl(ND);
2561 break;
2564 R.addDecl(ND);
2565 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2566 CXXRecordDecl *Record = nullptr;
2567 if (Corrected.getCorrectionSpecifier()) {
2568 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2569 Record = Ty->getAsCXXRecordDecl();
2571 if (!Record)
2572 Record = cast<CXXRecordDecl>(
2573 ND->getDeclContext()->getRedeclContext());
2574 R.setNamingClass(Record);
2577 auto *UnderlyingND = ND->getUnderlyingDecl();
2578 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2579 isa<FunctionTemplateDecl>(UnderlyingND);
2580 // FIXME: If we ended up with a typo for a type name or
2581 // Objective-C class name, we're in trouble because the parser
2582 // is in the wrong place to recover. Suggest the typo
2583 // correction, but don't make it a fix-it since we're not going
2584 // to recover well anyway.
2585 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2586 getAsTypeTemplateDecl(UnderlyingND) ||
2587 isa<ObjCInterfaceDecl>(UnderlyingND);
2588 } else {
2589 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2590 // because we aren't able to recover.
2591 AcceptableWithoutRecovery = true;
2594 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2595 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2596 ? diag::note_implicit_param_decl
2597 : diag::note_previous_decl;
2598 if (SS.isEmpty())
2599 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2600 PDiag(NoteID), AcceptableWithRecovery);
2601 else
2602 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2603 << Name << computeDeclContext(SS, false)
2604 << DroppedSpecifier << SS.getRange(),
2605 PDiag(NoteID), AcceptableWithRecovery);
2607 // Tell the callee whether to try to recover.
2608 return !AcceptableWithRecovery;
2611 R.clear();
2613 // Emit a special diagnostic for failed member lookups.
2614 // FIXME: computing the declaration context might fail here (?)
2615 if (!SS.isEmpty()) {
2616 Diag(R.getNameLoc(), diag::err_no_member)
2617 << Name << computeDeclContext(SS, false)
2618 << SS.getRange();
2619 return true;
2622 // Give up, we can't recover.
2623 Diag(R.getNameLoc(), diagnostic) << Name;
2624 return true;
2627 /// In Microsoft mode, if we are inside a template class whose parent class has
2628 /// dependent base classes, and we can't resolve an unqualified identifier, then
2629 /// assume the identifier is a member of a dependent base class. We can only
2630 /// recover successfully in static methods, instance methods, and other contexts
2631 /// where 'this' is available. This doesn't precisely match MSVC's
2632 /// instantiation model, but it's close enough.
2633 static Expr *
2634 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2635 DeclarationNameInfo &NameInfo,
2636 SourceLocation TemplateKWLoc,
2637 const TemplateArgumentListInfo *TemplateArgs) {
2638 // Only try to recover from lookup into dependent bases in static methods or
2639 // contexts where 'this' is available.
2640 QualType ThisType = S.getCurrentThisType();
2641 const CXXRecordDecl *RD = nullptr;
2642 if (!ThisType.isNull())
2643 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2644 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2645 RD = MD->getParent();
2646 if (!RD || !RD->hasAnyDependentBases())
2647 return nullptr;
2649 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2650 // is available, suggest inserting 'this->' as a fixit.
2651 SourceLocation Loc = NameInfo.getLoc();
2652 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2653 DB << NameInfo.getName() << RD;
2655 if (!ThisType.isNull()) {
2656 DB << FixItHint::CreateInsertion(Loc, "this->");
2657 return CXXDependentScopeMemberExpr::Create(
2658 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2659 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2660 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2663 // Synthesize a fake NNS that points to the derived class. This will
2664 // perform name lookup during template instantiation.
2665 CXXScopeSpec SS;
2666 auto *NNS =
2667 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2668 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2669 return DependentScopeDeclRefExpr::Create(
2670 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2671 TemplateArgs);
2674 ExprResult
2675 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2676 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2677 bool HasTrailingLParen, bool IsAddressOfOperand,
2678 CorrectionCandidateCallback *CCC,
2679 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2680 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2681 "cannot be direct & operand and have a trailing lparen");
2682 if (SS.isInvalid())
2683 return ExprError();
2685 TemplateArgumentListInfo TemplateArgsBuffer;
2687 // Decompose the UnqualifiedId into the following data.
2688 DeclarationNameInfo NameInfo;
2689 const TemplateArgumentListInfo *TemplateArgs;
2690 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2692 DeclarationName Name = NameInfo.getName();
2693 IdentifierInfo *II = Name.getAsIdentifierInfo();
2694 SourceLocation NameLoc = NameInfo.getLoc();
2696 if (II && II->isEditorPlaceholder()) {
2697 // FIXME: When typed placeholders are supported we can create a typed
2698 // placeholder expression node.
2699 return ExprError();
2702 // C++ [temp.dep.expr]p3:
2703 // An id-expression is type-dependent if it contains:
2704 // -- an identifier that was declared with a dependent type,
2705 // (note: handled after lookup)
2706 // -- a template-id that is dependent,
2707 // (note: handled in BuildTemplateIdExpr)
2708 // -- a conversion-function-id that specifies a dependent type,
2709 // -- a nested-name-specifier that contains a class-name that
2710 // names a dependent type.
2711 // Determine whether this is a member of an unknown specialization;
2712 // we need to handle these differently.
2713 bool DependentID = false;
2714 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2715 Name.getCXXNameType()->isDependentType()) {
2716 DependentID = true;
2717 } else if (SS.isSet()) {
2718 if (DeclContext *DC = computeDeclContext(SS, false)) {
2719 if (RequireCompleteDeclContext(SS, DC))
2720 return ExprError();
2721 } else {
2722 DependentID = true;
2726 if (DependentID)
2727 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2728 IsAddressOfOperand, TemplateArgs);
2730 // Perform the required lookup.
2731 LookupResult R(*this, NameInfo,
2732 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2733 ? LookupObjCImplicitSelfParam
2734 : LookupOrdinaryName);
2735 if (TemplateKWLoc.isValid() || TemplateArgs) {
2736 // Lookup the template name again to correctly establish the context in
2737 // which it was found. This is really unfortunate as we already did the
2738 // lookup to determine that it was a template name in the first place. If
2739 // this becomes a performance hit, we can work harder to preserve those
2740 // results until we get here but it's likely not worth it.
2741 bool MemberOfUnknownSpecialization;
2742 AssumedTemplateKind AssumedTemplate;
2743 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2744 MemberOfUnknownSpecialization, TemplateKWLoc,
2745 &AssumedTemplate))
2746 return ExprError();
2748 if (MemberOfUnknownSpecialization ||
2749 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2750 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2751 IsAddressOfOperand, TemplateArgs);
2752 } else {
2753 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2754 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2756 // If the result might be in a dependent base class, this is a dependent
2757 // id-expression.
2758 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2759 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2760 IsAddressOfOperand, TemplateArgs);
2762 // If this reference is in an Objective-C method, then we need to do
2763 // some special Objective-C lookup, too.
2764 if (IvarLookupFollowUp) {
2765 ExprResult E(LookupInObjCMethod(R, S, II, true));
2766 if (E.isInvalid())
2767 return ExprError();
2769 if (Expr *Ex = E.getAs<Expr>())
2770 return Ex;
2774 if (R.isAmbiguous())
2775 return ExprError();
2777 // This could be an implicitly declared function reference if the language
2778 // mode allows it as a feature.
2779 if (R.empty() && HasTrailingLParen && II &&
2780 getLangOpts().implicitFunctionsAllowed()) {
2781 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2782 if (D) R.addDecl(D);
2785 // Determine whether this name might be a candidate for
2786 // argument-dependent lookup.
2787 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2789 if (R.empty() && !ADL) {
2790 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2791 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2792 TemplateKWLoc, TemplateArgs))
2793 return E;
2796 // Don't diagnose an empty lookup for inline assembly.
2797 if (IsInlineAsmIdentifier)
2798 return ExprError();
2800 // If this name wasn't predeclared and if this is not a function
2801 // call, diagnose the problem.
2802 TypoExpr *TE = nullptr;
2803 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2804 : nullptr);
2805 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2806 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2807 "Typo correction callback misconfigured");
2808 if (CCC) {
2809 // Make sure the callback knows what the typo being diagnosed is.
2810 CCC->setTypoName(II);
2811 if (SS.isValid())
2812 CCC->setTypoNNS(SS.getScopeRep());
2814 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2815 // a template name, but we happen to have always already looked up the name
2816 // before we get here if it must be a template name.
2817 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2818 std::nullopt, nullptr, &TE)) {
2819 if (TE && KeywordReplacement) {
2820 auto &State = getTypoExprState(TE);
2821 auto BestTC = State.Consumer->getNextCorrection();
2822 if (BestTC.isKeyword()) {
2823 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2824 if (State.DiagHandler)
2825 State.DiagHandler(BestTC);
2826 KeywordReplacement->startToken();
2827 KeywordReplacement->setKind(II->getTokenID());
2828 KeywordReplacement->setIdentifierInfo(II);
2829 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2830 // Clean up the state associated with the TypoExpr, since it has
2831 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2832 clearDelayedTypo(TE);
2833 // Signal that a correction to a keyword was performed by returning a
2834 // valid-but-null ExprResult.
2835 return (Expr*)nullptr;
2837 State.Consumer->resetCorrectionStream();
2839 return TE ? TE : ExprError();
2842 assert(!R.empty() &&
2843 "DiagnoseEmptyLookup returned false but added no results");
2845 // If we found an Objective-C instance variable, let
2846 // LookupInObjCMethod build the appropriate expression to
2847 // reference the ivar.
2848 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2849 R.clear();
2850 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2851 // In a hopelessly buggy code, Objective-C instance variable
2852 // lookup fails and no expression will be built to reference it.
2853 if (!E.isInvalid() && !E.get())
2854 return ExprError();
2855 return E;
2859 // This is guaranteed from this point on.
2860 assert(!R.empty() || ADL);
2862 // Check whether this might be a C++ implicit instance member access.
2863 // C++ [class.mfct.non-static]p3:
2864 // When an id-expression that is not part of a class member access
2865 // syntax and not used to form a pointer to member is used in the
2866 // body of a non-static member function of class X, if name lookup
2867 // resolves the name in the id-expression to a non-static non-type
2868 // member of some class C, the id-expression is transformed into a
2869 // class member access expression using (*this) as the
2870 // postfix-expression to the left of the . operator.
2872 // But we don't actually need to do this for '&' operands if R
2873 // resolved to a function or overloaded function set, because the
2874 // expression is ill-formed if it actually works out to be a
2875 // non-static member function:
2877 // C++ [expr.ref]p4:
2878 // Otherwise, if E1.E2 refers to a non-static member function. . .
2879 // [t]he expression can be used only as the left-hand operand of a
2880 // member function call.
2882 // There are other safeguards against such uses, but it's important
2883 // to get this right here so that we don't end up making a
2884 // spuriously dependent expression if we're inside a dependent
2885 // instance method.
2886 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2887 bool MightBeImplicitMember;
2888 if (!IsAddressOfOperand)
2889 MightBeImplicitMember = true;
2890 else if (!SS.isEmpty())
2891 MightBeImplicitMember = false;
2892 else if (R.isOverloadedResult())
2893 MightBeImplicitMember = false;
2894 else if (R.isUnresolvableResult())
2895 MightBeImplicitMember = true;
2896 else
2897 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2898 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2899 isa<MSPropertyDecl>(R.getFoundDecl());
2901 if (MightBeImplicitMember)
2902 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2903 R, TemplateArgs, S);
2906 if (TemplateArgs || TemplateKWLoc.isValid()) {
2908 // In C++1y, if this is a variable template id, then check it
2909 // in BuildTemplateIdExpr().
2910 // The single lookup result must be a variable template declaration.
2911 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2912 Id.TemplateId->Kind == TNK_Var_template) {
2913 assert(R.getAsSingle<VarTemplateDecl>() &&
2914 "There should only be one declaration found.");
2917 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2920 return BuildDeclarationNameExpr(SS, R, ADL);
2923 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2924 /// declaration name, generally during template instantiation.
2925 /// There's a large number of things which don't need to be done along
2926 /// this path.
2927 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2928 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2929 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2930 if (NameInfo.getName().isDependentName())
2931 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2932 NameInfo, /*TemplateArgs=*/nullptr);
2934 DeclContext *DC = computeDeclContext(SS, false);
2935 if (!DC)
2936 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2937 NameInfo, /*TemplateArgs=*/nullptr);
2939 if (RequireCompleteDeclContext(SS, DC))
2940 return ExprError();
2942 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2943 LookupQualifiedName(R, DC);
2945 if (R.isAmbiguous())
2946 return ExprError();
2948 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2949 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2950 NameInfo, /*TemplateArgs=*/nullptr);
2952 if (R.empty()) {
2953 // Don't diagnose problems with invalid record decl, the secondary no_member
2954 // diagnostic during template instantiation is likely bogus, e.g. if a class
2955 // is invalid because it's derived from an invalid base class, then missing
2956 // members were likely supposed to be inherited.
2957 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2958 if (CD->isInvalidDecl())
2959 return ExprError();
2960 Diag(NameInfo.getLoc(), diag::err_no_member)
2961 << NameInfo.getName() << DC << SS.getRange();
2962 return ExprError();
2965 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2966 // Diagnose a missing typename if this resolved unambiguously to a type in
2967 // a dependent context. If we can recover with a type, downgrade this to
2968 // a warning in Microsoft compatibility mode.
2969 unsigned DiagID = diag::err_typename_missing;
2970 if (RecoveryTSI && getLangOpts().MSVCCompat)
2971 DiagID = diag::ext_typename_missing;
2972 SourceLocation Loc = SS.getBeginLoc();
2973 auto D = Diag(Loc, DiagID);
2974 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2975 << SourceRange(Loc, NameInfo.getEndLoc());
2977 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2978 // context.
2979 if (!RecoveryTSI)
2980 return ExprError();
2982 // Only issue the fixit if we're prepared to recover.
2983 D << FixItHint::CreateInsertion(Loc, "typename ");
2985 // Recover by pretending this was an elaborated type.
2986 QualType Ty = Context.getTypeDeclType(TD);
2987 TypeLocBuilder TLB;
2988 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2990 QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
2991 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2992 QTL.setElaboratedKeywordLoc(SourceLocation());
2993 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2995 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2997 return ExprEmpty();
3000 // Defend against this resolving to an implicit member access. We usually
3001 // won't get here if this might be a legitimate a class member (we end up in
3002 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
3003 // a pointer-to-member or in an unevaluated context in C++11.
3004 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
3005 return BuildPossibleImplicitMemberExpr(SS,
3006 /*TemplateKWLoc=*/SourceLocation(),
3007 R, /*TemplateArgs=*/nullptr, S);
3009 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
3012 /// The parser has read a name in, and Sema has detected that we're currently
3013 /// inside an ObjC method. Perform some additional checks and determine if we
3014 /// should form a reference to an ivar.
3016 /// Ideally, most of this would be done by lookup, but there's
3017 /// actually quite a lot of extra work involved.
3018 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
3019 IdentifierInfo *II) {
3020 SourceLocation Loc = Lookup.getNameLoc();
3021 ObjCMethodDecl *CurMethod = getCurMethodDecl();
3023 // Check for error condition which is already reported.
3024 if (!CurMethod)
3025 return DeclResult(true);
3027 // There are two cases to handle here. 1) scoped lookup could have failed,
3028 // in which case we should look for an ivar. 2) scoped lookup could have
3029 // found a decl, but that decl is outside the current instance method (i.e.
3030 // a global variable). In these two cases, we do a lookup for an ivar with
3031 // this name, if the lookup sucedes, we replace it our current decl.
3033 // If we're in a class method, we don't normally want to look for
3034 // ivars. But if we don't find anything else, and there's an
3035 // ivar, that's an error.
3036 bool IsClassMethod = CurMethod->isClassMethod();
3038 bool LookForIvars;
3039 if (Lookup.empty())
3040 LookForIvars = true;
3041 else if (IsClassMethod)
3042 LookForIvars = false;
3043 else
3044 LookForIvars = (Lookup.isSingleResult() &&
3045 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
3046 ObjCInterfaceDecl *IFace = nullptr;
3047 if (LookForIvars) {
3048 IFace = CurMethod->getClassInterface();
3049 ObjCInterfaceDecl *ClassDeclared;
3050 ObjCIvarDecl *IV = nullptr;
3051 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
3052 // Diagnose using an ivar in a class method.
3053 if (IsClassMethod) {
3054 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3055 return DeclResult(true);
3058 // Diagnose the use of an ivar outside of the declaring class.
3059 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
3060 !declaresSameEntity(ClassDeclared, IFace) &&
3061 !getLangOpts().DebuggerSupport)
3062 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
3064 // Success.
3065 return IV;
3067 } else if (CurMethod->isInstanceMethod()) {
3068 // We should warn if a local variable hides an ivar.
3069 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
3070 ObjCInterfaceDecl *ClassDeclared;
3071 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
3072 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
3073 declaresSameEntity(IFace, ClassDeclared))
3074 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
3077 } else if (Lookup.isSingleResult() &&
3078 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
3079 // If accessing a stand-alone ivar in a class method, this is an error.
3080 if (const ObjCIvarDecl *IV =
3081 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
3082 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
3083 return DeclResult(true);
3087 // Didn't encounter an error, didn't find an ivar.
3088 return DeclResult(false);
3091 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
3092 ObjCIvarDecl *IV) {
3093 ObjCMethodDecl *CurMethod = getCurMethodDecl();
3094 assert(CurMethod && CurMethod->isInstanceMethod() &&
3095 "should not reference ivar from this context");
3097 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
3098 assert(IFace && "should not reference ivar from this context");
3100 // If we're referencing an invalid decl, just return this as a silent
3101 // error node. The error diagnostic was already emitted on the decl.
3102 if (IV->isInvalidDecl())
3103 return ExprError();
3105 // Check if referencing a field with __attribute__((deprecated)).
3106 if (DiagnoseUseOfDecl(IV, Loc))
3107 return ExprError();
3109 // FIXME: This should use a new expr for a direct reference, don't
3110 // turn this into Self->ivar, just return a BareIVarExpr or something.
3111 IdentifierInfo &II = Context.Idents.get("self");
3112 UnqualifiedId SelfName;
3113 SelfName.setImplicitSelfParam(&II);
3114 CXXScopeSpec SelfScopeSpec;
3115 SourceLocation TemplateKWLoc;
3116 ExprResult SelfExpr =
3117 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
3118 /*HasTrailingLParen=*/false,
3119 /*IsAddressOfOperand=*/false);
3120 if (SelfExpr.isInvalid())
3121 return ExprError();
3123 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
3124 if (SelfExpr.isInvalid())
3125 return ExprError();
3127 MarkAnyDeclReferenced(Loc, IV, true);
3129 ObjCMethodFamily MF = CurMethod->getMethodFamily();
3130 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
3131 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
3132 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
3134 ObjCIvarRefExpr *Result = new (Context)
3135 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
3136 IV->getLocation(), SelfExpr.get(), true, true);
3138 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3139 if (!isUnevaluatedContext() &&
3140 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
3141 getCurFunction()->recordUseOfWeak(Result);
3143 if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
3144 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
3145 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
3147 return Result;
3150 /// The parser has read a name in, and Sema has detected that we're currently
3151 /// inside an ObjC method. Perform some additional checks and determine if we
3152 /// should form a reference to an ivar. If so, build an expression referencing
3153 /// that ivar.
3154 ExprResult
3155 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
3156 IdentifierInfo *II, bool AllowBuiltinCreation) {
3157 // FIXME: Integrate this lookup step into LookupParsedName.
3158 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
3159 if (Ivar.isInvalid())
3160 return ExprError();
3161 if (Ivar.isUsable())
3162 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
3163 cast<ObjCIvarDecl>(Ivar.get()));
3165 if (Lookup.empty() && II && AllowBuiltinCreation)
3166 LookupBuiltin(Lookup);
3168 // Sentinel value saying that we didn't do anything special.
3169 return ExprResult(false);
3172 /// Cast a base object to a member's actual type.
3174 /// There are two relevant checks:
3176 /// C++ [class.access.base]p7:
3178 /// If a class member access operator [...] is used to access a non-static
3179 /// data member or non-static member function, the reference is ill-formed if
3180 /// the left operand [...] cannot be implicitly converted to a pointer to the
3181 /// naming class of the right operand.
3183 /// C++ [expr.ref]p7:
3185 /// If E2 is a non-static data member or a non-static member function, the
3186 /// program is ill-formed if the class of which E2 is directly a member is an
3187 /// ambiguous base (11.8) of the naming class (11.9.3) of E2.
3189 /// Note that the latter check does not consider access; the access of the
3190 /// "real" base class is checked as appropriate when checking the access of the
3191 /// member name.
3192 ExprResult
3193 Sema::PerformObjectMemberConversion(Expr *From,
3194 NestedNameSpecifier *Qualifier,
3195 NamedDecl *FoundDecl,
3196 NamedDecl *Member) {
3197 const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3198 if (!RD)
3199 return From;
3201 QualType DestRecordType;
3202 QualType DestType;
3203 QualType FromRecordType;
3204 QualType FromType = From->getType();
3205 bool PointerConversions = false;
3206 if (isa<FieldDecl>(Member)) {
3207 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3208 auto FromPtrType = FromType->getAs<PointerType>();
3209 DestRecordType = Context.getAddrSpaceQualType(
3210 DestRecordType, FromPtrType
3211 ? FromType->getPointeeType().getAddressSpace()
3212 : FromType.getAddressSpace());
3214 if (FromPtrType) {
3215 DestType = Context.getPointerType(DestRecordType);
3216 FromRecordType = FromPtrType->getPointeeType();
3217 PointerConversions = true;
3218 } else {
3219 DestType = DestRecordType;
3220 FromRecordType = FromType;
3222 } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
3223 if (!Method->isImplicitObjectMemberFunction())
3224 return From;
3226 DestType = Method->getThisType().getNonReferenceType();
3227 DestRecordType = Method->getFunctionObjectParameterType();
3229 if (FromType->getAs<PointerType>()) {
3230 FromRecordType = FromType->getPointeeType();
3231 PointerConversions = true;
3232 } else {
3233 FromRecordType = FromType;
3234 DestType = DestRecordType;
3237 LangAS FromAS = FromRecordType.getAddressSpace();
3238 LangAS DestAS = DestRecordType.getAddressSpace();
3239 if (FromAS != DestAS) {
3240 QualType FromRecordTypeWithoutAS =
3241 Context.removeAddrSpaceQualType(FromRecordType);
3242 QualType FromTypeWithDestAS =
3243 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3244 if (PointerConversions)
3245 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3246 From = ImpCastExprToType(From, FromTypeWithDestAS,
3247 CK_AddressSpaceConversion, From->getValueKind())
3248 .get();
3250 } else {
3251 // No conversion necessary.
3252 return From;
3255 if (DestType->isDependentType() || FromType->isDependentType())
3256 return From;
3258 // If the unqualified types are the same, no conversion is necessary.
3259 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3260 return From;
3262 SourceRange FromRange = From->getSourceRange();
3263 SourceLocation FromLoc = FromRange.getBegin();
3265 ExprValueKind VK = From->getValueKind();
3267 // C++ [class.member.lookup]p8:
3268 // [...] Ambiguities can often be resolved by qualifying a name with its
3269 // class name.
3271 // If the member was a qualified name and the qualified referred to a
3272 // specific base subobject type, we'll cast to that intermediate type
3273 // first and then to the object in which the member is declared. That allows
3274 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3276 // class Base { public: int x; };
3277 // class Derived1 : public Base { };
3278 // class Derived2 : public Base { };
3279 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3281 // void VeryDerived::f() {
3282 // x = 17; // error: ambiguous base subobjects
3283 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3284 // }
3285 if (Qualifier && Qualifier->getAsType()) {
3286 QualType QType = QualType(Qualifier->getAsType(), 0);
3287 assert(QType->isRecordType() && "lookup done with non-record type");
3289 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3291 // In C++98, the qualifier type doesn't actually have to be a base
3292 // type of the object type, in which case we just ignore it.
3293 // Otherwise build the appropriate casts.
3294 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3295 CXXCastPath BasePath;
3296 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3297 FromLoc, FromRange, &BasePath))
3298 return ExprError();
3300 if (PointerConversions)
3301 QType = Context.getPointerType(QType);
3302 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3303 VK, &BasePath).get();
3305 FromType = QType;
3306 FromRecordType = QRecordType;
3308 // If the qualifier type was the same as the destination type,
3309 // we're done.
3310 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3311 return From;
3315 CXXCastPath BasePath;
3316 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3317 FromLoc, FromRange, &BasePath,
3318 /*IgnoreAccess=*/true))
3319 return ExprError();
3321 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3322 VK, &BasePath);
3325 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3326 const LookupResult &R,
3327 bool HasTrailingLParen) {
3328 // Only when used directly as the postfix-expression of a call.
3329 if (!HasTrailingLParen)
3330 return false;
3332 // Never if a scope specifier was provided.
3333 if (SS.isSet())
3334 return false;
3336 // Only in C++ or ObjC++.
3337 if (!getLangOpts().CPlusPlus)
3338 return false;
3340 // Turn off ADL when we find certain kinds of declarations during
3341 // normal lookup:
3342 for (const NamedDecl *D : R) {
3343 // C++0x [basic.lookup.argdep]p3:
3344 // -- a declaration of a class member
3345 // Since using decls preserve this property, we check this on the
3346 // original decl.
3347 if (D->isCXXClassMember())
3348 return false;
3350 // C++0x [basic.lookup.argdep]p3:
3351 // -- a block-scope function declaration that is not a
3352 // using-declaration
3353 // NOTE: we also trigger this for function templates (in fact, we
3354 // don't check the decl type at all, since all other decl types
3355 // turn off ADL anyway).
3356 if (isa<UsingShadowDecl>(D))
3357 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3358 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3359 return false;
3361 // C++0x [basic.lookup.argdep]p3:
3362 // -- a declaration that is neither a function or a function
3363 // template
3364 // And also for builtin functions.
3365 if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3366 // But also builtin functions.
3367 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3368 return false;
3369 } else if (!isa<FunctionTemplateDecl>(D))
3370 return false;
3373 return true;
3377 /// Diagnoses obvious problems with the use of the given declaration
3378 /// as an expression. This is only actually called for lookups that
3379 /// were not overloaded, and it doesn't promise that the declaration
3380 /// will in fact be used.
3381 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3382 bool AcceptInvalid) {
3383 if (D->isInvalidDecl() && !AcceptInvalid)
3384 return true;
3386 if (isa<TypedefNameDecl>(D)) {
3387 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3388 return true;
3391 if (isa<ObjCInterfaceDecl>(D)) {
3392 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3393 return true;
3396 if (isa<NamespaceDecl>(D)) {
3397 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3398 return true;
3401 return false;
3404 // Certain multiversion types should be treated as overloaded even when there is
3405 // only one result.
3406 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3407 assert(R.isSingleResult() && "Expected only a single result");
3408 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3409 return FD &&
3410 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3413 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3414 LookupResult &R, bool NeedsADL,
3415 bool AcceptInvalidDecl) {
3416 // If this is a single, fully-resolved result and we don't need ADL,
3417 // just build an ordinary singleton decl ref.
3418 if (!NeedsADL && R.isSingleResult() &&
3419 !R.getAsSingle<FunctionTemplateDecl>() &&
3420 !ShouldLookupResultBeMultiVersionOverload(R))
3421 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3422 R.getRepresentativeDecl(), nullptr,
3423 AcceptInvalidDecl);
3425 // We only need to check the declaration if there's exactly one
3426 // result, because in the overloaded case the results can only be
3427 // functions and function templates.
3428 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3429 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3430 AcceptInvalidDecl))
3431 return ExprError();
3433 // Otherwise, just build an unresolved lookup expression. Suppress
3434 // any lookup-related diagnostics; we'll hash these out later, when
3435 // we've picked a target.
3436 R.suppressDiagnostics();
3438 UnresolvedLookupExpr *ULE
3439 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3440 SS.getWithLocInContext(Context),
3441 R.getLookupNameInfo(),
3442 NeedsADL, R.isOverloadedResult(),
3443 R.begin(), R.end());
3445 return ULE;
3448 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3449 SourceLocation loc,
3450 ValueDecl *var);
3452 /// Complete semantic analysis for a reference to the given declaration.
3453 ExprResult Sema::BuildDeclarationNameExpr(
3454 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3455 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3456 bool AcceptInvalidDecl) {
3457 assert(D && "Cannot refer to a NULL declaration");
3458 assert(!isa<FunctionTemplateDecl>(D) &&
3459 "Cannot refer unambiguously to a function template");
3461 SourceLocation Loc = NameInfo.getLoc();
3462 if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3463 // Recovery from invalid cases (e.g. D is an invalid Decl).
3464 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3465 // diagnostics, as invalid decls use int as a fallback type.
3466 return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3469 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3470 // Specifically diagnose references to class templates that are missing
3471 // a template argument list.
3472 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3473 return ExprError();
3476 // Make sure that we're referring to a value.
3477 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3478 Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3479 Diag(D->getLocation(), diag::note_declared_at);
3480 return ExprError();
3483 // Check whether this declaration can be used. Note that we suppress
3484 // this check when we're going to perform argument-dependent lookup
3485 // on this function name, because this might not be the function
3486 // that overload resolution actually selects.
3487 if (DiagnoseUseOfDecl(D, Loc))
3488 return ExprError();
3490 auto *VD = cast<ValueDecl>(D);
3492 // Only create DeclRefExpr's for valid Decl's.
3493 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3494 return ExprError();
3496 // Handle members of anonymous structs and unions. If we got here,
3497 // and the reference is to a class member indirect field, then this
3498 // must be the subject of a pointer-to-member expression.
3499 if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3500 IndirectField && !IndirectField->isCXXClassMember())
3501 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3502 IndirectField);
3504 QualType type = VD->getType();
3505 if (type.isNull())
3506 return ExprError();
3507 ExprValueKind valueKind = VK_PRValue;
3509 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3510 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3511 // is expanded by some outer '...' in the context of the use.
3512 type = type.getNonPackExpansionType();
3514 switch (D->getKind()) {
3515 // Ignore all the non-ValueDecl kinds.
3516 #define ABSTRACT_DECL(kind)
3517 #define VALUE(type, base)
3518 #define DECL(type, base) case Decl::type:
3519 #include "clang/AST/DeclNodes.inc"
3520 llvm_unreachable("invalid value decl kind");
3522 // These shouldn't make it here.
3523 case Decl::ObjCAtDefsField:
3524 llvm_unreachable("forming non-member reference to ivar?");
3526 // Enum constants are always r-values and never references.
3527 // Unresolved using declarations are dependent.
3528 case Decl::EnumConstant:
3529 case Decl::UnresolvedUsingValue:
3530 case Decl::OMPDeclareReduction:
3531 case Decl::OMPDeclareMapper:
3532 valueKind = VK_PRValue;
3533 break;
3535 // Fields and indirect fields that got here must be for
3536 // pointer-to-member expressions; we just call them l-values for
3537 // internal consistency, because this subexpression doesn't really
3538 // exist in the high-level semantics.
3539 case Decl::Field:
3540 case Decl::IndirectField:
3541 case Decl::ObjCIvar:
3542 assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3544 // These can't have reference type in well-formed programs, but
3545 // for internal consistency we do this anyway.
3546 type = type.getNonReferenceType();
3547 valueKind = VK_LValue;
3548 break;
3550 // Non-type template parameters are either l-values or r-values
3551 // depending on the type.
3552 case Decl::NonTypeTemplateParm: {
3553 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3554 type = reftype->getPointeeType();
3555 valueKind = VK_LValue; // even if the parameter is an r-value reference
3556 break;
3559 // [expr.prim.id.unqual]p2:
3560 // If the entity is a template parameter object for a template
3561 // parameter of type T, the type of the expression is const T.
3562 // [...] The expression is an lvalue if the entity is a [...] template
3563 // parameter object.
3564 if (type->isRecordType()) {
3565 type = type.getUnqualifiedType().withConst();
3566 valueKind = VK_LValue;
3567 break;
3570 // For non-references, we need to strip qualifiers just in case
3571 // the template parameter was declared as 'const int' or whatever.
3572 valueKind = VK_PRValue;
3573 type = type.getUnqualifiedType();
3574 break;
3577 case Decl::Var:
3578 case Decl::VarTemplateSpecialization:
3579 case Decl::VarTemplatePartialSpecialization:
3580 case Decl::Decomposition:
3581 case Decl::OMPCapturedExpr:
3582 // In C, "extern void blah;" is valid and is an r-value.
3583 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3584 type->isVoidType()) {
3585 valueKind = VK_PRValue;
3586 break;
3588 [[fallthrough]];
3590 case Decl::ImplicitParam:
3591 case Decl::ParmVar: {
3592 // These are always l-values.
3593 valueKind = VK_LValue;
3594 type = type.getNonReferenceType();
3596 // FIXME: Does the addition of const really only apply in
3597 // potentially-evaluated contexts? Since the variable isn't actually
3598 // captured in an unevaluated context, it seems that the answer is no.
3599 if (!isUnevaluatedContext()) {
3600 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3601 if (!CapturedType.isNull())
3602 type = CapturedType;
3605 break;
3608 case Decl::Binding:
3609 // These are always lvalues.
3610 valueKind = VK_LValue;
3611 type = type.getNonReferenceType();
3612 break;
3614 case Decl::Function: {
3615 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3616 if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3617 type = Context.BuiltinFnTy;
3618 valueKind = VK_PRValue;
3619 break;
3623 const FunctionType *fty = type->castAs<FunctionType>();
3625 // If we're referring to a function with an __unknown_anytype
3626 // result type, make the entire expression __unknown_anytype.
3627 if (fty->getReturnType() == Context.UnknownAnyTy) {
3628 type = Context.UnknownAnyTy;
3629 valueKind = VK_PRValue;
3630 break;
3633 // Functions are l-values in C++.
3634 if (getLangOpts().CPlusPlus) {
3635 valueKind = VK_LValue;
3636 break;
3639 // C99 DR 316 says that, if a function type comes from a
3640 // function definition (without a prototype), that type is only
3641 // used for checking compatibility. Therefore, when referencing
3642 // the function, we pretend that we don't have the full function
3643 // type.
3644 if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3645 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3646 fty->getExtInfo());
3648 // Functions are r-values in C.
3649 valueKind = VK_PRValue;
3650 break;
3653 case Decl::CXXDeductionGuide:
3654 llvm_unreachable("building reference to deduction guide");
3656 case Decl::MSProperty:
3657 case Decl::MSGuid:
3658 case Decl::TemplateParamObject:
3659 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3660 // capture in OpenMP, or duplicated between host and device?
3661 valueKind = VK_LValue;
3662 break;
3664 case Decl::UnnamedGlobalConstant:
3665 valueKind = VK_LValue;
3666 break;
3668 case Decl::CXXMethod:
3669 // If we're referring to a method with an __unknown_anytype
3670 // result type, make the entire expression __unknown_anytype.
3671 // This should only be possible with a type written directly.
3672 if (const FunctionProtoType *proto =
3673 dyn_cast<FunctionProtoType>(VD->getType()))
3674 if (proto->getReturnType() == Context.UnknownAnyTy) {
3675 type = Context.UnknownAnyTy;
3676 valueKind = VK_PRValue;
3677 break;
3680 // C++ methods are l-values if static, r-values if non-static.
3681 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3682 valueKind = VK_LValue;
3683 break;
3685 [[fallthrough]];
3687 case Decl::CXXConversion:
3688 case Decl::CXXDestructor:
3689 case Decl::CXXConstructor:
3690 valueKind = VK_PRValue;
3691 break;
3694 auto *E =
3695 BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3696 /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3697 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3698 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3699 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3700 // diagnostics).
3701 if (VD->isInvalidDecl() && E)
3702 return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3703 return E;
3706 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3707 SmallString<32> &Target) {
3708 Target.resize(CharByteWidth * (Source.size() + 1));
3709 char *ResultPtr = &Target[0];
3710 const llvm::UTF8 *ErrorPtr;
3711 bool success =
3712 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3713 (void)success;
3714 assert(success);
3715 Target.resize(ResultPtr - &Target[0]);
3718 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3719 PredefinedExpr::IdentKind IK) {
3720 Decl *currentDecl = getPredefinedExprDecl(CurContext);
3721 if (!currentDecl) {
3722 Diag(Loc, diag::ext_predef_outside_function);
3723 currentDecl = Context.getTranslationUnitDecl();
3726 QualType ResTy;
3727 StringLiteral *SL = nullptr;
3728 if (cast<DeclContext>(currentDecl)->isDependentContext())
3729 ResTy = Context.DependentTy;
3730 else {
3731 // Pre-defined identifiers are of type char[x], where x is the length of
3732 // the string.
3733 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3734 unsigned Length = Str.length();
3736 llvm::APInt LengthI(32, Length + 1);
3737 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3738 ResTy =
3739 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3740 SmallString<32> RawChars;
3741 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3742 Str, RawChars);
3743 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3744 ArraySizeModifier::Normal,
3745 /*IndexTypeQuals*/ 0);
3746 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3747 /*Pascal*/ false, ResTy, Loc);
3748 } else {
3749 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3750 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3751 ArraySizeModifier::Normal,
3752 /*IndexTypeQuals*/ 0);
3753 SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary,
3754 /*Pascal*/ false, ResTy, Loc);
3758 return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3759 SL);
3762 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3763 SourceLocation LParen,
3764 SourceLocation RParen,
3765 TypeSourceInfo *TSI) {
3766 return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3769 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3770 SourceLocation LParen,
3771 SourceLocation RParen,
3772 ParsedType ParsedTy) {
3773 TypeSourceInfo *TSI = nullptr;
3774 QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3776 if (Ty.isNull())
3777 return ExprError();
3778 if (!TSI)
3779 TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3781 return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3784 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3785 return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3788 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3789 SmallString<16> CharBuffer;
3790 bool Invalid = false;
3791 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3792 if (Invalid)
3793 return ExprError();
3795 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3796 PP, Tok.getKind());
3797 if (Literal.hadError())
3798 return ExprError();
3800 QualType Ty;
3801 if (Literal.isWide())
3802 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3803 else if (Literal.isUTF8() && getLangOpts().C23)
3804 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3805 else if (Literal.isUTF8() && getLangOpts().Char8)
3806 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3807 else if (Literal.isUTF16())
3808 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3809 else if (Literal.isUTF32())
3810 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3811 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3812 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3813 else
3814 Ty = Context.CharTy; // 'x' -> char in C++;
3815 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3817 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3818 if (Literal.isWide())
3819 Kind = CharacterLiteral::Wide;
3820 else if (Literal.isUTF16())
3821 Kind = CharacterLiteral::UTF16;
3822 else if (Literal.isUTF32())
3823 Kind = CharacterLiteral::UTF32;
3824 else if (Literal.isUTF8())
3825 Kind = CharacterLiteral::UTF8;
3827 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3828 Tok.getLocation());
3830 if (Literal.getUDSuffix().empty())
3831 return Lit;
3833 // We're building a user-defined literal.
3834 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3835 SourceLocation UDSuffixLoc =
3836 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3838 // Make sure we're allowed user-defined literals here.
3839 if (!UDLScope)
3840 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3842 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3843 // operator "" X (ch)
3844 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3845 Lit, Tok.getLocation());
3848 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3849 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3850 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3851 Context.IntTy, Loc);
3854 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3855 QualType Ty, SourceLocation Loc) {
3856 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3858 using llvm::APFloat;
3859 APFloat Val(Format);
3861 APFloat::opStatus result = Literal.GetFloatValue(Val);
3863 // Overflow is always an error, but underflow is only an error if
3864 // we underflowed to zero (APFloat reports denormals as underflow).
3865 if ((result & APFloat::opOverflow) ||
3866 ((result & APFloat::opUnderflow) && Val.isZero())) {
3867 unsigned diagnostic;
3868 SmallString<20> buffer;
3869 if (result & APFloat::opOverflow) {
3870 diagnostic = diag::warn_float_overflow;
3871 APFloat::getLargest(Format).toString(buffer);
3872 } else {
3873 diagnostic = diag::warn_float_underflow;
3874 APFloat::getSmallest(Format).toString(buffer);
3877 S.Diag(Loc, diagnostic)
3878 << Ty
3879 << StringRef(buffer.data(), buffer.size());
3882 bool isExact = (result == APFloat::opOK);
3883 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3886 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3887 assert(E && "Invalid expression");
3889 if (E->isValueDependent())
3890 return false;
3892 QualType QT = E->getType();
3893 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3894 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3895 return true;
3898 llvm::APSInt ValueAPS;
3899 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3901 if (R.isInvalid())
3902 return true;
3904 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3905 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3906 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3907 << toString(ValueAPS, 10) << ValueIsPositive;
3908 return true;
3911 return false;
3914 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3915 // Fast path for a single digit (which is quite common). A single digit
3916 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3917 if (Tok.getLength() == 1) {
3918 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3919 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3922 SmallString<128> SpellingBuffer;
3923 // NumericLiteralParser wants to overread by one character. Add padding to
3924 // the buffer in case the token is copied to the buffer. If getSpelling()
3925 // returns a StringRef to the memory buffer, it should have a null char at
3926 // the EOF, so it is also safe.
3927 SpellingBuffer.resize(Tok.getLength() + 1);
3929 // Get the spelling of the token, which eliminates trigraphs, etc.
3930 bool Invalid = false;
3931 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3932 if (Invalid)
3933 return ExprError();
3935 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3936 PP.getSourceManager(), PP.getLangOpts(),
3937 PP.getTargetInfo(), PP.getDiagnostics());
3938 if (Literal.hadError)
3939 return ExprError();
3941 if (Literal.hasUDSuffix()) {
3942 // We're building a user-defined literal.
3943 const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3944 SourceLocation UDSuffixLoc =
3945 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3947 // Make sure we're allowed user-defined literals here.
3948 if (!UDLScope)
3949 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3951 QualType CookedTy;
3952 if (Literal.isFloatingLiteral()) {
3953 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3954 // long double, the literal is treated as a call of the form
3955 // operator "" X (f L)
3956 CookedTy = Context.LongDoubleTy;
3957 } else {
3958 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3959 // unsigned long long, the literal is treated as a call of the form
3960 // operator "" X (n ULL)
3961 CookedTy = Context.UnsignedLongLongTy;
3964 DeclarationName OpName =
3965 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3966 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3967 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3969 SourceLocation TokLoc = Tok.getLocation();
3971 // Perform literal operator lookup to determine if we're building a raw
3972 // literal or a cooked one.
3973 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3974 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3975 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3976 /*AllowStringTemplatePack*/ false,
3977 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3978 case LOLR_ErrorNoDiagnostic:
3979 // Lookup failure for imaginary constants isn't fatal, there's still the
3980 // GNU extension producing _Complex types.
3981 break;
3982 case LOLR_Error:
3983 return ExprError();
3984 case LOLR_Cooked: {
3985 Expr *Lit;
3986 if (Literal.isFloatingLiteral()) {
3987 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3988 } else {
3989 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3990 if (Literal.GetIntegerValue(ResultVal))
3991 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3992 << /* Unsigned */ 1;
3993 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3994 Tok.getLocation());
3996 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3999 case LOLR_Raw: {
4000 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
4001 // literal is treated as a call of the form
4002 // operator "" X ("n")
4003 unsigned Length = Literal.getUDSuffixOffset();
4004 QualType StrTy = Context.getConstantArrayType(
4005 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
4006 llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
4007 Expr *Lit =
4008 StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
4009 StringLiteral::Ordinary,
4010 /*Pascal*/ false, StrTy, &TokLoc, 1);
4011 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
4014 case LOLR_Template: {
4015 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
4016 // template), L is treated as a call fo the form
4017 // operator "" X <'c1', 'c2', ... 'ck'>()
4018 // where n is the source character sequence c1 c2 ... ck.
4019 TemplateArgumentListInfo ExplicitArgs;
4020 unsigned CharBits = Context.getIntWidth(Context.CharTy);
4021 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
4022 llvm::APSInt Value(CharBits, CharIsUnsigned);
4023 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
4024 Value = TokSpelling[I];
4025 TemplateArgument Arg(Context, Value, Context.CharTy);
4026 TemplateArgumentLocInfo ArgInfo;
4027 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
4029 return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
4030 &ExplicitArgs);
4032 case LOLR_StringTemplatePack:
4033 llvm_unreachable("unexpected literal operator lookup result");
4037 Expr *Res;
4039 if (Literal.isFixedPointLiteral()) {
4040 QualType Ty;
4042 if (Literal.isAccum) {
4043 if (Literal.isHalf) {
4044 Ty = Context.ShortAccumTy;
4045 } else if (Literal.isLong) {
4046 Ty = Context.LongAccumTy;
4047 } else {
4048 Ty = Context.AccumTy;
4050 } else if (Literal.isFract) {
4051 if (Literal.isHalf) {
4052 Ty = Context.ShortFractTy;
4053 } else if (Literal.isLong) {
4054 Ty = Context.LongFractTy;
4055 } else {
4056 Ty = Context.FractTy;
4060 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
4062 bool isSigned = !Literal.isUnsigned;
4063 unsigned scale = Context.getFixedPointScale(Ty);
4064 unsigned bit_width = Context.getTypeInfo(Ty).Width;
4066 llvm::APInt Val(bit_width, 0, isSigned);
4067 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
4068 bool ValIsZero = Val.isZero() && !Overflowed;
4070 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
4071 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
4072 // Clause 6.4.4 - The value of a constant shall be in the range of
4073 // representable values for its type, with exception for constants of a
4074 // fract type with a value of exactly 1; such a constant shall denote
4075 // the maximal value for the type.
4076 --Val;
4077 else if (Val.ugt(MaxVal) || Overflowed)
4078 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
4080 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
4081 Tok.getLocation(), scale);
4082 } else if (Literal.isFloatingLiteral()) {
4083 QualType Ty;
4084 if (Literal.isHalf){
4085 if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
4086 Ty = Context.HalfTy;
4087 else {
4088 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
4089 return ExprError();
4091 } else if (Literal.isFloat)
4092 Ty = Context.FloatTy;
4093 else if (Literal.isLong)
4094 Ty = Context.LongDoubleTy;
4095 else if (Literal.isFloat16)
4096 Ty = Context.Float16Ty;
4097 else if (Literal.isFloat128)
4098 Ty = Context.Float128Ty;
4099 else
4100 Ty = Context.DoubleTy;
4102 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
4104 if (Ty == Context.DoubleTy) {
4105 if (getLangOpts().SinglePrecisionConstants) {
4106 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
4107 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4109 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
4110 "cl_khr_fp64", getLangOpts())) {
4111 // Impose single-precision float type when cl_khr_fp64 is not enabled.
4112 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
4113 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
4114 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
4117 } else if (!Literal.isIntegerLiteral()) {
4118 return ExprError();
4119 } else {
4120 QualType Ty;
4122 // 'z/uz' literals are a C++23 feature.
4123 if (Literal.isSizeT)
4124 Diag(Tok.getLocation(), getLangOpts().CPlusPlus
4125 ? getLangOpts().CPlusPlus23
4126 ? diag::warn_cxx20_compat_size_t_suffix
4127 : diag::ext_cxx23_size_t_suffix
4128 : diag::err_cxx23_size_t_suffix);
4130 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
4131 // but we do not currently support the suffix in C++ mode because it's not
4132 // entirely clear whether WG21 will prefer this suffix to return a library
4133 // type such as std::bit_int instead of returning a _BitInt.
4134 if (Literal.isBitInt && !getLangOpts().CPlusPlus)
4135 PP.Diag(Tok.getLocation(), getLangOpts().C23
4136 ? diag::warn_c23_compat_bitint_suffix
4137 : diag::ext_c23_bitint_suffix);
4139 // Get the value in the widest-possible width. What is "widest" depends on
4140 // whether the literal is a bit-precise integer or not. For a bit-precise
4141 // integer type, try to scan the source to determine how many bits are
4142 // needed to represent the value. This may seem a bit expensive, but trying
4143 // to get the integer value from an overly-wide APInt is *extremely*
4144 // expensive, so the naive approach of assuming
4145 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
4146 unsigned BitsNeeded =
4147 Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
4148 Literal.getLiteralDigits(), Literal.getRadix())
4149 : Context.getTargetInfo().getIntMaxTWidth();
4150 llvm::APInt ResultVal(BitsNeeded, 0);
4152 if (Literal.GetIntegerValue(ResultVal)) {
4153 // If this value didn't fit into uintmax_t, error and force to ull.
4154 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4155 << /* Unsigned */ 1;
4156 Ty = Context.UnsignedLongLongTy;
4157 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
4158 "long long is not intmax_t?");
4159 } else {
4160 // If this value fits into a ULL, try to figure out what else it fits into
4161 // according to the rules of C99 6.4.4.1p5.
4163 // Octal, Hexadecimal, and integers with a U suffix are allowed to
4164 // be an unsigned int.
4165 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4167 // Check from smallest to largest, picking the smallest type we can.
4168 unsigned Width = 0;
4170 // Microsoft specific integer suffixes are explicitly sized.
4171 if (Literal.MicrosoftInteger) {
4172 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4173 Width = 8;
4174 Ty = Context.CharTy;
4175 } else {
4176 Width = Literal.MicrosoftInteger;
4177 Ty = Context.getIntTypeForBitwidth(Width,
4178 /*Signed=*/!Literal.isUnsigned);
4182 // Bit-precise integer literals are automagically-sized based on the
4183 // width required by the literal.
4184 if (Literal.isBitInt) {
4185 // The signed version has one more bit for the sign value. There are no
4186 // zero-width bit-precise integers, even if the literal value is 0.
4187 Width = std::max(ResultVal.getActiveBits(), 1u) +
4188 (Literal.isUnsigned ? 0u : 1u);
4190 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4191 // and reset the type to the largest supported width.
4192 unsigned int MaxBitIntWidth =
4193 Context.getTargetInfo().getMaxBitIntWidth();
4194 if (Width > MaxBitIntWidth) {
4195 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4196 << Literal.isUnsigned;
4197 Width = MaxBitIntWidth;
4200 // Reset the result value to the smaller APInt and select the correct
4201 // type to be used. Note, we zext even for signed values because the
4202 // literal itself is always an unsigned value (a preceeding - is a
4203 // unary operator, not part of the literal).
4204 ResultVal = ResultVal.zextOrTrunc(Width);
4205 Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4208 // Check C++23 size_t literals.
4209 if (Literal.isSizeT) {
4210 assert(!Literal.MicrosoftInteger &&
4211 "size_t literals can't be Microsoft literals");
4212 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4213 Context.getTargetInfo().getSizeType());
4215 // Does it fit in size_t?
4216 if (ResultVal.isIntN(SizeTSize)) {
4217 // Does it fit in ssize_t?
4218 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4219 Ty = Context.getSignedSizeType();
4220 else if (AllowUnsigned)
4221 Ty = Context.getSizeType();
4222 Width = SizeTSize;
4226 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4227 !Literal.isSizeT) {
4228 // Are int/unsigned possibilities?
4229 unsigned IntSize = Context.getTargetInfo().getIntWidth();
4231 // Does it fit in a unsigned int?
4232 if (ResultVal.isIntN(IntSize)) {
4233 // Does it fit in a signed int?
4234 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4235 Ty = Context.IntTy;
4236 else if (AllowUnsigned)
4237 Ty = Context.UnsignedIntTy;
4238 Width = IntSize;
4242 // Are long/unsigned long possibilities?
4243 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4244 unsigned LongSize = Context.getTargetInfo().getLongWidth();
4246 // Does it fit in a unsigned long?
4247 if (ResultVal.isIntN(LongSize)) {
4248 // Does it fit in a signed long?
4249 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4250 Ty = Context.LongTy;
4251 else if (AllowUnsigned)
4252 Ty = Context.UnsignedLongTy;
4253 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4254 // is compatible.
4255 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4256 const unsigned LongLongSize =
4257 Context.getTargetInfo().getLongLongWidth();
4258 Diag(Tok.getLocation(),
4259 getLangOpts().CPlusPlus
4260 ? Literal.isLong
4261 ? diag::warn_old_implicitly_unsigned_long_cxx
4262 : /*C++98 UB*/ diag::
4263 ext_old_implicitly_unsigned_long_cxx
4264 : diag::warn_old_implicitly_unsigned_long)
4265 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4266 : /*will be ill-formed*/ 1);
4267 Ty = Context.UnsignedLongTy;
4269 Width = LongSize;
4273 // Check long long if needed.
4274 if (Ty.isNull() && !Literal.isSizeT) {
4275 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4277 // Does it fit in a unsigned long long?
4278 if (ResultVal.isIntN(LongLongSize)) {
4279 // Does it fit in a signed long long?
4280 // To be compatible with MSVC, hex integer literals ending with the
4281 // LL or i64 suffix are always signed in Microsoft mode.
4282 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4283 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4284 Ty = Context.LongLongTy;
4285 else if (AllowUnsigned)
4286 Ty = Context.UnsignedLongLongTy;
4287 Width = LongLongSize;
4289 // 'long long' is a C99 or C++11 feature, whether the literal
4290 // explicitly specified 'long long' or we needed the extra width.
4291 if (getLangOpts().CPlusPlus)
4292 Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4293 ? diag::warn_cxx98_compat_longlong
4294 : diag::ext_cxx11_longlong);
4295 else if (!getLangOpts().C99)
4296 Diag(Tok.getLocation(), diag::ext_c99_longlong);
4300 // If we still couldn't decide a type, we either have 'size_t' literal
4301 // that is out of range, or a decimal literal that does not fit in a
4302 // signed long long and has no U suffix.
4303 if (Ty.isNull()) {
4304 if (Literal.isSizeT)
4305 Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4306 << Literal.isUnsigned;
4307 else
4308 Diag(Tok.getLocation(),
4309 diag::ext_integer_literal_too_large_for_signed);
4310 Ty = Context.UnsignedLongLongTy;
4311 Width = Context.getTargetInfo().getLongLongWidth();
4314 if (ResultVal.getBitWidth() != Width)
4315 ResultVal = ResultVal.trunc(Width);
4317 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4320 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4321 if (Literal.isImaginary) {
4322 Res = new (Context) ImaginaryLiteral(Res,
4323 Context.getComplexType(Res->getType()));
4325 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4327 return Res;
4330 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4331 assert(E && "ActOnParenExpr() missing expr");
4332 QualType ExprTy = E->getType();
4333 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4334 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4335 return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4336 return new (Context) ParenExpr(L, R, E);
4339 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4340 SourceLocation Loc,
4341 SourceRange ArgRange) {
4342 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4343 // scalar or vector data type argument..."
4344 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4345 // type (C99 6.2.5p18) or void.
4346 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4347 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4348 << T << ArgRange;
4349 return true;
4352 assert((T->isVoidType() || !T->isIncompleteType()) &&
4353 "Scalar types should always be complete");
4354 return false;
4357 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4358 SourceLocation Loc,
4359 SourceRange ArgRange) {
4360 // builtin_vectorelements supports both fixed-sized and scalable vectors.
4361 if (!T->isVectorType() && !T->isSizelessVectorType())
4362 return S.Diag(Loc, diag::err_builtin_non_vector_type)
4363 << ""
4364 << "__builtin_vectorelements" << T << ArgRange;
4366 return false;
4369 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4370 SourceLocation Loc,
4371 SourceRange ArgRange,
4372 UnaryExprOrTypeTrait TraitKind) {
4373 // Invalid types must be hard errors for SFINAE in C++.
4374 if (S.LangOpts.CPlusPlus)
4375 return true;
4377 // C99 6.5.3.4p1:
4378 if (T->isFunctionType() &&
4379 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4380 TraitKind == UETT_PreferredAlignOf)) {
4381 // sizeof(function)/alignof(function) is allowed as an extension.
4382 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4383 << getTraitSpelling(TraitKind) << ArgRange;
4384 return false;
4387 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4388 // this is an error (OpenCL v1.1 s6.3.k)
4389 if (T->isVoidType()) {
4390 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4391 : diag::ext_sizeof_alignof_void_type;
4392 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4393 return false;
4396 return true;
4399 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4400 SourceLocation Loc,
4401 SourceRange ArgRange,
4402 UnaryExprOrTypeTrait TraitKind) {
4403 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4404 // runtime doesn't allow it.
4405 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4406 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4407 << T << (TraitKind == UETT_SizeOf)
4408 << ArgRange;
4409 return true;
4412 return false;
4415 /// Check whether E is a pointer from a decayed array type (the decayed
4416 /// pointer type is equal to T) and emit a warning if it is.
4417 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4418 const Expr *E) {
4419 // Don't warn if the operation changed the type.
4420 if (T != E->getType())
4421 return;
4423 // Now look for array decays.
4424 const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4425 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4426 return;
4428 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4429 << ICE->getType()
4430 << ICE->getSubExpr()->getType();
4433 /// Check the constraints on expression operands to unary type expression
4434 /// and type traits.
4436 /// Completes any types necessary and validates the constraints on the operand
4437 /// expression. The logic mostly mirrors the type-based overload, but may modify
4438 /// the expression as it completes the type for that expression through template
4439 /// instantiation, etc.
4440 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4441 UnaryExprOrTypeTrait ExprKind) {
4442 QualType ExprTy = E->getType();
4443 assert(!ExprTy->isReferenceType());
4445 bool IsUnevaluatedOperand =
4446 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4447 ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4448 if (IsUnevaluatedOperand) {
4449 ExprResult Result = CheckUnevaluatedOperand(E);
4450 if (Result.isInvalid())
4451 return true;
4452 E = Result.get();
4455 // The operand for sizeof and alignof is in an unevaluated expression context,
4456 // so side effects could result in unintended consequences.
4457 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4458 // used to build SFINAE gadgets.
4459 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4460 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4461 !E->isInstantiationDependent() &&
4462 !E->getType()->isVariableArrayType() &&
4463 E->HasSideEffects(Context, false))
4464 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4466 if (ExprKind == UETT_VecStep)
4467 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4468 E->getSourceRange());
4470 if (ExprKind == UETT_VectorElements)
4471 return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4472 E->getSourceRange());
4474 // Explicitly list some types as extensions.
4475 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4476 E->getSourceRange(), ExprKind))
4477 return false;
4479 // WebAssembly tables are always illegal operands to unary expressions and
4480 // type traits.
4481 if (Context.getTargetInfo().getTriple().isWasm() &&
4482 E->getType()->isWebAssemblyTableType()) {
4483 Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4484 << getTraitSpelling(ExprKind);
4485 return true;
4488 // 'alignof' applied to an expression only requires the base element type of
4489 // the expression to be complete. 'sizeof' requires the expression's type to
4490 // be complete (and will attempt to complete it if it's an array of unknown
4491 // bound).
4492 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4493 if (RequireCompleteSizedType(
4494 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4495 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4496 getTraitSpelling(ExprKind), E->getSourceRange()))
4497 return true;
4498 } else {
4499 if (RequireCompleteSizedExprType(
4500 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4501 getTraitSpelling(ExprKind), E->getSourceRange()))
4502 return true;
4505 // Completing the expression's type may have changed it.
4506 ExprTy = E->getType();
4507 assert(!ExprTy->isReferenceType());
4509 if (ExprTy->isFunctionType()) {
4510 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4511 << getTraitSpelling(ExprKind) << E->getSourceRange();
4512 return true;
4515 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4516 E->getSourceRange(), ExprKind))
4517 return true;
4519 if (ExprKind == UETT_SizeOf) {
4520 if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4521 if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4522 QualType OType = PVD->getOriginalType();
4523 QualType Type = PVD->getType();
4524 if (Type->isPointerType() && OType->isArrayType()) {
4525 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4526 << Type << OType;
4527 Diag(PVD->getLocation(), diag::note_declared_at);
4532 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4533 // decays into a pointer and returns an unintended result. This is most
4534 // likely a typo for "sizeof(array) op x".
4535 if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4536 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4537 BO->getLHS());
4538 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4539 BO->getRHS());
4543 return false;
4546 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4547 // Cannot know anything else if the expression is dependent.
4548 if (E->isTypeDependent())
4549 return false;
4551 if (E->getObjectKind() == OK_BitField) {
4552 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4553 << 1 << E->getSourceRange();
4554 return true;
4557 ValueDecl *D = nullptr;
4558 Expr *Inner = E->IgnoreParens();
4559 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4560 D = DRE->getDecl();
4561 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4562 D = ME->getMemberDecl();
4565 // If it's a field, require the containing struct to have a
4566 // complete definition so that we can compute the layout.
4568 // This can happen in C++11 onwards, either by naming the member
4569 // in a way that is not transformed into a member access expression
4570 // (in an unevaluated operand, for instance), or by naming the member
4571 // in a trailing-return-type.
4573 // For the record, since __alignof__ on expressions is a GCC
4574 // extension, GCC seems to permit this but always gives the
4575 // nonsensical answer 0.
4577 // We don't really need the layout here --- we could instead just
4578 // directly check for all the appropriate alignment-lowing
4579 // attributes --- but that would require duplicating a lot of
4580 // logic that just isn't worth duplicating for such a marginal
4581 // use-case.
4582 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4583 // Fast path this check, since we at least know the record has a
4584 // definition if we can find a member of it.
4585 if (!FD->getParent()->isCompleteDefinition()) {
4586 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4587 << E->getSourceRange();
4588 return true;
4591 // Otherwise, if it's a field, and the field doesn't have
4592 // reference type, then it must have a complete type (or be a
4593 // flexible array member, which we explicitly want to
4594 // white-list anyway), which makes the following checks trivial.
4595 if (!FD->getType()->isReferenceType())
4596 return false;
4599 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4602 bool Sema::CheckVecStepExpr(Expr *E) {
4603 E = E->IgnoreParens();
4605 // Cannot know anything else if the expression is dependent.
4606 if (E->isTypeDependent())
4607 return false;
4609 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4612 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4613 CapturingScopeInfo *CSI) {
4614 assert(T->isVariablyModifiedType());
4615 assert(CSI != nullptr);
4617 // We're going to walk down into the type and look for VLA expressions.
4618 do {
4619 const Type *Ty = T.getTypePtr();
4620 switch (Ty->getTypeClass()) {
4621 #define TYPE(Class, Base)
4622 #define ABSTRACT_TYPE(Class, Base)
4623 #define NON_CANONICAL_TYPE(Class, Base)
4624 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4625 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4626 #include "clang/AST/TypeNodes.inc"
4627 T = QualType();
4628 break;
4629 // These types are never variably-modified.
4630 case Type::Builtin:
4631 case Type::Complex:
4632 case Type::Vector:
4633 case Type::ExtVector:
4634 case Type::ConstantMatrix:
4635 case Type::Record:
4636 case Type::Enum:
4637 case Type::TemplateSpecialization:
4638 case Type::ObjCObject:
4639 case Type::ObjCInterface:
4640 case Type::ObjCObjectPointer:
4641 case Type::ObjCTypeParam:
4642 case Type::Pipe:
4643 case Type::BitInt:
4644 llvm_unreachable("type class is never variably-modified!");
4645 case Type::Elaborated:
4646 T = cast<ElaboratedType>(Ty)->getNamedType();
4647 break;
4648 case Type::Adjusted:
4649 T = cast<AdjustedType>(Ty)->getOriginalType();
4650 break;
4651 case Type::Decayed:
4652 T = cast<DecayedType>(Ty)->getPointeeType();
4653 break;
4654 case Type::Pointer:
4655 T = cast<PointerType>(Ty)->getPointeeType();
4656 break;
4657 case Type::BlockPointer:
4658 T = cast<BlockPointerType>(Ty)->getPointeeType();
4659 break;
4660 case Type::LValueReference:
4661 case Type::RValueReference:
4662 T = cast<ReferenceType>(Ty)->getPointeeType();
4663 break;
4664 case Type::MemberPointer:
4665 T = cast<MemberPointerType>(Ty)->getPointeeType();
4666 break;
4667 case Type::ConstantArray:
4668 case Type::IncompleteArray:
4669 // Losing element qualification here is fine.
4670 T = cast<ArrayType>(Ty)->getElementType();
4671 break;
4672 case Type::VariableArray: {
4673 // Losing element qualification here is fine.
4674 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4676 // Unknown size indication requires no size computation.
4677 // Otherwise, evaluate and record it.
4678 auto Size = VAT->getSizeExpr();
4679 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4680 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4681 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4683 T = VAT->getElementType();
4684 break;
4686 case Type::FunctionProto:
4687 case Type::FunctionNoProto:
4688 T = cast<FunctionType>(Ty)->getReturnType();
4689 break;
4690 case Type::Paren:
4691 case Type::TypeOf:
4692 case Type::UnaryTransform:
4693 case Type::Attributed:
4694 case Type::BTFTagAttributed:
4695 case Type::SubstTemplateTypeParm:
4696 case Type::MacroQualified:
4697 // Keep walking after single level desugaring.
4698 T = T.getSingleStepDesugaredType(Context);
4699 break;
4700 case Type::Typedef:
4701 T = cast<TypedefType>(Ty)->desugar();
4702 break;
4703 case Type::Decltype:
4704 T = cast<DecltypeType>(Ty)->desugar();
4705 break;
4706 case Type::Using:
4707 T = cast<UsingType>(Ty)->desugar();
4708 break;
4709 case Type::Auto:
4710 case Type::DeducedTemplateSpecialization:
4711 T = cast<DeducedType>(Ty)->getDeducedType();
4712 break;
4713 case Type::TypeOfExpr:
4714 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4715 break;
4716 case Type::Atomic:
4717 T = cast<AtomicType>(Ty)->getValueType();
4718 break;
4720 } while (!T.isNull() && T->isVariablyModifiedType());
4723 /// Check the constraints on operands to unary expression and type
4724 /// traits.
4726 /// This will complete any types necessary, and validate the various constraints
4727 /// on those operands.
4729 /// The UsualUnaryConversions() function is *not* called by this routine.
4730 /// C99 6.3.2.1p[2-4] all state:
4731 /// Except when it is the operand of the sizeof operator ...
4733 /// C++ [expr.sizeof]p4
4734 /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4735 /// standard conversions are not applied to the operand of sizeof.
4737 /// This policy is followed for all of the unary trait expressions.
4738 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4739 SourceLocation OpLoc,
4740 SourceRange ExprRange,
4741 UnaryExprOrTypeTrait ExprKind,
4742 StringRef KWName) {
4743 if (ExprType->isDependentType())
4744 return false;
4746 // C++ [expr.sizeof]p2:
4747 // When applied to a reference or a reference type, the result
4748 // is the size of the referenced type.
4749 // C++11 [expr.alignof]p3:
4750 // When alignof is applied to a reference type, the result
4751 // shall be the alignment of the referenced type.
4752 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4753 ExprType = Ref->getPointeeType();
4755 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4756 // When alignof or _Alignof is applied to an array type, the result
4757 // is the alignment of the element type.
4758 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4759 ExprKind == UETT_OpenMPRequiredSimdAlign)
4760 ExprType = Context.getBaseElementType(ExprType);
4762 if (ExprKind == UETT_VecStep)
4763 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4765 if (ExprKind == UETT_VectorElements)
4766 return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4767 ExprRange);
4769 // Explicitly list some types as extensions.
4770 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4771 ExprKind))
4772 return false;
4774 if (RequireCompleteSizedType(
4775 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4776 KWName, ExprRange))
4777 return true;
4779 if (ExprType->isFunctionType()) {
4780 Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4781 return true;
4784 // WebAssembly tables are always illegal operands to unary expressions and
4785 // type traits.
4786 if (Context.getTargetInfo().getTriple().isWasm() &&
4787 ExprType->isWebAssemblyTableType()) {
4788 Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4789 << getTraitSpelling(ExprKind);
4790 return true;
4793 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4794 ExprKind))
4795 return true;
4797 if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4798 if (auto *TT = ExprType->getAs<TypedefType>()) {
4799 for (auto I = FunctionScopes.rbegin(),
4800 E = std::prev(FunctionScopes.rend());
4801 I != E; ++I) {
4802 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4803 if (CSI == nullptr)
4804 break;
4805 DeclContext *DC = nullptr;
4806 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4807 DC = LSI->CallOperator;
4808 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4809 DC = CRSI->TheCapturedDecl;
4810 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4811 DC = BSI->TheDecl;
4812 if (DC) {
4813 if (DC->containsDecl(TT->getDecl()))
4814 break;
4815 captureVariablyModifiedType(Context, ExprType, CSI);
4821 return false;
4824 /// Build a sizeof or alignof expression given a type operand.
4825 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4826 SourceLocation OpLoc,
4827 UnaryExprOrTypeTrait ExprKind,
4828 SourceRange R) {
4829 if (!TInfo)
4830 return ExprError();
4832 QualType T = TInfo->getType();
4834 if (!T->isDependentType() &&
4835 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4836 getTraitSpelling(ExprKind)))
4837 return ExprError();
4839 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4840 // properly deal with VLAs in nested calls of sizeof and typeof.
4841 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4842 TInfo->getType()->isVariablyModifiedType())
4843 TInfo = TransformToPotentiallyEvaluated(TInfo);
4845 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4846 return new (Context) UnaryExprOrTypeTraitExpr(
4847 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4850 /// Build a sizeof or alignof expression given an expression
4851 /// operand.
4852 ExprResult
4853 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4854 UnaryExprOrTypeTrait ExprKind) {
4855 ExprResult PE = CheckPlaceholderExpr(E);
4856 if (PE.isInvalid())
4857 return ExprError();
4859 E = PE.get();
4861 // Verify that the operand is valid.
4862 bool isInvalid = false;
4863 if (E->isTypeDependent()) {
4864 // Delay type-checking for type-dependent expressions.
4865 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4866 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4867 } else if (ExprKind == UETT_VecStep) {
4868 isInvalid = CheckVecStepExpr(E);
4869 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4870 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4871 isInvalid = true;
4872 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4873 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4874 isInvalid = true;
4875 } else if (ExprKind == UETT_VectorElements) {
4876 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4877 } else {
4878 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4881 if (isInvalid)
4882 return ExprError();
4884 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4885 PE = TransformToPotentiallyEvaluated(E);
4886 if (PE.isInvalid()) return ExprError();
4887 E = PE.get();
4890 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4891 return new (Context) UnaryExprOrTypeTraitExpr(
4892 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4895 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4896 /// expr and the same for @c alignof and @c __alignof
4897 /// Note that the ArgRange is invalid if isType is false.
4898 ExprResult
4899 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4900 UnaryExprOrTypeTrait ExprKind, bool IsType,
4901 void *TyOrEx, SourceRange ArgRange) {
4902 // If error parsing type, ignore.
4903 if (!TyOrEx) return ExprError();
4905 if (IsType) {
4906 TypeSourceInfo *TInfo;
4907 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4908 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4911 Expr *ArgEx = (Expr *)TyOrEx;
4912 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4913 return Result;
4916 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4917 SourceLocation OpLoc, SourceRange R) {
4918 if (!TInfo)
4919 return true;
4920 return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4921 UETT_AlignOf, KWName);
4924 /// ActOnAlignasTypeArgument - Handle @c alignas(type-id) and @c
4925 /// _Alignas(type-name) .
4926 /// [dcl.align] An alignment-specifier of the form
4927 /// alignas(type-id) has the same effect as alignas(alignof(type-id)).
4929 /// [N1570 6.7.5] _Alignas(type-name) is equivalent to
4930 /// _Alignas(_Alignof(type-name)).
4931 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4932 SourceLocation OpLoc, SourceRange R) {
4933 TypeSourceInfo *TInfo;
4934 (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4935 &TInfo);
4936 return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4939 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4940 bool IsReal) {
4941 if (V.get()->isTypeDependent())
4942 return S.Context.DependentTy;
4944 // _Real and _Imag are only l-values for normal l-values.
4945 if (V.get()->getObjectKind() != OK_Ordinary) {
4946 V = S.DefaultLvalueConversion(V.get());
4947 if (V.isInvalid())
4948 return QualType();
4951 // These operators return the element type of a complex type.
4952 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4953 return CT->getElementType();
4955 // Otherwise they pass through real integer and floating point types here.
4956 if (V.get()->getType()->isArithmeticType())
4957 return V.get()->getType();
4959 // Test for placeholders.
4960 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4961 if (PR.isInvalid()) return QualType();
4962 if (PR.get() != V.get()) {
4963 V = PR;
4964 return CheckRealImagOperand(S, V, Loc, IsReal);
4967 // Reject anything else.
4968 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4969 << (IsReal ? "__real" : "__imag");
4970 return QualType();
4975 ExprResult
4976 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4977 tok::TokenKind Kind, Expr *Input) {
4978 UnaryOperatorKind Opc;
4979 switch (Kind) {
4980 default: llvm_unreachable("Unknown unary op!");
4981 case tok::plusplus: Opc = UO_PostInc; break;
4982 case tok::minusminus: Opc = UO_PostDec; break;
4985 // Since this might is a postfix expression, get rid of ParenListExprs.
4986 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4987 if (Result.isInvalid()) return ExprError();
4988 Input = Result.get();
4990 return BuildUnaryOp(S, OpLoc, Opc, Input);
4993 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4995 /// \return true on error
4996 static bool checkArithmeticOnObjCPointer(Sema &S,
4997 SourceLocation opLoc,
4998 Expr *op) {
4999 assert(op->getType()->isObjCObjectPointerType());
5000 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
5001 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
5002 return false;
5004 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
5005 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
5006 << op->getSourceRange();
5007 return true;
5010 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
5011 auto *BaseNoParens = Base->IgnoreParens();
5012 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
5013 return MSProp->getPropertyDecl()->getType()->isArrayType();
5014 return isa<MSPropertySubscriptExpr>(BaseNoParens);
5017 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
5018 // Typically this is DependentTy, but can sometimes be more precise.
5020 // There are cases when we could determine a non-dependent type:
5021 // - LHS and RHS may have non-dependent types despite being type-dependent
5022 // (e.g. unbounded array static members of the current instantiation)
5023 // - one may be a dependent-sized array with known element type
5024 // - one may be a dependent-typed valid index (enum in current instantiation)
5026 // We *always* return a dependent type, in such cases it is DependentTy.
