1 //===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements semantic analysis member access expressions.
11 //===----------------------------------------------------------------------===//
12 #include "clang/Sema/Overload.h"
13 #include "clang/AST/ASTLambda.h"
14 #include "clang/AST/DeclCXX.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/Lex/Preprocessor.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/Scope.h"
22 #include "clang/Sema/ScopeInfo.h"
23 #include "clang/Sema/SemaInternal.h"
25 using namespace clang
;
28 typedef llvm::SmallPtrSet
<const CXXRecordDecl
*, 4> BaseSet
;
30 /// Determines if the given class is provably not derived from all of
31 /// the prospective base classes.
32 static bool isProvablyNotDerivedFrom(Sema
&SemaRef
, CXXRecordDecl
*Record
,
33 const BaseSet
&Bases
) {
34 auto BaseIsNotInSet
= [&Bases
](const CXXRecordDecl
*Base
) {
35 return !Bases
.count(Base
->getCanonicalDecl());
37 return BaseIsNotInSet(Record
) && Record
->forallBases(BaseIsNotInSet
);
41 /// The reference is definitely not an instance member access.
44 /// The reference may be an implicit instance member access.
47 /// The reference may be to an instance member, but it might be invalid if
48 /// so, because the context is not an instance method.
49 IMA_Mixed_StaticOrExplicitContext
,
51 /// The reference may be to an instance member, but it is invalid if
52 /// so, because the context is from an unrelated class.
55 /// The reference is definitely an implicit instance member access.
58 /// The reference may be to an unresolved using declaration.
61 /// The reference is a contextually-permitted abstract member reference.
64 /// The reference may be to an unresolved using declaration and the
65 /// context is not an instance method.
66 IMA_Unresolved_StaticOrExplicitContext
,
68 // The reference refers to a field which is not a member of the containing
69 // class, which is allowed because we're in C++11 mode and the context is
71 IMA_Field_Uneval_Context
,
73 /// All possible referrents are instance members and the current
74 /// context is not an instance method.
75 IMA_Error_StaticOrExplicitContext
,
77 /// All possible referrents are instance members of an unrelated
82 /// The given lookup names class member(s) and is not being used for
83 /// an address-of-member expression. Classify the type of access
84 /// according to whether it's possible that this reference names an
85 /// instance member. This is best-effort in dependent contexts; it is okay to
86 /// conservatively answer "yes", in which case some errors will simply
87 /// not be caught until template-instantiation.
88 static IMAKind
ClassifyImplicitMemberAccess(Sema
&SemaRef
,
89 const LookupResult
&R
) {
90 assert(!R
.empty() && (*R
.begin())->isCXXClassMember());
92 DeclContext
*DC
= SemaRef
.getFunctionLevelDeclContext();
94 bool isStaticOrExplicitContext
=
95 SemaRef
.CXXThisTypeOverride
.isNull() &&
96 (!isa
<CXXMethodDecl
>(DC
) || cast
<CXXMethodDecl
>(DC
)->isStatic() ||
97 cast
<CXXMethodDecl
>(DC
)->isExplicitObjectMemberFunction());
99 if (R
.isUnresolvableResult())
100 return isStaticOrExplicitContext
? IMA_Unresolved_StaticOrExplicitContext
103 // Collect all the declaring classes of instance members we find.
104 bool hasNonInstance
= false;
105 bool isField
= false;
107 for (NamedDecl
*D
: R
) {
108 // Look through any using decls.
109 D
= D
->getUnderlyingDecl();
111 if (D
->isCXXInstanceMember()) {
112 isField
|= isa
<FieldDecl
>(D
) || isa
<MSPropertyDecl
>(D
) ||
113 isa
<IndirectFieldDecl
>(D
);
115 CXXRecordDecl
*R
= cast
<CXXRecordDecl
>(D
->getDeclContext());
116 Classes
.insert(R
->getCanonicalDecl());
118 hasNonInstance
= true;
121 // If we didn't find any instance members, it can't be an implicit
126 // C++11 [expr.prim.general]p12:
127 // An id-expression that denotes a non-static data member or non-static
128 // member function of a class can only be used:
130 // - if that id-expression denotes a non-static data member and it
131 // appears in an unevaluated operand.
133 // This rule is specific to C++11. However, we also permit this form
134 // in unevaluated inline assembly operands, like the operand to a SIZE.
135 IMAKind AbstractInstanceResult
= IMA_Static
; // happens to be 'false'
136 assert(!AbstractInstanceResult
);
137 switch (SemaRef
.ExprEvalContexts
.back().Context
) {
138 case Sema::ExpressionEvaluationContext::Unevaluated
:
139 case Sema::ExpressionEvaluationContext::UnevaluatedList
:
140 if (isField
&& SemaRef
.getLangOpts().CPlusPlus11
)
141 AbstractInstanceResult
= IMA_Field_Uneval_Context
;
144 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract
:
145 AbstractInstanceResult
= IMA_Abstract
;
148 case Sema::ExpressionEvaluationContext::DiscardedStatement
:
149 case Sema::ExpressionEvaluationContext::ConstantEvaluated
:
150 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext
:
151 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated
:
152 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed
:
156 // If the current context is not an instance method, it can't be
157 // an implicit member reference.
158 if (isStaticOrExplicitContext
) {
160 return IMA_Mixed_StaticOrExplicitContext
;
162 return AbstractInstanceResult
? AbstractInstanceResult
163 : IMA_Error_StaticOrExplicitContext
;
166 CXXRecordDecl
*contextClass
;
167 if (auto *MD
= dyn_cast
<CXXMethodDecl
>(DC
))
168 contextClass
= MD
->getParent()->getCanonicalDecl();
169 else if (auto *RD
= dyn_cast
<CXXRecordDecl
>(DC
))
172 return AbstractInstanceResult
? AbstractInstanceResult
173 : IMA_Error_StaticOrExplicitContext
;
175 // [class.mfct.non-static]p3:
176 // ...is used in the body of a non-static member function of class X,
177 // if name lookup (3.4.1) resolves the name in the id-expression to a
178 // non-static non-type member of some class C [...]
179 // ...if C is not X or a base class of X, the class member access expression
181 if (R
.getNamingClass() &&
182 contextClass
->getCanonicalDecl() !=
183 R
.getNamingClass()->getCanonicalDecl()) {
184 // If the naming class is not the current context, this was a qualified
185 // member name lookup, and it's sufficient to check that we have the naming
186 // class as a base class.
188 Classes
.insert(R
.getNamingClass()->getCanonicalDecl());
191 // If we can prove that the current context is unrelated to all the
192 // declaring classes, it can't be an implicit member reference (in
193 // which case it's an error if any of those members are selected).
194 if (isProvablyNotDerivedFrom(SemaRef
, contextClass
, Classes
))
195 return hasNonInstance
? IMA_Mixed_Unrelated
:
196 AbstractInstanceResult
? AbstractInstanceResult
:
199 return (hasNonInstance
? IMA_Mixed
: IMA_Instance
);
202 /// Diagnose a reference to a field with no object available.
203 static void diagnoseInstanceReference(Sema
&SemaRef
,
204 const CXXScopeSpec
&SS
,
206 const DeclarationNameInfo
&nameInfo
) {
207 SourceLocation Loc
= nameInfo
.getLoc();
208 SourceRange
Range(Loc
);
209 if (SS
.isSet()) Range
.setBegin(SS
.getRange().getBegin());
211 // Look through using shadow decls and aliases.
212 Rep
= Rep
->getUnderlyingDecl();
214 DeclContext
*FunctionLevelDC
= SemaRef
.getFunctionLevelDeclContext();
215 CXXMethodDecl
*Method
= dyn_cast
<CXXMethodDecl
>(FunctionLevelDC
);
216 CXXRecordDecl
*ContextClass
= Method
? Method
->getParent() : nullptr;
217 CXXRecordDecl
*RepClass
= dyn_cast
<CXXRecordDecl
>(Rep
->getDeclContext());
219 bool InStaticMethod
= Method
&& Method
->isStatic();
220 bool InExplicitObjectMethod
=
221 Method
&& Method
->isExplicitObjectMemberFunction();
222 bool IsField
= isa
<FieldDecl
>(Rep
) || isa
<IndirectFieldDecl
>(Rep
);
224 std::string Replacement
;
225 if (InExplicitObjectMethod
) {
226 DeclarationName N
= Method
->getParamDecl(0)->getDeclName();
228 Replacement
.append(N
.getAsString());
229 Replacement
.append(".");
232 if (IsField
&& InStaticMethod
)
233 // "invalid use of member 'x' in static member function"
234 SemaRef
.Diag(Loc
, diag::err_invalid_member_use_in_method
)
235 << Range
<< nameInfo
.getName() << /*static*/ 0;
236 else if (IsField
&& InExplicitObjectMethod
) {
237 auto Diag
= SemaRef
.Diag(Loc
, diag::err_invalid_member_use_in_method
)
238 << Range
<< nameInfo
.getName() << /*explicit*/ 1;
239 if (!Replacement
.empty())
240 Diag
<< FixItHint::CreateInsertion(Loc
, Replacement
);
241 } else if (ContextClass
&& RepClass
&& SS
.isEmpty() &&
242 !InExplicitObjectMethod
&& !InStaticMethod
&&
243 !RepClass
->Equals(ContextClass
) &&
244 RepClass
->Encloses(ContextClass
))
245 // Unqualified lookup in a non-static member function found a member of an
247 SemaRef
.Diag(Loc
, diag::err_nested_non_static_member_use
)
248 << IsField
<< RepClass
<< nameInfo
.getName() << ContextClass
<< Range
;
250 SemaRef
.Diag(Loc
, diag::err_invalid_non_static_member_use
)
251 << nameInfo
.getName() << Range
;
252 else if (!InExplicitObjectMethod
)
253 SemaRef
.Diag(Loc
, diag::err_member_call_without_object
)
254 << Range
<< /*static*/ 0;
256 const auto *Callee
= dyn_cast
<CXXMethodDecl
>(Rep
);
257 auto Diag
= SemaRef
.Diag(Loc
, diag::err_member_call_without_object
)
258 << Range
<< Callee
->isExplicitObjectMemberFunction();
259 if (!Replacement
.empty())
260 Diag
<< FixItHint::CreateInsertion(Loc
, Replacement
);
264 /// Builds an expression which might be an implicit member expression.
