1 //===- SValBuilder.cpp - Basic class for all SValBuilder implementations --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines SValBuilder, the base class for all (complete) SValBuilder
12 //===----------------------------------------------------------------------===//
14 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/Stmt.h"
21 #include "clang/AST/Type.h"
22 #include "clang/Analysis/AnalysisDeclContext.h"
23 #include "clang/Basic/LLVM.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
28 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
29 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
30 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
31 #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h"
32 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
33 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
34 #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h"
35 #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
36 #include "llvm/ADT/APSInt.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
43 using namespace clang
;
46 //===----------------------------------------------------------------------===//
47 // Basic SVal creation.
48 //===----------------------------------------------------------------------===//
50 void SValBuilder::anchor() {}
52 SValBuilder::SValBuilder(llvm::BumpPtrAllocator
&alloc
, ASTContext
&context
,
53 ProgramStateManager
&stateMgr
)
54 : Context(context
), BasicVals(context
, alloc
),
55 SymMgr(context
, BasicVals
, alloc
), MemMgr(context
, alloc
),
58 stateMgr
.getOwningEngine().getAnalysisManager().getAnalyzerOptions()),
59 ArrayIndexTy(context
.LongLongTy
),
60 ArrayIndexWidth(context
.getTypeSize(ArrayIndexTy
)) {}
62 DefinedOrUnknownSVal
SValBuilder::makeZeroVal(QualType type
) {
63 if (Loc::isLocType(type
))
64 return makeNullWithType(type
);
66 if (type
->isIntegralOrEnumerationType())
67 return makeIntVal(0, type
);
69 if (type
->isArrayType() || type
->isRecordType() || type
->isVectorType() ||
70 type
->isAnyComplexType())
71 return makeCompoundVal(type
, BasicVals
.getEmptySValList());
73 // FIXME: Handle floats.
77 nonloc::SymbolVal
SValBuilder::makeNonLoc(const SymExpr
*lhs
,
78 BinaryOperator::Opcode op
,
79 const llvm::APSInt
&rhs
,
81 // The Environment ensures we always get a persistent APSInt in
82 // BasicValueFactory, so we don't need to get the APSInt from
83 // BasicValueFactory again.
85 assert(!Loc::isLocType(type
));
86 return nonloc::SymbolVal(SymMgr
.getSymIntExpr(lhs
, op
, rhs
, type
));
89 nonloc::SymbolVal
SValBuilder::makeNonLoc(const llvm::APSInt
&lhs
,
90 BinaryOperator::Opcode op
,
91 const SymExpr
*rhs
, QualType type
) {
93 assert(!Loc::isLocType(type
));
94 return nonloc::SymbolVal(SymMgr
.getIntSymExpr(lhs
, op
, rhs
, type
));
97 nonloc::SymbolVal
SValBuilder::makeNonLoc(const SymExpr
*lhs
,
98 BinaryOperator::Opcode op
,
99 const SymExpr
*rhs
, QualType type
) {
101 assert(!Loc::isLocType(type
));
102 return nonloc::SymbolVal(SymMgr
.getSymSymExpr(lhs
, op
, rhs
, type
));
105 NonLoc
SValBuilder::makeNonLoc(const SymExpr
*operand
, UnaryOperator::Opcode op
,
108 assert(!Loc::isLocType(type
));
109 return nonloc::SymbolVal(SymMgr
.getUnarySymExpr(operand
, op
, type
));
112 nonloc::SymbolVal
SValBuilder::makeNonLoc(const SymExpr
*operand
,
113 QualType fromTy
, QualType toTy
) {
115 assert(!Loc::isLocType(toTy
));
118 return nonloc::SymbolVal(SymMgr
.getCastSymbol(operand
, fromTy
, toTy
));
121 SVal
SValBuilder::convertToArrayIndex(SVal val
) {
122 if (val
.isUnknownOrUndef())
125 // Common case: we have an appropriately sized integer.