5027 // This avoids creating type-dependent expressions with non-dependent types.
5028 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
5029 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
5030 const ASTContext &Ctx) {
5031 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
5032 QualType LTy = LHS->getType(), RTy = RHS->getType();
5033 QualType Result = Ctx.DependentTy;
5034 if (RTy->isIntegralOrUnscopedEnumerationType()) {
5035 if (const PointerType *PT = LTy->getAs<PointerType>())
5036 Result = PT->getPointeeType();
5037 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
5038 Result = AT->getElementType();
5039 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
5040 if (const PointerType *PT = RTy->getAs<PointerType>())
5041 Result = PT->getPointeeType();
5042 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
5043 Result = AT->getElementType();
5045 // Ensure we return a dependent type.
5046 return Result->isDependentType() ? Result : Ctx.DependentTy;
5049 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
5051 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
5052 SourceLocation lbLoc,
5053 MultiExprArg ArgExprs,
5054 SourceLocation rbLoc) {
5056 if (base && !base->getType().isNull() &&
5057 base->hasPlaceholderType(BuiltinType::OMPArraySection))
5058 return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
5059 SourceLocation(), /*Length*/ nullptr,
5060 /*Stride=*/nullptr, rbLoc);
5062 // Since this might be a postfix expression, get rid of ParenListExprs.
5063 if (isa<ParenListExpr>(base)) {
5064 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
5065 if (result.isInvalid())
5066 return ExprError();
5067 base = result.get();
5070 // Check if base and idx form a MatrixSubscriptExpr.
5072 // Helper to check for comma expressions, which are not allowed as indices for
5073 // matrix subscript expressions.
5074 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
5075 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
5076 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
5077 << SourceRange(base->getBeginLoc(), rbLoc);
5078 return true;
5080 return false;
5082 // The matrix subscript operator ([][])is considered a single operator.
5083 // Separating the index expressions by parenthesis is not allowed.
5084 if (base && !base->getType().isNull() &&
5085 base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
5086 !isa<MatrixSubscriptExpr>(base)) {
5087 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
5088 << SourceRange(base->getBeginLoc(), rbLoc);
5089 return ExprError();
5091 // If the base is a MatrixSubscriptExpr, try to create a new
5092 // MatrixSubscriptExpr.
5093 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
5094 if (matSubscriptE) {
5095 assert(ArgExprs.size() == 1);
5096 if (CheckAndReportCommaError(ArgExprs.front()))
5097 return ExprError();
5099 assert(matSubscriptE->isIncomplete() &&
5100 "base has to be an incomplete matrix subscript");
5101 return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
5102 matSubscriptE->getRowIdx(),
5103 ArgExprs.front(), rbLoc);
5105 if (base->getType()->isWebAssemblyTableType()) {
5106 Diag(base->getExprLoc(), diag::err_wasm_table_art)
5107 << SourceRange(base->getBeginLoc(), rbLoc) << 3;
5108 return ExprError();
5111 // Handle any non-overload placeholder types in the base and index
5112 // expressions. We can't handle overloads here because the other
5113 // operand might be an overloadable type, in which case the overload
5114 // resolution for the operator overload should get the first crack
5115 // at the overload.
5116 bool IsMSPropertySubscript = false;
5117 if (base->getType()->isNonOverloadPlaceholderType()) {
5118 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
5119 if (!IsMSPropertySubscript) {
5120 ExprResult result = CheckPlaceholderExpr(base);
5121 if (result.isInvalid())
5122 return ExprError();
5123 base = result.get();
5127 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
5128 if (base->getType()->isMatrixType()) {
5129 assert(ArgExprs.size() == 1);
5130 if (CheckAndReportCommaError(ArgExprs.front()))
5131 return ExprError();
5133 return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
5134 rbLoc);
5137 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
5138 Expr *idx = ArgExprs[0];
5139 if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
5140 (isa<CXXOperatorCallExpr>(idx) &&
5141 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
5142 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
5143 << SourceRange(base->getBeginLoc(), rbLoc);
5147 if (ArgExprs.size() == 1 &&
5148 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
5149 ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
5150 if (result.isInvalid())
5151 return ExprError();
5152 ArgExprs[0] = result.get();
5153 } else {
5154 if (checkArgsForPlaceholders(*this, ArgExprs))
5155 return ExprError();
5158 // Build an unanalyzed expression if either operand is type-dependent.
5159 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
5160 (base->isTypeDependent() ||
5161 Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
5162 !isa<PackExpansionExpr>(ArgExprs[0])) {
5163 return new (Context) ArraySubscriptExpr(
5164 base, ArgExprs.front(),
5165 getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
5166 VK_LValue, OK_Ordinary, rbLoc);
5169 // MSDN, property (C++)
5170 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
5171 // This attribute can also be used in the declaration of an empty array in a
5172 // class or structure definition. For example:
5173 // __declspec(property(get=GetX, put=PutX)) int x[];
5174 // The above statement indicates that x[] can be used with one or more array
5175 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
5176 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
5177 if (IsMSPropertySubscript) {
5178 assert(ArgExprs.size() == 1);
5179 // Build MS property subscript expression if base is MS property reference
5180 // or MS property subscript.
5181 return new (Context)
5182 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
5183 VK_LValue, OK_Ordinary, rbLoc);
5186 // Use C++ overloaded-operator rules if either operand has record
5187 // type. The spec says to do this if either type is *overloadable*,
5188 // but enum types can't declare subscript operators or conversion
5189 // operators, so there's nothing interesting for overload resolution
5190 // to do if there aren't any record types involved.
5192 // ObjC pointers have their own subscripting logic that is not tied
5193 // to overload resolution and so should not take this path.
5194 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
5195 ((base->getType()->isRecordType() ||
5196 (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
5197 ArgExprs[0]->getType()->isRecordType())))) {
5198 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
5201 ExprResult Res =
5202 CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
5204 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
5205 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
5207 return Res;
5210 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
5211 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
5212 InitializationKind Kind =
5213 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
5214 InitializationSequence InitSeq(*this, Entity, Kind, E);
5215 return InitSeq.Perform(*this, Entity, Kind, E);
5218 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
5219 Expr *ColumnIdx,
5220 SourceLocation RBLoc) {
5221 ExprResult BaseR = CheckPlaceholderExpr(Base);
5222 if (BaseR.isInvalid())
5223 return BaseR;
5224 Base = BaseR.get();
5226 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
5227 if (RowR.isInvalid())
5228 return RowR;
5229 RowIdx = RowR.get();
5231 if (!ColumnIdx)
5232 return new (Context) MatrixSubscriptExpr(
5233 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
5235 // Build an unanalyzed expression if any of the operands is type-dependent.
5236 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
5237 ColumnIdx->isTypeDependent())
5238 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5239 Context.DependentTy, RBLoc);
5241 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5242 if (ColumnR.isInvalid())
5243 return ColumnR;
5244 ColumnIdx = ColumnR.get();
5246 // Check that IndexExpr is an integer expression. If it is a constant
5247 // expression, check that it is less than Dim (= the number of elements in the
5248 // corresponding dimension).
5249 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5250 bool IsColumnIdx) -> Expr * {
5251 if (!IndexExpr->getType()->isIntegerType() &&
5252 !IndexExpr->isTypeDependent()) {
5253 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5254 << IsColumnIdx;
5255 return nullptr;
5258 if (std::optional<llvm::APSInt> Idx =
5259 IndexExpr->getIntegerConstantExpr(Context)) {
5260 if ((*Idx < 0 || *Idx >= Dim)) {
5261 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5262 << IsColumnIdx << Dim;
5263 return nullptr;
5267 ExprResult ConvExpr =
5268 tryConvertExprToType(IndexExpr, Context.getSizeType());
5269 assert(!ConvExpr.isInvalid() &&
5270 "should be able to convert any integer type to size type");
5271 return ConvExpr.get();
5274 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5275 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5276 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5277 if (!RowIdx || !ColumnIdx)
5278 return ExprError();
5280 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5281 MTy->getElementType(), RBLoc);
5284 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5285 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5286 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5288 // For expressions like `&(*s).b`, the base is recorded and what should be
5289 // checked.
5290 const MemberExpr *Member = nullptr;
5291 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5292 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5294 LastRecord.PossibleDerefs.erase(StrippedExpr);
5297 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5298 if (isUnevaluatedContext())
5299 return;
5301 QualType ResultTy = E->getType();
5302 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5304 // Bail if the element is an array since it is not memory access.
5305 if (isa<ArrayType>(ResultTy))
5306 return;
5308 if (ResultTy->hasAttr(attr::NoDeref)) {
5309 LastRecord.PossibleDerefs.insert(E);
5310 return;
5313 // Check if the base type is a pointer to a member access of a struct
5314 // marked with noderef.
5315 const Expr *Base = E->getBase();
5316 QualType BaseTy = Base->getType();
5317 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5318 // Not a pointer access
5319 return;
5321 const MemberExpr *Member = nullptr;
5322 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5323 Member->isArrow())
5324 Base = Member->getBase();
5326 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5327 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5328 LastRecord.PossibleDerefs.insert(E);
5332 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5333 Expr *LowerBound,
5334 SourceLocation ColonLocFirst,
5335 SourceLocation ColonLocSecond,
5336 Expr *Length, Expr *Stride,
5337 SourceLocation RBLoc) {
5338 if (Base->hasPlaceholderType() &&
5339 !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5340 ExprResult Result = CheckPlaceholderExpr(Base);
5341 if (Result.isInvalid())
5342 return ExprError();
5343 Base = Result.get();
5345 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5346 ExprResult Result = CheckPlaceholderExpr(LowerBound);
5347 if (Result.isInvalid())
5348 return ExprError();
5349 Result = DefaultLvalueConversion(Result.get());
5350 if (Result.isInvalid())
5351 return ExprError();
5352 LowerBound = Result.get();
5354 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5355 ExprResult Result = CheckPlaceholderExpr(Length);
5356 if (Result.isInvalid())
5357 return ExprError();
5358 Result = DefaultLvalueConversion(Result.get());
5359 if (Result.isInvalid())
5360 return ExprError();
5361 Length = Result.get();
5363 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5364 ExprResult Result = CheckPlaceholderExpr(Stride);
5365 if (Result.isInvalid())
5366 return ExprError();
5367 Result = DefaultLvalueConversion(Result.get());
5368 if (Result.isInvalid())
5369 return ExprError();
5370 Stride = Result.get();
5373 // Build an unanalyzed expression if either operand is type-dependent.
5374 if (Base->isTypeDependent() ||
5375 (LowerBound &&
5376 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5377 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5378 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5379 return new (Context) OMPArraySectionExpr(
5380 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5381 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5384 // Perform default conversions.
5385 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5386 QualType ResultTy;
5387 if (OriginalTy->isAnyPointerType()) {
5388 ResultTy = OriginalTy->getPointeeType();
5389 } else if (OriginalTy->isArrayType()) {
5390 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5391 } else {
5392 return ExprError(
5393 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5394 << Base->getSourceRange());
5396 // C99 6.5.2.1p1
5397 if (LowerBound) {
5398 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5399 LowerBound);
5400 if (Res.isInvalid())
5401 return ExprError(Diag(LowerBound->getExprLoc(),
5402 diag::err_omp_typecheck_section_not_integer)
5403 << 0 << LowerBound->getSourceRange());
5404 LowerBound = Res.get();
5406 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5407 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5408 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5409 << 0 << LowerBound->getSourceRange();
5411 if (Length) {
5412 auto Res =
5413 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5414 if (Res.isInvalid())
5415 return ExprError(Diag(Length->getExprLoc(),
5416 diag::err_omp_typecheck_section_not_integer)
5417 << 1 << Length->getSourceRange());
5418 Length = Res.get();
5420 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5421 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5422 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5423 << 1 << Length->getSourceRange();
5425 if (Stride) {
5426 ExprResult Res =
5427 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5428 if (Res.isInvalid())
5429 return ExprError(Diag(Stride->getExprLoc(),
5430 diag::err_omp_typecheck_section_not_integer)
5431 << 1 << Stride->getSourceRange());
5432 Stride = Res.get();
5434 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5435 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5436 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5437 << 1 << Stride->getSourceRange();
5440 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5441 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5442 // type. Note that functions are not objects, and that (in C99 parlance)
5443 // incomplete types are not object types.
5444 if (ResultTy->isFunctionType()) {
5445 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5446 << ResultTy << Base->getSourceRange();
5447 return ExprError();
5450 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5451 diag::err_omp_section_incomplete_type, Base))
5452 return ExprError();
5454 if (LowerBound && !OriginalTy->isAnyPointerType()) {
5455 Expr::EvalResult Result;
5456 if (LowerBound->EvaluateAsInt(Result, Context)) {
5457 // OpenMP 5.0, [2.1.5 Array Sections]
5458 // The array section must be a subset of the original array.
5459 llvm::APSInt LowerBoundValue = Result.Val.getInt();
5460 if (LowerBoundValue.isNegative()) {
5461 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5462 << LowerBound->getSourceRange();
5463 return ExprError();
5468 if (Length) {
5469 Expr::EvalResult Result;
5470 if (Length->EvaluateAsInt(Result, Context)) {
5471 // OpenMP 5.0, [2.1.5 Array Sections]
5472 // The length must evaluate to non-negative integers.
5473 llvm::APSInt LengthValue = Result.Val.getInt();
5474 if (LengthValue.isNegative()) {
5475 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5476 << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5477 << Length->getSourceRange();
5478 return ExprError();
5481 } else if (ColonLocFirst.isValid() &&
5482 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5483 !OriginalTy->isVariableArrayType()))) {
5484 // OpenMP 5.0, [2.1.5 Array Sections]
5485 // When the size of the array dimension is not known, the length must be
5486 // specified explicitly.
5487 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5488 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5489 return ExprError();
5492 if (Stride) {
5493 Expr::EvalResult Result;
5494 if (Stride->EvaluateAsInt(Result, Context)) {
5495 // OpenMP 5.0, [2.1.5 Array Sections]
5496 // The stride must evaluate to a positive integer.
5497 llvm::APSInt StrideValue = Result.Val.getInt();
5498 if (!StrideValue.isStrictlyPositive()) {
5499 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5500 << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5501 << Stride->getSourceRange();
5502 return ExprError();
5507 if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5508 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5509 if (Result.isInvalid())
5510 return ExprError();
5511 Base = Result.get();
5513 return new (Context) OMPArraySectionExpr(
5514 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5515 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5518 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5519 SourceLocation RParenLoc,
5520 ArrayRef<Expr *> Dims,
5521 ArrayRef<SourceRange> Brackets) {
5522 if (Base->hasPlaceholderType()) {
5523 ExprResult Result = CheckPlaceholderExpr(Base);
5524 if (Result.isInvalid())
5525 return ExprError();
5526 Result = DefaultLvalueConversion(Result.get());
5527 if (Result.isInvalid())
5528 return ExprError();
5529 Base = Result.get();
5531 QualType BaseTy = Base->getType();
5532 // Delay analysis of the types/expressions if instantiation/specialization is
5533 // required.
5534 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5535 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5536 LParenLoc, RParenLoc, Dims, Brackets);
5537 if (!BaseTy->isPointerType() ||
5538 (!Base->isTypeDependent() &&
5539 BaseTy->getPointeeType()->isIncompleteType()))
5540 return ExprError(Diag(Base->getExprLoc(),
5541 diag::err_omp_non_pointer_type_array_shaping_base)
5542 << Base->getSourceRange());
5544 SmallVector<Expr *, 4> NewDims;
5545 bool ErrorFound = false;
5546 for (Expr *Dim : Dims) {
5547 if (Dim->hasPlaceholderType()) {
5548 ExprResult Result = CheckPlaceholderExpr(Dim);
5549 if (Result.isInvalid()) {
5550 ErrorFound = true;
5551 continue;
5553 Result = DefaultLvalueConversion(Result.get());
5554 if (Result.isInvalid()) {
5555 ErrorFound = true;
5556 continue;
5558 Dim = Result.get();
5560 if (!Dim->isTypeDependent()) {
5561 ExprResult Result =
5562 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5563 if (Result.isInvalid()) {
5564 ErrorFound = true;
5565 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5566 << Dim->getSourceRange();
5567 continue;
5569 Dim = Result.get();
5570 Expr::EvalResult EvResult;
5571 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5572 // OpenMP 5.0, [2.1.4 Array Shaping]
5573 // Each si is an integral type expression that must evaluate to a
5574 // positive integer.
5575 llvm::APSInt Value = EvResult.Val.getInt();
5576 if (!Value.isStrictlyPositive()) {
5577 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5578 << toString(Value, /*Radix=*/10, /*Signed=*/true)
5579 << Dim->getSourceRange();
5580 ErrorFound = true;
5581 continue;
5585 NewDims.push_back(Dim);
5587 if (ErrorFound)
5588 return ExprError();
5589 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5590 LParenLoc, RParenLoc, NewDims, Brackets);
5593 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5594 SourceLocation LLoc, SourceLocation RLoc,
5595 ArrayRef<OMPIteratorData> Data) {
5596 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5597 bool IsCorrect = true;
5598 for (const OMPIteratorData &D : Data) {
5599 TypeSourceInfo *TInfo = nullptr;
5600 SourceLocation StartLoc;
5601 QualType DeclTy;
5602 if (!D.Type.getAsOpaquePtr()) {
5603 // OpenMP 5.0, 2.1.6 Iterators
5604 // In an iterator-specifier, if the iterator-type is not specified then
5605 // the type of that iterator is of int type.
5606 DeclTy = Context.IntTy;
5607 StartLoc = D.DeclIdentLoc;
5608 } else {
5609 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5610 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5613 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5614 DeclTy->containsUnexpandedParameterPack() ||
5615 DeclTy->isInstantiationDependentType();
5616 if (!IsDeclTyDependent) {
5617 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5618 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5619 // The iterator-type must be an integral or pointer type.
5620 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5621 << DeclTy;
5622 IsCorrect = false;
5623 continue;
5625 if (DeclTy.isConstant(Context)) {
5626 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5627 // The iterator-type must not be const qualified.
5628 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5629 << DeclTy;
5630 IsCorrect = false;
5631 continue;
5635 // Iterator declaration.
5636 assert(D.DeclIdent && "Identifier expected.");
5637 // Always try to create iterator declarator to avoid extra error messages
5638 // about unknown declarations use.
5639 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5640 D.DeclIdent, DeclTy, TInfo, SC_None);
5641 VD->setImplicit();
5642 if (S) {
5643 // Check for conflicting previous declaration.
5644 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5645 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5646 ForVisibleRedeclaration);
5647 Previous.suppressDiagnostics();
5648 LookupName(Previous, S);
5650 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5651 /*AllowInlineNamespace=*/false);
5652 if (!Previous.empty()) {
5653 NamedDecl *Old = Previous.getRepresentativeDecl();
5654 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5655 Diag(Old->getLocation(), diag::note_previous_definition);
5656 } else {
5657 PushOnScopeChains(VD, S);
5659 } else {
5660 CurContext->addDecl(VD);
5663 /// Act on the iterator variable declaration.
5664 ActOnOpenMPIteratorVarDecl(VD);
5666 Expr *Begin = D.Range.Begin;
5667 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5668 ExprResult BeginRes =
5669 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5670 Begin = BeginRes.get();
5672 Expr *End = D.Range.End;
5673 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5674 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5675 End = EndRes.get();
5677 Expr *Step = D.Range.Step;
5678 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5679 if (!Step->getType()->isIntegralType(Context)) {
5680 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5681 << Step << Step->getSourceRange();
5682 IsCorrect = false;
5683 continue;
5685 std::optional<llvm::APSInt> Result =
5686 Step->getIntegerConstantExpr(Context);
5687 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5688 // If the step expression of a range-specification equals zero, the
5689 // behavior is unspecified.
5690 if (Result && Result->isZero()) {
5691 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5692 << Step << Step->getSourceRange();
5693 IsCorrect = false;
5694 continue;
5697 if (!Begin || !End || !IsCorrect) {
5698 IsCorrect = false;
5699 continue;
5701 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5702 IDElem.IteratorDecl = VD;
5703 IDElem.AssignmentLoc = D.AssignLoc;
5704 IDElem.Range.Begin = Begin;
5705 IDElem.Range.End = End;
5706 IDElem.Range.Step = Step;
5707 IDElem.ColonLoc = D.ColonLoc;
5708 IDElem.SecondColonLoc = D.SecColonLoc;
5710 if (!IsCorrect) {
5711 // Invalidate all created iterator declarations if error is found.
5712 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5713 if (Decl *ID = D.IteratorDecl)
5714 ID->setInvalidDecl();
5716 return ExprError();
5718 SmallVector<OMPIteratorHelperData, 4> Helpers;
5719 if (!CurContext->isDependentContext()) {
5720 // Build number of ityeration for each iteration range.
5721 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5722 // ((Begini-Stepi-1-Endi) / -Stepi);
5723 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5724 // (Endi - Begini)
5725 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5726 D.Range.Begin);
5727 if(!Res.isUsable()) {
5728 IsCorrect = false;
5729 continue;
5731 ExprResult St, St1;
5732 if (D.Range.Step) {
5733 St = D.Range.Step;
5734 // (Endi - Begini) + Stepi
5735 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5736 if (!Res.isUsable()) {
5737 IsCorrect = false;
5738 continue;
5740 // (Endi - Begini) + Stepi - 1
5741 Res =
5742 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5743 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5744 if (!Res.isUsable()) {
5745 IsCorrect = false;
5746 continue;
5748 // ((Endi - Begini) + Stepi - 1) / Stepi
5749 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5750 if (!Res.isUsable()) {
5751 IsCorrect = false;
5752 continue;
5754 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5755 // (Begini - Endi)
5756 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5757 D.Range.Begin, D.Range.End);
5758 if (!Res1.isUsable()) {
5759 IsCorrect = false;
5760 continue;
5762 // (Begini - Endi) - Stepi
5763 Res1 =
5764 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5765 if (!Res1.isUsable()) {
5766 IsCorrect = false;
5767 continue;
5769 // (Begini - Endi) - Stepi - 1
5770 Res1 =
5771 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5772 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5773 if (!Res1.isUsable()) {
5774 IsCorrect = false;
5775 continue;
5777 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5778 Res1 =
5779 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5780 if (!Res1.isUsable()) {
5781 IsCorrect = false;
5782 continue;
5784 // Stepi > 0.
5785 ExprResult CmpRes =
5786 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5787 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5788 if (!CmpRes.isUsable()) {
5789 IsCorrect = false;
5790 continue;
5792 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5793 Res.get(), Res1.get());
5794 if (!Res.isUsable()) {
5795 IsCorrect = false;
5796 continue;
5799 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5800 if (!Res.isUsable()) {
5801 IsCorrect = false;
5802 continue;
5805 // Build counter update.
5806 // Build counter.
5807 auto *CounterVD =
5808 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5809 D.IteratorDecl->getBeginLoc(), nullptr,
5810 Res.get()->getType(), nullptr, SC_None);
5811 CounterVD->setImplicit();
5812 ExprResult RefRes =
5813 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5814 D.IteratorDecl->getBeginLoc());
5815 // Build counter update.
5816 // I = Begini + counter * Stepi;
5817 ExprResult UpdateRes;
5818 if (D.Range.Step) {
5819 UpdateRes = CreateBuiltinBinOp(
5820 D.AssignmentLoc, BO_Mul,
5821 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5822 } else {
5823 UpdateRes = DefaultLvalueConversion(RefRes.get());
5825 if (!UpdateRes.isUsable()) {
5826 IsCorrect = false;
5827 continue;
5829 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5830 UpdateRes.get());
5831 if (!UpdateRes.isUsable()) {
5832 IsCorrect = false;
5833 continue;
5835 ExprResult VDRes =
5836 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5837 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5838 D.IteratorDecl->getBeginLoc());
5839 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5840 UpdateRes.get());
5841 if (!UpdateRes.isUsable()) {
5842 IsCorrect = false;
5843 continue;
5845 UpdateRes =
5846 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5847 if (!UpdateRes.isUsable()) {
5848 IsCorrect = false;
5849 continue;
5851 ExprResult CounterUpdateRes =
5852 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5853 if (!CounterUpdateRes.isUsable()) {
5854 IsCorrect = false;
5855 continue;
5857 CounterUpdateRes =
5858 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5859 if (!CounterUpdateRes.isUsable()) {
5860 IsCorrect = false;
5861 continue;
5863 OMPIteratorHelperData &HD = Helpers.emplace_back();
5864 HD.CounterVD = CounterVD;
5865 HD.Upper = Res.get();
5866 HD.Update = UpdateRes.get();
5867 HD.CounterUpdate = CounterUpdateRes.get();
5869 } else {
5870 Helpers.assign(ID.size(), {});
5872 if (!IsCorrect) {
5873 // Invalidate all created iterator declarations if error is found.
5874 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5875 if (Decl *ID = D.IteratorDecl)
5876 ID->setInvalidDecl();
5878 return ExprError();
5880 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5881 LLoc, RLoc, ID, Helpers);
5884 ExprResult
5885 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5886 Expr *Idx, SourceLocation RLoc) {
5887 Expr *LHSExp = Base;
5888 Expr *RHSExp = Idx;
5890 ExprValueKind VK = VK_LValue;
5891 ExprObjectKind OK = OK_Ordinary;
5893 // Per C++ core issue 1213, the result is an xvalue if either operand is
5894 // a non-lvalue array, and an lvalue otherwise.
5895 if (getLangOpts().CPlusPlus11) {
5896 for (auto *Op : {LHSExp, RHSExp}) {
5897 Op = Op->IgnoreImplicit();
5898 if (Op->getType()->isArrayType() && !Op->isLValue())
5899 VK = VK_XValue;
5903 // Perform default conversions.
5904 if (!LHSExp->getType()->getAs<VectorType>()) {
5905 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5906 if (Result.isInvalid())
5907 return ExprError();
5908 LHSExp = Result.get();
5910 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5911 if (Result.isInvalid())
5912 return ExprError();
5913 RHSExp = Result.get();
5915 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5917 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5918 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5919 // in the subscript position. As a result, we need to derive the array base
5920 // and index from the expression types.
5921 Expr *BaseExpr, *IndexExpr;
5922 QualType ResultType;
5923 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5924 BaseExpr = LHSExp;
5925 IndexExpr = RHSExp;
5926 ResultType =
5927 getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5928 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5929 BaseExpr = LHSExp;
5930 IndexExpr = RHSExp;
5931 ResultType = PTy->getPointeeType();
5932 } else if (const ObjCObjectPointerType *PTy =
5933 LHSTy->getAs<ObjCObjectPointerType>()) {
5934 BaseExpr = LHSExp;
5935 IndexExpr = RHSExp;
5937 // Use custom logic if this should be the pseudo-object subscript
5938 // expression.
5939 if (!LangOpts.isSubscriptPointerArithmetic())
5940 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5941 nullptr);
5943 ResultType = PTy->getPointeeType();
5944 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5945 // Handle the uncommon case of "123[Ptr]".
5946 BaseExpr = RHSExp;
5947 IndexExpr = LHSExp;
5948 ResultType = PTy->getPointeeType();
5949 } else if (const ObjCObjectPointerType *PTy =
5950 RHSTy->getAs<ObjCObjectPointerType>()) {
5951 // Handle the uncommon case of "123[Ptr]".
5952 BaseExpr = RHSExp;
5953 IndexExpr = LHSExp;
5954 ResultType = PTy->getPointeeType();
5955 if (!LangOpts.isSubscriptPointerArithmetic()) {
5956 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5957 << ResultType << BaseExpr->getSourceRange();
5958 return ExprError();
5960 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5961 BaseExpr = LHSExp; // vectors: V[123]
5962 IndexExpr = RHSExp;
5963 // We apply C++ DR1213 to vector subscripting too.
5964 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5965 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5966 if (Materialized.isInvalid())
5967 return ExprError();
5968 LHSExp = Materialized.get();
5970 VK = LHSExp->getValueKind();
5971 if (VK != VK_PRValue)
5972 OK = OK_VectorComponent;
5974 ResultType = VTy->getElementType();
5975 QualType BaseType = BaseExpr->getType();
5976 Qualifiers BaseQuals = BaseType.getQualifiers();
5977 Qualifiers MemberQuals = ResultType.getQualifiers();
5978 Qualifiers Combined = BaseQuals + MemberQuals;
5979 if (Combined != MemberQuals)
5980 ResultType = Context.getQualifiedType(ResultType, Combined);
5981 } else if (LHSTy->isBuiltinType() &&
5982 LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5983 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5984 if (BTy->isSVEBool())
5985 return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5986 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5988 BaseExpr = LHSExp;
5989 IndexExpr = RHSExp;
5990 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5991 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5992 if (Materialized.isInvalid())
5993 return ExprError();
5994 LHSExp = Materialized.get();
5996 VK = LHSExp->getValueKind();
5997 if (VK != VK_PRValue)
5998 OK = OK_VectorComponent;
6000 ResultType = BTy->getSveEltType(Context);
6002 QualType BaseType = BaseExpr->getType();
6003 Qualifiers BaseQuals = BaseType.getQualifiers();
6004 Qualifiers MemberQuals = ResultType.getQualifiers();
6005 Qualifiers Combined = BaseQuals + MemberQuals;
6006 if (Combined != MemberQuals)
6007 ResultType = Context.getQualifiedType(ResultType, Combined);
6008 } else if (LHSTy->isArrayType()) {
6009 // If we see an array that wasn't promoted by
6010 // DefaultFunctionArrayLvalueConversion, it must be an array that
6011 // wasn't promoted because of the C90 rule that doesn't
6012 // allow promoting non-lvalue arrays. Warn, then
6013 // force the promotion here.
6014 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6015 << LHSExp->getSourceRange();
6016 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
6017 CK_ArrayToPointerDecay).get();
6018 LHSTy = LHSExp->getType();
6020 BaseExpr = LHSExp;
6021 IndexExpr = RHSExp;
6022 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
6023 } else if (RHSTy->isArrayType()) {
6024 // Same as previous, except for 123[f().a] case
6025 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
6026 << RHSExp->getSourceRange();
6027 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
6028 CK_ArrayToPointerDecay).get();
6029 RHSTy = RHSExp->getType();
6031 BaseExpr = RHSExp;
6032 IndexExpr = LHSExp;
6033 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
6034 } else {
6035 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
6036 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
6038 // C99 6.5.2.1p1
6039 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
6040 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
6041 << IndexExpr->getSourceRange());
6043 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
6044 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
6045 && !IndexExpr->isTypeDependent())
6046 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
6048 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
6049 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
6050 // type. Note that Functions are not objects, and that (in C99 parlance)
6051 // incomplete types are not object types.
6052 if (ResultType->isFunctionType()) {
6053 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
6054 << ResultType << BaseExpr->getSourceRange();
6055 return ExprError();
6058 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
6059 // GNU extension: subscripting on pointer to void
6060 Diag(LLoc, diag::ext_gnu_subscript_void_type)
6061 << BaseExpr->getSourceRange();
6063 // C forbids expressions of unqualified void type from being l-values.
6064 // See IsCForbiddenLValueType.
6065 if (!ResultType.hasQualifiers())
6066 VK = VK_PRValue;
6067 } else if (!ResultType->isDependentType() &&
6068 !ResultType.isWebAssemblyReferenceType() &&
6069 RequireCompleteSizedType(
6070 LLoc, ResultType,
6071 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
6072 return ExprError();
6074 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
6075 !ResultType.isCForbiddenLValueType());
6077 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
6078 FunctionScopes.size() > 1) {
6079 if (auto *TT =
6080 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
6081 for (auto I = FunctionScopes.rbegin(),
6082 E = std::prev(FunctionScopes.rend());
6083 I != E; ++I) {
6084 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
6085 if (CSI == nullptr)
6086 break;
6087 DeclContext *DC = nullptr;
6088 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
6089 DC = LSI->CallOperator;
6090 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
6091 DC = CRSI->TheCapturedDecl;
6092 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
6093 DC = BSI->TheDecl;
6094 if (DC) {
6095 if (DC->containsDecl(TT->getDecl()))
6096 break;
6097 captureVariablyModifiedType(
6098 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
6104 return new (Context)
6105 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
6108 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
6109 ParmVarDecl *Param, Expr *RewrittenInit,
6110 bool SkipImmediateInvocations) {
6111 if (Param->hasUnparsedDefaultArg()) {
6112 assert(!RewrittenInit && "Should not have a rewritten init expression yet");
6113 // If we've already cleared out the location for the default argument,
6114 // that means we're parsing it right now.
6115 if (!UnparsedDefaultArgLocs.count(Param)) {
6116 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
6117 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
6118 Param->setInvalidDecl();
6119 return true;
6122 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
6123 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
6124 Diag(UnparsedDefaultArgLocs[Param],
6125 diag::note_default_argument_declared_here);
6126 return true;
6129 if (Param->hasUninstantiatedDefaultArg()) {
6130 assert(!RewrittenInit && "Should not have a rewitten init expression yet");
6131 if (InstantiateDefaultArgument(CallLoc, FD, Param))
6132 return true;
6135 Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
6136 assert(Init && "default argument but no initializer?");
6138 // If the default expression creates temporaries, we need to
6139 // push them to the current stack of expression temporaries so they'll
6140 // be properly destroyed.
6141 // FIXME: We should really be rebuilding the default argument with new
6142 // bound temporaries; see the comment in PR5810.
6143 // We don't need to do that with block decls, though, because
6144 // blocks in default argument expression can never capture anything.
6145 if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
6146 // Set the "needs cleanups" bit regardless of whether there are
6147 // any explicit objects.
6148 Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
6149 // Append all the objects to the cleanup list. Right now, this
6150 // should always be a no-op, because blocks in default argument
6151 // expressions should never be able to capture anything.
6152 assert(!InitWithCleanup->getNumObjects() &&
6153 "default argument expression has capturing blocks?");
6155 // C++ [expr.const]p15.1:
6156 // An expression or conversion is in an immediate function context if it is
6157 // potentially evaluated and [...] its innermost enclosing non-block scope
6158 // is a function parameter scope of an immediate function.
6159 EnterExpressionEvaluationContext EvalContext(
6160 *this,
6161 FD->isImmediateFunction()
6162 ? ExpressionEvaluationContext::ImmediateFunctionContext
6163 : ExpressionEvaluationContext::PotentiallyEvaluated,
6164 Param);
6165 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6166 SkipImmediateInvocations;
6167 runWithSufficientStackSpace(CallLoc, [&] {
6168 MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
6170 return false;
6173 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
6174 const ASTContext &Context;
6175 ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
6177 bool HasImmediateCalls = false;
6178 bool shouldVisitImplicitCode() const { return true; }
6180 bool VisitCallExpr(CallExpr *E) {
6181 if (const FunctionDecl *FD = E->getDirectCallee())
6182 HasImmediateCalls |= FD->isImmediateFunction();
6183 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6186 // SourceLocExpr are not immediate invocations
6187 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
6188 // need to be rebuilt so that they refer to the correct SourceLocation and
6189 // DeclContext.
6190 bool VisitSourceLocExpr(SourceLocExpr *E) {
6191 HasImmediateCalls = true;
6192 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
6195 // A nested lambda might have parameters with immediate invocations
6196 // in their default arguments.
6197 // The compound statement is not visited (as it does not constitute a
6198 // subexpression).
6199 // FIXME: We should consider visiting and transforming captures
6200 // with init expressions.
6201 bool VisitLambdaExpr(LambdaExpr *E) {
6202 return VisitCXXMethodDecl(E->getCallOperator());
6205 // Blocks don't support default parameters, and, as for lambdas,
6206 // we don't consider their body a subexpression.
6207 bool VisitBlockDecl(BlockDecl *B) { return false; }
6209 bool VisitCompoundStmt(CompoundStmt *B) { return false; }
6211 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
6212 return TraverseStmt(E->getExpr());
6215 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
6216 return TraverseStmt(E->getExpr());
6220 struct EnsureImmediateInvocationInDefaultArgs
6221 : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
6222 EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
6223 : TreeTransform(SemaRef) {}
6225 // Lambda can only have immediate invocations in the default
6226 // args of their parameters, which is transformed upon calling the closure.
6227 // The body is not a subexpression, so we have nothing to do.
6228 // FIXME: Immediate calls in capture initializers should be transformed.
6229 ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
6230 ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
6232 // Make sure we don't rebuild the this pointer as it would
6233 // cause it to incorrectly point it to the outermost class
6234 // in the case of nested struct initialization.
6235 ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
6238 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
6239 FunctionDecl *FD, ParmVarDecl *Param,
6240 Expr *Init) {
6241 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
6243 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6245 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6246 InitializationContext =
6247 OutermostDeclarationWithDelayedImmediateInvocations();
6248 if (!InitializationContext.has_value())
6249 InitializationContext.emplace(CallLoc, Param, CurContext);
6251 if (!Init && !Param->hasUnparsedDefaultArg()) {
6252 // Mark that we are replacing a default argument first.
6253 // If we are instantiating a template we won't have to
6254 // retransform immediate calls.
6255 // C++ [expr.const]p15.1:
6256 // An expression or conversion is in an immediate function context if it
6257 // is potentially evaluated and [...] its innermost enclosing non-block
6258 // scope is a function parameter scope of an immediate function.
6259 EnterExpressionEvaluationContext EvalContext(
6260 *this,
6261 FD->isImmediateFunction()
6262 ? ExpressionEvaluationContext::ImmediateFunctionContext
6263 : ExpressionEvaluationContext::PotentiallyEvaluated,
6264 Param);
6266 if (Param->hasUninstantiatedDefaultArg()) {
6267 if (InstantiateDefaultArgument(CallLoc, FD, Param))
6268 return ExprError();
6270 // CWG2631
6271 // An immediate invocation that is not evaluated where it appears is
6272 // evaluated and checked for whether it is a constant expression at the
6273 // point where the enclosing initializer is used in a function call.
6274 ImmediateCallVisitor V(getASTContext());
6275 if (!NestedDefaultChecking)
6276 V.TraverseDecl(Param);
6277 if (V.HasImmediateCalls) {
6278 ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6279 CallLoc, Param, CurContext};
6280 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6281 ExprResult Res;
6282 runWithSufficientStackSpace(CallLoc, [&] {
6283 Res = Immediate.TransformInitializer(Param->getInit(),
6284 /*NotCopy=*/false);
6286 if (Res.isInvalid())
6287 return ExprError();
6288 Res = ConvertParamDefaultArgument(Param, Res.get(),
6289 Res.get()->getBeginLoc());
6290 if (Res.isInvalid())
6291 return ExprError();
6292 Init = Res.get();
6296 if (CheckCXXDefaultArgExpr(
6297 CallLoc, FD, Param, Init,
6298 /*SkipImmediateInvocations=*/NestedDefaultChecking))
6299 return ExprError();
6301 return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6302 Init, InitializationContext->Context);
6305 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6306 assert(Field->hasInClassInitializer());
6308 // If we might have already tried and failed to instantiate, don't try again.
6309 if (Field->isInvalidDecl())
6310 return ExprError();
6312 CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
6314 auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6316 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6317 InitializationContext =
6318 OutermostDeclarationWithDelayedImmediateInvocations();
6319 if (!InitializationContext.has_value())
6320 InitializationContext.emplace(Loc, Field, CurContext);
6322 Expr *Init = nullptr;
6324 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6326 EnterExpressionEvaluationContext EvalContext(
6327 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6329 if (!Field->getInClassInitializer()) {
6330 // Maybe we haven't instantiated the in-class initializer. Go check the
6331 // pattern FieldDecl to see if it has one.
6332 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6333 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6334 DeclContext::lookup_result Lookup =
6335 ClassPattern->lookup(Field->getDeclName());
6337 FieldDecl *Pattern = nullptr;
6338 for (auto *L : Lookup) {
6339 if ((Pattern = dyn_cast<FieldDecl>(L)))
6340 break;
6342 assert(Pattern && "We must have set the Pattern!");
6343 if (!Pattern->hasInClassInitializer() ||
6344 InstantiateInClassInitializer(Loc, Field, Pattern,
6345 getTemplateInstantiationArgs(Field))) {
6346 Field->setInvalidDecl();
6347 return ExprError();
6352 // CWG2631
6353 // An immediate invocation that is not evaluated where it appears is
6354 // evaluated and checked for whether it is a constant expression at the
6355 // point where the enclosing initializer is used in a [...] a constructor
6356 // definition, or an aggregate initialization.
6357 ImmediateCallVisitor V(getASTContext());
6358 if (!NestedDefaultChecking)
6359 V.TraverseDecl(Field);
6360 if (V.HasImmediateCalls) {
6361 ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6362 CurContext};
6363 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6364 NestedDefaultChecking;
6366 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6367 ExprResult Res;
6368 runWithSufficientStackSpace(Loc, [&] {
6369 Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
6370 /*CXXDirectInit=*/false);
6372 if (!Res.isInvalid())
6373 Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6374 if (Res.isInvalid()) {
6375 Field->setInvalidDecl();
6376 return ExprError();
6378 Init = Res.get();
6381 if (Field->getInClassInitializer()) {
6382 Expr *E = Init ? Init : Field->getInClassInitializer();
6383 if (!NestedDefaultChecking)
6384 runWithSufficientStackSpace(Loc, [&] {
6385 MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6387 // C++11 [class.base.init]p7:
6388 // The initialization of each base and member constitutes a
6389 // full-expression.
6390 ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6391 if (Res.isInvalid()) {
6392 Field->setInvalidDecl();
6393 return ExprError();
6395 Init = Res.get();
6397 return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6398 Field, InitializationContext->Context,
6399 Init);
6402 // DR1351:
6403 // If the brace-or-equal-initializer of a non-static data member
6404 // invokes a defaulted default constructor of its class or of an
6405 // enclosing class in a potentially evaluated subexpression, the
6406 // program is ill-formed.
6408 // This resolution is unworkable: the exception specification of the
6409 // default constructor can be needed in an unevaluated context, in
6410 // particular, in the operand of a noexcept-expression, and we can be
6411 // unable to compute an exception specification for an enclosed class.
6413 // Any attempt to resolve the exception specification of a defaulted default
6414 // constructor before the initializer is lexically complete will ultimately
6415 // come here at which point we can diagnose it.
6416 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6417 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6418 << OutermostClass << Field;
6419 Diag(Field->getEndLoc(),
6420 diag::note_default_member_initializer_not_yet_parsed);
6421 // Recover by marking the field invalid, unless we're in a SFINAE context.
6422 if (!isSFINAEContext())
6423 Field->setInvalidDecl();
6424 return ExprError();
6427 Sema::VariadicCallType
6428 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6429 Expr *Fn) {
6430 if (Proto && Proto->isVariadic()) {
6431 if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6432 return VariadicConstructor;
6433 else if (Fn && Fn->getType()->isBlockPointerType())
6434 return VariadicBlock;
6435 else if (FDecl) {
6436 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6437 if (Method->isInstance())
6438 return VariadicMethod;
6439 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6440 return VariadicMethod;
6441 return VariadicFunction;
6443 return VariadicDoesNotApply;
6446 namespace {
6447 class FunctionCallCCC final : public FunctionCallFilterCCC {
6448 public:
6449 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6450 unsigned NumArgs, MemberExpr *ME)
6451 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6452 FunctionName(FuncName) {}
6454 bool ValidateCandidate(const TypoCorrection &candidate) override {
6455 if (!candidate.getCorrectionSpecifier() ||
6456 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6457 return false;
6460 return FunctionCallFilterCCC::ValidateCandidate(candidate);
6463 std::unique_ptr<CorrectionCandidateCallback> clone() override {
6464 return std::make_unique<FunctionCallCCC>(*this);
6467 private:
6468 const IdentifierInfo *const FunctionName;
6472 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6473 FunctionDecl *FDecl,
6474 ArrayRef<Expr *> Args) {
6475 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6476 DeclarationName FuncName = FDecl->getDeclName();
6477 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6479 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6480 if (TypoCorrection Corrected = S.CorrectTypo(
6481 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6482 S.getScopeForContext(S.CurContext), nullptr, CCC,
6483 Sema::CTK_ErrorRecovery)) {
6484 if (NamedDecl *ND = Corrected.getFoundDecl()) {
6485 if (Corrected.isOverloaded()) {
6486 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6487 OverloadCandidateSet::iterator Best;
6488 for (NamedDecl *CD : Corrected) {
6489 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6490 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6491 OCS);
6493 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6494 case OR_Success:
6495 ND = Best->FoundDecl;
6496 Corrected.setCorrectionDecl(ND);
6497 break;
6498 default:
6499 break;
6502 ND = ND->getUnderlyingDecl();
6503 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6504 return Corrected;
6507 return TypoCorrection();
6510 /// ConvertArgumentsForCall - Converts the arguments specified in
6511 /// Args/NumArgs to the parameter types of the function FDecl with
6512 /// function prototype Proto. Call is the call expression itself, and
6513 /// Fn is the function expression. For a C++ member function, this
6514 /// routine does not attempt to convert the object argument. Returns
6515 /// true if the call is ill-formed.
6516 bool
6517 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6518 FunctionDecl *FDecl,
6519 const FunctionProtoType *Proto,
6520 ArrayRef<Expr *> Args,
6521 SourceLocation RParenLoc,
6522 bool IsExecConfig) {
6523 // Bail out early if calling a builtin with custom typechecking.
6524 if (FDecl)
6525 if (unsigned ID = FDecl->getBuiltinID())
6526 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6527 return false;
6529 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6530 // assignment, to the types of the corresponding parameter, ...
6531 bool HasExplicitObjectParameter =
6532 FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
6533 unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
6534 unsigned NumParams = Proto->getNumParams();
6535 bool Invalid = false;
6536 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6537 unsigned FnKind = Fn->getType()->isBlockPointerType()
6538 ? 1 /* block */
6539 : (IsExecConfig ? 3 /* kernel function (exec config) */
6540 : 0 /* function */);
6542 // If too few arguments are available (and we don't have default
6543 // arguments for the remaining parameters), don't make the call.
6544 if (Args.size() < NumParams) {
6545 if (Args.size() < MinArgs) {
6546 TypoCorrection TC;
6547 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6548 unsigned diag_id =
6549 MinArgs == NumParams && !Proto->isVariadic()
6550 ? diag::err_typecheck_call_too_few_args_suggest
6551 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6552 diagnoseTypo(
6553 TC, PDiag(diag_id)
6554 << FnKind << MinArgs - ExplicitObjectParameterOffset
6555 << static_cast<unsigned>(Args.size()) -
6556 ExplicitObjectParameterOffset
6557 << HasExplicitObjectParameter << TC.getCorrectionRange());
6558 } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
6559 FDecl->getParamDecl(ExplicitObjectParameterOffset)
6560 ->getDeclName())
6561 Diag(RParenLoc,
6562 MinArgs == NumParams && !Proto->isVariadic()
6563 ? diag::err_typecheck_call_too_few_args_one
6564 : diag::err_typecheck_call_too_few_args_at_least_one)
6565 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6566 << HasExplicitObjectParameter << Fn->getSourceRange();
6567 else
6568 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6569 ? diag::err_typecheck_call_too_few_args
6570 : diag::err_typecheck_call_too_few_args_at_least)
6571 << FnKind << MinArgs - ExplicitObjectParameterOffset
6572 << static_cast<unsigned>(Args.size()) -
6573 ExplicitObjectParameterOffset
6574 << HasExplicitObjectParameter << Fn->getSourceRange();
6576 // Emit the location of the prototype.
6577 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6578 Diag(FDecl->getLocation(), diag::note_callee_decl)
6579 << FDecl << FDecl->getParametersSourceRange();
6581 return true;
6583 // We reserve space for the default arguments when we create
6584 // the call expression, before calling ConvertArgumentsForCall.
6585 assert((Call->getNumArgs() == NumParams) &&
6586 "We should have reserved space for the default arguments before!");
6589 // If too many are passed and not variadic, error on the extras and drop
6590 // them.
6591 if (Args.size() > NumParams) {
6592 if (!Proto->isVariadic()) {
6593 TypoCorrection TC;
6594 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6595 unsigned diag_id =
6596 MinArgs == NumParams && !Proto->isVariadic()
6597 ? diag::err_typecheck_call_too_many_args_suggest
6598 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6599 diagnoseTypo(
6600 TC, PDiag(diag_id)
6601 << FnKind << NumParams - ExplicitObjectParameterOffset
6602 << static_cast<unsigned>(Args.size()) -
6603 ExplicitObjectParameterOffset
6604 << HasExplicitObjectParameter << TC.getCorrectionRange());
6605 } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
6606 FDecl->getParamDecl(ExplicitObjectParameterOffset)
6607 ->getDeclName())
6608 Diag(Args[NumParams]->getBeginLoc(),
6609 MinArgs == NumParams
6610 ? diag::err_typecheck_call_too_many_args_one
6611 : diag::err_typecheck_call_too_many_args_at_most_one)
6612 << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
6613 << static_cast<unsigned>(Args.size()) -
6614 ExplicitObjectParameterOffset
6615 << HasExplicitObjectParameter << Fn->getSourceRange()
6616 << SourceRange(Args[NumParams]->getBeginLoc(),
6617 Args.back()->getEndLoc());
6618 else
6619 Diag(Args[NumParams]->getBeginLoc(),
6620 MinArgs == NumParams
6621 ? diag::err_typecheck_call_too_many_args
6622 : diag::err_typecheck_call_too_many_args_at_most)
6623 << FnKind << NumParams - ExplicitObjectParameterOffset
6624 << static_cast<unsigned>(Args.size()) -
6625 ExplicitObjectParameterOffset
6626 << HasExplicitObjectParameter << Fn->getSourceRange()
6627 << SourceRange(Args[NumParams]->getBeginLoc(),
6628 Args.back()->getEndLoc());
6630 // Emit the location of the prototype.
6631 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6632 Diag(FDecl->getLocation(), diag::note_callee_decl)
6633 << FDecl << FDecl->getParametersSourceRange();
6635 // This deletes the extra arguments.
6636 Call->shrinkNumArgs(NumParams);
6637 return true;
6640 SmallVector<Expr *, 8> AllArgs;
6641 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6643 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6644 AllArgs, CallType);
6645 if (Invalid)
6646 return true;
6647 unsigned TotalNumArgs = AllArgs.size();
6648 for (unsigned i = 0; i < TotalNumArgs; ++i)
6649 Call->setArg(i, AllArgs[i]);
6651 Call->computeDependence();
6652 return false;
6655 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6656 const FunctionProtoType *Proto,
6657 unsigned FirstParam, ArrayRef<Expr *> Args,
6658 SmallVectorImpl<Expr *> &AllArgs,
6659 VariadicCallType CallType, bool AllowExplicit,
6660 bool IsListInitialization) {
6661 unsigned NumParams = Proto->getNumParams();
6662 bool Invalid = false;
6663 size_t ArgIx = 0;
6664 // Continue to check argument types (even if we have too few/many args).
6665 for (unsigned i = FirstParam; i < NumParams; i++) {
6666 QualType ProtoArgType = Proto->getParamType(i);
6668 Expr *Arg;
6669 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6670 if (ArgIx < Args.size()) {
6671 Arg = Args[ArgIx++];
6673 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6674 diag::err_call_incomplete_argument, Arg))
6675 return true;
6677 // Strip the unbridged-cast placeholder expression off, if applicable.
6678 bool CFAudited = false;
6679 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6680 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6681 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6682 Arg = stripARCUnbridgedCast(Arg);
6683 else if (getLangOpts().ObjCAutoRefCount &&
6684 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6685 (!Param || !Param->hasAttr<CFConsumedAttr>()))
6686 CFAudited = true;
6688 if (Proto->getExtParameterInfo(i).isNoEscape() &&
6689 ProtoArgType->isBlockPointerType())
6690 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6691 BE->getBlockDecl()->setDoesNotEscape();
6693 InitializedEntity Entity =
6694 Param ? InitializedEntity::InitializeParameter(Context, Param,
6695 ProtoArgType)
6696 : InitializedEntity::InitializeParameter(
6697 Context, ProtoArgType, Proto->isParamConsumed(i));
6699 // Remember that parameter belongs to a CF audited API.
6700 if (CFAudited)
6701 Entity.setParameterCFAudited();
6703 ExprResult ArgE = PerformCopyInitialization(
6704 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6705 if (ArgE.isInvalid())
6706 return true;
6708 Arg = ArgE.getAs<Expr>();
6709 } else {
6710 assert(Param && "can't use default arguments without a known callee");
6712 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6713 if (ArgExpr.isInvalid())
6714 return true;
6716 Arg = ArgExpr.getAs<Expr>();
6719 // Check for array bounds violations for each argument to the call. This
6720 // check only triggers warnings when the argument isn't a more complex Expr
6721 // with its own checking, such as a BinaryOperator.
6722 CheckArrayAccess(Arg);
6724 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6725 CheckStaticArrayArgument(CallLoc, Param, Arg);
6727 AllArgs.push_back(Arg);
6730 // If this is a variadic call, handle args passed through "...".
6731 if (CallType != VariadicDoesNotApply) {
6732 // Assume that extern "C" functions with variadic arguments that
6733 // return __unknown_anytype aren't *really* variadic.
6734 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6735 FDecl->isExternC()) {
6736 for (Expr *A : Args.slice(ArgIx)) {
6737 QualType paramType; // ignored
6738 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6739 Invalid |= arg.isInvalid();
6740 AllArgs.push_back(arg.get());
6743 // Otherwise do argument promotion, (C99 6.5.2.2p7).
6744 } else {
6745 for (Expr *A : Args.slice(ArgIx)) {
6746 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6747 Invalid |= Arg.isInvalid();
6748 AllArgs.push_back(Arg.get());
6752 // Check for array bounds violations.
6753 for (Expr *A : Args.slice(ArgIx))
6754 CheckArrayAccess(A);
6756 return Invalid;
6759 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6760 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6761 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6762 TL = DTL.getOriginalLoc();
6763 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6764 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6765 << ATL.getLocalSourceRange();
6768 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6769 /// array parameter, check that it is non-null, and that if it is formed by
6770 /// array-to-pointer decay, the underlying array is sufficiently large.
6772 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6773 /// array type derivation, then for each call to the function, the value of the
6774 /// corresponding actual argument shall provide access to the first element of
6775 /// an array with at least as many elements as specified by the size expression.
6776 void
6777 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6778 ParmVarDecl *Param,
6779 const Expr *ArgExpr) {
6780 // Static array parameters are not supported in C++.
6781 if (!Param || getLangOpts().CPlusPlus)
6782 return;
6784 QualType OrigTy = Param->getOriginalType();
6786 const ArrayType *AT = Context.getAsArrayType(OrigTy);
6787 if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6788 return;
6790 if (ArgExpr->isNullPointerConstant(Context,
6791 Expr::NPC_NeverValueDependent)) {
6792 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6793 DiagnoseCalleeStaticArrayParam(*this, Param);
6794 return;
6797 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6798 if (!CAT)
6799 return;
6801 const ConstantArrayType *ArgCAT =
6802 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6803 if (!ArgCAT)
6804 return;
6806 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6807 ArgCAT->getElementType())) {
6808 if (ArgCAT->getSize().ult(CAT->getSize())) {
6809 Diag(CallLoc, diag::warn_static_array_too_small)
6810 << ArgExpr->getSourceRange()
6811 << (unsigned)ArgCAT->getSize().getZExtValue()
6812 << (unsigned)CAT->getSize().getZExtValue() << 0;
6813 DiagnoseCalleeStaticArrayParam(*this, Param);
6815 return;
6818 std::optional<CharUnits> ArgSize =
6819 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6820 std::optional<CharUnits> ParmSize =
6821 getASTContext().getTypeSizeInCharsIfKnown(CAT);
6822 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6823 Diag(CallLoc, diag::warn_static_array_too_small)
6824 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6825 << (unsigned)ParmSize->getQuantity() << 1;
6826 DiagnoseCalleeStaticArrayParam(*this, Param);
6830 /// Given a function expression of unknown-any type, try to rebuild it
6831 /// to have a function type.
6832 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6834 /// Is the given type a placeholder that we need to lower out
6835 /// immediately during argument processing?
6836 static bool isPlaceholderToRemoveAsArg(QualType type) {
6837 // Placeholders are never sugared.
6838 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6839 if (!placeholder) return false;
6841 switch (placeholder->getKind()) {
6842 // Ignore all the non-placeholder types.
6843 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6844 case BuiltinType::Id:
6845 #include "clang/Basic/OpenCLImageTypes.def"
6846 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6847 case BuiltinType::Id:
6848 #include "clang/Basic/OpenCLExtensionTypes.def"
6849 // In practice we'll never use this, since all SVE types are sugared
6850 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6851 #define SVE_TYPE(Name, Id, SingletonId) \
6852 case BuiltinType::Id:
6853 #include "clang/Basic/AArch64SVEACLETypes.def"
6854 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6855 case BuiltinType::Id:
6856 #include "clang/Basic/PPCTypes.def"
6857 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6858 #include "clang/Basic/RISCVVTypes.def"
6859 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6860 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6861 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6862 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6863 #include "clang/AST/BuiltinTypes.def"
6864 return false;
6866 // We cannot lower out overload sets; they might validly be resolved
6867 // by the call machinery.
6868 case BuiltinType::Overload:
6869 return false;
6871 // Unbridged casts in ARC can be handled in some call positions and
6872 // should be left in place.
6873 case BuiltinType::ARCUnbridgedCast:
6874 return false;
6876 // Pseudo-objects should be converted as soon as possible.
6877 case BuiltinType::PseudoObject:
6878 return true;
6880 // The debugger mode could theoretically but currently does not try
6881 // to resolve unknown-typed arguments based on known parameter types.
6882 case BuiltinType::UnknownAny:
6883 return true;
6885 // These are always invalid as call arguments and should be reported.
6886 case BuiltinType::BoundMember:
6887 case BuiltinType::BuiltinFn:
6888 case BuiltinType::IncompleteMatrixIdx:
6889 case BuiltinType::OMPArraySection:
6890 case BuiltinType::OMPArrayShaping:
6891 case BuiltinType::OMPIterator:
6892 return true;
6895 llvm_unreachable("bad builtin type kind");
6898 /// Check an argument list for placeholders that we won't try to
6899 /// handle later.
6900 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6901 // Apply this processing to all the arguments at once instead of
6902 // dying at the first failure.
6903 bool hasInvalid = false;
6904 for (size_t i = 0, e = args.size(); i != e; i++) {
6905 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6906 ExprResult result = S.CheckPlaceholderExpr(args[i]);
6907 if (result.isInvalid()) hasInvalid = true;
6908 else args[i] = result.get();
6911 return hasInvalid;
6914 /// If a builtin function has a pointer argument with no explicit address
6915 /// space, then it should be able to accept a pointer to any address
6916 /// space as input. In order to do this, we need to replace the
6917 /// standard builtin declaration with one that uses the same address space
6918 /// as the call.
6920 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6921 /// it does not contain any pointer arguments without
6922 /// an address space qualifer. Otherwise the rewritten
6923 /// FunctionDecl is returned.
6924 /// TODO: Handle pointer return types.
6925 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6926 FunctionDecl *FDecl,
6927 MultiExprArg ArgExprs) {
6929 QualType DeclType = FDecl->getType();
6930 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6932 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6933 ArgExprs.size() < FT->getNumParams())
6934 return nullptr;
6936 bool NeedsNewDecl = false;
6937 unsigned i = 0;
6938 SmallVector<QualType, 8> OverloadParams;
6940 for (QualType ParamType : FT->param_types()) {
6942 // Convert array arguments to pointer to simplify type lookup.
6943 ExprResult ArgRes =
6944 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6945 if (ArgRes.isInvalid())
6946 return nullptr;
6947 Expr *Arg = ArgRes.get();
6948 QualType ArgType = Arg->getType();
6949 if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6950 !ArgType->isPointerType() ||
6951 !ArgType->getPointeeType().hasAddressSpace() ||
6952 isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6953 OverloadParams.push_back(ParamType);
6954 continue;
6957 QualType PointeeType = ParamType->getPointeeType();
6958 if (PointeeType.hasAddressSpace())
6959 continue;
6961 NeedsNewDecl = true;
6962 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6964 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6965 OverloadParams.push_back(Context.getPointerType(PointeeType));
6968 if (!NeedsNewDecl)
6969 return nullptr;
6971 FunctionProtoType::ExtProtoInfo EPI;
6972 EPI.Variadic = FT->isVariadic();
6973 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6974 OverloadParams, EPI);
6975 DeclContext *Parent = FDecl->getParent();
6976 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6977 Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6978 FDecl->getIdentifier(), OverloadTy,
6979 /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6980 false,
6981 /*hasPrototype=*/true);
6982 SmallVector<ParmVarDecl*, 16> Params;
6983 FT = cast<FunctionProtoType>(OverloadTy);
6984 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6985 QualType ParamType = FT->getParamType(i);
6986 ParmVarDecl *Parm =
6987 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6988 SourceLocation(), nullptr, ParamType,
6989 /*TInfo=*/nullptr, SC_None, nullptr);
6990 Parm->setScopeInfo(0, i);
6991 Params.push_back(Parm);
6993 OverloadDecl->setParams(Params);
6994 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6995 return OverloadDecl;
6998 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6999 FunctionDecl *Callee,
7000 MultiExprArg ArgExprs) {
7001 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
7002 // similar attributes) really don't like it when functions are called with an
7003 // invalid number of args.
7004 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
7005 /*PartialOverloading=*/false) &&
7006 !Callee->isVariadic())
7007 return;
7008 if (Callee->getMinRequiredArguments() > ArgExprs.size())
7009 return;
7011 if (const EnableIfAttr *Attr =
7012 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
7013 S.Diag(Fn->getBeginLoc(),
7014 isa<CXXMethodDecl>(Callee)
7015 ? diag::err_ovl_no_viable_member_function_in_call
7016 : diag::err_ovl_no_viable_function_in_call)
7017 << Callee << Callee->getSourceRange();
7018 S.Diag(Callee->getLocation(),
7019 diag::note_ovl_candidate_disabled_by_function_cond_attr)
7020 << Attr->getCond()->getSourceRange() << Attr->getMessage();
7021 return;
7025 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
7026 const UnresolvedMemberExpr *const UME, Sema &S) {
7028 const auto GetFunctionLevelDCIfCXXClass =
7029 [](Sema &S) -> const CXXRecordDecl * {
7030 const DeclContext *const DC = S.getFunctionLevelDeclContext();
7031 if (!DC || !DC->getParent())
7032 return nullptr;
7034 // If the call to some member function was made from within a member
7035 // function body 'M' return return 'M's parent.
7036 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
7037 return MD->getParent()->getCanonicalDecl();
7038 // else the call was made from within a default member initializer of a
7039 // class, so return the class.
7040 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
7041 return RD->getCanonicalDecl();
7042 return nullptr;
7044 // If our DeclContext is neither a member function nor a class (in the
7045 // case of a lambda in a default member initializer), we can't have an
7046 // enclosing 'this'.
7048 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
7049 if (!CurParentClass)
7050 return false;
7052 // The naming class for implicit member functions call is the class in which
7053 // name lookup starts.
7054 const CXXRecordDecl *const NamingClass =
7055 UME->getNamingClass()->getCanonicalDecl();
7056 assert(NamingClass && "Must have naming class even for implicit access");
7058 // If the unresolved member functions were found in a 'naming class' that is
7059 // related (either the same or derived from) to the class that contains the
7060 // member function that itself contained the implicit member access.
7062 return CurParentClass == NamingClass ||
7063 CurParentClass->isDerivedFrom(NamingClass);
7066 static void
7067 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7068 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
7070 if (!UME)
7071 return;
7073 LambdaScopeInfo *const CurLSI = S.getCurLambda();
7074 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
7075 // already been captured, or if this is an implicit member function call (if
7076 // it isn't, an attempt to capture 'this' should already have been made).
7077 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
7078 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
7079 return;
7081 // Check if the naming class in which the unresolved members were found is
7082 // related (same as or is a base of) to the enclosing class.
7084 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
7085 return;
7088 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
7089 // If the enclosing function is not dependent, then this lambda is
7090 // capture ready, so if we can capture this, do so.
7091 if (!EnclosingFunctionCtx->isDependentContext()) {
7092 // If the current lambda and all enclosing lambdas can capture 'this' -
7093 // then go ahead and capture 'this' (since our unresolved overload set
7094 // contains at least one non-static member function).
7095 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
7096 S.CheckCXXThisCapture(CallLoc);
7097 } else if (S.CurContext->isDependentContext()) {
7098 // ... since this is an implicit member reference, that might potentially
7099 // involve a 'this' capture, mark 'this' for potential capture in
7100 // enclosing lambdas.
7101 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
7102 CurLSI->addPotentialThisCapture(CallLoc);
7106 // Once a call is fully resolved, warn for unqualified calls to specific
7107 // C++ standard functions, like move and forward.
7108 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
7109 const CallExpr *Call) {
7110 // We are only checking unary move and forward so exit early here.
7111 if (Call->getNumArgs() != 1)
7112 return;
7114 const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
7115 if (!E || isa<UnresolvedLookupExpr>(E))
7116 return;
7117 const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
7118 if (!DRE || !DRE->getLocation().isValid())
7119 return;
7121 if (DRE->getQualifier())
7122 return;
7124 const FunctionDecl *FD = Call->getDirectCallee();
7125 if (!FD)
7126 return;
7128 // Only warn for some functions deemed more frequent or problematic.
7129 unsigned BuiltinID = FD->getBuiltinID();
7130 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
7131 return;
7133 S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
7134 << FD->getQualifiedNameAsString()
7135 << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
7138 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7139 MultiExprArg ArgExprs, SourceLocation RParenLoc,
7140 Expr *ExecConfig) {
7141 ExprResult Call =
7142 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7143 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
7144 if (Call.isInvalid())
7145 return Call;
7147 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
7148 // language modes.
7149 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
7150 ULE && ULE->hasExplicitTemplateArgs() &&
7151 ULE->decls_begin() == ULE->decls_end()) {
7152 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
7153 ? diag::warn_cxx17_compat_adl_only_template_id
7154 : diag::ext_adl_only_template_id)
7155 << ULE->getName();
7158 if (LangOpts.OpenMP)
7159 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
7160 ExecConfig);
7161 if (LangOpts.CPlusPlus) {
7162 if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
7163 DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
7165 return Call;
7168 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
7169 /// This provides the location of the left/right parens and a list of comma
7170 /// locations.
7171 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
7172 MultiExprArg ArgExprs, SourceLocation RParenLoc,
7173 Expr *ExecConfig, bool IsExecConfig,
7174 bool AllowRecovery) {
7175 // Since this might be a postfix expression, get rid of ParenListExprs.
7176 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
7177 if (Result.isInvalid()) return ExprError();
7178 Fn = Result.get();
7180 if (checkArgsForPlaceholders(*this, ArgExprs))
7181 return ExprError();
7183 if (getLangOpts().CPlusPlus) {
7184 // If this is a pseudo-destructor expression, build the call immediately.
7185 if (isa<CXXPseudoDestructorExpr>(Fn)) {
7186 if (!ArgExprs.empty()) {
7187 // Pseudo-destructor calls should not have any arguments.
7188 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
7189 << FixItHint::CreateRemoval(
7190 SourceRange(ArgExprs.front()->getBeginLoc(),
7191 ArgExprs.back()->getEndLoc()));
7194 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
7195 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7197 if (Fn->getType() == Context.PseudoObjectTy) {
7198 ExprResult result = CheckPlaceholderExpr(Fn);
7199 if (result.isInvalid()) return ExprError();
7200 Fn = result.get();
7203 // Determine whether this is a dependent call inside a C++ template,
7204 // in which case we won't do any semantic analysis now.
7205 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
7206 if (ExecConfig) {
7207 return CUDAKernelCallExpr::Create(Context, Fn,
7208 cast<CallExpr>(ExecConfig), ArgExprs,
7209 Context.DependentTy, VK_PRValue,
7210 RParenLoc, CurFPFeatureOverrides());
7211 } else {
7213 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
7214 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
7215 Fn->getBeginLoc());
7217 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7218 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7222 // Determine whether this is a call to an object (C++ [over.call.object]).
7223 if (Fn->getType()->isRecordType())
7224 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
7225 RParenLoc);
7227 if (Fn->getType() == Context.UnknownAnyTy) {
7228 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7229 if (result.isInvalid()) return ExprError();
7230 Fn = result.get();
7233 if (Fn->getType() == Context.BoundMemberTy) {
7234 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7235 RParenLoc, ExecConfig, IsExecConfig,
7236 AllowRecovery);
7240 // Check for overloaded calls. This can happen even in C due to extensions.
7241 if (Fn->getType() == Context.OverloadTy) {
7242 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
7244 // We aren't supposed to apply this logic if there's an '&' involved.
7245 if (!find.HasFormOfMemberPointer) {
7246 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
7247 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7248 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7249 OverloadExpr *ovl = find.Expression;
7250 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
7251 return BuildOverloadedCallExpr(
7252 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
7253 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
7254 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
7255 RParenLoc, ExecConfig, IsExecConfig,
7256 AllowRecovery);
7260 // If we're directly calling a function, get the appropriate declaration.
7261 if (Fn->getType() == Context.UnknownAnyTy) {
7262 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
7263 if (result.isInvalid()) return ExprError();
7264 Fn = result.get();
7267 Expr *NakedFn = Fn->IgnoreParens();
7269 bool CallingNDeclIndirectly = false;
7270 NamedDecl *NDecl = nullptr;
7271 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
7272 if (UnOp->getOpcode() == UO_AddrOf) {
7273 CallingNDeclIndirectly = true;
7274 NakedFn = UnOp->getSubExpr()->IgnoreParens();
7278 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
7279 NDecl = DRE->getDecl();
7281 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
7282 if (FDecl && FDecl->getBuiltinID()) {
7283 // Rewrite the function decl for this builtin by replacing parameters
7284 // with no explicit address space with the address space of the arguments
7285 // in ArgExprs.
7286 if ((FDecl =
7287 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
7288 NDecl = FDecl;
7289 Fn = DeclRefExpr::Create(
7290 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7291 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7292 nullptr, DRE->isNonOdrUse());
7295 } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7296 NDecl = ME->getMemberDecl();
7298 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7299 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7300 FD, /*Complain=*/true, Fn->getBeginLoc()))
7301 return ExprError();
7303 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7305 // If this expression is a call to a builtin function in HIP device
7306 // compilation, allow a pointer-type argument to default address space to be
7307 // passed as a pointer-type parameter to a non-default address space.
7308 // If Arg is declared in the default address space and Param is declared
7309 // in a non-default address space, perform an implicit address space cast to
7310 // the parameter type.
7311 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7312 FD->getBuiltinID()) {
7313 for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7314 ParmVarDecl *Param = FD->getParamDecl(Idx);
7315 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7316 !ArgExprs[Idx]->getType()->isPointerType())
7317 continue;
7319 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7320 auto ArgTy = ArgExprs[Idx]->getType();
7321 auto ArgPtTy = ArgTy->getPointeeType();
7322 auto ArgAS = ArgPtTy.getAddressSpace();
7324 // Add address space cast if target address spaces are different
7325 bool NeedImplicitASC =
7326 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
7327 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
7328 // or from specific AS which has target AS matching that of Param.
7329 getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7330 if (!NeedImplicitASC)
7331 continue;
7333 // First, ensure that the Arg is an RValue.
7334 if (ArgExprs[Idx]->isGLValue()) {
7335 ArgExprs[Idx] = ImplicitCastExpr::Create(
7336 Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7337 nullptr, VK_PRValue, FPOptionsOverride());
7340 // Construct a new arg type with address space of Param
7341 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7342 ArgPtQuals.setAddressSpace(ParamAS);
7343 auto NewArgPtTy =
7344 Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7345 auto NewArgTy =
7346 Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7347 ArgTy.getQualifiers());
7349 // Finally perform an implicit address space cast
7350 ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7351 CK_AddressSpaceConversion)
7352 .get();
7357 if (Context.isDependenceAllowed() &&
7358 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7359 assert(!getLangOpts().CPlusPlus);
7360 assert((Fn->containsErrors() ||
7361 llvm::any_of(ArgExprs,
7362 [](clang::Expr *E) { return E->containsErrors(); })) &&
7363 "should only occur in error-recovery path.");
7364 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
7365 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
7367 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7368 ExecConfig, IsExecConfig);
7371 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7372 // with the specified CallArgs
7373 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7374 MultiExprArg CallArgs) {
7375 StringRef Name = Context.BuiltinInfo.getName(Id);
7376 LookupResult R(*this, &Context.Idents.get(Name), Loc,
7377 Sema::LookupOrdinaryName);
7378 LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7380 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7381 assert(BuiltInDecl && "failed to find builtin declaration");
7383 ExprResult DeclRef =
7384 BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7385 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7387 ExprResult Call =
7388 BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7390 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7391 return Call.get();
7394 /// Parse a __builtin_astype expression.
7396 /// __builtin_astype( value, dst type )
7398 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7399 SourceLocation BuiltinLoc,
7400 SourceLocation RParenLoc) {
7401 QualType DstTy = GetTypeFromParser(ParsedDestTy);
7402 return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7405 /// Create a new AsTypeExpr node (bitcast) from the arguments.
7406 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7407 SourceLocation BuiltinLoc,
7408 SourceLocation RParenLoc) {
7409 ExprValueKind VK = VK_PRValue;
7410 ExprObjectKind OK = OK_Ordinary;
7411 QualType SrcTy = E->getType();
7412 if (!SrcTy->isDependentType() &&
7413 Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7414 return ExprError(
7415 Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7416 << DestTy << SrcTy << E->getSourceRange());
7417 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7420 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7421 /// provided arguments.
7423 /// __builtin_convertvector( value, dst type )
7425 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7426 SourceLocation BuiltinLoc,
7427 SourceLocation RParenLoc) {
7428 TypeSourceInfo *TInfo;
7429 GetTypeFromParser(ParsedDestTy, &TInfo);
7430 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7433 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7434 /// i.e. an expression not of \p OverloadTy. The expression should
7435 /// unary-convert to an expression of function-pointer or
7436 /// block-pointer type.