265 ExprResult
Sema::BuildPossibleImplicitMemberExpr(
266 const CXXScopeSpec
&SS
, SourceLocation TemplateKWLoc
, LookupResult
&R
,
267 const TemplateArgumentListInfo
*TemplateArgs
, const Scope
*S
,
268 UnresolvedLookupExpr
*AsULE
) {
269 switch (ClassifyImplicitMemberAccess(*this, R
)) {
271 return BuildImplicitMemberExpr(SS
, TemplateKWLoc
, R
, TemplateArgs
, true, S
);
274 case IMA_Mixed_Unrelated
:
276 return BuildImplicitMemberExpr(SS
, TemplateKWLoc
, R
, TemplateArgs
, false,
279 case IMA_Field_Uneval_Context
:
280 Diag(R
.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use
)
281 << R
.getLookupNameInfo().getName();
285 case IMA_Mixed_StaticOrExplicitContext
:
286 case IMA_Unresolved_StaticOrExplicitContext
:
287 if (TemplateArgs
|| TemplateKWLoc
.isValid())
288 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, false, TemplateArgs
);
289 return AsULE
? AsULE
: BuildDeclarationNameExpr(SS
, R
, false);
291 case IMA_Error_StaticOrExplicitContext
:
292 case IMA_Error_Unrelated
:
293 diagnoseInstanceReference(*this, SS
, R
.getRepresentativeDecl(),
294 R
.getLookupNameInfo());
298 llvm_unreachable("unexpected instance member access kind");
301 /// Determine whether input char is from rgba component set.
315 // OpenCL v1.1, s6.1.7
316 // The component swizzle length must be in accordance with the acceptable
318 static bool IsValidOpenCLComponentSwizzleLength(unsigned len
)
320 return (len
>= 1 && len
<= 4) || len
== 8 || len
== 16;
323 /// Check an ext-vector component access expression.
325 /// VK should be set in advance to the value kind of the base
328 CheckExtVectorComponent(Sema
&S
, QualType baseType
, ExprValueKind
&VK
,
329 SourceLocation OpLoc
, const IdentifierInfo
*CompName
,
330 SourceLocation CompLoc
) {
331 // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
334 // FIXME: This logic can be greatly simplified by splitting it along
335 // halving/not halving and reworking the component checking.
336 const ExtVectorType
*vecType
= baseType
->getAs
<ExtVectorType
>();
338 // The vector accessor can't exceed the number of elements.
339 const char *compStr
= CompName
->getNameStart();
341 // This flag determines whether or not the component is one of the four
342 // special names that indicate a subset of exactly half the elements are
344 bool HalvingSwizzle
= false;
346 // This flag determines whether or not CompName has an 's' char prefix,
347 // indicating that it is a string of hex values to be used as vector indices.
348 bool HexSwizzle
= (*compStr
== 's' || *compStr
== 'S') && compStr
[1];
350 bool HasRepeated
= false;
351 bool HasIndex
[16] = {};
355 // Check that we've found one of the special components, or that the component
356 // names must come from the same set.
357 if (!strcmp(compStr
, "hi") || !strcmp(compStr
, "lo") ||
358 !strcmp(compStr
, "even") || !strcmp(compStr
, "odd")) {
359 HalvingSwizzle
= true;
360 } else if (!HexSwizzle
&&
361 (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1) {
362 bool HasRGBA
= IsRGBA(*compStr
);
364 // Ensure that xyzw and rgba components don't intermingle.
365 if (HasRGBA
!= IsRGBA(*compStr
))
367 if (HasIndex
[Idx
]) HasRepeated
= true;
368 HasIndex
[Idx
] = true;
370 } while (*compStr
&& (Idx
= vecType
->getPointAccessorIdx(*compStr
)) != -1);
372 // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
373 if (HasRGBA
|| (*compStr
&& IsRGBA(*compStr
))) {
374 if (S
.getLangOpts().OpenCL
&&
375 S
.getLangOpts().getOpenCLCompatibleVersion() < 300) {
376 const char *DiagBegin
= HasRGBA
? CompName
->getNameStart() : compStr
;
377 S
.Diag(OpLoc
, diag::ext_opencl_ext_vector_type_rgba_selector
)
378 << StringRef(DiagBegin
, 1) << SourceRange(CompLoc
);
382 if (HexSwizzle
) compStr
++;
383 while ((Idx
= vecType
->getNumericAccessorIdx(*compStr
)) != -1) {
384 if (HasIndex
[Idx
]) HasRepeated
= true;
385 HasIndex
[Idx
] = true;
390 if (!HalvingSwizzle
&& *compStr
) {
391 // We didn't get to the end of the string. This means the component names
392 // didn't come from the same set *or* we encountered an illegal name.
393 S
.Diag(OpLoc
, diag::err_ext_vector_component_name_illegal
)
394 << StringRef(compStr
, 1) << SourceRange(CompLoc
);
398 // Ensure no component accessor exceeds the width of the vector type it
400 if (!HalvingSwizzle
) {
401 compStr
= CompName
->getNameStart();
407 if (!vecType
->isAccessorWithinNumElements(*compStr
++, HexSwizzle
)) {
408 S
.Diag(OpLoc
, diag::err_ext_vector_component_exceeds_length
)
409 << baseType
<< SourceRange(CompLoc
);
415 // OpenCL mode requires swizzle length to be in accordance with accepted
416 // sizes. Clang however supports arbitrary lengths for other languages.
417 if (S
.getLangOpts().OpenCL
&& !HalvingSwizzle
) {
418 unsigned SwizzleLength
= CompName
->getLength();
423 if (IsValidOpenCLComponentSwizzleLength(SwizzleLength
) == false) {
424 S
.Diag(OpLoc
, diag::err_opencl_ext_vector_component_invalid_length
)
425 << SwizzleLength
<< SourceRange(CompLoc
);
430 // The component accessor looks fine - now we need to compute the actual type.
431 // The vector type is implied by the component accessor. For example,
432 // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
433 // vec4.s0 is a float, vec4.s23 is a vec3, etc.
434 // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
435 unsigned CompSize
= HalvingSwizzle
? (vecType
->getNumElements() + 1) / 2
436 : CompName
->getLength();
441 return vecType
->getElementType();
446 QualType VT
= S
.Context
.getExtVectorType(vecType
->getElementType(), CompSize
);
447 // Now look up the TypeDefDecl from the vector type. Without this,
448 // diagostics look bad. We want extended vector types to appear built-in.
449 for (Sema::ExtVectorDeclsType::iterator
450 I
= S
.ExtVectorDecls
.begin(S
.getExternalSource()),
451 E
= S
.ExtVectorDecls
.end();
453 if ((*I
)->getUnderlyingType() == VT
)
454 return S
.Context
.getTypedefType(*I
);
457 return VT
; // should never get here (a typedef type should always be found).
460 static Decl
*FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl
*PDecl
,
461 IdentifierInfo
*Member
,
463 ASTContext
&Context
) {
465 if (ObjCPropertyDecl
*PD
= PDecl
->FindPropertyDeclaration(
466 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
))
468 if (ObjCMethodDecl
*OMD
= PDecl
->getInstanceMethod(Sel
))
471 for (const auto *I
: PDecl
->protocols()) {
472 if (Decl
*D
= FindGetterSetterNameDeclFromProtocolList(I
, Member
, Sel
,
479 static Decl
*FindGetterSetterNameDecl(const ObjCObjectPointerType
*QIdTy
,
480 IdentifierInfo
*Member
,
482 ASTContext
&Context
) {
483 // Check protocols on qualified interfaces.
484 Decl
*GDecl
= nullptr;
485 for (const auto *I
: QIdTy
->quals()) {
487 if (ObjCPropertyDecl
*PD
= I
->FindPropertyDeclaration(
488 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
492 // Also must look for a getter or setter name which uses property syntax.
493 if (ObjCMethodDecl
*OMD
= I
->getInstanceMethod(Sel
)) {
499 for (const auto *I
: QIdTy
->quals()) {
500 // Search in the protocol-qualifier list of current protocol.
501 GDecl
= FindGetterSetterNameDeclFromProtocolList(I
, Member
, Sel
, Context
);
510 Sema::ActOnDependentMemberExpr(Expr
*BaseExpr
, QualType BaseType
,
511 bool IsArrow
, SourceLocation OpLoc
,
512 const CXXScopeSpec
&SS
,
513 SourceLocation TemplateKWLoc
,
514 NamedDecl
*FirstQualifierInScope
,
515 const DeclarationNameInfo
&NameInfo
,
516 const TemplateArgumentListInfo
*TemplateArgs
) {
517 // Even in dependent contexts, try to diagnose base expressions with
518 // obviously wrong types, e.g.:
523 // In Obj-C++, however, the above expression is valid, since it could be
524 // accessing the 'f' property if T is an Obj-C interface. The extra check
525 // allows this, while still reporting an error if T is a struct pointer.
527 const PointerType
*PT
= BaseType
->getAs
<PointerType
>();
528 if (PT
&& (!getLangOpts().ObjC
||
529 PT
->getPointeeType()->isRecordType())) {
530 assert(BaseExpr
&& "cannot happen with implicit member accesses");
531 Diag(OpLoc
, diag::err_typecheck_member_reference_struct_union
)
532 << BaseType
<< BaseExpr
->getSourceRange() << NameInfo
.getSourceRange();
537 assert(BaseType
->isDependentType() || NameInfo
.getName().isDependentName() ||
538 isDependentScopeSpecifier(SS
) ||
539 (TemplateArgs
&& llvm::any_of(TemplateArgs
->arguments(),
540 [](const TemplateArgumentLoc
&Arg
) {
541 return Arg
.getArgument().isDependent();
544 // Get the type being accessed in BaseType. If this is an arrow, the BaseExpr
545 // must have pointer type, and the accessed type is the pointee.