126 if (std::optional
<nonloc::ConcreteInt
> CI
=
127 val
.getAs
<nonloc::ConcreteInt
>()) {
128 const llvm::APSInt
& I
= CI
->getValue();
129 if (I
.getBitWidth() == ArrayIndexWidth
&& I
.isSigned())
133 return evalCast(val
, ArrayIndexTy
, QualType
{});
136 nonloc::ConcreteInt
SValBuilder::makeBoolVal(const CXXBoolLiteralExpr
*boolean
){
137 return makeTruthVal(boolean
->getValue());
141 SValBuilder::getRegionValueSymbolVal(const TypedValueRegion
*region
) {
142 QualType T
= region
->getValueType();
144 if (T
->isNullPtrType())
145 return makeZeroVal(T
);
147 if (!SymbolManager::canSymbolicate(T
))
150 SymbolRef sym
= SymMgr
.getRegionValueSymbol(region
);
152 if (Loc::isLocType(T
))
153 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
155 return nonloc::SymbolVal(sym
);
158 DefinedOrUnknownSVal
SValBuilder::conjureSymbolVal(const void *SymbolTag
,
160 const LocationContext
*LCtx
,
162 QualType T
= Ex
->getType();
164 if (T
->isNullPtrType())
165 return makeZeroVal(T
);
167 // Compute the type of the result. If the expression is not an R-value, the
168 // result should be a location.
169 QualType ExType
= Ex
->getType();
171 T
= LCtx
->getAnalysisDeclContext()->getASTContext().getPointerType(ExType
);
173 return conjureSymbolVal(SymbolTag
, Ex
, LCtx
, T
, Count
);
176 DefinedOrUnknownSVal
SValBuilder::conjureSymbolVal(const void *symbolTag
,
178 const LocationContext
*LCtx
,
181 if (type
->isNullPtrType())
182 return makeZeroVal(type
);
184 if (!SymbolManager::canSymbolicate(type
))
187 SymbolRef sym
= SymMgr
.conjureSymbol(expr
, LCtx
, type
, count
, symbolTag
);
189 if (Loc::isLocType(type
))
190 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
192 return nonloc::SymbolVal(sym
);
195 DefinedOrUnknownSVal
SValBuilder::conjureSymbolVal(const Stmt
*stmt
,
196 const LocationContext
*LCtx
,
198 unsigned visitCount
) {
199 if (type
->isNullPtrType())
200 return makeZeroVal(type
);
202 if (!SymbolManager::canSymbolicate(type
))
205 SymbolRef sym
= SymMgr
.conjureSymbol(stmt
, LCtx
, type
, visitCount
);
207 if (Loc::isLocType(type
))
208 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
210 return nonloc::SymbolVal(sym
);
214 SValBuilder::getConjuredHeapSymbolVal(const Expr
*E
,
215 const LocationContext
*LCtx
,
216 unsigned VisitCount
) {
217 QualType T
= E
->getType();
218 return getConjuredHeapSymbolVal(E
, LCtx
, T
, VisitCount
);
222 SValBuilder::getConjuredHeapSymbolVal(const Expr
*E
,
223 const LocationContext
*LCtx
,
224 QualType type
, unsigned VisitCount
) {
225 assert(Loc::isLocType(type
));
226 assert(SymbolManager::canSymbolicate(type
));
227 if (type
->isNullPtrType())
228 return makeZeroVal(type
);
230 SymbolRef sym
= SymMgr
.conjureSymbol(E
, LCtx
, type
, VisitCount
);
231 return loc::MemRegionVal(MemMgr
.getSymbolicHeapRegion(sym
));
234 DefinedSVal
SValBuilder::getMetadataSymbolVal(const void *symbolTag
,
235 const MemRegion
*region
,
236 const Expr
*expr
, QualType type
,
237 const LocationContext
*LCtx
,
239 assert(SymbolManager::canSymbolicate(type
) && "Invalid metadata symbol type");
242 SymMgr
.getMetadataSymbol(region
, expr
, type
, LCtx
, count
, symbolTag
);
244 if (Loc::isLocType(type
))
245 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
247 return nonloc::SymbolVal(sym
);
251 SValBuilder::getDerivedRegionValueSymbolVal(SymbolRef parentSymbol
,
252 const TypedValueRegion
*region
) {
253 QualType T
= region
->getValueType();
255 if (T
->isNullPtrType())
256 return makeZeroVal(T
);
258 if (!SymbolManager::canSymbolicate(T
))
261 SymbolRef sym
= SymMgr
.getDerivedSymbol(parentSymbol
, region
);
263 if (Loc::isLocType(T
))
264 return loc::MemRegionVal(MemMgr
.getSymbolicRegion(sym
));
266 return nonloc::SymbolVal(sym
);
269 DefinedSVal
SValBuilder::getMemberPointer(const NamedDecl
*ND
) {
270 assert(!ND
|| (isa
<CXXMethodDecl
, FieldDecl
, IndirectFieldDecl
>(ND
)));
272 if (const auto *MD
= dyn_cast_or_null
<CXXMethodDecl
>(ND
)) {
273 // Sema treats pointers to static member functions as have function pointer
274 // type, so return a function pointer for the method.