7438 /// \param NDecl the declaration being called, if available
7439 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7440 SourceLocation LParenLoc,
7441 ArrayRef<Expr *> Args,
7442 SourceLocation RParenLoc, Expr *Config,
7443 bool IsExecConfig, ADLCallKind UsesADL) {
7444 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7445 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7447 // Functions with 'interrupt' attribute cannot be called directly.
7448 if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7449 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7450 return ExprError();
7453 // Interrupt handlers don't save off the VFP regs automatically on ARM,
7454 // so there's some risk when calling out to non-interrupt handler functions
7455 // that the callee might not preserve them. This is easy to diagnose here,
7456 // but can be very challenging to debug.
7457 // Likewise, X86 interrupt handlers may only call routines with attribute
7458 // no_caller_saved_registers since there is no efficient way to
7459 // save and restore the non-GPR state.
7460 if (auto *Caller = getCurFunctionDecl()) {
7461 if (Caller->hasAttr<ARMInterruptAttr>()) {
7462 bool VFP = Context.getTargetInfo().hasFeature("vfp");
7463 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7464 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7465 if (FDecl)
7466 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7469 if (Caller->hasAttr<AnyX86InterruptAttr>() ||
7470 Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
7471 const TargetInfo &TI = Context.getTargetInfo();
7472 bool HasNonGPRRegisters =
7473 TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
7474 if (HasNonGPRRegisters &&
7475 (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
7476 Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
7477 << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
7478 if (FDecl)
7479 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7484 // Promote the function operand.
7485 // We special-case function promotion here because we only allow promoting
7486 // builtin functions to function pointers in the callee of a call.
7487 ExprResult Result;
7488 QualType ResultTy;
7489 if (BuiltinID &&
7490 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7491 // Extract the return type from the (builtin) function pointer type.
7492 // FIXME Several builtins still have setType in
7493 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7494 // Builtins.def to ensure they are correct before removing setType calls.
7495 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7496 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7497 ResultTy = FDecl->getCallResultType();
7498 } else {
7499 Result = CallExprUnaryConversions(Fn);
7500 ResultTy = Context.BoolTy;
7502 if (Result.isInvalid())
7503 return ExprError();
7504 Fn = Result.get();
7506 // Check for a valid function type, but only if it is not a builtin which
7507 // requires custom type checking. These will be handled by
7508 // CheckBuiltinFunctionCall below just after creation of the call expression.
7509 const FunctionType *FuncT = nullptr;
7510 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7511 retry:
7512 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7513 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7514 // have type pointer to function".
7515 FuncT = PT->getPointeeType()->getAs<FunctionType>();
7516 if (!FuncT)
7517 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7518 << Fn->getType() << Fn->getSourceRange());
7519 } else if (const BlockPointerType *BPT =
7520 Fn->getType()->getAs<BlockPointerType>()) {
7521 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7522 } else {
7523 // Handle calls to expressions of unknown-any type.
7524 if (Fn->getType() == Context.UnknownAnyTy) {
7525 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7526 if (rewrite.isInvalid())
7527 return ExprError();
7528 Fn = rewrite.get();
7529 goto retry;
7532 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7533 << Fn->getType() << Fn->getSourceRange());
7537 // Get the number of parameters in the function prototype, if any.
7538 // We will allocate space for max(Args.size(), NumParams) arguments
7539 // in the call expression.
7540 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7541 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7543 CallExpr *TheCall;
7544 if (Config) {
7545 assert(UsesADL == ADLCallKind::NotADL &&
7546 "CUDAKernelCallExpr should not use ADL");
7547 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7548 Args, ResultTy, VK_PRValue, RParenLoc,
7549 CurFPFeatureOverrides(), NumParams);
7550 } else {
7551 TheCall =
7552 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7553 CurFPFeatureOverrides(), NumParams, UsesADL);
7556 if (!Context.isDependenceAllowed()) {
7557 // Forget about the nulled arguments since typo correction
7558 // do not handle them well.
7559 TheCall->shrinkNumArgs(Args.size());
7560 // C cannot always handle TypoExpr nodes in builtin calls and direct
7561 // function calls as their argument checking don't necessarily handle
7562 // dependent types properly, so make sure any TypoExprs have been
7563 // dealt with.
7564 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7565 if (!Result.isUsable()) return ExprError();
7566 CallExpr *TheOldCall = TheCall;
7567 TheCall = dyn_cast<CallExpr>(Result.get());
7568 bool CorrectedTypos = TheCall != TheOldCall;
7569 if (!TheCall) return Result;
7570 Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7572 // A new call expression node was created if some typos were corrected.
7573 // However it may not have been constructed with enough storage. In this
7574 // case, rebuild the node with enough storage. The waste of space is
7575 // immaterial since this only happens when some typos were corrected.
7576 if (CorrectedTypos && Args.size() < NumParams) {
7577 if (Config)
7578 TheCall = CUDAKernelCallExpr::Create(
7579 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7580 RParenLoc, CurFPFeatureOverrides(), NumParams);
7581 else
7582 TheCall =
7583 CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7584 CurFPFeatureOverrides(), NumParams, UsesADL);
7586 // We can now handle the nulled arguments for the default arguments.
7587 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7590 // Bail out early if calling a builtin with custom type checking.
7591 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7592 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7594 if (getLangOpts().CUDA) {
7595 if (Config) {
7596 // CUDA: Kernel calls must be to global functions
7597 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7598 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7599 << FDecl << Fn->getSourceRange());
7601 // CUDA: Kernel function must have 'void' return type
7602 if (!FuncT->getReturnType()->isVoidType() &&
7603 !FuncT->getReturnType()->getAs<AutoType>() &&
7604 !FuncT->getReturnType()->isInstantiationDependentType())
7605 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7606 << Fn->getType() << Fn->getSourceRange());
7607 } else {
7608 // CUDA: Calls to global functions must be configured
7609 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7610 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7611 << FDecl << Fn->getSourceRange());
7615 // Check for a valid return type
7616 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7617 FDecl))
7618 return ExprError();
7620 // We know the result type of the call, set it.
7621 TheCall->setType(FuncT->getCallResultType(Context));
7622 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7624 // WebAssembly tables can't be used as arguments.
7625 if (Context.getTargetInfo().getTriple().isWasm()) {
7626 for (const Expr *Arg : Args) {
7627 if (Arg && Arg->getType()->isWebAssemblyTableType()) {
7628 return ExprError(Diag(Arg->getExprLoc(),
7629 diag::err_wasm_table_as_function_parameter));
7634 if (Proto) {
7635 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7636 IsExecConfig))
7637 return ExprError();
7638 } else {
7639 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7641 if (FDecl) {
7642 // Check if we have too few/too many template arguments, based
7643 // on our knowledge of the function definition.
7644 const FunctionDecl *Def = nullptr;
7645 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7646 Proto = Def->getType()->getAs<FunctionProtoType>();
7647 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7648 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7649 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7652 // If the function we're calling isn't a function prototype, but we have
7653 // a function prototype from a prior declaratiom, use that prototype.
7654 if (!FDecl->hasPrototype())
7655 Proto = FDecl->getType()->getAs<FunctionProtoType>();
7658 // If we still haven't found a prototype to use but there are arguments to
7659 // the call, diagnose this as calling a function without a prototype.
7660 // However, if we found a function declaration, check to see if
7661 // -Wdeprecated-non-prototype was disabled where the function was declared.
7662 // If so, we will silence the diagnostic here on the assumption that this
7663 // interface is intentional and the user knows what they're doing. We will
7664 // also silence the diagnostic if there is a function declaration but it
7665 // was implicitly defined (the user already gets diagnostics about the
7666 // creation of the implicit function declaration, so the additional warning
7667 // is not helpful).
7668 if (!Proto && !Args.empty() &&
7669 (!FDecl || (!FDecl->isImplicit() &&
7670 !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7671 FDecl->getLocation()))))
7672 Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7673 << (FDecl != nullptr) << FDecl;
7675 // Promote the arguments (C99 6.5.2.2p6).
7676 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7677 Expr *Arg = Args[i];
7679 if (Proto && i < Proto->getNumParams()) {
7680 InitializedEntity Entity = InitializedEntity::InitializeParameter(
7681 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7682 ExprResult ArgE =
7683 PerformCopyInitialization(Entity, SourceLocation(), Arg);
7684 if (ArgE.isInvalid())
7685 return true;
7687 Arg = ArgE.getAs<Expr>();
7689 } else {
7690 ExprResult ArgE = DefaultArgumentPromotion(Arg);
7692 if (ArgE.isInvalid())
7693 return true;
7695 Arg = ArgE.getAs<Expr>();
7698 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7699 diag::err_call_incomplete_argument, Arg))
7700 return ExprError();
7702 TheCall->setArg(i, Arg);
7704 TheCall->computeDependence();
7707 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7708 if (Method->isImplicitObjectMemberFunction())
7709 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7710 << Fn->getSourceRange() << 0);
7712 // Check for sentinels
7713 if (NDecl)
7714 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7716 // Warn for unions passing across security boundary (CMSE).
7717 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7718 for (unsigned i = 0, e = Args.size(); i != e; i++) {
7719 if (const auto *RT =
7720 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7721 if (RT->getDecl()->isOrContainsUnion())
7722 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7723 << 0 << i;
7728 // Do special checking on direct calls to functions.
7729 if (FDecl) {
7730 if (CheckFunctionCall(FDecl, TheCall, Proto))
7731 return ExprError();
7733 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7735 if (BuiltinID)
7736 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7737 } else if (NDecl) {
7738 if (CheckPointerCall(NDecl, TheCall, Proto))
7739 return ExprError();
7740 } else {
7741 if (CheckOtherCall(TheCall, Proto))
7742 return ExprError();
7745 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7748 ExprResult
7749 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7750 SourceLocation RParenLoc, Expr *InitExpr) {
7751 assert(Ty && "ActOnCompoundLiteral(): missing type");
7752 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7754 TypeSourceInfo *TInfo;
7755 QualType literalType = GetTypeFromParser(Ty, &TInfo);
7756 if (!TInfo)
7757 TInfo = Context.getTrivialTypeSourceInfo(literalType);
7759 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7762 ExprResult
7763 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7764 SourceLocation RParenLoc, Expr *LiteralExpr) {
7765 QualType literalType = TInfo->getType();
7767 if (literalType->isArrayType()) {
7768 if (RequireCompleteSizedType(
7769 LParenLoc, Context.getBaseElementType(literalType),
7770 diag::err_array_incomplete_or_sizeless_type,
7771 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7772 return ExprError();
7773 if (literalType->isVariableArrayType()) {
7774 // C23 6.7.10p4: An entity of variable length array type shall not be
7775 // initialized except by an empty initializer.
7777 // The C extension warnings are issued from ParseBraceInitializer() and
7778 // do not need to be issued here. However, we continue to issue an error
7779 // in the case there are initializers or we are compiling C++. We allow
7780 // use of VLAs in C++, but it's not clear we want to allow {} to zero
7781 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7782 // FIXME: should we allow this construct in C++ when it makes sense to do
7783 // so?
7784 std::optional<unsigned> NumInits;
7785 if (const auto *ILE = dyn_cast<InitListExpr>(LiteralExpr))
7786 NumInits = ILE->getNumInits();
7787 if ((LangOpts.CPlusPlus || NumInits.value_or(0)) &&
7788 !tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7789 diag::err_variable_object_no_init))
7790 return ExprError();
7792 } else if (!literalType->isDependentType() &&
7793 RequireCompleteType(LParenLoc, literalType,
7794 diag::err_typecheck_decl_incomplete_type,
7795 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7796 return ExprError();
7798 InitializedEntity Entity
7799 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7800 InitializationKind Kind
7801 = InitializationKind::CreateCStyleCast(LParenLoc,
7802 SourceRange(LParenLoc, RParenLoc),
7803 /*InitList=*/true);
7804 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7805 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7806 &literalType);
7807 if (Result.isInvalid())
7808 return ExprError();
7809 LiteralExpr = Result.get();
7811 bool isFileScope = !CurContext->isFunctionOrMethod();
7813 // In C, compound literals are l-values for some reason.
7814 // For GCC compatibility, in C++, file-scope array compound literals with
7815 // constant initializers are also l-values, and compound literals are
7816 // otherwise prvalues.
7818 // (GCC also treats C++ list-initialized file-scope array prvalues with
7819 // constant initializers as l-values, but that's non-conforming, so we don't
7820 // follow it there.)
7822 // FIXME: It would be better to handle the lvalue cases as materializing and
7823 // lifetime-extending a temporary object, but our materialized temporaries
7824 // representation only supports lifetime extension from a variable, not "out
7825 // of thin air".
7826 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7827 // is bound to the result of applying array-to-pointer decay to the compound
7828 // literal.
7829 // FIXME: GCC supports compound literals of reference type, which should
7830 // obviously have a value kind derived from the kind of reference involved.
7831 ExprValueKind VK =
7832 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7833 ? VK_PRValue
7834 : VK_LValue;
7836 if (isFileScope)
7837 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7838 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7839 Expr *Init = ILE->getInit(i);
7840 ILE->setInit(i, ConstantExpr::Create(Context, Init));
7843 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7844 VK, LiteralExpr, isFileScope);
7845 if (isFileScope) {
7846 if (!LiteralExpr->isTypeDependent() &&
7847 !LiteralExpr->isValueDependent() &&
7848 !literalType->isDependentType()) // C99 6.5.2.5p3
7849 if (CheckForConstantInitializer(LiteralExpr, literalType))
7850 return ExprError();
7851 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7852 literalType.getAddressSpace() != LangAS::Default) {
7853 // Embedded-C extensions to C99 6.5.2.5:
7854 // "If the compound literal occurs inside the body of a function, the
7855 // type name shall not be qualified by an address-space qualifier."
7856 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7857 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7858 return ExprError();
7861 if (!isFileScope && !getLangOpts().CPlusPlus) {
7862 // Compound literals that have automatic storage duration are destroyed at
7863 // the end of the scope in C; in C++, they're just temporaries.
7865 // Emit diagnostics if it is or contains a C union type that is non-trivial
7866 // to destruct.
7867 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7868 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7869 NTCUC_CompoundLiteral, NTCUK_Destruct);
7871 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7872 if (literalType.isDestructedType()) {
7873 Cleanup.setExprNeedsCleanups(true);
7874 ExprCleanupObjects.push_back(E);
7875 getCurFunction()->setHasBranchProtectedScope();
7879 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7880 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7881 checkNonTrivialCUnionInInitializer(E->getInitializer(),
7882 E->getInitializer()->getExprLoc());
7884 return MaybeBindToTemporary(E);
7887 ExprResult
7888 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7889 SourceLocation RBraceLoc) {
7890 // Only produce each kind of designated initialization diagnostic once.
7891 SourceLocation FirstDesignator;
7892 bool DiagnosedArrayDesignator = false;
7893 bool DiagnosedNestedDesignator = false;
7894 bool DiagnosedMixedDesignator = false;
7896 // Check that any designated initializers are syntactically valid in the
7897 // current language mode.
7898 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7899 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7900 if (FirstDesignator.isInvalid())
7901 FirstDesignator = DIE->getBeginLoc();
7903 if (!getLangOpts().CPlusPlus)
7904 break;
7906 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7907 DiagnosedNestedDesignator = true;
7908 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7909 << DIE->getDesignatorsSourceRange();
7912 for (auto &Desig : DIE->designators()) {
7913 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7914 DiagnosedArrayDesignator = true;
7915 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7916 << Desig.getSourceRange();
7920 if (!DiagnosedMixedDesignator &&
7921 !isa<DesignatedInitExpr>(InitArgList[0])) {
7922 DiagnosedMixedDesignator = true;
7923 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7924 << DIE->getSourceRange();
7925 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7926 << InitArgList[0]->getSourceRange();
7928 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7929 isa<DesignatedInitExpr>(InitArgList[0])) {
7930 DiagnosedMixedDesignator = true;
7931 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7932 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7933 << DIE->getSourceRange();
7934 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7935 << InitArgList[I]->getSourceRange();
7939 if (FirstDesignator.isValid()) {
7940 // Only diagnose designated initiaization as a C++20 extension if we didn't
7941 // already diagnose use of (non-C++20) C99 designator syntax.
7942 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7943 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7944 Diag(FirstDesignator, getLangOpts().CPlusPlus20
7945 ? diag::warn_cxx17_compat_designated_init
7946 : diag::ext_cxx_designated_init);
7947 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7948 Diag(FirstDesignator, diag::ext_designated_init);
7952 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7955 ExprResult
7956 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7957 SourceLocation RBraceLoc) {
7958 // Semantic analysis for initializers is done by ActOnDeclarator() and
7959 // CheckInitializer() - it requires knowledge of the object being initialized.
7961 // Immediately handle non-overload placeholders. Overloads can be
7962 // resolved contextually, but everything else here can't.
7963 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7964 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7965 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7967 // Ignore failures; dropping the entire initializer list because
7968 // of one failure would be terrible for indexing/etc.
7969 if (result.isInvalid()) continue;
7971 InitArgList[I] = result.get();
7975 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7976 RBraceLoc);
7977 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7978 return E;
7981 /// Do an explicit extend of the given block pointer if we're in ARC.
7982 void Sema::maybeExtendBlockObject(ExprResult &E) {
7983 assert(E.get()->getType()->isBlockPointerType());
7984 assert(E.get()->isPRValue());
7986 // Only do this in an r-value context.
7987 if (!getLangOpts().ObjCAutoRefCount) return;
7989 E = ImplicitCastExpr::Create(
7990 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7991 /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7992 Cleanup.setExprNeedsCleanups(true);
7995 /// Prepare a conversion of the given expression to an ObjC object
7996 /// pointer type.
7997 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7998 QualType type = E.get()->getType();
7999 if (type->isObjCObjectPointerType()) {
8000 return CK_BitCast;
8001 } else if (type->isBlockPointerType()) {
8002 maybeExtendBlockObject(E);
8003 return CK_BlockPointerToObjCPointerCast;
8004 } else {
8005 assert(type->isPointerType());
8006 return CK_CPointerToObjCPointerCast;
8010 /// Prepares for a scalar cast, performing all the necessary stages
8011 /// except the final cast and returning the kind required.
8012 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
8013 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
8014 // Also, callers should have filtered out the invalid cases with
8015 // pointers. Everything else should be possible.
8017 QualType SrcTy = Src.get()->getType();
8018 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
8019 return CK_NoOp;
8021 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
8022 case Type::STK_MemberPointer:
8023 llvm_unreachable("member pointer type in C");
8025 case Type::STK_CPointer:
8026 case Type::STK_BlockPointer:
8027 case Type::STK_ObjCObjectPointer:
8028 switch (DestTy->getScalarTypeKind()) {
8029 case Type::STK_CPointer: {
8030 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
8031 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
8032 if (SrcAS != DestAS)
8033 return CK_AddressSpaceConversion;
8034 if (Context.hasCvrSimilarType(SrcTy, DestTy))
8035 return CK_NoOp;
8036 return CK_BitCast;
8038 case Type::STK_BlockPointer:
8039 return (SrcKind == Type::STK_BlockPointer
8040 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
8041 case Type::STK_ObjCObjectPointer:
8042 if (SrcKind == Type::STK_ObjCObjectPointer)
8043 return CK_BitCast;
8044 if (SrcKind == Type::STK_CPointer)
8045 return CK_CPointerToObjCPointerCast;
8046 maybeExtendBlockObject(Src);
8047 return CK_BlockPointerToObjCPointerCast;
8048 case Type::STK_Bool:
8049 return CK_PointerToBoolean;
8050 case Type::STK_Integral:
8051 return CK_PointerToIntegral;
8052 case Type::STK_Floating:
8053 case Type::STK_FloatingComplex:
8054 case Type::STK_IntegralComplex:
8055 case Type::STK_MemberPointer:
8056 case Type::STK_FixedPoint:
8057 llvm_unreachable("illegal cast from pointer");
8059 llvm_unreachable("Should have returned before this");
8061 case Type::STK_FixedPoint:
8062 switch (DestTy->getScalarTypeKind()) {
8063 case Type::STK_FixedPoint:
8064 return CK_FixedPointCast;
8065 case Type::STK_Bool:
8066 return CK_FixedPointToBoolean;
8067 case Type::STK_Integral:
8068 return CK_FixedPointToIntegral;
8069 case Type::STK_Floating:
8070 return CK_FixedPointToFloating;
8071 case Type::STK_IntegralComplex:
8072 case Type::STK_FloatingComplex:
8073 Diag(Src.get()->getExprLoc(),
8074 diag::err_unimplemented_conversion_with_fixed_point_type)
8075 << DestTy;
8076 return CK_IntegralCast;
8077 case Type::STK_CPointer:
8078 case Type::STK_ObjCObjectPointer:
8079 case Type::STK_BlockPointer:
8080 case Type::STK_MemberPointer:
8081 llvm_unreachable("illegal cast to pointer type");
8083 llvm_unreachable("Should have returned before this");
8085 case Type::STK_Bool: // casting from bool is like casting from an integer
8086 case Type::STK_Integral:
8087 switch (DestTy->getScalarTypeKind()) {
8088 case Type::STK_CPointer:
8089 case Type::STK_ObjCObjectPointer:
8090 case Type::STK_BlockPointer:
8091 if (Src.get()->isNullPointerConstant(Context,
8092 Expr::NPC_ValueDependentIsNull))
8093 return CK_NullToPointer;
8094 return CK_IntegralToPointer;
8095 case Type::STK_Bool:
8096 return CK_IntegralToBoolean;
8097 case Type::STK_Integral:
8098 return CK_IntegralCast;
8099 case Type::STK_Floating:
8100 return CK_IntegralToFloating;
8101 case Type::STK_IntegralComplex:
8102 Src = ImpCastExprToType(Src.get(),
8103 DestTy->castAs<ComplexType>()->getElementType(),
8104 CK_IntegralCast);
8105 return CK_IntegralRealToComplex;
8106 case Type::STK_FloatingComplex:
8107 Src = ImpCastExprToType(Src.get(),
8108 DestTy->castAs<ComplexType>()->getElementType(),
8109 CK_IntegralToFloating);
8110 return CK_FloatingRealToComplex;
8111 case Type::STK_MemberPointer:
8112 llvm_unreachable("member pointer type in C");
8113 case Type::STK_FixedPoint:
8114 return CK_IntegralToFixedPoint;
8116 llvm_unreachable("Should have returned before this");
8118 case Type::STK_Floating:
8119 switch (DestTy->getScalarTypeKind()) {
8120 case Type::STK_Floating:
8121 return CK_FloatingCast;
8122 case Type::STK_Bool:
8123 return CK_FloatingToBoolean;
8124 case Type::STK_Integral:
8125 return CK_FloatingToIntegral;
8126 case Type::STK_FloatingComplex:
8127 Src = ImpCastExprToType(Src.get(),
8128 DestTy->castAs<ComplexType>()->getElementType(),
8129 CK_FloatingCast);
8130 return CK_FloatingRealToComplex;
8131 case Type::STK_IntegralComplex:
8132 Src = ImpCastExprToType(Src.get(),
8133 DestTy->castAs<ComplexType>()->getElementType(),
8134 CK_FloatingToIntegral);
8135 return CK_IntegralRealToComplex;
8136 case Type::STK_CPointer:
8137 case Type::STK_ObjCObjectPointer:
8138 case Type::STK_BlockPointer:
8139 llvm_unreachable("valid float->pointer cast?");
8140 case Type::STK_MemberPointer:
8141 llvm_unreachable("member pointer type in C");
8142 case Type::STK_FixedPoint:
8143 return CK_FloatingToFixedPoint;
8145 llvm_unreachable("Should have returned before this");
8147 case Type::STK_FloatingComplex:
8148 switch (DestTy->getScalarTypeKind()) {
8149 case Type::STK_FloatingComplex:
8150 return CK_FloatingComplexCast;
8151 case Type::STK_IntegralComplex:
8152 return CK_FloatingComplexToIntegralComplex;
8153 case Type::STK_Floating: {
8154 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8155 if (Context.hasSameType(ET, DestTy))
8156 return CK_FloatingComplexToReal;
8157 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
8158 return CK_FloatingCast;
8160 case Type::STK_Bool:
8161 return CK_FloatingComplexToBoolean;
8162 case Type::STK_Integral:
8163 Src = ImpCastExprToType(Src.get(),
8164 SrcTy->castAs<ComplexType>()->getElementType(),
8165 CK_FloatingComplexToReal);
8166 return CK_FloatingToIntegral;
8167 case Type::STK_CPointer:
8168 case Type::STK_ObjCObjectPointer:
8169 case Type::STK_BlockPointer:
8170 llvm_unreachable("valid complex float->pointer cast?");
8171 case Type::STK_MemberPointer:
8172 llvm_unreachable("member pointer type in C");
8173 case Type::STK_FixedPoint:
8174 Diag(Src.get()->getExprLoc(),
8175 diag::err_unimplemented_conversion_with_fixed_point_type)
8176 << SrcTy;
8177 return CK_IntegralCast;
8179 llvm_unreachable("Should have returned before this");
8181 case Type::STK_IntegralComplex:
8182 switch (DestTy->getScalarTypeKind()) {
8183 case Type::STK_FloatingComplex:
8184 return CK_IntegralComplexToFloatingComplex;
8185 case Type::STK_IntegralComplex:
8186 return CK_IntegralComplexCast;
8187 case Type::STK_Integral: {
8188 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
8189 if (Context.hasSameType(ET, DestTy))
8190 return CK_IntegralComplexToReal;
8191 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
8192 return CK_IntegralCast;
8194 case Type::STK_Bool:
8195 return CK_IntegralComplexToBoolean;
8196 case Type::STK_Floating:
8197 Src = ImpCastExprToType(Src.get(),
8198 SrcTy->castAs<ComplexType>()->getElementType(),
8199 CK_IntegralComplexToReal);
8200 return CK_IntegralToFloating;
8201 case Type::STK_CPointer:
8202 case Type::STK_ObjCObjectPointer:
8203 case Type::STK_BlockPointer:
8204 llvm_unreachable("valid complex int->pointer cast?");
8205 case Type::STK_MemberPointer:
8206 llvm_unreachable("member pointer type in C");
8207 case Type::STK_FixedPoint:
8208 Diag(Src.get()->getExprLoc(),
8209 diag::err_unimplemented_conversion_with_fixed_point_type)
8210 << SrcTy;
8211 return CK_IntegralCast;
8213 llvm_unreachable("Should have returned before this");
8216 llvm_unreachable("Unhandled scalar cast");
8219 static bool breakDownVectorType(QualType type, uint64_t &len,
8220 QualType &eltType) {
8221 // Vectors are simple.
8222 if (const VectorType *vecType = type->getAs<VectorType>()) {
8223 len = vecType->getNumElements();
8224 eltType = vecType->getElementType();
8225 assert(eltType->isScalarType());
8226 return true;
8229 // We allow lax conversion to and from non-vector types, but only if
8230 // they're real types (i.e. non-complex, non-pointer scalar types).
8231 if (!type->isRealType()) return false;
8233 len = 1;
8234 eltType = type;
8235 return true;
8238 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
8239 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
8240 /// allowed?
8242 /// This will also return false if the two given types do not make sense from
8243 /// the perspective of SVE bitcasts.
8244 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
8245 assert(srcTy->isVectorType() || destTy->isVectorType());
8247 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8248 if (!FirstType->isSVESizelessBuiltinType())
8249 return false;
8251 const auto *VecTy = SecondType->getAs<VectorType>();
8252 return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
8255 return ValidScalableConversion(srcTy, destTy) ||
8256 ValidScalableConversion(destTy, srcTy);
8259 /// Are the two types RVV-bitcast-compatible types? I.e. is bitcasting from the
8260 /// first RVV type (e.g. an RVV scalable type) to the second type (e.g. an RVV
8261 /// VLS type) allowed?
8263 /// This will also return false if the two given types do not make sense from
8264 /// the perspective of RVV bitcasts.
8265 bool Sema::isValidRVVBitcast(QualType srcTy, QualType destTy) {
8266 assert(srcTy->isVectorType() || destTy->isVectorType());
8268 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
8269 if (!FirstType->isRVVSizelessBuiltinType())
8270 return false;
8272 const auto *VecTy = SecondType->getAs<VectorType>();
8273 return VecTy && VecTy->getVectorKind() == VectorKind::RVVFixedLengthData;
8276 return ValidScalableConversion(srcTy, destTy) ||
8277 ValidScalableConversion(destTy, srcTy);
8280 /// Are the two types matrix types and do they have the same dimensions i.e.
8281 /// do they have the same number of rows and the same number of columns?
8282 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
8283 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
8284 return false;
8286 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
8287 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
8289 return matSrcType->getNumRows() == matDestType->getNumRows() &&
8290 matSrcType->getNumColumns() == matDestType->getNumColumns();
8293 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
8294 assert(DestTy->isVectorType() || SrcTy->isVectorType());
8296 uint64_t SrcLen, DestLen;
8297 QualType SrcEltTy, DestEltTy;
8298 if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8299 return false;
8300 if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8301 return false;
8303 // ASTContext::getTypeSize will return the size rounded up to a
8304 // power of 2, so instead of using that, we need to use the raw
8305 // element size multiplied by the element count.
8306 uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
8307 uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
8309 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
8312 // This returns true if at least one of the types is an altivec vector.
8313 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
8314 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
8315 "expected at least one type to be a vector here");
8317 bool IsSrcTyAltivec =
8318 SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
8319 VectorKind::AltiVecVector) ||
8320 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8321 VectorKind::AltiVecBool) ||
8322 (SrcTy->castAs<VectorType>()->getVectorKind() ==
8323 VectorKind::AltiVecPixel));
8325 bool IsDestTyAltivec = DestTy->isVectorType() &&
8326 ((DestTy->castAs<VectorType>()->getVectorKind() ==
8327 VectorKind::AltiVecVector) ||
8328 (DestTy->castAs<VectorType>()->getVectorKind() ==
8329 VectorKind::AltiVecBool) ||
8330 (DestTy->castAs<VectorType>()->getVectorKind() ==
8331 VectorKind::AltiVecPixel));
8333 return (IsSrcTyAltivec || IsDestTyAltivec);
8336 /// Are the two types lax-compatible vector types? That is, given
8337 /// that one of them is a vector, do they have equal storage sizes,
8338 /// where the storage size is the number of elements times the element
8339 /// size?
8341 /// This will also return false if either of the types is neither a
8342 /// vector nor a real type.
8343 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8344 assert(destTy->isVectorType() || srcTy->isVectorType());
8346 // Disallow lax conversions between scalars and ExtVectors (these
8347 // conversions are allowed for other vector types because common headers
8348 // depend on them). Most scalar OP ExtVector cases are handled by the
8349 // splat path anyway, which does what we want (convert, not bitcast).
8350 // What this rules out for ExtVectors is crazy things like char4*float.
8351 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8352 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8354 return areVectorTypesSameSize(srcTy, destTy);
8357 /// Is this a legal conversion between two types, one of which is
8358 /// known to be a vector type?
8359 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8360 assert(destTy->isVectorType() || srcTy->isVectorType());
8362 switch (Context.getLangOpts().getLaxVectorConversions()) {
8363 case LangOptions::LaxVectorConversionKind::None:
8364 return false;
8366 case LangOptions::LaxVectorConversionKind::Integer:
8367 if (!srcTy->isIntegralOrEnumerationType()) {
8368 auto *Vec = srcTy->getAs<VectorType>();
8369 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8370 return false;
8372 if (!destTy->isIntegralOrEnumerationType()) {
8373 auto *Vec = destTy->getAs<VectorType>();
8374 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8375 return false;
8377 // OK, integer (vector) -> integer (vector) bitcast.
8378 break;
8380 case LangOptions::LaxVectorConversionKind::All:
8381 break;
8384 return areLaxCompatibleVectorTypes(srcTy, destTy);
8387 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8388 CastKind &Kind) {
8389 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8390 if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8391 return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8392 << DestTy << SrcTy << R;
8394 } else if (SrcTy->isMatrixType()) {
8395 return Diag(R.getBegin(),
8396 diag::err_invalid_conversion_between_matrix_and_type)
8397 << SrcTy << DestTy << R;
8398 } else if (DestTy->isMatrixType()) {
8399 return Diag(R.getBegin(),
8400 diag::err_invalid_conversion_between_matrix_and_type)
8401 << DestTy << SrcTy << R;
8404 Kind = CK_MatrixCast;
8405 return false;
8408 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8409 CastKind &Kind) {
8410 assert(VectorTy->isVectorType() && "Not a vector type!");
8412 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8413 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8414 return Diag(R.getBegin(),
8415 Ty->isVectorType() ?
8416 diag::err_invalid_conversion_between_vectors :
8417 diag::err_invalid_conversion_between_vector_and_integer)
8418 << VectorTy << Ty << R;
8419 } else
8420 return Diag(R.getBegin(),
8421 diag::err_invalid_conversion_between_vector_and_scalar)
8422 << VectorTy << Ty << R;
8424 Kind = CK_BitCast;
8425 return false;
8428 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8429 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8431 if (DestElemTy == SplattedExpr->getType())
8432 return SplattedExpr;
8434 assert(DestElemTy->isFloatingType() ||
8435 DestElemTy->isIntegralOrEnumerationType());
8437 CastKind CK;
8438 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8439 // OpenCL requires that we convert `true` boolean expressions to -1, but
8440 // only when splatting vectors.
8441 if (DestElemTy->isFloatingType()) {
8442 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8443 // in two steps: boolean to signed integral, then to floating.
8444 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8445 CK_BooleanToSignedIntegral);
8446 SplattedExpr = CastExprRes.get();
8447 CK = CK_IntegralToFloating;
8448 } else {
8449 CK = CK_BooleanToSignedIntegral;
8451 } else {
8452 ExprResult CastExprRes = SplattedExpr;
8453 CK = PrepareScalarCast(CastExprRes, DestElemTy);
8454 if (CastExprRes.isInvalid())
8455 return ExprError();
8456 SplattedExpr = CastExprRes.get();
8458 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8461 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8462 Expr *CastExpr, CastKind &Kind) {
8463 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8465 QualType SrcTy = CastExpr->getType();
8467 // If SrcTy is a VectorType, the total size must match to explicitly cast to
8468 // an ExtVectorType.
8469 // In OpenCL, casts between vectors of different types are not allowed.
8470 // (See OpenCL 6.2).
8471 if (SrcTy->isVectorType()) {
8472 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8473 (getLangOpts().OpenCL &&
8474 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8475 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8476 << DestTy << SrcTy << R;
8477 return ExprError();
8479 Kind = CK_BitCast;
8480 return CastExpr;
8483 // All non-pointer scalars can be cast to ExtVector type. The appropriate
8484 // conversion will take place first from scalar to elt type, and then
8485 // splat from elt type to vector.
8486 if (SrcTy->isPointerType())
8487 return Diag(R.getBegin(),
8488 diag::err_invalid_conversion_between_vector_and_scalar)
8489 << DestTy << SrcTy << R;
8491 Kind = CK_VectorSplat;
8492 return prepareVectorSplat(DestTy, CastExpr);
8495 ExprResult
8496 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8497 Declarator &D, ParsedType &Ty,
8498 SourceLocation RParenLoc, Expr *CastExpr) {
8499 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8500 "ActOnCastExpr(): missing type or expr");
8502 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8503 if (D.isInvalidType())
8504 return ExprError();
8506 if (getLangOpts().CPlusPlus) {
8507 // Check that there are no default arguments (C++ only).
8508 CheckExtraCXXDefaultArguments(D);
8509 } else {
8510 // Make sure any TypoExprs have been dealt with.
8511 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8512 if (!Res.isUsable())
8513 return ExprError();
8514 CastExpr = Res.get();
8517 checkUnusedDeclAttributes(D);
8519 QualType castType = castTInfo->getType();
8520 Ty = CreateParsedType(castType, castTInfo);
8522 bool isVectorLiteral = false;
8524 // Check for an altivec or OpenCL literal,
8525 // i.e. all the elements are integer constants.
8526 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8527 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8528 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8529 && castType->isVectorType() && (PE || PLE)) {
8530 if (PLE && PLE->getNumExprs() == 0) {
8531 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8532 return ExprError();
8534 if (PE || PLE->getNumExprs() == 1) {
8535 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8536 if (!E->isTypeDependent() && !E->getType()->isVectorType())
8537 isVectorLiteral = true;
8539 else
8540 isVectorLiteral = true;
8543 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8544 // then handle it as such.
8545 if (isVectorLiteral)
8546 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8548 // If the Expr being casted is a ParenListExpr, handle it specially.
8549 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8550 // sequence of BinOp comma operators.
8551 if (isa<ParenListExpr>(CastExpr)) {
8552 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8553 if (Result.isInvalid()) return ExprError();
8554 CastExpr = Result.get();
8557 if (getLangOpts().CPlusPlus && !castType->isVoidType())
8558 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8560 CheckTollFreeBridgeCast(castType, CastExpr);
8562 CheckObjCBridgeRelatedCast(castType, CastExpr);
8564 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8566 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8569 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8570 SourceLocation RParenLoc, Expr *E,
8571 TypeSourceInfo *TInfo) {
8572 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8573 "Expected paren or paren list expression");
8575 Expr **exprs;
8576 unsigned numExprs;
8577 Expr *subExpr;
8578 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8579 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8580 LiteralLParenLoc = PE->getLParenLoc();
8581 LiteralRParenLoc = PE->getRParenLoc();
8582 exprs = PE->getExprs();
8583 numExprs = PE->getNumExprs();
8584 } else { // isa<ParenExpr> by assertion at function entrance
8585 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8586 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8587 subExpr = cast<ParenExpr>(E)->getSubExpr();
8588 exprs = &subExpr;
8589 numExprs = 1;
8592 QualType Ty = TInfo->getType();
8593 assert(Ty->isVectorType() && "Expected vector type");
8595 SmallVector<Expr *, 8> initExprs;
8596 const VectorType *VTy = Ty->castAs<VectorType>();
8597 unsigned numElems = VTy->getNumElements();
8599 // '(...)' form of vector initialization in AltiVec: the number of
8600 // initializers must be one or must match the size of the vector.
8601 // If a single value is specified in the initializer then it will be
8602 // replicated to all the components of the vector
8603 if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8604 VTy->getElementType()))
8605 return ExprError();
8606 if (ShouldSplatAltivecScalarInCast(VTy)) {
8607 // The number of initializers must be one or must match the size of the
8608 // vector. If a single value is specified in the initializer then it will
8609 // be replicated to all the components of the vector
8610 if (numExprs == 1) {
8611 QualType ElemTy = VTy->getElementType();
8612 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8613 if (Literal.isInvalid())
8614 return ExprError();
8615 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8616 PrepareScalarCast(Literal, ElemTy));
8617 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8619 else if (numExprs < numElems) {
8620 Diag(E->getExprLoc(),
8621 diag::err_incorrect_number_of_vector_initializers);
8622 return ExprError();
8624 else
8625 initExprs.append(exprs, exprs + numExprs);
8627 else {
8628 // For OpenCL, when the number of initializers is a single value,
8629 // it will be replicated to all components of the vector.
8630 if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
8631 numExprs == 1) {
8632 QualType ElemTy = VTy->getElementType();
8633 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8634 if (Literal.isInvalid())
8635 return ExprError();
8636 Literal = ImpCastExprToType(Literal.get(), ElemTy,
8637 PrepareScalarCast(Literal, ElemTy));
8638 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8641 initExprs.append(exprs, exprs + numExprs);
8643 // FIXME: This means that pretty-printing the final AST will produce curly
8644 // braces instead of the original commas.
8645 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8646 initExprs, LiteralRParenLoc);
8647 initE->setType(Ty);
8648 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8651 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8652 /// the ParenListExpr into a sequence of comma binary operators.
8653 ExprResult
8654 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8655 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8656 if (!E)
8657 return OrigExpr;
8659 ExprResult Result(E->getExpr(0));
8661 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8662 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8663 E->getExpr(i));
8665 if (Result.isInvalid()) return ExprError();
8667 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8670 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8671 SourceLocation R,
8672 MultiExprArg Val) {
8673 return ParenListExpr::Create(Context, L, Val, R);
8676 /// Emit a specialized diagnostic when one expression is a null pointer
8677 /// constant and the other is not a pointer. Returns true if a diagnostic is
8678 /// emitted.
8679 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8680 SourceLocation QuestionLoc) {
8681 Expr *NullExpr = LHSExpr;
8682 Expr *NonPointerExpr = RHSExpr;
8683 Expr::NullPointerConstantKind NullKind =
8684 NullExpr->isNullPointerConstant(Context,
8685 Expr::NPC_ValueDependentIsNotNull);
8687 if (NullKind == Expr::NPCK_NotNull) {
8688 NullExpr = RHSExpr;
8689 NonPointerExpr = LHSExpr;
8690 NullKind =
8691 NullExpr->isNullPointerConstant(Context,
8692 Expr::NPC_ValueDependentIsNotNull);
8695 if (NullKind == Expr::NPCK_NotNull)
8696 return false;
8698 if (NullKind == Expr::NPCK_ZeroExpression)
8699 return false;
8701 if (NullKind == Expr::NPCK_ZeroLiteral) {
8702 // In this case, check to make sure that we got here from a "NULL"
8703 // string in the source code.
8704 NullExpr = NullExpr->IgnoreParenImpCasts();
8705 SourceLocation loc = NullExpr->getExprLoc();
8706 if (!findMacroSpelling(loc, "NULL"))
8707 return false;
8710 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8711 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8712 << NonPointerExpr->getType() << DiagType
8713 << NonPointerExpr->getSourceRange();
8714 return true;
8717 /// Return false if the condition expression is valid, true otherwise.
8718 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8719 QualType CondTy = Cond->getType();
8721 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8722 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8723 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8724 << CondTy << Cond->getSourceRange();
8725 return true;
8728 // C99 6.5.15p2
8729 if (CondTy->isScalarType()) return false;
8731 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8732 << CondTy << Cond->getSourceRange();
8733 return true;
8736 /// Return false if the NullExpr can be promoted to PointerTy,
8737 /// true otherwise.
8738 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8739 QualType PointerTy) {
8740 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8741 !NullExpr.get()->isNullPointerConstant(S.Context,
8742 Expr::NPC_ValueDependentIsNull))
8743 return true;
8745 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8746 return false;
8749 /// Checks compatibility between two pointers and return the resulting
8750 /// type.
8751 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8752 ExprResult &RHS,
8753 SourceLocation Loc) {
8754 QualType LHSTy = LHS.get()->getType();
8755 QualType RHSTy = RHS.get()->getType();
8757 if (S.Context.hasSameType(LHSTy, RHSTy)) {
8758 // Two identical pointers types are always compatible.
8759 return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8762 QualType lhptee, rhptee;
8764 // Get the pointee types.
8765 bool IsBlockPointer = false;
8766 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8767 lhptee = LHSBTy->getPointeeType();
8768 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8769 IsBlockPointer = true;
8770 } else {
8771 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8772 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8775 // C99 6.5.15p6: If both operands are pointers to compatible types or to
8776 // differently qualified versions of compatible types, the result type is
8777 // a pointer to an appropriately qualified version of the composite
8778 // type.
8780 // Only CVR-qualifiers exist in the standard, and the differently-qualified
8781 // clause doesn't make sense for our extensions. E.g. address space 2 should
8782 // be incompatible with address space 3: they may live on different devices or
8783 // anything.
8784 Qualifiers lhQual = lhptee.getQualifiers();
8785 Qualifiers rhQual = rhptee.getQualifiers();
8787 LangAS ResultAddrSpace = LangAS::Default;
8788 LangAS LAddrSpace = lhQual.getAddressSpace();
8789 LangAS RAddrSpace = rhQual.getAddressSpace();
8791 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8792 // spaces is disallowed.
8793 if (lhQual.isAddressSpaceSupersetOf(rhQual))
8794 ResultAddrSpace = LAddrSpace;
8795 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8796 ResultAddrSpace = RAddrSpace;
8797 else {
8798 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8799 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8800 << RHS.get()->getSourceRange();
8801 return QualType();
8804 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8805 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8806 lhQual.removeCVRQualifiers();
8807 rhQual.removeCVRQualifiers();
8809 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8810 // (C99 6.7.3) for address spaces. We assume that the check should behave in
8811 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8812 // qual types are compatible iff
8813 // * corresponded types are compatible
8814 // * CVR qualifiers are equal
8815 // * address spaces are equal
8816 // Thus for conditional operator we merge CVR and address space unqualified
8817 // pointees and if there is a composite type we return a pointer to it with
8818 // merged qualifiers.
8819 LHSCastKind =
8820 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8821 RHSCastKind =
8822 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8823 lhQual.removeAddressSpace();
8824 rhQual.removeAddressSpace();
8826 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8827 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8829 QualType CompositeTy = S.Context.mergeTypes(
8830 lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8831 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8833 if (CompositeTy.isNull()) {
8834 // In this situation, we assume void* type. No especially good
8835 // reason, but this is what gcc does, and we do have to pick
8836 // to get a consistent AST.
8837 QualType incompatTy;
8838 incompatTy = S.Context.getPointerType(
8839 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8840 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8841 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8843 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8844 // for casts between types with incompatible address space qualifiers.
8845 // For the following code the compiler produces casts between global and
8846 // local address spaces of the corresponded innermost pointees:
8847 // local int *global *a;
8848 // global int *global *b;
8849 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8850 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8851 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8852 << RHS.get()->getSourceRange();
8854 return incompatTy;
8857 // The pointer types are compatible.
8858 // In case of OpenCL ResultTy should have the address space qualifier
8859 // which is a superset of address spaces of both the 2nd and the 3rd
8860 // operands of the conditional operator.
8861 QualType ResultTy = [&, ResultAddrSpace]() {
8862 if (S.getLangOpts().OpenCL) {
8863 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8864 CompositeQuals.setAddressSpace(ResultAddrSpace);
8865 return S.Context
8866 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8867 .withCVRQualifiers(MergedCVRQual);
8869 return CompositeTy.withCVRQualifiers(MergedCVRQual);
8870 }();
8871 if (IsBlockPointer)
8872 ResultTy = S.Context.getBlockPointerType(ResultTy);
8873 else
8874 ResultTy = S.Context.getPointerType(ResultTy);
8876 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8877 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8878 return ResultTy;
8881 /// Return the resulting type when the operands are both block pointers.
8882 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8883 ExprResult &LHS,
8884 ExprResult &RHS,
8885 SourceLocation Loc) {
8886 QualType LHSTy = LHS.get()->getType();
8887 QualType RHSTy = RHS.get()->getType();
8889 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8890 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8891 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8892 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8893 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8894 return destType;
8896 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8897 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8898 << RHS.get()->getSourceRange();
8899 return QualType();
8902 // We have 2 block pointer types.
8903 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8906 /// Return the resulting type when the operands are both pointers.
8907 static QualType
8908 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8909 ExprResult &RHS,
8910 SourceLocation Loc) {
8911 // get the pointer types
8912 QualType LHSTy = LHS.get()->getType();
8913 QualType RHSTy = RHS.get()->getType();
8915 // get the "pointed to" types
8916 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8917 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8919 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8920 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8921 // Figure out necessary qualifiers (C99 6.5.15p6)
8922 QualType destPointee
8923 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8924 QualType destType = S.Context.getPointerType(destPointee);
8925 // Add qualifiers if necessary.
8926 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8927 // Promote to void*.
8928 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8929 return destType;
8931 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8932 QualType destPointee
8933 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8934 QualType destType = S.Context.getPointerType(destPointee);
8935 // Add qualifiers if necessary.
8936 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8937 // Promote to void*.
8938 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8939 return destType;
8942 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8945 /// Return false if the first expression is not an integer and the second
8946 /// expression is not a pointer, true otherwise.
8947 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8948 Expr* PointerExpr, SourceLocation Loc,
8949 bool IsIntFirstExpr) {
8950 if (!PointerExpr->getType()->isPointerType() ||
8951 !Int.get()->getType()->isIntegerType())
8952 return false;
8954 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8955 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8957 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8958 << Expr1->getType() << Expr2->getType()
8959 << Expr1->getSourceRange() << Expr2->getSourceRange();
8960 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8961 CK_IntegralToPointer);
8962 return true;
8965 /// Simple conversion between integer and floating point types.
8967 /// Used when handling the OpenCL conditional operator where the
8968 /// condition is a vector while the other operands are scalar.
8970 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8971 /// types are either integer or floating type. Between the two
8972 /// operands, the type with the higher rank is defined as the "result
8973 /// type". The other operand needs to be promoted to the same type. No
8974 /// other type promotion is allowed. We cannot use
8975 /// UsualArithmeticConversions() for this purpose, since it always
8976 /// promotes promotable types.
8977 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8978 ExprResult &RHS,
8979 SourceLocation QuestionLoc) {
8980 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8981 if (LHS.isInvalid())
8982 return QualType();
8983 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8984 if (RHS.isInvalid())
8985 return QualType();
8987 // For conversion purposes, we ignore any qualifiers.
8988 // For example, "const float" and "float" are equivalent.
8989 QualType LHSType =
8990 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8991 QualType RHSType =
8992 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8994 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8995 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8996 << LHSType << LHS.get()->getSourceRange();
8997 return QualType();
9000 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
9001 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
9002 << RHSType << RHS.get()->getSourceRange();
9003 return QualType();
9006 // If both types are identical, no conversion is needed.
9007 if (LHSType == RHSType)
9008 return LHSType;
9010 // Now handle "real" floating types (i.e. float, double, long double).
9011 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
9012 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
9013 /*IsCompAssign = */ false);
9015 // Finally, we have two differing integer types.
9016 return handleIntegerConversion<doIntegralCast, doIntegralCast>
9017 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
9020 /// Convert scalar operands to a vector that matches the
9021 /// condition in length.
9023 /// Used when handling the OpenCL conditional operator where the
9024 /// condition is a vector while the other operands are scalar.
9026 /// We first compute the "result type" for the scalar operands
9027 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
9028 /// into a vector of that type where the length matches the condition
9029 /// vector type. s6.11.6 requires that the element types of the result
9030 /// and the condition must have the same number of bits.
9031 static QualType
9032 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
9033 QualType CondTy, SourceLocation QuestionLoc) {
9034 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
9035 if (ResTy.isNull()) return QualType();
9037 const VectorType *CV = CondTy->getAs<VectorType>();
9038 assert(CV);
9040 // Determine the vector result type
9041 unsigned NumElements = CV->getNumElements();
9042 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
9044 // Ensure that all types have the same number of bits
9045 if (S.Context.getTypeSize(CV->getElementType())
9046 != S.Context.getTypeSize(ResTy)) {
9047 // Since VectorTy is created internally, it does not pretty print
9048 // with an OpenCL name. Instead, we just print a description.
9049 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
9050 SmallString<64> Str;
9051 llvm::raw_svector_ostream OS(Str);
9052 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
9053 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9054 << CondTy << OS.str();
9055 return QualType();
9058 // Convert operands to the vector result type
9059 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
9060 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
9062 return VectorTy;
9065 /// Return false if this is a valid OpenCL condition vector
9066 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
9067 SourceLocation QuestionLoc) {
9068 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
9069 // integral type.
9070 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
9071 assert(CondTy);
9072 QualType EleTy = CondTy->getElementType();
9073 if (EleTy->isIntegerType()) return false;
9075 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
9076 << Cond->getType() << Cond->getSourceRange();
9077 return true;
9080 /// Return false if the vector condition type and the vector
9081 /// result type are compatible.
9083 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
9084 /// number of elements, and their element types have the same number
9085 /// of bits.
9086 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
9087 SourceLocation QuestionLoc) {
9088 const VectorType *CV = CondTy->getAs<VectorType>();
9089 const VectorType *RV = VecResTy->getAs<VectorType>();
9090 assert(CV && RV);
9092 if (CV->getNumElements() != RV->getNumElements()) {
9093 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
9094 << CondTy << VecResTy;
9095 return true;
9098 QualType CVE = CV->getElementType();
9099 QualType RVE = RV->getElementType();
9101 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
9102 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
9103 << CondTy << VecResTy;
9104 return true;
9107 return false;
9110 /// Return the resulting type for the conditional operator in
9111 /// OpenCL (aka "ternary selection operator", OpenCL v1.1
9112 /// s6.3.i) when the condition is a vector type.
9113 static QualType
9114 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
9115 ExprResult &LHS, ExprResult &RHS,
9116 SourceLocation QuestionLoc) {
9117 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
9118 if (Cond.isInvalid())
9119 return QualType();
9120 QualType CondTy = Cond.get()->getType();
9122 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
9123 return QualType();
9125 // If either operand is a vector then find the vector type of the
9126 // result as specified in OpenCL v1.1 s6.3.i.
9127 if (LHS.get()->getType()->isVectorType() ||
9128 RHS.get()->getType()->isVectorType()) {
9129 bool IsBoolVecLang =
9130 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
9131 QualType VecResTy =
9132 S.CheckVectorOperands(LHS, RHS, QuestionLoc,
9133 /*isCompAssign*/ false,
9134 /*AllowBothBool*/ true,
9135 /*AllowBoolConversions*/ false,
9136 /*AllowBooleanOperation*/ IsBoolVecLang,
9137 /*ReportInvalid*/ true);
9138 if (VecResTy.isNull())
9139 return QualType();
9140 // The result type must match the condition type as specified in
9141 // OpenCL v1.1 s6.11.6.
9142 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
9143 return QualType();
9144 return VecResTy;
9147 // Both operands are scalar.
9148 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
9151 /// Return true if the Expr is block type
9152 static bool checkBlockType(Sema &S, const Expr *E) {
9153 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
9154 QualType Ty = CE->getCallee()->getType();
9155 if (Ty->isBlockPointerType()) {
9156 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
9157 return true;
9160 return false;
9163 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
9164 /// In that case, LHS = cond.
9165 /// C99 6.5.15
9166 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
9167 ExprResult &RHS, ExprValueKind &VK,
9168 ExprObjectKind &OK,
9169 SourceLocation QuestionLoc) {
9171 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
9172 if (!LHSResult.isUsable()) return QualType();
9173 LHS = LHSResult;
9175 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
9176 if (!RHSResult.isUsable()) return QualType();
9177 RHS = RHSResult;
9179 // C++ is sufficiently different to merit its own checker.
9180 if (getLangOpts().CPlusPlus)
9181 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
9183 VK = VK_PRValue;
9184 OK = OK_Ordinary;
9186 if (Context.isDependenceAllowed() &&
9187 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
9188 RHS.get()->isTypeDependent())) {
9189 assert(!getLangOpts().CPlusPlus);
9190 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
9191 RHS.get()->containsErrors()) &&
9192 "should only occur in error-recovery path.");
9193 return Context.DependentTy;
9196 // The OpenCL operator with a vector condition is sufficiently
9197 // different to merit its own checker.
9198 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
9199 Cond.get()->getType()->isExtVectorType())
9200 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
9202 // First, check the condition.
9203 Cond = UsualUnaryConversions(Cond.get());
9204 if (Cond.isInvalid())
9205 return QualType();
9206 if (checkCondition(*this, Cond.get(), QuestionLoc))
9207 return QualType();
9209 // Handle vectors.
9210 if (LHS.get()->getType()->isVectorType() ||
9211 RHS.get()->getType()->isVectorType())
9212 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
9213 /*AllowBothBool*/ true,
9214 /*AllowBoolConversions*/ false,
9215 /*AllowBooleanOperation*/ false,
9216 /*ReportInvalid*/ true);
9218 QualType ResTy =
9219 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
9220 if (LHS.isInvalid() || RHS.isInvalid())
9221 return QualType();
9223 // WebAssembly tables are not allowed as conditional LHS or RHS.
9224 QualType LHSTy = LHS.get()->getType();
9225 QualType RHSTy = RHS.get()->getType();
9226 if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
9227 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
9228 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9229 return QualType();
9232 // Diagnose attempts to convert between __ibm128, __float128 and long double
9233 // where such conversions currently can't be handled.
9234 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
9235 Diag(QuestionLoc,
9236 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
9237 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9238 return QualType();
9241 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
9242 // selection operator (?:).
9243 if (getLangOpts().OpenCL &&
9244 ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
9245 return QualType();
9248 // If both operands have arithmetic type, do the usual arithmetic conversions
9249 // to find a common type: C99 6.5.15p3,5.
9250 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
9251 // Disallow invalid arithmetic conversions, such as those between bit-
9252 // precise integers types of different sizes, or between a bit-precise
9253 // integer and another type.
9254 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
9255 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9256 << LHSTy << RHSTy << LHS.get()->getSourceRange()
9257 << RHS.get()->getSourceRange();
9258 return QualType();
9261 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
9262 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
9264 return ResTy;
9267 // If both operands are the same structure or union type, the result is that
9268 // type.
9269 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
9270 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
9271 if (LHSRT->getDecl() == RHSRT->getDecl())
9272 // "If both the operands have structure or union type, the result has
9273 // that type." This implies that CV qualifiers are dropped.
9274 return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
9275 RHSTy.getUnqualifiedType());
9276 // FIXME: Type of conditional expression must be complete in C mode.
9279 // C99 6.5.15p5: "If both operands have void type, the result has void type."
9280 // The following || allows only one side to be void (a GCC-ism).
9281 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
9282 QualType ResTy;
9283 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
9284 ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
9285 } else if (RHSTy->isVoidType()) {
9286 ResTy = RHSTy;
9287 Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9288 << RHS.get()->getSourceRange();
9289 } else {
9290 ResTy = LHSTy;
9291 Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
9292 << LHS.get()->getSourceRange();
9294 LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
9295 RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
9296 return ResTy;
9299 // C23 6.5.15p7:
9300 // ... if both the second and third operands have nullptr_t type, the
9301 // result also has that type.
9302 if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
9303 return ResTy;
9305 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
9306 // the type of the other operand."
9307 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
9308 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
9310 // All objective-c pointer type analysis is done here.
9311 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
9312 QuestionLoc);
9313 if (LHS.isInvalid() || RHS.isInvalid())
9314 return QualType();
9315 if (!compositeType.isNull())
9316 return compositeType;
9319 // Handle block pointer types.
9320 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
9321 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
9322 QuestionLoc);
9324 // Check constraints for C object pointers types (C99 6.5.15p3,6).
9325 if (LHSTy->isPointerType() && RHSTy->isPointerType())
9326 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
9327 QuestionLoc);
9329 // GCC compatibility: soften pointer/integer mismatch. Note that
9330 // null pointers have been filtered out by this point.
9331 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9332 /*IsIntFirstExpr=*/true))
9333 return RHSTy;
9334 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9335 /*IsIntFirstExpr=*/false))
9336 return LHSTy;
9338 // Emit a better diagnostic if one of the expressions is a null pointer
9339 // constant and the other is not a pointer type. In this case, the user most
9340 // likely forgot to take the address of the other expression.
9341 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9342 return QualType();
9344 // Finally, if the LHS and RHS types are canonically the same type, we can
9345 // use the common sugared type.
9346 if (Context.hasSameType(LHSTy, RHSTy))
9347 return Context.getCommonSugaredType(LHSTy, RHSTy);
9349 // Otherwise, the operands are not compatible.
9350 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9351 << LHSTy << RHSTy << LHS.get()->getSourceRange()
9352 << RHS.get()->getSourceRange();
9353 return QualType();
9356 /// FindCompositeObjCPointerType - Helper method to find composite type of
9357 /// two objective-c pointer types of the two input expressions.
9358 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9359 SourceLocation QuestionLoc) {
9360 QualType LHSTy = LHS.get()->getType();
9361 QualType RHSTy = RHS.get()->getType();
9363 // Handle things like Class and struct objc_class*. Here we case the result
9364 // to the pseudo-builtin, because that will be implicitly cast back to the
9365 // redefinition type if an attempt is made to access its fields.
9366 if (LHSTy->isObjCClassType() &&
9367 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9368 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9369 return LHSTy;
9371 if (RHSTy->isObjCClassType() &&
9372 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9373 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9374 return RHSTy;
9376 // And the same for struct objc_object* / id
9377 if (LHSTy->isObjCIdType() &&
9378 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9379 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9380 return LHSTy;
9382 if (RHSTy->isObjCIdType() &&
9383 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9384 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9385 return RHSTy;
9387 // And the same for struct objc_selector* / SEL
9388 if (Context.isObjCSelType(LHSTy) &&
9389 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9390 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9391 return LHSTy;
9393 if (Context.isObjCSelType(RHSTy) &&
9394 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9395 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9396 return RHSTy;
9398 // Check constraints for Objective-C object pointers types.
9399 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9401 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9402 // Two identical object pointer types are always compatible.
9403 return LHSTy;
9405 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9406 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9407 QualType compositeType = LHSTy;
9409 // If both operands are interfaces and either operand can be
9410 // assigned to the other, use that type as the composite
9411 // type. This allows
9412 // xxx ? (A*) a : (B*) b
9413 // where B is a subclass of A.
9415 // Additionally, as for assignment, if either type is 'id'
9416 // allow silent coercion. Finally, if the types are
9417 // incompatible then make sure to use 'id' as the composite
9418 // type so the result is acceptable for sending messages to.
9420 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9421 // It could return the composite type.
9422 if (!(compositeType =
9423 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9424 // Nothing more to do.
9425 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9426 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9427 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9428 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9429 } else if ((LHSOPT->isObjCQualifiedIdType() ||
9430 RHSOPT->isObjCQualifiedIdType()) &&
9431 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9432 true)) {
9433 // Need to handle "id<xx>" explicitly.
9434 // GCC allows qualified id and any Objective-C type to devolve to
9435 // id. Currently localizing to here until clear this should be
9436 // part of ObjCQualifiedIdTypesAreCompatible.
9437 compositeType = Context.getObjCIdType();
9438 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9439 compositeType = Context.getObjCIdType();
9440 } else {
9441 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9442 << LHSTy << RHSTy
9443 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9444 QualType incompatTy = Context.getObjCIdType();
9445 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9446 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9447 return incompatTy;
9449 // The object pointer types are compatible.
9450 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9451 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9452 return compositeType;
9454 // Check Objective-C object pointer types and 'void *'
9455 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9456 if (getLangOpts().ObjCAutoRefCount) {
9457 // ARC forbids the implicit conversion of object pointers to 'void *',
9458 // so these types are not compatible.
9459 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9460 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9461 LHS = RHS = true;
9462 return QualType();
9464 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9465 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9466 QualType destPointee
9467 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9468 QualType destType = Context.getPointerType(destPointee);
9469 // Add qualifiers if necessary.
9470 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9471 // Promote to void*.
9472 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9473 return destType;
9475 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9476 if (getLangOpts().ObjCAutoRefCount) {
9477 // ARC forbids the implicit conversion of object pointers to 'void *',
9478 // so these types are not compatible.
9479 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9480 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9481 LHS = RHS = true;
9482 return QualType();
9484 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9485 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9486 QualType destPointee
9487 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9488 QualType destType = Context.getPointerType(destPointee);
9489 // Add qualifiers if necessary.
9490 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9491 // Promote to void*.
9492 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9493 return destType;
9495 return QualType();
9498 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9499 /// ParenRange in parentheses.
9500 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9501 const PartialDiagnostic &Note,
9502 SourceRange ParenRange) {
9503 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9504 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9505 EndLoc.isValid()) {
9506 Self.Diag(Loc, Note)
9507 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9508 << FixItHint::CreateInsertion(EndLoc, ")");
9509 } else {
9510 // We can't display the parentheses, so just show the bare note.
9511 Self.Diag(Loc, Note) << ParenRange;
9515 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9516 return BinaryOperator::isAdditiveOp(Opc) ||
9517 BinaryOperator::isMultiplicativeOp(Opc) ||
9518 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9519 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9520 // not any of the logical operators. Bitwise-xor is commonly used as a
9521 // logical-xor because there is no logical-xor operator. The logical
9522 // operators, including uses of xor, have a high false positive rate for
9523 // precedence warnings.
9526 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9527 /// expression, either using a built-in or overloaded operator,
9528 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9529 /// expression.
9530 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
9531 Expr **RHSExprs) {
9532 // Don't strip parenthesis: we should not warn if E is in parenthesis.
9533 E = E->IgnoreImpCasts();
9534 E = E->IgnoreConversionOperatorSingleStep();
9535 E = E->IgnoreImpCasts();
9536 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9537 E = MTE->getSubExpr();
9538 E = E->IgnoreImpCasts();
9541 // Built-in binary operator.
9542 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
9543 if (IsArithmeticOp(OP->getOpcode())) {
9544 *Opcode = OP->getOpcode();
9545 *RHSExprs = OP->getRHS();
9546 return true;
9550 // Overloaded operator.
9551 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9552 if (Call->getNumArgs() != 2)
9553 return false;
9555 // Make sure this is really a binary operator that is safe to pass into
9556 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9557 OverloadedOperatorKind OO = Call->getOperator();
9558 if (OO < OO_Plus || OO > OO_Arrow ||
9559 OO == OO_PlusPlus || OO == OO_MinusMinus)
9560 return false;
9562 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9563 if (IsArithmeticOp(OpKind)) {
9564 *Opcode = OpKind;
9565 *RHSExprs = Call->getArg(1);
9566 return true;
9570 return false;
9573 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9574 /// or is a logical expression such as (x==y) which has int type, but is
9575 /// commonly interpreted as boolean.
9576 static bool ExprLooksBoolean(Expr *E) {
9577 E = E->IgnoreParenImpCasts();
9579 if (E->getType()->isBooleanType())
9580 return true;
9581 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9582 return OP->isComparisonOp() || OP->isLogicalOp();
9583 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9584 return OP->getOpcode() == UO_LNot;
9585 if (E->getType()->isPointerType())
9586 return true;
9587 // FIXME: What about overloaded operator calls returning "unspecified boolean
9588 // type"s (commonly pointer-to-members)?
9590 return false;
9593 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9594 /// and binary operator are mixed in a way that suggests the programmer assumed
9595 /// the conditional operator has higher precedence, for example:
9596 /// "int x = a + someBinaryCondition ? 1 : 2".
9597 static void DiagnoseConditionalPrecedence(Sema &Self,
9598 SourceLocation OpLoc,
9599 Expr *Condition,
9600 Expr *LHSExpr,
9601 Expr *RHSExpr) {
9602 BinaryOperatorKind CondOpcode;
9603 Expr *CondRHS;
9605 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9606 return;
9607 if (!ExprLooksBoolean(CondRHS))
9608 return;
9610 // The condition is an arithmetic binary expression, with a right-
9611 // hand side that looks boolean, so warn.
9613 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9614 ? diag::warn_precedence_bitwise_conditional
9615 : diag::warn_precedence_conditional;
9617 Self.Diag(OpLoc, DiagID)
9618 << Condition->getSourceRange()
9619 << BinaryOperator::getOpcodeStr(CondOpcode);
9621 SuggestParentheses(
9622 Self, OpLoc,
9623 Self.PDiag(diag::note_precedence_silence)
9624 << BinaryOperator::getOpcodeStr(CondOpcode),
9625 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9627 SuggestParentheses(Self, OpLoc,
9628 Self.PDiag(diag::note_precedence_conditional_first),
9629 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9632 /// Compute the nullability of a conditional expression.
9633 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9634 QualType LHSTy, QualType RHSTy,
9635 ASTContext &Ctx) {
9636 if (!ResTy->isAnyPointerType())
9637 return ResTy;
9639 auto GetNullability = [](QualType Ty) {
9640 std::optional<NullabilityKind> Kind = Ty->getNullability();
9641 if (Kind) {
9642 // For our purposes, treat _Nullable_result as _Nullable.
9643 if (*Kind == NullabilityKind::NullableResult)
9644 return NullabilityKind::Nullable;
9645 return *Kind;
9647 return NullabilityKind::Unspecified;
9650 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9651 NullabilityKind MergedKind;
9653 // Compute nullability of a binary conditional expression.
9654 if (IsBin) {
9655 if (LHSKind == NullabilityKind::NonNull)
9656 MergedKind = NullabilityKind::NonNull;
9657 else
9658 MergedKind = RHSKind;
9659 // Compute nullability of a normal conditional expression.
9660 } else {
9661 if (LHSKind == NullabilityKind::Nullable ||
9662 RHSKind == NullabilityKind::Nullable)
9663 MergedKind = NullabilityKind::Nullable;
9664 else if (LHSKind == NullabilityKind::NonNull)
9665 MergedKind = RHSKind;
9666 else if (RHSKind == NullabilityKind::NonNull)
9667 MergedKind = LHSKind;
9668 else
9669 MergedKind = NullabilityKind::Unspecified;
9672 // Return if ResTy already has the correct nullability.
9673 if (GetNullability(ResTy) == MergedKind)
9674 return ResTy;
9676 // Strip all nullability from ResTy.
9677 while (ResTy->getNullability())
9678 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9680 // Create a new AttributedType with the new nullability kind.
9681 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9682 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9685 /// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
9686 /// in the case of a the GNU conditional expr extension.
9687 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9688 SourceLocation ColonLoc,
9689 Expr *CondExpr, Expr *LHSExpr,
9690 Expr *RHSExpr) {
9691 if (!Context.isDependenceAllowed()) {
9692 // C cannot handle TypoExpr nodes in the condition because it
9693 // doesn't handle dependent types properly, so make sure any TypoExprs have
9694 // been dealt with before checking the operands.
9695 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9696 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9697 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9699 if (!CondResult.isUsable())
9700 return ExprError();
9702 if (LHSExpr) {
9703 if (!LHSResult.isUsable())
9704 return ExprError();
9707 if (!RHSResult.isUsable())
9708 return ExprError();
9710 CondExpr = CondResult.get();
9711 LHSExpr = LHSResult.get();
9712 RHSExpr = RHSResult.get();
9715 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9716 // was the condition.
9717 OpaqueValueExpr *opaqueValue = nullptr;
9718 Expr *commonExpr = nullptr;
9719 if (!LHSExpr) {
9720 commonExpr = CondExpr;
9721 // Lower out placeholder types first. This is important so that we don't
9722 // try to capture a placeholder. This happens in few cases in C++; such
9723 // as Objective-C++'s dictionary subscripting syntax.
9724 if (commonExpr->hasPlaceholderType()) {
9725 ExprResult result = CheckPlaceholderExpr(commonExpr);
9726 if (!result.isUsable()) return ExprError();
9727 commonExpr = result.get();
9729 // We usually want to apply unary conversions *before* saving, except
9730 // in the special case of a C++ l-value conditional.
9731 if (!(getLangOpts().CPlusPlus
9732 && !commonExpr->isTypeDependent()
9733 && commonExpr->getValueKind() == RHSExpr->getValueKind()
9734 && commonExpr->isGLValue()
9735 && commonExpr->isOrdinaryOrBitFieldObject()
9736 && RHSExpr->isOrdinaryOrBitFieldObject()
9737 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9738 ExprResult commonRes = UsualUnaryConversions(commonExpr);
9739 if (commonRes.isInvalid())
9740 return ExprError();
9741 commonExpr = commonRes.get();
9744 // If the common expression is a class or array prvalue, materialize it
9745 // so that we can safely refer to it multiple times.
9746 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9747 commonExpr->getType()->isArrayType())) {
9748 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9749 if (MatExpr.isInvalid())
9750 return ExprError();
9751 commonExpr = MatExpr.get();
9754 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9755 commonExpr->getType(),
9756 commonExpr->getValueKind(),
9757 commonExpr->getObjectKind(),
9758 commonExpr);
9759 LHSExpr = CondExpr = opaqueValue;
9762 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9763 ExprValueKind VK = VK_PRValue;
9764 ExprObjectKind OK = OK_Ordinary;
9765 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9766 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9767 VK, OK, QuestionLoc);
9768 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9769 RHS.isInvalid())
9770 return ExprError();
9772 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9773 RHS.get());
9775 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9777 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9778 Context);
9780 if (!commonExpr)
9781 return new (Context)
9782 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9783 RHS.get(), result, VK, OK);
9785 return new (Context) BinaryConditionalOperator(
9786 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9787 ColonLoc, result, VK, OK);
9790 // Check that the SME attributes for PSTATE.ZA and PSTATE.SM are compatible.
9791 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType,
9792 AArch64SMECallConversionKind C) {
9793 unsigned FromAttributes = 0, ToAttributes = 0;
9794 if (const auto *FromFn =
9795 dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
9796 FromAttributes =
9797 FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9798 if (const auto *ToFn =
9799 dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
9800 ToAttributes =
9801 ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
9803 if (FromAttributes == ToAttributes)
9804 return false;
9806 // If the '__arm_preserves_za' is the only difference between the types,
9807 // check whether we're allowed to add or remove it.
9808 if ((FromAttributes ^ ToAttributes) ==
9809 FunctionType::SME_PStateZAPreservedMask) {
9810 switch (C) {
9811 case AArch64SMECallConversionKind::MatchExactly:
9812 return true;
9813 case AArch64SMECallConversionKind::MayAddPreservesZA:
9814 return !(ToAttributes & FunctionType::SME_PStateZAPreservedMask);
9815 case AArch64SMECallConversionKind::MayDropPreservesZA:
9816 return !(FromAttributes & FunctionType::SME_PStateZAPreservedMask);
9820 // There has been a mismatch of attributes
9821 return true;
9824 // Check if we have a conversion between incompatible cmse function pointer
9825 // types, that is, a conversion between a function pointer with the
9826 // cmse_nonsecure_call attribute and one without.
9827 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9828 QualType ToType) {
9829 if (const auto *ToFn =
9830 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9831 if (const auto *FromFn =
9832 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9833 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9834 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9836 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9839 return false;
9842 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9843 // being closely modeled after the C99 spec:-). The odd characteristic of this
9844 // routine is it effectively iqnores the qualifiers on the top level pointee.
9845 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9846 // FIXME: add a couple examples in this comment.
9847 static Sema::AssignConvertType
9848 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9849 SourceLocation Loc) {
9850 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9851 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9853 // get the "pointed to" type (ignoring qualifiers at the top level)
9854 const Type *lhptee, *rhptee;
9855 Qualifiers lhq, rhq;
9856 std::tie(lhptee, lhq) =
9857 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9858 std::tie(rhptee, rhq) =
9859 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9861 Sema::AssignConvertType ConvTy = Sema::Compatible;
9863 // C99 6.5.16.1p1: This following citation is common to constraints
9864 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9865 // qualifiers of the type *pointed to* by the right;
9867 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9868 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9869 lhq.compatiblyIncludesObjCLifetime(rhq)) {
9870 // Ignore lifetime for further calculation.