546 return CXXDependentScopeMemberExpr::Create(
547 Context
, BaseExpr
, BaseType
, IsArrow
, OpLoc
,
548 SS
.getWithLocInContext(Context
), TemplateKWLoc
, FirstQualifierInScope
,
549 NameInfo
, TemplateArgs
);
552 /// We know that the given qualified member reference points only to
553 /// declarations which do not belong to the static type of the base
554 /// expression. Diagnose the problem.
555 static void DiagnoseQualifiedMemberReference(Sema
&SemaRef
,
558 const CXXScopeSpec
&SS
,
560 const DeclarationNameInfo
&nameInfo
) {
561 // If this is an implicit member access, use a different set of
564 return diagnoseInstanceReference(SemaRef
, SS
, rep
, nameInfo
);
566 SemaRef
.Diag(nameInfo
.getLoc(), diag::err_qualified_member_of_unrelated
)
567 << SS
.getRange() << rep
<< BaseType
;
570 // Check whether the declarations we found through a nested-name
571 // specifier in a member expression are actually members of the base
572 // type. The restriction here is:
575 // ... In these cases, the id-expression shall name a
576 // member of the class or of one of its base classes.
578 // So it's perfectly legitimate for the nested-name specifier to name
579 // an unrelated class, and for us to find an overload set including
580 // decls from classes which are not superclasses, as long as the decl
581 // we actually pick through overload resolution is from a superclass.
582 bool Sema::CheckQualifiedMemberReference(Expr
*BaseExpr
,
584 const CXXScopeSpec
&SS
,
585 const LookupResult
&R
) {
586 CXXRecordDecl
*BaseRecord
=
587 cast_or_null
<CXXRecordDecl
>(computeDeclContext(BaseType
));
589 // We can't check this yet because the base type is still
591 assert(BaseType
->isDependentType());
595 for (LookupResult::iterator I
= R
.begin(), E
= R
.end(); I
!= E
; ++I
) {
596 // If this is an implicit member reference and we find a
597 // non-instance member, it's not an error.
598 if (!BaseExpr
&& !(*I
)->isCXXInstanceMember())
601 // Note that we use the DC of the decl, not the underlying decl.
602 DeclContext
*DC
= (*I
)->getDeclContext()->getNonTransparentContext();
606 CXXRecordDecl
*MemberRecord
= cast
<CXXRecordDecl
>(DC
)->getCanonicalDecl();
607 if (BaseRecord
->getCanonicalDecl() == MemberRecord
||
608 !BaseRecord
->isProvablyNotDerivedFrom(MemberRecord
))
612 DiagnoseQualifiedMemberReference(*this, BaseExpr
, BaseType
, SS
,
613 R
.getRepresentativeDecl(),
614 R
.getLookupNameInfo());
620 // Callback to only accept typo corrections that are either a ValueDecl or a
621 // FunctionTemplateDecl and are declared in the current record or, for a C++
622 // classes, one of its base classes.
623 class RecordMemberExprValidatorCCC final
: public CorrectionCandidateCallback
{
625 explicit RecordMemberExprValidatorCCC(const RecordType
*RTy
)
626 : Record(RTy
->getDecl()) {
627 // Don't add bare keywords to the consumer since they will always fail
628 // validation by virtue of not being associated with any decls.
629 WantTypeSpecifiers
= false;
630 WantExpressionKeywords
= false;
631 WantCXXNamedCasts
= false;
632 WantFunctionLikeCasts
= false;
633 WantRemainingKeywords
= false;
636 bool ValidateCandidate(const TypoCorrection
&candidate
) override
{
637 NamedDecl
*ND
= candidate
.getCorrectionDecl();
638 // Don't accept candidates that cannot be member functions, constants,
639 // variables, or templates.
640 if (!ND
|| !(isa
<ValueDecl
>(ND
) || isa
<FunctionTemplateDecl
>(ND
)))
643 // Accept candidates that occur in the current record.
644 if (Record
->containsDecl(ND
))
647 if (const auto *RD
= dyn_cast
<CXXRecordDecl
>(Record
)) {
648 // Accept candidates that occur in any of the current class' base classes.
649 for (const auto &BS
: RD
->bases()) {
650 if (const auto *BSTy
= BS
.getType()->getAs
<RecordType
>()) {
651 if (BSTy
->getDecl()->containsDecl(ND
))
660 std::unique_ptr
<CorrectionCandidateCallback
> clone() override
{
661 return std::make_unique
<RecordMemberExprValidatorCCC
>(*this);
665 const RecordDecl
*const Record
;
670 static bool LookupMemberExprInRecord(Sema
&SemaRef
, LookupResult
&R
,
672 const RecordType
*RTy
,
673 SourceLocation OpLoc
, bool IsArrow
,
674 CXXScopeSpec
&SS
, bool HasTemplateArgs
,
675 SourceLocation TemplateKWLoc
,
677 SourceRange BaseRange
= BaseExpr
? BaseExpr
->getSourceRange() : SourceRange();
678 RecordDecl
*RDecl
= RTy
->getDecl();
679 if (!SemaRef
.isThisOutsideMemberFunctionBody(QualType(RTy
, 0)) &&
680 SemaRef
.RequireCompleteType(OpLoc
, QualType(RTy
, 0),
681 diag::err_typecheck_incomplete_tag
,
685 if (HasTemplateArgs
|| TemplateKWLoc
.isValid()) {
686 // LookupTemplateName doesn't expect these both to exist simultaneously.
687 QualType ObjectType
= SS
.isSet() ? QualType() : QualType(RTy
, 0);
690 return SemaRef
.LookupTemplateName(R
, nullptr, SS
, ObjectType
, false, MOUS
,
694 DeclContext
*DC
= RDecl
;
696 // If the member name was a qualified-id, look into the
697 // nested-name-specifier.
698 DC
= SemaRef
.computeDeclContext(SS
, false);
700 if (SemaRef
.RequireCompleteDeclContext(SS
, DC
)) {
701 SemaRef
.Diag(SS
.getRange().getEnd(), diag::err_typecheck_incomplete_tag
)
702 << SS
.getRange() << DC
;
706 assert(DC
&& "Cannot handle non-computable dependent contexts in lookup");
708 if (!isa
<TypeDecl
>(DC
)) {
709 SemaRef
.Diag(R
.getNameLoc(), diag::err_qualified_member_nonclass
)
710 << DC
<< SS
.getRange();
715 // The record definition is complete, now look up the member.
716 SemaRef
.LookupQualifiedName(R
, DC
, SS
);
721 DeclarationName Typo
= R
.getLookupName();
722 SourceLocation TypoLoc
= R
.getNameLoc();
726 DeclarationNameInfo NameInfo
;
727 Sema::LookupNameKind LookupKind
;
728 Sema::RedeclarationKind Redecl
;
730 QueryState Q
= {R
.getSema(), R
.getLookupNameInfo(), R
.getLookupKind(),
731 R
.redeclarationKind()};
732 RecordMemberExprValidatorCCC
CCC(RTy
);
733 TE
= SemaRef
.CorrectTypoDelayed(
734 R
.getLookupNameInfo(), R
.getLookupKind(), nullptr, &SS
, CCC
,
735 [=, &SemaRef
](const TypoCorrection
&TC
) {
737 assert(!TC
.isKeyword() &&
738 "Got a keyword as a correction for a member!");
739 bool DroppedSpecifier
=
740 TC
.WillReplaceSpecifier() &&
741 Typo
.getAsString() == TC
.getAsString(SemaRef
.getLangOpts());
742 SemaRef
.diagnoseTypo(TC
, SemaRef
.PDiag(diag::err_no_member_suggest
)
743 << Typo
<< DC
<< DroppedSpecifier
746 SemaRef
.Diag(TypoLoc
, diag::err_no_member
) << Typo
<< DC
<< BaseRange
;
749 [=](Sema
&SemaRef
, TypoExpr
*TE
, TypoCorrection TC
) mutable {
750 LookupResult
R(Q
.SemaRef
, Q
.NameInfo
, Q
.LookupKind
, Q
.Redecl
);
751 R
.clear(); // Ensure there's no decls lingering in the shared state.
752 R
.suppressDiagnostics();
753 R
.setLookupName(TC
.getCorrection());
754 for (NamedDecl
*ND
: TC
)
757 return SemaRef
.BuildMemberReferenceExpr(
758 BaseExpr
, BaseExpr
->getType(), OpLoc
, IsArrow
, SS
, SourceLocation(),
759 nullptr, R
, nullptr, nullptr);
761 Sema::CTK_ErrorRecovery
, DC
);
766 static ExprResult
LookupMemberExpr(Sema
&S
, LookupResult
&R
,
767 ExprResult
&BaseExpr
, bool &IsArrow
,
768 SourceLocation OpLoc
, CXXScopeSpec
&SS
,
769 Decl
*ObjCImpDecl
, bool HasTemplateArgs
,
770 SourceLocation TemplateKWLoc
);
773 Sema::BuildMemberReferenceExpr(Expr
*Base
, QualType BaseType
,
774 SourceLocation OpLoc
, bool IsArrow
,
776 SourceLocation TemplateKWLoc
,
777 NamedDecl
*FirstQualifierInScope
,
778 const DeclarationNameInfo
&NameInfo
,
779 const TemplateArgumentListInfo
*TemplateArgs
,
781 ActOnMemberAccessExtraArgs
*ExtraArgs
) {
782 if (BaseType
->isDependentType() ||
783 (SS
.isSet() && isDependentScopeSpecifier(SS
)))
784 return ActOnDependentMemberExpr(Base
, BaseType
,
786 SS
, TemplateKWLoc
, FirstQualifierInScope
,
787 NameInfo
, TemplateArgs
);
789 LookupResult
R(*this, NameInfo
, LookupMemberName
);
791 // Implicit member accesses.