275 // We don't need to play a similar trick for static member fields
276 // because these are represented as plain VarDecls and not FieldDecls
278 if (!MD
->isImplicitObjectMemberFunction())
279 return getFunctionPointer(MD
);
282 return nonloc::PointerToMember(ND
);
285 DefinedSVal
SValBuilder::getFunctionPointer(const FunctionDecl
*func
) {
286 return loc::MemRegionVal(MemMgr
.getFunctionCodeRegion(func
));
289 DefinedSVal
SValBuilder::getBlockPointer(const BlockDecl
*block
,
291 const LocationContext
*locContext
,
292 unsigned blockCount
) {
293 const BlockCodeRegion
*BC
=
294 MemMgr
.getBlockCodeRegion(block
, locTy
, locContext
->getAnalysisDeclContext());
295 const BlockDataRegion
*BD
= MemMgr
.getBlockDataRegion(BC
, locContext
,
297 return loc::MemRegionVal(BD
);
300 std::optional
<loc::MemRegionVal
>
301 SValBuilder::getCastedMemRegionVal(const MemRegion
*R
, QualType Ty
) {
302 if (auto OptR
= StateMgr
.getStoreManager().castRegion(R
, Ty
))
303 return loc::MemRegionVal(*OptR
);
307 /// Return a memory region for the 'this' object reference.
308 loc::MemRegionVal
SValBuilder::getCXXThis(const CXXMethodDecl
*D
,
309 const StackFrameContext
*SFC
) {
310 return loc::MemRegionVal(
311 getRegionManager().getCXXThisRegion(D
->getThisType(), SFC
));
314 /// Return a memory region for the 'this' object reference.
315 loc::MemRegionVal
SValBuilder::getCXXThis(const CXXRecordDecl
*D
,
316 const StackFrameContext
*SFC
) {
317 const Type
*T
= D
->getTypeForDecl();
318 QualType PT
= getContext().getPointerType(QualType(T
, 0));
319 return loc::MemRegionVal(getRegionManager().getCXXThisRegion(PT
, SFC
));
322 std::optional
<SVal
> SValBuilder::getConstantVal(const Expr
*E
) {
323 E
= E
->IgnoreParens();
325 switch (E
->getStmtClass()) {
326 // Handle expressions that we treat differently from the AST's constant
328 case Stmt::AddrLabelExprClass
:
329 return makeLoc(cast
<AddrLabelExpr
>(E
));
331 case Stmt::CXXScalarValueInitExprClass
:
332 case Stmt::ImplicitValueInitExprClass
:
333 return makeZeroVal(E
->getType());
335 case Stmt::ObjCStringLiteralClass
: {
336 const auto *SL
= cast
<ObjCStringLiteral
>(E
);
337 return makeLoc(getRegionManager().getObjCStringRegion(SL
));
340 case Stmt::StringLiteralClass
: {
341 const auto *SL
= cast
<StringLiteral
>(E
);
342 return makeLoc(getRegionManager().getStringRegion(SL
));
345 case Stmt::PredefinedExprClass