9871 lhq.removeObjCLifetime();
9872 rhq.removeObjCLifetime();
9875 if (!lhq.compatiblyIncludes(rhq)) {
9876 // Treat address-space mismatches as fatal.
9877 if (!lhq.isAddressSpaceSupersetOf(rhq))
9878 return Sema::IncompatiblePointerDiscardsQualifiers;
9880 // It's okay to add or remove GC or lifetime qualifiers when converting to
9881 // and from void*.
9882 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9883 .compatiblyIncludes(
9884 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9885 && (lhptee->isVoidType() || rhptee->isVoidType()))
9886 ; // keep old
9888 // Treat lifetime mismatches as fatal.
9889 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9890 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9892 // For GCC/MS compatibility, other qualifier mismatches are treated
9893 // as still compatible in C.
9894 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9897 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9898 // incomplete type and the other is a pointer to a qualified or unqualified
9899 // version of void...
9900 if (lhptee->isVoidType()) {
9901 if (rhptee->isIncompleteOrObjectType())
9902 return ConvTy;
9904 // As an extension, we allow cast to/from void* to function pointer.
9905 assert(rhptee->isFunctionType());
9906 return Sema::FunctionVoidPointer;
9909 if (rhptee->isVoidType()) {
9910 if (lhptee->isIncompleteOrObjectType())
9911 return ConvTy;
9913 // As an extension, we allow cast to/from void* to function pointer.
9914 assert(lhptee->isFunctionType());
9915 return Sema::FunctionVoidPointer;
9918 if (!S.Diags.isIgnored(
9919 diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9920 Loc) &&
9921 RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9922 !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9923 return Sema::IncompatibleFunctionPointerStrict;
9925 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9926 // unqualified versions of compatible types, ...
9927 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9928 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9929 // Check if the pointee types are compatible ignoring the sign.
9930 // We explicitly check for char so that we catch "char" vs
9931 // "unsigned char" on systems where "char" is unsigned.
9932 if (lhptee->isCharType())
9933 ltrans = S.Context.UnsignedCharTy;
9934 else if (lhptee->hasSignedIntegerRepresentation())
9935 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9937 if (rhptee->isCharType())
9938 rtrans = S.Context.UnsignedCharTy;
9939 else if (rhptee->hasSignedIntegerRepresentation())
9940 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9942 if (ltrans == rtrans) {
9943 // Types are compatible ignoring the sign. Qualifier incompatibility
9944 // takes priority over sign incompatibility because the sign
9945 // warning can be disabled.
9946 if (ConvTy != Sema::Compatible)
9947 return ConvTy;
9949 return Sema::IncompatiblePointerSign;
9952 // If we are a multi-level pointer, it's possible that our issue is simply
9953 // one of qualification - e.g. char ** -> const char ** is not allowed. If
9954 // the eventual target type is the same and the pointers have the same
9955 // level of indirection, this must be the issue.
9956 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9957 do {
9958 std::tie(lhptee, lhq) =
9959 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9960 std::tie(rhptee, rhq) =
9961 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9963 // Inconsistent address spaces at this point is invalid, even if the
9964 // address spaces would be compatible.
9965 // FIXME: This doesn't catch address space mismatches for pointers of
9966 // different nesting levels, like:
9967 // __local int *** a;
9968 // int ** b = a;
9969 // It's not clear how to actually determine when such pointers are
9970 // invalidly incompatible.
9971 if (lhq.getAddressSpace() != rhq.getAddressSpace())
9972 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9974 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9976 if (lhptee == rhptee)
9977 return Sema::IncompatibleNestedPointerQualifiers;
9980 // General pointer incompatibility takes priority over qualifiers.
9981 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9982 return Sema::IncompatibleFunctionPointer;
9983 return Sema::IncompatiblePointer;
9985 if (!S.getLangOpts().CPlusPlus &&
9986 S.IsFunctionConversion(ltrans, rtrans, ltrans))
9987 return Sema::IncompatibleFunctionPointer;
9988 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9989 return Sema::IncompatibleFunctionPointer;
9990 if (S.IsInvalidSMECallConversion(
9991 rtrans, ltrans,
9992 Sema::AArch64SMECallConversionKind::MayDropPreservesZA))
9993 return Sema::IncompatibleFunctionPointer;
9994 return ConvTy;
9997 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9998 /// block pointer types are compatible or whether a block and normal pointer
9999 /// are compatible. It is more restrict than comparing two function pointer
10000 // types.
10001 static Sema::AssignConvertType
10002 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
10003 QualType RHSType) {
10004 assert(LHSType.isCanonical() && "LHS not canonicalized!");
10005 assert(RHSType.isCanonical() && "RHS not canonicalized!");
10007 QualType lhptee, rhptee;
10009 // get the "pointed to" type (ignoring qualifiers at the top level)
10010 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
10011 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
10013 // In C++, the types have to match exactly.
10014 if (S.getLangOpts().CPlusPlus)
10015 return Sema::IncompatibleBlockPointer;
10017 Sema::AssignConvertType ConvTy = Sema::Compatible;
10019 // For blocks we enforce that qualifiers are identical.
10020 Qualifiers LQuals = lhptee.getLocalQualifiers();
10021 Qualifiers RQuals = rhptee.getLocalQualifiers();
10022 if (S.getLangOpts().OpenCL) {
10023 LQuals.removeAddressSpace();
10024 RQuals.removeAddressSpace();
10026 if (LQuals != RQuals)
10027 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
10029 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
10030 // assignment.
10031 // The current behavior is similar to C++ lambdas. A block might be
10032 // assigned to a variable iff its return type and parameters are compatible
10033 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
10034 // an assignment. Presumably it should behave in way that a function pointer
10035 // assignment does in C, so for each parameter and return type:
10036 // * CVR and address space of LHS should be a superset of CVR and address
10037 // space of RHS.
10038 // * unqualified types should be compatible.
10039 if (S.getLangOpts().OpenCL) {
10040 if (!S.Context.typesAreBlockPointerCompatible(
10041 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
10042 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
10043 return Sema::IncompatibleBlockPointer;
10044 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
10045 return Sema::IncompatibleBlockPointer;
10047 return ConvTy;
10050 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
10051 /// for assignment compatibility.
10052 static Sema::AssignConvertType
10053 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
10054 QualType RHSType) {
10055 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
10056 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
10058 if (LHSType->isObjCBuiltinType()) {
10059 // Class is not compatible with ObjC object pointers.
10060 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
10061 !RHSType->isObjCQualifiedClassType())
10062 return Sema::IncompatiblePointer;
10063 return Sema::Compatible;
10065 if (RHSType->isObjCBuiltinType()) {
10066 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
10067 !LHSType->isObjCQualifiedClassType())
10068 return Sema::IncompatiblePointer;
10069 return Sema::Compatible;
10071 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10072 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
10074 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
10075 // make an exception for id<P>
10076 !LHSType->isObjCQualifiedIdType())
10077 return Sema::CompatiblePointerDiscardsQualifiers;
10079 if (S.Context.typesAreCompatible(LHSType, RHSType))
10080 return Sema::Compatible;
10081 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
10082 return Sema::IncompatibleObjCQualifiedId;
10083 return Sema::IncompatiblePointer;
10086 Sema::AssignConvertType
10087 Sema::CheckAssignmentConstraints(SourceLocation Loc,
10088 QualType LHSType, QualType RHSType) {
10089 // Fake up an opaque expression. We don't actually care about what
10090 // cast operations are required, so if CheckAssignmentConstraints
10091 // adds casts to this they'll be wasted, but fortunately that doesn't
10092 // usually happen on valid code.
10093 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
10094 ExprResult RHSPtr = &RHSExpr;
10095 CastKind K;
10097 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
10100 /// This helper function returns true if QT is a vector type that has element
10101 /// type ElementType.
10102 static bool isVector(QualType QT, QualType ElementType) {
10103 if (const VectorType *VT = QT->getAs<VectorType>())
10104 return VT->getElementType().getCanonicalType() == ElementType;
10105 return false;
10108 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
10109 /// has code to accommodate several GCC extensions when type checking
10110 /// pointers. Here are some objectionable examples that GCC considers warnings:
10112 /// int a, *pint;
10113 /// short *pshort;
10114 /// struct foo *pfoo;
10116 /// pint = pshort; // warning: assignment from incompatible pointer type
10117 /// a = pint; // warning: assignment makes integer from pointer without a cast
10118 /// pint = a; // warning: assignment makes pointer from integer without a cast
10119 /// pint = pfoo; // warning: assignment from incompatible pointer type
10121 /// As a result, the code for dealing with pointers is more complex than the
10122 /// C99 spec dictates.
10124 /// Sets 'Kind' for any result kind except Incompatible.
10125 Sema::AssignConvertType
10126 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
10127 CastKind &Kind, bool ConvertRHS) {
10128 QualType RHSType = RHS.get()->getType();
10129 QualType OrigLHSType = LHSType;
10131 // Get canonical types. We're not formatting these types, just comparing
10132 // them.
10133 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
10134 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
10136 // Common case: no conversion required.
10137 if (LHSType == RHSType) {
10138 Kind = CK_NoOp;
10139 return Compatible;
10142 // If the LHS has an __auto_type, there are no additional type constraints
10143 // to be worried about.
10144 if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
10145 if (AT->isGNUAutoType()) {
10146 Kind = CK_NoOp;
10147 return Compatible;
10151 // If we have an atomic type, try a non-atomic assignment, then just add an
10152 // atomic qualification step.
10153 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
10154 Sema::AssignConvertType result =
10155 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
10156 if (result != Compatible)
10157 return result;
10158 if (Kind != CK_NoOp && ConvertRHS)
10159 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
10160 Kind = CK_NonAtomicToAtomic;
10161 return Compatible;
10164 // If the left-hand side is a reference type, then we are in a
10165 // (rare!) case where we've allowed the use of references in C,
10166 // e.g., as a parameter type in a built-in function. In this case,
10167 // just make sure that the type referenced is compatible with the
10168 // right-hand side type. The caller is responsible for adjusting
10169 // LHSType so that the resulting expression does not have reference
10170 // type.
10171 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
10172 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
10173 Kind = CK_LValueBitCast;
10174 return Compatible;
10176 return Incompatible;
10179 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
10180 // to the same ExtVector type.
10181 if (LHSType->isExtVectorType()) {
10182 if (RHSType->isExtVectorType())
10183 return Incompatible;
10184 if (RHSType->isArithmeticType()) {
10185 // CK_VectorSplat does T -> vector T, so first cast to the element type.
10186 if (ConvertRHS)
10187 RHS = prepareVectorSplat(LHSType, RHS.get());
10188 Kind = CK_VectorSplat;
10189 return Compatible;
10193 // Conversions to or from vector type.
10194 if (LHSType->isVectorType() || RHSType->isVectorType()) {
10195 if (LHSType->isVectorType() && RHSType->isVectorType()) {
10196 // Allow assignments of an AltiVec vector type to an equivalent GCC
10197 // vector type and vice versa
10198 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10199 Kind = CK_BitCast;
10200 return Compatible;
10203 // If we are allowing lax vector conversions, and LHS and RHS are both
10204 // vectors, the total size only needs to be the same. This is a bitcast;
10205 // no bits are changed but the result type is different.
10206 if (isLaxVectorConversion(RHSType, LHSType)) {
10207 // The default for lax vector conversions with Altivec vectors will
10208 // change, so if we are converting between vector types where
10209 // at least one is an Altivec vector, emit a warning.
10210 if (Context.getTargetInfo().getTriple().isPPC() &&
10211 anyAltivecTypes(RHSType, LHSType) &&
10212 !Context.areCompatibleVectorTypes(RHSType, LHSType))
10213 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10214 << RHSType << LHSType;
10215 Kind = CK_BitCast;
10216 return IncompatibleVectors;
10220 // When the RHS comes from another lax conversion (e.g. binops between
10221 // scalars and vectors) the result is canonicalized as a vector. When the
10222 // LHS is also a vector, the lax is allowed by the condition above. Handle
10223 // the case where LHS is a scalar.
10224 if (LHSType->isScalarType()) {
10225 const VectorType *VecType = RHSType->getAs<VectorType>();
10226 if (VecType && VecType->getNumElements() == 1 &&
10227 isLaxVectorConversion(RHSType, LHSType)) {
10228 if (Context.getTargetInfo().getTriple().isPPC() &&
10229 (VecType->getVectorKind() == VectorKind::AltiVecVector ||
10230 VecType->getVectorKind() == VectorKind::AltiVecBool ||
10231 VecType->getVectorKind() == VectorKind::AltiVecPixel))
10232 Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
10233 << RHSType << LHSType;
10234 ExprResult *VecExpr = &RHS;
10235 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
10236 Kind = CK_BitCast;
10237 return Compatible;
10241 // Allow assignments between fixed-length and sizeless SVE vectors.
10242 if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
10243 (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
10244 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
10245 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
10246 Kind = CK_BitCast;
10247 return Compatible;
10250 // Allow assignments between fixed-length and sizeless RVV vectors.
10251 if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
10252 (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
10253 if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
10254 Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
10255 Kind = CK_BitCast;
10256 return Compatible;
10260 return Incompatible;
10263 // Diagnose attempts to convert between __ibm128, __float128 and long double
10264 // where such conversions currently can't be handled.
10265 if (unsupportedTypeConversion(*this, LHSType, RHSType))
10266 return Incompatible;
10268 // Disallow assigning a _Complex to a real type in C++ mode since it simply
10269 // discards the imaginary part.
10270 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
10271 !LHSType->getAs<ComplexType>())
10272 return Incompatible;
10274 // Arithmetic conversions.
10275 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
10276 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
10277 if (ConvertRHS)
10278 Kind = PrepareScalarCast(RHS, LHSType);
10279 return Compatible;
10282 // Conversions to normal pointers.
10283 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
10284 // U* -> T*
10285 if (isa<PointerType>(RHSType)) {
10286 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10287 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
10288 if (AddrSpaceL != AddrSpaceR)
10289 Kind = CK_AddressSpaceConversion;
10290 else if (Context.hasCvrSimilarType(RHSType, LHSType))
10291 Kind = CK_NoOp;
10292 else
10293 Kind = CK_BitCast;
10294 return checkPointerTypesForAssignment(*this, LHSType, RHSType,
10295 RHS.get()->getBeginLoc());
10298 // int -> T*
10299 if (RHSType->isIntegerType()) {
10300 Kind = CK_IntegralToPointer; // FIXME: null?
10301 return IntToPointer;
10304 // C pointers are not compatible with ObjC object pointers,
10305 // with two exceptions:
10306 if (isa<ObjCObjectPointerType>(RHSType)) {
10307 // - conversions to void*
10308 if (LHSPointer->getPointeeType()->isVoidType()) {
10309 Kind = CK_BitCast;
10310 return Compatible;
10313 // - conversions from 'Class' to the redefinition type
10314 if (RHSType->isObjCClassType() &&
10315 Context.hasSameType(LHSType,
10316 Context.getObjCClassRedefinitionType())) {
10317 Kind = CK_BitCast;
10318 return Compatible;
10321 Kind = CK_BitCast;
10322 return IncompatiblePointer;
10325 // U^ -> void*
10326 if (RHSType->getAs<BlockPointerType>()) {
10327 if (LHSPointer->getPointeeType()->isVoidType()) {
10328 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
10329 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10330 ->getPointeeType()
10331 .getAddressSpace();
10332 Kind =
10333 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10334 return Compatible;
10338 return Incompatible;
10341 // Conversions to block pointers.
10342 if (isa<BlockPointerType>(LHSType)) {
10343 // U^ -> T^
10344 if (RHSType->isBlockPointerType()) {
10345 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
10346 ->getPointeeType()
10347 .getAddressSpace();
10348 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
10349 ->getPointeeType()
10350 .getAddressSpace();
10351 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
10352 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
10355 // int or null -> T^
10356 if (RHSType->isIntegerType()) {
10357 Kind = CK_IntegralToPointer; // FIXME: null
10358 return IntToBlockPointer;
10361 // id -> T^
10362 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
10363 Kind = CK_AnyPointerToBlockPointerCast;
10364 return Compatible;
10367 // void* -> T^
10368 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
10369 if (RHSPT->getPointeeType()->isVoidType()) {
10370 Kind = CK_AnyPointerToBlockPointerCast;
10371 return Compatible;
10374 return Incompatible;
10377 // Conversions to Objective-C pointers.
10378 if (isa<ObjCObjectPointerType>(LHSType)) {
10379 // A* -> B*
10380 if (RHSType->isObjCObjectPointerType()) {
10381 Kind = CK_BitCast;
10382 Sema::AssignConvertType result =
10383 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10384 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10385 result == Compatible &&
10386 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10387 result = IncompatibleObjCWeakRef;
10388 return result;
10391 // int or null -> A*
10392 if (RHSType->isIntegerType()) {
10393 Kind = CK_IntegralToPointer; // FIXME: null
10394 return IntToPointer;
10397 // In general, C pointers are not compatible with ObjC object pointers,
10398 // with two exceptions:
10399 if (isa<PointerType>(RHSType)) {
10400 Kind = CK_CPointerToObjCPointerCast;
10402 // - conversions from 'void*'
10403 if (RHSType->isVoidPointerType()) {
10404 return Compatible;
10407 // - conversions to 'Class' from its redefinition type
10408 if (LHSType->isObjCClassType() &&
10409 Context.hasSameType(RHSType,
10410 Context.getObjCClassRedefinitionType())) {
10411 return Compatible;
10414 return IncompatiblePointer;
10417 // Only under strict condition T^ is compatible with an Objective-C pointer.
10418 if (RHSType->isBlockPointerType() &&
10419 LHSType->isBlockCompatibleObjCPointerType(Context)) {
10420 if (ConvertRHS)
10421 maybeExtendBlockObject(RHS);
10422 Kind = CK_BlockPointerToObjCPointerCast;
10423 return Compatible;
10426 return Incompatible;
10429 // Conversion to nullptr_t (C23 only)
10430 if (getLangOpts().C23 && LHSType->isNullPtrType() &&
10431 RHS.get()->isNullPointerConstant(Context,
10432 Expr::NPC_ValueDependentIsNull)) {
10433 // null -> nullptr_t
10434 Kind = CK_NullToPointer;
10435 return Compatible;
10438 // Conversions from pointers that are not covered by the above.
10439 if (isa<PointerType>(RHSType)) {
10440 // T* -> _Bool
10441 if (LHSType == Context.BoolTy) {
10442 Kind = CK_PointerToBoolean;
10443 return Compatible;
10446 // T* -> int
10447 if (LHSType->isIntegerType()) {
10448 Kind = CK_PointerToIntegral;
10449 return PointerToInt;
10452 return Incompatible;
10455 // Conversions from Objective-C pointers that are not covered by the above.
10456 if (isa<ObjCObjectPointerType>(RHSType)) {
10457 // T* -> _Bool
10458 if (LHSType == Context.BoolTy) {
10459 Kind = CK_PointerToBoolean;
10460 return Compatible;
10463 // T* -> int
10464 if (LHSType->isIntegerType()) {
10465 Kind = CK_PointerToIntegral;
10466 return PointerToInt;
10469 return Incompatible;
10472 // struct A -> struct B
10473 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10474 if (Context.typesAreCompatible(LHSType, RHSType)) {
10475 Kind = CK_NoOp;
10476 return Compatible;
10480 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10481 Kind = CK_IntToOCLSampler;
10482 return Compatible;
10485 return Incompatible;
10488 /// Constructs a transparent union from an expression that is
10489 /// used to initialize the transparent union.
10490 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10491 ExprResult &EResult, QualType UnionType,
10492 FieldDecl *Field) {
10493 // Build an initializer list that designates the appropriate member
10494 // of the transparent union.
10495 Expr *E = EResult.get();
10496 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10497 E, SourceLocation());
10498 Initializer->setType(UnionType);
10499 Initializer->setInitializedFieldInUnion(Field);
10501 // Build a compound literal constructing a value of the transparent
10502 // union type from this initializer list.
10503 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10504 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10505 VK_PRValue, Initializer, false);
10508 Sema::AssignConvertType
10509 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10510 ExprResult &RHS) {
10511 QualType RHSType = RHS.get()->getType();
10513 // If the ArgType is a Union type, we want to handle a potential
10514 // transparent_union GCC extension.
10515 const RecordType *UT = ArgType->getAsUnionType();
10516 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10517 return Incompatible;
10519 // The field to initialize within the transparent union.
10520 RecordDecl *UD = UT->getDecl();
10521 FieldDecl *InitField = nullptr;
10522 // It's compatible if the expression matches any of the fields.
10523 for (auto *it : UD->fields()) {
10524 if (it->getType()->isPointerType()) {
10525 // If the transparent union contains a pointer type, we allow:
10526 // 1) void pointer
10527 // 2) null pointer constant
10528 if (RHSType->isPointerType())
10529 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10530 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10531 InitField = it;
10532 break;
10535 if (RHS.get()->isNullPointerConstant(Context,
10536 Expr::NPC_ValueDependentIsNull)) {
10537 RHS = ImpCastExprToType(RHS.get(), it->getType(),
10538 CK_NullToPointer);
10539 InitField = it;
10540 break;
10544 CastKind Kind;
10545 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10546 == Compatible) {
10547 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10548 InitField = it;
10549 break;
10553 if (!InitField)
10554 return Incompatible;
10556 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10557 return Compatible;
10560 Sema::AssignConvertType
10561 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10562 bool Diagnose,
10563 bool DiagnoseCFAudited,
10564 bool ConvertRHS) {
10565 // We need to be able to tell the caller whether we diagnosed a problem, if
10566 // they ask us to issue diagnostics.
10567 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10569 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10570 // we can't avoid *all* modifications at the moment, so we need some somewhere
10571 // to put the updated value.
10572 ExprResult LocalRHS = CallerRHS;
10573 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10575 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10576 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10577 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10578 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10579 Diag(RHS.get()->getExprLoc(),
10580 diag::warn_noderef_to_dereferenceable_pointer)
10581 << RHS.get()->getSourceRange();
10586 if (getLangOpts().CPlusPlus) {
10587 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10588 // C++ 5.17p3: If the left operand is not of class type, the
10589 // expression is implicitly converted (C++ 4) to the
10590 // cv-unqualified type of the left operand.
10591 QualType RHSType = RHS.get()->getType();
10592 if (Diagnose) {
10593 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10594 AA_Assigning);
10595 } else {
10596 ImplicitConversionSequence ICS =
10597 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10598 /*SuppressUserConversions=*/false,
10599 AllowedExplicit::None,
10600 /*InOverloadResolution=*/false,
10601 /*CStyle=*/false,
10602 /*AllowObjCWritebackConversion=*/false);
10603 if (ICS.isFailure())
10604 return Incompatible;
10605 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10606 ICS, AA_Assigning);
10608 if (RHS.isInvalid())
10609 return Incompatible;
10610 Sema::AssignConvertType result = Compatible;
10611 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10612 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10613 result = IncompatibleObjCWeakRef;
10614 return result;
10617 // FIXME: Currently, we fall through and treat C++ classes like C
10618 // structures.
10619 // FIXME: We also fall through for atomics; not sure what should
10620 // happen there, though.
10621 } else if (RHS.get()->getType() == Context.OverloadTy) {
10622 // As a set of extensions to C, we support overloading on functions. These
10623 // functions need to be resolved here.
10624 DeclAccessPair DAP;
10625 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10626 RHS.get(), LHSType, /*Complain=*/false, DAP))
10627 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10628 else
10629 return Incompatible;
10632 // This check seems unnatural, however it is necessary to ensure the proper
10633 // conversion of functions/arrays. If the conversion were done for all
10634 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10635 // expressions that suppress this implicit conversion (&, sizeof). This needs
10636 // to happen before we check for null pointer conversions because C does not
10637 // undergo the same implicit conversions as C++ does above (by the calls to
10638 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10639 // lvalue to rvalue cast before checking for null pointer constraints. This
10640 // addresses code like: nullptr_t val; int *ptr; ptr = val;
10642 // Suppress this for references: C++ 8.5.3p5.
10643 if (!LHSType->isReferenceType()) {
10644 // FIXME: We potentially allocate here even if ConvertRHS is false.
10645 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10646 if (RHS.isInvalid())
10647 return Incompatible;
10650 // The constraints are expressed in terms of the atomic, qualified, or
10651 // unqualified type of the LHS.
10652 QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
10654 // C99 6.5.16.1p1: the left operand is a pointer and the right is
10655 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
10656 if ((LHSTypeAfterConversion->isPointerType() ||
10657 LHSTypeAfterConversion->isObjCObjectPointerType() ||
10658 LHSTypeAfterConversion->isBlockPointerType()) &&
10659 ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
10660 RHS.get()->isNullPointerConstant(Context,
10661 Expr::NPC_ValueDependentIsNull))) {
10662 if (Diagnose || ConvertRHS) {
10663 CastKind Kind;
10664 CXXCastPath Path;
10665 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10666 /*IgnoreBaseAccess=*/false, Diagnose);
10667 if (ConvertRHS)
10668 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10670 return Compatible;
10672 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
10673 // unqualified bool, and the right operand is a pointer or its type is
10674 // nullptr_t.
10675 if (getLangOpts().C23 && LHSType->isBooleanType() &&
10676 RHS.get()->getType()->isNullPtrType()) {
10677 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
10678 // only handles nullptr -> _Bool due to needing an extra conversion
10679 // step.
10680 // We model this by converting from nullptr -> void * and then let the
10681 // conversion from void * -> _Bool happen naturally.
10682 if (Diagnose || ConvertRHS) {
10683 CastKind Kind;
10684 CXXCastPath Path;
10685 CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
10686 /*IgnoreBaseAccess=*/false, Diagnose);
10687 if (ConvertRHS)
10688 RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
10689 &Path);
10693 // OpenCL queue_t type assignment.
10694 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10695 Context, Expr::NPC_ValueDependentIsNull)) {
10696 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10697 return Compatible;
10700 CastKind Kind;
10701 Sema::AssignConvertType result =
10702 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10704 // C99 6.5.16.1p2: The value of the right operand is converted to the
10705 // type of the assignment expression.
10706 // CheckAssignmentConstraints allows the left-hand side to be a reference,
10707 // so that we can use references in built-in functions even in C.
10708 // The getNonReferenceType() call makes sure that the resulting expression
10709 // does not have reference type.
10710 if (result != Incompatible && RHS.get()->getType() != LHSType) {
10711 QualType Ty = LHSType.getNonLValueExprType(Context);
10712 Expr *E = RHS.get();
10714 // Check for various Objective-C errors. If we are not reporting
10715 // diagnostics and just checking for errors, e.g., during overload
10716 // resolution, return Incompatible to indicate the failure.
10717 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10718 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10719 Diagnose, DiagnoseCFAudited) != ACR_okay) {
10720 if (!Diagnose)
10721 return Incompatible;
10723 if (getLangOpts().ObjC &&
10724 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10725 E->getType(), E, Diagnose) ||
10726 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10727 if (!Diagnose)
10728 return Incompatible;
10729 // Replace the expression with a corrected version and continue so we
10730 // can find further errors.
10731 RHS = E;
10732 return Compatible;
10735 if (ConvertRHS)
10736 RHS = ImpCastExprToType(E, Ty, Kind);
10739 return result;
10742 namespace {
10743 /// The original operand to an operator, prior to the application of the usual
10744 /// arithmetic conversions and converting the arguments of a builtin operator
10745 /// candidate.
10746 struct OriginalOperand {
10747 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10748 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10749 Op = MTE->getSubExpr();
10750 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10751 Op = BTE->getSubExpr();
10752 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10753 Orig = ICE->getSubExprAsWritten();
10754 Conversion = ICE->getConversionFunction();
10758 QualType getType() const { return Orig->getType(); }
10760 Expr *Orig;
10761 NamedDecl *Conversion;
10765 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10766 ExprResult &RHS) {
10767 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10769 Diag(Loc, diag::err_typecheck_invalid_operands)
10770 << OrigLHS.getType() << OrigRHS.getType()
10771 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10773 // If a user-defined conversion was applied to either of the operands prior
10774 // to applying the built-in operator rules, tell the user about it.
10775 if (OrigLHS.Conversion) {
10776 Diag(OrigLHS.Conversion->getLocation(),
10777 diag::note_typecheck_invalid_operands_converted)
10778 << 0 << LHS.get()->getType();
10780 if (OrigRHS.Conversion) {
10781 Diag(OrigRHS.Conversion->getLocation(),
10782 diag::note_typecheck_invalid_operands_converted)
10783 << 1 << RHS.get()->getType();
10786 return QualType();
10789 // Diagnose cases where a scalar was implicitly converted to a vector and
10790 // diagnose the underlying types. Otherwise, diagnose the error
10791 // as invalid vector logical operands for non-C++ cases.
10792 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10793 ExprResult &RHS) {
10794 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10795 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10797 bool LHSNatVec = LHSType->isVectorType();
10798 bool RHSNatVec = RHSType->isVectorType();
10800 if (!(LHSNatVec && RHSNatVec)) {
10801 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10802 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10803 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10804 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10805 << Vector->getSourceRange();
10806 return QualType();
10809 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10810 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10811 << RHS.get()->getSourceRange();
10813 return QualType();
10816 /// Try to convert a value of non-vector type to a vector type by converting
10817 /// the type to the element type of the vector and then performing a splat.
10818 /// If the language is OpenCL, we only use conversions that promote scalar
10819 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10820 /// for float->int.
10822 /// OpenCL V2.0 6.2.6.p2:
10823 /// An error shall occur if any scalar operand type has greater rank
10824 /// than the type of the vector element.
10826 /// \param scalar - if non-null, actually perform the conversions
10827 /// \return true if the operation fails (but without diagnosing the failure)
10828 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10829 QualType scalarTy,
10830 QualType vectorEltTy,
10831 QualType vectorTy,
10832 unsigned &DiagID) {
10833 // The conversion to apply to the scalar before splatting it,
10834 // if necessary.
10835 CastKind scalarCast = CK_NoOp;
10837 if (vectorEltTy->isIntegralType(S.Context)) {
10838 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10839 (scalarTy->isIntegerType() &&
10840 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10841 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10842 return true;
10844 if (!scalarTy->isIntegralType(S.Context))
10845 return true;
10846 scalarCast = CK_IntegralCast;
10847 } else if (vectorEltTy->isRealFloatingType()) {
10848 if (scalarTy->isRealFloatingType()) {
10849 if (S.getLangOpts().OpenCL &&
10850 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10851 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10852 return true;
10854 scalarCast = CK_FloatingCast;
10856 else if (scalarTy->isIntegralType(S.Context))
10857 scalarCast = CK_IntegralToFloating;
10858 else
10859 return true;
10860 } else {
10861 return true;
10864 // Adjust scalar if desired.
10865 if (scalar) {
10866 if (scalarCast != CK_NoOp)
10867 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10868 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10870 return false;
10873 /// Convert vector E to a vector with the same number of elements but different
10874 /// element type.
10875 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10876 const auto *VecTy = E->getType()->getAs<VectorType>();
10877 assert(VecTy && "Expression E must be a vector");
10878 QualType NewVecTy =
10879 VecTy->isExtVectorType()
10880 ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10881 : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10882 VecTy->getVectorKind());
10884 // Look through the implicit cast. Return the subexpression if its type is
10885 // NewVecTy.
10886 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10887 if (ICE->getSubExpr()->getType() == NewVecTy)
10888 return ICE->getSubExpr();
10890 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10891 return S.ImpCastExprToType(E, NewVecTy, Cast);
10894 /// Test if a (constant) integer Int can be casted to another integer type
10895 /// IntTy without losing precision.
10896 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10897 QualType OtherIntTy) {
10898 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10900 // Reject cases where the value of the Int is unknown as that would
10901 // possibly cause truncation, but accept cases where the scalar can be
10902 // demoted without loss of precision.
10903 Expr::EvalResult EVResult;
10904 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10905 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10906 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10907 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10909 if (CstInt) {
10910 // If the scalar is constant and is of a higher order and has more active
10911 // bits that the vector element type, reject it.
10912 llvm::APSInt Result = EVResult.Val.getInt();
10913 unsigned NumBits = IntSigned
10914 ? (Result.isNegative() ? Result.getSignificantBits()
10915 : Result.getActiveBits())
10916 : Result.getActiveBits();
10917 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10918 return true;
10920 // If the signedness of the scalar type and the vector element type
10921 // differs and the number of bits is greater than that of the vector
10922 // element reject it.
10923 return (IntSigned != OtherIntSigned &&
10924 NumBits > S.Context.getIntWidth(OtherIntTy));
10927 // Reject cases where the value of the scalar is not constant and it's
10928 // order is greater than that of the vector element type.
10929 return (Order < 0);
10932 /// Test if a (constant) integer Int can be casted to floating point type
10933 /// FloatTy without losing precision.
10934 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10935 QualType FloatTy) {
10936 QualType IntTy = Int->get()->getType().getUnqualifiedType();
10938 // Determine if the integer constant can be expressed as a floating point
10939 // number of the appropriate type.
10940 Expr::EvalResult EVResult;
10941 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10943 uint64_t Bits = 0;
10944 if (CstInt) {
10945 // Reject constants that would be truncated if they were converted to
10946 // the floating point type. Test by simple to/from conversion.
10947 // FIXME: Ideally the conversion to an APFloat and from an APFloat
10948 // could be avoided if there was a convertFromAPInt method
10949 // which could signal back if implicit truncation occurred.
10950 llvm::APSInt Result = EVResult.Val.getInt();
10951 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10952 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10953 llvm::APFloat::rmTowardZero);
10954 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10955 !IntTy->hasSignedIntegerRepresentation());
10956 bool Ignored = false;
10957 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10958 &Ignored);
10959 if (Result != ConvertBack)
10960 return true;
10961 } else {
10962 // Reject types that cannot be fully encoded into the mantissa of
10963 // the float.
10964 Bits = S.Context.getTypeSize(IntTy);
10965 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10966 S.Context.getFloatTypeSemantics(FloatTy));
10967 if (Bits > FloatPrec)
10968 return true;
10971 return false;
10974 /// Attempt to convert and splat Scalar into a vector whose types matches
10975 /// Vector following GCC conversion rules. The rule is that implicit
10976 /// conversion can occur when Scalar can be casted to match Vector's element
10977 /// type without causing truncation of Scalar.
10978 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10979 ExprResult *Vector) {
10980 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10981 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10982 QualType VectorEltTy;
10984 if (const auto *VT = VectorTy->getAs<VectorType>()) {
10985 assert(!isa<ExtVectorType>(VT) &&
10986 "ExtVectorTypes should not be handled here!");
10987 VectorEltTy = VT->getElementType();
10988 } else if (VectorTy->isSveVLSBuiltinType()) {
10989 VectorEltTy =
10990 VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10991 } else {
10992 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10995 // Reject cases where the vector element type or the scalar element type are
10996 // not integral or floating point types.
10997 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10998 return true;
11000 // The conversion to apply to the scalar before splatting it,
11001 // if necessary.
11002 CastKind ScalarCast = CK_NoOp;
11004 // Accept cases where the vector elements are integers and the scalar is
11005 // an integer.
11006 // FIXME: Notionally if the scalar was a floating point value with a precise
11007 // integral representation, we could cast it to an appropriate integer
11008 // type and then perform the rest of the checks here. GCC will perform
11009 // this conversion in some cases as determined by the input language.
11010 // We should accept it on a language independent basis.
11011 if (VectorEltTy->isIntegralType(S.Context) &&
11012 ScalarTy->isIntegralType(S.Context) &&
11013 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
11015 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
11016 return true;
11018 ScalarCast = CK_IntegralCast;
11019 } else if (VectorEltTy->isIntegralType(S.Context) &&
11020 ScalarTy->isRealFloatingType()) {
11021 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
11022 ScalarCast = CK_FloatingToIntegral;
11023 else
11024 return true;
11025 } else if (VectorEltTy->isRealFloatingType()) {
11026 if (ScalarTy->isRealFloatingType()) {
11028 // Reject cases where the scalar type is not a constant and has a higher
11029 // Order than the vector element type.
11030 llvm::APFloat Result(0.0);
11032 // Determine whether this is a constant scalar. In the event that the
11033 // value is dependent (and thus cannot be evaluated by the constant
11034 // evaluator), skip the evaluation. This will then diagnose once the
11035 // expression is instantiated.
11036 bool CstScalar = Scalar->get()->isValueDependent() ||
11037 Scalar->get()->EvaluateAsFloat(Result, S.Context);
11038 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
11039 if (!CstScalar && Order < 0)
11040 return true;
11042 // If the scalar cannot be safely casted to the vector element type,
11043 // reject it.
11044 if (CstScalar) {
11045 bool Truncated = false;
11046 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
11047 llvm::APFloat::rmNearestTiesToEven, &Truncated);
11048 if (Truncated)
11049 return true;
11052 ScalarCast = CK_FloatingCast;
11053 } else if (ScalarTy->isIntegralType(S.Context)) {
11054 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
11055 return true;
11057 ScalarCast = CK_IntegralToFloating;
11058 } else
11059 return true;
11060 } else if (ScalarTy->isEnumeralType())
11061 return true;
11063 // Adjust scalar if desired.
11064 if (ScalarCast != CK_NoOp)
11065 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
11066 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
11067 return false;
11070 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
11071 SourceLocation Loc, bool IsCompAssign,
11072 bool AllowBothBool,
11073 bool AllowBoolConversions,
11074 bool AllowBoolOperation,
11075 bool ReportInvalid) {
11076 if (!IsCompAssign) {
11077 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11078 if (LHS.isInvalid())
11079 return QualType();
11081 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11082 if (RHS.isInvalid())
11083 return QualType();
11085 // For conversion purposes, we ignore any qualifiers.
11086 // For example, "const float" and "float" are equivalent.
11087 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11088 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11090 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
11091 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
11092 assert(LHSVecType || RHSVecType);
11094 // AltiVec-style "vector bool op vector bool" combinations are allowed
11095 // for some operators but not others.
11096 if (!AllowBothBool && LHSVecType &&
11097 LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
11098 RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11099 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11101 // This operation may not be performed on boolean vectors.
11102 if (!AllowBoolOperation &&
11103 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
11104 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
11106 // If the vector types are identical, return.
11107 if (Context.hasSameType(LHSType, RHSType))
11108 return Context.getCommonSugaredType(LHSType, RHSType);
11110 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
11111 if (LHSVecType && RHSVecType &&
11112 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
11113 if (isa<ExtVectorType>(LHSVecType)) {
11114 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11115 return LHSType;
11118 if (!IsCompAssign)
11119 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11120 return RHSType;
11123 // AllowBoolConversions says that bool and non-bool AltiVec vectors
11124 // can be mixed, with the result being the non-bool type. The non-bool
11125 // operand must have integer element type.
11126 if (AllowBoolConversions && LHSVecType && RHSVecType &&
11127 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
11128 (Context.getTypeSize(LHSVecType->getElementType()) ==
11129 Context.getTypeSize(RHSVecType->getElementType()))) {
11130 if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11131 LHSVecType->getElementType()->isIntegerType() &&
11132 RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
11133 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11134 return LHSType;
11136 if (!IsCompAssign &&
11137 LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
11138 RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
11139 RHSVecType->getElementType()->isIntegerType()) {
11140 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11141 return RHSType;
11145 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
11146 // invalid since the ambiguity can affect the ABI.
11147 auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
11148 unsigned &SVEorRVV) {
11149 const VectorType *VecType = SecondType->getAs<VectorType>();
11150 SVEorRVV = 0;
11151 if (FirstType->isSizelessBuiltinType() && VecType) {
11152 if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11153 VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
11154 return true;
11155 if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData) {
11156 SVEorRVV = 1;
11157 return true;
11161 return false;
11164 unsigned SVEorRVV;
11165 if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
11166 IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
11167 Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
11168 << SVEorRVV << LHSType << RHSType;
11169 return QualType();
11172 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
11173 // invalid since the ambiguity can affect the ABI.
11174 auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
11175 unsigned &SVEorRVV) {
11176 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
11177 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
11179 SVEorRVV = 0;
11180 if (FirstVecType && SecondVecType) {
11181 if (FirstVecType->getVectorKind() == VectorKind::Generic) {
11182 if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
11183 SecondVecType->getVectorKind() ==
11184 VectorKind::SveFixedLengthPredicate)
11185 return true;
11186 if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData) {
11187 SVEorRVV = 1;
11188 return true;
11191 return false;
11194 if (SecondVecType &&
11195 SecondVecType->getVectorKind() == VectorKind::Generic) {
11196 if (FirstType->isSVESizelessBuiltinType())
11197 return true;
11198 if (FirstType->isRVVSizelessBuiltinType()) {
11199 SVEorRVV = 1;
11200 return true;
11204 return false;
11207 if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
11208 IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
11209 Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
11210 << SVEorRVV << LHSType << RHSType;
11211 return QualType();
11214 // If there's a vector type and a scalar, try to convert the scalar to
11215 // the vector element type and splat.
11216 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
11217 if (!RHSVecType) {
11218 if (isa<ExtVectorType>(LHSVecType)) {
11219 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
11220 LHSVecType->getElementType(), LHSType,
11221 DiagID))
11222 return LHSType;
11223 } else {
11224 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11225 return LHSType;
11228 if (!LHSVecType) {
11229 if (isa<ExtVectorType>(RHSVecType)) {
11230 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
11231 LHSType, RHSVecType->getElementType(),
11232 RHSType, DiagID))
11233 return RHSType;
11234 } else {
11235 if (LHS.get()->isLValue() ||
11236 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11237 return RHSType;
11241 // FIXME: The code below also handles conversion between vectors and
11242 // non-scalars, we should break this down into fine grained specific checks
11243 // and emit proper diagnostics.
11244 QualType VecType = LHSVecType ? LHSType : RHSType;
11245 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
11246 QualType OtherType = LHSVecType ? RHSType : LHSType;
11247 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
11248 if (isLaxVectorConversion(OtherType, VecType)) {
11249 if (Context.getTargetInfo().getTriple().isPPC() &&
11250 anyAltivecTypes(RHSType, LHSType) &&
11251 !Context.areCompatibleVectorTypes(RHSType, LHSType))
11252 Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
11253 // If we're allowing lax vector conversions, only the total (data) size
11254 // needs to be the same. For non compound assignment, if one of the types is
11255 // scalar, the result is always the vector type.
11256 if (!IsCompAssign) {
11257 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
11258 return VecType;
11259 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
11260 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
11261 // type. Note that this is already done by non-compound assignments in
11262 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
11263 // <1 x T> -> T. The result is also a vector type.
11264 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
11265 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
11266 ExprResult *RHSExpr = &RHS;
11267 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
11268 return VecType;
11272 // Okay, the expression is invalid.
11274 // If there's a non-vector, non-real operand, diagnose that.
11275 if ((!RHSVecType && !RHSType->isRealType()) ||
11276 (!LHSVecType && !LHSType->isRealType())) {
11277 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11278 << LHSType << RHSType
11279 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11280 return QualType();
11283 // OpenCL V1.1 6.2.6.p1:
11284 // If the operands are of more than one vector type, then an error shall
11285 // occur. Implicit conversions between vector types are not permitted, per
11286 // section 6.2.1.
11287 if (getLangOpts().OpenCL &&
11288 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
11289 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
11290 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
11291 << RHSType;
11292 return QualType();
11296 // If there is a vector type that is not a ExtVector and a scalar, we reach
11297 // this point if scalar could not be converted to the vector's element type
11298 // without truncation.
11299 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
11300 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
11301 QualType Scalar = LHSVecType ? RHSType : LHSType;
11302 QualType Vector = LHSVecType ? LHSType : RHSType;
11303 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
11304 Diag(Loc,
11305 diag::err_typecheck_vector_not_convertable_implict_truncation)
11306 << ScalarOrVector << Scalar << Vector;
11308 return QualType();
11311 // Otherwise, use the generic diagnostic.
11312 Diag(Loc, DiagID)
11313 << LHSType << RHSType
11314 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11315 return QualType();
11318 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
11319 SourceLocation Loc,
11320 bool IsCompAssign,
11321 ArithConvKind OperationKind) {
11322 if (!IsCompAssign) {
11323 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11324 if (LHS.isInvalid())
11325 return QualType();
11327 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11328 if (RHS.isInvalid())
11329 return QualType();
11331 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
11332 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
11334 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11335 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11337 unsigned DiagID = diag::err_typecheck_invalid_operands;
11338 if ((OperationKind == ACK_Arithmetic) &&
11339 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11340 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
11341 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11342 << RHS.get()->getSourceRange();
11343 return QualType();
11346 if (Context.hasSameType(LHSType, RHSType))
11347 return LHSType;
11349 if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
11350 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
11351 return LHSType;
11353 if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
11354 if (LHS.get()->isLValue() ||
11355 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
11356 return RHSType;
11359 if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
11360 (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
11361 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
11362 << LHSType << RHSType << LHS.get()->getSourceRange()
11363 << RHS.get()->getSourceRange();
11364 return QualType();
11367 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11368 Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11369 Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
11370 Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11371 << LHSType << RHSType << LHS.get()->getSourceRange()
11372 << RHS.get()->getSourceRange();
11373 return QualType();
11376 if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
11377 QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
11378 QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
11379 bool ScalarOrVector =
11380 LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
11382 Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
11383 << ScalarOrVector << Scalar << Vector;
11385 return QualType();
11388 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
11389 << RHS.get()->getSourceRange();
11390 return QualType();
11393 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
11394 // expression. These are mainly cases where the null pointer is used as an
11395 // integer instead of a pointer.
11396 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
11397 SourceLocation Loc, bool IsCompare) {
11398 // The canonical way to check for a GNU null is with isNullPointerConstant,
11399 // but we use a bit of a hack here for speed; this is a relatively
11400 // hot path, and isNullPointerConstant is slow.
11401 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
11402 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
11404 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
11406 // Avoid analyzing cases where the result will either be invalid (and
11407 // diagnosed as such) or entirely valid and not something to warn about.
11408 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
11409 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
11410 return;
11412 // Comparison operations would not make sense with a null pointer no matter
11413 // what the other expression is.
11414 if (!IsCompare) {
11415 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
11416 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
11417 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
11418 return;
11421 // The rest of the operations only make sense with a null pointer
11422 // if the other expression is a pointer.
11423 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
11424 NonNullType->canDecayToPointerType())
11425 return;
11427 S.Diag(Loc, diag::warn_null_in_comparison_operation)
11428 << LHSNull /* LHS is NULL */ << NonNullType
11429 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11432 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
11433 SourceLocation Loc) {
11434 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
11435 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
11436 if (!LUE || !RUE)
11437 return;
11438 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
11439 RUE->getKind() != UETT_SizeOf)
11440 return;
11442 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11443 QualType LHSTy = LHSArg->getType();
11444 QualType RHSTy;
11446 if (RUE->isArgumentType())
11447 RHSTy = RUE->getArgumentType().getNonReferenceType();
11448 else
11449 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11451 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11452 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11453 return;
11455 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11456 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11457 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11458 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11459 << LHSArgDecl;
11461 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11462 QualType ArrayElemTy = ArrayTy->getElementType();
11463 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11464 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11465 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11466 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11467 return;
11468 S.Diag(Loc, diag::warn_division_sizeof_array)
11469 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11470 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11471 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11472 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11473 << LHSArgDecl;
11476 S.Diag(Loc, diag::note_precedence_silence) << RHS;
11480 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11481 ExprResult &RHS,
11482 SourceLocation Loc, bool IsDiv) {
11483 // Check for division/remainder by zero.
11484 Expr::EvalResult RHSValue;
11485 if (!RHS.get()->isValueDependent() &&
11486 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11487 RHSValue.Val.getInt() == 0)
11488 S.DiagRuntimeBehavior(Loc, RHS.get(),
11489 S.PDiag(diag::warn_remainder_division_by_zero)
11490 << IsDiv << RHS.get()->getSourceRange());
11493 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11494 SourceLocation Loc,
11495 bool IsCompAssign, bool IsDiv) {
11496 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11498 QualType LHSTy = LHS.get()->getType();
11499 QualType RHSTy = RHS.get()->getType();
11500 if (LHSTy->isVectorType() || RHSTy->isVectorType())
11501 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11502 /*AllowBothBool*/ getLangOpts().AltiVec,
11503 /*AllowBoolConversions*/ false,
11504 /*AllowBooleanOperation*/ false,
11505 /*ReportInvalid*/ true);
11506 if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
11507 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11508 ACK_Arithmetic);
11509 if (!IsDiv &&
11510 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11511 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11512 // For division, only matrix-by-scalar is supported. Other combinations with
11513 // matrix types are invalid.
11514 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11515 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11517 QualType compType = UsualArithmeticConversions(
11518 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11519 if (LHS.isInvalid() || RHS.isInvalid())
11520 return QualType();
11523 if (compType.isNull() || !compType->isArithmeticType())
11524 return InvalidOperands(Loc, LHS, RHS);
11525 if (IsDiv) {
11526 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11527 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11529 return compType;
11532 QualType Sema::CheckRemainderOperands(
11533 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11534 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11536 if (LHS.get()->getType()->isVectorType() ||
11537 RHS.get()->getType()->isVectorType()) {
11538 if (LHS.get()->getType()->hasIntegerRepresentation() &&
11539 RHS.get()->getType()->hasIntegerRepresentation())
11540 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11541 /*AllowBothBool*/ getLangOpts().AltiVec,
11542 /*AllowBoolConversions*/ false,
11543 /*AllowBooleanOperation*/ false,
11544 /*ReportInvalid*/ true);
11545 return InvalidOperands(Loc, LHS, RHS);
11548 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11549 RHS.get()->getType()->isSveVLSBuiltinType()) {
11550 if (LHS.get()->getType()->hasIntegerRepresentation() &&
11551 RHS.get()->getType()->hasIntegerRepresentation())
11552 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11553 ACK_Arithmetic);
11555 return InvalidOperands(Loc, LHS, RHS);
11558 QualType compType = UsualArithmeticConversions(
11559 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11560 if (LHS.isInvalid() || RHS.isInvalid())
11561 return QualType();
11563 if (compType.isNull() || !compType->isIntegerType())
11564 return InvalidOperands(Loc, LHS, RHS);
11565 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11566 return compType;
11569 /// Diagnose invalid arithmetic on two void pointers.
11570 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11571 Expr *LHSExpr, Expr *RHSExpr) {
11572 S.Diag(Loc, S.getLangOpts().CPlusPlus
11573 ? diag::err_typecheck_pointer_arith_void_type
11574 : diag::ext_gnu_void_ptr)
11575 << 1 /* two pointers */ << LHSExpr->getSourceRange()
11576 << RHSExpr->getSourceRange();
11579 /// Diagnose invalid arithmetic on a void pointer.
11580 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11581 Expr *Pointer) {
11582 S.Diag(Loc, S.getLangOpts().CPlusPlus
11583 ? diag::err_typecheck_pointer_arith_void_type
11584 : diag::ext_gnu_void_ptr)
11585 << 0 /* one pointer */ << Pointer->getSourceRange();
11588 /// Diagnose invalid arithmetic on a null pointer.
11590 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11591 /// idiom, which we recognize as a GNU extension.
11593 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11594 Expr *Pointer, bool IsGNUIdiom) {
11595 if (IsGNUIdiom)
11596 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11597 << Pointer->getSourceRange();
11598 else
11599 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11600 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11603 /// Diagnose invalid subraction on a null pointer.
11605 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11606 Expr *Pointer, bool BothNull) {
11607 // Null - null is valid in C++ [expr.add]p7
11608 if (BothNull && S.getLangOpts().CPlusPlus)
11609 return;
11611 // Is this s a macro from a system header?
11612 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11613 return;
11615 S.DiagRuntimeBehavior(Loc, Pointer,
11616 S.PDiag(diag::warn_pointer_sub_null_ptr)
11617 << S.getLangOpts().CPlusPlus
11618 << Pointer->getSourceRange());
11621 /// Diagnose invalid arithmetic on two function pointers.
11622 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11623 Expr *LHS, Expr *RHS) {
11624 assert(LHS->getType()->isAnyPointerType());
11625 assert(RHS->getType()->isAnyPointerType());
11626 S.Diag(Loc, S.getLangOpts().CPlusPlus
11627 ? diag::err_typecheck_pointer_arith_function_type
11628 : diag::ext_gnu_ptr_func_arith)
11629 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11630 // We only show the second type if it differs from the first.
11631 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11632 RHS->getType())
11633 << RHS->getType()->getPointeeType()
11634 << LHS->getSourceRange() << RHS->getSourceRange();
11637 /// Diagnose invalid arithmetic on a function pointer.
11638 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11639 Expr *Pointer) {
11640 assert(Pointer->getType()->isAnyPointerType());
11641 S.Diag(Loc, S.getLangOpts().CPlusPlus
11642 ? diag::err_typecheck_pointer_arith_function_type
11643 : diag::ext_gnu_ptr_func_arith)
11644 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11645 << 0 /* one pointer, so only one type */
11646 << Pointer->getSourceRange();
11649 /// Emit error if Operand is incomplete pointer type
11651 /// \returns True if pointer has incomplete type
11652 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11653 Expr *Operand) {
11654 QualType ResType = Operand->getType();
11655 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11656 ResType = ResAtomicType->getValueType();
11658 assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11659 QualType PointeeTy = ResType->getPointeeType();
11660 return S.RequireCompleteSizedType(
11661 Loc, PointeeTy,
11662 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11663 Operand->getSourceRange());
11666 /// Check the validity of an arithmetic pointer operand.
11668 /// If the operand has pointer type, this code will check for pointer types
11669 /// which are invalid in arithmetic operations. These will be diagnosed
11670 /// appropriately, including whether or not the use is supported as an
11671 /// extension.
11673 /// \returns True when the operand is valid to use (even if as an extension).
11674 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11675 Expr *Operand) {
11676 QualType ResType = Operand->getType();
11677 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11678 ResType = ResAtomicType->getValueType();
11680 if (!ResType->isAnyPointerType()) return true;
11682 QualType PointeeTy = ResType->getPointeeType();
11683 if (PointeeTy->isVoidType()) {
11684 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11685 return !S.getLangOpts().CPlusPlus;
11687 if (PointeeTy->isFunctionType()) {
11688 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11689 return !S.getLangOpts().CPlusPlus;
11692 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11694 return true;
11697 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11698 /// operands.
11700 /// This routine will diagnose any invalid arithmetic on pointer operands much
11701 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11702 /// for emitting a single diagnostic even for operations where both LHS and RHS
11703 /// are (potentially problematic) pointers.
11705 /// \returns True when the operand is valid to use (even if as an extension).
11706 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11707 Expr *LHSExpr, Expr *RHSExpr) {
11708 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11709 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11710 if (!isLHSPointer && !isRHSPointer) return true;
11712 QualType LHSPointeeTy, RHSPointeeTy;
11713 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11714 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11716 // if both are pointers check if operation is valid wrt address spaces
11717 if (isLHSPointer && isRHSPointer) {
11718 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11719 S.Diag(Loc,
11720 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11721 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11722 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11723 return false;
11727 // Check for arithmetic on pointers to incomplete types.
11728 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11729 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11730 if (isLHSVoidPtr || isRHSVoidPtr) {
11731 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11732 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11733 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11735 return !S.getLangOpts().CPlusPlus;
11738 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11739 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11740 if (isLHSFuncPtr || isRHSFuncPtr) {
11741 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11742 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11743 RHSExpr);
11744 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11746 return !S.getLangOpts().CPlusPlus;
11749 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11750 return false;
11751 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11752 return false;
11754 return true;
11757 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11758 /// literal.
11759 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11760 Expr *LHSExpr, Expr *RHSExpr) {
11761 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11762 Expr* IndexExpr = RHSExpr;
11763 if (!StrExpr) {
11764 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11765 IndexExpr = LHSExpr;
11768 bool IsStringPlusInt = StrExpr &&
11769 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11770 if (!IsStringPlusInt || IndexExpr->isValueDependent())
11771 return;
11773 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11774 Self.Diag(OpLoc, diag::warn_string_plus_int)
11775 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11777 // Only print a fixit for "str" + int, not for int + "str".
11778 if (IndexExpr == RHSExpr) {
11779 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11780 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11781 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11782 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11783 << FixItHint::CreateInsertion(EndLoc, "]");
11784 } else
11785 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11788 /// Emit a warning when adding a char literal to a string.
11789 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11790 Expr *LHSExpr, Expr *RHSExpr) {
11791 const Expr *StringRefExpr = LHSExpr;
11792 const CharacterLiteral *CharExpr =
11793 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11795 if (!CharExpr) {
11796 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11797 StringRefExpr = RHSExpr;
11800 if (!CharExpr || !StringRefExpr)
11801 return;
11803 const QualType StringType = StringRefExpr->getType();
11805 // Return if not a PointerType.
11806 if (!StringType->isAnyPointerType())
11807 return;
11809 // Return if not a CharacterType.
11810 if (!StringType->getPointeeType()->isAnyCharacterType())
11811 return;
11813 ASTContext &Ctx = Self.getASTContext();
11814 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11816 const QualType CharType = CharExpr->getType();
11817 if (!CharType->isAnyCharacterType() &&
11818 CharType->isIntegerType() &&
11819 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11820 Self.Diag(OpLoc, diag::warn_string_plus_char)
11821 << DiagRange << Ctx.CharTy;
11822 } else {
11823 Self.Diag(OpLoc, diag::warn_string_plus_char)
11824 << DiagRange << CharExpr->getType();
11827 // Only print a fixit for str + char, not for char + str.
11828 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11829 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11830 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11831 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11832 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11833 << FixItHint::CreateInsertion(EndLoc, "]");
11834 } else {
11835 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11839 /// Emit error when two pointers are incompatible.
11840 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11841 Expr *LHSExpr, Expr *RHSExpr) {
11842 assert(LHSExpr->getType()->isAnyPointerType());
11843 assert(RHSExpr->getType()->isAnyPointerType());
11844 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11845 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11846 << RHSExpr->getSourceRange();
11849 // C99 6.5.6
11850 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11851 SourceLocation Loc, BinaryOperatorKind Opc,
11852 QualType* CompLHSTy) {
11853 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11855 if (LHS.get()->getType()->isVectorType() ||
11856 RHS.get()->getType()->isVectorType()) {
11857 QualType compType =
11858 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11859 /*AllowBothBool*/ getLangOpts().AltiVec,
11860 /*AllowBoolConversions*/ getLangOpts().ZVector,
11861 /*AllowBooleanOperation*/ false,
11862 /*ReportInvalid*/ true);
11863 if (CompLHSTy) *CompLHSTy = compType;
11864 return compType;
11867 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11868 RHS.get()->getType()->isSveVLSBuiltinType()) {
11869 QualType compType =
11870 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11871 if (CompLHSTy)
11872 *CompLHSTy = compType;
11873 return compType;
11876 if (LHS.get()->getType()->isConstantMatrixType() ||
11877 RHS.get()->getType()->isConstantMatrixType()) {
11878 QualType compType =
11879 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11880 if (CompLHSTy)
11881 *CompLHSTy = compType;
11882 return compType;
11885 QualType compType = UsualArithmeticConversions(
11886 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11887 if (LHS.isInvalid() || RHS.isInvalid())
11888 return QualType();
11890 // Diagnose "string literal" '+' int and string '+' "char literal".
11891 if (Opc == BO_Add) {
11892 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11893 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11896 // handle the common case first (both operands are arithmetic).
11897 if (!compType.isNull() && compType->isArithmeticType()) {
11898 if (CompLHSTy) *CompLHSTy = compType;
11899 return compType;
11902 // Type-checking. Ultimately the pointer's going to be in PExp;
11903 // note that we bias towards the LHS being the pointer.
11904 Expr *PExp = LHS.get(), *IExp = RHS.get();
11906 bool isObjCPointer;
11907 if (PExp->getType()->isPointerType()) {
11908 isObjCPointer = false;
11909 } else if (PExp->getType()->isObjCObjectPointerType()) {
11910 isObjCPointer = true;
11911 } else {
11912 std::swap(PExp, IExp);
11913 if (PExp->getType()->isPointerType()) {
11914 isObjCPointer = false;
11915 } else if (PExp->getType()->isObjCObjectPointerType()) {
11916 isObjCPointer = true;
11917 } else {
11918 return InvalidOperands(Loc, LHS, RHS);
11921 assert(PExp->getType()->isAnyPointerType());
11923 if (!IExp->getType()->isIntegerType())
11924 return InvalidOperands(Loc, LHS, RHS);
11926 // Adding to a null pointer results in undefined behavior.
11927 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11928 Context, Expr::NPC_ValueDependentIsNotNull)) {
11929 // In C++ adding zero to a null pointer is defined.
11930 Expr::EvalResult KnownVal;
11931 if (!getLangOpts().CPlusPlus ||
11932 (!IExp->isValueDependent() &&
11933 (!IExp->EvaluateAsInt(KnownVal, Context) ||
11934 KnownVal.Val.getInt() != 0))) {
11935 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11936 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11937 Context, BO_Add, PExp, IExp);
11938 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11942 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11943 return QualType();
11945 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11946 return QualType();
11948 // Check array bounds for pointer arithemtic
11949 CheckArrayAccess(PExp, IExp);
11951 if (CompLHSTy) {
11952 QualType LHSTy = Context.isPromotableBitField(LHS.get());
11953 if (LHSTy.isNull()) {
11954 LHSTy = LHS.get()->getType();
11955 if (Context.isPromotableIntegerType(LHSTy))
11956 LHSTy = Context.getPromotedIntegerType(LHSTy);
11958 *CompLHSTy = LHSTy;
11961 return PExp->getType();
11964 // C99 6.5.6
11965 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11966 SourceLocation Loc,
11967 QualType* CompLHSTy) {
11968 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11970 if (LHS.get()->getType()->isVectorType() ||
11971 RHS.get()->getType()->isVectorType()) {
11972 QualType compType =
11973 CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11974 /*AllowBothBool*/ getLangOpts().AltiVec,
11975 /*AllowBoolConversions*/ getLangOpts().ZVector,
11976 /*AllowBooleanOperation*/ false,
11977 /*ReportInvalid*/ true);
11978 if (CompLHSTy) *CompLHSTy = compType;
11979 return compType;
11982 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11983 RHS.get()->getType()->isSveVLSBuiltinType()) {
11984 QualType compType =
11985 CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11986 if (CompLHSTy)
11987 *CompLHSTy = compType;
11988 return compType;
11991 if (LHS.get()->getType()->isConstantMatrixType() ||
11992 RHS.get()->getType()->isConstantMatrixType()) {
11993 QualType compType =
11994 CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11995 if (CompLHSTy)
11996 *CompLHSTy = compType;
11997 return compType;
12000 QualType compType = UsualArithmeticConversions(
12001 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
12002 if (LHS.isInvalid() || RHS.isInvalid())
12003 return QualType();
12005 // Enforce type constraints: C99 6.5.6p3.
12007 // Handle the common case first (both operands are arithmetic).
12008 if (!compType.isNull() && compType->isArithmeticType()) {
12009 if (CompLHSTy) *CompLHSTy = compType;
12010 return compType;
12013 // Either ptr - int or ptr - ptr.
12014 if (LHS.get()->getType()->isAnyPointerType()) {
12015 QualType lpointee = LHS.get()->getType()->getPointeeType();
12017 // Diagnose bad cases where we step over interface counts.
12018 if (LHS.get()->getType()->isObjCObjectPointerType() &&
12019 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
12020 return QualType();
12022 // The result type of a pointer-int computation is the pointer type.
12023 if (RHS.get()->getType()->isIntegerType()) {
12024 // Subtracting from a null pointer should produce a warning.
12025 // The last argument to the diagnose call says this doesn't match the
12026 // GNU int-to-pointer idiom.
12027 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
12028 Expr::NPC_ValueDependentIsNotNull)) {
12029 // In C++ adding zero to a null pointer is defined.
12030 Expr::EvalResult KnownVal;
12031 if (!getLangOpts().CPlusPlus ||
12032 (!RHS.get()->isValueDependent() &&
12033 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
12034 KnownVal.Val.getInt() != 0))) {
12035 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
12039 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
12040 return QualType();
12042 // Check array bounds for pointer arithemtic
12043 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
12044 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
12046 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12047 return LHS.get()->getType();
12050 // Handle pointer-pointer subtractions.
12051 if (const PointerType *RHSPTy
12052 = RHS.get()->getType()->getAs<PointerType>()) {
12053 QualType rpointee = RHSPTy->getPointeeType();
12055 if (getLangOpts().CPlusPlus) {
12056 // Pointee types must be the same: C++ [expr.add]
12057 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
12058 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12060 } else {
12061 // Pointee types must be compatible C99 6.5.6p3
12062 if (!Context.typesAreCompatible(
12063 Context.getCanonicalType(lpointee).getUnqualifiedType(),
12064 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
12065 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
12066 return QualType();
12070 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
12071 LHS.get(), RHS.get()))
12072 return QualType();
12074 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12075 Context, Expr::NPC_ValueDependentIsNotNull);
12076 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
12077 Context, Expr::NPC_ValueDependentIsNotNull);
12079 // Subtracting nullptr or from nullptr is suspect
12080 if (LHSIsNullPtr)
12081 diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
12082 if (RHSIsNullPtr)
12083 diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
12085 // The pointee type may have zero size. As an extension, a structure or
12086 // union may have zero size or an array may have zero length. In this
12087 // case subtraction does not make sense.
12088 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
12089 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
12090 if (ElementSize.isZero()) {
12091 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
12092 << rpointee.getUnqualifiedType()
12093 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12097 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
12098 return Context.getPointerDiffType();
12102 return InvalidOperands(Loc, LHS, RHS);
12105 static bool isScopedEnumerationType(QualType T) {
12106 if (const EnumType *ET = T->getAs<EnumType>())
12107 return ET->getDecl()->isScoped();
12108 return false;
12111 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
12112 SourceLocation Loc, BinaryOperatorKind Opc,
12113 QualType LHSType) {
12114 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
12115 // so skip remaining warnings as we don't want to modify values within Sema.
12116 if (S.getLangOpts().OpenCL)
12117 return;
12119 // Check right/shifter operand
12120 Expr::EvalResult RHSResult;
12121 if (RHS.get()->isValueDependent() ||
12122 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
12123 return;
12124 llvm::APSInt Right = RHSResult.Val.getInt();
12126 if (Right.isNegative()) {
12127 S.DiagRuntimeBehavior(Loc, RHS.get(),
12128 S.PDiag(diag::warn_shift_negative)
12129 << RHS.get()->getSourceRange());
12130 return;
12133 QualType LHSExprType = LHS.get()->getType();
12134 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
12135 if (LHSExprType->isBitIntType())
12136 LeftSize = S.Context.getIntWidth(LHSExprType);
12137 else if (LHSExprType->isFixedPointType()) {
12138 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
12139 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
12141 if (Right.uge(LeftSize)) {
12142 S.DiagRuntimeBehavior(Loc, RHS.get(),
12143 S.PDiag(diag::warn_shift_gt_typewidth)
12144 << RHS.get()->getSourceRange());
12145 return;
12148 // FIXME: We probably need to handle fixed point types specially here.
12149 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
12150 return;
12152 // When left shifting an ICE which is signed, we can check for overflow which
12153 // according to C++ standards prior to C++2a has undefined behavior
12154 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
12155 // more than the maximum value representable in the result type, so never
12156 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
12157 // expression is still probably a bug.)
12158 Expr::EvalResult LHSResult;
12159 if (LHS.get()->isValueDependent() ||
12160 LHSType->hasUnsignedIntegerRepresentation() ||
12161 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
12162 return;
12163 llvm::APSInt Left = LHSResult.Val.getInt();
12165 // Don't warn if signed overflow is defined, then all the rest of the
12166 // diagnostics will not be triggered because the behavior is defined.
12167 // Also don't warn in C++20 mode (and newer), as signed left shifts
12168 // always wrap and never overflow.
12169 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
12170 return;
12172 // If LHS does not have a non-negative value then, the
12173 // behavior is undefined before C++2a. Warn about it.
12174 if (Left.isNegative()) {
12175 S.DiagRuntimeBehavior(Loc, LHS.get(),
12176 S.PDiag(diag::warn_shift_lhs_negative)
12177 << LHS.get()->getSourceRange());
12178 return;
12181 llvm::APInt ResultBits =
12182 static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
12183 if (ResultBits.ule(LeftSize))
12184 return;
12185 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
12186 Result = Result.shl(Right);
12188 // Print the bit representation of the signed integer as an unsigned
12189 // hexadecimal number.
12190 SmallString<40> HexResult;
12191 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
12193 // If we are only missing a sign bit, this is less likely to result in actual
12194 // bugs -- if the result is cast back to an unsigned type, it will have the
12195 // expected value. Thus we place this behind a different warning that can be
12196 // turned off separately if needed.
12197 if (ResultBits - 1 == LeftSize) {
12198 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
12199 << HexResult << LHSType
12200 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12201 return;
12204 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
12205 << HexResult.str() << Result.getSignificantBits() << LHSType
12206 << Left.getBitWidth() << LHS.get()->getSourceRange()
12207 << RHS.get()->getSourceRange();
12210 /// Return the resulting type when a vector is shifted
12211 /// by a scalar or vector shift amount.
12212 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
12213 SourceLocation Loc, bool IsCompAssign) {
12214 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
12215 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
12216 !LHS.get()->getType()->isVectorType()) {
12217 S.Diag(Loc, diag::err_shift_rhs_only_vector)
12218 << RHS.get()->getType() << LHS.get()->getType()
12219 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12220 return QualType();
12223 if (!IsCompAssign) {
12224 LHS = S.UsualUnaryConversions(LHS.get());
12225 if (LHS.isInvalid()) return QualType();
12228 RHS = S.UsualUnaryConversions(RHS.get());
12229 if (RHS.isInvalid()) return QualType();
12231 QualType LHSType = LHS.get()->getType();
12232 // Note that LHS might be a scalar because the routine calls not only in
12233 // OpenCL case.
12234 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
12235 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
12237 // Note that RHS might not be a vector.
12238 QualType RHSType = RHS.get()->getType();
12239 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
12240 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
12242 // Do not allow shifts for boolean vectors.
12243 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
12244 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
12245 S.Diag(Loc, diag::err_typecheck_invalid_operands)
12246 << LHS.get()->getType() << RHS.get()->getType()
12247 << LHS.get()->getSourceRange();
12248 return QualType();
12251 // The operands need to be integers.
12252 if (!LHSEleType->isIntegerType()) {
12253 S.Diag(Loc, diag::err_typecheck_expect_int)
12254 << LHS.get()->getType() << LHS.get()->getSourceRange();
12255 return QualType();
12258 if (!RHSEleType->isIntegerType()) {
12259 S.Diag(Loc, diag::err_typecheck_expect_int)
12260 << RHS.get()->getType() << RHS.get()->getSourceRange();
12261 return QualType();
12264 if (!LHSVecTy) {
12265 assert(RHSVecTy);
12266 if (IsCompAssign)
12267 return RHSType;
12268 if (LHSEleType != RHSEleType) {
12269 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
12270 LHSEleType = RHSEleType;
12272 QualType VecTy =
12273 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
12274 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
12275 LHSType = VecTy;
12276 } else if (RHSVecTy) {
12277 // OpenCL v1.1 s6.3.j says that for vector types, the operators
12278 // are applied component-wise. So if RHS is a vector, then ensure
12279 // that the number of elements is the same as LHS...
12280 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
12281 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12282 << LHS.get()->getType() << RHS.get()->getType()
12283 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12284 return QualType();
12286 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
12287 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
12288 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
12289 if (LHSBT != RHSBT &&
12290 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
12291 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
12292 << LHS.get()->getType() << RHS.get()->getType()
12293 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12296 } else {
12297 // ...else expand RHS to match the number of elements in LHS.
12298 QualType VecTy =
12299 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
12300 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12303 return LHSType;
12306 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
12307 ExprResult &RHS, SourceLocation Loc,
12308 bool IsCompAssign) {
12309 if (!IsCompAssign) {
12310 LHS = S.UsualUnaryConversions(LHS.get());
12311 if (LHS.isInvalid())
12312 return QualType();
12315 RHS = S.UsualUnaryConversions(RHS.get());
12316 if (RHS.isInvalid())
12317 return QualType();
12319 QualType LHSType = LHS.get()->getType();
12320 const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
12321 QualType LHSEleType = LHSType->isSveVLSBuiltinType()
12322 ? LHSBuiltinTy->getSveEltType(S.getASTContext())
12323 : LHSType;
12325 // Note that RHS might not be a vector
12326 QualType RHSType = RHS.get()->getType();
12327 const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
12328 QualType RHSEleType = RHSType->isSveVLSBuiltinType()
12329 ? RHSBuiltinTy->getSveEltType(S.getASTContext())
12330 : RHSType;
12332 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
12333 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
12334 S.Diag(Loc, diag::err_typecheck_invalid_operands)
12335 << LHSType << RHSType << LHS.get()->getSourceRange();
12336 return QualType();
12339 if (!LHSEleType->isIntegerType()) {
12340 S.Diag(Loc, diag::err_typecheck_expect_int)
12341 << LHS.get()->getType() << LHS.get()->getSourceRange();
12342 return QualType();
12345 if (!RHSEleType->isIntegerType()) {
12346 S.Diag(Loc, diag::err_typecheck_expect_int)
12347 << RHS.get()->getType() << RHS.get()->getSourceRange();
12348 return QualType();
12351 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
12352 (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
12353 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
12354 S.Diag(Loc, diag::err_typecheck_invalid_operands)
12355 << LHSType << RHSType << LHS.get()->getSourceRange()
12356 << RHS.get()->getSourceRange();
12357 return QualType();
12360 if (!LHSType->isSveVLSBuiltinType()) {
12361 assert(RHSType->isSveVLSBuiltinType());
12362 if (IsCompAssign)
12363 return RHSType;
12364 if (LHSEleType != RHSEleType) {
12365 LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
12366 LHSEleType = RHSEleType;
12368 const llvm::ElementCount VecSize =
12369 S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
12370 QualType VecTy =
12371 S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
12372 LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
12373 LHSType = VecTy;
12374 } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
12375 if (S.Context.getTypeSize(RHSBuiltinTy) !=
12376 S.Context.getTypeSize(LHSBuiltinTy)) {
12377 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
12378 << LHSType << RHSType << LHS.get()->getSourceRange()
12379 << RHS.get()->getSourceRange();
12380 return QualType();
12382 } else {
12383 const llvm::ElementCount VecSize =
12384 S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
12385 if (LHSEleType != RHSEleType) {
12386 RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
12387 RHSEleType = LHSEleType;
12389 QualType VecTy =
12390 S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
12391 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
12394 return LHSType;
12397 // C99 6.5.7
12398 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
12399 SourceLocation Loc, BinaryOperatorKind Opc,
12400 bool IsCompAssign) {
12401 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12403 // Vector shifts promote their scalar inputs to vector type.