793 TypoExpr
*TE
= nullptr;
794 QualType RecordTy
= BaseType
;
795 if (IsArrow
) RecordTy
= RecordTy
->castAs
<PointerType
>()->getPointeeType();
796 if (LookupMemberExprInRecord(
797 *this, R
, nullptr, RecordTy
->castAs
<RecordType
>(), OpLoc
, IsArrow
,
798 SS
, TemplateArgs
!= nullptr, TemplateKWLoc
, TE
))
803 // Explicit member accesses.
805 ExprResult BaseResult
= Base
;
807 LookupMemberExpr(*this, R
, BaseResult
, IsArrow
, OpLoc
, SS
,
808 ExtraArgs
? ExtraArgs
->ObjCImpDecl
: nullptr,
809 TemplateArgs
!= nullptr, TemplateKWLoc
);
811 if (BaseResult
.isInvalid())
813 Base
= BaseResult
.get();
815 if (Result
.isInvalid())
821 // LookupMemberExpr can modify Base, and thus change BaseType
822 BaseType
= Base
->getType();
825 return BuildMemberReferenceExpr(Base
, BaseType
,
826 OpLoc
, IsArrow
, SS
, TemplateKWLoc
,
827 FirstQualifierInScope
, R
, TemplateArgs
, S
,
832 Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec
&SS
,
834 IndirectFieldDecl
*indirectField
,
835 DeclAccessPair foundDecl
,
836 Expr
*baseObjectExpr
,
837 SourceLocation opLoc
) {
838 // First, build the expression that refers to the base object.
840 // Case 1: the base of the indirect field is not a field.
841 VarDecl
*baseVariable
= indirectField
->getVarDecl();
842 CXXScopeSpec EmptySS
;
844 assert(baseVariable
->getType()->isRecordType());
846 // In principle we could have a member access expression that
847 // accesses an anonymous struct/union that's a static member of
848 // the base object's class. However, under the current standard,
849 // static data members cannot be anonymous structs or unions.
850 // Supporting this is as easy as building a MemberExpr here.
851 assert(!baseObjectExpr
&& "anonymous struct/union is static data member?");
853 DeclarationNameInfo
baseNameInfo(DeclarationName(), loc
);
856 = BuildDeclarationNameExpr(EmptySS
, baseNameInfo
, baseVariable
);
857 if (result
.isInvalid()) return ExprError();
859 baseObjectExpr
= result
.get();
862 assert((baseVariable
|| baseObjectExpr
) &&
863 "referencing anonymous struct/union without a base variable or "
866 // Build the implicit member references to the field of the
867 // anonymous struct/union.
868 Expr
*result
= baseObjectExpr
;
869 IndirectFieldDecl::chain_iterator
870 FI
= indirectField
->chain_begin(), FEnd
= indirectField
->chain_end();
872 // Case 2: the base of the indirect field is a field and the user
873 // wrote a member expression.
875 FieldDecl
*field
= cast
<FieldDecl
>(*FI
);
877 bool baseObjectIsPointer
= baseObjectExpr
->getType()->isPointerType();
879 // Make a nameInfo that properly uses the anonymous name.
880 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
882 // Build the first member access in the chain with full information.
884 BuildFieldReferenceExpr(result
, baseObjectIsPointer
, SourceLocation(),
885 SS
, field
, foundDecl
, memberNameInfo
)
891 // In all cases, we should now skip the first declaration in the chain.
895 FieldDecl
*field
= cast
<FieldDecl
>(*FI
++);
897 // FIXME: these are somewhat meaningless
898 DeclarationNameInfo
memberNameInfo(field
->getDeclName(), loc
);
899 DeclAccessPair fakeFoundDecl
=
900 DeclAccessPair::make(field
, field
->getAccess());
903 BuildFieldReferenceExpr(result
, /*isarrow*/ false, SourceLocation(),
904 (FI
== FEnd
? SS
: EmptySS
), field
,
905 fakeFoundDecl
, memberNameInfo
)
913 BuildMSPropertyRefExpr(Sema
&S
, Expr
*BaseExpr
, bool IsArrow
,
914 const CXXScopeSpec
&SS
,
916 const DeclarationNameInfo
&NameInfo
) {
917 // Property names are always simple identifiers and therefore never
918 // require any interesting additional storage.
919 return new (S
.Context
) MSPropertyRefExpr(BaseExpr
, PD
, IsArrow
,
920 S
.Context
.PseudoObjectTy
, VK_LValue
,
921 SS
.getWithLocInContext(S
.Context
),
925 MemberExpr
*Sema::BuildMemberExpr(
926 Expr
*Base
, bool IsArrow
, SourceLocation OpLoc
, const CXXScopeSpec
*SS
,
927 SourceLocation TemplateKWLoc
, ValueDecl
*Member
, DeclAccessPair FoundDecl
,
928 bool HadMultipleCandidates
, const DeclarationNameInfo
&MemberNameInfo
,
929 QualType Ty
, ExprValueKind VK
, ExprObjectKind OK
,
930 const TemplateArgumentListInfo
*TemplateArgs
) {
931 NestedNameSpecifierLoc NNS
=
932 SS
? SS
->getWithLocInContext(Context
) : NestedNameSpecifierLoc();
933 return BuildMemberExpr(Base
, IsArrow
, OpLoc
, NNS
, TemplateKWLoc
, Member
,
934 FoundDecl
, HadMultipleCandidates
, MemberNameInfo
, Ty
,
935 VK
, OK
, TemplateArgs
);
938 MemberExpr
*Sema::BuildMemberExpr(
939 Expr
*Base
, bool IsArrow
, SourceLocation OpLoc
, NestedNameSpecifierLoc NNS
,
940 SourceLocation TemplateKWLoc
, ValueDecl
*Member
, DeclAccessPair FoundDecl
,
941 bool HadMultipleCandidates
, const DeclarationNameInfo
&MemberNameInfo
,
942 QualType Ty
, ExprValueKind VK
, ExprObjectKind OK
,
943 const TemplateArgumentListInfo
*TemplateArgs
) {
944 assert((!IsArrow
|| Base
->isPRValue()) &&
945 "-> base must be a pointer prvalue");
947 MemberExpr::Create(Context
, Base
, IsArrow
, OpLoc
, NNS
, TemplateKWLoc
,
948 Member
, FoundDecl
, MemberNameInfo
, TemplateArgs
, Ty
,
949 VK
, OK
, getNonOdrUseReasonInCurrentContext(Member
));
950 E
->setHadMultipleCandidates(HadMultipleCandidates
);
951 MarkMemberReferenced(E
);
953 // C++ [except.spec]p17:
954 // An exception-specification is considered to be needed when:
955 // - in an expression the function is the unique lookup result or the
956 // selected member of a set of overloaded functions
957 if (auto *FPT
= Ty
->getAs
<FunctionProtoType
>()) {
958 if (isUnresolvedExceptionSpec(FPT
->getExceptionSpecType())) {
959 if (auto *NewFPT
= ResolveExceptionSpec(MemberNameInfo
.getLoc(), FPT
))
960 E
->setType(Context
.getQualifiedType(NewFPT
, Ty
.getQualifiers()));
967 /// Determine if the given scope is within a function-try-block handler.
968 static bool IsInFnTryBlockHandler(const Scope
*S
) {
969 // Walk the scope stack until finding a FnTryCatchScope, or leave the
970 // function scope. If a FnTryCatchScope is found, check whether the TryScope
971 // flag is set. If it is not, it's a function-try-block handler.
972 for (; S
!= S
->getFnParent(); S
= S
->getParent()) {
973 if (S
->isFnTryCatchScope())
974 return (S
->getFlags() & Scope::TryScope
) != Scope::TryScope
;
980 Sema::BuildMemberReferenceExpr(Expr
*BaseExpr
, QualType BaseExprType
,
981 SourceLocation OpLoc
, bool IsArrow
,
982 const CXXScopeSpec
&SS
,
983 SourceLocation TemplateKWLoc
,
984 NamedDecl
*FirstQualifierInScope
,
986 const TemplateArgumentListInfo
*TemplateArgs
,
988 bool SuppressQualifierCheck
,
989 ActOnMemberAccessExtraArgs
*ExtraArgs
) {
990 QualType BaseType
= BaseExprType
;
992 assert(BaseType
->isPointerType());
993 BaseType
= BaseType
->castAs
<PointerType
>()->getPointeeType();
995 R
.setBaseObjectType(BaseType
);
997 // C++1z [expr.ref]p2:
998 // For the first option (dot) the first expression shall be a glvalue [...]
999 if (!IsArrow
&& BaseExpr
&& BaseExpr
->isPRValue()) {
1000 ExprResult Converted
= TemporaryMaterializationConversion(BaseExpr
);
1001 if (Converted
.isInvalid())
1003 BaseExpr
= Converted
.get();
1006 const DeclarationNameInfo
&MemberNameInfo
= R
.getLookupNameInfo();
1007 DeclarationName MemberName
= MemberNameInfo
.getName();
1008 SourceLocation MemberLoc
= MemberNameInfo
.getLoc();
1010 if (R
.isAmbiguous())
1013 // [except.handle]p10: Referring to any non-static member or base class of an
1014 // object in the handler for a function-try-block of a constructor or
1015 // destructor for that object results in undefined behavior.
1016 const auto *FD
= getCurFunctionDecl();
1017 if (S
&& BaseExpr
&& FD
&&
1018 (isa
<CXXDestructorDecl
>(FD
) || isa
<CXXConstructorDecl
>(FD
)) &&
1019 isa
<CXXThisExpr
>(BaseExpr
->IgnoreImpCasts()) &&
1020 IsInFnTryBlockHandler(S
))
1021 Diag(MemberLoc
, diag::warn_cdtor_function_try_handler_mem_expr
)
1022 << isa
<CXXDestructorDecl
>(FD
);
1025 // Rederive where we looked up.