: {
346 const auto *PE
= cast
<PredefinedExpr
>(E
);
347 assert(PE
->getFunctionName() &&
348 "Since we analyze only instantiated functions, PredefinedExpr "
349 "should have a function name.");
350 return makeLoc(getRegionManager().getStringRegion(PE
->getFunctionName()));
353 // Fast-path some expressions to avoid the overhead of going through the AST's
354 // constant evaluator
355 case Stmt::CharacterLiteralClass
: {
356 const auto *C
= cast
<CharacterLiteral
>(E
);
357 return makeIntVal(C
->getValue(), C
->getType());
360 case Stmt::CXXBoolLiteralExprClass
:
361 return makeBoolVal(cast
<CXXBoolLiteralExpr
>(E
));
363 case Stmt::TypeTraitExprClass
: {
364 const auto *TE
= cast
<TypeTraitExpr
>(E
);
365 return makeTruthVal(TE
->getValue(), TE
->getType());
368 case Stmt::IntegerLiteralClass
:
369 return makeIntVal(cast
<IntegerLiteral
>(E
));
371 case Stmt::ObjCBoolLiteralExprClass
:
372 return makeBoolVal(cast
<ObjCBoolLiteralExpr
>(E
));
374 case Stmt::CXXNullPtrLiteralExprClass
:
375 return makeNullWithType(E
->getType());
377 case Stmt::CStyleCastExprClass
:
378 case Stmt::CXXFunctionalCastExprClass
:
379 case Stmt::CXXConstCastExprClass
:
380 case Stmt::CXXReinterpretCastExprClass
:
381 case Stmt::CXXStaticCastExprClass
:
382 case Stmt::ImplicitCastExprClass
: {
383 const auto *CE
= cast
<CastExpr
>(E
);
384 switch (CE
->getCastKind()) {
387 case CK_ArrayToPointerDecay
:
388 case CK_IntegralToPointer
:
391 const Expr
*SE
= CE
->getSubExpr();
392 std::optional
<SVal
> Val
= getConstantVal(SE
);
395 return evalCast(*Val
, CE
->getType(), SE
->getType());
401 // If we don't have a special case, fall back to the AST's constant evaluator.
403 // Don't try to come up with a value for materialized temporaries.
407 ASTContext
&Ctx
= getContext();
408 Expr::EvalResult Result
;
409 if (E
->EvaluateAsInt(Result
, Ctx
))
410 return makeIntVal(Result
.Val
.getInt());
412 if (Loc::isLocType(E
->getType()))
413 if (E
->isNullPointerConstant(Ctx
, Expr::NPC_ValueDependentIsNotNull
))
414 return makeNullWithType(E
->getType());
421 SVal
SValBuilder::makeSymExprValNN(BinaryOperator::Opcode Op
,
422 NonLoc LHS
, NonLoc RHS
,
424 SymbolRef symLHS
= LHS
.getAsSymbol();
425 SymbolRef symRHS
= RHS
.getAsSymbol();
427 // TODO: When the Max Complexity is reached, we should conjure a symbol
428 // instead of generating an Unknown value and propagate the taint info to it.