12404 if (LHS.get()->getType()->isVectorType() ||
12405 RHS.get()->getType()->isVectorType()) {
12406 if (LangOpts.ZVector) {
12407 // The shift operators for the z vector extensions work basically
12408 // like general shifts, except that neither the LHS nor the RHS is
12409 // allowed to be a "vector bool".
12410 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
12411 if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12412 return InvalidOperands(Loc, LHS, RHS);
12413 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
12414 if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
12415 return InvalidOperands(Loc, LHS, RHS);
12417 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12420 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12421 RHS.get()->getType()->isSveVLSBuiltinType())
12422 return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
12424 // Shifts don't perform usual arithmetic conversions, they just do integer
12425 // promotions on each operand. C99 6.5.7p3
12427 // For the LHS, do usual unary conversions, but then reset them away
12428 // if this is a compound assignment.
12429 ExprResult OldLHS = LHS;
12430 LHS = UsualUnaryConversions(LHS.get());
12431 if (LHS.isInvalid())
12432 return QualType();
12433 QualType LHSType = LHS.get()->getType();
12434 if (IsCompAssign) LHS = OldLHS;
12436 // The RHS is simpler.
12437 RHS = UsualUnaryConversions(RHS.get());
12438 if (RHS.isInvalid())
12439 return QualType();
12440 QualType RHSType = RHS.get()->getType();
12442 // C99 6.5.7p2: Each of the operands shall have integer type.
12443 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12444 if ((!LHSType->isFixedPointOrIntegerType() &&
12445 !LHSType->hasIntegerRepresentation()) ||
12446 !RHSType->hasIntegerRepresentation())
12447 return InvalidOperands(Loc, LHS, RHS);
12449 // C++0x: Don't allow scoped enums. FIXME: Use something better than
12450 // hasIntegerRepresentation() above instead of this.
12451 if (isScopedEnumerationType(LHSType) ||
12452 isScopedEnumerationType(RHSType)) {
12453 return InvalidOperands(Loc, LHS, RHS);
12455 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12457 // "The type of the result is that of the promoted left operand."
12458 return LHSType;
12461 /// Diagnose bad pointer comparisons.
12462 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12463 ExprResult &LHS, ExprResult &RHS,
12464 bool IsError) {
12465 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12466 : diag::ext_typecheck_comparison_of_distinct_pointers)
12467 << LHS.get()->getType() << RHS.get()->getType()
12468 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12471 /// Returns false if the pointers are converted to a composite type,
12472 /// true otherwise.
12473 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12474 ExprResult &LHS, ExprResult &RHS) {
12475 // C++ [expr.rel]p2:
12476 // [...] Pointer conversions (4.10) and qualification
12477 // conversions (4.4) are performed on pointer operands (or on
12478 // a pointer operand and a null pointer constant) to bring
12479 // them to their composite pointer type. [...]
12481 // C++ [expr.eq]p1 uses the same notion for (in)equality
12482 // comparisons of pointers.
12484 QualType LHSType = LHS.get()->getType();
12485 QualType RHSType = RHS.get()->getType();
12486 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12487 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12489 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12490 if (T.isNull()) {
12491 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12492 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12493 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12494 else
12495 S.InvalidOperands(Loc, LHS, RHS);
12496 return true;
12499 return false;
12502 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12503 ExprResult &LHS,
12504 ExprResult &RHS,
12505 bool IsError) {
12506 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12507 : diag::ext_typecheck_comparison_of_fptr_to_void)
12508 << LHS.get()->getType() << RHS.get()->getType()
12509 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12512 static bool isObjCObjectLiteral(ExprResult &E) {
12513 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12514 case Stmt::ObjCArrayLiteralClass:
12515 case Stmt::ObjCDictionaryLiteralClass:
12516 case Stmt::ObjCStringLiteralClass:
12517 case Stmt::ObjCBoxedExprClass:
12518 return true;
12519 default:
12520 // Note that ObjCBoolLiteral is NOT an object literal!
12521 return false;
12525 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12526 const ObjCObjectPointerType *Type =
12527 LHS->getType()->getAs<ObjCObjectPointerType>();
12529 // If this is not actually an Objective-C object, bail out.
12530 if (!Type)
12531 return false;
12533 // Get the LHS object's interface type.
12534 QualType InterfaceType = Type->getPointeeType();
12536 // If the RHS isn't an Objective-C object, bail out.
12537 if (!RHS->getType()->isObjCObjectPointerType())
12538 return false;
12540 // Try to find the -isEqual: method.
12541 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12542 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12543 InterfaceType,
12544 /*IsInstance=*/true);
12545 if (!Method) {
12546 if (Type->isObjCIdType()) {
12547 // For 'id', just check the global pool.
12548 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12549 /*receiverId=*/true);
12550 } else {
12551 // Check protocols.
12552 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12553 /*IsInstance=*/true);
12557 if (!Method)
12558 return false;
12560 QualType T = Method->parameters()[0]->getType();
12561 if (!T->isObjCObjectPointerType())
12562 return false;
12564 QualType R = Method->getReturnType();
12565 if (!R->isScalarType())
12566 return false;
12568 return true;
12571 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12572 FromE = FromE->IgnoreParenImpCasts();
12573 switch (FromE->getStmtClass()) {
12574 default:
12575 break;
12576 case Stmt::ObjCStringLiteralClass:
12577 // "string literal"
12578 return LK_String;
12579 case Stmt::ObjCArrayLiteralClass:
12580 // "array literal"
12581 return LK_Array;
12582 case Stmt::ObjCDictionaryLiteralClass:
12583 // "dictionary literal"
12584 return LK_Dictionary;
12585 case Stmt::BlockExprClass:
12586 return LK_Block;
12587 case Stmt::ObjCBoxedExprClass: {
12588 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12589 switch (Inner->getStmtClass()) {
12590 case Stmt::IntegerLiteralClass:
12591 case Stmt::FloatingLiteralClass:
12592 case Stmt::CharacterLiteralClass:
12593 case Stmt::ObjCBoolLiteralExprClass:
12594 case Stmt::CXXBoolLiteralExprClass:
12595 // "numeric literal"
12596 return LK_Numeric;
12597 case Stmt::ImplicitCastExprClass: {
12598 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12599 // Boolean literals can be represented by implicit casts.
12600 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12601 return LK_Numeric;
12602 break;
12604 default:
12605 break;
12607 return LK_Boxed;
12610 return LK_None;
12613 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12614 ExprResult &LHS, ExprResult &RHS,
12615 BinaryOperator::Opcode Opc){
12616 Expr *Literal;
12617 Expr *Other;
12618 if (isObjCObjectLiteral(LHS)) {
12619 Literal = LHS.get();
12620 Other = RHS.get();
12621 } else {
12622 Literal = RHS.get();
12623 Other = LHS.get();
12626 // Don't warn on comparisons against nil.
12627 Other = Other->IgnoreParenCasts();
12628 if (Other->isNullPointerConstant(S.getASTContext(),
12629 Expr::NPC_ValueDependentIsNotNull))
12630 return;
12632 // This should be kept in sync with warn_objc_literal_comparison.
12633 // LK_String should always be after the other literals, since it has its own
12634 // warning flag.
12635 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12636 assert(LiteralKind != Sema::LK_Block);
12637 if (LiteralKind == Sema::LK_None) {
12638 llvm_unreachable("Unknown Objective-C object literal kind");
12641 if (LiteralKind == Sema::LK_String)
12642 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12643 << Literal->getSourceRange();
12644 else
12645 S.Diag(Loc, diag::warn_objc_literal_comparison)
12646 << LiteralKind << Literal->getSourceRange();
12648 if (BinaryOperator::isEqualityOp(Opc) &&
12649 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12650 SourceLocation Start = LHS.get()->getBeginLoc();
12651 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12652 CharSourceRange OpRange =
12653 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12655 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12656 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12657 << FixItHint::CreateReplacement(OpRange, " isEqual:")
12658 << FixItHint::CreateInsertion(End, "]");
12662 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12663 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12664 ExprResult &RHS, SourceLocation Loc,
12665 BinaryOperatorKind Opc) {
12666 // Check that left hand side is !something.
12667 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12668 if (!UO || UO->getOpcode() != UO_LNot) return;
12670 // Only check if the right hand side is non-bool arithmetic type.
12671 if (RHS.get()->isKnownToHaveBooleanValue()) return;
12673 // Make sure that the something in !something is not bool.
12674 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12675 if (SubExpr->isKnownToHaveBooleanValue()) return;
12677 // Emit warning.
12678 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12679 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12680 << Loc << IsBitwiseOp;
12682 // First note suggest !(x < y)
12683 SourceLocation FirstOpen = SubExpr->getBeginLoc();
12684 SourceLocation FirstClose = RHS.get()->getEndLoc();
12685 FirstClose = S.getLocForEndOfToken(FirstClose);
12686 if (FirstClose.isInvalid())
12687 FirstOpen = SourceLocation();
12688 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12689 << IsBitwiseOp
12690 << FixItHint::CreateInsertion(FirstOpen, "(")
12691 << FixItHint::CreateInsertion(FirstClose, ")");
12693 // Second note suggests (!x) < y
12694 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12695 SourceLocation SecondClose = LHS.get()->getEndLoc();
12696 SecondClose = S.getLocForEndOfToken(SecondClose);
12697 if (SecondClose.isInvalid())
12698 SecondOpen = SourceLocation();
12699 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12700 << FixItHint::CreateInsertion(SecondOpen, "(")
12701 << FixItHint::CreateInsertion(SecondClose, ")");
12704 // Returns true if E refers to a non-weak array.
12705 static bool checkForArray(const Expr *E) {
12706 const ValueDecl *D = nullptr;
12707 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12708 D = DR->getDecl();
12709 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12710 if (Mem->isImplicitAccess())
12711 D = Mem->getMemberDecl();
12713 if (!D)
12714 return false;
12715 return D->getType()->isArrayType() && !D->isWeak();
12718 /// Diagnose some forms of syntactically-obvious tautological comparison.
12719 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12720 Expr *LHS, Expr *RHS,
12721 BinaryOperatorKind Opc) {
12722 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12723 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12725 QualType LHSType = LHS->getType();
12726 QualType RHSType = RHS->getType();
12727 if (LHSType->hasFloatingRepresentation() ||
12728 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12729 S.inTemplateInstantiation())
12730 return;
12732 // WebAssembly Tables cannot be compared, therefore shouldn't emit
12733 // Tautological diagnostics.
12734 if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
12735 return;
12737 // Comparisons between two array types are ill-formed for operator<=>, so
12738 // we shouldn't emit any additional warnings about it.
12739 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12740 return;
12742 // For non-floating point types, check for self-comparisons of the form
12743 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12744 // often indicate logic errors in the program.
12746 // NOTE: Don't warn about comparison expressions resulting from macro
12747 // expansion. Also don't warn about comparisons which are only self
12748 // comparisons within a template instantiation. The warnings should catch
12749 // obvious cases in the definition of the template anyways. The idea is to
12750 // warn when the typed comparison operator will always evaluate to the same
12751 // result.
12753 // Used for indexing into %select in warn_comparison_always
12754 enum {
12755 AlwaysConstant,
12756 AlwaysTrue,
12757 AlwaysFalse,
12758 AlwaysEqual, // std::strong_ordering::equal from operator<=>
12761 // C++2a [depr.array.comp]:
12762 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12763 // operands of array type are deprecated.
12764 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12765 RHSStripped->getType()->isArrayType()) {
12766 S.Diag(Loc, diag::warn_depr_array_comparison)
12767 << LHS->getSourceRange() << RHS->getSourceRange()
12768 << LHSStripped->getType() << RHSStripped->getType();
12769 // Carry on to produce the tautological comparison warning, if this
12770 // expression is potentially-evaluated, we can resolve the array to a
12771 // non-weak declaration, and so on.
12774 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12775 if (Expr::isSameComparisonOperand(LHS, RHS)) {
12776 unsigned Result;
12777 switch (Opc) {
12778 case BO_EQ:
12779 case BO_LE:
12780 case BO_GE:
12781 Result = AlwaysTrue;
12782 break;
12783 case BO_NE:
12784 case BO_LT:
12785 case BO_GT:
12786 Result = AlwaysFalse;
12787 break;
12788 case BO_Cmp:
12789 Result = AlwaysEqual;
12790 break;
12791 default:
12792 Result = AlwaysConstant;
12793 break;
12795 S.DiagRuntimeBehavior(Loc, nullptr,
12796 S.PDiag(diag::warn_comparison_always)
12797 << 0 /*self-comparison*/
12798 << Result);
12799 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12800 // What is it always going to evaluate to?
12801 unsigned Result;
12802 switch (Opc) {
12803 case BO_EQ: // e.g. array1 == array2
12804 Result = AlwaysFalse;
12805 break;
12806 case BO_NE: // e.g. array1 != array2
12807 Result = AlwaysTrue;
12808 break;
12809 default: // e.g. array1 <= array2
12810 // The best we can say is 'a constant'
12811 Result = AlwaysConstant;
12812 break;
12814 S.DiagRuntimeBehavior(Loc, nullptr,
12815 S.PDiag(diag::warn_comparison_always)
12816 << 1 /*array comparison*/
12817 << Result);
12821 if (isa<CastExpr>(LHSStripped))
12822 LHSStripped = LHSStripped->IgnoreParenCasts();
12823 if (isa<CastExpr>(RHSStripped))
12824 RHSStripped = RHSStripped->IgnoreParenCasts();
12826 // Warn about comparisons against a string constant (unless the other
12827 // operand is null); the user probably wants string comparison function.
12828 Expr *LiteralString = nullptr;
12829 Expr *LiteralStringStripped = nullptr;
12830 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12831 !RHSStripped->isNullPointerConstant(S.Context,
12832 Expr::NPC_ValueDependentIsNull)) {
12833 LiteralString = LHS;
12834 LiteralStringStripped = LHSStripped;
12835 } else if ((isa<StringLiteral>(RHSStripped) ||
12836 isa<ObjCEncodeExpr>(RHSStripped)) &&
12837 !LHSStripped->isNullPointerConstant(S.Context,
12838 Expr::NPC_ValueDependentIsNull)) {
12839 LiteralString = RHS;
12840 LiteralStringStripped = RHSStripped;
12843 if (LiteralString) {
12844 S.DiagRuntimeBehavior(Loc, nullptr,
12845 S.PDiag(diag::warn_stringcompare)
12846 << isa<ObjCEncodeExpr>(LiteralStringStripped)
12847 << LiteralString->getSourceRange());
12851 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12852 switch (CK) {
12853 default: {
12854 #ifndef NDEBUG
12855 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12856 << "\n";
12857 #endif
12858 llvm_unreachable("unhandled cast kind");
12860 case CK_UserDefinedConversion:
12861 return ICK_Identity;
12862 case CK_LValueToRValue:
12863 return ICK_Lvalue_To_Rvalue;
12864 case CK_ArrayToPointerDecay:
12865 return ICK_Array_To_Pointer;
12866 case CK_FunctionToPointerDecay:
12867 return ICK_Function_To_Pointer;
12868 case CK_IntegralCast:
12869 return ICK_Integral_Conversion;
12870 case CK_FloatingCast:
12871 return ICK_Floating_Conversion;
12872 case CK_IntegralToFloating:
12873 case CK_FloatingToIntegral:
12874 return ICK_Floating_Integral;
12875 case CK_IntegralComplexCast:
12876 case CK_FloatingComplexCast:
12877 case CK_FloatingComplexToIntegralComplex:
12878 case CK_IntegralComplexToFloatingComplex:
12879 return ICK_Complex_Conversion;
12880 case CK_FloatingComplexToReal:
12881 case CK_FloatingRealToComplex:
12882 case CK_IntegralComplexToReal:
12883 case CK_IntegralRealToComplex:
12884 return ICK_Complex_Real;
12888 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12889 QualType FromType,
12890 SourceLocation Loc) {
12891 // Check for a narrowing implicit conversion.
12892 StandardConversionSequence SCS;
12893 SCS.setAsIdentityConversion();
12894 SCS.setToType(0, FromType);
12895 SCS.setToType(1, ToType);
12896 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12897 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12899 APValue PreNarrowingValue;
12900 QualType PreNarrowingType;
12901 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12902 PreNarrowingType,
12903 /*IgnoreFloatToIntegralConversion*/ true)) {
12904 case NK_Dependent_Narrowing:
12905 // Implicit conversion to a narrower type, but the expression is
12906 // value-dependent so we can't tell whether it's actually narrowing.
12907 case NK_Not_Narrowing:
12908 return false;
12910 case NK_Constant_Narrowing:
12911 // Implicit conversion to a narrower type, and the value is not a constant
12912 // expression.
12913 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12914 << /*Constant*/ 1
12915 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12916 return true;
12918 case NK_Variable_Narrowing:
12919 // Implicit conversion to a narrower type, and the value is not a constant
12920 // expression.
12921 case NK_Type_Narrowing:
12922 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12923 << /*Constant*/ 0 << FromType << ToType;
12924 // TODO: It's not a constant expression, but what if the user intended it
12925 // to be? Can we produce notes to help them figure out why it isn't?
12926 return true;
12928 llvm_unreachable("unhandled case in switch");
12931 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12932 ExprResult &LHS,
12933 ExprResult &RHS,
12934 SourceLocation Loc) {
12935 QualType LHSType = LHS.get()->getType();
12936 QualType RHSType = RHS.get()->getType();
12937 // Dig out the original argument type and expression before implicit casts
12938 // were applied. These are the types/expressions we need to check the
12939 // [expr.spaceship] requirements against.
12940 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12941 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12942 QualType LHSStrippedType = LHSStripped.get()->getType();
12943 QualType RHSStrippedType = RHSStripped.get()->getType();
12945 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12946 // other is not, the program is ill-formed.
12947 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12948 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12949 return QualType();
12952 // FIXME: Consider combining this with checkEnumArithmeticConversions.
12953 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12954 RHSStrippedType->isEnumeralType();
12955 if (NumEnumArgs == 1) {
12956 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12957 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12958 if (OtherTy->hasFloatingRepresentation()) {
12959 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12960 return QualType();
12963 if (NumEnumArgs == 2) {
12964 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12965 // type E, the operator yields the result of converting the operands
12966 // to the underlying type of E and applying <=> to the converted operands.
12967 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12968 S.InvalidOperands(Loc, LHS, RHS);
12969 return QualType();
12971 QualType IntType =
12972 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12973 assert(IntType->isArithmeticType());
12975 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12976 // promote the boolean type, and all other promotable integer types, to
12977 // avoid this.
12978 if (S.Context.isPromotableIntegerType(IntType))
12979 IntType = S.Context.getPromotedIntegerType(IntType);
12981 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12982 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12983 LHSType = RHSType = IntType;
12986 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12987 // usual arithmetic conversions are applied to the operands.
12988 QualType Type =
12989 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12990 if (LHS.isInvalid() || RHS.isInvalid())
12991 return QualType();
12992 if (Type.isNull())
12993 return S.InvalidOperands(Loc, LHS, RHS);
12995 std::optional<ComparisonCategoryType> CCT =
12996 getComparisonCategoryForBuiltinCmp(Type);
12997 if (!CCT)
12998 return S.InvalidOperands(Loc, LHS, RHS);
13000 bool HasNarrowing = checkThreeWayNarrowingConversion(
13001 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
13002 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
13003 RHS.get()->getBeginLoc());
13004 if (HasNarrowing)
13005 return QualType();
13007 assert(!Type.isNull() && "composite type for <=> has not been set");
13009 return S.CheckComparisonCategoryType(
13010 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
13013 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
13014 ExprResult &RHS,
13015 SourceLocation Loc,
13016 BinaryOperatorKind Opc) {
13017 if (Opc == BO_Cmp)
13018 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
13020 // C99 6.5.8p3 / C99 6.5.9p4
13021 QualType Type =
13022 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
13023 if (LHS.isInvalid() || RHS.isInvalid())
13024 return QualType();
13025 if (Type.isNull())
13026 return S.InvalidOperands(Loc, LHS, RHS);
13027 assert(Type->isArithmeticType() || Type->isEnumeralType());
13029 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
13030 return S.InvalidOperands(Loc, LHS, RHS);
13032 // Check for comparisons of floating point operands using != and ==.
13033 if (Type->hasFloatingRepresentation())
13034 S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13036 // The result of comparisons is 'bool' in C++, 'int' in C.
13037 return S.Context.getLogicalOperationType();
13040 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
13041 if (!NullE.get()->getType()->isAnyPointerType())
13042 return;
13043 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
13044 if (!E.get()->getType()->isAnyPointerType() &&
13045 E.get()->isNullPointerConstant(Context,
13046 Expr::NPC_ValueDependentIsNotNull) ==
13047 Expr::NPCK_ZeroExpression) {
13048 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
13049 if (CL->getValue() == 0)
13050 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13051 << NullValue
13052 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13053 NullValue ? "NULL" : "(void *)0");
13054 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
13055 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
13056 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
13057 if (T == Context.CharTy)
13058 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
13059 << NullValue
13060 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
13061 NullValue ? "NULL" : "(void *)0");
13066 // C99 6.5.8, C++ [expr.rel]
13067 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
13068 SourceLocation Loc,
13069 BinaryOperatorKind Opc) {
13070 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
13071 bool IsThreeWay = Opc == BO_Cmp;
13072 bool IsOrdered = IsRelational || IsThreeWay;
13073 auto IsAnyPointerType = [](ExprResult E) {
13074 QualType Ty = E.get()->getType();
13075 return Ty->isPointerType() || Ty->isMemberPointerType();
13078 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
13079 // type, array-to-pointer, ..., conversions are performed on both operands to
13080 // bring them to their composite type.
13081 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
13082 // any type-related checks.
13083 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
13084 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13085 if (LHS.isInvalid())
13086 return QualType();
13087 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13088 if (RHS.isInvalid())
13089 return QualType();
13090 } else {
13091 LHS = DefaultLvalueConversion(LHS.get());
13092 if (LHS.isInvalid())
13093 return QualType();
13094 RHS = DefaultLvalueConversion(RHS.get());
13095 if (RHS.isInvalid())
13096 return QualType();
13099 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
13100 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
13101 CheckPtrComparisonWithNullChar(LHS, RHS);
13102 CheckPtrComparisonWithNullChar(RHS, LHS);
13105 // Handle vector comparisons separately.
13106 if (LHS.get()->getType()->isVectorType() ||
13107 RHS.get()->getType()->isVectorType())
13108 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
13110 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13111 RHS.get()->getType()->isSveVLSBuiltinType())
13112 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
13114 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13115 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13117 QualType LHSType = LHS.get()->getType();
13118 QualType RHSType = RHS.get()->getType();
13119 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
13120 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
13121 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
13123 if ((LHSType->isPointerType() &&
13124 LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
13125 (RHSType->isPointerType() &&
13126 RHSType->getPointeeType().isWebAssemblyReferenceType()))
13127 return InvalidOperands(Loc, LHS, RHS);
13129 const Expr::NullPointerConstantKind LHSNullKind =
13130 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13131 const Expr::NullPointerConstantKind RHSNullKind =
13132 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
13133 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
13134 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
13136 auto computeResultTy = [&]() {
13137 if (Opc != BO_Cmp)
13138 return Context.getLogicalOperationType();
13139 assert(getLangOpts().CPlusPlus);
13140 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
13142 QualType CompositeTy = LHS.get()->getType();
13143 assert(!CompositeTy->isReferenceType());
13145 std::optional<ComparisonCategoryType> CCT =
13146 getComparisonCategoryForBuiltinCmp(CompositeTy);
13147 if (!CCT)
13148 return InvalidOperands(Loc, LHS, RHS);
13150 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
13151 // P0946R0: Comparisons between a null pointer constant and an object
13152 // pointer result in std::strong_equality, which is ill-formed under
13153 // P1959R0.
13154 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
13155 << (LHSIsNull ? LHS.get()->getSourceRange()
13156 : RHS.get()->getSourceRange());
13157 return QualType();
13160 return CheckComparisonCategoryType(
13161 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
13164 if (!IsOrdered && LHSIsNull != RHSIsNull) {
13165 bool IsEquality = Opc == BO_EQ;
13166 if (RHSIsNull)
13167 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
13168 RHS.get()->getSourceRange());
13169 else
13170 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
13171 LHS.get()->getSourceRange());
13174 if (IsOrdered && LHSType->isFunctionPointerType() &&
13175 RHSType->isFunctionPointerType()) {
13176 // Valid unless a relational comparison of function pointers
13177 bool IsError = Opc == BO_Cmp;
13178 auto DiagID =
13179 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
13180 : getLangOpts().CPlusPlus
13181 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
13182 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
13183 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
13184 << RHS.get()->getSourceRange();
13185 if (IsError)
13186 return QualType();
13189 if ((LHSType->isIntegerType() && !LHSIsNull) ||
13190 (RHSType->isIntegerType() && !RHSIsNull)) {
13191 // Skip normal pointer conversion checks in this case; we have better
13192 // diagnostics for this below.
13193 } else if (getLangOpts().CPlusPlus) {
13194 // Equality comparison of a function pointer to a void pointer is invalid,
13195 // but we allow it as an extension.
13196 // FIXME: If we really want to allow this, should it be part of composite
13197 // pointer type computation so it works in conditionals too?
13198 if (!IsOrdered &&
13199 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
13200 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
13201 // This is a gcc extension compatibility comparison.
13202 // In a SFINAE context, we treat this as a hard error to maintain
13203 // conformance with the C++ standard.
13204 diagnoseFunctionPointerToVoidComparison(
13205 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
13207 if (isSFINAEContext())
13208 return QualType();
13210 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13211 return computeResultTy();
13214 // C++ [expr.eq]p2:
13215 // If at least one operand is a pointer [...] bring them to their
13216 // composite pointer type.
13217 // C++ [expr.spaceship]p6
13218 // If at least one of the operands is of pointer type, [...] bring them
13219 // to their composite pointer type.
13220 // C++ [expr.rel]p2:
13221 // If both operands are pointers, [...] bring them to their composite
13222 // pointer type.
13223 // For <=>, the only valid non-pointer types are arrays and functions, and
13224 // we already decayed those, so this is really the same as the relational
13225 // comparison rule.
13226 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
13227 (IsOrdered ? 2 : 1) &&
13228 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
13229 RHSType->isObjCObjectPointerType()))) {
13230 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13231 return QualType();
13232 return computeResultTy();
13234 } else if (LHSType->isPointerType() &&
13235 RHSType->isPointerType()) { // C99 6.5.8p2
13236 // All of the following pointer-related warnings are GCC extensions, except
13237 // when handling null pointer constants.
13238 QualType LCanPointeeTy =
13239 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13240 QualType RCanPointeeTy =
13241 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
13243 // C99 6.5.9p2 and C99 6.5.8p2
13244 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
13245 RCanPointeeTy.getUnqualifiedType())) {
13246 if (IsRelational) {
13247 // Pointers both need to point to complete or incomplete types
13248 if ((LCanPointeeTy->isIncompleteType() !=
13249 RCanPointeeTy->isIncompleteType()) &&
13250 !getLangOpts().C11) {
13251 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
13252 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
13253 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
13254 << RCanPointeeTy->isIncompleteType();
13257 } else if (!IsRelational &&
13258 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
13259 // Valid unless comparison between non-null pointer and function pointer
13260 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
13261 && !LHSIsNull && !RHSIsNull)
13262 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
13263 /*isError*/false);
13264 } else {
13265 // Invalid
13266 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
13268 if (LCanPointeeTy != RCanPointeeTy) {
13269 // Treat NULL constant as a special case in OpenCL.
13270 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
13271 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
13272 Diag(Loc,
13273 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
13274 << LHSType << RHSType << 0 /* comparison */
13275 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
13278 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
13279 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
13280 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
13281 : CK_BitCast;
13282 if (LHSIsNull && !RHSIsNull)
13283 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
13284 else
13285 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
13287 return computeResultTy();
13291 // C++ [expr.eq]p4:
13292 // Two operands of type std::nullptr_t or one operand of type
13293 // std::nullptr_t and the other a null pointer constant compare
13294 // equal.
13295 // C23 6.5.9p5:
13296 // If both operands have type nullptr_t or one operand has type nullptr_t
13297 // and the other is a null pointer constant, they compare equal if the
13298 // former is a null pointer.
13299 if (!IsOrdered && LHSIsNull && RHSIsNull) {
13300 if (LHSType->isNullPtrType()) {
13301 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13302 return computeResultTy();
13304 if (RHSType->isNullPtrType()) {
13305 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13306 return computeResultTy();
13310 if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
13311 // C23 6.5.9p6:
13312 // Otherwise, at least one operand is a pointer. If one is a pointer and
13313 // the other is a null pointer constant or has type nullptr_t, they
13314 // compare equal
13315 if (LHSIsNull && RHSType->isPointerType()) {
13316 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13317 return computeResultTy();
13319 if (RHSIsNull && LHSType->isPointerType()) {
13320 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13321 return computeResultTy();
13325 // Comparison of Objective-C pointers and block pointers against nullptr_t.
13326 // These aren't covered by the composite pointer type rules.
13327 if (!IsOrdered && RHSType->isNullPtrType() &&
13328 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
13329 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13330 return computeResultTy();
13332 if (!IsOrdered && LHSType->isNullPtrType() &&
13333 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
13334 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13335 return computeResultTy();
13338 if (getLangOpts().CPlusPlus) {
13339 if (IsRelational &&
13340 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
13341 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
13342 // HACK: Relational comparison of nullptr_t against a pointer type is
13343 // invalid per DR583, but we allow it within std::less<> and friends,
13344 // since otherwise common uses of it break.
13345 // FIXME: Consider removing this hack once LWG fixes std::less<> and
13346 // friends to have std::nullptr_t overload candidates.
13347 DeclContext *DC = CurContext;
13348 if (isa<FunctionDecl>(DC))
13349 DC = DC->getParent();
13350 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
13351 if (CTSD->isInStdNamespace() &&
13352 llvm::StringSwitch<bool>(CTSD->getName())
13353 .Cases("less", "less_equal", "greater", "greater_equal", true)
13354 .Default(false)) {
13355 if (RHSType->isNullPtrType())
13356 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13357 else
13358 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13359 return computeResultTy();
13364 // C++ [expr.eq]p2:
13365 // If at least one operand is a pointer to member, [...] bring them to
13366 // their composite pointer type.
13367 if (!IsOrdered &&
13368 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
13369 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
13370 return QualType();
13371 else
13372 return computeResultTy();
13376 // Handle block pointer types.
13377 if (!IsOrdered && LHSType->isBlockPointerType() &&
13378 RHSType->isBlockPointerType()) {
13379 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
13380 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
13382 if (!LHSIsNull && !RHSIsNull &&
13383 !Context.typesAreCompatible(lpointee, rpointee)) {
13384 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13385 << LHSType << RHSType << LHS.get()->getSourceRange()
13386 << RHS.get()->getSourceRange();
13388 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13389 return computeResultTy();
13392 // Allow block pointers to be compared with null pointer constants.
13393 if (!IsOrdered
13394 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
13395 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
13396 if (!LHSIsNull && !RHSIsNull) {
13397 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
13398 ->getPointeeType()->isVoidType())
13399 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
13400 ->getPointeeType()->isVoidType())))
13401 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
13402 << LHSType << RHSType << LHS.get()->getSourceRange()
13403 << RHS.get()->getSourceRange();
13405 if (LHSIsNull && !RHSIsNull)
13406 LHS = ImpCastExprToType(LHS.get(), RHSType,
13407 RHSType->isPointerType() ? CK_BitCast
13408 : CK_AnyPointerToBlockPointerCast);
13409 else
13410 RHS = ImpCastExprToType(RHS.get(), LHSType,
13411 LHSType->isPointerType() ? CK_BitCast
13412 : CK_AnyPointerToBlockPointerCast);
13413 return computeResultTy();
13416 if (LHSType->isObjCObjectPointerType() ||
13417 RHSType->isObjCObjectPointerType()) {
13418 const PointerType *LPT = LHSType->getAs<PointerType>();
13419 const PointerType *RPT = RHSType->getAs<PointerType>();
13420 if (LPT || RPT) {
13421 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
13422 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
13424 if (!LPtrToVoid && !RPtrToVoid &&
13425 !Context.typesAreCompatible(LHSType, RHSType)) {
13426 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13427 /*isError*/false);
13429 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
13430 // the RHS, but we have test coverage for this behavior.
13431 // FIXME: Consider using convertPointersToCompositeType in C++.
13432 if (LHSIsNull && !RHSIsNull) {
13433 Expr *E = LHS.get();
13434 if (getLangOpts().ObjCAutoRefCount)
13435 CheckObjCConversion(SourceRange(), RHSType, E,
13436 CCK_ImplicitConversion);
13437 LHS = ImpCastExprToType(E, RHSType,
13438 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13440 else {
13441 Expr *E = RHS.get();
13442 if (getLangOpts().ObjCAutoRefCount)
13443 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
13444 /*Diagnose=*/true,
13445 /*DiagnoseCFAudited=*/false, Opc);
13446 RHS = ImpCastExprToType(E, LHSType,
13447 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
13449 return computeResultTy();
13451 if (LHSType->isObjCObjectPointerType() &&
13452 RHSType->isObjCObjectPointerType()) {
13453 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13454 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13455 /*isError*/false);
13456 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13457 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13459 if (LHSIsNull && !RHSIsNull)
13460 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13461 else
13462 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13463 return computeResultTy();
13466 if (!IsOrdered && LHSType->isBlockPointerType() &&
13467 RHSType->isBlockCompatibleObjCPointerType(Context)) {
13468 LHS = ImpCastExprToType(LHS.get(), RHSType,
13469 CK_BlockPointerToObjCPointerCast);
13470 return computeResultTy();
13471 } else if (!IsOrdered &&
13472 LHSType->isBlockCompatibleObjCPointerType(Context) &&
13473 RHSType->isBlockPointerType()) {
13474 RHS = ImpCastExprToType(RHS.get(), LHSType,
13475 CK_BlockPointerToObjCPointerCast);
13476 return computeResultTy();
13479 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13480 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13481 unsigned DiagID = 0;
13482 bool isError = false;
13483 if (LangOpts.DebuggerSupport) {
13484 // Under a debugger, allow the comparison of pointers to integers,
13485 // since users tend to want to compare addresses.
13486 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13487 (RHSIsNull && RHSType->isIntegerType())) {
13488 if (IsOrdered) {
13489 isError = getLangOpts().CPlusPlus;
13490 DiagID =
13491 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13492 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13494 } else if (getLangOpts().CPlusPlus) {
13495 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13496 isError = true;
13497 } else if (IsOrdered)
13498 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13499 else
13500 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13502 if (DiagID) {
13503 Diag(Loc, DiagID)
13504 << LHSType << RHSType << LHS.get()->getSourceRange()
13505 << RHS.get()->getSourceRange();
13506 if (isError)
13507 return QualType();
13510 if (LHSType->isIntegerType())
13511 LHS = ImpCastExprToType(LHS.get(), RHSType,
13512 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13513 else
13514 RHS = ImpCastExprToType(RHS.get(), LHSType,
13515 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13516 return computeResultTy();
13519 // Handle block pointers.
13520 if (!IsOrdered && RHSIsNull
13521 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13522 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13523 return computeResultTy();
13525 if (!IsOrdered && LHSIsNull
13526 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13527 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13528 return computeResultTy();
13531 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13532 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13533 return computeResultTy();
13536 if (LHSType->isQueueT() && RHSType->isQueueT()) {
13537 return computeResultTy();
13540 if (LHSIsNull && RHSType->isQueueT()) {
13541 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13542 return computeResultTy();
13545 if (LHSType->isQueueT() && RHSIsNull) {
13546 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13547 return computeResultTy();
13551 return InvalidOperands(Loc, LHS, RHS);
13554 // Return a signed ext_vector_type that is of identical size and number of
13555 // elements. For floating point vectors, return an integer type of identical
13556 // size and number of elements. In the non ext_vector_type case, search from
13557 // the largest type to the smallest type to avoid cases where long long == long,
13558 // where long gets picked over long long.
13559 QualType Sema::GetSignedVectorType(QualType V) {
13560 const VectorType *VTy = V->castAs<VectorType>();
13561 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13563 if (isa<ExtVectorType>(VTy)) {
13564 if (VTy->isExtVectorBoolType())
13565 return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13566 if (TypeSize == Context.getTypeSize(Context.CharTy))
13567 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13568 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13569 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13570 if (TypeSize == Context.getTypeSize(Context.IntTy))
13571 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13572 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13573 return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13574 if (TypeSize == Context.getTypeSize(Context.LongTy))
13575 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13576 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13577 "Unhandled vector element size in vector compare");
13578 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13581 if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13582 return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13583 VectorKind::Generic);
13584 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13585 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13586 VectorKind::Generic);
13587 if (TypeSize == Context.getTypeSize(Context.LongTy))
13588 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13589 VectorKind::Generic);
13590 if (TypeSize == Context.getTypeSize(Context.IntTy))
13591 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13592 VectorKind::Generic);
13593 if (TypeSize == Context.getTypeSize(Context.ShortTy))
13594 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13595 VectorKind::Generic);
13596 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13597 "Unhandled vector element size in vector compare");
13598 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13599 VectorKind::Generic);
13602 QualType Sema::GetSignedSizelessVectorType(QualType V) {
13603 const BuiltinType *VTy = V->castAs<BuiltinType>();
13604 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13606 const QualType ETy = V->getSveEltType(Context);
13607 const auto TypeSize = Context.getTypeSize(ETy);
13609 const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13610 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13611 return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13614 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13615 /// operates on extended vector types. Instead of producing an IntTy result,
13616 /// like a scalar comparison, a vector comparison produces a vector of integer
13617 /// types.
13618 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13619 SourceLocation Loc,
13620 BinaryOperatorKind Opc) {
13621 if (Opc == BO_Cmp) {
13622 Diag(Loc, diag::err_three_way_vector_comparison);
13623 return QualType();
13626 // Check to make sure we're operating on vectors of the same type and width,
13627 // Allowing one side to be a scalar of element type.
13628 QualType vType =
13629 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13630 /*AllowBothBool*/ true,
13631 /*AllowBoolConversions*/ getLangOpts().ZVector,
13632 /*AllowBooleanOperation*/ true,
13633 /*ReportInvalid*/ true);
13634 if (vType.isNull())
13635 return vType;
13637 QualType LHSType = LHS.get()->getType();
13639 // Determine the return type of a vector compare. By default clang will return
13640 // a scalar for all vector compares except vector bool and vector pixel.
13641 // With the gcc compiler we will always return a vector type and with the xl
13642 // compiler we will always return a scalar type. This switch allows choosing
13643 // which behavior is prefered.
13644 if (getLangOpts().AltiVec) {
13645 switch (getLangOpts().getAltivecSrcCompat()) {
13646 case LangOptions::AltivecSrcCompatKind::Mixed:
13647 // If AltiVec, the comparison results in a numeric type, i.e.
13648 // bool for C++, int for C
13649 if (vType->castAs<VectorType>()->getVectorKind() ==
13650 VectorKind::AltiVecVector)
13651 return Context.getLogicalOperationType();
13652 else
13653 Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13654 break;
13655 case LangOptions::AltivecSrcCompatKind::GCC:
13656 // For GCC we always return the vector type.
13657 break;
13658 case LangOptions::AltivecSrcCompatKind::XL:
13659 return Context.getLogicalOperationType();
13660 break;
13664 // For non-floating point types, check for self-comparisons of the form
13665 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13666 // often indicate logic errors in the program.
13667 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13669 // Check for comparisons of floating point operands using != and ==.
13670 if (LHSType->hasFloatingRepresentation()) {
13671 assert(RHS.get()->getType()->hasFloatingRepresentation());
13672 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13675 // Return a signed type for the vector.
13676 return GetSignedVectorType(vType);
13679 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13680 ExprResult &RHS,
13681 SourceLocation Loc,
13682 BinaryOperatorKind Opc) {
13683 if (Opc == BO_Cmp) {
13684 Diag(Loc, diag::err_three_way_vector_comparison);
13685 return QualType();
13688 // Check to make sure we're operating on vectors of the same type and width,
13689 // Allowing one side to be a scalar of element type.
13690 QualType vType = CheckSizelessVectorOperands(
13691 LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13693 if (vType.isNull())
13694 return vType;
13696 QualType LHSType = LHS.get()->getType();
13698 // For non-floating point types, check for self-comparisons of the form
13699 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
13700 // often indicate logic errors in the program.
13701 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13703 // Check for comparisons of floating point operands using != and ==.
13704 if (LHSType->hasFloatingRepresentation()) {
13705 assert(RHS.get()->getType()->hasFloatingRepresentation());
13706 CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13709 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13710 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13712 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13713 RHSBuiltinTy->isSVEBool())
13714 return LHSType;
13716 // Return a signed type for the vector.
13717 return GetSignedSizelessVectorType(vType);
13720 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13721 const ExprResult &XorRHS,
13722 const SourceLocation Loc) {
13723 // Do not diagnose macros.
13724 if (Loc.isMacroID())
13725 return;
13727 // Do not diagnose if both LHS and RHS are macros.
13728 if (XorLHS.get()->getExprLoc().isMacroID() &&
13729 XorRHS.get()->getExprLoc().isMacroID())
13730 return;
13732 bool Negative = false;
13733 bool ExplicitPlus = false;
13734 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13735 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13737 if (!LHSInt)
13738 return;
13739 if (!RHSInt) {
13740 // Check negative literals.
13741 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13742 UnaryOperatorKind Opc = UO->getOpcode();
13743 if (Opc != UO_Minus && Opc != UO_Plus)
13744 return;
13745 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13746 if (!RHSInt)
13747 return;
13748 Negative = (Opc == UO_Minus);
13749 ExplicitPlus = !Negative;
13750 } else {
13751 return;
13755 const llvm::APInt &LeftSideValue = LHSInt->getValue();
13756 llvm::APInt RightSideValue = RHSInt->getValue();
13757 if (LeftSideValue != 2 && LeftSideValue != 10)
13758 return;
13760 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13761 return;
13763 CharSourceRange ExprRange = CharSourceRange::getCharRange(
13764 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13765 llvm::StringRef ExprStr =
13766 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13768 CharSourceRange XorRange =
13769 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13770 llvm::StringRef XorStr =
13771 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13772 // Do not diagnose if xor keyword/macro is used.
13773 if (XorStr == "xor")
13774 return;
13776 std::string LHSStr = std::string(Lexer::getSourceText(
13777 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13778 S.getSourceManager(), S.getLangOpts()));
13779 std::string RHSStr = std::string(Lexer::getSourceText(
13780 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13781 S.getSourceManager(), S.getLangOpts()));
13783 if (Negative) {
13784 RightSideValue = -RightSideValue;
13785 RHSStr = "-" + RHSStr;
13786 } else if (ExplicitPlus) {
13787 RHSStr = "+" + RHSStr;
13790 StringRef LHSStrRef = LHSStr;
13791 StringRef RHSStrRef = RHSStr;
13792 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13793 // literals.
13794 if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
13795 RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
13796 LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
13797 RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
13798 (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
13799 (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
13800 LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13801 return;
13803 bool SuggestXor =
13804 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13805 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13806 int64_t RightSideIntValue = RightSideValue.getSExtValue();
13807 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13808 std::string SuggestedExpr = "1 << " + RHSStr;
13809 bool Overflow = false;
13810 llvm::APInt One = (LeftSideValue - 1);
13811 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13812 if (Overflow) {
13813 if (RightSideIntValue < 64)
13814 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13815 << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13816 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13817 else if (RightSideIntValue == 64)
13818 S.Diag(Loc, diag::warn_xor_used_as_pow)
13819 << ExprStr << toString(XorValue, 10, true);
13820 else
13821 return;
13822 } else {
13823 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13824 << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13825 << toString(PowValue, 10, true)
13826 << FixItHint::CreateReplacement(
13827 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13830 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13831 << ("0x2 ^ " + RHSStr) << SuggestXor;
13832 } else if (LeftSideValue == 10) {
13833 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13834 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13835 << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13836 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13837 S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13838 << ("0xA ^ " + RHSStr) << SuggestXor;
13842 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13843 SourceLocation Loc) {
13844 // Ensure that either both operands are of the same vector type, or
13845 // one operand is of a vector type and the other is of its element type.
13846 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13847 /*AllowBothBool*/ true,
13848 /*AllowBoolConversions*/ false,
13849 /*AllowBooleanOperation*/ false,
13850 /*ReportInvalid*/ false);
13851 if (vType.isNull())
13852 return InvalidOperands(Loc, LHS, RHS);
13853 if (getLangOpts().OpenCL &&
13854 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13855 vType->hasFloatingRepresentation())
13856 return InvalidOperands(Loc, LHS, RHS);
13857 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13858 // usage of the logical operators && and || with vectors in C. This
13859 // check could be notionally dropped.
13860 if (!getLangOpts().CPlusPlus &&
13861 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13862 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13864 return GetSignedVectorType(LHS.get()->getType());
13867 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13868 SourceLocation Loc,
13869 bool IsCompAssign) {
13870 if (!IsCompAssign) {
13871 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13872 if (LHS.isInvalid())
13873 return QualType();
13875 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13876 if (RHS.isInvalid())
13877 return QualType();
13879 // For conversion purposes, we ignore any qualifiers.
13880 // For example, "const float" and "float" are equivalent.
13881 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13882 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13884 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13885 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13886 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13888 if (Context.hasSameType(LHSType, RHSType))
13889 return Context.getCommonSugaredType(LHSType, RHSType);
13891 // Type conversion may change LHS/RHS. Keep copies to the original results, in
13892 // case we have to return InvalidOperands.
13893 ExprResult OriginalLHS = LHS;
13894 ExprResult OriginalRHS = RHS;
13895 if (LHSMatType && !RHSMatType) {
13896 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13897 if (!RHS.isInvalid())
13898 return LHSType;
13900 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13903 if (!LHSMatType && RHSMatType) {
13904 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13905 if (!LHS.isInvalid())
13906 return RHSType;
13907 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13910 return InvalidOperands(Loc, LHS, RHS);
13913 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13914 SourceLocation Loc,
13915 bool IsCompAssign) {
13916 if (!IsCompAssign) {
13917 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13918 if (LHS.isInvalid())
13919 return QualType();
13921 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13922 if (RHS.isInvalid())
13923 return QualType();
13925 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13926 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13927 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13929 if (LHSMatType && RHSMatType) {
13930 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13931 return InvalidOperands(Loc, LHS, RHS);
13933 if (Context.hasSameType(LHSMatType, RHSMatType))
13934 return Context.getCommonSugaredType(
13935 LHS.get()->getType().getUnqualifiedType(),
13936 RHS.get()->getType().getUnqualifiedType());
13938 QualType LHSELTy = LHSMatType->getElementType(),
13939 RHSELTy = RHSMatType->getElementType();
13940 if (!Context.hasSameType(LHSELTy, RHSELTy))
13941 return InvalidOperands(Loc, LHS, RHS);
13943 return Context.getConstantMatrixType(
13944 Context.getCommonSugaredType(LHSELTy, RHSELTy),
13945 LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13947 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13950 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13951 switch (Opc) {
13952 default:
13953 return false;
13954 case BO_And:
13955 case BO_AndAssign:
13956 case BO_Or:
13957 case BO_OrAssign:
13958 case BO_Xor:
13959 case BO_XorAssign:
13960 return true;
13964 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13965 SourceLocation Loc,
13966 BinaryOperatorKind Opc) {
13967 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13969 bool IsCompAssign =
13970 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13972 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13974 if (LHS.get()->getType()->isVectorType() ||
13975 RHS.get()->getType()->isVectorType()) {
13976 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13977 RHS.get()->getType()->hasIntegerRepresentation())
13978 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13979 /*AllowBothBool*/ true,
13980 /*AllowBoolConversions*/ getLangOpts().ZVector,
13981 /*AllowBooleanOperation*/ LegalBoolVecOperator,
13982 /*ReportInvalid*/ true);
13983 return InvalidOperands(Loc, LHS, RHS);
13986 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13987 RHS.get()->getType()->isSveVLSBuiltinType()) {
13988 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13989 RHS.get()->getType()->hasIntegerRepresentation())
13990 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13991 ACK_BitwiseOp);
13992 return InvalidOperands(Loc, LHS, RHS);
13995 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
13996 RHS.get()->getType()->isSveVLSBuiltinType()) {
13997 if (LHS.get()->getType()->hasIntegerRepresentation() &&
13998 RHS.get()->getType()->hasIntegerRepresentation())
13999 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
14000 ACK_BitwiseOp);
14001 return InvalidOperands(Loc, LHS, RHS);
14004 if (Opc == BO_And)
14005 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
14007 if (LHS.get()->getType()->hasFloatingRepresentation() ||
14008 RHS.get()->getType()->hasFloatingRepresentation())
14009 return InvalidOperands(Loc, LHS, RHS);
14011 ExprResult LHSResult = LHS, RHSResult = RHS;
14012 QualType compType = UsualArithmeticConversions(
14013 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
14014 if (LHSResult.isInvalid() || RHSResult.isInvalid())
14015 return QualType();
14016 LHS = LHSResult.get();
14017 RHS = RHSResult.get();
14019 if (Opc == BO_Xor)
14020 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
14022 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
14023 return compType;
14024 return InvalidOperands(Loc, LHS, RHS);
14027 // C99 6.5.[13,14]
14028 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
14029 SourceLocation Loc,
14030 BinaryOperatorKind Opc) {
14031 // Check vector operands differently.
14032 if (LHS.get()->getType()->isVectorType() ||
14033 RHS.get()->getType()->isVectorType())
14034 return CheckVectorLogicalOperands(LHS, RHS, Loc);
14036 bool EnumConstantInBoolContext = false;
14037 for (const ExprResult &HS : {LHS, RHS}) {
14038 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
14039 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
14040 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
14041 EnumConstantInBoolContext = true;
14045 if (EnumConstantInBoolContext)
14046 Diag(Loc, diag::warn_enum_constant_in_bool_context);
14048 // WebAssembly tables can't be used with logical operators.
14049 QualType LHSTy = LHS.get()->getType();
14050 QualType RHSTy = RHS.get()->getType();
14051 const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
14052 const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
14053 if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
14054 (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
14055 return InvalidOperands(Loc, LHS, RHS);
14058 // Diagnose cases where the user write a logical and/or but probably meant a
14059 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
14060 // is a constant.
14061 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
14062 !LHS.get()->getType()->isBooleanType() &&
14063 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
14064 // Don't warn in macros or template instantiations.
14065 !Loc.isMacroID() && !inTemplateInstantiation()) {
14066 // If the RHS can be constant folded, and if it constant folds to something
14067 // that isn't 0 or 1 (which indicate a potential logical operation that
14068 // happened to fold to true/false) then warn.
14069 // Parens on the RHS are ignored.
14070 Expr::EvalResult EVResult;
14071 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
14072 llvm::APSInt Result = EVResult.Val.getInt();
14073 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
14074 !RHS.get()->getExprLoc().isMacroID()) ||
14075 (Result != 0 && Result != 1)) {
14076 Diag(Loc, diag::warn_logical_instead_of_bitwise)
14077 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
14078 // Suggest replacing the logical operator with the bitwise version
14079 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
14080 << (Opc == BO_LAnd ? "&" : "|")
14081 << FixItHint::CreateReplacement(
14082 SourceRange(Loc, getLocForEndOfToken(Loc)),
14083 Opc == BO_LAnd ? "&" : "|");
14084 if (Opc == BO_LAnd)
14085 // Suggest replacing "Foo() && kNonZero" with "Foo()"
14086 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
14087 << FixItHint::CreateRemoval(
14088 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
14089 RHS.get()->getEndLoc()));
14094 if (!Context.getLangOpts().CPlusPlus) {
14095 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
14096 // not operate on the built-in scalar and vector float types.
14097 if (Context.getLangOpts().OpenCL &&
14098 Context.getLangOpts().OpenCLVersion < 120) {
14099 if (LHS.get()->getType()->isFloatingType() ||
14100 RHS.get()->getType()->isFloatingType())
14101 return InvalidOperands(Loc, LHS, RHS);
14104 LHS = UsualUnaryConversions(LHS.get());
14105 if (LHS.isInvalid())
14106 return QualType();
14108 RHS = UsualUnaryConversions(RHS.get());
14109 if (RHS.isInvalid())
14110 return QualType();
14112 if (!LHS.get()->getType()->isScalarType() ||
14113 !RHS.get()->getType()->isScalarType())
14114 return InvalidOperands(Loc, LHS, RHS);
14116 return Context.IntTy;
14119 // The following is safe because we only use this method for
14120 // non-overloadable operands.
14122 // C++ [expr.log.and]p1
14123 // C++ [expr.log.or]p1
14124 // The operands are both contextually converted to type bool.
14125 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
14126 if (LHSRes.isInvalid())
14127 return InvalidOperands(Loc, LHS, RHS);
14128 LHS = LHSRes;
14130 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
14131 if (RHSRes.isInvalid())
14132 return InvalidOperands(Loc, LHS, RHS);
14133 RHS = RHSRes;
14135 // C++ [expr.log.and]p2
14136 // C++ [expr.log.or]p2
14137 // The result is a bool.
14138 return Context.BoolTy;
14141 static bool IsReadonlyMessage(Expr *E, Sema &S) {
14142 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
14143 if (!ME) return false;
14144 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
14145 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
14146 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
14147 if (!Base) return false;
14148 return Base->getMethodDecl() != nullptr;
14151 /// Is the given expression (which must be 'const') a reference to a
14152 /// variable which was originally non-const, but which has become
14153 /// 'const' due to being captured within a block?
14154 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
14155 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
14156 assert(E->isLValue() && E->getType().isConstQualified());
14157 E = E->IgnoreParens();
14159 // Must be a reference to a declaration from an enclosing scope.
14160 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
14161 if (!DRE) return NCCK_None;
14162 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
14164 // The declaration must be a variable which is not declared 'const'.
14165 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
14166 if (!var) return NCCK_None;
14167 if (var->getType().isConstQualified()) return NCCK_None;
14168 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
14170 // Decide whether the first capture was for a block or a lambda.
14171 DeclContext *DC = S.CurContext, *Prev = nullptr;
14172 // Decide whether the first capture was for a block or a lambda.
14173 while (DC) {
14174 // For init-capture, it is possible that the variable belongs to the
14175 // template pattern of the current context.
14176 if (auto *FD = dyn_cast<FunctionDecl>(DC))
14177 if (var->isInitCapture() &&
14178 FD->getTemplateInstantiationPattern() == var->getDeclContext())
14179 break;
14180 if (DC == var->getDeclContext())
14181 break;
14182 Prev = DC;
14183 DC = DC->getParent();
14185 // Unless we have an init-capture, we've gone one step too far.
14186 if (!var->isInitCapture())
14187 DC = Prev;
14188 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
14191 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
14192 Ty = Ty.getNonReferenceType();
14193 if (IsDereference && Ty->isPointerType())
14194 Ty = Ty->getPointeeType();
14195 return !Ty.isConstQualified();
14198 // Update err_typecheck_assign_const and note_typecheck_assign_const
14199 // when this enum is changed.
14200 enum {
14201 ConstFunction,
14202 ConstVariable,
14203 ConstMember,
14204 ConstMethod,
14205 NestedConstMember,
14206 ConstUnknown, // Keep as last element
14209 /// Emit the "read-only variable not assignable" error and print notes to give
14210 /// more information about why the variable is not assignable, such as pointing
14211 /// to the declaration of a const variable, showing that a method is const, or
14212 /// that the function is returning a const reference.
14213 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
14214 SourceLocation Loc) {
14215 SourceRange ExprRange = E->getSourceRange();
14217 // Only emit one error on the first const found. All other consts will emit
14218 // a note to the error.
14219 bool DiagnosticEmitted = false;
14221 // Track if the current expression is the result of a dereference, and if the
14222 // next checked expression is the result of a dereference.
14223 bool IsDereference = false;
14224 bool NextIsDereference = false;
14226 // Loop to process MemberExpr chains.
14227 while (true) {
14228 IsDereference = NextIsDereference;
14230 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
14231 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
14232 NextIsDereference = ME->isArrow();
14233 const ValueDecl *VD = ME->getMemberDecl();
14234 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
14235 // Mutable fields can be modified even if the class is const.
14236 if (Field->isMutable()) {
14237 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
14238 break;
14241 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
14242 if (!DiagnosticEmitted) {
14243 S.Diag(Loc, diag::err_typecheck_assign_const)
14244 << ExprRange << ConstMember << false /*static*/ << Field
14245 << Field->getType();
14246 DiagnosticEmitted = true;
14248 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14249 << ConstMember << false /*static*/ << Field << Field->getType()
14250 << Field->getSourceRange();
14252 E = ME->getBase();
14253 continue;
14254 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
14255 if (VDecl->getType().isConstQualified()) {
14256 if (!DiagnosticEmitted) {
14257 S.Diag(Loc, diag::err_typecheck_assign_const)
14258 << ExprRange << ConstMember << true /*static*/ << VDecl
14259 << VDecl->getType();
14260 DiagnosticEmitted = true;
14262 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14263 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
14264 << VDecl->getSourceRange();
14266 // Static fields do not inherit constness from parents.
14267 break;
14269 break; // End MemberExpr
14270 } else if (const ArraySubscriptExpr *ASE =
14271 dyn_cast<ArraySubscriptExpr>(E)) {
14272 E = ASE->getBase()->IgnoreParenImpCasts();
14273 continue;
14274 } else if (const ExtVectorElementExpr *EVE =
14275 dyn_cast<ExtVectorElementExpr>(E)) {
14276 E = EVE->getBase()->IgnoreParenImpCasts();
14277 continue;
14279 break;
14282 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
14283 // Function calls
14284 const FunctionDecl *FD = CE->getDirectCallee();
14285 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
14286 if (!DiagnosticEmitted) {
14287 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14288 << ConstFunction << FD;
14289 DiagnosticEmitted = true;
14291 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
14292 diag::note_typecheck_assign_const)
14293 << ConstFunction << FD << FD->getReturnType()
14294 << FD->getReturnTypeSourceRange();
14296 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14297 // Point to variable declaration.
14298 if (const ValueDecl *VD = DRE->getDecl()) {
14299 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
14300 if (!DiagnosticEmitted) {
14301 S.Diag(Loc, diag::err_typecheck_assign_const)
14302 << ExprRange << ConstVariable << VD << VD->getType();
14303 DiagnosticEmitted = true;
14305 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
14306 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
14309 } else if (isa<CXXThisExpr>(E)) {
14310 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
14311 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
14312 if (MD->isConst()) {
14313 if (!DiagnosticEmitted) {
14314 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
14315 << ConstMethod << MD;
14316 DiagnosticEmitted = true;
14318 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
14319 << ConstMethod << MD << MD->getSourceRange();
14325 if (DiagnosticEmitted)
14326 return;
14328 // Can't determine a more specific message, so display the generic error.
14329 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
14332 enum OriginalExprKind {
14333 OEK_Variable,
14334 OEK_Member,
14335 OEK_LValue
14338 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
14339 const RecordType *Ty,
14340 SourceLocation Loc, SourceRange Range,
14341 OriginalExprKind OEK,
14342 bool &DiagnosticEmitted) {
14343 std::vector<const RecordType *> RecordTypeList;
14344 RecordTypeList.push_back(Ty);
14345 unsigned NextToCheckIndex = 0;
14346 // We walk the record hierarchy breadth-first to ensure that we print
14347 // diagnostics in field nesting order.
14348 while (RecordTypeList.size() > NextToCheckIndex) {
14349 bool IsNested = NextToCheckIndex > 0;
14350 for (const FieldDecl *Field :
14351 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
14352 // First, check every field for constness.
14353 QualType FieldTy = Field->getType();
14354 if (FieldTy.isConstQualified()) {
14355 if (!DiagnosticEmitted) {
14356 S.Diag(Loc, diag::err_typecheck_assign_const)
14357 << Range << NestedConstMember << OEK << VD
14358 << IsNested << Field;
14359 DiagnosticEmitted = true;
14361 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
14362 << NestedConstMember << IsNested << Field
14363 << FieldTy << Field->getSourceRange();
14366 // Then we append it to the list to check next in order.
14367 FieldTy = FieldTy.getCanonicalType();
14368 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
14369 if (!llvm::is_contained(RecordTypeList, FieldRecTy))
14370 RecordTypeList.push_back(FieldRecTy);
14373 ++NextToCheckIndex;
14377 /// Emit an error for the case where a record we are trying to assign to has a
14378 /// const-qualified field somewhere in its hierarchy.
14379 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
14380 SourceLocation Loc) {
14381 QualType Ty = E->getType();
14382 assert(Ty->isRecordType() && "lvalue was not record?");
14383 SourceRange Range = E->getSourceRange();
14384 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
14385 bool DiagEmitted = false;
14387 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
14388 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
14389 Range, OEK_Member, DiagEmitted);
14390 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
14391 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
14392 Range, OEK_Variable, DiagEmitted);
14393 else
14394 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
14395 Range, OEK_LValue, DiagEmitted);
14396 if (!DiagEmitted)
14397 DiagnoseConstAssignment(S, E, Loc);
14400 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
14401 /// emit an error and return true. If so, return false.
14402 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
14403 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
14405 S.CheckShadowingDeclModification(E, Loc);
14407 SourceLocation OrigLoc = Loc;
14408 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
14409 &Loc);
14410 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
14411 IsLV = Expr::MLV_InvalidMessageExpression;
14412 if (IsLV == Expr::MLV_Valid)
14413 return false;
14415 unsigned DiagID = 0;
14416 bool NeedType = false;
14417 switch (IsLV) { // C99 6.5.16p2
14418 case Expr::MLV_ConstQualified:
14419 // Use a specialized diagnostic when we're assigning to an object
14420 // from an enclosing function or block.
14421 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
14422 if (NCCK == NCCK_Block)
14423 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
14424 else
14425 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
14426 break;
14429 // In ARC, use some specialized diagnostics for occasions where we
14430 // infer 'const'. These are always pseudo-strong variables.
14431 if (S.getLangOpts().ObjCAutoRefCount) {
14432 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
14433 if (declRef && isa<VarDecl>(declRef->getDecl())) {
14434 VarDecl *var = cast<VarDecl>(declRef->getDecl());
14436 // Use the normal diagnostic if it's pseudo-__strong but the
14437 // user actually wrote 'const'.
14438 if (var->isARCPseudoStrong() &&
14439 (!var->getTypeSourceInfo() ||
14440 !var->getTypeSourceInfo()->getType().isConstQualified())) {
14441 // There are three pseudo-strong cases:
14442 // - self
14443 ObjCMethodDecl *method = S.getCurMethodDecl();
14444 if (method && var == method->getSelfDecl()) {
14445 DiagID = method->isClassMethod()
14446 ? diag::err_typecheck_arc_assign_self_class_method
14447 : diag::err_typecheck_arc_assign_self;
14449 // - Objective-C externally_retained attribute.
14450 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
14451 isa<ParmVarDecl>(var)) {
14452 DiagID = diag::err_typecheck_arc_assign_externally_retained;
14454 // - fast enumeration variables
14455 } else {
14456 DiagID = diag::err_typecheck_arr_assign_enumeration;
14459 SourceRange Assign;
14460 if (Loc != OrigLoc)
14461 Assign = SourceRange(OrigLoc, OrigLoc);
14462 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14463 // We need to preserve the AST regardless, so migration tool
14464 // can do its job.
14465 return false;
14470 // If none of the special cases above are triggered, then this is a
14471 // simple const assignment.
14472 if (DiagID == 0) {
14473 DiagnoseConstAssignment(S, E, Loc);
14474 return true;
14477 break;
14478 case Expr::MLV_ConstAddrSpace:
14479 DiagnoseConstAssignment(S, E, Loc);
14480 return true;
14481 case Expr::MLV_ConstQualifiedField:
14482 DiagnoseRecursiveConstFields(S, E, Loc);
14483 return true;
14484 case Expr::MLV_ArrayType:
14485 case Expr::MLV_ArrayTemporary:
14486 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14487 NeedType = true;
14488 break;
14489 case Expr::MLV_NotObjectType:
14490 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14491 NeedType = true;
14492 break;
14493 case Expr::MLV_LValueCast:
14494 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14495 break;
14496 case Expr::MLV_Valid:
14497 llvm_unreachable("did not take early return for MLV_Valid");
14498 case Expr::MLV_InvalidExpression:
14499 case Expr::MLV_MemberFunction:
14500 case Expr::MLV_ClassTemporary:
14501 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14502 break;
14503 case Expr::MLV_IncompleteType:
14504 case Expr::MLV_IncompleteVoidType:
14505 return S.RequireCompleteType(Loc, E->getType(),
14506 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14507 case Expr::MLV_DuplicateVectorComponents:
14508 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14509 break;
14510 case Expr::MLV_NoSetterProperty:
14511 llvm_unreachable("readonly properties should be processed differently");
14512 case Expr::MLV_InvalidMessageExpression:
14513 DiagID = diag::err_readonly_message_assignment;
14514 break;
14515 case Expr::MLV_SubObjCPropertySetting:
14516 DiagID = diag::err_no_subobject_property_setting;
14517 break;
14520 SourceRange Assign;
14521 if (Loc != OrigLoc)
14522 Assign = SourceRange(OrigLoc, OrigLoc);
14523 if (NeedType)
14524 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14525 else
14526 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14527 return true;
14530 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14531 SourceLocation Loc,
14532 Sema &Sema) {
14533 if (Sema.inTemplateInstantiation())
14534 return;
14535 if (Sema.isUnevaluatedContext())
14536 return;
14537 if (Loc.isInvalid() || Loc.isMacroID())
14538 return;
14539 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14540 return;
14542 // C / C++ fields
14543 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14544 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14545 if (ML && MR) {
14546 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14547 return;
14548 const ValueDecl *LHSDecl =
14549 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14550 const ValueDecl *RHSDecl =
14551 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14552 if (LHSDecl != RHSDecl)
14553 return;
14554 if (LHSDecl->getType().isVolatileQualified())
14555 return;
14556 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14557 if (RefTy->getPointeeType().isVolatileQualified())
14558 return;
14560 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14563 // Objective-C instance variables
14564 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14565 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14566 if (OL && OR && OL->getDecl() == OR->getDecl()) {
14567 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14568 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14569 if (RL && RR && RL->getDecl() == RR->getDecl())
14570 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14574 // C99 6.5.16.1
14575 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14576 SourceLocation Loc,
14577 QualType CompoundType,
14578 BinaryOperatorKind Opc) {
14579 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14581 // Verify that LHS is a modifiable lvalue, and emit error if not.
14582 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14583 return QualType();
14585 QualType LHSType = LHSExpr->getType();
14586 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14587 CompoundType;
14588 // OpenCL v1.2 s6.1.1.1 p2:
14589 // The half data type can only be used to declare a pointer to a buffer that
14590 // contains half values
14591 if (getLangOpts().OpenCL &&
14592 !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14593 LHSType->isHalfType()) {
14594 Diag(Loc, diag::err_opencl_half_load_store) << 1
14595 << LHSType.getUnqualifiedType();
14596 return QualType();
14599 // WebAssembly tables can't be used on RHS of an assignment expression.
14600 if (RHSType->isWebAssemblyTableType()) {
14601 Diag(Loc, diag::err_wasm_table_art) << 0;
14602 return QualType();
14605 AssignConvertType ConvTy;
14606 if (CompoundType.isNull()) {
14607 Expr *RHSCheck = RHS.get();
14609 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14611 QualType LHSTy(LHSType);
14612 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14613 if (RHS.isInvalid())
14614 return QualType();
14615 // Special case of NSObject attributes on c-style pointer types.
14616 if (ConvTy == IncompatiblePointer &&
14617 ((Context.isObjCNSObjectType(LHSType) &&
14618 RHSType->isObjCObjectPointerType()) ||
14619 (Context.isObjCNSObjectType(RHSType) &&
14620 LHSType->isObjCObjectPointerType())))
14621 ConvTy = Compatible;
14623 if (ConvTy == Compatible &&
14624 LHSType->isObjCObjectType())
14625 Diag(Loc, diag::err_objc_object_assignment)
14626 << LHSType;
14628 // If the RHS is a unary plus or minus, check to see if they = and + are
14629 // right next to each other. If so, the user may have typo'd "x =+ 4"
14630 // instead of "x += 4".
14631 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14632 RHSCheck = ICE->getSubExpr();
14633 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14634 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14635 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14636 // Only if the two operators are exactly adjacent.
14637 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14638 // And there is a space or other character before the subexpr of the
14639 // unary +/-. We don't want to warn on "x=-1".
14640 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14641 UO->getSubExpr()->getBeginLoc().isFileID()) {
14642 Diag(Loc, diag::warn_not_compound_assign)
14643 << (UO->getOpcode() == UO_Plus ? "+" : "-")
14644 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14648 if (ConvTy == Compatible) {
14649 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14650 // Warn about retain cycles where a block captures the LHS, but
14651 // not if the LHS is a simple variable into which the block is
14652 // being stored...unless that variable can be captured by reference!
14653 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14654 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14655 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14656 checkRetainCycles(LHSExpr, RHS.get());
14659 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14660 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14661 // It is safe to assign a weak reference into a strong variable.
14662 // Although this code can still have problems:
14663 // id x = self.weakProp;
14664 // id y = self.weakProp;
14665 // we do not warn to warn spuriously when 'x' and 'y' are on separate
14666 // paths through the function. This should be revisited if
14667 // -Wrepeated-use-of-weak is made flow-sensitive.
14668 // For ObjCWeak only, we do not warn if the assign is to a non-weak
14669 // variable, which will be valid for the current autorelease scope.
14670 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14671 RHS.get()->getBeginLoc()))
14672 getCurFunction()->markSafeWeakUse(RHS.get());
14674 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14675 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14678 } else {
14679 // Compound assignment "x += y"
14680 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14683 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14684 RHS.get(), AA_Assigning))
14685 return QualType();
14687 CheckForNullPointerDereference(*this, LHSExpr);
14689 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14690 if (CompoundType.isNull()) {
14691 // C++2a [expr.ass]p5:
14692 // A simple-assignment whose left operand is of a volatile-qualified
14693 // type is deprecated unless the assignment is either a discarded-value
14694 // expression or an unevaluated operand
14695 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14699 // C11 6.5.16p3: The type of an assignment expression is the type of the
14700 // left operand would have after lvalue conversion.
14701 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14702 // qualified type, the value has the unqualified version of the type of the
14703 // lvalue; additionally, if the lvalue has atomic type, the value has the
14704 // non-atomic version of the type of the lvalue.
14705 // C++ 5.17p1: the type of the assignment expression is that of its left
14706 // operand.
14707 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14710 // Scenarios to ignore if expression E is:
14711 // 1. an explicit cast expression into void
14712 // 2. a function call expression that returns void
14713 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14714 E = E->IgnoreParens();
14716 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14717 if (CE->getCastKind() == CK_ToVoid) {
14718 return true;
14721 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14722 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14723 CE->getSubExpr()->getType()->isDependentType()) {
14724 return true;
14728 if (const auto *CE = dyn_cast<CallExpr>(E))
14729 return CE->getCallReturnType(Context)->isVoidType();
14730 return false;
14733 // Look for instances where it is likely the comma operator is confused with
14734 // another operator. There is an explicit list of acceptable expressions for
14735 // the left hand side of the comma operator, otherwise emit a warning.
14736 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14737 // No warnings in macros
14738 if (Loc.isMacroID())
14739 return;
14741 // Don't warn in template instantiations.
14742 if (inTemplateInstantiation())
14743 return;
14745 // Scope isn't fine-grained enough to explicitly list the specific cases, so
14746 // instead, skip more than needed, then call back into here with the
14747 // CommaVisitor in SemaStmt.cpp.
14748 // The listed locations are the initialization and increment portions
14749 // of a for loop. The additional checks are on the condition of
14750 // if statements, do/while loops, and for loops.
14751 // Differences in scope flags for C89 mode requires the extra logic.
14752 const unsigned ForIncrementFlags =
14753 getLangOpts().C99 || getLangOpts().CPlusPlus
14754 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14755 : Scope::ContinueScope | Scope::BreakScope;
14756 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14757 const unsigned ScopeFlags = getCurScope()->getFlags();
14758 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14759 (ScopeFlags & ForInitFlags) == ForInitFlags)
14760 return;
14762 // If there are multiple comma operators used together, get the RHS of the
14763 // of the comma operator as the LHS.
14764 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14765 if (BO->getOpcode() != BO_Comma)
14766 break;
14767 LHS = BO->getRHS();
14770 // Only allow some expressions on LHS to not warn.
14771 if (IgnoreCommaOperand(LHS, Context))
14772 return;
14774 Diag(Loc, diag::warn_comma_operator);
14775 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14776 << LHS->getSourceRange()
14777 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14778 LangOpts.CPlusPlus ? "static_cast<void>("
14779 : "(void)(")
14780 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14781 ")");
14784 // C99 6.5.17
14785 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14786 SourceLocation Loc) {
14787 LHS = S.CheckPlaceholderExpr(LHS.get());
14788 RHS = S.CheckPlaceholderExpr(RHS.get());
14789 if (LHS.isInvalid() || RHS.isInvalid())
14790 return QualType();
14792 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14793 // operands, but not unary promotions.