1026 DeclContext
*DC
= (SS
.isSet()
1027 ? computeDeclContext(SS
, false)
1028 : BaseType
->castAs
<RecordType
>()->getDecl());
1031 ExprResult RetryExpr
;
1032 if (!IsArrow
&& BaseExpr
) {
1033 SFINAETrap
Trap(*this, true);
1034 ParsedType ObjectType
;
1035 bool MayBePseudoDestructor
= false;
1036 RetryExpr
= ActOnStartCXXMemberReference(getCurScope(), BaseExpr
,
1037 OpLoc
, tok::arrow
, ObjectType
,
1038 MayBePseudoDestructor
);
1039 if (RetryExpr
.isUsable() && !Trap
.hasErrorOccurred()) {
1040 CXXScopeSpec
TempSS(SS
);
1041 RetryExpr
= ActOnMemberAccessExpr(
1042 ExtraArgs
->S
, RetryExpr
.get(), OpLoc
, tok::arrow
, TempSS
,
1043 TemplateKWLoc
, ExtraArgs
->Id
, ExtraArgs
->ObjCImpDecl
);
1045 if (Trap
.hasErrorOccurred())
1046 RetryExpr
= ExprError();
1048 if (RetryExpr
.isUsable()) {
1049 Diag(OpLoc
, diag::err_no_member_overloaded_arrow
)
1050 << MemberName
<< DC
<< FixItHint::CreateReplacement(OpLoc
, "->");
1055 Diag(R
.getNameLoc(), diag::err_no_member
)
1057 << (BaseExpr
? BaseExpr
->getSourceRange() : SourceRange());
1061 // Diagnose lookups that find only declarations from a non-base
1062 // type. This is possible for either qualified lookups (which may
1063 // have been qualified with an unrelated type) or implicit member
1064 // expressions (which were found with unqualified lookup and thus
1065 // may have come from an enclosing scope). Note that it's okay for
1066 // lookup to find declarations from a non-base type as long as those
1067 // aren't the ones picked by overload resolution.
1068 if ((SS
.isSet() || !BaseExpr
||
1069 (isa
<CXXThisExpr
>(BaseExpr
) &&
1070 cast
<CXXThisExpr
>(BaseExpr
)->isImplicit())) &&
1071 !SuppressQualifierCheck
&&
1072 CheckQualifiedMemberReference(BaseExpr
, BaseType
, SS
, R
))
1075 // Construct an unresolved result if we in fact got an unresolved
1077 if (R
.isOverloadedResult() || R
.isUnresolvableResult()) {
1078 // Suppress any lookup-related diagnostics; we'll do these when we
1080 R
.suppressDiagnostics();
1082 UnresolvedMemberExpr
*MemExpr
1083 = UnresolvedMemberExpr::Create(Context
, R
.isUnresolvableResult(),
1084 BaseExpr
, BaseExprType
,
1086 SS
.getWithLocInContext(Context
),
1087 TemplateKWLoc
, MemberNameInfo
,
1088 TemplateArgs
, R
.begin(), R
.end());
1093 assert(R
.isSingleResult());
1094 DeclAccessPair FoundDecl
= R
.begin().getPair();
1095 NamedDecl
*MemberDecl
= R
.getFoundDecl();
1097 // FIXME: diagnose the presence of template arguments now.
1099 // If the decl being referenced had an error, return an error for this
1100 // sub-expr without emitting another error, in order to avoid cascading
1102 if (MemberDecl
->isInvalidDecl())
1105 // Handle the implicit-member-access case.
1107 // If this is not an instance member, convert to a non-member access.
1108 if (!MemberDecl
->isCXXInstanceMember()) {
1109 // We might have a variable template specialization (or maybe one day a
1110 // member concept-id).
1111 if (TemplateArgs
|| TemplateKWLoc
.isValid())
1112 return BuildTemplateIdExpr(SS
, TemplateKWLoc
, R
, /*ADL*/false, TemplateArgs
);
1114 return BuildDeclarationNameExpr(SS
, R
.getLookupNameInfo(), MemberDecl
,
1115 FoundDecl
, TemplateArgs
);
1117 SourceLocation Loc
= R
.getNameLoc();
1118 if (SS
.getRange().isValid())
1119 Loc
= SS
.getRange().getBegin();
1120 BaseExpr
= BuildCXXThisExpr(Loc
, BaseExprType
, /*IsImplicit=*/true);
1123 // Check the use of this member.
1124 if (DiagnoseUseOfDecl(MemberDecl
, MemberLoc
))
1127 if (FieldDecl
*FD
= dyn_cast
<FieldDecl
>(MemberDecl
))
1128 return BuildFieldReferenceExpr(BaseExpr
, IsArrow
, OpLoc
, SS
, FD
, FoundDecl
,
1131 if (MSPropertyDecl
*PD
= dyn_cast
<MSPropertyDecl
>(MemberDecl
))
1132 return BuildMSPropertyRefExpr(*this, BaseExpr
, IsArrow
, SS
, PD
,
1135 if (IndirectFieldDecl
*FD
= dyn_cast
<IndirectFieldDecl
>(MemberDecl
))
1136 // We may have found a field within an anonymous union or struct
1137 // (C++ [class.union]).
1138 return BuildAnonymousStructUnionMemberReference(SS
, MemberLoc
, FD
,
1139 FoundDecl
, BaseExpr
,
1142 if (VarDecl
*Var
= dyn_cast
<VarDecl
>(MemberDecl
)) {
1143 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
, Var
,
1144 FoundDecl
, /*HadMultipleCandidates=*/false,
1145 MemberNameInfo
, Var
->getType().getNonReferenceType(),
1146 VK_LValue
, OK_Ordinary
);
1149 if (CXXMethodDecl
*MemberFn
= dyn_cast
<CXXMethodDecl
>(MemberDecl
)) {
1150 ExprValueKind valueKind
;
1152 if (MemberFn
->isInstance()) {
1153 valueKind
= VK_PRValue
;
1154 type
= Context
.BoundMemberTy
;
1156 valueKind
= VK_LValue
;
1157 type
= MemberFn
->getType();
1160 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
,
1161 MemberFn
, FoundDecl
, /*HadMultipleCandidates=*/false,
1162 MemberNameInfo
, type
, valueKind
, OK_Ordinary
);
1164 assert(!isa
<FunctionDecl
>(MemberDecl
) && "member function not C++ method?");
1166 if (EnumConstantDecl
*Enum
= dyn_cast
<EnumConstantDecl
>(MemberDecl
)) {
1167 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
, Enum
,
1168 FoundDecl
, /*HadMultipleCandidates=*/false,
1169 MemberNameInfo
, Enum
->getType(), VK_PRValue
,
1173 if (VarTemplateDecl
*VarTempl
= dyn_cast
<VarTemplateDecl
>(MemberDecl
)) {
1174 if (!TemplateArgs
) {
1175 diagnoseMissingTemplateArguments(TemplateName(VarTempl
), MemberLoc
);
1179 DeclResult VDecl
= CheckVarTemplateId(VarTempl
, TemplateKWLoc
,
1180 MemberNameInfo
.getLoc(), *TemplateArgs
);
1181 if (VDecl
.isInvalid())
1184 // Non-dependent member, but dependent template arguments.
1186 return ActOnDependentMemberExpr(
1187 BaseExpr
, BaseExpr
->getType(), IsArrow
, OpLoc
, SS
, TemplateKWLoc
,
1188 FirstQualifierInScope
, MemberNameInfo
, TemplateArgs
);
1190 VarDecl
*Var
= cast
<VarDecl
>(VDecl
.get());
1191 if (!Var
->getTemplateSpecializationKind())
1192 Var
->setTemplateSpecializationKind(TSK_ImplicitInstantiation
, MemberLoc
);
1194 return BuildMemberExpr(BaseExpr
, IsArrow
, OpLoc
, &SS
, TemplateKWLoc
, Var
,
1195 FoundDecl
, /*HadMultipleCandidates=*/false,
1196 MemberNameInfo
, Var
->getType().getNonReferenceType(),
1197 VK_LValue
, OK_Ordinary
, TemplateArgs
);
1200 // We found something that we didn't expect. Complain.
1201 if (isa
<TypeDecl
>(MemberDecl
))
1202 Diag(MemberLoc
, diag::err_typecheck_member_reference_type
)
1203 << MemberName
<< BaseType
<< int(IsArrow
);
1205 Diag(MemberLoc
, diag::err_typecheck_member_reference_unknown
)
1206 << MemberName
<< BaseType
<< int(IsArrow
);
1208 Diag(MemberDecl
->getLocation(), diag::note_member_declared_here
)
1210 R
.suppressDiagnostics();
1214 /// Given that normal member access failed on the given expression,
1215 /// and given that the expression's type involves builtin-id or
1216 /// builtin-Class, decide whether substituting in the redefinition
1217 /// types would be profitable. The redefinition type is whatever
1218 /// this translation unit tried to typedef to id/Class; we store
1219 /// it to the side and then re-use it in places like this.
1220 static bool ShouldTryAgainWithRedefinitionType(Sema
&S
, ExprResult
&base
) {
1221 const ObjCObjectPointerType
*opty
1222 = base
.get()->getType()->getAs
<ObjCObjectPointerType
>();
1223 if (!opty
) return false;
1225 const ObjCObjectType
*ty
= opty
->getObjectType();
1228 if (ty
->isObjCId()) {
1229 redef
= S
.Context
.getObjCIdRedefinitionType();
1230 } else if (ty
->isObjCClass()) {
1231 redef
= S
.Context
.getObjCClassRedefinitionType();
1236 // Do the substitution as long as the redefinition type isn't just a
1237 // possibly-qualified pointer to builtin-id or builtin-Class again.
1238 opty
= redef
->getAs
<ObjCObjectPointerType
>();
1239 if (opty
&& !opty
->getObjectType()->getInterface())
1242 base
= S
.ImpCastExprToType(base
.get(), redef
, CK_BitCast
);
1246 static bool isRecordType(QualType T
) {
1247 return T
->isRecordType();
1249 static bool isPointerToRecordType(QualType T
) {
1250 if (const PointerType
*PT
= T
->getAs
<PointerType
>())
1251 return PT
->getPointeeType()->isRecordType();
1255 /// Perform conversions on the LHS of a member access expression.