429 const unsigned MaxComp
= AnOpts
.MaxSymbolComplexity
;
431 if (symLHS
&& symRHS
&&
432 (symLHS
->computeComplexity() + symRHS
->computeComplexity()) < MaxComp
)
433 return makeNonLoc(symLHS
, Op
, symRHS
, ResultTy
);
435 if (symLHS
&& symLHS
->computeComplexity() < MaxComp
)
436 if (std::optional
<nonloc::ConcreteInt
> rInt
=
437 RHS
.getAs
<nonloc::ConcreteInt
>())
438 return makeNonLoc(symLHS
, Op
, rInt
->getValue(), ResultTy
);
440 if (symRHS
&& symRHS
->computeComplexity() < MaxComp
)
441 if (std::optional
<nonloc::ConcreteInt
> lInt
=
442 LHS
.getAs
<nonloc::ConcreteInt
>())
443 return makeNonLoc(lInt
->getValue(), Op
, symRHS
, ResultTy
);
448 SVal
SValBuilder::evalMinus(NonLoc X
) {
449 switch (X
.getSubKind()) {
450 case nonloc::ConcreteIntKind
:
451 return makeIntVal(-X
.castAs
<nonloc::ConcreteInt
>().getValue());
452 case nonloc::SymbolValKind
:
453 return makeNonLoc(X
.castAs
<nonloc::SymbolVal
>().getSymbol(), UO_Minus
,
460 SVal
SValBuilder::evalComplement(NonLoc X
) {
461 switch (X
.getSubKind()) {
462 case nonloc::ConcreteIntKind
:
463 return makeIntVal(~X
.castAs
<nonloc::ConcreteInt
>().getValue());
464 case nonloc::SymbolValKind
:
465 return makeNonLoc(X
.castAs
<nonloc::SymbolVal
>().getSymbol(), UO_Not
,
472 SVal
SValBuilder::evalUnaryOp(ProgramStateRef state
, UnaryOperator::Opcode opc
,
473 SVal operand
, QualType type
) {
474 auto OpN
= operand
.getAs
<NonLoc
>();
479 return evalMinus(*OpN
);
481 return evalComplement(*OpN
);
482 llvm_unreachable("Unexpected unary operator");
485 SVal
SValBuilder::evalBinOp(ProgramStateRef state
, BinaryOperator::Opcode op
,
486 SVal lhs
, SVal rhs
, QualType type
) {
487 if (lhs
.isUndef() || rhs
.isUndef())
488 return UndefinedVal();
490 if (lhs
.isUnknown() || rhs
.isUnknown())
493 if (isa
<nonloc::LazyCompoundVal
>(lhs
) || isa
<nonloc::LazyCompoundVal
>(rhs
)) {
497 if (op
== BinaryOperatorKind::BO_Cmp
) {
498 // We can't reason about C++20 spaceship operator yet.
500 // FIXME: Support C++20 spaceship operator.
501 // The main problem here is that the result is not integer.
505 if (std::optional
<Loc
> LV
= lhs
.getAs
<Loc
>()) {
506 if (std::optional
<Loc
> RV
= rhs
.getAs
<Loc
>())
507 return evalBinOpLL(state
, op
, *LV
, *RV
, type
);
509 return evalBinOpLN(state
, op
, *LV
, rhs
.castAs
<NonLoc
>(), type
);
512 if (const std::optional
<Loc
> RV
= rhs
.getAs
<Loc
>()) {
513 const auto IsCommutative
= [](BinaryOperatorKind Op
) {
514 return Op
== BO_Mul
|| Op
== BO_Add
|| Op
== BO_And
|| Op
== BO_Xor
||
518 if (IsCommutative(op
)) {
520 return evalBinOpLN(state
, op
, *RV
, lhs
.castAs
<NonLoc
>(), type
);
523 // If the right operand is a concrete int location then we have nothing
524 // better but to treat it as a simple nonloc.
525 if (auto RV
= rhs
.getAs
<loc::ConcreteInt
>()) {
526 const nonloc::ConcreteInt RhsAsLoc
= makeIntVal(RV
->getValue());
527 return evalBinOpNN(state
, op
, lhs
.castAs
<NonLoc
>(), RhsAsLoc
, type
);
531 return evalBinOpNN(state
, op
, lhs
.castAs
<NonLoc
>(), rhs
.castAs
<NonLoc
>(),
535 ConditionTruthVal
SValBuilder::areEqual(ProgramStateRef state
, SVal lhs
,
537 return state
->isNonNull(evalEQ(state
, lhs
, rhs
));
540 SVal
SValBuilder::evalEQ(ProgramStateRef state
, SVal lhs
, SVal rhs
) {
541 return evalBinOp(state
, BO_EQ
, lhs
, rhs
, getConditionType());
544 DefinedOrUnknownSVal
SValBuilder::evalEQ(ProgramStateRef state
,
545 DefinedOrUnknownSVal lhs
,
546 DefinedOrUnknownSVal rhs
) {
547 return evalEQ(state
, static_cast<SVal
>(lhs
), static_cast<SVal
>(rhs
))
548 .castAs
<DefinedOrUnknownSVal
>();
551 /// Recursively check if the pointer types are equal modulo const, volatile,
552 /// and restrict qualifiers. Also, assume that all types are similar to 'void'.