14794 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14796 // So we treat the LHS as a ignored value, and in C++ we allow the
14797 // containing site to determine what should be done with the RHS.
14798 LHS = S.IgnoredValueConversions(LHS.get());
14799 if (LHS.isInvalid())
14800 return QualType();
14802 S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14804 if (!S.getLangOpts().CPlusPlus) {
14805 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14806 if (RHS.isInvalid())
14807 return QualType();
14808 if (!RHS.get()->getType()->isVoidType())
14809 S.RequireCompleteType(Loc, RHS.get()->getType(),
14810 diag::err_incomplete_type);
14813 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14814 S.DiagnoseCommaOperator(LHS.get(), Loc);
14816 return RHS.get()->getType();
14819 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14820 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14821 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14822 ExprValueKind &VK,
14823 ExprObjectKind &OK,
14824 SourceLocation OpLoc,
14825 bool IsInc, bool IsPrefix) {
14826 if (Op->isTypeDependent())
14827 return S.Context.DependentTy;
14829 QualType ResType = Op->getType();
14830 // Atomic types can be used for increment / decrement where the non-atomic
14831 // versions can, so ignore the _Atomic() specifier for the purpose of
14832 // checking.
14833 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14834 ResType = ResAtomicType->getValueType();
14836 assert(!ResType.isNull() && "no type for increment/decrement expression");
14838 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14839 // Decrement of bool is not allowed.
14840 if (!IsInc) {
14841 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14842 return QualType();
14844 // Increment of bool sets it to true, but is deprecated.
14845 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14846 : diag::warn_increment_bool)
14847 << Op->getSourceRange();
14848 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14849 // Error on enum increments and decrements in C++ mode
14850 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14851 return QualType();
14852 } else if (ResType->isRealType()) {
14853 // OK!
14854 } else if (ResType->isPointerType()) {
14855 // C99 6.5.2.4p2, 6.5.6p2
14856 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14857 return QualType();
14858 } else if (ResType->isObjCObjectPointerType()) {
14859 // On modern runtimes, ObjC pointer arithmetic is forbidden.
14860 // Otherwise, we just need a complete type.
14861 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14862 checkArithmeticOnObjCPointer(S, OpLoc, Op))
14863 return QualType();
14864 } else if (ResType->isAnyComplexType()) {
14865 // C99 does not support ++/-- on complex types, we allow as an extension.
14866 S.Diag(OpLoc, diag::ext_integer_increment_complex)
14867 << ResType << Op->getSourceRange();
14868 } else if (ResType->isPlaceholderType()) {
14869 ExprResult PR = S.CheckPlaceholderExpr(Op);
14870 if (PR.isInvalid()) return QualType();
14871 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14872 IsInc, IsPrefix);
14873 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14874 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14875 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14876 (ResType->castAs<VectorType>()->getVectorKind() !=
14877 VectorKind::AltiVecBool)) {
14878 // The z vector extensions allow ++ and -- for non-bool vectors.
14879 } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
14880 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14881 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14882 } else {
14883 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14884 << ResType << int(IsInc) << Op->getSourceRange();
14885 return QualType();
14887 // At this point, we know we have a real, complex or pointer type.
14888 // Now make sure the operand is a modifiable lvalue.
14889 if (CheckForModifiableLvalue(Op, OpLoc, S))
14890 return QualType();
14891 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14892 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14893 // An operand with volatile-qualified type is deprecated
14894 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14895 << IsInc << ResType;
14897 // In C++, a prefix increment is the same type as the operand. Otherwise
14898 // (in C or with postfix), the increment is the unqualified type of the
14899 // operand.
14900 if (IsPrefix && S.getLangOpts().CPlusPlus) {
14901 VK = VK_LValue;
14902 OK = Op->getObjectKind();
14903 return ResType;
14904 } else {
14905 VK = VK_PRValue;
14906 return ResType.getUnqualifiedType();
14911 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14912 /// This routine allows us to typecheck complex/recursive expressions
14913 /// where the declaration is needed for type checking. We only need to
14914 /// handle cases when the expression references a function designator
14915 /// or is an lvalue. Here are some examples:
14916 /// - &(x) => x
14917 /// - &*****f => f for f a function designator.
14918 /// - &s.xx => s
14919 /// - &s.zz[1].yy -> s, if zz is an array
14920 /// - *(x + 1) -> x, if x is an array
14921 /// - &"123"[2] -> 0
14922 /// - & __real__ x -> x
14924 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14925 /// members.
14926 static ValueDecl *getPrimaryDecl(Expr *E) {
14927 switch (E->getStmtClass()) {
14928 case Stmt::DeclRefExprClass:
14929 return cast<DeclRefExpr>(E)->getDecl();
14930 case Stmt::MemberExprClass:
14931 // If this is an arrow operator, the address is an offset from
14932 // the base's value, so the object the base refers to is
14933 // irrelevant.
14934 if (cast<MemberExpr>(E)->isArrow())
14935 return nullptr;
14936 // Otherwise, the expression refers to a part of the base
14937 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14938 case Stmt::ArraySubscriptExprClass: {
14939 // FIXME: This code shouldn't be necessary! We should catch the implicit
14940 // promotion of register arrays earlier.
14941 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14942 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14943 if (ICE->getSubExpr()->getType()->isArrayType())
14944 return getPrimaryDecl(ICE->getSubExpr());
14946 return nullptr;
14948 case Stmt::UnaryOperatorClass: {
14949 UnaryOperator *UO = cast<UnaryOperator>(E);
14951 switch(UO->getOpcode()) {
14952 case UO_Real:
14953 case UO_Imag:
14954 case UO_Extension:
14955 return getPrimaryDecl(UO->getSubExpr());
14956 default:
14957 return nullptr;
14960 case Stmt::ParenExprClass:
14961 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14962 case Stmt::ImplicitCastExprClass:
14963 // If the result of an implicit cast is an l-value, we care about
14964 // the sub-expression; otherwise, the result here doesn't matter.
14965 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14966 case Stmt::CXXUuidofExprClass:
14967 return cast<CXXUuidofExpr>(E)->getGuidDecl();
14968 default:
14969 return nullptr;
14973 namespace {
14974 enum {
14975 AO_Bit_Field = 0,
14976 AO_Vector_Element = 1,
14977 AO_Property_Expansion = 2,
14978 AO_Register_Variable = 3,
14979 AO_Matrix_Element = 4,
14980 AO_No_Error = 5
14983 /// Diagnose invalid operand for address of operations.
14985 /// \param Type The type of operand which cannot have its address taken.
14986 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14987 Expr *E, unsigned Type) {
14988 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14991 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
14992 const Expr *Op,
14993 const CXXMethodDecl *MD) {
14994 const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
14996 if (Op != DRE)
14997 return Diag(OpLoc, diag::err_parens_pointer_member_function)
14998 << Op->getSourceRange();
15000 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
15001 if (isa<CXXDestructorDecl>(MD))
15002 return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
15003 << DRE->getSourceRange();
15005 if (DRE->getQualifier())
15006 return false;
15008 if (MD->getParent()->getName().empty())
15009 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15010 << DRE->getSourceRange();
15012 SmallString<32> Str;
15013 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
15014 return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
15015 << DRE->getSourceRange()
15016 << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
15019 /// CheckAddressOfOperand - The operand of & must be either a function
15020 /// designator or an lvalue designating an object. If it is an lvalue, the
15021 /// object cannot be declared with storage class register or be a bit field.
15022 /// Note: The usual conversions are *not* applied to the operand of the &
15023 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
15024 /// In C++, the operand might be an overloaded function name, in which case
15025 /// we allow the '&' but retain the overloaded-function type.
15026 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
15027 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
15028 if (PTy->getKind() == BuiltinType::Overload) {
15029 Expr *E = OrigOp.get()->IgnoreParens();
15030 if (!isa<OverloadExpr>(E)) {
15031 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
15032 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
15033 << OrigOp.get()->getSourceRange();
15034 return QualType();
15037 OverloadExpr *Ovl = cast<OverloadExpr>(E);
15038 if (isa<UnresolvedMemberExpr>(Ovl))
15039 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
15040 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15041 << OrigOp.get()->getSourceRange();
15042 return QualType();
15045 return Context.OverloadTy;
15048 if (PTy->getKind() == BuiltinType::UnknownAny)
15049 return Context.UnknownAnyTy;
15051 if (PTy->getKind() == BuiltinType::BoundMember) {
15052 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15053 << OrigOp.get()->getSourceRange();
15054 return QualType();
15057 OrigOp = CheckPlaceholderExpr(OrigOp.get());
15058 if (OrigOp.isInvalid()) return QualType();
15061 if (OrigOp.get()->isTypeDependent())
15062 return Context.DependentTy;
15064 assert(!OrigOp.get()->hasPlaceholderType());
15066 // Make sure to ignore parentheses in subsequent checks
15067 Expr *op = OrigOp.get()->IgnoreParens();
15069 // In OpenCL captures for blocks called as lambda functions
15070 // are located in the private address space. Blocks used in
15071 // enqueue_kernel can be located in a different address space
15072 // depending on a vendor implementation. Thus preventing
15073 // taking an address of the capture to avoid invalid AS casts.
15074 if (LangOpts.OpenCL) {
15075 auto* VarRef = dyn_cast<DeclRefExpr>(op);
15076 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
15077 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
15078 return QualType();
15082 if (getLangOpts().C99) {
15083 // Implement C99-only parts of addressof rules.
15084 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
15085 if (uOp->getOpcode() == UO_Deref)
15086 // Per C99 6.5.3.2, the address of a deref always returns a valid result
15087 // (assuming the deref expression is valid).
15088 return uOp->getSubExpr()->getType();
15090 // Technically, there should be a check for array subscript
15091 // expressions here, but the result of one is always an lvalue anyway.
15093 ValueDecl *dcl = getPrimaryDecl(op);
15095 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
15096 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
15097 op->getBeginLoc()))
15098 return QualType();
15100 Expr::LValueClassification lval = op->ClassifyLValue(Context);
15101 unsigned AddressOfError = AO_No_Error;
15103 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
15104 bool sfinae = (bool)isSFINAEContext();
15105 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
15106 : diag::ext_typecheck_addrof_temporary)
15107 << op->getType() << op->getSourceRange();
15108 if (sfinae)
15109 return QualType();
15110 // Materialize the temporary as an lvalue so that we can take its address.
15111 OrigOp = op =
15112 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
15113 } else if (isa<ObjCSelectorExpr>(op)) {
15114 return Context.getPointerType(op->getType());
15115 } else if (lval == Expr::LV_MemberFunction) {
15116 // If it's an instance method, make a member pointer.
15117 // The expression must have exactly the form &A::foo.
15119 // If the underlying expression isn't a decl ref, give up.
15120 if (!isa<DeclRefExpr>(op)) {
15121 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
15122 << OrigOp.get()->getSourceRange();
15123 return QualType();
15125 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
15126 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
15128 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15130 QualType MPTy = Context.getMemberPointerType(
15131 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
15132 // Under the MS ABI, lock down the inheritance model now.
15133 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15134 (void)isCompleteType(OpLoc, MPTy);
15135 return MPTy;
15136 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
15137 // C99 6.5.3.2p1
15138 // The operand must be either an l-value or a function designator
15139 if (!op->getType()->isFunctionType()) {
15140 // Use a special diagnostic for loads from property references.
15141 if (isa<PseudoObjectExpr>(op)) {
15142 AddressOfError = AO_Property_Expansion;
15143 } else {
15144 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
15145 << op->getType() << op->getSourceRange();
15146 return QualType();
15148 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
15149 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
15150 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
15153 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
15154 // The operand cannot be a bit-field
15155 AddressOfError = AO_Bit_Field;
15156 } else if (op->getObjectKind() == OK_VectorComponent) {
15157 // The operand cannot be an element of a vector
15158 AddressOfError = AO_Vector_Element;
15159 } else if (op->getObjectKind() == OK_MatrixComponent) {
15160 // The operand cannot be an element of a matrix.
15161 AddressOfError = AO_Matrix_Element;
15162 } else if (dcl) { // C99 6.5.3.2p1
15163 // We have an lvalue with a decl. Make sure the decl is not declared
15164 // with the register storage-class specifier.
15165 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
15166 // in C++ it is not error to take address of a register
15167 // variable (c++03 7.1.1P3)
15168 if (vd->getStorageClass() == SC_Register &&
15169 !getLangOpts().CPlusPlus) {
15170 AddressOfError = AO_Register_Variable;
15172 } else if (isa<MSPropertyDecl>(dcl)) {
15173 AddressOfError = AO_Property_Expansion;
15174 } else if (isa<FunctionTemplateDecl>(dcl)) {
15175 return Context.OverloadTy;
15176 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
15177 // Okay: we can take the address of a field.
15178 // Could be a pointer to member, though, if there is an explicit
15179 // scope qualifier for the class.
15180 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
15181 DeclContext *Ctx = dcl->getDeclContext();
15182 if (Ctx && Ctx->isRecord()) {
15183 if (dcl->getType()->isReferenceType()) {
15184 Diag(OpLoc,
15185 diag::err_cannot_form_pointer_to_member_of_reference_type)
15186 << dcl->getDeclName() << dcl->getType();
15187 return QualType();
15190 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
15191 Ctx = Ctx->getParent();
15193 QualType MPTy = Context.getMemberPointerType(
15194 op->getType(),
15195 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
15196 // Under the MS ABI, lock down the inheritance model now.
15197 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
15198 (void)isCompleteType(OpLoc, MPTy);
15199 return MPTy;
15202 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
15203 MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
15204 llvm_unreachable("Unknown/unexpected decl type");
15207 if (AddressOfError != AO_No_Error) {
15208 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
15209 return QualType();
15212 if (lval == Expr::LV_IncompleteVoidType) {
15213 // Taking the address of a void variable is technically illegal, but we
15214 // allow it in cases which are otherwise valid.
15215 // Example: "extern void x; void* y = &x;".
15216 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
15219 // If the operand has type "type", the result has type "pointer to type".
15220 if (op->getType()->isObjCObjectType())
15221 return Context.getObjCObjectPointerType(op->getType());
15223 // Cannot take the address of WebAssembly references or tables.
15224 if (Context.getTargetInfo().getTriple().isWasm()) {
15225 QualType OpTy = op->getType();
15226 if (OpTy.isWebAssemblyReferenceType()) {
15227 Diag(OpLoc, diag::err_wasm_ca_reference)
15228 << 1 << OrigOp.get()->getSourceRange();
15229 return QualType();
15231 if (OpTy->isWebAssemblyTableType()) {
15232 Diag(OpLoc, diag::err_wasm_table_pr)
15233 << 1 << OrigOp.get()->getSourceRange();
15234 return QualType();
15238 CheckAddressOfPackedMember(op);
15240 return Context.getPointerType(op->getType());
15243 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
15244 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
15245 if (!DRE)
15246 return;
15247 const Decl *D = DRE->getDecl();
15248 if (!D)
15249 return;
15250 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
15251 if (!Param)
15252 return;
15253 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
15254 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
15255 return;
15256 if (FunctionScopeInfo *FD = S.getCurFunction())
15257 FD->ModifiedNonNullParams.insert(Param);
15260 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
15261 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
15262 SourceLocation OpLoc,
15263 bool IsAfterAmp = false) {
15264 if (Op->isTypeDependent())
15265 return S.Context.DependentTy;
15267 ExprResult ConvResult = S.UsualUnaryConversions(Op);
15268 if (ConvResult.isInvalid())
15269 return QualType();
15270 Op = ConvResult.get();
15271 QualType OpTy = Op->getType();
15272 QualType Result;
15274 if (isa<CXXReinterpretCastExpr>(Op)) {
15275 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
15276 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
15277 Op->getSourceRange());
15280 if (const PointerType *PT = OpTy->getAs<PointerType>())
15282 Result = PT->getPointeeType();
15284 else if (const ObjCObjectPointerType *OPT =
15285 OpTy->getAs<ObjCObjectPointerType>())
15286 Result = OPT->getPointeeType();
15287 else {
15288 ExprResult PR = S.CheckPlaceholderExpr(Op);
15289 if (PR.isInvalid()) return QualType();
15290 if (PR.get() != Op)
15291 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
15294 if (Result.isNull()) {
15295 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
15296 << OpTy << Op->getSourceRange();
15297 return QualType();
15300 if (Result->isVoidType()) {
15301 // C++ [expr.unary.op]p1:
15302 // [...] the expression to which [the unary * operator] is applied shall
15303 // be a pointer to an object type, or a pointer to a function type
15304 LangOptions LO = S.getLangOpts();
15305 if (LO.CPlusPlus)
15306 S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
15307 << OpTy << Op->getSourceRange();
15308 else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
15309 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
15310 << OpTy << Op->getSourceRange();
15313 // Dereferences are usually l-values...
15314 VK = VK_LValue;
15316 // ...except that certain expressions are never l-values in C.
15317 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
15318 VK = VK_PRValue;
15320 return Result;
15323 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
15324 BinaryOperatorKind Opc;
15325 switch (Kind) {
15326 default: llvm_unreachable("Unknown binop!");
15327 case tok::periodstar: Opc = BO_PtrMemD; break;
15328 case tok::arrowstar: Opc = BO_PtrMemI; break;
15329 case tok::star: Opc = BO_Mul; break;
15330 case tok::slash: Opc = BO_Div; break;
15331 case tok::percent: Opc = BO_Rem; break;
15332 case tok::plus: Opc = BO_Add; break;
15333 case tok::minus: Opc = BO_Sub; break;
15334 case tok::lessless: Opc = BO_Shl; break;
15335 case tok::greatergreater: Opc = BO_Shr; break;
15336 case tok::lessequal: Opc = BO_LE; break;
15337 case tok::less: Opc = BO_LT; break;
15338 case tok::greaterequal: Opc = BO_GE; break;
15339 case tok::greater: Opc = BO_GT; break;
15340 case tok::exclaimequal: Opc = BO_NE; break;
15341 case tok::equalequal: Opc = BO_EQ; break;
15342 case tok::spaceship: Opc = BO_Cmp; break;
15343 case tok::amp: Opc = BO_And; break;
15344 case tok::caret: Opc = BO_Xor; break;
15345 case tok::pipe: Opc = BO_Or; break;
15346 case tok::ampamp: Opc = BO_LAnd; break;
15347 case tok::pipepipe: Opc = BO_LOr; break;
15348 case tok::equal: Opc = BO_Assign; break;
15349 case tok::starequal: Opc = BO_MulAssign; break;
15350 case tok::slashequal: Opc = BO_DivAssign; break;
15351 case tok::percentequal: Opc = BO_RemAssign; break;
15352 case tok::plusequal: Opc = BO_AddAssign; break;
15353 case tok::minusequal: Opc = BO_SubAssign; break;
15354 case tok::lesslessequal: Opc = BO_ShlAssign; break;
15355 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
15356 case tok::ampequal: Opc = BO_AndAssign; break;
15357 case tok::caretequal: Opc = BO_XorAssign; break;
15358 case tok::pipeequal: Opc = BO_OrAssign; break;
15359 case tok::comma: Opc = BO_Comma; break;
15361 return Opc;
15364 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
15365 tok::TokenKind Kind) {
15366 UnaryOperatorKind Opc;
15367 switch (Kind) {
15368 default: llvm_unreachable("Unknown unary op!");
15369 case tok::plusplus: Opc = UO_PreInc; break;
15370 case tok::minusminus: Opc = UO_PreDec; break;
15371 case tok::amp: Opc = UO_AddrOf; break;
15372 case tok::star: Opc = UO_Deref; break;
15373 case tok::plus: Opc = UO_Plus; break;
15374 case tok::minus: Opc = UO_Minus; break;
15375 case tok::tilde: Opc = UO_Not; break;
15376 case tok::exclaim: Opc = UO_LNot; break;
15377 case tok::kw___real: Opc = UO_Real; break;
15378 case tok::kw___imag: Opc = UO_Imag; break;
15379 case tok::kw___extension__: Opc = UO_Extension; break;
15381 return Opc;
15384 const FieldDecl *
15385 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
15386 // Explore the case for adding 'this->' to the LHS of a self assignment, very
15387 // common for setters.
15388 // struct A {
15389 // int X;
15390 // -void setX(int X) { X = X; }
15391 // +void setX(int X) { this->X = X; }
15392 // };
15394 // Only consider parameters for self assignment fixes.
15395 if (!isa<ParmVarDecl>(SelfAssigned))
15396 return nullptr;
15397 const auto *Method =
15398 dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
15399 if (!Method)
15400 return nullptr;
15402 const CXXRecordDecl *Parent = Method->getParent();
15403 // In theory this is fixable if the lambda explicitly captures this, but
15404 // that's added complexity that's rarely going to be used.
15405 if (Parent->isLambda())
15406 return nullptr;
15408 // FIXME: Use an actual Lookup operation instead of just traversing fields
15409 // in order to get base class fields.
15410 auto Field =
15411 llvm::find_if(Parent->fields(),
15412 [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
15413 return F->getDeclName() == Name;
15415 return (Field != Parent->field_end()) ? *Field : nullptr;
15418 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
15419 /// This warning suppressed in the event of macro expansions.
15420 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
15421 SourceLocation OpLoc, bool IsBuiltin) {
15422 if (S.inTemplateInstantiation())
15423 return;
15424 if (S.isUnevaluatedContext())
15425 return;
15426 if (OpLoc.isInvalid() || OpLoc.isMacroID())
15427 return;
15428 LHSExpr = LHSExpr->IgnoreParenImpCasts();
15429 RHSExpr = RHSExpr->IgnoreParenImpCasts();
15430 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15431 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15432 if (!LHSDeclRef || !RHSDeclRef ||
15433 LHSDeclRef->getLocation().isMacroID() ||
15434 RHSDeclRef->getLocation().isMacroID())
15435 return;
15436 const ValueDecl *LHSDecl =
15437 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
15438 const ValueDecl *RHSDecl =
15439 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
15440 if (LHSDecl != RHSDecl)
15441 return;
15442 if (LHSDecl->getType().isVolatileQualified())
15443 return;
15444 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
15445 if (RefTy->getPointeeType().isVolatileQualified())
15446 return;
15448 auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
15449 : diag::warn_self_assignment_overloaded)
15450 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
15451 << RHSExpr->getSourceRange();
15452 if (const FieldDecl *SelfAssignField =
15453 S.getSelfAssignmentClassMemberCandidate(RHSDecl))
15454 Diag << 1 << SelfAssignField
15455 << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
15456 else
15457 Diag << 0;
15460 /// Check if a bitwise-& is performed on an Objective-C pointer. This
15461 /// is usually indicative of introspection within the Objective-C pointer.
15462 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
15463 SourceLocation OpLoc) {
15464 if (!S.getLangOpts().ObjC)
15465 return;
15467 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
15468 const Expr *LHS = L.get();
15469 const Expr *RHS = R.get();
15471 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15472 ObjCPointerExpr = LHS;
15473 OtherExpr = RHS;
15475 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
15476 ObjCPointerExpr = RHS;
15477 OtherExpr = LHS;
15480 // This warning is deliberately made very specific to reduce false
15481 // positives with logic that uses '&' for hashing. This logic mainly
15482 // looks for code trying to introspect into tagged pointers, which
15483 // code should generally never do.
15484 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
15485 unsigned Diag = diag::warn_objc_pointer_masking;
15486 // Determine if we are introspecting the result of performSelectorXXX.
15487 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
15488 // Special case messages to -performSelector and friends, which
15489 // can return non-pointer values boxed in a pointer value.
15490 // Some clients may wish to silence warnings in this subcase.
15491 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
15492 Selector S = ME->getSelector();
15493 StringRef SelArg0 = S.getNameForSlot(0);
15494 if (SelArg0.startswith("performSelector"))
15495 Diag = diag::warn_objc_pointer_masking_performSelector;
15498 S.Diag(OpLoc, Diag)
15499 << ObjCPointerExpr->getSourceRange();
15503 static NamedDecl *getDeclFromExpr(Expr *E) {
15504 if (!E)
15505 return nullptr;
15506 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15507 return DRE->getDecl();
15508 if (auto *ME = dyn_cast<MemberExpr>(E))
15509 return ME->getMemberDecl();
15510 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15511 return IRE->getDecl();
15512 return nullptr;
15515 // This helper function promotes a binary operator's operands (which are of a
15516 // half vector type) to a vector of floats and then truncates the result to
15517 // a vector of either half or short.
15518 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15519 BinaryOperatorKind Opc, QualType ResultTy,
15520 ExprValueKind VK, ExprObjectKind OK,
15521 bool IsCompAssign, SourceLocation OpLoc,
15522 FPOptionsOverride FPFeatures) {
15523 auto &Context = S.getASTContext();
15524 assert((isVector(ResultTy, Context.HalfTy) ||
15525 isVector(ResultTy, Context.ShortTy)) &&
15526 "Result must be a vector of half or short");
15527 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15528 isVector(RHS.get()->getType(), Context.HalfTy) &&
15529 "both operands expected to be a half vector");
15531 RHS = convertVector(RHS.get(), Context.FloatTy, S);
15532 QualType BinOpResTy = RHS.get()->getType();
15534 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15535 // change BinOpResTy to a vector of ints.
15536 if (isVector(ResultTy, Context.ShortTy))
15537 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15539 if (IsCompAssign)
15540 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15541 ResultTy, VK, OK, OpLoc, FPFeatures,
15542 BinOpResTy, BinOpResTy);
15544 LHS = convertVector(LHS.get(), Context.FloatTy, S);
15545 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15546 BinOpResTy, VK, OK, OpLoc, FPFeatures);
15547 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15550 static std::pair<ExprResult, ExprResult>
15551 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15552 Expr *RHSExpr) {
15553 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15554 if (!S.Context.isDependenceAllowed()) {
15555 // C cannot handle TypoExpr nodes on either side of a binop because it
15556 // doesn't handle dependent types properly, so make sure any TypoExprs have
15557 // been dealt with before checking the operands.
15558 LHS = S.CorrectDelayedTyposInExpr(LHS);
15559 RHS = S.CorrectDelayedTyposInExpr(
15560 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15561 [Opc, LHS](Expr *E) {
15562 if (Opc != BO_Assign)
15563 return ExprResult(E);
15564 // Avoid correcting the RHS to the same Expr as the LHS.
15565 Decl *D = getDeclFromExpr(E);
15566 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15569 return std::make_pair(LHS, RHS);
15572 /// Returns true if conversion between vectors of halfs and vectors of floats
15573 /// is needed.
15574 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15575 Expr *E0, Expr *E1 = nullptr) {
15576 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15577 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15578 return false;
15580 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15581 QualType Ty = E->IgnoreImplicit()->getType();
15583 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15584 // to vectors of floats. Although the element type of the vectors is __fp16,
15585 // the vectors shouldn't be treated as storage-only types. See the
15586 // discussion here: https://reviews.llvm.org/rG825235c140e7
15587 if (const VectorType *VT = Ty->getAs<VectorType>()) {
15588 if (VT->getVectorKind() == VectorKind::Neon)
15589 return false;
15590 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15592 return false;
15595 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15598 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15599 /// operator @p Opc at location @c TokLoc. This routine only supports
15600 /// built-in operations; ActOnBinOp handles overloaded operators.
15601 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15602 BinaryOperatorKind Opc,
15603 Expr *LHSExpr, Expr *RHSExpr) {
15604 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15605 // The syntax only allows initializer lists on the RHS of assignment,
15606 // so we don't need to worry about accepting invalid code for
15607 // non-assignment operators.
15608 // C++11 5.17p9:
15609 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15610 // of x = {} is x = T().
15611 InitializationKind Kind = InitializationKind::CreateDirectList(
15612 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15613 InitializedEntity Entity =
15614 InitializedEntity::InitializeTemporary(LHSExpr->getType());
15615 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15616 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15617 if (Init.isInvalid())
15618 return Init;
15619 RHSExpr = Init.get();
15622 ExprResult LHS = LHSExpr, RHS = RHSExpr;
15623 QualType ResultTy; // Result type of the binary operator.
15624 // The following two variables are used for compound assignment operators
15625 QualType CompLHSTy; // Type of LHS after promotions for computation
15626 QualType CompResultTy; // Type of computation result
15627 ExprValueKind VK = VK_PRValue;
15628 ExprObjectKind OK = OK_Ordinary;
15629 bool ConvertHalfVec = false;
15631 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15632 if (!LHS.isUsable() || !RHS.isUsable())
15633 return ExprError();
15635 if (getLangOpts().OpenCL) {
15636 QualType LHSTy = LHSExpr->getType();
15637 QualType RHSTy = RHSExpr->getType();
15638 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15639 // the ATOMIC_VAR_INIT macro.
15640 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15641 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15642 if (BO_Assign == Opc)
15643 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15644 else
15645 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15646 return ExprError();
15649 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15650 // only with a builtin functions and therefore should be disallowed here.
15651 if (LHSTy->isImageType() || RHSTy->isImageType() ||
15652 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15653 LHSTy->isPipeType() || RHSTy->isPipeType() ||
15654 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15655 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15656 return ExprError();
15660 checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15661 checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15663 switch (Opc) {
15664 case BO_Assign:
15665 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15666 if (getLangOpts().CPlusPlus &&
15667 LHS.get()->getObjectKind() != OK_ObjCProperty) {
15668 VK = LHS.get()->getValueKind();
15669 OK = LHS.get()->getObjectKind();
15671 if (!ResultTy.isNull()) {
15672 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15673 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15675 // Avoid copying a block to the heap if the block is assigned to a local
15676 // auto variable that is declared in the same scope as the block. This
15677 // optimization is unsafe if the local variable is declared in an outer
15678 // scope. For example:
15680 // BlockTy b;
15681 // {
15682 // b = ^{...};
15683 // }
15684 // // It is unsafe to invoke the block here if it wasn't copied to the
15685 // // heap.
15686 // b();
15688 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15689 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15690 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15691 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15692 BE->getBlockDecl()->setCanAvoidCopyToHeap();
15694 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15695 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15696 NTCUC_Assignment, NTCUK_Copy);
15698 RecordModifiableNonNullParam(*this, LHS.get());
15699 break;
15700 case BO_PtrMemD:
15701 case BO_PtrMemI:
15702 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15703 Opc == BO_PtrMemI);
15704 break;
15705 case BO_Mul:
15706 case BO_Div:
15707 ConvertHalfVec = true;
15708 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15709 Opc == BO_Div);
15710 break;
15711 case BO_Rem:
15712 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15713 break;
15714 case BO_Add:
15715 ConvertHalfVec = true;
15716 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15717 break;
15718 case BO_Sub:
15719 ConvertHalfVec = true;
15720 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15721 break;
15722 case BO_Shl:
15723 case BO_Shr:
15724 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15725 break;
15726 case BO_LE:
15727 case BO_LT:
15728 case BO_GE:
15729 case BO_GT:
15730 ConvertHalfVec = true;
15731 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15732 break;
15733 case BO_EQ:
15734 case BO_NE:
15735 ConvertHalfVec = true;
15736 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15737 break;
15738 case BO_Cmp:
15739 ConvertHalfVec = true;
15740 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15741 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15742 break;
15743 case BO_And:
15744 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15745 [[fallthrough]];
15746 case BO_Xor:
15747 case BO_Or:
15748 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15749 break;
15750 case BO_LAnd:
15751 case BO_LOr:
15752 ConvertHalfVec = true;
15753 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15754 break;
15755 case BO_MulAssign:
15756 case BO_DivAssign:
15757 ConvertHalfVec = true;
15758 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15759 Opc == BO_DivAssign);
15760 CompLHSTy = CompResultTy;
15761 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15762 ResultTy =
15763 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15764 break;
15765 case BO_RemAssign:
15766 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15767 CompLHSTy = CompResultTy;
15768 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15769 ResultTy =
15770 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15771 break;
15772 case BO_AddAssign:
15773 ConvertHalfVec = true;
15774 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15775 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15776 ResultTy =
15777 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15778 break;
15779 case BO_SubAssign:
15780 ConvertHalfVec = true;
15781 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15782 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15783 ResultTy =
15784 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15785 break;
15786 case BO_ShlAssign:
15787 case BO_ShrAssign:
15788 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15789 CompLHSTy = CompResultTy;
15790 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15791 ResultTy =
15792 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15793 break;
15794 case BO_AndAssign:
15795 case BO_OrAssign: // fallthrough
15796 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15797 [[fallthrough]];
15798 case BO_XorAssign:
15799 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15800 CompLHSTy = CompResultTy;
15801 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15802 ResultTy =
15803 CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15804 break;
15805 case BO_Comma:
15806 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15807 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15808 VK = RHS.get()->getValueKind();
15809 OK = RHS.get()->getObjectKind();
15811 break;
15813 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15814 return ExprError();
15816 // Some of the binary operations require promoting operands of half vector to
15817 // float vectors and truncating the result back to half vector. For now, we do
15818 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15819 // arm64).
15820 assert(
15821 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15822 isVector(LHS.get()->getType(), Context.HalfTy)) &&
15823 "both sides are half vectors or neither sides are");
15824 ConvertHalfVec =
15825 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15827 // Check for array bounds violations for both sides of the BinaryOperator
15828 CheckArrayAccess(LHS.get());
15829 CheckArrayAccess(RHS.get());
15831 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15832 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15833 &Context.Idents.get("object_setClass"),
15834 SourceLocation(), LookupOrdinaryName);
15835 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15836 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15837 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15838 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15839 "object_setClass(")
15840 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15841 ",")
15842 << FixItHint::CreateInsertion(RHSLocEnd, ")");
15844 else
15845 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15847 else if (const ObjCIvarRefExpr *OIRE =
15848 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15849 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15851 // Opc is not a compound assignment if CompResultTy is null.
15852 if (CompResultTy.isNull()) {
15853 if (ConvertHalfVec)
15854 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15855 OpLoc, CurFPFeatureOverrides());
15856 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15857 VK, OK, OpLoc, CurFPFeatureOverrides());
15860 // Handle compound assignments.
15861 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15862 OK_ObjCProperty) {
15863 VK = VK_LValue;
15864 OK = LHS.get()->getObjectKind();
15867 // The LHS is not converted to the result type for fixed-point compound
15868 // assignment as the common type is computed on demand. Reset the CompLHSTy
15869 // to the LHS type we would have gotten after unary conversions.
15870 if (CompResultTy->isFixedPointType())
15871 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15873 if (ConvertHalfVec)
15874 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15875 OpLoc, CurFPFeatureOverrides());
15877 return CompoundAssignOperator::Create(
15878 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15879 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15882 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15883 /// operators are mixed in a way that suggests that the programmer forgot that
15884 /// comparison operators have higher precedence. The most typical example of
15885 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15886 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15887 SourceLocation OpLoc, Expr *LHSExpr,
15888 Expr *RHSExpr) {
15889 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15890 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15892 // Check that one of the sides is a comparison operator and the other isn't.
15893 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15894 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15895 if (isLeftComp == isRightComp)
15896 return;
15898 // Bitwise operations are sometimes used as eager logical ops.
15899 // Don't diagnose this.
15900 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15901 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15902 if (isLeftBitwise || isRightBitwise)
15903 return;
15905 SourceRange DiagRange = isLeftComp
15906 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15907 : SourceRange(OpLoc, RHSExpr->getEndLoc());
15908 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15909 SourceRange ParensRange =
15910 isLeftComp
15911 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15912 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15914 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15915 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15916 SuggestParentheses(Self, OpLoc,
15917 Self.PDiag(diag::note_precedence_silence) << OpStr,
15918 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15919 SuggestParentheses(Self, OpLoc,
15920 Self.PDiag(diag::note_precedence_bitwise_first)
15921 << BinaryOperator::getOpcodeStr(Opc),
15922 ParensRange);
15925 /// It accepts a '&&' expr that is inside a '||' one.
15926 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15927 /// in parentheses.
15928 static void
15929 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15930 BinaryOperator *Bop) {
15931 assert(Bop->getOpcode() == BO_LAnd);
15932 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15933 << Bop->getSourceRange() << OpLoc;
15934 SuggestParentheses(Self, Bop->getOperatorLoc(),
15935 Self.PDiag(diag::note_precedence_silence)
15936 << Bop->getOpcodeStr(),
15937 Bop->getSourceRange());
15940 /// Look for '&&' in the left hand of a '||' expr.
15941 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15942 Expr *LHSExpr, Expr *RHSExpr) {
15943 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15944 if (Bop->getOpcode() == BO_LAnd) {
15945 // If it's "string_literal && a || b" don't warn since the precedence
15946 // doesn't matter.
15947 if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15948 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15949 } else if (Bop->getOpcode() == BO_LOr) {
15950 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15951 // If it's "a || b && string_literal || c" we didn't warn earlier for
15952 // "a || b && string_literal", but warn now.
15953 if (RBop->getOpcode() == BO_LAnd &&
15954 isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15955 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15961 /// Look for '&&' in the right hand of a '||' expr.
15962 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15963 Expr *LHSExpr, Expr *RHSExpr) {
15964 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15965 if (Bop->getOpcode() == BO_LAnd) {
15966 // If it's "a || b && string_literal" don't warn since the precedence
15967 // doesn't matter.
15968 if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15969 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15974 /// Look for bitwise op in the left or right hand of a bitwise op with
15975 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15976 /// the '&' expression in parentheses.
15977 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15978 SourceLocation OpLoc, Expr *SubExpr) {
15979 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15980 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15981 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15982 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15983 << Bop->getSourceRange() << OpLoc;
15984 SuggestParentheses(S, Bop->getOperatorLoc(),
15985 S.PDiag(diag::note_precedence_silence)
15986 << Bop->getOpcodeStr(),
15987 Bop->getSourceRange());
15992 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15993 Expr *SubExpr, StringRef Shift) {
15994 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15995 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15996 StringRef Op = Bop->getOpcodeStr();
15997 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15998 << Bop->getSourceRange() << OpLoc << Shift << Op;
15999 SuggestParentheses(S, Bop->getOperatorLoc(),
16000 S.PDiag(diag::note_precedence_silence) << Op,
16001 Bop->getSourceRange());
16006 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
16007 Expr *LHSExpr, Expr *RHSExpr) {
16008 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
16009 if (!OCE)
16010 return;
16012 FunctionDecl *FD = OCE->getDirectCallee();
16013 if (!FD || !FD->isOverloadedOperator())
16014 return;
16016 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
16017 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
16018 return;
16020 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
16021 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
16022 << (Kind == OO_LessLess);
16023 SuggestParentheses(S, OCE->getOperatorLoc(),
16024 S.PDiag(diag::note_precedence_silence)
16025 << (Kind == OO_LessLess ? "<<" : ">>"),
16026 OCE->getSourceRange());
16027 SuggestParentheses(
16028 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
16029 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
16032 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
16033 /// precedence.
16034 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
16035 SourceLocation OpLoc, Expr *LHSExpr,
16036 Expr *RHSExpr){
16037 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
16038 if (BinaryOperator::isBitwiseOp(Opc))
16039 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
16041 // Diagnose "arg1 & arg2 | arg3"
16042 if ((Opc == BO_Or || Opc == BO_Xor) &&
16043 !OpLoc.isMacroID()/* Don't warn in macros. */) {
16044 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
16045 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
16048 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
16049 // We don't warn for 'assert(a || b && "bad")' since this is safe.
16050 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
16051 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
16052 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
16055 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
16056 || Opc == BO_Shr) {
16057 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
16058 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
16059 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
16062 // Warn on overloaded shift operators and comparisons, such as:
16063 // cout << 5 == 4;
16064 if (BinaryOperator::isComparisonOp(Opc))
16065 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
16068 // Binary Operators. 'Tok' is the token for the operator.
16069 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
16070 tok::TokenKind Kind,
16071 Expr *LHSExpr, Expr *RHSExpr) {
16072 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
16073 assert(LHSExpr && "ActOnBinOp(): missing left expression");
16074 assert(RHSExpr && "ActOnBinOp(): missing right expression");
16076 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
16077 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
16079 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
16082 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
16083 UnresolvedSetImpl &Functions) {
16084 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
16085 if (OverOp != OO_None && OverOp != OO_Equal)
16086 LookupOverloadedOperatorName(OverOp, S, Functions);
16088 // In C++20 onwards, we may have a second operator to look up.
16089 if (getLangOpts().CPlusPlus20) {
16090 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
16091 LookupOverloadedOperatorName(ExtraOp, S, Functions);
16095 /// Build an overloaded binary operator expression in the given scope.
16096 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
16097 BinaryOperatorKind Opc,
16098 Expr *LHS, Expr *RHS) {
16099 switch (Opc) {
16100 case BO_Assign:
16101 // In the non-overloaded case, we warn about self-assignment (x = x) for
16102 // both simple assignment and certain compound assignments where algebra
16103 // tells us the operation yields a constant result. When the operator is
16104 // overloaded, we can't do the latter because we don't want to assume that
16105 // those algebraic identities still apply; for example, a path-building
16106 // library might use operator/= to append paths. But it's still reasonable
16107 // to assume that simple assignment is just moving/copying values around
16108 // and so self-assignment is likely a bug.
16109 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
16110 [[fallthrough]];
16111 case BO_DivAssign:
16112 case BO_RemAssign:
16113 case BO_SubAssign:
16114 case BO_AndAssign:
16115 case BO_OrAssign:
16116 case BO_XorAssign:
16117 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
16118 break;
16119 default:
16120 break;
16123 // Find all of the overloaded operators visible from this point.
16124 UnresolvedSet<16> Functions;
16125 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
16127 // Build the (potentially-overloaded, potentially-dependent)
16128 // binary operation.
16129 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
16132 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
16133 BinaryOperatorKind Opc,
16134 Expr *LHSExpr, Expr *RHSExpr) {
16135 ExprResult LHS, RHS;
16136 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
16137 if (!LHS.isUsable() || !RHS.isUsable())
16138 return ExprError();
16139 LHSExpr = LHS.get();
16140 RHSExpr = RHS.get();
16142 // We want to end up calling one of checkPseudoObjectAssignment
16143 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
16144 // both expressions are overloadable or either is type-dependent),
16145 // or CreateBuiltinBinOp (in any other case). We also want to get
16146 // any placeholder types out of the way.
16148 // Handle pseudo-objects in the LHS.
16149 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
16150 // Assignments with a pseudo-object l-value need special analysis.
16151 if (pty->getKind() == BuiltinType::PseudoObject &&
16152 BinaryOperator::isAssignmentOp(Opc))
16153 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
16155 // Don't resolve overloads if the other type is overloadable.
16156 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
16157 // We can't actually test that if we still have a placeholder,
16158 // though. Fortunately, none of the exceptions we see in that
16159 // code below are valid when the LHS is an overload set. Note
16160 // that an overload set can be dependently-typed, but it never
16161 // instantiates to having an overloadable type.
16162 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16163 if (resolvedRHS.isInvalid()) return ExprError();
16164 RHSExpr = resolvedRHS.get();
16166 if (RHSExpr->isTypeDependent() ||
16167 RHSExpr->getType()->isOverloadableType())
16168 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16171 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
16172 // template, diagnose the missing 'template' keyword instead of diagnosing
16173 // an invalid use of a bound member function.
16175 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
16176 // to C++1z [over.over]/1.4, but we already checked for that case above.
16177 if (Opc == BO_LT && inTemplateInstantiation() &&
16178 (pty->getKind() == BuiltinType::BoundMember ||
16179 pty->getKind() == BuiltinType::Overload)) {
16180 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
16181 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
16182 llvm::any_of(OE->decls(), [](NamedDecl *ND) {
16183 return isa<FunctionTemplateDecl>(ND);
16184 })) {
16185 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
16186 : OE->getNameLoc(),
16187 diag::err_template_kw_missing)
16188 << OE->getName().getAsString() << "";
16189 return ExprError();
16193 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
16194 if (LHS.isInvalid()) return ExprError();
16195 LHSExpr = LHS.get();
16198 // Handle pseudo-objects in the RHS.
16199 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
16200 // An overload in the RHS can potentially be resolved by the type
16201 // being assigned to.
16202 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
16203 if (getLangOpts().CPlusPlus &&
16204 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
16205 LHSExpr->getType()->isOverloadableType()))
16206 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16208 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16211 // Don't resolve overloads if the other type is overloadable.
16212 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
16213 LHSExpr->getType()->isOverloadableType())
16214 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16216 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
16217 if (!resolvedRHS.isUsable()) return ExprError();
16218 RHSExpr = resolvedRHS.get();
16221 if (getLangOpts().CPlusPlus) {
16222 // If either expression is type-dependent, always build an
16223 // overloaded op.
16224 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
16225 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16227 // Otherwise, build an overloaded op if either expression has an
16228 // overloadable type.
16229 if (LHSExpr->getType()->isOverloadableType() ||
16230 RHSExpr->getType()->isOverloadableType())
16231 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
16234 if (getLangOpts().RecoveryAST &&
16235 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
16236 assert(!getLangOpts().CPlusPlus);
16237 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
16238 "Should only occur in error-recovery path.");
16239 if (BinaryOperator::isCompoundAssignmentOp(Opc))
16240 // C [6.15.16] p3:
16241 // An assignment expression has the value of the left operand after the
16242 // assignment, but is not an lvalue.
16243 return CompoundAssignOperator::Create(
16244 Context, LHSExpr, RHSExpr, Opc,
16245 LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
16246 OpLoc, CurFPFeatureOverrides());
16247 QualType ResultType;
16248 switch (Opc) {
16249 case BO_Assign:
16250 ResultType = LHSExpr->getType().getUnqualifiedType();
16251 break;
16252 case BO_LT:
16253 case BO_GT:
16254 case BO_LE:
16255 case BO_GE:
16256 case BO_EQ:
16257 case BO_NE:
16258 case BO_LAnd:
16259 case BO_LOr:
16260 // These operators have a fixed result type regardless of operands.
16261 ResultType = Context.IntTy;
16262 break;
16263 case BO_Comma:
16264 ResultType = RHSExpr->getType();
16265 break;
16266 default:
16267 ResultType = Context.DependentTy;
16268 break;
16270 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
16271 VK_PRValue, OK_Ordinary, OpLoc,
16272 CurFPFeatureOverrides());
16275 // Build a built-in binary operation.
16276 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
16279 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
16280 if (T.isNull() || T->isDependentType())
16281 return false;
16283 if (!Ctx.isPromotableIntegerType(T))
16284 return true;
16286 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
16289 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
16290 UnaryOperatorKind Opc, Expr *InputExpr,
16291 bool IsAfterAmp) {
16292 ExprResult Input = InputExpr;
16293 ExprValueKind VK = VK_PRValue;
16294 ExprObjectKind OK = OK_Ordinary;
16295 QualType resultType;
16296 bool CanOverflow = false;
16298 bool ConvertHalfVec = false;
16299 if (getLangOpts().OpenCL) {
16300 QualType Ty = InputExpr->getType();
16301 // The only legal unary operation for atomics is '&'.
16302 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
16303 // OpenCL special types - image, sampler, pipe, and blocks are to be used
16304 // only with a builtin functions and therefore should be disallowed here.
16305 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
16306 || Ty->isBlockPointerType())) {
16307 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16308 << InputExpr->getType()
16309 << Input.get()->getSourceRange());
16313 if (getLangOpts().HLSL && OpLoc.isValid()) {
16314 if (Opc == UO_AddrOf)
16315 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
16316 if (Opc == UO_Deref)
16317 return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
16320 switch (Opc) {
16321 case UO_PreInc:
16322 case UO_PreDec:
16323 case UO_PostInc:
16324 case UO_PostDec:
16325 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
16326 OpLoc,
16327 Opc == UO_PreInc ||
16328 Opc == UO_PostInc,
16329 Opc == UO_PreInc ||
16330 Opc == UO_PreDec);
16331 CanOverflow = isOverflowingIntegerType(Context, resultType);
16332 break;
16333 case UO_AddrOf:
16334 resultType = CheckAddressOfOperand(Input, OpLoc);
16335 CheckAddressOfNoDeref(InputExpr);
16336 RecordModifiableNonNullParam(*this, InputExpr);
16337 break;
16338 case UO_Deref: {
16339 Input = DefaultFunctionArrayLvalueConversion(Input.get());
16340 if (Input.isInvalid()) return ExprError();
16341 resultType =
16342 CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
16343 break;
16345 case UO_Plus:
16346 case UO_Minus:
16347 CanOverflow = Opc == UO_Minus &&
16348 isOverflowingIntegerType(Context, Input.get()->getType());
16349 Input = UsualUnaryConversions(Input.get());
16350 if (Input.isInvalid()) return ExprError();
16351 // Unary plus and minus require promoting an operand of half vector to a
16352 // float vector and truncating the result back to a half vector. For now, we
16353 // do this only when HalfArgsAndReturns is set (that is, when the target is
16354 // arm or arm64).
16355 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
16357 // If the operand is a half vector, promote it to a float vector.
16358 if (ConvertHalfVec)
16359 Input = convertVector(Input.get(), Context.FloatTy, *this);
16360 resultType = Input.get()->getType();
16361 if (resultType->isDependentType())
16362 break;
16363 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
16364 break;
16365 else if (resultType->isVectorType() &&
16366 // The z vector extensions don't allow + or - with bool vectors.
16367 (!Context.getLangOpts().ZVector ||
16368 resultType->castAs<VectorType>()->getVectorKind() !=
16369 VectorKind::AltiVecBool))
16370 break;
16371 else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
16372 break;
16373 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
16374 Opc == UO_Plus &&
16375 resultType->isPointerType())
16376 break;
16378 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16379 << resultType << Input.get()->getSourceRange());
16381 case UO_Not: // bitwise complement
16382 Input = UsualUnaryConversions(Input.get());
16383 if (Input.isInvalid())
16384 return ExprError();
16385 resultType = Input.get()->getType();
16386 if (resultType->isDependentType())
16387 break;
16388 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
16389 if (resultType->isComplexType() || resultType->isComplexIntegerType())
16390 // C99 does not support '~' for complex conjugation.
16391 Diag(OpLoc, diag::ext_integer_complement_complex)
16392 << resultType << Input.get()->getSourceRange();
16393 else if (resultType->hasIntegerRepresentation())
16394 break;
16395 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
16396 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
16397 // on vector float types.
16398 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16399 if (!T->isIntegerType())
16400 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16401 << resultType << Input.get()->getSourceRange());
16402 } else {
16403 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16404 << resultType << Input.get()->getSourceRange());
16406 break;
16408 case UO_LNot: // logical negation
16409 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
16410 Input = DefaultFunctionArrayLvalueConversion(Input.get());
16411 if (Input.isInvalid()) return ExprError();
16412 resultType = Input.get()->getType();
16414 // Though we still have to promote half FP to float...
16415 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
16416 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
16417 resultType = Context.FloatTy;
16420 // WebAsembly tables can't be used in unary expressions.
16421 if (resultType->isPointerType() &&
16422 resultType->getPointeeType().isWebAssemblyReferenceType()) {
16423 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16424 << resultType << Input.get()->getSourceRange());
16427 if (resultType->isDependentType())
16428 break;
16429 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
16430 // C99 6.5.3.3p1: ok, fallthrough;
16431 if (Context.getLangOpts().CPlusPlus) {
16432 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
16433 // operand contextually converted to bool.
16434 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
16435 ScalarTypeToBooleanCastKind(resultType));
16436 } else if (Context.getLangOpts().OpenCL &&
16437 Context.getLangOpts().OpenCLVersion < 120) {
16438 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16439 // operate on scalar float types.
16440 if (!resultType->isIntegerType() && !resultType->isPointerType())
16441 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16442 << resultType << Input.get()->getSourceRange());
16444 } else if (resultType->isExtVectorType()) {
16445 if (Context.getLangOpts().OpenCL &&
16446 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
16447 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
16448 // operate on vector float types.
16449 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
16450 if (!T->isIntegerType())
16451 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16452 << resultType << Input.get()->getSourceRange());
16454 // Vector logical not returns the signed variant of the operand type.
16455 resultType = GetSignedVectorType(resultType);
16456 break;
16457 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
16458 const VectorType *VTy = resultType->castAs<VectorType>();
16459 if (VTy->getVectorKind() != VectorKind::Generic)
16460 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16461 << resultType << Input.get()->getSourceRange());
16463 // Vector logical not returns the signed variant of the operand type.
16464 resultType = GetSignedVectorType(resultType);
16465 break;
16466 } else {
16467 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
16468 << resultType << Input.get()->getSourceRange());
16471 // LNot always has type int. C99 6.5.3.3p5.
16472 // In C++, it's bool. C++ 5.3.1p8
16473 resultType = Context.getLogicalOperationType();
16474 break;
16475 case UO_Real:
16476 case UO_Imag:
16477 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
16478 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
16479 // complex l-values to ordinary l-values and all other values to r-values.
16480 if (Input.isInvalid()) return ExprError();
16481 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
16482 if (Input.get()->isGLValue() &&
16483 Input.get()->getObjectKind() == OK_Ordinary)
16484 VK = Input.get()->getValueKind();
16485 } else if (!getLangOpts().CPlusPlus) {
16486 // In C, a volatile scalar is read by __imag. In C++, it is not.
16487 Input = DefaultLvalueConversion(Input.get());
16489 break;
16490 case UO_Extension:
16491 resultType = Input.get()->getType();
16492 VK = Input.get()->getValueKind();
16493 OK = Input.get()->getObjectKind();
16494 break;
16495 case UO_Coawait:
16496 // It's unnecessary to represent the pass-through operator co_await in the
16497 // AST; just return the input expression instead.
16498 assert(!Input.get()->getType()->isDependentType() &&
16499 "the co_await expression must be non-dependant before "
16500 "building operator co_await");
16501 return Input;
16503 if (resultType.isNull() || Input.isInvalid())
16504 return ExprError();
16506 // Check for array bounds violations in the operand of the UnaryOperator,
16507 // except for the '*' and '&' operators that have to be handled specially
16508 // by CheckArrayAccess (as there are special cases like &array[arraysize]
16509 // that are explicitly defined as valid by the standard).
16510 if (Opc != UO_AddrOf && Opc != UO_Deref)
16511 CheckArrayAccess(Input.get());
16513 auto *UO =
16514 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16515 OpLoc, CanOverflow, CurFPFeatureOverrides());
16517 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16518 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16519 !isUnevaluatedContext())
16520 ExprEvalContexts.back().PossibleDerefs.insert(UO);
16522 // Convert the result back to a half vector.
16523 if (ConvertHalfVec)
16524 return convertVector(UO, Context.HalfTy, *this);
16525 return UO;
16528 /// Determine whether the given expression is a qualified member
16529 /// access expression, of a form that could be turned into a pointer to member
16530 /// with the address-of operator.
16531 bool Sema::isQualifiedMemberAccess(Expr *E) {
16532 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16533 if (!DRE->getQualifier())
16534 return false;
16536 ValueDecl *VD = DRE->getDecl();
16537 if (!VD->isCXXClassMember())
16538 return false;
16540 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16541 return true;
16542 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16543 return Method->isImplicitObjectMemberFunction();
16545 return false;
16548 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16549 if (!ULE->getQualifier())
16550 return false;
16552 for (NamedDecl *D : ULE->decls()) {
16553 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16554 if (Method->isImplicitObjectMemberFunction())
16555 return true;
16556 } else {
16557 // Overload set does not contain methods.
16558 break;
16562 return false;
16565 return false;
16568 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16569 UnaryOperatorKind Opc, Expr *Input,
16570 bool IsAfterAmp) {
16571 // First things first: handle placeholders so that the
16572 // overloaded-operator check considers the right type.
16573 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16574 // Increment and decrement of pseudo-object references.
16575 if (pty->getKind() == BuiltinType::PseudoObject &&
16576 UnaryOperator::isIncrementDecrementOp(Opc))
16577 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16579 // extension is always a builtin operator.
16580 if (Opc == UO_Extension)
16581 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16583 // & gets special logic for several kinds of placeholder.
16584 // The builtin code knows what to do.
16585 if (Opc == UO_AddrOf &&
16586 (pty->getKind() == BuiltinType::Overload ||
16587 pty->getKind() == BuiltinType::UnknownAny ||
16588 pty->getKind() == BuiltinType::BoundMember))
16589 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16591 // Anything else needs to be handled now.
16592 ExprResult Result = CheckPlaceholderExpr(Input);
16593 if (Result.isInvalid()) return ExprError();
16594 Input = Result.get();
16597 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16598 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16599 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16600 // Find all of the overloaded operators visible from this point.
16601 UnresolvedSet<16> Functions;
16602 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16603 if (S && OverOp != OO_None)
16604 LookupOverloadedOperatorName(OverOp, S, Functions);
16606 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16609 return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16612 // Unary Operators. 'Tok' is the token for the operator.
16613 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16614 Expr *Input, bool IsAfterAmp) {
16615 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16616 IsAfterAmp);
16619 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16620 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16621 LabelDecl *TheDecl) {
16622 TheDecl->markUsed(Context);
16623 // Create the AST node. The address of a label always has type 'void*'.
16624 auto *Res = new (Context) AddrLabelExpr(
16625 OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16627 if (getCurFunction())
16628 getCurFunction()->AddrLabels.push_back(Res);
16630 return Res;
16633 void Sema::ActOnStartStmtExpr() {
16634 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16635 // Make sure we diagnose jumping into a statement expression.
16636 setFunctionHasBranchProtectedScope();
16639 void Sema::ActOnStmtExprError() {
16640 // Note that function is also called by TreeTransform when leaving a
16641 // StmtExpr scope without rebuilding anything.
16643 DiscardCleanupsInEvaluationContext();
16644 PopExpressionEvaluationContext();
16647 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16648 SourceLocation RPLoc) {
16649 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16652 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16653 SourceLocation RPLoc, unsigned TemplateDepth) {
16654 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16655 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16657 if (hasAnyUnrecoverableErrorsInThisFunction())
16658 DiscardCleanupsInEvaluationContext();
16659 assert(!Cleanup.exprNeedsCleanups() &&
16660 "cleanups within StmtExpr not correctly bound!");
16661 PopExpressionEvaluationContext();
16663 // FIXME: there are a variety of strange constraints to enforce here, for
16664 // example, it is not possible to goto into a stmt expression apparently.
16665 // More semantic analysis is needed.
16667 // If there are sub-stmts in the compound stmt, take the type of the last one
16668 // as the type of the stmtexpr.
16669 QualType Ty = Context.VoidTy;
16670 bool StmtExprMayBindToTemp = false;
16671 if (!Compound->body_empty()) {
16672 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16673 if (const auto *LastStmt =
16674 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16675 if (const Expr *Value = LastStmt->getExprStmt()) {
16676 StmtExprMayBindToTemp = true;
16677 Ty = Value->getType();
16682 // FIXME: Check that expression type is complete/non-abstract; statement
16683 // expressions are not lvalues.
16684 Expr *ResStmtExpr =
16685 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16686 if (StmtExprMayBindToTemp)
16687 return MaybeBindToTemporary(ResStmtExpr);
16688 return ResStmtExpr;
16691 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16692 if (ER.isInvalid())
16693 return ExprError();
16695 // Do function/array conversion on the last expression, but not
16696 // lvalue-to-rvalue. However, initialize an unqualified type.
16697 ER = DefaultFunctionArrayConversion(ER.get());
16698 if (ER.isInvalid())
16699 return ExprError();
16700 Expr *E = ER.get();
16702 if (E->isTypeDependent())
16703 return E;
16705 // In ARC, if the final expression ends in a consume, splice
16706 // the consume out and bind it later. In the alternate case
16707 // (when dealing with a retainable type), the result
16708 // initialization will create a produce. In both cases the
16709 // result will be +1, and we'll need to balance that out with
16710 // a bind.
16711 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16712 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16713 return Cast->getSubExpr();
16715 // FIXME: Provide a better location for the initialization.
16716 return PerformCopyInitialization(
16717 InitializedEntity::InitializeStmtExprResult(
16718 E->getBeginLoc(), E->getType().getUnqualifiedType()),
16719 SourceLocation(), E);
16722 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16723 TypeSourceInfo *TInfo,
16724 ArrayRef<OffsetOfComponent> Components,
16725 SourceLocation RParenLoc) {
16726 QualType ArgTy = TInfo->getType();
16727 bool Dependent = ArgTy->isDependentType();
16728 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16730 // We must have at least one component that refers to the type, and the first
16731 // one is known to be a field designator. Verify that the ArgTy represents
16732 // a struct/union/class.
16733 if (!Dependent && !ArgTy->isRecordType())
16734 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16735 << ArgTy << TypeRange);
16737 // Type must be complete per C99 7.17p3 because a declaring a variable
16738 // with an incomplete type would be ill-formed.
16739 if (!Dependent
16740 && RequireCompleteType(BuiltinLoc, ArgTy,
16741 diag::err_offsetof_incomplete_type, TypeRange))
16742 return ExprError();
16744 bool DidWarnAboutNonPOD = false;
16745 QualType CurrentType = ArgTy;
16746 SmallVector<OffsetOfNode, 4> Comps;
16747 SmallVector<Expr*, 4> Exprs;
16748 for (const OffsetOfComponent &OC : Components) {
16749 if (OC.isBrackets) {
16750 // Offset of an array sub-field. TODO: Should we allow vector elements?
16751 if (!CurrentType->isDependentType()) {
16752 const ArrayType *AT = Context.getAsArrayType(CurrentType);
16753 if(!AT)
16754 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16755 << CurrentType);
16756 CurrentType = AT->getElementType();
16757 } else
16758 CurrentType = Context.DependentTy;
16760 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16761 if (IdxRval.isInvalid())
16762 return ExprError();
16763 Expr *Idx = IdxRval.get();
16765 // The expression must be an integral expression.
16766 // FIXME: An integral constant expression?
16767 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16768 !Idx->getType()->isIntegerType())
16769 return ExprError(
16770 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16771 << Idx->getSourceRange());
16773 // Record this array index.
16774 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16775 Exprs.push_back(Idx);
16776 continue;
16779 // Offset of a field.
16780 if (CurrentType->isDependentType()) {
16781 // We have the offset of a field, but we can't look into the dependent
16782 // type. Just record the identifier of the field.
16783 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16784 CurrentType = Context.DependentTy;
16785 continue;
16788 // We need to have a complete type to look into.
16789 if (RequireCompleteType(OC.LocStart, CurrentType,
16790 diag::err_offsetof_incomplete_type))
16791 return ExprError();
16793 // Look for the designated field.
16794 const RecordType *RC = CurrentType->getAs<RecordType>();
16795 if (!RC)
16796 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16797 << CurrentType);
16798 RecordDecl *RD = RC->getDecl();
16800 // C++ [lib.support.types]p5:
16801 // The macro offsetof accepts a restricted set of type arguments in this
16802 // International Standard. type shall be a POD structure or a POD union
16803 // (clause 9).
16804 // C++11 [support.types]p4:
16805 // If type is not a standard-layout class (Clause 9), the results are
16806 // undefined.
16807 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16808 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16809 unsigned DiagID =
16810 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16811 : diag::ext_offsetof_non_pod_type;
16813 if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
16814 Diag(BuiltinLoc, DiagID)
16815 << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
16816 DidWarnAboutNonPOD = true;
16820 // Look for the field.
16821 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16822 LookupQualifiedName(R, RD);
16823 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16824 IndirectFieldDecl *IndirectMemberDecl = nullptr;
16825 if (!MemberDecl) {
16826 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16827 MemberDecl = IndirectMemberDecl->getAnonField();
16830 if (!MemberDecl) {
16831 // Lookup could be ambiguous when looking up a placeholder variable
16832 // __builtin_offsetof(S, _).
16833 // In that case we would already have emitted a diagnostic
16834 if (!R.isAmbiguous())
16835 Diag(BuiltinLoc, diag::err_no_member)
16836 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
16837 return ExprError();
16840 // C99 7.17p3:
16841 // (If the specified member is a bit-field, the behavior is undefined.)
16843 // We diagnose this as an error.
16844 if (MemberDecl->isBitField()) {
16845 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16846 << MemberDecl->getDeclName()
16847 << SourceRange(BuiltinLoc, RParenLoc);
16848 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16849 return ExprError();
16852 RecordDecl *Parent = MemberDecl->getParent();
16853 if (IndirectMemberDecl)
16854 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16856 // If the member was found in a base class, introduce OffsetOfNodes for
16857 // the base class indirections.
16858 CXXBasePaths Paths;
16859 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16860 Paths)) {
16861 if (Paths.getDetectedVirtual()) {
16862 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16863 << MemberDecl->getDeclName()
16864 << SourceRange(BuiltinLoc, RParenLoc);
16865 return ExprError();
16868 CXXBasePath &Path = Paths.front();
16869 for (const CXXBasePathElement &B : Path)
16870 Comps.push_back(OffsetOfNode(B.Base));
16873 if (IndirectMemberDecl) {
16874 for (auto *FI : IndirectMemberDecl->chain()) {
16875 assert(isa<FieldDecl>(FI));
16876 Comps.push_back(OffsetOfNode(OC.LocStart,
16877 cast<FieldDecl>(FI), OC.LocEnd));
16879 } else
16880 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16882 CurrentType = MemberDecl->getType().getNonReferenceType();
16885 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16886 Comps, Exprs, RParenLoc);
16889 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16890 SourceLocation BuiltinLoc,
16891 SourceLocation TypeLoc,
16892 ParsedType ParsedArgTy,
16893 ArrayRef<OffsetOfComponent> Components,
16894 SourceLocation RParenLoc) {
16896 TypeSourceInfo *ArgTInfo;
16897 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16898 if (ArgTy.isNull())
16899 return ExprError();
16901 if (!ArgTInfo)
16902 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16904 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16908 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16909 Expr *CondExpr,
16910 Expr *LHSExpr, Expr *RHSExpr,
16911 SourceLocation RPLoc) {
16912 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16914 ExprValueKind VK = VK_PRValue;
16915 ExprObjectKind OK = OK_Ordinary;
16916 QualType resType;
16917 bool CondIsTrue = false;
16918 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16919 resType = Context.DependentTy;
16920 } else {
16921 // The conditional expression is required to be a constant expression.
16922 llvm::APSInt condEval(32);
16923 ExprResult CondICE = VerifyIntegerConstantExpression(
16924 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16925 if (CondICE.isInvalid())
16926 return ExprError();
16927 CondExpr = CondICE.get();
16928 CondIsTrue = condEval.getZExtValue();
16930 // If the condition is > zero, then the AST type is the same as the LHSExpr.
16931 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16933 resType = ActiveExpr->getType();
16934 VK = ActiveExpr->getValueKind();
16935 OK = ActiveExpr->getObjectKind();
16938 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16939 resType, VK, OK, RPLoc, CondIsTrue);
16942 //===----------------------------------------------------------------------===//
16943 // Clang Extensions.
16944 //===----------------------------------------------------------------------===//
16946 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16947 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16948 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16950 if (LangOpts.CPlusPlus) {
16951 MangleNumberingContext *MCtx;
16952 Decl *ManglingContextDecl;
16953 std::tie(MCtx, ManglingContextDecl) =
16954 getCurrentMangleNumberContext(Block->getDeclContext());
16955 if (MCtx) {
16956 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16957 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16961 PushBlockScope(CurScope, Block);
16962 CurContext->addDecl(Block);
16963 if (CurScope)
16964 PushDeclContext(CurScope, Block);
16965 else
16966 CurContext = Block;
16968 getCurBlock()->HasImplicitReturnType = true;
16970 // Enter a new evaluation context to insulate the block from any
16971 // cleanups from the enclosing full-expression.
16972 PushExpressionEvaluationContext(
16973 ExpressionEvaluationContext::PotentiallyEvaluated);
16976 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16977 Scope *CurScope) {
16978 assert(ParamInfo.getIdentifier() == nullptr &&
16979 "block-id should have no identifier!");
16980 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16981 BlockScopeInfo *CurBlock = getCurBlock();
16983 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16984 QualType T = Sig->getType();
16986 // FIXME: We should allow unexpanded parameter packs here, but that would,
16987 // in turn, make the block expression contain unexpanded parameter packs.
16988 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16989 // Drop the parameters.
16990 FunctionProtoType::ExtProtoInfo EPI;
16991 EPI.HasTrailingReturn = false;
16992 EPI.TypeQuals.addConst();
16993 T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
16994 Sig = Context.getTrivialTypeSourceInfo(T);
16997 // GetTypeForDeclarator always produces a function type for a block
16998 // literal signature. Furthermore, it is always a FunctionProtoType
16999 // unless the function was written with a typedef.
17000 assert(T->isFunctionType() &&
17001 "GetTypeForDeclarator made a non-function block signature");
17003 // Look for an explicit signature in that function type.
17004 FunctionProtoTypeLoc ExplicitSignature;
17006 if ((ExplicitSignature = Sig->getTypeLoc()
17007 .getAsAdjusted<FunctionProtoTypeLoc>())) {
17009 // Check whether that explicit signature was synthesized by
17010 // GetTypeForDeclarator. If so, don't save that as part of the
17011 // written signature.
17012 if (ExplicitSignature.getLocalRangeBegin() ==
17013 ExplicitSignature.getLocalRangeEnd()) {
17014 // This would be much cheaper if we stored TypeLocs instead of
17015 // TypeSourceInfos.
17016 TypeLoc Result = ExplicitSignature.getReturnLoc();
17017 unsigned Size = Result.getFullDataSize();
17018 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
17019 Sig->getTypeLoc().initializeFullCopy(Result, Size);
17021 ExplicitSignature = FunctionProtoTypeLoc();
17025 CurBlock->TheDecl->setSignatureAsWritten(Sig);
17026 CurBlock->FunctionType = T;
17028 const auto *Fn = T->castAs<FunctionType>();
17029 QualType RetTy = Fn->getReturnType();
17030 bool isVariadic =
17031 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
17033 CurBlock->TheDecl->setIsVariadic(isVariadic);
17035 // Context.DependentTy is used as a placeholder for a missing block
17036 // return type. TODO: what should we do with declarators like:
17037 // ^ * { ... }
17038 // If the answer is "apply template argument deduction"....
17039 if (RetTy != Context.DependentTy) {
17040 CurBlock->ReturnType = RetTy;
17041 CurBlock->TheDecl->setBlockMissingReturnType(false);
17042 CurBlock->HasImplicitReturnType = false;
17045 // Push block parameters from the declarator if we had them.
17046 SmallVector<ParmVarDecl*, 8> Params;
17047 if (ExplicitSignature) {
17048 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
17049 ParmVarDecl *Param = ExplicitSignature.getParam(I);
17050 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
17051 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
17052 // Diagnose this as an extension in C17 and earlier.
17053 if (!getLangOpts().C23)
17054 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
17056 Params.push_back(Param);
17059 // Fake up parameter variables if we have a typedef, like
17060 // ^ fntype { ... }
17061 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
17062 for (const auto &I : Fn->param_types()) {
17063 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
17064 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
17065 Params.push_back(Param);
17069 // Set the parameters on the block decl.
17070 if (!Params.empty()) {
17071 CurBlock->TheDecl->setParams(Params);
17072 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
17073 /*CheckParameterNames=*/false);
17076 // Finally we can process decl attributes.
17077 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
17079 // Put the parameter variables in scope.
17080 for (auto *AI : CurBlock->TheDecl->parameters()) {
17081 AI->setOwningFunction(CurBlock->TheDecl);
17083 // If this has an identifier, add it to the scope stack.
17084 if (AI->getIdentifier()) {
17085 CheckShadow(CurBlock->TheScope, AI);
17087 PushOnScopeChains(AI, CurBlock->TheScope);
17090 if (AI->isInvalidDecl())
17091 CurBlock->TheDecl->setInvalidDecl();
17095 /// ActOnBlockError - If there is an error parsing a block, this callback
17096 /// is invoked to pop the information about the block from the action impl.
17097 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
17098 // Leave the expression-evaluation context.
17099 DiscardCleanupsInEvaluationContext();
17100 PopExpressionEvaluationContext();
17102 // Pop off CurBlock, handle nested blocks.
17103 PopDeclContext();
17104 PopFunctionScopeInfo();
17107 /// ActOnBlockStmtExpr - This is called when the body of a block statement
17108 /// literal was successfully completed. ^(int x){...}
17109 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
17110 Stmt *Body, Scope *CurScope) {
17111 // If blocks are disabled, emit an error.
17112 if (!LangOpts.Blocks)
17113 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
17115 // Leave the expression-evaluation context.
17116 if (hasAnyUnrecoverableErrorsInThisFunction())
17117 DiscardCleanupsInEvaluationContext();
17118 assert(!Cleanup.exprNeedsCleanups() &&
17119 "cleanups within block not correctly bound!");
17120 PopExpressionEvaluationContext();
17122 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
17123 BlockDecl *BD = BSI->TheDecl;
17125 if (BSI->HasImplicitReturnType)
17126 deduceClosureReturnType(*BSI);
17128 QualType RetTy = Context.VoidTy;
17129 if (!BSI->ReturnType.isNull())
17130 RetTy = BSI->ReturnType;
17132 bool NoReturn = BD->hasAttr<NoReturnAttr>();
17133 QualType BlockTy;
17135 // If the user wrote a function type in some form, try to use that.
17136 if (!BSI->FunctionType.isNull()) {
17137 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
17139 FunctionType::ExtInfo Ext = FTy->getExtInfo();
17140 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
17142 // Turn protoless block types into nullary block types.
17143 if (isa<FunctionNoProtoType>(FTy)) {
17144 FunctionProtoType::ExtProtoInfo EPI;
17145 EPI.ExtInfo = Ext;
17146 BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17148 // Otherwise, if we don't need to change anything about the function type,
17149 // preserve its sugar structure.
17150 } else if (FTy->getReturnType() == RetTy &&
17151 (!NoReturn || FTy->getNoReturnAttr())) {
17152 BlockTy = BSI->FunctionType;
17154 // Otherwise, make the minimal modifications to the function type.