1257 Sema::PerformMemberExprBaseConversion(Expr
*Base
, bool IsArrow
) {
1258 if (IsArrow
&& !Base
->getType()->isFunctionType())
1259 return DefaultFunctionArrayLvalueConversion(Base
);
1261 return CheckPlaceholderExpr(Base
);
1264 /// Look up the given member of the given non-type-dependent
1265 /// expression. This can return in one of two ways:
1266 /// * If it returns a sentinel null-but-valid result, the caller will
1267 /// assume that lookup was performed and the results written into
1268 /// the provided structure. It will take over from there.
1269 /// * Otherwise, the returned expression will be produced in place of
1270 /// an ordinary member expression.
1272 /// The ObjCImpDecl bit is a gross hack that will need to be properly
1273 /// fixed for ObjC++.
1274 static ExprResult
LookupMemberExpr(Sema
&S
, LookupResult
&R
,
1275 ExprResult
&BaseExpr
, bool &IsArrow
,
1276 SourceLocation OpLoc
, CXXScopeSpec
&SS
,
1277 Decl
*ObjCImpDecl
, bool HasTemplateArgs
,
1278 SourceLocation TemplateKWLoc
) {
1279 assert(BaseExpr
.get() && "no base expression");
1281 // Perform default conversions.
1282 BaseExpr
= S
.PerformMemberExprBaseConversion(BaseExpr
.get(), IsArrow
);
1283 if (BaseExpr
.isInvalid())
1286 QualType BaseType
= BaseExpr
.get()->getType();
1287 assert(!BaseType
->isDependentType());
1289 DeclarationName MemberName
= R
.getLookupName();
1290 SourceLocation MemberLoc
= R
.getNameLoc();
1292 // For later type-checking purposes, turn arrow accesses into dot
1293 // accesses. The only access type we support that doesn't follow
1294 // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1295 // and those never use arrows, so this is unaffected.
1297 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>())
1298 BaseType
= Ptr
->getPointeeType();
1299 else if (const ObjCObjectPointerType
*Ptr
1300 = BaseType
->getAs
<ObjCObjectPointerType
>())
1301 BaseType
= Ptr
->getPointeeType();
1302 else if (BaseType
->isRecordType()) {
1303 // Recover from arrow accesses to records, e.g.:
1304 // struct MyRecord foo;
1306 // This is actually well-formed in C++ if MyRecord has an
1307 // overloaded operator->, but that should have been dealt with
1308 // by now--or a diagnostic message already issued if a problem
1309 // was encountered while looking for the overloaded operator->.
1310 if (!S
.getLangOpts().CPlusPlus
) {
1311 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
1312 << BaseType
<< int(IsArrow
) << BaseExpr
.get()->getSourceRange()
1313 << FixItHint::CreateReplacement(OpLoc
, ".");
1316 } else if (BaseType
->isFunctionType()) {
1319 S
.Diag(MemberLoc
, diag::err_typecheck_member_reference_arrow
)
1320 << BaseType
<< BaseExpr
.get()->getSourceRange();
1325 // If the base type is an atomic type, this access is undefined behavior per
1326 // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1327 // about the UB and recover by converting the atomic lvalue into a non-atomic
1328 // lvalue. Because this is inherently unsafe as an atomic operation, the
1329 // warning defaults to an error.
1330 if (const auto *ATy
= BaseType
->getAs
<AtomicType
>()) {
1331 S
.DiagRuntimeBehavior(OpLoc
, nullptr,
1332 S
.PDiag(diag::warn_atomic_member_access
));
1333 BaseType
= ATy
->getValueType().getUnqualifiedType();
1334 BaseExpr
= ImplicitCastExpr::Create(
1335 S
.Context
, IsArrow
? S
.Context
.getPointerType(BaseType
) : BaseType
,
1336 CK_AtomicToNonAtomic
, BaseExpr
.get(), nullptr,
1337 BaseExpr
.get()->getValueKind(), FPOptionsOverride());
1340 // Handle field access to simple records.
1341 if (const RecordType
*RTy
= BaseType
->getAs
<RecordType
>()) {
1342 TypoExpr
*TE
= nullptr;
1343 if (LookupMemberExprInRecord(S
, R
, BaseExpr
.get(), RTy
, OpLoc
, IsArrow
, SS
,
1344 HasTemplateArgs
, TemplateKWLoc
, TE
))
1347 // Returning valid-but-null is how we indicate to the caller that
1348 // the lookup result was filled in. If typo correction was attempted and
1349 // failed, the lookup result will have been cleared--that combined with the
1350 // valid-but-null ExprResult will trigger the appropriate diagnostics.
1351 return ExprResult(TE
);
1354 // Handle ivar access to Objective-C objects.
1355 if (const ObjCObjectType
*OTy
= BaseType
->getAs
<ObjCObjectType
>()) {
1356 if (!SS
.isEmpty() && !SS
.isInvalid()) {
1357 S
.Diag(SS
.getRange().getBegin(), diag::err_qualified_objc_access
)
1358 << 1 << SS
.getScopeRep()
1359 << FixItHint::CreateRemoval(SS
.getRange());
1363 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1365 // There are three cases for the base type:
1366 // - builtin id (qualified or unqualified)
1367 // - builtin Class (qualified or unqualified)
1369 ObjCInterfaceDecl
*IDecl
= OTy
->getInterface();
1371 if (S
.getLangOpts().ObjCAutoRefCount
&&
1372 (OTy
->isObjCId() || OTy
->isObjCClass()))
1374 // There's an implicit 'isa' ivar on all objects.
1375 // But we only actually find it this way on objects of type 'id',
1377 if (OTy
->isObjCId() && Member
->isStr("isa"))
1378 return new (S
.Context
) ObjCIsaExpr(BaseExpr
.get(), IsArrow
, MemberLoc
,
1379 OpLoc
, S
.Context
.getObjCClassType());
1380 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1381 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1382 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1386 if (S
.RequireCompleteType(OpLoc
, BaseType
,
1387 diag::err_typecheck_incomplete_tag
,
1391 ObjCInterfaceDecl
*ClassDeclared
= nullptr;
1392 ObjCIvarDecl
*IV
= IDecl
->lookupInstanceVariable(Member
, ClassDeclared
);
1395 // Attempt to correct for typos in ivar names.
1396 DeclFilterCCC
<ObjCIvarDecl
> Validator
{};
1397 Validator
.IsObjCIvarLookup
= IsArrow
;
1398 if (TypoCorrection Corrected
= S
.CorrectTypo(
1399 R
.getLookupNameInfo(), Sema::LookupMemberName
, nullptr, nullptr,
1400 Validator
, Sema::CTK_ErrorRecovery
, IDecl
)) {
1401 IV
= Corrected
.getCorrectionDeclAs
<ObjCIvarDecl
>();
1404 S
.PDiag(diag::err_typecheck_member_reference_ivar_suggest
)
1405 << IDecl
->getDeclName() << MemberName
);
1407 // Figure out the class that declares the ivar.
1408 assert(!ClassDeclared
);
1410 Decl
*D
= cast
<Decl
>(IV
->getDeclContext());
1411 if (auto *Category
= dyn_cast
<ObjCCategoryDecl
>(D
))
1412 D
= Category
->getClassInterface();
1414 if (auto *Implementation
= dyn_cast
<ObjCImplementationDecl
>(D
))
1415 ClassDeclared
= Implementation
->getClassInterface();
1416 else if (auto *Interface
= dyn_cast
<ObjCInterfaceDecl
>(D
))
1417 ClassDeclared
= Interface
;
1419 assert(ClassDeclared
&& "cannot query interface");
1422 IDecl
->FindPropertyDeclaration(
1423 Member
, ObjCPropertyQueryKind::OBJC_PR_query_instance
)) {
1424 S
.Diag(MemberLoc
, diag::err_property_found_suggest
)
1425 << Member
<< BaseExpr
.get()->getType()
1426 << FixItHint::CreateReplacement(OpLoc
, ".");
1430 S
.Diag(MemberLoc
, diag::err_typecheck_member_reference_ivar
)
1431 << IDecl
->getDeclName() << MemberName
1432 << BaseExpr
.get()->getSourceRange();
1437 assert(ClassDeclared
);
1439 // If the decl being referenced had an error, return an error for this
1440 // sub-expr without emitting another error, in order to avoid cascading
1442 if (IV
->isInvalidDecl())
1445 // Check whether we can reference this field.
1446 if (S
.DiagnoseUseOfDecl(IV
, MemberLoc
))
1448 if (IV
->getAccessControl() != ObjCIvarDecl::Public
&&
1449 IV
->getAccessControl() != ObjCIvarDecl::Package
) {
1450 ObjCInterfaceDecl
*ClassOfMethodDecl
= nullptr;
1451 if (ObjCMethodDecl
*MD
= S
.getCurMethodDecl())
1452 ClassOfMethodDecl
= MD
->getClassInterface();
1453 else if (ObjCImpDecl
&& S
.getCurFunctionDecl()) {
1454 // Case of a c-function declared inside an objc implementation.
1455 // FIXME: For a c-style function nested inside an objc implementation
1456 // class, there is no implementation context available, so we pass
1457 // down the context as argument to this routine. Ideally, this context
1458 // need be passed down in the AST node and somehow calculated from the
1459 // AST for a function decl.
1460 if (ObjCImplementationDecl
*IMPD
=
1461 dyn_cast
<ObjCImplementationDecl
>(ObjCImpDecl
))
1462 ClassOfMethodDecl
= IMPD
->getClassInterface();
1463 else if (ObjCCategoryImplDecl
* CatImplClass
=
1464 dyn_cast
<ObjCCategoryImplDecl
>(ObjCImpDecl
))
1465 ClassOfMethodDecl
= CatImplClass
->getClassInterface();
1467 if (!S
.getLangOpts().DebuggerSupport
) {
1468 if (IV
->getAccessControl() == ObjCIvarDecl::Private
) {
1469 if (!declaresSameEntity(ClassDeclared
, IDecl
) ||
1470 !declaresSameEntity(ClassOfMethodDecl
, ClassDeclared
))
1471 S
.Diag(MemberLoc
, diag::err_private_ivar_access
)
1472 << IV
->getDeclName();
1473 } else if (!IDecl
->isSuperClassOf(ClassOfMethodDecl
))
1475 S
.Diag(MemberLoc
, diag::err_protected_ivar_access
)
1476 << IV
->getDeclName();
1480 if (S
.getLangOpts().ObjCWeak
) {
1481 Expr
*BaseExp
= BaseExpr
.get()->IgnoreParenImpCasts();
1482 if (UnaryOperator
*UO
= dyn_cast
<UnaryOperator
>(BaseExp
))
1483 if (UO
->getOpcode() == UO_Deref
)
1484 BaseExp
= UO
->getSubExpr()->IgnoreParenCasts();
1486 if (DeclRefExpr
*DE
= dyn_cast
<DeclRefExpr
>(BaseExp
))
1487 if (DE
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1488 S
.Diag(DE
->getLocation(), diag::err_arc_weak_ivar_access
);
1493 if (ObjCMethodDecl
*MD
= S
.getCurMethodDecl()) {
1494 ObjCMethodFamily MF
= MD
->getMethodFamily();
1495 warn
= (MF
!= OMF_init
&& MF
!= OMF_dealloc
&&
1496 MF
!= OMF_finalize
&&
1497 !S
.IvarBacksCurrentMethodAccessor(IDecl
, MD
, IV
));
1500 S
.Diag(MemberLoc
, diag::warn_direct_ivar_access
) << IV
->getDeclName();
1503 ObjCIvarRefExpr
*Result
= new (S
.Context
) ObjCIvarRefExpr(
1504 IV
, IV
->getUsageType(BaseType
), MemberLoc
, OpLoc
, BaseExpr
.get(),
1507 if (IV
->getType().getObjCLifetime() == Qualifiers::OCL_Weak
) {
1508 if (!S
.isUnevaluatedContext() &&
1509 !S
.Diags
.isIgnored(diag::warn_arc_repeated_use_of_weak
, MemberLoc
))
1510 S
.getCurFunction()->recordUseOfWeak(Result
);
1516 // Objective-C property access.
1517 const ObjCObjectPointerType
*OPT
;
1518 if (!IsArrow
&& (OPT
= BaseType
->getAs
<ObjCObjectPointerType
>())) {
1519 if (!SS
.isEmpty() && !SS
.isInvalid()) {
1520 S
.Diag(SS
.getRange().getBegin(), diag::err_qualified_objc_access
)
1521 << 0 << SS
.getScopeRep() << FixItHint::CreateRemoval(SS
.getRange());
1525 // This actually uses the base as an r-value.
1526 BaseExpr
= S
.DefaultLvalueConversion(BaseExpr
.get());
1527 if (BaseExpr
.isInvalid())
1530 assert(S
.Context
.hasSameUnqualifiedType(BaseType
,
1531 BaseExpr
.get()->getType()));
1533 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1535 const ObjCObjectType
*OT
= OPT
->getObjectType();
1537 // id, with and without qualifiers.
1538 if (OT
->isObjCId()) {
1539 // Check protocols on qualified interfaces.
1540 Selector Sel
= S
.PP
.getSelectorTable().getNullarySelector(Member
);
1542 FindGetterSetterNameDecl(OPT
, Member
, Sel
, S
.Context
)) {
1543 if (ObjCPropertyDecl
*PD
= dyn_cast
<ObjCPropertyDecl
>(PMDecl
)) {
1544 // Check the use of this declaration
1545 if (S
.DiagnoseUseOfDecl(PD
, MemberLoc
))
1548 return new (S
.Context
)
1549 ObjCPropertyRefExpr(PD
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1550 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1553 if (ObjCMethodDecl
*OMD
= dyn_cast
<ObjCMethodDecl
>(PMDecl
)) {
1554 Selector SetterSel
=
1555 SelectorTable::constructSetterSelector(S
.PP
.getIdentifierTable(),
1556 S
.PP
.getSelectorTable(),
1558 ObjCMethodDecl
*SMD
= nullptr;
1559 if (Decl
*SDecl
= FindGetterSetterNameDecl(OPT
,
1560 /*Property id*/ nullptr,
1561 SetterSel
, S
.Context
))
1562 SMD
= dyn_cast
<ObjCMethodDecl
>(SDecl
);
1564 return new (S
.Context
)
1565 ObjCPropertyRefExpr(OMD
, SMD
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1566 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1569 // Use of id.member can only be for a property reference. Do not
1570 // use the 'id' redefinition in this case.
1571 if (IsArrow
&& ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1572 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1573 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1575 return ExprError(S
.Diag(MemberLoc
, diag::err_property_not_found
)
1576 << MemberName
<< BaseType
);
1579 // 'Class', unqualified only.
1580 if (OT
->isObjCClass()) {
1581 // Only works in a method declaration (??!).
1582 ObjCMethodDecl
*MD
= S
.getCurMethodDecl();
1584 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1585 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1586 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1591 // Also must look for a getter name which uses property syntax.
1592 Selector Sel
= S
.PP
.getSelectorTable().getNullarySelector(Member
);
1593 ObjCInterfaceDecl
*IFace
= MD
->getClassInterface();
1597 ObjCMethodDecl
*Getter
;
1598 if ((Getter
= IFace
->lookupClassMethod(Sel
))) {
1599 // Check the use of this method.
1600 if (S
.DiagnoseUseOfDecl(Getter
, MemberLoc
))
1603 Getter
= IFace
->lookupPrivateMethod(Sel
, false);
1604 // If we found a getter then this may be a valid dot-reference, we
1605 // will look for the matching setter, in case it is needed.
1606 Selector SetterSel
=
1607 SelectorTable::constructSetterSelector(S
.PP
.getIdentifierTable(),
1608 S
.PP
.getSelectorTable(),
1610 ObjCMethodDecl
*Setter
= IFace
->lookupClassMethod(SetterSel
);
1612 // If this reference is in an @implementation, also check for 'private'
1614 Setter
= IFace
->lookupPrivateMethod(SetterSel
, false);
1617 if (Setter
&& S
.DiagnoseUseOfDecl(Setter
, MemberLoc
))
1620 if (Getter
|| Setter
) {
1621 return new (S
.Context
) ObjCPropertyRefExpr(
1622 Getter
, Setter
, S
.Context
.PseudoObjectTy
, VK_LValue
,
1623 OK_ObjCProperty
, MemberLoc
, BaseExpr
.get());
1626 if (ShouldTryAgainWithRedefinitionType(S
, BaseExpr
))
1627 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1628 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1630 return ExprError(S
.Diag(MemberLoc
, diag::err_property_not_found
)
1631 << MemberName
<< BaseType
);
1634 // Normal property access.
1635 return S
.HandleExprPropertyRefExpr(OPT
, BaseExpr
.get(), OpLoc
, MemberName
,
1636 MemberLoc
, SourceLocation(), QualType(),
1640 if (BaseType
->isExtVectorBoolType()) {
1641 // We disallow element access for ext_vector_type bool. There is no way to
1642 // materialize a reference to a vector element as a pointer (each element is
1643 // one bit in the vector).
1644 S
.Diag(R
.getNameLoc(), diag::err_ext_vector_component_name_illegal
)
1646 << (BaseExpr
.get() ? BaseExpr
.get()->getSourceRange() : SourceRange());
1650 // Handle 'field access' to vectors, such as 'V.xx'.
1651 if (BaseType
->isExtVectorType()) {
1652 // FIXME: this expr should store IsArrow.
1653 IdentifierInfo
*Member
= MemberName
.getAsIdentifierInfo();
1654 ExprValueKind VK
= (IsArrow
? VK_LValue
: BaseExpr
.get()->getValueKind());
1655 QualType ret
= CheckExtVectorComponent(S
, BaseType
, VK
, OpLoc
,
1660 S
.Context
.getCanonicalType(BaseExpr
.get()->getType()).getQualifiers();
1661 ret
= S
.Context
.getQualifiedType(ret
, BaseQ
);
1663 return new (S
.Context
)
1664 ExtVectorElementExpr(ret
, VK
, BaseExpr
.get(), *Member
, MemberLoc
);
1667 // Adjust builtin-sel to the appropriate redefinition type if that's
1668 // not just a pointer to builtin-sel again.
1669 if (IsArrow
&& BaseType
->isSpecificBuiltinType(BuiltinType::ObjCSel
) &&
1670 !S
.Context
.getObjCSelRedefinitionType()->isObjCSelType()) {
1671 BaseExpr
= S
.ImpCastExprToType(
1672 BaseExpr
.get(), S
.Context
.getObjCSelRedefinitionType(), CK_BitCast
);
1673 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1674 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1680 // Recover from dot accesses to pointers, e.g.:
1683 // This is actually well-formed in two cases:
1684 // - 'type' is an Objective C type
1685 // - 'bar' is a pseudo-destructor name which happens to refer to
1686 // the appropriate pointer type
1687 if (const PointerType
*Ptr
= BaseType
->getAs
<PointerType
>()) {
1688 if (!IsArrow
&& Ptr
->getPointeeType()->isRecordType() &&
1689 MemberName
.getNameKind() != DeclarationName::CXXDestructorName
) {
1690 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_suggestion
)
1691 << BaseType
<< int(IsArrow
) << BaseExpr
.get()->getSourceRange()
1692 << FixItHint::CreateReplacement(OpLoc
, "->");
1694 if (S
.isSFINAEContext())
1697 // Recurse as an -> access.
1699 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1700 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1704 // If the user is trying to apply -> or . to a function name, it's probably
1705 // because they forgot parentheses to call that function.