17155 } else {
17156 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
17157 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
17158 EPI.TypeQuals = Qualifiers();
17159 EPI.ExtInfo = Ext;
17160 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
17163 // If we don't have a function type, just build one from nothing.
17164 } else {
17165 FunctionProtoType::ExtProtoInfo EPI;
17166 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
17167 BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
17170 DiagnoseUnusedParameters(BD->parameters());
17171 BlockTy = Context.getBlockPointerType(BlockTy);
17173 // If needed, diagnose invalid gotos and switches in the block.
17174 if (getCurFunction()->NeedsScopeChecking() &&
17175 !PP.isCodeCompletionEnabled())
17176 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
17178 BD->setBody(cast<CompoundStmt>(Body));
17180 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
17181 DiagnoseUnguardedAvailabilityViolations(BD);
17183 // Try to apply the named return value optimization. We have to check again
17184 // if we can do this, though, because blocks keep return statements around
17185 // to deduce an implicit return type.
17186 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
17187 !BD->isDependentContext())
17188 computeNRVO(Body, BSI);
17190 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
17191 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
17192 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
17193 NTCUK_Destruct|NTCUK_Copy);
17195 PopDeclContext();
17197 // Set the captured variables on the block.
17198 SmallVector<BlockDecl::Capture, 4> Captures;
17199 for (Capture &Cap : BSI->Captures) {
17200 if (Cap.isInvalid() || Cap.isThisCapture())
17201 continue;
17202 // Cap.getVariable() is always a VarDecl because
17203 // blocks cannot capture structured bindings or other ValueDecl kinds.
17204 auto *Var = cast<VarDecl>(Cap.getVariable());
17205 Expr *CopyExpr = nullptr;
17206 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
17207 if (const RecordType *Record =
17208 Cap.getCaptureType()->getAs<RecordType>()) {
17209 // The capture logic needs the destructor, so make sure we mark it.
17210 // Usually this is unnecessary because most local variables have
17211 // their destructors marked at declaration time, but parameters are
17212 // an exception because it's technically only the call site that
17213 // actually requires the destructor.
17214 if (isa<ParmVarDecl>(Var))
17215 FinalizeVarWithDestructor(Var, Record);
17217 // Enter a separate potentially-evaluated context while building block
17218 // initializers to isolate their cleanups from those of the block
17219 // itself.
17220 // FIXME: Is this appropriate even when the block itself occurs in an
17221 // unevaluated operand?
17222 EnterExpressionEvaluationContext EvalContext(
17223 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
17225 SourceLocation Loc = Cap.getLocation();
17227 ExprResult Result = BuildDeclarationNameExpr(
17228 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
17230 // According to the blocks spec, the capture of a variable from
17231 // the stack requires a const copy constructor. This is not true
17232 // of the copy/move done to move a __block variable to the heap.
17233 if (!Result.isInvalid() &&
17234 !Result.get()->getType().isConstQualified()) {
17235 Result = ImpCastExprToType(Result.get(),
17236 Result.get()->getType().withConst(),
17237 CK_NoOp, VK_LValue);
17240 if (!Result.isInvalid()) {
17241 Result = PerformCopyInitialization(
17242 InitializedEntity::InitializeBlock(Var->getLocation(),
17243 Cap.getCaptureType()),
17244 Loc, Result.get());
17247 // Build a full-expression copy expression if initialization
17248 // succeeded and used a non-trivial constructor. Recover from
17249 // errors by pretending that the copy isn't necessary.
17250 if (!Result.isInvalid() &&
17251 !cast<CXXConstructExpr>(Result.get())->getConstructor()
17252 ->isTrivial()) {
17253 Result = MaybeCreateExprWithCleanups(Result);
17254 CopyExpr = Result.get();
17259 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
17260 CopyExpr);
17261 Captures.push_back(NewCap);
17263 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
17265 // Pop the block scope now but keep it alive to the end of this function.
17266 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
17267 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
17269 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
17271 // If the block isn't obviously global, i.e. it captures anything at
17272 // all, then we need to do a few things in the surrounding context:
17273 if (Result->getBlockDecl()->hasCaptures()) {
17274 // First, this expression has a new cleanup object.
17275 ExprCleanupObjects.push_back(Result->getBlockDecl());
17276 Cleanup.setExprNeedsCleanups(true);
17278 // It also gets a branch-protected scope if any of the captured
17279 // variables needs destruction.
17280 for (const auto &CI : Result->getBlockDecl()->captures()) {
17281 const VarDecl *var = CI.getVariable();
17282 if (var->getType().isDestructedType() != QualType::DK_none) {
17283 setFunctionHasBranchProtectedScope();
17284 break;
17289 if (getCurFunction())
17290 getCurFunction()->addBlock(BD);
17292 if (BD->isInvalidDecl())
17293 return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
17294 {Result}, Result->getType());
17295 return Result;
17298 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
17299 SourceLocation RPLoc) {
17300 TypeSourceInfo *TInfo;
17301 GetTypeFromParser(Ty, &TInfo);
17302 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
17305 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
17306 Expr *E, TypeSourceInfo *TInfo,
17307 SourceLocation RPLoc) {
17308 Expr *OrigExpr = E;
17309 bool IsMS = false;
17311 // CUDA device code does not support varargs.
17312 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
17313 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
17314 CUDAFunctionTarget T = IdentifyCUDATarget(F);
17315 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
17316 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
17320 // NVPTX does not support va_arg expression.
17321 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
17322 Context.getTargetInfo().getTriple().isNVPTX())
17323 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
17325 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
17326 // as Microsoft ABI on an actual Microsoft platform, where
17327 // __builtin_ms_va_list and __builtin_va_list are the same.)
17328 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
17329 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
17330 QualType MSVaListType = Context.getBuiltinMSVaListType();
17331 if (Context.hasSameType(MSVaListType, E->getType())) {
17332 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
17333 return ExprError();
17334 IsMS = true;
17338 // Get the va_list type
17339 QualType VaListType = Context.getBuiltinVaListType();
17340 if (!IsMS) {
17341 if (VaListType->isArrayType()) {
17342 // Deal with implicit array decay; for example, on x86-64,
17343 // va_list is an array, but it's supposed to decay to
17344 // a pointer for va_arg.
17345 VaListType = Context.getArrayDecayedType(VaListType);
17346 // Make sure the input expression also decays appropriately.
17347 ExprResult Result = UsualUnaryConversions(E);
17348 if (Result.isInvalid())
17349 return ExprError();
17350 E = Result.get();
17351 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
17352 // If va_list is a record type and we are compiling in C++ mode,
17353 // check the argument using reference binding.
17354 InitializedEntity Entity = InitializedEntity::InitializeParameter(
17355 Context, Context.getLValueReferenceType(VaListType), false);
17356 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
17357 if (Init.isInvalid())
17358 return ExprError();
17359 E = Init.getAs<Expr>();
17360 } else {
17361 // Otherwise, the va_list argument must be an l-value because
17362 // it is modified by va_arg.
17363 if (!E->isTypeDependent() &&
17364 CheckForModifiableLvalue(E, BuiltinLoc, *this))
17365 return ExprError();
17369 if (!IsMS && !E->isTypeDependent() &&
17370 !Context.hasSameType(VaListType, E->getType()))
17371 return ExprError(
17372 Diag(E->getBeginLoc(),
17373 diag::err_first_argument_to_va_arg_not_of_type_va_list)
17374 << OrigExpr->getType() << E->getSourceRange());
17376 if (!TInfo->getType()->isDependentType()) {
17377 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
17378 diag::err_second_parameter_to_va_arg_incomplete,
17379 TInfo->getTypeLoc()))
17380 return ExprError();
17382 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
17383 TInfo->getType(),
17384 diag::err_second_parameter_to_va_arg_abstract,
17385 TInfo->getTypeLoc()))
17386 return ExprError();
17388 if (!TInfo->getType().isPODType(Context)) {
17389 Diag(TInfo->getTypeLoc().getBeginLoc(),
17390 TInfo->getType()->isObjCLifetimeType()
17391 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
17392 : diag::warn_second_parameter_to_va_arg_not_pod)
17393 << TInfo->getType()
17394 << TInfo->getTypeLoc().getSourceRange();
17397 // Check for va_arg where arguments of the given type will be promoted
17398 // (i.e. this va_arg is guaranteed to have undefined behavior).
17399 QualType PromoteType;
17400 if (Context.isPromotableIntegerType(TInfo->getType())) {
17401 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
17402 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
17403 // and C23 7.16.1.1p2 says, in part:
17404 // If type is not compatible with the type of the actual next argument
17405 // (as promoted according to the default argument promotions), the
17406 // behavior is undefined, except for the following cases:
17407 // - both types are pointers to qualified or unqualified versions of
17408 // compatible types;
17409 // - one type is compatible with a signed integer type, the other
17410 // type is compatible with the corresponding unsigned integer type,
17411 // and the value is representable in both types;
17412 // - one type is pointer to qualified or unqualified void and the
17413 // other is a pointer to a qualified or unqualified character type;
17414 // - or, the type of the next argument is nullptr_t and type is a
17415 // pointer type that has the same representation and alignment
17416 // requirements as a pointer to a character type.
17417 // Given that type compatibility is the primary requirement (ignoring
17418 // qualifications), you would think we could call typesAreCompatible()
17419 // directly to test this. However, in C++, that checks for *same type*,
17420 // which causes false positives when passing an enumeration type to
17421 // va_arg. Instead, get the underlying type of the enumeration and pass
17422 // that.
17423 QualType UnderlyingType = TInfo->getType();
17424 if (const auto *ET = UnderlyingType->getAs<EnumType>())
17425 UnderlyingType = ET->getDecl()->getIntegerType();
17426 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17427 /*CompareUnqualified*/ true))
17428 PromoteType = QualType();
17430 // If the types are still not compatible, we need to test whether the
17431 // promoted type and the underlying type are the same except for
17432 // signedness. Ask the AST for the correctly corresponding type and see
17433 // if that's compatible.
17434 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
17435 PromoteType->isUnsignedIntegerType() !=
17436 UnderlyingType->isUnsignedIntegerType()) {
17437 UnderlyingType =
17438 UnderlyingType->isUnsignedIntegerType()
17439 ? Context.getCorrespondingSignedType(UnderlyingType)
17440 : Context.getCorrespondingUnsignedType(UnderlyingType);
17441 if (Context.typesAreCompatible(PromoteType, UnderlyingType,
17442 /*CompareUnqualified*/ true))
17443 PromoteType = QualType();
17446 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
17447 PromoteType = Context.DoubleTy;
17448 if (!PromoteType.isNull())
17449 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
17450 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
17451 << TInfo->getType()
17452 << PromoteType
17453 << TInfo->getTypeLoc().getSourceRange());
17456 QualType T = TInfo->getType().getNonLValueExprType(Context);
17457 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
17460 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
17461 // The type of __null will be int or long, depending on the size of
17462 // pointers on the target.
17463 QualType Ty;
17464 unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
17465 if (pw == Context.getTargetInfo().getIntWidth())
17466 Ty = Context.IntTy;
17467 else if (pw == Context.getTargetInfo().getLongWidth())
17468 Ty = Context.LongTy;
17469 else if (pw == Context.getTargetInfo().getLongLongWidth())
17470 Ty = Context.LongLongTy;
17471 else {
17472 llvm_unreachable("I don't know size of pointer!");
17475 return new (Context) GNUNullExpr(Ty, TokenLoc);
17478 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
17479 CXXRecordDecl *ImplDecl = nullptr;
17481 // Fetch the std::source_location::__impl decl.
17482 if (NamespaceDecl *Std = S.getStdNamespace()) {
17483 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
17484 Loc, Sema::LookupOrdinaryName);
17485 if (S.LookupQualifiedName(ResultSL, Std)) {
17486 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
17487 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
17488 Loc, Sema::LookupOrdinaryName);
17489 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
17490 S.LookupQualifiedName(ResultImpl, SLDecl)) {
17491 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
17497 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
17498 S.Diag(Loc, diag::err_std_source_location_impl_not_found);
17499 return nullptr;
17502 // Verify that __impl is a trivial struct type, with no base classes, and with
17503 // only the four expected fields.
17504 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
17505 ImplDecl->getNumBases() != 0) {
17506 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17507 return nullptr;
17510 unsigned Count = 0;
17511 for (FieldDecl *F : ImplDecl->fields()) {
17512 StringRef Name = F->getName();
17514 if (Name == "_M_file_name") {
17515 if (F->getType() !=
17516 S.Context.getPointerType(S.Context.CharTy.withConst()))
17517 break;
17518 Count++;
17519 } else if (Name == "_M_function_name") {
17520 if (F->getType() !=
17521 S.Context.getPointerType(S.Context.CharTy.withConst()))
17522 break;
17523 Count++;
17524 } else if (Name == "_M_line") {
17525 if (!F->getType()->isIntegerType())
17526 break;
17527 Count++;
17528 } else if (Name == "_M_column") {
17529 if (!F->getType()->isIntegerType())
17530 break;
17531 Count++;
17532 } else {
17533 Count = 100; // invalid
17534 break;
17537 if (Count != 4) {
17538 S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17539 return nullptr;
17542 return ImplDecl;
17545 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
17546 SourceLocation BuiltinLoc,
17547 SourceLocation RPLoc) {
17548 QualType ResultTy;
17549 switch (Kind) {
17550 case SourceLocExpr::File:
17551 case SourceLocExpr::FileName:
17552 case SourceLocExpr::Function:
17553 case SourceLocExpr::FuncSig: {
17554 QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17555 ResultTy =
17556 Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17557 break;
17559 case SourceLocExpr::Line:
17560 case SourceLocExpr::Column:
17561 ResultTy = Context.UnsignedIntTy;
17562 break;
17563 case SourceLocExpr::SourceLocStruct:
17564 if (!StdSourceLocationImplDecl) {
17565 StdSourceLocationImplDecl =
17566 LookupStdSourceLocationImpl(*this, BuiltinLoc);
17567 if (!StdSourceLocationImplDecl)
17568 return ExprError();
17570 ResultTy = Context.getPointerType(
17571 Context.getRecordType(StdSourceLocationImplDecl).withConst());
17572 break;
17575 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17578 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
17579 QualType ResultTy,
17580 SourceLocation BuiltinLoc,
17581 SourceLocation RPLoc,
17582 DeclContext *ParentContext) {
17583 return new (Context)
17584 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17587 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17588 bool Diagnose) {
17589 if (!getLangOpts().ObjC)
17590 return false;
17592 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17593 if (!PT)
17594 return false;
17595 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17597 // Ignore any parens, implicit casts (should only be
17598 // array-to-pointer decays), and not-so-opaque values. The last is
17599 // important for making this trigger for property assignments.
17600 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17601 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17602 if (OV->getSourceExpr())
17603 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17605 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17606 if (!PT->isObjCIdType() &&
17607 !(ID && ID->getIdentifier()->isStr("NSString")))
17608 return false;
17609 if (!SL->isOrdinary())
17610 return false;
17612 if (Diagnose) {
17613 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17614 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17615 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17617 return true;
17620 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17621 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17622 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17623 !SrcExpr->isNullPointerConstant(
17624 getASTContext(), Expr::NPC_NeverValueDependent)) {
17625 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17626 return false;
17627 if (Diagnose) {
17628 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17629 << /*number*/1
17630 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17631 Expr *NumLit =
17632 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17633 if (NumLit)
17634 Exp = NumLit;
17636 return true;
17639 return false;
17642 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17643 const Expr *SrcExpr) {
17644 if (!DstType->isFunctionPointerType() ||
17645 !SrcExpr->getType()->isFunctionType())
17646 return false;
17648 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17649 if (!DRE)
17650 return false;
17652 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17653 if (!FD)
17654 return false;
17656 return !S.checkAddressOfFunctionIsAvailable(FD,
17657 /*Complain=*/true,
17658 SrcExpr->getBeginLoc());
17661 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17662 SourceLocation Loc,
17663 QualType DstType, QualType SrcType,
17664 Expr *SrcExpr, AssignmentAction Action,
17665 bool *Complained) {
17666 if (Complained)
17667 *Complained = false;
17669 // Decode the result (notice that AST's are still created for extensions).
17670 bool CheckInferredResultType = false;
17671 bool isInvalid = false;
17672 unsigned DiagKind = 0;
17673 ConversionFixItGenerator ConvHints;
17674 bool MayHaveConvFixit = false;
17675 bool MayHaveFunctionDiff = false;
17676 const ObjCInterfaceDecl *IFace = nullptr;
17677 const ObjCProtocolDecl *PDecl = nullptr;
17679 switch (ConvTy) {
17680 case Compatible:
17681 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17682 return false;
17684 case PointerToInt:
17685 if (getLangOpts().CPlusPlus) {
17686 DiagKind = diag::err_typecheck_convert_pointer_int;
17687 isInvalid = true;
17688 } else {
17689 DiagKind = diag::ext_typecheck_convert_pointer_int;
17691 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17692 MayHaveConvFixit = true;
17693 break;
17694 case IntToPointer:
17695 if (getLangOpts().CPlusPlus) {
17696 DiagKind = diag::err_typecheck_convert_int_pointer;
17697 isInvalid = true;
17698 } else {
17699 DiagKind = diag::ext_typecheck_convert_int_pointer;
17701 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17702 MayHaveConvFixit = true;
17703 break;
17704 case IncompatibleFunctionPointerStrict:
17705 DiagKind =
17706 diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17707 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17708 MayHaveConvFixit = true;
17709 break;
17710 case IncompatibleFunctionPointer:
17711 if (getLangOpts().CPlusPlus) {
17712 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17713 isInvalid = true;
17714 } else {
17715 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17717 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17718 MayHaveConvFixit = true;
17719 break;
17720 case IncompatiblePointer:
17721 if (Action == AA_Passing_CFAudited) {
17722 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17723 } else if (getLangOpts().CPlusPlus) {
17724 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17725 isInvalid = true;
17726 } else {
17727 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17729 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17730 SrcType->isObjCObjectPointerType();
17731 if (!CheckInferredResultType) {
17732 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17733 } else if (CheckInferredResultType) {
17734 SrcType = SrcType.getUnqualifiedType();
17735 DstType = DstType.getUnqualifiedType();
17737 MayHaveConvFixit = true;
17738 break;
17739 case IncompatiblePointerSign:
17740 if (getLangOpts().CPlusPlus) {
17741 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17742 isInvalid = true;
17743 } else {
17744 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17746 break;
17747 case FunctionVoidPointer:
17748 if (getLangOpts().CPlusPlus) {
17749 DiagKind = diag::err_typecheck_convert_pointer_void_func;
17750 isInvalid = true;
17751 } else {
17752 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17754 break;
17755 case IncompatiblePointerDiscardsQualifiers: {
17756 // Perform array-to-pointer decay if necessary.
17757 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17759 isInvalid = true;
17761 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17762 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17763 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17764 DiagKind = diag::err_typecheck_incompatible_address_space;
17765 break;
17767 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17768 DiagKind = diag::err_typecheck_incompatible_ownership;
17769 break;
17772 llvm_unreachable("unknown error case for discarding qualifiers!");
17773 // fallthrough
17775 case CompatiblePointerDiscardsQualifiers:
17776 // If the qualifiers lost were because we were applying the
17777 // (deprecated) C++ conversion from a string literal to a char*
17778 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
17779 // Ideally, this check would be performed in
17780 // checkPointerTypesForAssignment. However, that would require a
17781 // bit of refactoring (so that the second argument is an
17782 // expression, rather than a type), which should be done as part
17783 // of a larger effort to fix checkPointerTypesForAssignment for
17784 // C++ semantics.
17785 if (getLangOpts().CPlusPlus &&
17786 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17787 return false;
17788 if (getLangOpts().CPlusPlus) {
17789 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
17790 isInvalid = true;
17791 } else {
17792 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
17795 break;
17796 case IncompatibleNestedPointerQualifiers:
17797 if (getLangOpts().CPlusPlus) {
17798 isInvalid = true;
17799 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17800 } else {
17801 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17803 break;
17804 case IncompatibleNestedPointerAddressSpaceMismatch:
17805 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17806 isInvalid = true;
17807 break;
17808 case IntToBlockPointer:
17809 DiagKind = diag::err_int_to_block_pointer;
17810 isInvalid = true;
17811 break;
17812 case IncompatibleBlockPointer:
17813 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17814 isInvalid = true;
17815 break;
17816 case IncompatibleObjCQualifiedId: {
17817 if (SrcType->isObjCQualifiedIdType()) {
17818 const ObjCObjectPointerType *srcOPT =
17819 SrcType->castAs<ObjCObjectPointerType>();
17820 for (auto *srcProto : srcOPT->quals()) {
17821 PDecl = srcProto;
17822 break;
17824 if (const ObjCInterfaceType *IFaceT =
17825 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17826 IFace = IFaceT->getDecl();
17828 else if (DstType->isObjCQualifiedIdType()) {
17829 const ObjCObjectPointerType *dstOPT =
17830 DstType->castAs<ObjCObjectPointerType>();
17831 for (auto *dstProto : dstOPT->quals()) {
17832 PDecl = dstProto;
17833 break;
17835 if (const ObjCInterfaceType *IFaceT =
17836 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17837 IFace = IFaceT->getDecl();
17839 if (getLangOpts().CPlusPlus) {
17840 DiagKind = diag::err_incompatible_qualified_id;
17841 isInvalid = true;
17842 } else {
17843 DiagKind = diag::warn_incompatible_qualified_id;
17845 break;
17847 case IncompatibleVectors:
17848 if (getLangOpts().CPlusPlus) {
17849 DiagKind = diag::err_incompatible_vectors;
17850 isInvalid = true;
17851 } else {
17852 DiagKind = diag::warn_incompatible_vectors;
17854 break;
17855 case IncompatibleObjCWeakRef:
17856 DiagKind = diag::err_arc_weak_unavailable_assign;
17857 isInvalid = true;
17858 break;
17859 case Incompatible:
17860 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17861 if (Complained)
17862 *Complained = true;
17863 return true;
17866 DiagKind = diag::err_typecheck_convert_incompatible;
17867 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17868 MayHaveConvFixit = true;
17869 isInvalid = true;
17870 MayHaveFunctionDiff = true;
17871 break;
17874 QualType FirstType, SecondType;
17875 switch (Action) {
17876 case AA_Assigning:
17877 case AA_Initializing:
17878 // The destination type comes first.
17879 FirstType = DstType;
17880 SecondType = SrcType;
17881 break;
17883 case AA_Returning:
17884 case AA_Passing:
17885 case AA_Passing_CFAudited:
17886 case AA_Converting:
17887 case AA_Sending:
17888 case AA_Casting:
17889 // The source type comes first.
17890 FirstType = SrcType;
17891 SecondType = DstType;
17892 break;
17895 PartialDiagnostic FDiag = PDiag(DiagKind);
17896 AssignmentAction ActionForDiag = Action;
17897 if (Action == AA_Passing_CFAudited)
17898 ActionForDiag = AA_Passing;
17900 FDiag << FirstType << SecondType << ActionForDiag
17901 << SrcExpr->getSourceRange();
17903 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17904 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17905 auto isPlainChar = [](const clang::Type *Type) {
17906 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17907 Type->isSpecificBuiltinType(BuiltinType::Char_U);
17909 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17910 isPlainChar(SecondType->getPointeeOrArrayElementType()));
17913 // If we can fix the conversion, suggest the FixIts.
17914 if (!ConvHints.isNull()) {
17915 for (FixItHint &H : ConvHints.Hints)
17916 FDiag << H;
17919 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17921 if (MayHaveFunctionDiff)
17922 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17924 Diag(Loc, FDiag);
17925 if ((DiagKind == diag::warn_incompatible_qualified_id ||
17926 DiagKind == diag::err_incompatible_qualified_id) &&
17927 PDecl && IFace && !IFace->hasDefinition())
17928 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17929 << IFace << PDecl;
17931 if (SecondType == Context.OverloadTy)
17932 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17933 FirstType, /*TakingAddress=*/true);
17935 if (CheckInferredResultType)
17936 EmitRelatedResultTypeNote(SrcExpr);
17938 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17939 EmitRelatedResultTypeNoteForReturn(DstType);
17941 if (Complained)
17942 *Complained = true;
17943 return isInvalid;
17946 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17947 llvm::APSInt *Result,
17948 AllowFoldKind CanFold) {
17949 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17950 public:
17951 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17952 QualType T) override {
17953 return S.Diag(Loc, diag::err_ice_not_integral)
17954 << T << S.LangOpts.CPlusPlus;
17956 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17957 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17959 } Diagnoser;
17961 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17964 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17965 llvm::APSInt *Result,
17966 unsigned DiagID,
17967 AllowFoldKind CanFold) {
17968 class IDDiagnoser : public VerifyICEDiagnoser {
17969 unsigned DiagID;
17971 public:
17972 IDDiagnoser(unsigned DiagID)
17973 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17975 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17976 return S.Diag(Loc, DiagID);
17978 } Diagnoser(DiagID);
17980 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17983 Sema::SemaDiagnosticBuilder
17984 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17985 QualType T) {
17986 return diagnoseNotICE(S, Loc);
17989 Sema::SemaDiagnosticBuilder
17990 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17991 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17994 ExprResult
17995 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17996 VerifyICEDiagnoser &Diagnoser,
17997 AllowFoldKind CanFold) {
17998 SourceLocation DiagLoc = E->getBeginLoc();
18000 if (getLangOpts().CPlusPlus11) {
18001 // C++11 [expr.const]p5:
18002 // If an expression of literal class type is used in a context where an
18003 // integral constant expression is required, then that class type shall
18004 // have a single non-explicit conversion function to an integral or
18005 // unscoped enumeration type
18006 ExprResult Converted;
18007 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
18008 VerifyICEDiagnoser &BaseDiagnoser;
18009 public:
18010 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
18011 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
18012 BaseDiagnoser.Suppress, true),
18013 BaseDiagnoser(BaseDiagnoser) {}
18015 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
18016 QualType T) override {
18017 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
18020 SemaDiagnosticBuilder diagnoseIncomplete(
18021 Sema &S, SourceLocation Loc, QualType T) override {
18022 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
18025 SemaDiagnosticBuilder diagnoseExplicitConv(
18026 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18027 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
18030 SemaDiagnosticBuilder noteExplicitConv(
18031 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18032 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18033 << ConvTy->isEnumeralType() << ConvTy;
18036 SemaDiagnosticBuilder diagnoseAmbiguous(
18037 Sema &S, SourceLocation Loc, QualType T) override {
18038 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
18041 SemaDiagnosticBuilder noteAmbiguous(
18042 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
18043 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
18044 << ConvTy->isEnumeralType() << ConvTy;
18047 SemaDiagnosticBuilder diagnoseConversion(
18048 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
18049 llvm_unreachable("conversion functions are permitted");
18051 } ConvertDiagnoser(Diagnoser);
18053 Converted = PerformContextualImplicitConversion(DiagLoc, E,
18054 ConvertDiagnoser);
18055 if (Converted.isInvalid())
18056 return Converted;
18057 E = Converted.get();
18058 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
18059 return ExprError();
18060 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
18061 // An ICE must be of integral or unscoped enumeration type.
18062 if (!Diagnoser.Suppress)
18063 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
18064 << E->getSourceRange();
18065 return ExprError();
18068 ExprResult RValueExpr = DefaultLvalueConversion(E);
18069 if (RValueExpr.isInvalid())
18070 return ExprError();
18072 E = RValueExpr.get();
18074 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
18075 // in the non-ICE case.
18076 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
18077 if (Result)
18078 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
18079 if (!isa<ConstantExpr>(E))
18080 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
18081 : ConstantExpr::Create(Context, E);
18082 return E;
18085 Expr::EvalResult EvalResult;
18086 SmallVector<PartialDiagnosticAt, 8> Notes;
18087 EvalResult.Diag = &Notes;
18089 // Try to evaluate the expression, and produce diagnostics explaining why it's
18090 // not a constant expression as a side-effect.
18091 bool Folded =
18092 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
18093 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
18095 if (!isa<ConstantExpr>(E))
18096 E = ConstantExpr::Create(Context, E, EvalResult.Val);
18098 // In C++11, we can rely on diagnostics being produced for any expression
18099 // which is not a constant expression. If no diagnostics were produced, then
18100 // this is a constant expression.
18101 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
18102 if (Result)
18103 *Result = EvalResult.Val.getInt();
18104 return E;
18107 // If our only note is the usual "invalid subexpression" note, just point
18108 // the caret at its location rather than producing an essentially
18109 // redundant note.
18110 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
18111 diag::note_invalid_subexpr_in_const_expr) {
18112 DiagLoc = Notes[0].first;
18113 Notes.clear();
18116 if (!Folded || !CanFold) {
18117 if (!Diagnoser.Suppress) {
18118 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
18119 for (const PartialDiagnosticAt &Note : Notes)
18120 Diag(Note.first, Note.second);
18123 return ExprError();
18126 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
18127 for (const PartialDiagnosticAt &Note : Notes)
18128 Diag(Note.first, Note.second);
18130 if (Result)
18131 *Result = EvalResult.Val.getInt();
18132 return E;
18135 namespace {
18136 // Handle the case where we conclude a expression which we speculatively
18137 // considered to be unevaluated is actually evaluated.
18138 class TransformToPE : public TreeTransform<TransformToPE> {
18139 typedef TreeTransform<TransformToPE> BaseTransform;
18141 public:
18142 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
18144 // Make sure we redo semantic analysis
18145 bool AlwaysRebuild() { return true; }
18146 bool ReplacingOriginal() { return true; }
18148 // We need to special-case DeclRefExprs referring to FieldDecls which
18149 // are not part of a member pointer formation; normal TreeTransforming
18150 // doesn't catch this case because of the way we represent them in the AST.
18151 // FIXME: This is a bit ugly; is it really the best way to handle this
18152 // case?
18154 // Error on DeclRefExprs referring to FieldDecls.
18155 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18156 if (isa<FieldDecl>(E->getDecl()) &&
18157 !SemaRef.isUnevaluatedContext())
18158 return SemaRef.Diag(E->getLocation(),
18159 diag::err_invalid_non_static_member_use)
18160 << E->getDecl() << E->getSourceRange();
18162 return BaseTransform::TransformDeclRefExpr(E);
18165 // Exception: filter out member pointer formation
18166 ExprResult TransformUnaryOperator(UnaryOperator *E) {
18167 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
18168 return E;
18170 return BaseTransform::TransformUnaryOperator(E);
18173 // The body of a lambda-expression is in a separate expression evaluation
18174 // context so never needs to be transformed.
18175 // FIXME: Ideally we wouldn't transform the closure type either, and would
18176 // just recreate the capture expressions and lambda expression.
18177 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
18178 return SkipLambdaBody(E, Body);
18183 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
18184 assert(isUnevaluatedContext() &&
18185 "Should only transform unevaluated expressions");
18186 ExprEvalContexts.back().Context =
18187 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
18188 if (isUnevaluatedContext())
18189 return E;
18190 return TransformToPE(*this).TransformExpr(E);
18193 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
18194 assert(isUnevaluatedContext() &&
18195 "Should only transform unevaluated expressions");
18196 ExprEvalContexts.back().Context =
18197 ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
18198 if (isUnevaluatedContext())
18199 return TInfo;
18200 return TransformToPE(*this).TransformType(TInfo);
18203 void
18204 Sema::PushExpressionEvaluationContext(
18205 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
18206 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18207 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
18208 LambdaContextDecl, ExprContext);
18210 // Discarded statements and immediate contexts nested in other
18211 // discarded statements or immediate context are themselves
18212 // a discarded statement or an immediate context, respectively.
18213 ExprEvalContexts.back().InDiscardedStatement =
18214 ExprEvalContexts[ExprEvalContexts.size() - 2]
18215 .isDiscardedStatementContext();
18217 // C++23 [expr.const]/p15
18218 // An expression or conversion is in an immediate function context if [...]
18219 // it is a subexpression of a manifestly constant-evaluated expression or
18220 // conversion.
18221 const auto &Prev = ExprEvalContexts[ExprEvalContexts.size() - 2];
18222 ExprEvalContexts.back().InImmediateFunctionContext =
18223 Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
18225 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
18226 Prev.InImmediateEscalatingFunctionContext;
18228 Cleanup.reset();
18229 if (!MaybeODRUseExprs.empty())
18230 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
18233 void
18234 Sema::PushExpressionEvaluationContext(
18235 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
18236 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
18237 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
18238 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
18241 namespace {
18243 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
18244 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
18245 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
18246 if (E->getOpcode() == UO_Deref)
18247 return CheckPossibleDeref(S, E->getSubExpr());
18248 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
18249 return CheckPossibleDeref(S, E->getBase());
18250 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
18251 return CheckPossibleDeref(S, E->getBase());
18252 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
18253 QualType Inner;
18254 QualType Ty = E->getType();
18255 if (const auto *Ptr = Ty->getAs<PointerType>())
18256 Inner = Ptr->getPointeeType();
18257 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
18258 Inner = Arr->getElementType();
18259 else
18260 return nullptr;
18262 if (Inner->hasAttr(attr::NoDeref))
18263 return E;
18265 return nullptr;
18268 } // namespace
18270 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
18271 for (const Expr *E : Rec.PossibleDerefs) {
18272 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
18273 if (DeclRef) {
18274 const ValueDecl *Decl = DeclRef->getDecl();
18275 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
18276 << Decl->getName() << E->getSourceRange();
18277 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
18278 } else {
18279 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
18280 << E->getSourceRange();
18283 Rec.PossibleDerefs.clear();
18286 /// Check whether E, which is either a discarded-value expression or an
18287 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
18288 /// and if so, remove it from the list of volatile-qualified assignments that
18289 /// we are going to warn are deprecated.
18290 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
18291 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
18292 return;
18294 // Note: ignoring parens here is not justified by the standard rules, but
18295 // ignoring parentheses seems like a more reasonable approach, and this only
18296 // drives a deprecation warning so doesn't affect conformance.
18297 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
18298 if (BO->getOpcode() == BO_Assign) {
18299 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
18300 llvm::erase(LHSs, BO->getLHS());
18305 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
18306 assert(!FunctionScopes.empty() && "Expected a function scope");
18307 assert(getLangOpts().CPlusPlus20 &&
18308 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18309 "Cannot mark an immediate escalating expression outside of an "
18310 "immediate escalating context");
18311 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
18312 Call && Call->getCallee()) {
18313 if (auto *DeclRef =
18314 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18315 DeclRef->setIsImmediateEscalating(true);
18316 } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
18317 Ctr->setIsImmediateEscalating(true);
18318 } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
18319 DeclRef->setIsImmediateEscalating(true);
18320 } else {
18321 assert(false && "expected an immediately escalating expression");
18323 getCurFunction()->FoundImmediateEscalatingExpression = true;
18326 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
18327 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
18328 !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
18329 isCheckingDefaultArgumentOrInitializer() ||
18330 RebuildingImmediateInvocation || isImmediateFunctionContext())
18331 return E;
18333 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
18334 /// It's OK if this fails; we'll also remove this in
18335 /// HandleImmediateInvocations, but catching it here allows us to avoid
18336 /// walking the AST looking for it in simple cases.
18337 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
18338 if (auto *DeclRef =
18339 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
18340 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
18342 // C++23 [expr.const]/p16
18343 // An expression or conversion is immediate-escalating if it is not initially
18344 // in an immediate function context and it is [...] an immediate invocation
18345 // that is not a constant expression and is not a subexpression of an
18346 // immediate invocation.
18347 APValue Cached;
18348 auto CheckConstantExpressionAndKeepResult = [&]() {
18349 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18350 Expr::EvalResult Eval;
18351 Eval.Diag = &Notes;
18352 bool Res = E.get()->EvaluateAsConstantExpr(
18353 Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
18354 if (Res && Notes.empty()) {
18355 Cached = std::move(Eval.Val);
18356 return true;
18358 return false;
18361 if (!E.get()->isValueDependent() &&
18362 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
18363 !CheckConstantExpressionAndKeepResult()) {
18364 MarkExpressionAsImmediateEscalating(E.get());
18365 return E;
18368 if (Cleanup.exprNeedsCleanups()) {
18369 // Since an immediate invocation is a full expression itself - it requires
18370 // an additional ExprWithCleanups node, but it can participate to a bigger
18371 // full expression which actually requires cleanups to be run after so
18372 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
18373 // may discard cleanups for outer expression too early.
18375 // Note that ExprWithCleanups created here must always have empty cleanup
18376 // objects:
18377 // - compound literals do not create cleanup objects in C++ and immediate
18378 // invocations are C++-only.
18379 // - blocks are not allowed inside constant expressions and compiler will
18380 // issue an error if they appear there.
18382 // Hence, in correct code any cleanup objects created inside current
18383 // evaluation context must be outside the immediate invocation.
18384 E = ExprWithCleanups::Create(getASTContext(), E.get(),
18385 Cleanup.cleanupsHaveSideEffects(), {});
18388 ConstantExpr *Res = ConstantExpr::Create(
18389 getASTContext(), E.get(),
18390 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
18391 getASTContext()),
18392 /*IsImmediateInvocation*/ true);
18393 if (Cached.hasValue())
18394 Res->MoveIntoResult(Cached, getASTContext());
18395 /// Value-dependent constant expressions should not be immediately
18396 /// evaluated until they are instantiated.
18397 if (!Res->isValueDependent())
18398 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
18399 return Res;
18402 static void EvaluateAndDiagnoseImmediateInvocation(
18403 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
18404 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
18405 Expr::EvalResult Eval;
18406 Eval.Diag = &Notes;
18407 ConstantExpr *CE = Candidate.getPointer();
18408 bool Result = CE->EvaluateAsConstantExpr(
18409 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
18410 if (!Result || !Notes.empty()) {
18411 SemaRef.FailedImmediateInvocations.insert(CE);
18412 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
18413 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
18414 InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
18415 FunctionDecl *FD = nullptr;
18416 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
18417 FD = cast<FunctionDecl>(Call->getCalleeDecl());
18418 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
18419 FD = Call->getConstructor();
18420 else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
18421 FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
18423 assert(FD && FD->isImmediateFunction() &&
18424 "could not find an immediate function in this expression");
18425 if (FD->isInvalidDecl())
18426 return;
18427 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
18428 << FD << FD->isConsteval();
18429 if (auto Context =
18430 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18431 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18432 << Context->Decl;
18433 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18435 if (!FD->isConsteval())
18436 SemaRef.DiagnoseImmediateEscalatingReason(FD);
18437 for (auto &Note : Notes)
18438 SemaRef.Diag(Note.first, Note.second);
18439 return;
18441 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
18444 static void RemoveNestedImmediateInvocation(
18445 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
18446 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
18447 struct ComplexRemove : TreeTransform<ComplexRemove> {
18448 using Base = TreeTransform<ComplexRemove>;
18449 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18450 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
18451 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
18452 CurrentII;
18453 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
18454 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
18455 SmallVector<Sema::ImmediateInvocationCandidate,
18456 4>::reverse_iterator Current)
18457 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
18458 void RemoveImmediateInvocation(ConstantExpr* E) {
18459 auto It = std::find_if(CurrentII, IISet.rend(),
18460 [E](Sema::ImmediateInvocationCandidate Elem) {
18461 return Elem.getPointer() == E;
18463 // It is possible that some subexpression of the current immediate
18464 // invocation was handled from another expression evaluation context. Do
18465 // not handle the current immediate invocation if some of its
18466 // subexpressions failed before.
18467 if (It == IISet.rend()) {
18468 if (SemaRef.FailedImmediateInvocations.contains(E))
18469 CurrentII->setInt(1);
18470 } else {
18471 It->setInt(1); // Mark as deleted
18474 ExprResult TransformConstantExpr(ConstantExpr *E) {
18475 if (!E->isImmediateInvocation())
18476 return Base::TransformConstantExpr(E);
18477 RemoveImmediateInvocation(E);
18478 return Base::TransformExpr(E->getSubExpr());
18480 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
18481 /// we need to remove its DeclRefExpr from the DRSet.
18482 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
18483 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
18484 return Base::TransformCXXOperatorCallExpr(E);
18486 /// Base::TransformUserDefinedLiteral doesn't preserve the
18487 /// UserDefinedLiteral node.
18488 ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
18489 /// Base::TransformInitializer skips ConstantExpr so we need to visit them
18490 /// here.
18491 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
18492 if (!Init)
18493 return Init;
18494 /// ConstantExpr are the first layer of implicit node to be removed so if
18495 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
18496 if (auto *CE = dyn_cast<ConstantExpr>(Init))
18497 if (CE->isImmediateInvocation())
18498 RemoveImmediateInvocation(CE);
18499 return Base::TransformInitializer(Init, NotCopyInit);
18501 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
18502 DRSet.erase(E);
18503 return E;
18505 ExprResult TransformLambdaExpr(LambdaExpr *E) {
18506 // Do not rebuild lambdas to avoid creating a new type.
18507 // Lambdas have already been processed inside their eval context.
18508 return E;
18510 bool AlwaysRebuild() { return false; }
18511 bool ReplacingOriginal() { return true; }
18512 bool AllowSkippingCXXConstructExpr() {
18513 bool Res = AllowSkippingFirstCXXConstructExpr;
18514 AllowSkippingFirstCXXConstructExpr = true;
18515 return Res;
18517 bool AllowSkippingFirstCXXConstructExpr = true;
18518 } Transformer(SemaRef, Rec.ReferenceToConsteval,
18519 Rec.ImmediateInvocationCandidates, It);
18521 /// CXXConstructExpr with a single argument are getting skipped by
18522 /// TreeTransform in some situtation because they could be implicit. This
18523 /// can only occur for the top-level CXXConstructExpr because it is used
18524 /// nowhere in the expression being transformed therefore will not be rebuilt.
18525 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
18526 /// skipping the first CXXConstructExpr.
18527 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
18528 Transformer.AllowSkippingFirstCXXConstructExpr = false;
18530 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
18531 // The result may not be usable in case of previous compilation errors.
18532 // In this case evaluation of the expression may result in crash so just
18533 // don't do anything further with the result.
18534 if (Res.isUsable()) {
18535 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
18536 It->getPointer()->setSubExpr(Res.get());
18540 static void
18541 HandleImmediateInvocations(Sema &SemaRef,
18542 Sema::ExpressionEvaluationContextRecord &Rec) {
18543 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
18544 Rec.ReferenceToConsteval.size() == 0) ||
18545 SemaRef.RebuildingImmediateInvocation)
18546 return;
18548 /// When we have more than 1 ImmediateInvocationCandidates or previously
18549 /// failed immediate invocations, we need to check for nested
18550 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
18551 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
18552 /// invocation.
18553 if (Rec.ImmediateInvocationCandidates.size() > 1 ||
18554 !SemaRef.FailedImmediateInvocations.empty()) {
18556 /// Prevent sema calls during the tree transform from adding pointers that
18557 /// are already in the sets.
18558 llvm::SaveAndRestore DisableIITracking(
18559 SemaRef.RebuildingImmediateInvocation, true);
18561 /// Prevent diagnostic during tree transfrom as they are duplicates
18562 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
18564 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
18565 It != Rec.ImmediateInvocationCandidates.rend(); It++)
18566 if (!It->getInt())
18567 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
18568 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
18569 Rec.ReferenceToConsteval.size()) {
18570 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
18571 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
18572 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
18573 bool VisitDeclRefExpr(DeclRefExpr *E) {
18574 DRSet.erase(E);
18575 return DRSet.size();
18577 } Visitor(Rec.ReferenceToConsteval);
18578 Visitor.TraverseStmt(
18579 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
18581 for (auto CE : Rec.ImmediateInvocationCandidates)
18582 if (!CE.getInt())
18583 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
18584 for (auto *DR : Rec.ReferenceToConsteval) {
18585 // If the expression is immediate escalating, it is not an error;
18586 // The outer context itself becomes immediate and further errors,
18587 // if any, will be handled by DiagnoseImmediateEscalatingReason.
18588 if (DR->isImmediateEscalating())
18589 continue;
18590 auto *FD = cast<FunctionDecl>(DR->getDecl());
18591 const NamedDecl *ND = FD;
18592 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
18593 MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
18594 ND = MD->getParent();
18596 // C++23 [expr.const]/p16
18597 // An expression or conversion is immediate-escalating if it is not
18598 // initially in an immediate function context and it is [...] a
18599 // potentially-evaluated id-expression that denotes an immediate function
18600 // that is not a subexpression of an immediate invocation.
18601 bool ImmediateEscalating = false;
18602 bool IsPotentiallyEvaluated =
18603 Rec.Context ==
18604 Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
18605 Rec.Context ==
18606 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
18607 if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
18608 ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
18610 if (!Rec.InImmediateEscalatingFunctionContext ||
18611 (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
18612 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
18613 << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
18614 SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
18615 if (auto Context =
18616 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
18617 SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
18618 << Context->Decl;
18619 SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
18621 if (FD->isImmediateEscalating() && !FD->isConsteval())
18622 SemaRef.DiagnoseImmediateEscalatingReason(FD);
18624 } else {
18625 SemaRef.MarkExpressionAsImmediateEscalating(DR);
18630 void Sema::PopExpressionEvaluationContext() {
18631 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
18632 unsigned NumTypos = Rec.NumTypos;
18634 if (!Rec.Lambdas.empty()) {
18635 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
18636 if (!getLangOpts().CPlusPlus20 &&
18637 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
18638 Rec.isUnevaluated() ||
18639 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
18640 unsigned D;
18641 if (Rec.isUnevaluated()) {
18642 // C++11 [expr.prim.lambda]p2:
18643 // A lambda-expression shall not appear in an unevaluated operand
18644 // (Clause 5).
18645 D = diag::err_lambda_unevaluated_operand;
18646 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
18647 // C++1y [expr.const]p2:
18648 // A conditional-expression e is a core constant expression unless the
18649 // evaluation of e, following the rules of the abstract machine, would
18650 // evaluate [...] a lambda-expression.
18651 D = diag::err_lambda_in_constant_expression;
18652 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18653 // C++17 [expr.prim.lamda]p2:
18654 // A lambda-expression shall not appear [...] in a template-argument.
18655 D = diag::err_lambda_in_invalid_context;
18656 } else
18657 llvm_unreachable("Couldn't infer lambda error message.");
18659 for (const auto *L : Rec.Lambdas)
18660 Diag(L->getBeginLoc(), D);
18664 WarnOnPendingNoDerefs(Rec);
18665 HandleImmediateInvocations(*this, Rec);
18667 // Warn on any volatile-qualified simple-assignments that are not discarded-
18668 // value expressions nor unevaluated operands (those cases get removed from
18669 // this list by CheckUnusedVolatileAssignment).
18670 for (auto *BO : Rec.VolatileAssignmentLHSs)
18671 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18672 << BO->getType();
18674 // When are coming out of an unevaluated context, clear out any
18675 // temporaries that we may have created as part of the evaluation of
18676 // the expression in that context: they aren't relevant because they
18677 // will never be constructed.
18678 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18679 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18680 ExprCleanupObjects.end());
18681 Cleanup = Rec.ParentCleanup;
18682 CleanupVarDeclMarking();
18683 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18684 // Otherwise, merge the contexts together.
18685 } else {
18686 Cleanup.mergeFrom(Rec.ParentCleanup);
18687 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18688 Rec.SavedMaybeODRUseExprs.end());
18691 // Pop the current expression evaluation context off the stack.
18692 ExprEvalContexts.pop_back();
18694 // The global expression evaluation context record is never popped.
18695 ExprEvalContexts.back().NumTypos += NumTypos;
18698 void Sema::DiscardCleanupsInEvaluationContext() {
18699 ExprCleanupObjects.erase(
18700 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18701 ExprCleanupObjects.end());
18702 Cleanup.reset();
18703 MaybeODRUseExprs.clear();
18706 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18707 ExprResult Result = CheckPlaceholderExpr(E);
18708 if (Result.isInvalid())
18709 return ExprError();
18710 E = Result.get();
18711 if (!E->getType()->isVariablyModifiedType())
18712 return E;
18713 return TransformToPotentiallyEvaluated(E);
18716 /// Are we in a context that is potentially constant evaluated per C++20
18717 /// [expr.const]p12?
18718 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18719 /// C++2a [expr.const]p12:
18720 // An expression or conversion is potentially constant evaluated if it is
18721 switch (SemaRef.ExprEvalContexts.back().Context) {
18722 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18723 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18725 // -- a manifestly constant-evaluated expression,
18726 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18727 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18728 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18729 // -- a potentially-evaluated expression,
18730 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18731 // -- an immediate subexpression of a braced-init-list,
18733 // -- [FIXME] an expression of the form & cast-expression that occurs
18734 // within a templated entity
18735 // -- a subexpression of one of the above that is not a subexpression of
18736 // a nested unevaluated operand.
18737 return true;
18739 case Sema::ExpressionEvaluationContext::Unevaluated:
18740 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18741 // Expressions in this context are never evaluated.
18742 return false;
18744 llvm_unreachable("Invalid context");
18747 /// Return true if this function has a calling convention that requires mangling
18748 /// in the size of the parameter pack.
18749 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18750 // These manglings don't do anything on non-Windows or non-x86 platforms, so
18751 // we don't need parameter type sizes.
18752 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18753 if (!TT.isOSWindows() || !TT.isX86())
18754 return false;
18756 // If this is C++ and this isn't an extern "C" function, parameters do not
18757 // need to be complete. In this case, C++ mangling will apply, which doesn't
18758 // use the size of the parameters.
18759 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18760 return false;
18762 // Stdcall, fastcall, and vectorcall need this special treatment.
18763 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18764 switch (CC) {
18765 case CC_X86StdCall:
18766 case CC_X86FastCall:
18767 case CC_X86VectorCall:
18768 return true;
18769 default:
18770 break;
18772 return false;
18775 /// Require that all of the parameter types of function be complete. Normally,
18776 /// parameter types are only required to be complete when a function is called
18777 /// or defined, but to mangle functions with certain calling conventions, the
18778 /// mangler needs to know the size of the parameter list. In this situation,
18779 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18780 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18781 /// result in a linker error. Clang doesn't implement this behavior, and instead
18782 /// attempts to error at compile time.
18783 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18784 SourceLocation Loc) {
18785 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18786 FunctionDecl *FD;
18787 ParmVarDecl *Param;
18789 public:
18790 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18791 : FD(FD), Param(Param) {}
18793 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18794 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18795 StringRef CCName;
18796 switch (CC) {
18797 case CC_X86StdCall:
18798 CCName = "stdcall";
18799 break;
18800 case CC_X86FastCall:
18801 CCName = "fastcall";
18802 break;
18803 case CC_X86VectorCall:
18804 CCName = "vectorcall";
18805 break;
18806 default:
18807 llvm_unreachable("CC does not need mangling");
18810 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18811 << Param->getDeclName() << FD->getDeclName() << CCName;
18815 for (ParmVarDecl *Param : FD->parameters()) {
18816 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18817 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18821 namespace {
18822 enum class OdrUseContext {
18823 /// Declarations in this context are not odr-used.
18824 None,
18825 /// Declarations in this context are formally odr-used, but this is a
18826 /// dependent context.
18827 Dependent,
18828 /// Declarations in this context are odr-used but not actually used (yet).
18829 FormallyOdrUsed,
18830 /// Declarations in this context are used.
18831 Used
18835 /// Are we within a context in which references to resolved functions or to
18836 /// variables result in odr-use?
18837 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18838 OdrUseContext Result;
18840 switch (SemaRef.ExprEvalContexts.back().Context) {
18841 case Sema::ExpressionEvaluationContext::Unevaluated:
18842 case Sema::ExpressionEvaluationContext::UnevaluatedList:
18843 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18844 return OdrUseContext::None;
18846 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18847 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18848 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18849 Result = OdrUseContext::Used;
18850 break;
18852 case Sema::ExpressionEvaluationContext::DiscardedStatement:
18853 Result = OdrUseContext::FormallyOdrUsed;
18854 break;
18856 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18857 // A default argument formally results in odr-use, but doesn't actually
18858 // result in a use in any real sense until it itself is used.
18859 Result = OdrUseContext::FormallyOdrUsed;
18860 break;
18863 if (SemaRef.CurContext->isDependentContext())
18864 return OdrUseContext::Dependent;
18866 return Result;
18869 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18870 if (!Func->isConstexpr())
18871 return false;
18873 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18874 return true;
18875 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18876 return CCD && CCD->getInheritedConstructor();
18879 /// Mark a function referenced, and check whether it is odr-used
18880 /// (C++ [basic.def.odr]p2, C99 6.9p3)
18881 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18882 bool MightBeOdrUse) {
18883 assert(Func && "No function?");
18885 Func->setReferenced();
18887 // Recursive functions aren't really used until they're used from some other
18888 // context.
18889 bool IsRecursiveCall = CurContext == Func;
18891 // C++11 [basic.def.odr]p3:
18892 // A function whose name appears as a potentially-evaluated expression is
18893 // odr-used if it is the unique lookup result or the selected member of a
18894 // set of overloaded functions [...].
18896 // We (incorrectly) mark overload resolution as an unevaluated context, so we
18897 // can just check that here.
18898 OdrUseContext OdrUse =
18899 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18900 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18901 OdrUse = OdrUseContext::FormallyOdrUsed;
18903 // Trivial default constructors and destructors are never actually used.
18904 // FIXME: What about other special members?
18905 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18906 OdrUse == OdrUseContext::Used) {
18907 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18908 if (Constructor->isDefaultConstructor())
18909 OdrUse = OdrUseContext::FormallyOdrUsed;
18910 if (isa<CXXDestructorDecl>(Func))
18911 OdrUse = OdrUseContext::FormallyOdrUsed;
18914 // C++20 [expr.const]p12:
18915 // A function [...] is needed for constant evaluation if it is [...] a
18916 // constexpr function that is named by an expression that is potentially
18917 // constant evaluated
18918 bool NeededForConstantEvaluation =
18919 isPotentiallyConstantEvaluatedContext(*this) &&
18920 isImplicitlyDefinableConstexprFunction(Func);
18922 // Determine whether we require a function definition to exist, per
18923 // C++11 [temp.inst]p3:
18924 // Unless a function template specialization has been explicitly
18925 // instantiated or explicitly specialized, the function template
18926 // specialization is implicitly instantiated when the specialization is
18927 // referenced in a context that requires a function definition to exist.
18928 // C++20 [temp.inst]p7:
18929 // The existence of a definition of a [...] function is considered to
18930 // affect the semantics of the program if the [...] function is needed for
18931 // constant evaluation by an expression
18932 // C++20 [basic.def.odr]p10:
18933 // Every program shall contain exactly one definition of every non-inline
18934 // function or variable that is odr-used in that program outside of a
18935 // discarded statement
18936 // C++20 [special]p1:
18937 // The implementation will implicitly define [defaulted special members]
18938 // if they are odr-used or needed for constant evaluation.
18940 // Note that we skip the implicit instantiation of templates that are only
18941 // used in unused default arguments or by recursive calls to themselves.
18942 // This is formally non-conforming, but seems reasonable in practice.
18943 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18944 NeededForConstantEvaluation);
18946 // C++14 [temp.expl.spec]p6:
18947 // If a template [...] is explicitly specialized then that specialization
18948 // shall be declared before the first use of that specialization that would
18949 // cause an implicit instantiation to take place, in every translation unit
18950 // in which such a use occurs
18951 if (NeedDefinition &&
18952 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18953 Func->getMemberSpecializationInfo()))
18954 checkSpecializationReachability(Loc, Func);
18956 if (getLangOpts().CUDA)
18957 CheckCUDACall(Loc, Func);
18959 // If we need a definition, try to create one.
18960 if (NeedDefinition && !Func->getBody()) {
18961 runWithSufficientStackSpace(Loc, [&] {
18962 if (CXXConstructorDecl *Constructor =
18963 dyn_cast<CXXConstructorDecl>(Func)) {
18964 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18965 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18966 if (Constructor->isDefaultConstructor()) {
18967 if (Constructor->isTrivial() &&
18968 !Constructor->hasAttr<DLLExportAttr>())
18969 return;
18970 DefineImplicitDefaultConstructor(Loc, Constructor);
18971 } else if (Constructor->isCopyConstructor()) {
18972 DefineImplicitCopyConstructor(Loc, Constructor);
18973 } else if (Constructor->isMoveConstructor()) {
18974 DefineImplicitMoveConstructor(Loc, Constructor);
18976 } else if (Constructor->getInheritedConstructor()) {
18977 DefineInheritingConstructor(Loc, Constructor);
18979 } else if (CXXDestructorDecl *Destructor =
18980 dyn_cast<CXXDestructorDecl>(Func)) {
18981 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18982 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18983 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18984 return;
18985 DefineImplicitDestructor(Loc, Destructor);
18987 if (Destructor->isVirtual() && getLangOpts().AppleKext)
18988 MarkVTableUsed(Loc, Destructor->getParent());
18989 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18990 if (MethodDecl->isOverloadedOperator() &&
18991 MethodDecl->getOverloadedOperator() == OO_Equal) {
18992 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18993 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18994 if (MethodDecl->isCopyAssignmentOperator())
18995 DefineImplicitCopyAssignment(Loc, MethodDecl);
18996 else if (MethodDecl->isMoveAssignmentOperator())
18997 DefineImplicitMoveAssignment(Loc, MethodDecl);
18999 } else if (isa<CXXConversionDecl>(MethodDecl) &&
19000 MethodDecl->getParent()->isLambda()) {
19001 CXXConversionDecl *Conversion =
19002 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
19003 if (Conversion->isLambdaToBlockPointerConversion())
19004 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
19005 else
19006 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
19007 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
19008 MarkVTableUsed(Loc, MethodDecl->getParent());
19011 if (Func->isDefaulted() && !Func->isDeleted()) {
19012 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
19013 if (DCK != DefaultedComparisonKind::None)
19014 DefineDefaultedComparison(Loc, Func, DCK);
19017 // Implicit instantiation of function templates and member functions of
19018 // class templates.
19019 if (Func->isImplicitlyInstantiable()) {
19020 TemplateSpecializationKind TSK =
19021 Func->getTemplateSpecializationKindForInstantiation();
19022 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
19023 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19024 if (FirstInstantiation) {
19025 PointOfInstantiation = Loc;
19026 if (auto *MSI = Func->getMemberSpecializationInfo())
19027 MSI->setPointOfInstantiation(Loc);
19028 // FIXME: Notify listener.
19029 else
19030 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19031 } else if (TSK != TSK_ImplicitInstantiation) {
19032 // Use the point of use as the point of instantiation, instead of the
19033 // point of explicit instantiation (which we track as the actual point
19034 // of instantiation). This gives better backtraces in diagnostics.
19035 PointOfInstantiation = Loc;
19038 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
19039 Func->isConstexpr()) {
19040 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
19041 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
19042 CodeSynthesisContexts.size())
19043 PendingLocalImplicitInstantiations.push_back(
19044 std::make_pair(Func, PointOfInstantiation));
19045 else if (Func->isConstexpr())
19046 // Do not defer instantiations of constexpr functions, to avoid the
19047 // expression evaluator needing to call back into Sema if it sees a
19048 // call to such a function.
19049 InstantiateFunctionDefinition(PointOfInstantiation, Func);
19050 else {
19051 Func->setInstantiationIsPending(true);
19052 PendingInstantiations.push_back(
19053 std::make_pair(Func, PointOfInstantiation));
19054 // Notify the consumer that a function was implicitly instantiated.
19055 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
19058 } else {
19059 // Walk redefinitions, as some of them may be instantiable.
19060 for (auto *i : Func->redecls()) {
19061 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
19062 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
19068 // If a constructor was defined in the context of a default parameter
19069 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
19070 // context), its initializers may not be referenced yet.
19071 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
19072 EnterExpressionEvaluationContext EvalContext(
19073 *this,
19074 Constructor->isImmediateFunction()
19075 ? ExpressionEvaluationContext::ImmediateFunctionContext
19076 : ExpressionEvaluationContext::PotentiallyEvaluated,
19077 Constructor);
19078 for (CXXCtorInitializer *Init : Constructor->inits()) {
19079 if (Init->isInClassMemberInitializer())
19080 runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
19081 MarkDeclarationsReferencedInExpr(Init->getInit());
19086 // C++14 [except.spec]p17:
19087 // An exception-specification is considered to be needed when:
19088 // - the function is odr-used or, if it appears in an unevaluated operand,
19089 // would be odr-used if the expression were potentially-evaluated;
19091 // Note, we do this even if MightBeOdrUse is false. That indicates that the
19092 // function is a pure virtual function we're calling, and in that case the
19093 // function was selected by overload resolution and we need to resolve its
19094 // exception specification for a different reason.
19095 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
19096 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
19097 ResolveExceptionSpec(Loc, FPT);
19099 // If this is the first "real" use, act on that.
19100 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
19101 // Keep track of used but undefined functions.
19102 if (!Func->isDefined()) {
19103 if (mightHaveNonExternalLinkage(Func))
19104 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19105 else if (Func->getMostRecentDecl()->isInlined() &&
19106 !LangOpts.GNUInline &&
19107 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
19108 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19109 else if (isExternalWithNoLinkageType(Func))
19110 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
19113 // Some x86 Windows calling conventions mangle the size of the parameter
19114 // pack into the name. Computing the size of the parameters requires the
19115 // parameter types to be complete. Check that now.
19116 if (funcHasParameterSizeMangling(*this, Func))
19117 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
19119 // In the MS C++ ABI, the compiler emits destructor variants where they are
19120 // used. If the destructor is used here but defined elsewhere, mark the
19121 // virtual base destructors referenced. If those virtual base destructors
19122 // are inline, this will ensure they are defined when emitting the complete
19123 // destructor variant. This checking may be redundant if the destructor is
19124 // provided later in this TU.
19125 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
19126 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
19127 CXXRecordDecl *Parent = Dtor->getParent();
19128 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
19129 CheckCompleteDestructorVariant(Loc, Dtor);
19133 Func->markUsed(Context);
19137 /// Directly mark a variable odr-used. Given a choice, prefer to use
19138 /// MarkVariableReferenced since it does additional checks and then
19139 /// calls MarkVarDeclODRUsed.
19140 /// If the variable must be captured:
19141 /// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
19142 /// - else capture it in the DeclContext that maps to the
19143 /// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
19144 static void
19145 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
19146 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
19147 // Keep track of used but undefined variables.
19148 // FIXME: We shouldn't suppress this warning for static data members.
19149 VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
19150 assert(Var && "expected a capturable variable");
19152 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
19153 (!Var->isExternallyVisible() || Var->isInline() ||
19154 SemaRef.isExternalWithNoLinkageType(Var)) &&
19155 !(Var->isStaticDataMember() && Var->hasInit())) {
19156 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
19157 if (old.isInvalid())
19158 old = Loc;
19160 QualType CaptureType, DeclRefType;
19161 if (SemaRef.LangOpts.OpenMP)
19162 SemaRef.tryCaptureOpenMPLambdas(V);
19163 SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
19164 /*EllipsisLoc*/ SourceLocation(),
19165 /*BuildAndDiagnose*/ true, CaptureType,
19166 DeclRefType, FunctionScopeIndexToStopAt);
19168 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
19169 auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
19170 auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
19171 auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
19172 if (VarTarget == Sema::CVT_Host &&
19173 (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
19174 UserTarget == Sema::CFT_Global)) {
19175 // Diagnose ODR-use of host global variables in device functions.
19176 // Reference of device global variables in host functions is allowed
19177 // through shadow variables therefore it is not diagnosed.
19178 if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
19179 SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
19180 << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
19181 SemaRef.targetDiag(Var->getLocation(),
19182 Var->getType().isConstQualified()
19183 ? diag::note_cuda_const_var_unpromoted
19184 : diag::note_cuda_host_var);
19186 } else if (VarTarget == Sema::CVT_Device &&
19187 !Var->hasAttr<CUDASharedAttr>() &&
19188 (UserTarget == Sema::CFT_Host ||
19189 UserTarget == Sema::CFT_HostDevice)) {
19190 // Record a CUDA/HIP device side variable if it is ODR-used
19191 // by host code. This is done conservatively, when the variable is
19192 // referenced in any of the following contexts:
19193 // - a non-function context
19194 // - a host function
19195 // - a host device function
19196 // This makes the ODR-use of the device side variable by host code to
19197 // be visible in the device compilation for the compiler to be able to
19198 // emit template variables instantiated by host code only and to
19199 // externalize the static device side variable ODR-used by host code.
19200 if (!Var->hasExternalStorage())
19201 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
19202 else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
19203 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
19207 V->markUsed(SemaRef.Context);
19210 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
19211 SourceLocation Loc,
19212 unsigned CapturingScopeIndex) {
19213 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
19216 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
19217 ValueDecl *var) {
19218 DeclContext *VarDC = var->getDeclContext();
19220 // If the parameter still belongs to the translation unit, then
19221 // we're actually just using one parameter in the declaration of
19222 // the next.
19223 if (isa<ParmVarDecl>(var) &&
19224 isa<TranslationUnitDecl>(VarDC))
19225 return;
19227 // For C code, don't diagnose about capture if we're not actually in code
19228 // right now; it's impossible to write a non-constant expression outside of
19229 // function context, so we'll get other (more useful) diagnostics later.
19231 // For C++, things get a bit more nasty... it would be nice to suppress this
19232 // diagnostic for certain cases like using a local variable in an array bound
19233 // for a member of a local class, but the correct predicate is not obvious.
19234 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
19235 return;
19237 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
19238 unsigned ContextKind = 3; // unknown
19239 if (isa<CXXMethodDecl>(VarDC) &&
19240 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
19241 ContextKind = 2;
19242 } else if (isa<FunctionDecl>(VarDC)) {
19243 ContextKind = 0;
19244 } else if (isa<BlockDecl>(VarDC)) {
19245 ContextKind = 1;
19248 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
19249 << var << ValueKind << ContextKind << VarDC;
19250 S.Diag(var->getLocation(), diag::note_entity_declared_at)
19251 << var;
19253 // FIXME: Add additional diagnostic info about class etc. which prevents
19254 // capture.
19257 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
19258 ValueDecl *Var,
19259 bool &SubCapturesAreNested,
19260 QualType &CaptureType,
19261 QualType &DeclRefType) {
19262 // Check whether we've already captured it.
19263 if (CSI->CaptureMap.count(Var)) {
19264 // If we found a capture, any subcaptures are nested.
19265 SubCapturesAreNested = true;
19267 // Retrieve the capture type for this variable.
19268 CaptureType = CSI->getCapture(Var).getCaptureType();
19270 // Compute the type of an expression that refers to this variable.
19271 DeclRefType = CaptureType.getNonReferenceType();
19273 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
19274 // are mutable in the sense that user can change their value - they are
19275 // private instances of the captured declarations.
19276 const Capture &Cap = CSI->getCapture(Var);
19277 if (Cap.isCopyCapture() &&
19278 !(isa<LambdaScopeInfo>(CSI) &&
19279 !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
19280 !(isa<CapturedRegionScopeInfo>(CSI) &&
19281 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
19282 DeclRefType.addConst();
19283 return true;
19285 return false;
19288 // Only block literals, captured statements, and lambda expressions can
19289 // capture; other scopes don't work.
19290 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
19291 ValueDecl *Var,
19292 SourceLocation Loc,
19293 const bool Diagnose,
19294 Sema &S) {
19295 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
19296 return getLambdaAwareParentOfDeclContext(DC);
19298 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
19299 if (Underlying) {
19300 if (Underlying->hasLocalStorage() && Diagnose)
19301 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19303 return nullptr;
19306 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19307 // certain types of variables (unnamed, variably modified types etc.)
19308 // so check for eligibility.
19309 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
19310 SourceLocation Loc, const bool Diagnose,
19311 Sema &S) {
19313 assert((isa<VarDecl, BindingDecl>(Var)) &&
19314 "Only variables and structured bindings can be captured");
19316 bool IsBlock = isa<BlockScopeInfo>(CSI);
19317 bool IsLambda = isa<LambdaScopeInfo>(CSI);
19319 // Lambdas are not allowed to capture unnamed variables
19320 // (e.g. anonymous unions).
19321 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
19322 // assuming that's the intent.
19323 if (IsLambda && !Var->getDeclName()) {
19324 if (Diagnose) {
19325 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
19326 S.Diag(Var->getLocation(), diag::note_declared_at);
19328 return false;
19331 // Prohibit variably-modified types in blocks; they're difficult to deal with.
19332 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
19333 if (Diagnose) {
19334 S.Diag(Loc, diag::err_ref_vm_type);
19335 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19337 return false;
19339 // Prohibit structs with flexible array members too.
19340 // We cannot capture what is in the tail end of the struct.
19341 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
19342 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
19343 if (Diagnose) {
19344 if (IsBlock)
19345 S.Diag(Loc, diag::err_ref_flexarray_type);
19346 else
19347 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
19348 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19350 return false;
19353 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19354 // Lambdas and captured statements are not allowed to capture __block
19355 // variables; they don't support the expected semantics.
19356 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
19357 if (Diagnose) {
19358 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
19359 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19361 return false;
19363 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
19364 if (S.getLangOpts().OpenCL && IsBlock &&
19365 Var->getType()->isBlockPointerType()) {
19366 if (Diagnose)
19367 S.Diag(Loc, diag::err_opencl_block_ref_block);
19368 return false;
19371 if (isa<BindingDecl>(Var)) {
19372 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
19373 if (Diagnose)
19374 diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
19375 return false;
19376 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
19377 S.Diag(Loc, S.LangOpts.CPlusPlus20
19378 ? diag::warn_cxx17_compat_capture_binding
19379 : diag::ext_capture_binding)
19380 << Var;
19381 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19385 return true;
19388 // Returns true if the capture by block was successful.
19389 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
19390 SourceLocation Loc, const bool BuildAndDiagnose,
19391 QualType &CaptureType, QualType &DeclRefType,
19392 const bool Nested, Sema &S, bool Invalid) {
19393 bool ByRef = false;
19395 // Blocks are not allowed to capture arrays, excepting OpenCL.
19396 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
19397 // (decayed to pointers).
19398 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
19399 if (BuildAndDiagnose) {
19400 S.Diag(Loc, diag::err_ref_array_type);
19401 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19402 Invalid = true;
19403 } else {
19404 return false;
19408 // Forbid the block-capture of autoreleasing variables.
19409 if (!Invalid &&
19410 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19411 if (BuildAndDiagnose) {
19412 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
19413 << /*block*/ 0;
19414 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19415 Invalid = true;
19416 } else {
19417 return false;
19421 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
19422 if (const auto *PT = CaptureType->getAs<PointerType>()) {
19423 QualType PointeeTy = PT->getPointeeType();
19425 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
19426 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
19427 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
19428 if (BuildAndDiagnose) {
19429 SourceLocation VarLoc = Var->getLocation();
19430 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
19431 S.Diag(VarLoc, diag::note_declare_parameter_strong);
19436 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
19437 if (HasBlocksAttr || CaptureType->isReferenceType() ||
19438 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
19439 // Block capture by reference does not change the capture or
19440 // declaration reference types.
19441 ByRef = true;
19442 } else {
19443 // Block capture by copy introduces 'const'.
19444 CaptureType = CaptureType.getNonReferenceType().withConst();
19445 DeclRefType = CaptureType;
19448 // Actually capture the variable.
19449 if (BuildAndDiagnose)
19450 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
19451 CaptureType, Invalid);
19453 return !Invalid;
19456 /// Capture the given variable in the captured region.
19457 static bool captureInCapturedRegion(
19458 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
19459 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
19460 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
19461 bool IsTopScope, Sema &S, bool Invalid) {
19462 // By default, capture variables by reference.
19463 bool ByRef = true;
19464 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19465 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19466 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
19467 // Using an LValue reference type is consistent with Lambdas (see below).
19468 if (S.isOpenMPCapturedDecl(Var)) {
19469 bool HasConst = DeclRefType.isConstQualified();
19470 DeclRefType = DeclRefType.getUnqualifiedType();
19471 // Don't lose diagnostics about assignments to const.
19472 if (HasConst)
19473 DeclRefType.addConst();
19475 // Do not capture firstprivates in tasks.
19476 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
19477 OMPC_unknown)
19478 return true;
19479 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
19480 RSI->OpenMPCaptureLevel);
19483 if (ByRef)
19484 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19485 else
19486 CaptureType = DeclRefType;
19488 // Actually capture the variable.
19489 if (BuildAndDiagnose)
19490 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
19491 Loc, SourceLocation(), CaptureType, Invalid);
19493 return !Invalid;
19496 /// Capture the given variable in the lambda.
19497 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
19498 SourceLocation Loc, const bool BuildAndDiagnose,
19499 QualType &CaptureType, QualType &DeclRefType,
19500 const bool RefersToCapturedVariable,
19501 const Sema::TryCaptureKind Kind,
19502 SourceLocation EllipsisLoc, const bool IsTopScope,
19503 Sema &S, bool Invalid) {
19504 // Determine whether we are capturing by reference or by value.
19505 bool ByRef = false;
19506 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
19507 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
19508 } else {
19509 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
19512 BindingDecl *BD = dyn_cast<BindingDecl>(Var);
19513 // FIXME: We should support capturing structured bindings in OpenMP.
19514 if (!Invalid && BD && S.LangOpts.OpenMP) {
19515 if (BuildAndDiagnose) {
19516 S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
19517 S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
19519 Invalid = true;
19522 if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
19523 CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
19524 S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
19525 Invalid = true;
19528 // Compute the type of the field that will capture this variable.
19529 if (ByRef) {
19530 // C++11 [expr.prim.lambda]p15:
19531 // An entity is captured by reference if it is implicitly or
19532 // explicitly captured but not captured by copy. It is
19533 // unspecified whether additional unnamed non-static data
19534 // members are declared in the closure type for entities
19535 // captured by reference.
19537 // FIXME: It is not clear whether we want to build an lvalue reference
19538 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
19539 // to do the former, while EDG does the latter. Core issue 1249 will
19540 // clarify, but for now we follow GCC because it's a more permissive and
19541 // easily defensible position.