1706 if (S
.tryToRecoverWithCall(
1707 BaseExpr
, S
.PDiag(diag::err_member_reference_needs_call
),
1709 IsArrow
? &isPointerToRecordType
: &isRecordType
)) {
1710 if (BaseExpr
.isInvalid())
1712 BaseExpr
= S
.DefaultFunctionArrayConversion(BaseExpr
.get());
1713 return LookupMemberExpr(S
, R
, BaseExpr
, IsArrow
, OpLoc
, SS
,
1714 ObjCImpDecl
, HasTemplateArgs
, TemplateKWLoc
);
1717 S
.Diag(OpLoc
, diag::err_typecheck_member_reference_struct_union
)
1718 << BaseType
<< BaseExpr
.get()->getSourceRange() << MemberLoc
;
1723 /// The main callback when the parser finds something like
1724 /// expression . [nested-name-specifier] identifier
1725 /// expression -> [nested-name-specifier] identifier
1726 /// where 'identifier' encompasses a fairly broad spectrum of
1727 /// possibilities, including destructor and operator references.
1729 /// \param OpKind either tok::arrow or tok::period
1730 /// \param ObjCImpDecl the current Objective-C \@implementation
1731 /// decl; this is an ugly hack around the fact that Objective-C
1732 /// \@implementations aren't properly put in the context chain
1733 ExprResult
Sema::ActOnMemberAccessExpr(Scope
*S
, Expr
*Base
,
1734 SourceLocation OpLoc
,
1735 tok::TokenKind OpKind
,
1737 SourceLocation TemplateKWLoc
,
1739 Decl
*ObjCImpDecl
) {
1740 if (SS
.isSet() && SS
.isInvalid())
1743 // Warn about the explicit constructor calls Microsoft extension.
1744 if (getLangOpts().MicrosoftExt
&&
1745 Id
.getKind() == UnqualifiedIdKind::IK_ConstructorName
)
1746 Diag(Id
.getSourceRange().getBegin(),
1747 diag::ext_ms_explicit_constructor_call
);
1749 TemplateArgumentListInfo TemplateArgsBuffer
;
1751 // Decompose the name into its component parts.
1752 DeclarationNameInfo NameInfo
;
1753 const TemplateArgumentListInfo
*TemplateArgs
;
1754 DecomposeUnqualifiedId(Id
, TemplateArgsBuffer
,
1755 NameInfo
, TemplateArgs
);
1757 DeclarationName Name
= NameInfo
.getName();
1758 bool IsArrow
= (OpKind
== tok::arrow
);
1760 if (getLangOpts().HLSL
&& IsArrow
)
1761 return ExprError(Diag(OpLoc
, diag::err_hlsl_operator_unsupported
) << 2);
1763 NamedDecl
*FirstQualifierInScope
1764 = (!SS
.isSet() ? nullptr : FindFirstQualifierInScope(S
, SS
.getScopeRep()));
1766 // This is a postfix expression, so get rid of ParenListExprs.
1767 ExprResult Result
= MaybeConvertParenListExprToParenExpr(S
, Base
);
1768 if (Result
.isInvalid()) return ExprError();
1769 Base
= Result
.get();
1771 if (Base
->getType()->isDependentType() || Name
.isDependentName() ||
1772 isDependentScopeSpecifier(SS
)) {
1773 return ActOnDependentMemberExpr(Base
, Base
->getType(), IsArrow
, OpLoc
, SS
,
1774 TemplateKWLoc
, FirstQualifierInScope
,
1775 NameInfo
, TemplateArgs
);
1778 ActOnMemberAccessExtraArgs ExtraArgs
= {S
, Id
, ObjCImpDecl
};
1779 ExprResult Res
= BuildMemberReferenceExpr(
1780 Base
, Base
->getType(), OpLoc
, IsArrow
, SS
, TemplateKWLoc
,
1781 FirstQualifierInScope
, NameInfo
, TemplateArgs
, S
, &ExtraArgs
);
1783 if (!Res
.isInvalid() && isa
<MemberExpr
>(Res
.get()))
1784 CheckMemberAccessOfNoDeref(cast
<MemberExpr
>(Res
.get()));
1789 void Sema::CheckMemberAccessOfNoDeref(const MemberExpr
*E
) {
1790 if (isUnevaluatedContext())
1793 QualType ResultTy
= E
->getType();
1795 // Member accesses have four cases:
1796 // 1: non-array member via "->": dereferences
1797 // 2: non-array member via ".": nothing interesting happens
1798 // 3: array member access via "->": nothing interesting happens
1799 // (this returns an array lvalue and does not actually dereference memory)
1800 // 4: array member access via ".": *adds* a layer of indirection
1801 if (ResultTy
->isArrayType()) {
1802 if (!E
->isArrow()) {
1803 // This might be something like:
1804 // (*structPtr).arrayMember
1805 // which behaves roughly like:
1806 // &(*structPtr).pointerMember
1807 // in that the apparent dereference in the base expression does not
1809 CheckAddressOfNoDeref(E
->getBase());
1811 } else if (E
->isArrow()) {
1812 if (const auto *Ptr
= dyn_cast
<PointerType
>(
1813 E
->getBase()->getType().getDesugaredType(Context
))) {
1814 if (Ptr
->getPointeeType()->hasAttr(attr::NoDeref
))
1815 ExprEvalContexts
.back().PossibleDerefs
.insert(E
);
1821 Sema::BuildFieldReferenceExpr(Expr
*BaseExpr
, bool IsArrow
,
1822 SourceLocation OpLoc
, const CXXScopeSpec
&SS
,
1823 FieldDecl
*Field
, DeclAccessPair FoundDecl
,
1824 const DeclarationNameInfo
&MemberNameInfo
) {
1825 // x.a is an l-value if 'a' has a reference type. Otherwise:
1826 // x.a is an l-value/x-value/pr-value if the base is (and note
1827 // that *x is always an l-value), except that if the base isn't
1828 // an ordinary object then we must have an rvalue.
1829 ExprValueKind VK
= VK_LValue
;
1830 ExprObjectKind OK
= OK_Ordinary
;
1832 if (BaseExpr
->getObjectKind() == OK_Ordinary
)
1833 VK
= BaseExpr
->getValueKind();
1837 if (VK
!= VK_PRValue
&& Field
->isBitField())
1840 // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1841 QualType MemberType
= Field
->getType();
1842 if (const ReferenceType
*Ref
= MemberType
->getAs
<ReferenceType
>()) {
1843 MemberType
= Ref
->getPointeeType();
1846 QualType BaseType
= BaseExpr
->getType();
1847 if (IsArrow
) BaseType
= BaseType
->castAs
<PointerType
>()->getPointeeType();
1849 Qualifiers BaseQuals
= BaseType
.getQualifiers();
1851 // GC attributes are never picked up by members.
1852 BaseQuals
.removeObjCGCAttr();
1854 // CVR attributes from the base are picked up by members,
1855 // except that 'mutable' members don't pick up 'const'.
1856 if (Field
->isMutable()) BaseQuals
.removeConst();
1858 Qualifiers MemberQuals
=
1859 Context
.getCanonicalType(MemberType
).getQualifiers();
1861 assert(!MemberQuals
.hasAddressSpace());
1863 Qualifiers Combined
= BaseQuals
+ MemberQuals
;
1864 if (Combined
!= MemberQuals
)
1865 MemberType
= Context
.getQualifiedType(MemberType
, Combined
);
1867 // Pick up NoDeref from the base in case we end up using AddrOf on the
1868 // result. E.g. the expression
1869 // &someNoDerefPtr->pointerMember
1870 // should be a noderef pointer again.
1871 if (BaseType
->hasAttr(attr::NoDeref
))
1873 Context
.getAttributedType(attr::NoDeref
, MemberType
, MemberType
);
1876 auto *CurMethod
= dyn_cast
<CXXMethodDecl
>(CurContext
);
1877 if (!(CurMethod
&& CurMethod
->isDefaulted()))
1878 UnusedPrivateFields
.remove(Field
);
1880 ExprResult Base
= PerformObjectMemberConversion(BaseExpr
, SS
.getScopeRep(),
1882 if (Base
.isInvalid())
1885 // Build a reference to a private copy for non-static data members in
1886 // non-static member functions, privatized by OpenMP constructs.
1887 if (getLangOpts().OpenMP
&& IsArrow
&&
1888 !CurContext
->isDependentContext() &&
1889 isa
<CXXThisExpr
>(Base
.get()->IgnoreParenImpCasts())) {
1890 if (auto *PrivateCopy
= isOpenMPCapturedDecl(Field
)) {
1891 return getOpenMPCapturedExpr(PrivateCopy
, VK
, OK
,
1892 MemberNameInfo
.getLoc());
1896 return BuildMemberExpr(Base
.get(), IsArrow
, OpLoc
, &SS
,
1897 /*TemplateKWLoc=*/SourceLocation(), Field
, FoundDecl
,
1898 /*HadMultipleCandidates=*/false, MemberNameInfo
,
1899 MemberType
, VK
, OK
);
1902 /// Builds an implicit member access expression. The current context
1903 /// is known to be an instance method, and the given unqualified lookup
1904 /// set is known to contain only instance members, at least one of which
1905 /// is from an appropriate type.
1907 Sema::BuildImplicitMemberExpr(const CXXScopeSpec
&SS
,
1908 SourceLocation TemplateKWLoc
,
1910 const TemplateArgumentListInfo
*TemplateArgs
,
1911 bool IsKnownInstance
, const Scope
*S
) {
1912 assert(!R
.empty() && !R
.isAmbiguous());
1914 SourceLocation loc
= R
.getNameLoc();
1916 // If this is known to be an instance access, go ahead and build an
1917 // implicit 'this' expression now.
1918 QualType ThisTy
= getCurrentThisType();
1919 assert(!ThisTy
.isNull() && "didn't correctly pre-flight capture of 'this'");
1921 Expr
*baseExpr
= nullptr; // null signifies implicit access
1922 if (IsKnownInstance
) {
1923 SourceLocation Loc
= R
.getNameLoc();
1924 if (SS
.getRange().isValid())
1925 Loc
= SS
.getRange().getBegin();
1926 baseExpr
= BuildCXXThisExpr(loc
, ThisTy
, /*IsImplicit=*/true);
1929 return BuildMemberReferenceExpr(
1931 /*OpLoc=*/SourceLocation(),
1932 /*IsArrow=*/!getLangOpts().HLSL
, SS
, TemplateKWLoc
,
1933 /*FirstQualifierInScope=*/nullptr, R
, TemplateArgs
, S
);