19542 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
19543 } else {
19544 // C++11 [expr.prim.lambda]p14:
19545 // For each entity captured by copy, an unnamed non-static
19546 // data member is declared in the closure type. The
19547 // declaration order of these members is unspecified. The type
19548 // of such a data member is the type of the corresponding
19549 // captured entity if the entity is not a reference to an
19550 // object, or the referenced type otherwise. [Note: If the
19551 // captured entity is a reference to a function, the
19552 // corresponding data member is also a reference to a
19553 // function. - end note ]
19554 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
19555 if (!RefType->getPointeeType()->isFunctionType())
19556 CaptureType = RefType->getPointeeType();
19559 // Forbid the lambda copy-capture of autoreleasing variables.
19560 if (!Invalid &&
19561 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
19562 if (BuildAndDiagnose) {
19563 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
19564 S.Diag(Var->getLocation(), diag::note_previous_decl)
19565 << Var->getDeclName();
19566 Invalid = true;
19567 } else {
19568 return false;
19572 // Make sure that by-copy captures are of a complete and non-abstract type.
19573 if (!Invalid && BuildAndDiagnose) {
19574 if (!CaptureType->isDependentType() &&
19575 S.RequireCompleteSizedType(
19576 Loc, CaptureType,
19577 diag::err_capture_of_incomplete_or_sizeless_type,
19578 Var->getDeclName()))
19579 Invalid = true;
19580 else if (S.RequireNonAbstractType(Loc, CaptureType,
19581 diag::err_capture_of_abstract_type))
19582 Invalid = true;
19586 // Compute the type of a reference to this captured variable.
19587 if (ByRef)
19588 DeclRefType = CaptureType.getNonReferenceType();
19589 else {
19590 // C++ [expr.prim.lambda]p5:
19591 // The closure type for a lambda-expression has a public inline
19592 // function call operator [...]. This function call operator is
19593 // declared const (9.3.1) if and only if the lambda-expression's
19594 // parameter-declaration-clause is not followed by mutable.
19595 DeclRefType = CaptureType.getNonReferenceType();
19596 bool Const = LSI->lambdaCaptureShouldBeConst();
19597 if (Const && !CaptureType->isReferenceType())
19598 DeclRefType.addConst();
19601 // Add the capture.
19602 if (BuildAndDiagnose)
19603 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
19604 Loc, EllipsisLoc, CaptureType, Invalid);
19606 return !Invalid;
19609 static bool canCaptureVariableByCopy(ValueDecl *Var,
19610 const ASTContext &Context) {
19611 // Offer a Copy fix even if the type is dependent.
19612 if (Var->getType()->isDependentType())
19613 return true;
19614 QualType T = Var->getType().getNonReferenceType();
19615 if (T.isTriviallyCopyableType(Context))
19616 return true;
19617 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
19619 if (!(RD = RD->getDefinition()))
19620 return false;
19621 if (RD->hasSimpleCopyConstructor())
19622 return true;
19623 if (RD->hasUserDeclaredCopyConstructor())
19624 for (CXXConstructorDecl *Ctor : RD->ctors())
19625 if (Ctor->isCopyConstructor())
19626 return !Ctor->isDeleted();
19628 return false;
19631 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
19632 /// default capture. Fixes may be omitted if they aren't allowed by the
19633 /// standard, for example we can't emit a default copy capture fix-it if we
19634 /// already explicitly copy capture capture another variable.
19635 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
19636 ValueDecl *Var) {
19637 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
19638 // Don't offer Capture by copy of default capture by copy fixes if Var is
19639 // known not to be copy constructible.
19640 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
19642 SmallString<32> FixBuffer;
19643 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
19644 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
19645 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
19646 if (ShouldOfferCopyFix) {
19647 // Offer fixes to insert an explicit capture for the variable.
19648 // [] -> [VarName]
19649 // [OtherCapture] -> [OtherCapture, VarName]
19650 FixBuffer.assign({Separator, Var->getName()});
19651 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19652 << Var << /*value*/ 0
19653 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19655 // As above but capture by reference.
19656 FixBuffer.assign({Separator, "&", Var->getName()});
19657 Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
19658 << Var << /*reference*/ 1
19659 << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
19662 // Only try to offer default capture if there are no captures excluding this
19663 // and init captures.
19664 // [this]: OK.
19665 // [X = Y]: OK.
19666 // [&A, &B]: Don't offer.
19667 // [A, B]: Don't offer.
19668 if (llvm::any_of(LSI->Captures, [](Capture &C) {
19669 return !C.isThisCapture() && !C.isInitCapture();
19671 return;
19673 // The default capture specifiers, '=' or '&', must appear first in the
19674 // capture body.
19675 SourceLocation DefaultInsertLoc =
19676 LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19678 if (ShouldOfferCopyFix) {
19679 bool CanDefaultCopyCapture = true;
19680 // [=, *this] OK since c++17
19681 // [=, this] OK since c++20
19682 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19683 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19684 ? LSI->getCXXThisCapture().isCopyCapture()
19685 : false;
19686 // We can't use default capture by copy if any captures already specified
19687 // capture by copy.
19688 if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19689 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19690 })) {
19691 FixBuffer.assign({"=", Separator});
19692 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19693 << /*value*/ 0
19694 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19698 // We can't use default capture by reference if any captures already specified
19699 // capture by reference.
19700 if (llvm::none_of(LSI->Captures, [](Capture &C) {
19701 return !C.isInitCapture() && C.isReferenceCapture() &&
19702 !C.isThisCapture();
19703 })) {
19704 FixBuffer.assign({"&", Separator});
19705 Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19706 << /*reference*/ 1
19707 << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19711 bool Sema::tryCaptureVariable(
19712 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19713 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19714 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19715 // An init-capture is notionally from the context surrounding its
19716 // declaration, but its parent DC is the lambda class.
19717 DeclContext *VarDC = Var->getDeclContext();
19718 DeclContext *DC = CurContext;
19720 // tryCaptureVariable is called every time a DeclRef is formed,
19721 // it can therefore have non-negigible impact on performances.
19722 // For local variables and when there is no capturing scope,
19723 // we can bailout early.
19724 if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
19725 return true;
19727 const auto *VD = dyn_cast<VarDecl>(Var);
19728 if (VD) {
19729 if (VD->isInitCapture())
19730 VarDC = VarDC->getParent();
19731 } else {
19732 VD = Var->getPotentiallyDecomposedVarDecl();
19734 assert(VD && "Cannot capture a null variable");
19736 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19737 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19738 // We need to sync up the Declaration Context with the
19739 // FunctionScopeIndexToStopAt
19740 if (FunctionScopeIndexToStopAt) {
19741 unsigned FSIndex = FunctionScopes.size() - 1;
19742 while (FSIndex != MaxFunctionScopesIndex) {
19743 DC = getLambdaAwareParentOfDeclContext(DC);
19744 --FSIndex;
19748 // Capture global variables if it is required to use private copy of this
19749 // variable.
19750 bool IsGlobal = !VD->hasLocalStorage();
19751 if (IsGlobal &&
19752 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19753 MaxFunctionScopesIndex)))
19754 return true;
19756 if (isa<VarDecl>(Var))
19757 Var = cast<VarDecl>(Var->getCanonicalDecl());
19759 // Walk up the stack to determine whether we can capture the variable,
19760 // performing the "simple" checks that don't depend on type. We stop when
19761 // we've either hit the declared scope of the variable or find an existing
19762 // capture of that variable. We start from the innermost capturing-entity
19763 // (the DC) and ensure that all intervening capturing-entities
19764 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19765 // declcontext can either capture the variable or have already captured
19766 // the variable.
19767 CaptureType = Var->getType();
19768 DeclRefType = CaptureType.getNonReferenceType();
19769 bool Nested = false;
19770 bool Explicit = (Kind != TryCapture_Implicit);
19771 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19772 do {
19774 LambdaScopeInfo *LSI = nullptr;
19775 if (!FunctionScopes.empty())
19776 LSI = dyn_cast_or_null<LambdaScopeInfo>(
19777 FunctionScopes[FunctionScopesIndex]);
19779 bool IsInScopeDeclarationContext =
19780 !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
19782 if (LSI && !LSI->AfterParameterList) {
19783 // This allows capturing parameters from a default value which does not
19784 // seems correct
19785 if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
19786 return true;
19788 // If the variable is declared in the current context, there is no need to
19789 // capture it.
19790 if (IsInScopeDeclarationContext &&
19791 FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
19792 return true;
19794 // Only block literals, captured statements, and lambda expressions can
19795 // capture; other scopes don't work.
19796 DeclContext *ParentDC =
19797 !IsInScopeDeclarationContext
19798 ? DC->getParent()
19799 : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
19800 BuildAndDiagnose, *this);
19801 // We need to check for the parent *first* because, if we *have*
19802 // private-captured a global variable, we need to recursively capture it in
19803 // intermediate blocks, lambdas, etc.
19804 if (!ParentDC) {
19805 if (IsGlobal) {
19806 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19807 break;
19809 return true;
19812 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
19813 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19815 // Check whether we've already captured it.
19816 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19817 DeclRefType)) {
19818 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19819 break;
19822 // When evaluating some attributes (like enable_if) we might refer to a
19823 // function parameter appertaining to the same declaration as that
19824 // attribute.
19825 if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
19826 Parm && Parm->getDeclContext() == DC)
19827 return true;
19829 // If we are instantiating a generic lambda call operator body,
19830 // we do not want to capture new variables. What was captured
19831 // during either a lambdas transformation or initial parsing
19832 // should be used.
19833 if (isGenericLambdaCallOperatorSpecialization(DC)) {
19834 if (BuildAndDiagnose) {
19835 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19836 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19837 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19838 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19839 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19840 buildLambdaCaptureFixit(*this, LSI, Var);
19841 } else
19842 diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19844 return true;
19847 // Try to capture variable-length arrays types.
19848 if (Var->getType()->isVariablyModifiedType()) {
19849 // We're going to walk down into the type and look for VLA
19850 // expressions.
19851 QualType QTy = Var->getType();
19852 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19853 QTy = PVD->getOriginalType();
19854 captureVariablyModifiedType(Context, QTy, CSI);
19857 if (getLangOpts().OpenMP) {
19858 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19859 // OpenMP private variables should not be captured in outer scope, so
19860 // just break here. Similarly, global variables that are captured in a
19861 // target region should not be captured outside the scope of the region.
19862 if (RSI->CapRegionKind == CR_OpenMP) {
19863 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19864 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19865 // If the variable is private (i.e. not captured) and has variably
19866 // modified type, we still need to capture the type for correct
19867 // codegen in all regions, associated with the construct. Currently,
19868 // it is captured in the innermost captured region only.
19869 if (IsOpenMPPrivateDecl != OMPC_unknown &&
19870 Var->getType()->isVariablyModifiedType()) {
19871 QualType QTy = Var->getType();
19872 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19873 QTy = PVD->getOriginalType();
19874 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19875 I < E; ++I) {
19876 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19877 FunctionScopes[FunctionScopesIndex - I]);
19878 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19879 "Wrong number of captured regions associated with the "
19880 "OpenMP construct.");
19881 captureVariablyModifiedType(Context, QTy, OuterRSI);
19884 bool IsTargetCap =
19885 IsOpenMPPrivateDecl != OMPC_private &&
19886 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19887 RSI->OpenMPCaptureLevel);
19888 // Do not capture global if it is not privatized in outer regions.
19889 bool IsGlobalCap =
19890 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19891 RSI->OpenMPCaptureLevel);
19893 // When we detect target captures we are looking from inside the
19894 // target region, therefore we need to propagate the capture from the
19895 // enclosing region. Therefore, the capture is not initially nested.
19896 if (IsTargetCap)
19897 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19899 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19900 (IsGlobal && !IsGlobalCap)) {
19901 Nested = !IsTargetCap;
19902 bool HasConst = DeclRefType.isConstQualified();
19903 DeclRefType = DeclRefType.getUnqualifiedType();
19904 // Don't lose diagnostics about assignments to const.
19905 if (HasConst)
19906 DeclRefType.addConst();
19907 CaptureType = Context.getLValueReferenceType(DeclRefType);
19908 break;
19913 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19914 // No capture-default, and this is not an explicit capture
19915 // so cannot capture this variable.
19916 if (BuildAndDiagnose) {
19917 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19918 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19919 auto *LSI = cast<LambdaScopeInfo>(CSI);
19920 if (LSI->Lambda) {
19921 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19922 buildLambdaCaptureFixit(*this, LSI, Var);
19924 // FIXME: If we error out because an outer lambda can not implicitly
19925 // capture a variable that an inner lambda explicitly captures, we
19926 // should have the inner lambda do the explicit capture - because
19927 // it makes for cleaner diagnostics later. This would purely be done
19928 // so that the diagnostic does not misleadingly claim that a variable
19929 // can not be captured by a lambda implicitly even though it is captured
19930 // explicitly. Suggestion:
19931 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19932 // at the function head
19933 // - cache the StartingDeclContext - this must be a lambda
19934 // - captureInLambda in the innermost lambda the variable.
19936 return true;
19938 Explicit = false;
19939 FunctionScopesIndex--;
19940 if (IsInScopeDeclarationContext)
19941 DC = ParentDC;
19942 } while (!VarDC->Equals(DC));
19944 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19945 // computing the type of the capture at each step, checking type-specific
19946 // requirements, and adding captures if requested.
19947 // If the variable had already been captured previously, we start capturing
19948 // at the lambda nested within that one.
19949 bool Invalid = false;
19950 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19951 ++I) {
19952 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19954 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19955 // certain types of variables (unnamed, variably modified types etc.)
19956 // so check for eligibility.
19957 if (!Invalid)
19958 Invalid =
19959 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19961 // After encountering an error, if we're actually supposed to capture, keep
19962 // capturing in nested contexts to suppress any follow-on diagnostics.
19963 if (Invalid && !BuildAndDiagnose)
19964 return true;
19966 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19967 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19968 DeclRefType, Nested, *this, Invalid);
19969 Nested = true;
19970 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19971 Invalid = !captureInCapturedRegion(
19972 RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19973 Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19974 Nested = true;
19975 } else {
19976 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19977 Invalid =
19978 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19979 DeclRefType, Nested, Kind, EllipsisLoc,
19980 /*IsTopScope*/ I == N - 1, *this, Invalid);
19981 Nested = true;
19984 if (Invalid && !BuildAndDiagnose)
19985 return true;
19987 return Invalid;
19990 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19991 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19992 QualType CaptureType;
19993 QualType DeclRefType;
19994 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19995 /*BuildAndDiagnose=*/true, CaptureType,
19996 DeclRefType, nullptr);
19999 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
20000 QualType CaptureType;
20001 QualType DeclRefType;
20002 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20003 /*BuildAndDiagnose=*/false, CaptureType,
20004 DeclRefType, nullptr);
20007 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
20008 QualType CaptureType;
20009 QualType DeclRefType;
20011 // Determine whether we can capture this variable.
20012 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
20013 /*BuildAndDiagnose=*/false, CaptureType,
20014 DeclRefType, nullptr))
20015 return QualType();
20017 return DeclRefType;
20020 namespace {
20021 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
20022 // The produced TemplateArgumentListInfo* points to data stored within this
20023 // object, so should only be used in contexts where the pointer will not be
20024 // used after the CopiedTemplateArgs object is destroyed.
20025 class CopiedTemplateArgs {
20026 bool HasArgs;
20027 TemplateArgumentListInfo TemplateArgStorage;
20028 public:
20029 template<typename RefExpr>
20030 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
20031 if (HasArgs)
20032 E->copyTemplateArgumentsInto(TemplateArgStorage);
20034 operator TemplateArgumentListInfo*()
20035 #ifdef __has_cpp_attribute
20036 #if __has_cpp_attribute(clang::lifetimebound)
20037 [[clang::lifetimebound]]
20038 #endif
20039 #endif
20041 return HasArgs ? &TemplateArgStorage : nullptr;
20046 /// Walk the set of potential results of an expression and mark them all as
20047 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
20049 /// \return A new expression if we found any potential results, ExprEmpty() if
20050 /// not, and ExprError() if we diagnosed an error.
20051 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
20052 NonOdrUseReason NOUR) {
20053 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
20054 // an object that satisfies the requirements for appearing in a
20055 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
20056 // is immediately applied." This function handles the lvalue-to-rvalue
20057 // conversion part.
20059 // If we encounter a node that claims to be an odr-use but shouldn't be, we
20060 // transform it into the relevant kind of non-odr-use node and rebuild the
20061 // tree of nodes leading to it.
20063 // This is a mini-TreeTransform that only transforms a restricted subset of
20064 // nodes (and only certain operands of them).
20066 // Rebuild a subexpression.
20067 auto Rebuild = [&](Expr *Sub) {
20068 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
20071 // Check whether a potential result satisfies the requirements of NOUR.
20072 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
20073 // Any entity other than a VarDecl is always odr-used whenever it's named
20074 // in a potentially-evaluated expression.
20075 auto *VD = dyn_cast<VarDecl>(D);
20076 if (!VD)
20077 return true;
20079 // C++2a [basic.def.odr]p4:
20080 // A variable x whose name appears as a potentially-evalauted expression
20081 // e is odr-used by e unless
20082 // -- x is a reference that is usable in constant expressions, or
20083 // -- x is a variable of non-reference type that is usable in constant
20084 // expressions and has no mutable subobjects, and e is an element of
20085 // the set of potential results of an expression of
20086 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20087 // conversion is applied, or
20088 // -- x is a variable of non-reference type, and e is an element of the
20089 // set of potential results of a discarded-value expression to which
20090 // the lvalue-to-rvalue conversion is not applied
20092 // We check the first bullet and the "potentially-evaluated" condition in
20093 // BuildDeclRefExpr. We check the type requirements in the second bullet
20094 // in CheckLValueToRValueConversionOperand below.
20095 switch (NOUR) {
20096 case NOUR_None:
20097 case NOUR_Unevaluated:
20098 llvm_unreachable("unexpected non-odr-use-reason");
20100 case NOUR_Constant:
20101 // Constant references were handled when they were built.
20102 if (VD->getType()->isReferenceType())
20103 return true;
20104 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
20105 if (RD->hasMutableFields())
20106 return true;
20107 if (!VD->isUsableInConstantExpressions(S.Context))
20108 return true;
20109 break;
20111 case NOUR_Discarded:
20112 if (VD->getType()->isReferenceType())
20113 return true;
20114 break;
20116 return false;
20119 // Mark that this expression does not constitute an odr-use.
20120 auto MarkNotOdrUsed = [&] {
20121 S.MaybeODRUseExprs.remove(E);
20122 if (LambdaScopeInfo *LSI = S.getCurLambda())
20123 LSI->markVariableExprAsNonODRUsed(E);
20126 // C++2a [basic.def.odr]p2:
20127 // The set of potential results of an expression e is defined as follows:
20128 switch (E->getStmtClass()) {
20129 // -- If e is an id-expression, ...
20130 case Expr::DeclRefExprClass: {
20131 auto *DRE = cast<DeclRefExpr>(E);
20132 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
20133 break;
20135 // Rebuild as a non-odr-use DeclRefExpr.
20136 MarkNotOdrUsed();
20137 return DeclRefExpr::Create(
20138 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
20139 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
20140 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
20141 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
20144 case Expr::FunctionParmPackExprClass: {
20145 auto *FPPE = cast<FunctionParmPackExpr>(E);
20146 // If any of the declarations in the pack is odr-used, then the expression
20147 // as a whole constitutes an odr-use.
20148 for (VarDecl *D : *FPPE)
20149 if (IsPotentialResultOdrUsed(D))
20150 return ExprEmpty();
20152 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
20153 // nothing cares about whether we marked this as an odr-use, but it might
20154 // be useful for non-compiler tools.
20155 MarkNotOdrUsed();
20156 break;
20159 // -- If e is a subscripting operation with an array operand...
20160 case Expr::ArraySubscriptExprClass: {
20161 auto *ASE = cast<ArraySubscriptExpr>(E);
20162 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
20163 if (!OldBase->getType()->isArrayType())
20164 break;
20165 ExprResult Base = Rebuild(OldBase);
20166 if (!Base.isUsable())
20167 return Base;
20168 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
20169 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
20170 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
20171 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
20172 ASE->getRBracketLoc());
20175 case Expr::MemberExprClass: {
20176 auto *ME = cast<MemberExpr>(E);
20177 // -- If e is a class member access expression [...] naming a non-static
20178 // data member...
20179 if (isa<FieldDecl>(ME->getMemberDecl())) {
20180 ExprResult Base = Rebuild(ME->getBase());
20181 if (!Base.isUsable())
20182 return Base;
20183 return MemberExpr::Create(
20184 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
20185 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
20186 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
20187 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
20188 ME->getObjectKind(), ME->isNonOdrUse());
20191 if (ME->getMemberDecl()->isCXXInstanceMember())
20192 break;
20194 // -- If e is a class member access expression naming a static data member,
20195 // ...
20196 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
20197 break;
20199 // Rebuild as a non-odr-use MemberExpr.
20200 MarkNotOdrUsed();
20201 return MemberExpr::Create(
20202 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
20203 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
20204 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
20205 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
20208 case Expr::BinaryOperatorClass: {
20209 auto *BO = cast<BinaryOperator>(E);
20210 Expr *LHS = BO->getLHS();
20211 Expr *RHS = BO->getRHS();
20212 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
20213 if (BO->getOpcode() == BO_PtrMemD) {
20214 ExprResult Sub = Rebuild(LHS);
20215 if (!Sub.isUsable())
20216 return Sub;
20217 LHS = Sub.get();
20218 // -- If e is a comma expression, ...
20219 } else if (BO->getOpcode() == BO_Comma) {
20220 ExprResult Sub = Rebuild(RHS);
20221 if (!Sub.isUsable())
20222 return Sub;
20223 RHS = Sub.get();
20224 } else {
20225 break;
20227 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
20228 LHS, RHS);
20231 // -- If e has the form (e1)...
20232 case Expr::ParenExprClass: {
20233 auto *PE = cast<ParenExpr>(E);
20234 ExprResult Sub = Rebuild(PE->getSubExpr());
20235 if (!Sub.isUsable())
20236 return Sub;
20237 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
20240 // -- If e is a glvalue conditional expression, ...
20241 // We don't apply this to a binary conditional operator. FIXME: Should we?
20242 case Expr::ConditionalOperatorClass: {
20243 auto *CO = cast<ConditionalOperator>(E);
20244 ExprResult LHS = Rebuild(CO->getLHS());
20245 if (LHS.isInvalid())
20246 return ExprError();
20247 ExprResult RHS = Rebuild(CO->getRHS());
20248 if (RHS.isInvalid())
20249 return ExprError();
20250 if (!LHS.isUsable() && !RHS.isUsable())
20251 return ExprEmpty();
20252 if (!LHS.isUsable())
20253 LHS = CO->getLHS();
20254 if (!RHS.isUsable())
20255 RHS = CO->getRHS();
20256 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
20257 CO->getCond(), LHS.get(), RHS.get());
20260 // [Clang extension]
20261 // -- If e has the form __extension__ e1...
20262 case Expr::UnaryOperatorClass: {
20263 auto *UO = cast<UnaryOperator>(E);
20264 if (UO->getOpcode() != UO_Extension)
20265 break;
20266 ExprResult Sub = Rebuild(UO->getSubExpr());
20267 if (!Sub.isUsable())
20268 return Sub;
20269 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
20270 Sub.get());
20273 // [Clang extension]
20274 // -- If e has the form _Generic(...), the set of potential results is the
20275 // union of the sets of potential results of the associated expressions.
20276 case Expr::GenericSelectionExprClass: {
20277 auto *GSE = cast<GenericSelectionExpr>(E);
20279 SmallVector<Expr *, 4> AssocExprs;
20280 bool AnyChanged = false;
20281 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
20282 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
20283 if (AssocExpr.isInvalid())
20284 return ExprError();
20285 if (AssocExpr.isUsable()) {
20286 AssocExprs.push_back(AssocExpr.get());
20287 AnyChanged = true;
20288 } else {
20289 AssocExprs.push_back(OrigAssocExpr);
20293 void *ExOrTy = nullptr;
20294 bool IsExpr = GSE->isExprPredicate();
20295 if (IsExpr)
20296 ExOrTy = GSE->getControllingExpr();
20297 else
20298 ExOrTy = GSE->getControllingType();
20299 return AnyChanged ? S.CreateGenericSelectionExpr(
20300 GSE->getGenericLoc(), GSE->getDefaultLoc(),
20301 GSE->getRParenLoc(), IsExpr, ExOrTy,
20302 GSE->getAssocTypeSourceInfos(), AssocExprs)
20303 : ExprEmpty();
20306 // [Clang extension]
20307 // -- If e has the form __builtin_choose_expr(...), the set of potential
20308 // results is the union of the sets of potential results of the
20309 // second and third subexpressions.
20310 case Expr::ChooseExprClass: {
20311 auto *CE = cast<ChooseExpr>(E);
20313 ExprResult LHS = Rebuild(CE->getLHS());
20314 if (LHS.isInvalid())
20315 return ExprError();
20317 ExprResult RHS = Rebuild(CE->getLHS());
20318 if (RHS.isInvalid())
20319 return ExprError();
20321 if (!LHS.get() && !RHS.get())
20322 return ExprEmpty();
20323 if (!LHS.isUsable())
20324 LHS = CE->getLHS();
20325 if (!RHS.isUsable())
20326 RHS = CE->getRHS();
20328 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
20329 RHS.get(), CE->getRParenLoc());
20332 // Step through non-syntactic nodes.
20333 case Expr::ConstantExprClass: {
20334 auto *CE = cast<ConstantExpr>(E);
20335 ExprResult Sub = Rebuild(CE->getSubExpr());
20336 if (!Sub.isUsable())
20337 return Sub;
20338 return ConstantExpr::Create(S.Context, Sub.get());
20341 // We could mostly rely on the recursive rebuilding to rebuild implicit
20342 // casts, but not at the top level, so rebuild them here.
20343 case Expr::ImplicitCastExprClass: {
20344 auto *ICE = cast<ImplicitCastExpr>(E);
20345 // Only step through the narrow set of cast kinds we expect to encounter.
20346 // Anything else suggests we've left the region in which potential results
20347 // can be found.
20348 switch (ICE->getCastKind()) {
20349 case CK_NoOp:
20350 case CK_DerivedToBase:
20351 case CK_UncheckedDerivedToBase: {
20352 ExprResult Sub = Rebuild(ICE->getSubExpr());
20353 if (!Sub.isUsable())
20354 return Sub;
20355 CXXCastPath Path(ICE->path());
20356 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
20357 ICE->getValueKind(), &Path);
20360 default:
20361 break;
20363 break;
20366 default:
20367 break;
20370 // Can't traverse through this node. Nothing to do.
20371 return ExprEmpty();
20374 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
20375 // Check whether the operand is or contains an object of non-trivial C union
20376 // type.
20377 if (E->getType().isVolatileQualified() &&
20378 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
20379 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
20380 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
20381 Sema::NTCUC_LValueToRValueVolatile,
20382 NTCUK_Destruct|NTCUK_Copy);
20384 // C++2a [basic.def.odr]p4:
20385 // [...] an expression of non-volatile-qualified non-class type to which
20386 // the lvalue-to-rvalue conversion is applied [...]
20387 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
20388 return E;
20390 ExprResult Result =
20391 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
20392 if (Result.isInvalid())
20393 return ExprError();
20394 return Result.get() ? Result : E;
20397 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
20398 Res = CorrectDelayedTyposInExpr(Res);
20400 if (!Res.isUsable())
20401 return Res;
20403 // If a constant-expression is a reference to a variable where we delay
20404 // deciding whether it is an odr-use, just assume we will apply the
20405 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
20406 // (a non-type template argument), we have special handling anyway.
20407 return CheckLValueToRValueConversionOperand(Res.get());
20410 void Sema::CleanupVarDeclMarking() {
20411 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
20412 // call.
20413 MaybeODRUseExprSet LocalMaybeODRUseExprs;
20414 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
20416 for (Expr *E : LocalMaybeODRUseExprs) {
20417 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
20418 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
20419 DRE->getLocation(), *this);
20420 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
20421 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
20422 *this);
20423 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
20424 for (VarDecl *VD : *FP)
20425 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
20426 } else {
20427 llvm_unreachable("Unexpected expression");
20431 assert(MaybeODRUseExprs.empty() &&
20432 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
20435 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
20436 ValueDecl *Var, Expr *E) {
20437 VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
20438 if (!VD)
20439 return;
20441 const bool RefersToEnclosingScope =
20442 (SemaRef.CurContext != VD->getDeclContext() &&
20443 VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
20444 if (RefersToEnclosingScope) {
20445 LambdaScopeInfo *const LSI =
20446 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
20447 if (LSI && (!LSI->CallOperator ||
20448 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
20449 // If a variable could potentially be odr-used, defer marking it so
20450 // until we finish analyzing the full expression for any
20451 // lvalue-to-rvalue
20452 // or discarded value conversions that would obviate odr-use.
20453 // Add it to the list of potential captures that will be analyzed
20454 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
20455 // unless the variable is a reference that was initialized by a constant
20456 // expression (this will never need to be captured or odr-used).
20458 // FIXME: We can simplify this a lot after implementing P0588R1.
20459 assert(E && "Capture variable should be used in an expression.");
20460 if (!Var->getType()->isReferenceType() ||
20461 !VD->isUsableInConstantExpressions(SemaRef.Context))
20462 LSI->addPotentialCapture(E->IgnoreParens());
20467 static void DoMarkVarDeclReferenced(
20468 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
20469 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20470 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
20471 isa<FunctionParmPackExpr>(E)) &&
20472 "Invalid Expr argument to DoMarkVarDeclReferenced");
20473 Var->setReferenced();
20475 if (Var->isInvalidDecl())
20476 return;
20478 auto *MSI = Var->getMemberSpecializationInfo();
20479 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
20480 : Var->getTemplateSpecializationKind();
20482 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20483 bool UsableInConstantExpr =
20484 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
20486 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
20487 RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
20490 // C++20 [expr.const]p12:
20491 // A variable [...] is needed for constant evaluation if it is [...] a
20492 // variable whose name appears as a potentially constant evaluated
20493 // expression that is either a contexpr variable or is of non-volatile
20494 // const-qualified integral type or of reference type
20495 bool NeededForConstantEvaluation =
20496 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
20498 bool NeedDefinition =
20499 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
20501 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
20502 "Can't instantiate a partial template specialization.");
20504 // If this might be a member specialization of a static data member, check
20505 // the specialization is visible. We already did the checks for variable
20506 // template specializations when we created them.
20507 if (NeedDefinition && TSK != TSK_Undeclared &&
20508 !isa<VarTemplateSpecializationDecl>(Var))
20509 SemaRef.checkSpecializationVisibility(Loc, Var);
20511 // Perform implicit instantiation of static data members, static data member
20512 // templates of class templates, and variable template specializations. Delay
20513 // instantiations of variable templates, except for those that could be used
20514 // in a constant expression.
20515 if (NeedDefinition && isTemplateInstantiation(TSK)) {
20516 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
20517 // instantiation declaration if a variable is usable in a constant
20518 // expression (among other cases).
20519 bool TryInstantiating =
20520 TSK == TSK_ImplicitInstantiation ||
20521 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
20523 if (TryInstantiating) {
20524 SourceLocation PointOfInstantiation =
20525 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
20526 bool FirstInstantiation = PointOfInstantiation.isInvalid();
20527 if (FirstInstantiation) {
20528 PointOfInstantiation = Loc;
20529 if (MSI)
20530 MSI->setPointOfInstantiation(PointOfInstantiation);
20531 // FIXME: Notify listener.
20532 else
20533 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
20536 if (UsableInConstantExpr) {
20537 // Do not defer instantiations of variables that could be used in a
20538 // constant expression.
20539 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
20540 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
20543 // Re-set the member to trigger a recomputation of the dependence bits
20544 // for the expression.
20545 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20546 DRE->setDecl(DRE->getDecl());
20547 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
20548 ME->setMemberDecl(ME->getMemberDecl());
20549 } else if (FirstInstantiation) {
20550 SemaRef.PendingInstantiations
20551 .push_back(std::make_pair(Var, PointOfInstantiation));
20552 } else {
20553 bool Inserted = false;
20554 for (auto &I : SemaRef.SavedPendingInstantiations) {
20555 auto Iter = llvm::find_if(
20556 I, [Var](const Sema::PendingImplicitInstantiation &P) {
20557 return P.first == Var;
20559 if (Iter != I.end()) {
20560 SemaRef.PendingInstantiations.push_back(*Iter);
20561 I.erase(Iter);
20562 Inserted = true;
20563 break;
20567 // FIXME: For a specialization of a variable template, we don't
20568 // distinguish between "declaration and type implicitly instantiated"
20569 // and "implicit instantiation of definition requested", so we have
20570 // no direct way to avoid enqueueing the pending instantiation
20571 // multiple times.
20572 if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
20573 SemaRef.PendingInstantiations
20574 .push_back(std::make_pair(Var, PointOfInstantiation));
20579 // C++2a [basic.def.odr]p4:
20580 // A variable x whose name appears as a potentially-evaluated expression e
20581 // is odr-used by e unless
20582 // -- x is a reference that is usable in constant expressions
20583 // -- x is a variable of non-reference type that is usable in constant
20584 // expressions and has no mutable subobjects [FIXME], and e is an
20585 // element of the set of potential results of an expression of
20586 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
20587 // conversion is applied
20588 // -- x is a variable of non-reference type, and e is an element of the set
20589 // of potential results of a discarded-value expression to which the
20590 // lvalue-to-rvalue conversion is not applied [FIXME]
20592 // We check the first part of the second bullet here, and
20593 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
20594 // FIXME: To get the third bullet right, we need to delay this even for
20595 // variables that are not usable in constant expressions.
20597 // If we already know this isn't an odr-use, there's nothing more to do.
20598 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
20599 if (DRE->isNonOdrUse())
20600 return;
20601 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
20602 if (ME->isNonOdrUse())
20603 return;
20605 switch (OdrUse) {
20606 case OdrUseContext::None:
20607 // In some cases, a variable may not have been marked unevaluated, if it
20608 // appears in a defaukt initializer.
20609 assert((!E || isa<FunctionParmPackExpr>(E) ||
20610 SemaRef.isUnevaluatedContext()) &&
20611 "missing non-odr-use marking for unevaluated decl ref");
20612 break;
20614 case OdrUseContext::FormallyOdrUsed:
20615 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
20616 // behavior.
20617 break;
20619 case OdrUseContext::Used:
20620 // If we might later find that this expression isn't actually an odr-use,
20621 // delay the marking.
20622 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
20623 SemaRef.MaybeODRUseExprs.insert(E);
20624 else
20625 MarkVarDeclODRUsed(Var, Loc, SemaRef);
20626 break;
20628 case OdrUseContext::Dependent:
20629 // If this is a dependent context, we don't need to mark variables as
20630 // odr-used, but we may still need to track them for lambda capture.
20631 // FIXME: Do we also need to do this inside dependent typeid expressions
20632 // (which are modeled as unevaluated at this point)?
20633 DoMarkPotentialCapture(SemaRef, Loc, Var, E);
20634 break;
20638 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
20639 BindingDecl *BD, Expr *E) {
20640 BD->setReferenced();
20642 if (BD->isInvalidDecl())
20643 return;
20645 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
20646 if (OdrUse == OdrUseContext::Used) {
20647 QualType CaptureType, DeclRefType;
20648 SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
20649 /*EllipsisLoc*/ SourceLocation(),
20650 /*BuildAndDiagnose*/ true, CaptureType,
20651 DeclRefType,
20652 /*FunctionScopeIndexToStopAt*/ nullptr);
20653 } else if (OdrUse == OdrUseContext::Dependent) {
20654 DoMarkPotentialCapture(SemaRef, Loc, BD, E);
20658 /// Mark a variable referenced, and check whether it is odr-used
20659 /// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
20660 /// used directly for normal expressions referring to VarDecl.
20661 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
20662 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
20665 // C++ [temp.dep.expr]p3:
20666 // An id-expression is type-dependent if it contains:
20667 // - an identifier associated by name lookup with an entity captured by copy
20668 // in a lambda-expression that has an explicit object parameter whose type
20669 // is dependent ([dcl.fct]),
20670 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
20671 Sema &SemaRef, ValueDecl *D, Expr *E) {
20672 auto *ID = dyn_cast<DeclRefExpr>(E);
20673 if (!ID || ID->isTypeDependent())
20674 return;
20676 auto IsDependent = [&]() {
20677 const LambdaScopeInfo *LSI = SemaRef.getCurLambda();
20678 if (!LSI)
20679 return false;
20680 if (!LSI->ExplicitObjectParameter ||
20681 !LSI->ExplicitObjectParameter->getType()->isDependentType())
20682 return false;
20683 if (!LSI->CaptureMap.count(D))
20684 return false;
20685 const Capture &Cap = LSI->getCapture(D);
20686 return !Cap.isCopyCapture();
20687 }();
20689 ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
20690 IsDependent, SemaRef.getASTContext());
20693 static void
20694 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
20695 bool MightBeOdrUse,
20696 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
20697 if (SemaRef.isInOpenMPDeclareTargetContext())
20698 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
20700 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
20701 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
20702 if (SemaRef.getLangOpts().CPlusPlus)
20703 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20704 Var, E);
20705 return;
20708 if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
20709 DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
20710 if (SemaRef.getLangOpts().CPlusPlus)
20711 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
20712 Decl, E);
20713 return;
20715 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
20717 // If this is a call to a method via a cast, also mark the method in the
20718 // derived class used in case codegen can devirtualize the call.
20719 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
20720 if (!ME)
20721 return;
20722 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
20723 if (!MD)
20724 return;
20725 // Only attempt to devirtualize if this is truly a virtual call.
20726 bool IsVirtualCall = MD->isVirtual() &&
20727 ME->performsVirtualDispatch(SemaRef.getLangOpts());
20728 if (!IsVirtualCall)
20729 return;
20731 // If it's possible to devirtualize the call, mark the called function
20732 // referenced.
20733 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
20734 ME->getBase(), SemaRef.getLangOpts().AppleKext);
20735 if (DM)
20736 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
20739 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
20741 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
20742 /// handled with care if the DeclRefExpr is not newly-created.
20743 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
20744 // TODO: update this with DR# once a defect report is filed.
20745 // C++11 defect. The address of a pure member should not be an ODR use, even
20746 // if it's a qualified reference.
20747 bool OdrUse = true;
20748 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
20749 if (Method->isVirtual() &&
20750 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
20751 OdrUse = false;
20753 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
20754 if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
20755 !isImmediateFunctionContext() &&
20756 !isCheckingDefaultArgumentOrInitializer() &&
20757 FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
20758 !FD->isDependentContext())
20759 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20761 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20762 RefsMinusAssignments);
20765 /// Perform reference-marking and odr-use handling for a MemberExpr.
20766 void Sema::MarkMemberReferenced(MemberExpr *E) {
20767 // C++11 [basic.def.odr]p2:
20768 // A non-overloaded function whose name appears as a potentially-evaluated
20769 // expression or a member of a set of candidate functions, if selected by
20770 // overload resolution when referred to from a potentially-evaluated
20771 // expression, is odr-used, unless it is a pure virtual function and its
20772 // name is not explicitly qualified.
20773 bool MightBeOdrUse = true;
20774 if (E->performsVirtualDispatch(getLangOpts())) {
20775 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20776 if (Method->isPure())
20777 MightBeOdrUse = false;
20779 SourceLocation Loc =
20780 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20781 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20782 RefsMinusAssignments);
20785 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20786 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20787 for (VarDecl *VD : *E)
20788 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20789 RefsMinusAssignments);
20792 /// Perform marking for a reference to an arbitrary declaration. It
20793 /// marks the declaration referenced, and performs odr-use checking for
20794 /// functions and variables. This method should not be used when building a
20795 /// normal expression which refers to a variable.
20796 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20797 bool MightBeOdrUse) {
20798 if (MightBeOdrUse) {
20799 if (auto *VD = dyn_cast<VarDecl>(D)) {
20800 MarkVariableReferenced(Loc, VD);
20801 return;
20804 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20805 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20806 return;
20808 D->setReferenced();
20811 namespace {
20812 // Mark all of the declarations used by a type as referenced.
20813 // FIXME: Not fully implemented yet! We need to have a better understanding
20814 // of when we're entering a context we should not recurse into.
20815 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20816 // TreeTransforms rebuilding the type in a new context. Rather than
20817 // duplicating the TreeTransform logic, we should consider reusing it here.
20818 // Currently that causes problems when rebuilding LambdaExprs.
20819 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20820 Sema &S;
20821 SourceLocation Loc;
20823 public:
20824 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20826 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20828 bool TraverseTemplateArgument(const TemplateArgument &Arg);
20832 bool MarkReferencedDecls::TraverseTemplateArgument(
20833 const TemplateArgument &Arg) {
20835 // A non-type template argument is a constant-evaluated context.
20836 EnterExpressionEvaluationContext Evaluated(
20837 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20838 if (Arg.getKind() == TemplateArgument::Declaration) {
20839 if (Decl *D = Arg.getAsDecl())
20840 S.MarkAnyDeclReferenced(Loc, D, true);
20841 } else if (Arg.getKind() == TemplateArgument::Expression) {
20842 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20846 return Inherited::TraverseTemplateArgument(Arg);
20849 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20850 MarkReferencedDecls Marker(*this, Loc);
20851 Marker.TraverseType(T);
20854 namespace {
20855 /// Helper class that marks all of the declarations referenced by
20856 /// potentially-evaluated subexpressions as "referenced".
20857 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20858 public:
20859 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20860 bool SkipLocalVariables;
20861 ArrayRef<const Expr *> StopAt;
20863 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20864 ArrayRef<const Expr *> StopAt)
20865 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20867 void visitUsedDecl(SourceLocation Loc, Decl *D) {
20868 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20871 void Visit(Expr *E) {
20872 if (llvm::is_contained(StopAt, E))
20873 return;
20874 Inherited::Visit(E);
20877 void VisitConstantExpr(ConstantExpr *E) {
20878 // Don't mark declarations within a ConstantExpression, as this expression
20879 // will be evaluated and folded to a value.
20882 void VisitDeclRefExpr(DeclRefExpr *E) {
20883 // If we were asked not to visit local variables, don't.
20884 if (SkipLocalVariables) {
20885 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20886 if (VD->hasLocalStorage())
20887 return;
20890 // FIXME: This can trigger the instantiation of the initializer of a
20891 // variable, which can cause the expression to become value-dependent
20892 // or error-dependent. Do we need to propagate the new dependence bits?
20893 S.MarkDeclRefReferenced(E);
20896 void VisitMemberExpr(MemberExpr *E) {
20897 S.MarkMemberReferenced(E);
20898 Visit(E->getBase());
20901 } // namespace
20903 /// Mark any declarations that appear within this expression or any
20904 /// potentially-evaluated subexpressions as "referenced".
20906 /// \param SkipLocalVariables If true, don't mark local variables as
20907 /// 'referenced'.
20908 /// \param StopAt Subexpressions that we shouldn't recurse into.
20909 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20910 bool SkipLocalVariables,
20911 ArrayRef<const Expr*> StopAt) {
20912 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20915 /// Emit a diagnostic when statements are reachable.
20916 /// FIXME: check for reachability even in expressions for which we don't build a
20917 /// CFG (eg, in the initializer of a global or in a constant expression).
20918 /// For example,
20919 /// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20920 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20921 const PartialDiagnostic &PD) {
20922 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20923 if (!FunctionScopes.empty())
20924 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20925 sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20926 return true;
20929 // The initializer of a constexpr variable or of the first declaration of a
20930 // static data member is not syntactically a constant evaluated constant,
20931 // but nonetheless is always required to be a constant expression, so we
20932 // can skip diagnosing.
20933 // FIXME: Using the mangling context here is a hack.
20934 if (auto *VD = dyn_cast_or_null<VarDecl>(
20935 ExprEvalContexts.back().ManglingContextDecl)) {
20936 if (VD->isConstexpr() ||
20937 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20938 return false;
20939 // FIXME: For any other kind of variable, we should build a CFG for its
20940 // initializer and check whether the context in question is reachable.
20943 Diag(Loc, PD);
20944 return true;
20947 /// Emit a diagnostic that describes an effect on the run-time behavior
20948 /// of the program being compiled.
20950 /// This routine emits the given diagnostic when the code currently being
20951 /// type-checked is "potentially evaluated", meaning that there is a
20952 /// possibility that the code will actually be executable. Code in sizeof()
20953 /// expressions, code used only during overload resolution, etc., are not
20954 /// potentially evaluated. This routine will suppress such diagnostics or,
20955 /// in the absolutely nutty case of potentially potentially evaluated
20956 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20957 /// later.
20959 /// This routine should be used for all diagnostics that describe the run-time
20960 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20961 /// Failure to do so will likely result in spurious diagnostics or failures
20962 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20963 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20964 const PartialDiagnostic &PD) {
20966 if (ExprEvalContexts.back().isDiscardedStatementContext())
20967 return false;
20969 switch (ExprEvalContexts.back().Context) {
20970 case ExpressionEvaluationContext::Unevaluated:
20971 case ExpressionEvaluationContext::UnevaluatedList:
20972 case ExpressionEvaluationContext::UnevaluatedAbstract:
20973 case ExpressionEvaluationContext::DiscardedStatement:
20974 // The argument will never be evaluated, so don't complain.
20975 break;
20977 case ExpressionEvaluationContext::ConstantEvaluated:
20978 case ExpressionEvaluationContext::ImmediateFunctionContext:
20979 // Relevant diagnostics should be produced by constant evaluation.
20980 break;
20982 case ExpressionEvaluationContext::PotentiallyEvaluated:
20983 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20984 return DiagIfReachable(Loc, Stmts, PD);
20987 return false;
20990 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20991 const PartialDiagnostic &PD) {
20992 return DiagRuntimeBehavior(
20993 Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
20996 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20997 CallExpr *CE, FunctionDecl *FD) {
20998 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20999 return false;
21001 // If we're inside a decltype's expression, don't check for a valid return
21002 // type or construct temporaries until we know whether this is the last call.
21003 if (ExprEvalContexts.back().ExprContext ==
21004 ExpressionEvaluationContextRecord::EK_Decltype) {
21005 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
21006 return false;
21009 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
21010 FunctionDecl *FD;
21011 CallExpr *CE;
21013 public:
21014 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
21015 : FD(FD), CE(CE) { }
21017 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
21018 if (!FD) {
21019 S.Diag(Loc, diag::err_call_incomplete_return)
21020 << T << CE->getSourceRange();
21021 return;
21024 S.Diag(Loc, diag::err_call_function_incomplete_return)
21025 << CE->getSourceRange() << FD << T;
21026 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
21027 << FD->getDeclName();
21029 } Diagnoser(FD, CE);
21031 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
21032 return true;
21034 return false;
21037 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
21038 // will prevent this condition from triggering, which is what we want.
21039 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
21040 SourceLocation Loc;
21042 unsigned diagnostic = diag::warn_condition_is_assignment;
21043 bool IsOrAssign = false;
21045 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
21046 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
21047 return;
21049 IsOrAssign = Op->getOpcode() == BO_OrAssign;
21051 // Greylist some idioms by putting them into a warning subcategory.
21052 if (ObjCMessageExpr *ME
21053 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
21054 Selector Sel = ME->getSelector();
21056 // self = [<foo> init...]
21057 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
21058 diagnostic = diag::warn_condition_is_idiomatic_assignment;
21060 // <foo> = [<bar> nextObject]
21061 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
21062 diagnostic = diag::warn_condition_is_idiomatic_assignment;
21065 Loc = Op->getOperatorLoc();
21066 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
21067 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
21068 return;
21070 IsOrAssign = Op->getOperator() == OO_PipeEqual;
21071 Loc = Op->getOperatorLoc();
21072 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
21073 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
21074 else {
21075 // Not an assignment.
21076 return;
21079 Diag(Loc, diagnostic) << E->getSourceRange();
21081 SourceLocation Open = E->getBeginLoc();
21082 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
21083 Diag(Loc, diag::note_condition_assign_silence)
21084 << FixItHint::CreateInsertion(Open, "(")
21085 << FixItHint::CreateInsertion(Close, ")");
21087 if (IsOrAssign)
21088 Diag(Loc, diag::note_condition_or_assign_to_comparison)
21089 << FixItHint::CreateReplacement(Loc, "!=");
21090 else
21091 Diag(Loc, diag::note_condition_assign_to_comparison)
21092 << FixItHint::CreateReplacement(Loc, "==");
21095 /// Redundant parentheses over an equality comparison can indicate
21096 /// that the user intended an assignment used as condition.
21097 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
21098 // Don't warn if the parens came from a macro.
21099 SourceLocation parenLoc = ParenE->getBeginLoc();
21100 if (parenLoc.isInvalid() || parenLoc.isMacroID())
21101 return;
21102 // Don't warn for dependent expressions.
21103 if (ParenE->isTypeDependent())
21104 return;
21106 Expr *E = ParenE->IgnoreParens();
21108 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
21109 if (opE->getOpcode() == BO_EQ &&
21110 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
21111 == Expr::MLV_Valid) {
21112 SourceLocation Loc = opE->getOperatorLoc();
21114 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
21115 SourceRange ParenERange = ParenE->getSourceRange();
21116 Diag(Loc, diag::note_equality_comparison_silence)
21117 << FixItHint::CreateRemoval(ParenERange.getBegin())
21118 << FixItHint::CreateRemoval(ParenERange.getEnd());
21119 Diag(Loc, diag::note_equality_comparison_to_assign)
21120 << FixItHint::CreateReplacement(Loc, "=");
21124 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
21125 bool IsConstexpr) {
21126 DiagnoseAssignmentAsCondition(E);
21127 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
21128 DiagnoseEqualityWithExtraParens(parenE);
21130 ExprResult result = CheckPlaceholderExpr(E);
21131 if (result.isInvalid()) return ExprError();
21132 E = result.get();
21134 if (!E->isTypeDependent()) {
21135 if (getLangOpts().CPlusPlus)
21136 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
21138 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
21139 if (ERes.isInvalid())
21140 return ExprError();
21141 E = ERes.get();
21143 QualType T = E->getType();
21144 if (!T->isScalarType()) { // C99 6.8.4.1p1
21145 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
21146 << T << E->getSourceRange();
21147 return ExprError();
21149 CheckBoolLikeConversion(E, Loc);
21152 return E;
21155 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
21156 Expr *SubExpr, ConditionKind CK,
21157 bool MissingOK) {
21158 // MissingOK indicates whether having no condition expression is valid
21159 // (for loop) or invalid (e.g. while loop).
21160 if (!SubExpr)
21161 return MissingOK ? ConditionResult() : ConditionError();
21163 ExprResult Cond;
21164 switch (CK) {
21165 case ConditionKind::Boolean:
21166 Cond = CheckBooleanCondition(Loc, SubExpr);
21167 break;
21169 case ConditionKind::ConstexprIf:
21170 Cond = CheckBooleanCondition(Loc, SubExpr, true);
21171 break;
21173 case ConditionKind::Switch:
21174 Cond = CheckSwitchCondition(Loc, SubExpr);
21175 break;
21177 if (Cond.isInvalid()) {
21178 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
21179 {SubExpr}, PreferredConditionType(CK));
21180 if (!Cond.get())
21181 return ConditionError();
21183 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
21184 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
21185 if (!FullExpr.get())
21186 return ConditionError();
21188 return ConditionResult(*this, nullptr, FullExpr,
21189 CK == ConditionKind::ConstexprIf);
21192 namespace {
21193 /// A visitor for rebuilding a call to an __unknown_any expression
21194 /// to have an appropriate type.
21195 struct RebuildUnknownAnyFunction
21196 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
21198 Sema &S;
21200 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
21202 ExprResult VisitStmt(Stmt *S) {
21203 llvm_unreachable("unexpected statement!");
21206 ExprResult VisitExpr(Expr *E) {
21207 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
21208 << E->getSourceRange();
21209 return ExprError();
21212 /// Rebuild an expression which simply semantically wraps another
21213 /// expression which it shares the type and value kind of.
21214 template <class T> ExprResult rebuildSugarExpr(T *E) {
21215 ExprResult SubResult = Visit(E->getSubExpr());
21216 if (SubResult.isInvalid()) return ExprError();
21218 Expr *SubExpr = SubResult.get();
21219 E->setSubExpr(SubExpr);
21220 E->setType(SubExpr->getType());
21221 E->setValueKind(SubExpr->getValueKind());
21222 assert(E->getObjectKind() == OK_Ordinary);
21223 return E;
21226 ExprResult VisitParenExpr(ParenExpr *E) {
21227 return rebuildSugarExpr(E);
21230 ExprResult VisitUnaryExtension(UnaryOperator *E) {
21231 return rebuildSugarExpr(E);
21234 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21235 ExprResult SubResult = Visit(E->getSubExpr());
21236 if (SubResult.isInvalid()) return ExprError();
21238 Expr *SubExpr = SubResult.get();
21239 E->setSubExpr(SubExpr);
21240 E->setType(S.Context.getPointerType(SubExpr->getType()));
21241 assert(E->isPRValue());
21242 assert(E->getObjectKind() == OK_Ordinary);
21243 return E;
21246 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
21247 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
21249 E->setType(VD->getType());
21251 assert(E->isPRValue());
21252 if (S.getLangOpts().CPlusPlus &&
21253 !(isa<CXXMethodDecl>(VD) &&
21254 cast<CXXMethodDecl>(VD)->isInstance()))
21255 E->setValueKind(VK_LValue);
21257 return E;
21260 ExprResult VisitMemberExpr(MemberExpr *E) {
21261 return resolveDecl(E, E->getMemberDecl());
21264 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21265 return resolveDecl(E, E->getDecl());
21270 /// Given a function expression of unknown-any type, try to rebuild it
21271 /// to have a function type.
21272 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
21273 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
21274 if (Result.isInvalid()) return ExprError();
21275 return S.DefaultFunctionArrayConversion(Result.get());
21278 namespace {
21279 /// A visitor for rebuilding an expression of type __unknown_anytype
21280 /// into one which resolves the type directly on the referring
21281 /// expression. Strict preservation of the original source
21282 /// structure is not a goal.
21283 struct RebuildUnknownAnyExpr
21284 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
21286 Sema &S;
21288 /// The current destination type.
21289 QualType DestType;
21291 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
21292 : S(S), DestType(CastType) {}
21294 ExprResult VisitStmt(Stmt *S) {
21295 llvm_unreachable("unexpected statement!");
21298 ExprResult VisitExpr(Expr *E) {
21299 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21300 << E->getSourceRange();
21301 return ExprError();
21304 ExprResult VisitCallExpr(CallExpr *E);
21305 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
21307 /// Rebuild an expression which simply semantically wraps another
21308 /// expression which it shares the type and value kind of.
21309 template <class T> ExprResult rebuildSugarExpr(T *E) {
21310 ExprResult SubResult = Visit(E->getSubExpr());
21311 if (SubResult.isInvalid()) return ExprError();
21312 Expr *SubExpr = SubResult.get();
21313 E->setSubExpr(SubExpr);
21314 E->setType(SubExpr->getType());
21315 E->setValueKind(SubExpr->getValueKind());
21316 assert(E->getObjectKind() == OK_Ordinary);
21317 return E;
21320 ExprResult VisitParenExpr(ParenExpr *E) {
21321 return rebuildSugarExpr(E);
21324 ExprResult VisitUnaryExtension(UnaryOperator *E) {
21325 return rebuildSugarExpr(E);
21328 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
21329 const PointerType *Ptr = DestType->getAs<PointerType>();
21330 if (!Ptr) {
21331 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
21332 << E->getSourceRange();
21333 return ExprError();
21336 if (isa<CallExpr>(E->getSubExpr())) {
21337 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
21338 << E->getSourceRange();
21339 return ExprError();
21342 assert(E->isPRValue());
21343 assert(E->getObjectKind() == OK_Ordinary);
21344 E->setType(DestType);
21346 // Build the sub-expression as if it were an object of the pointee type.
21347 DestType = Ptr->getPointeeType();
21348 ExprResult SubResult = Visit(E->getSubExpr());
21349 if (SubResult.isInvalid()) return ExprError();
21350 E->setSubExpr(SubResult.get());
21351 return E;
21354 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
21356 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
21358 ExprResult VisitMemberExpr(MemberExpr *E) {
21359 return resolveDecl(E, E->getMemberDecl());
21362 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
21363 return resolveDecl(E, E->getDecl());
21368 /// Rebuilds a call expression which yielded __unknown_anytype.
21369 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
21370 Expr *CalleeExpr = E->getCallee();
21372 enum FnKind {
21373 FK_MemberFunction,
21374 FK_FunctionPointer,
21375 FK_BlockPointer
21378 FnKind Kind;
21379 QualType CalleeType = CalleeExpr->getType();
21380 if (CalleeType == S.Context.BoundMemberTy) {
21381 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
21382 Kind = FK_MemberFunction;
21383 CalleeType = Expr::findBoundMemberType(CalleeExpr);
21384 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
21385 CalleeType = Ptr->getPointeeType();
21386 Kind = FK_FunctionPointer;
21387 } else {
21388 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
21389 Kind = FK_BlockPointer;
21391 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
21393 // Verify that this is a legal result type of a function.
21394 if (DestType->isArrayType() || DestType->isFunctionType()) {
21395 unsigned diagID = diag::err_func_returning_array_function;
21396 if (Kind == FK_BlockPointer)
21397 diagID = diag::err_block_returning_array_function;
21399 S.Diag(E->getExprLoc(), diagID)
21400 << DestType->isFunctionType() << DestType;
21401 return ExprError();
21404 // Otherwise, go ahead and set DestType as the call's result.
21405 E->setType(DestType.getNonLValueExprType(S.Context));
21406 E->setValueKind(Expr::getValueKindForType(DestType));
21407 assert(E->getObjectKind() == OK_Ordinary);
21409 // Rebuild the function type, replacing the result type with DestType.
21410 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
21411 if (Proto) {
21412 // __unknown_anytype(...) is a special case used by the debugger when
21413 // it has no idea what a function's signature is.
21415 // We want to build this call essentially under the K&R
21416 // unprototyped rules, but making a FunctionNoProtoType in C++
21417 // would foul up all sorts of assumptions. However, we cannot
21418 // simply pass all arguments as variadic arguments, nor can we
21419 // portably just call the function under a non-variadic type; see
21420 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
21421 // However, it turns out that in practice it is generally safe to
21422 // call a function declared as "A foo(B,C,D);" under the prototype
21423 // "A foo(B,C,D,...);". The only known exception is with the
21424 // Windows ABI, where any variadic function is implicitly cdecl
21425 // regardless of its normal CC. Therefore we change the parameter
21426 // types to match the types of the arguments.
21428 // This is a hack, but it is far superior to moving the
21429 // corresponding target-specific code from IR-gen to Sema/AST.
21431 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
21432 SmallVector<QualType, 8> ArgTypes;
21433 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
21434 ArgTypes.reserve(E->getNumArgs());
21435 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
21436 ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
21438 ParamTypes = ArgTypes;
21440 DestType = S.Context.getFunctionType(DestType, ParamTypes,
21441 Proto->getExtProtoInfo());
21442 } else {
21443 DestType = S.Context.getFunctionNoProtoType(DestType,
21444 FnType->getExtInfo());
21447 // Rebuild the appropriate pointer-to-function type.
21448 switch (Kind) {
21449 case FK_MemberFunction:
21450 // Nothing to do.
21451 break;
21453 case FK_FunctionPointer:
21454 DestType = S.Context.getPointerType(DestType);
21455 break;
21457 case FK_BlockPointer:
21458 DestType = S.Context.getBlockPointerType(DestType);
21459 break;
21462 // Finally, we can recurse.
21463 ExprResult CalleeResult = Visit(CalleeExpr);
21464 if (!CalleeResult.isUsable()) return ExprError();
21465 E->setCallee(CalleeResult.get());
21467 // Bind a temporary if necessary.
21468 return S.MaybeBindToTemporary(E);
21471 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
21472 // Verify that this is a legal result type of a call.
21473 if (DestType->isArrayType() || DestType->isFunctionType()) {
21474 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
21475 << DestType->isFunctionType() << DestType;
21476 return ExprError();
21479 // Rewrite the method result type if available.
21480 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
21481 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
21482 Method->setReturnType(DestType);
21485 // Change the type of the message.
21486 E->setType(DestType.getNonReferenceType());
21487 E->setValueKind(Expr::getValueKindForType(DestType));
21489 return S.MaybeBindToTemporary(E);
21492 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
21493 // The only case we should ever see here is a function-to-pointer decay.
21494 if (E->getCastKind() == CK_FunctionToPointerDecay) {
21495 assert(E->isPRValue());
21496 assert(E->getObjectKind() == OK_Ordinary);
21498 E->setType(DestType);
21500 // Rebuild the sub-expression as the pointee (function) type.
21501 DestType = DestType->castAs<PointerType>()->getPointeeType();
21503 ExprResult Result = Visit(E->getSubExpr());
21504 if (!Result.isUsable()) return ExprError();
21506 E->setSubExpr(Result.get());
21507 return E;
21508 } else if (E->getCastKind() == CK_LValueToRValue) {
21509 assert(E->isPRValue());
21510 assert(E->getObjectKind() == OK_Ordinary);
21512 assert(isa<BlockPointerType>(E->getType()));
21514 E->setType(DestType);
21516 // The sub-expression has to be a lvalue reference, so rebuild it as such.
21517 DestType = S.Context.getLValueReferenceType(DestType);
21519 ExprResult Result = Visit(E->getSubExpr());
21520 if (!Result.isUsable()) return ExprError();
21522 E->setSubExpr(Result.get());
21523 return E;
21524 } else {
21525 llvm_unreachable("Unhandled cast type!");
21529 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
21530 ExprValueKind ValueKind = VK_LValue;
21531 QualType Type = DestType;
21533 // We know how to make this work for certain kinds of decls:
21535 // - functions
21536 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
21537 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
21538 DestType = Ptr->getPointeeType();
21539 ExprResult Result = resolveDecl(E, VD);
21540 if (Result.isInvalid()) return ExprError();
21541 return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
21542 VK_PRValue);
21545 if (!Type->isFunctionType()) {
21546 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
21547 << VD << E->getSourceRange();
21548 return ExprError();
21550 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
21551 // We must match the FunctionDecl's type to the hack introduced in
21552 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
21553 // type. See the lengthy commentary in that routine.
21554 QualType FDT = FD->getType();
21555 const FunctionType *FnType = FDT->castAs<FunctionType>();
21556 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
21557 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
21558 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
21559 SourceLocation Loc = FD->getLocation();
21560 FunctionDecl *NewFD = FunctionDecl::Create(
21561 S.Context, FD->getDeclContext(), Loc, Loc,
21562 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
21563 SC_None, S.getCurFPFeatures().isFPConstrained(),
21564 false /*isInlineSpecified*/, FD->hasPrototype(),
21565 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
21567 if (FD->getQualifier())
21568 NewFD->setQualifierInfo(FD->getQualifierLoc());
21570 SmallVector<ParmVarDecl*, 16> Params;
21571 for (const auto &AI : FT->param_types()) {
21572 ParmVarDecl *Param =
21573 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
21574 Param->setScopeInfo(0, Params.size());
21575 Params.push_back(Param);
21577 NewFD->setParams(Params);
21578 DRE->setDecl(NewFD);
21579 VD = DRE->getDecl();
21583 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
21584 if (MD->isInstance()) {
21585 ValueKind = VK_PRValue;
21586 Type = S.Context.BoundMemberTy;
21589 // Function references aren't l-values in C.
21590 if (!S.getLangOpts().CPlusPlus)
21591 ValueKind = VK_PRValue;
21593 // - variables
21594 } else if (isa<VarDecl>(VD)) {
21595 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
21596 Type = RefTy->getPointeeType();
21597 } else if (Type->isFunctionType()) {
21598 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
21599 << VD << E->getSourceRange();
21600 return ExprError();
21603 // - nothing else
21604 } else {
21605 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
21606 << VD << E->getSourceRange();
21607 return ExprError();
21610 // Modifying the declaration like this is friendly to IR-gen but
21611 // also really dangerous.
21612 VD->setType(DestType);
21613 E->setType(Type);
21614 E->setValueKind(ValueKind);
21615 return E;
21618 /// Check a cast of an unknown-any type. We intentionally only
21619 /// trigger this for C-style casts.
21620 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
21621 Expr *CastExpr, CastKind &CastKind,
21622 ExprValueKind &VK, CXXCastPath &Path) {
21623 // The type we're casting to must be either void or complete.
21624 if (!CastType->isVoidType() &&
21625 RequireCompleteType(TypeRange.getBegin(), CastType,
21626 diag::err_typecheck_cast_to_incomplete))
21627 return ExprError();
21629 // Rewrite the casted expression from scratch.
21630 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
21631 if (!result.isUsable()) return ExprError();
21633 CastExpr = result.get();
21634 VK = CastExpr->getValueKind();
21635 CastKind = CK_NoOp;
21637 return CastExpr;
21640 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
21641 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
21644 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
21645 Expr *arg, QualType &paramType) {
21646 // If the syntactic form of the argument is not an explicit cast of
21647 // any sort, just do default argument promotion.
21648 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
21649 if (!castArg) {
21650 ExprResult result = DefaultArgumentPromotion(arg);
21651 if (result.isInvalid()) return ExprError();
21652 paramType = result.get()->getType();
21653 return result;
21656 // Otherwise, use the type that was written in the explicit cast.
21657 assert(!arg->hasPlaceholderType());
21658 paramType = castArg->getTypeAsWritten();
21660 // Copy-initialize a parameter of that type.
21661 InitializedEntity entity =
21662 InitializedEntity::InitializeParameter(Context, paramType,
21663 /*consumed*/ false);
21664 return PerformCopyInitialization(entity, callLoc, arg);
21667 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
21668 Expr *orig = E;
21669 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
21670 while (true) {
21671 E = E->IgnoreParenImpCasts();
21672 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
21673 E = call->getCallee();
21674 diagID = diag::err_uncasted_call_of_unknown_any;
21675 } else {
21676 break;
21680 SourceLocation loc;
21681 NamedDecl *d;
21682 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
21683 loc = ref->getLocation();
21684 d = ref->getDecl();
21685 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
21686 loc = mem->getMemberLoc();
21687 d = mem->getMemberDecl();
21688 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
21689 diagID = diag::err_uncasted_call_of_unknown_any;
21690 loc = msg->getSelectorStartLoc();
21691 d = msg->getMethodDecl();
21692 if (!d) {
21693 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
21694 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
21695 << orig->getSourceRange();
21696 return ExprError();
21698 } else {
21699 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
21700 << E->getSourceRange();
21701 return ExprError();
21704 S.Diag(loc, diagID) << d << orig->getSourceRange();
21706 // Never recoverable.
21707 return ExprError();
21710 /// Check for operands with placeholder types and complain if found.
21711 /// Returns ExprError() if there was an error and no recovery was possible.
21712 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
21713 if (!Context.isDependenceAllowed()) {
21714 // C cannot handle TypoExpr nodes on either side of a binop because it
21715 // doesn't handle dependent types properly, so make sure any TypoExprs have
21716 // been dealt with before checking the operands.
21717 ExprResult Result = CorrectDelayedTyposInExpr(E);
21718 if (!Result.isUsable()) return ExprError();
21719 E = Result.get();
21722 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
21723 if (!placeholderType) return E;
21725 switch (placeholderType->getKind()) {
21727 // Overloaded expressions.
21728 case BuiltinType::Overload: {
21729 // Try to resolve a single function template specialization.
21730 // This is obligatory.
21731 ExprResult Result = E;
21732 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
21733 return Result;
21735 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
21736 // leaves Result unchanged on failure.
21737 Result = E;
21738 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
21739 return Result;
21741 // If that failed, try to recover with a call.
21742 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
21743 /*complain*/ true);
21744 return Result;
21747 // Bound member functions.
21748 case BuiltinType::BoundMember: {
21749 ExprResult result = E;
21750 const Expr *BME = E->IgnoreParens();
21751 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
21752 // Try to give a nicer diagnostic if it is a bound member that we recognize.
21753 if (isa<CXXPseudoDestructorExpr>(BME)) {
21754 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21755 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21756 if (ME->getMemberNameInfo().getName().getNameKind() ==
21757 DeclarationName::CXXDestructorName)
21758 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21760 tryToRecoverWithCall(result, PD,
21761 /*complain*/ true);
21762 return result;
21765 // ARC unbridged casts.
21766 case BuiltinType::ARCUnbridgedCast: {
21767 Expr *realCast = stripARCUnbridgedCast(E);
21768 diagnoseARCUnbridgedCast(realCast);
21769 return realCast;
21772 // Expressions of unknown type.
21773 case BuiltinType::UnknownAny:
21774 return diagnoseUnknownAnyExpr(*this, E);
21776 // Pseudo-objects.
21777 case BuiltinType::PseudoObject:
21778 return checkPseudoObjectRValue(E);
21780 case BuiltinType::BuiltinFn: {
21781 // Accept __noop without parens by implicitly converting it to a call expr.
21782 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21783 if (DRE) {
21784 auto *FD = cast<FunctionDecl>(DRE->getDecl());
21785 unsigned BuiltinID = FD->getBuiltinID();
21786 if (BuiltinID == Builtin::BI__noop) {
21787 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21788 CK_BuiltinFnToFnPtr)
21789 .get();
21790 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21791 VK_PRValue, SourceLocation(),
21792 FPOptionsOverride());
21795 if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21796 // Any use of these other than a direct call is ill-formed as of C++20,
21797 // because they are not addressable functions. In earlier language
21798 // modes, warn and force an instantiation of the real body.
21799 Diag(E->getBeginLoc(),
21800 getLangOpts().CPlusPlus20
21801 ? diag::err_use_of_unaddressable_function
21802 : diag::warn_cxx20_compat_use_of_unaddressable_function);
21803 if (FD->isImplicitlyInstantiable()) {
21804 // Require a definition here because a normal attempt at
21805 // instantiation for a builtin will be ignored, and we won't try
21806 // again later. We assume that the definition of the template
21807 // precedes this use.
21808 InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21809 /*Recursive=*/false,
21810 /*DefinitionRequired=*/true,
21811 /*AtEndOfTU=*/false);
21813 // Produce a properly-typed reference to the function.
21814 CXXScopeSpec SS;
21815 SS.Adopt(DRE->getQualifierLoc());
21816 TemplateArgumentListInfo TemplateArgs;
21817 DRE->copyTemplateArgumentsInto(TemplateArgs);
21818 return BuildDeclRefExpr(
21819 FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21820 DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21821 DRE->getTemplateKeywordLoc(),
21822 DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21826 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21827 return ExprError();
21830 case BuiltinType::IncompleteMatrixIdx:
21831 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21832 ->getRowIdx()
21833 ->getBeginLoc(),
21834 diag::err_matrix_incomplete_index);
21835 return ExprError();
21837 // Expressions of unknown type.
21838 case BuiltinType::OMPArraySection:
21839 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21840 return ExprError();
21842 // Expressions of unknown type.
21843 case BuiltinType::OMPArrayShaping:
21844 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21846 case BuiltinType::OMPIterator:
21847 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21849 // Everything else should be impossible.
21850 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21851 case BuiltinType::Id:
21852 #include "clang/Basic/OpenCLImageTypes.def"
21853 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21854 case BuiltinType::Id:
21855 #include "clang/Basic/OpenCLExtensionTypes.def"
21856 #define SVE_TYPE(Name, Id, SingletonId) \
21857 case BuiltinType::Id:
21858 #include "clang/Basic/AArch64SVEACLETypes.def"
21859 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21860 case BuiltinType::Id:
21861 #include "clang/Basic/PPCTypes.def"
21862 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21863 #include "clang/Basic/RISCVVTypes.def"
21864 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21865 #include "clang/Basic/WebAssemblyReferenceTypes.def"
21866 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21867 #define PLACEHOLDER_TYPE(Id, SingletonId)
21868 #include "clang/AST/BuiltinTypes.def"
21869 break;
21872 llvm_unreachable("invalid placeholder type!");
21875 bool Sema::CheckCaseExpression(Expr *E) {
21876 if (E->isTypeDependent())
21877 return true;
21878 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21879 return E->getType()->isIntegralOrEnumerationType();
21880 return false;
21883 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21884 ExprResult
21885 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21886 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21887 "Unknown Objective-C Boolean value!");
21888 QualType BoolT = Context.ObjCBuiltinBoolTy;
21889 if (!Context.getBOOLDecl()) {
21890 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21891 Sema::LookupOrdinaryName);
21892 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21893 NamedDecl *ND = Result.getFoundDecl();
21894 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21895 Context.setBOOLDecl(TD);
21898 if (Context.getBOOLDecl())
21899 BoolT = Context.getBOOLType();
21900 return new (Context)
21901 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21904 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21905 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21906 SourceLocation RParen) {
21907 auto FindSpecVersion =
21908 [&](StringRef Platform) -> std::optional<VersionTuple> {
21909 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21910 return Spec.getPlatform() == Platform;
21912 // Transcribe the "ios" availability check to "maccatalyst" when compiling
21913 // for "maccatalyst" if "maccatalyst" is not specified.
21914 if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21915 Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21916 return Spec.getPlatform() == "ios";
21919 if (Spec == AvailSpecs.end())
21920 return std::nullopt;
21921 return Spec->getVersion();
21924 VersionTuple Version;
21925 if (auto MaybeVersion =
21926 FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21927 Version = *MaybeVersion;
21929 // The use of `@available` in the enclosing context should be analyzed to
21930 // warn when it's used inappropriately (i.e. not if(@available)).
21931 if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21932 Context->HasPotentialAvailabilityViolations = true;
21934 return new (Context)
21935 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21938 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21939 ArrayRef<Expr *> SubExprs, QualType T) {
21940 if (!Context.getLangOpts().RecoveryAST)
21941 return ExprError();
21943 if (isSFINAEContext())
21944 return ExprError();
21946 if (T.isNull() || T->isUndeducedType() ||
21947 !Context.getLangOpts().RecoveryASTType)
21948 // We don't know the concrete type, fallback to dependent type.
21949 T = Context.DependentTy;
21951 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);