553 /// Assumes the input types are canonical.
554 static bool shouldBeModeledWithNoOp(ASTContext
&Context
, QualType ToTy
,
556 while (Context
.UnwrapSimilarTypes(ToTy
, FromTy
)) {
557 Qualifiers Quals1
, Quals2
;
558 ToTy
= Context
.getUnqualifiedArrayType(ToTy
, Quals1
);
559 FromTy
= Context
.getUnqualifiedArrayType(FromTy
, Quals2
);
561 // Make sure that non-cvr-qualifiers the other qualifiers (e.g., address
562 // spaces) are identical.
563 Quals1
.removeCVRQualifiers();
564 Quals2
.removeCVRQualifiers();
565 if (Quals1
!= Quals2
)
569 // If we are casting to void, the 'From' value can be used to represent the
572 // FIXME: Doing this after unwrapping the types doesn't make any sense. A
573 // cast from 'int**' to 'void**' is not special in the way that a cast from
574 // 'int*' to 'void*' is.
575 if (ToTy
->isVoidType())
584 // Handles casts of type CK_IntegralCast.
585 // At the moment, this function will redirect to evalCast, except when the range
586 // of the original value is known to be greater than the max of the target type.
587 SVal
SValBuilder::evalIntegralCast(ProgramStateRef state
, SVal val
,
588 QualType castTy
, QualType originalTy
) {
589 // No truncations if target type is big enough.
590 if (getContext().getTypeSize(castTy
) >= getContext().getTypeSize(originalTy
))
591 return evalCast(val
, castTy
, originalTy
);
593 SymbolRef se
= val
.getAsSymbol();
594 if (!se
) // Let evalCast handle non symbolic expressions.
595 return evalCast(val
, castTy
, originalTy
);
597 // Find the maximum value of the target type.
598 APSIntType
ToType(getContext().getTypeSize(castTy
),
599 castTy
->isUnsignedIntegerType());
600 llvm::APSInt ToTypeMax
= ToType
.getMaxValue();
602 NonLoc ToTypeMaxVal
= makeIntVal(ToTypeMax
);
604 // Check the range of the symbol being casted against the maximum value of the
606 NonLoc FromVal
= val
.castAs
<NonLoc
>();
607 QualType CmpTy
= getConditionType();
609 evalBinOpNN(state
, BO_LE
, FromVal
, ToTypeMaxVal
, CmpTy
).castAs
<NonLoc
>();
610 ProgramStateRef IsNotTruncated
, IsTruncated
;
611 std::tie(IsNotTruncated
, IsTruncated
) = state
->assume(CompVal
);
612 if (!IsNotTruncated
&& IsTruncated
) {
613 // Symbol is truncated so we evaluate it as a cast.
614 return makeNonLoc(se
, originalTy
, castTy
);
616 return evalCast(val
, castTy
, originalTy
);
619 //===----------------------------------------------------------------------===//
621 // `evalCast` and its helper `EvalCastVisitor`
622 //===----------------------------------------------------------------------===//
625 class EvalCastVisitor
: public SValVisitor
<EvalCastVisitor
, SVal
> {
629 QualType CastTy
, OriginalTy
;
632 EvalCastVisitor(SValBuilder
&VB
, QualType CastTy
, QualType OriginalTy
)
633 : VB(VB
), Context(VB
.getContext()), CastTy(CastTy
),
634 OriginalTy(OriginalTy
) {}
640 CastTy
= Context
.getCanonicalType(CastTy
);
642 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
643 if (!IsUnknownOriginalType
) {
644 OriginalTy
= Context
.getCanonicalType(OriginalTy
);
646 if (CastTy
== OriginalTy
)
649 // FIXME: Move this check to the most appropriate
650 // evalCastKind/evalCastSubKind function. For const casts, casts to void,
651 // just propagate the value.
652 if (!CastTy
->isVariableArrayType() && !OriginalTy
->isVariableArrayType())
653 if (shouldBeModeledWithNoOp(Context
, Context
.getPointerType(CastTy
),
654 Context
.getPointerType(OriginalTy
)))
657 return SValVisitor::Visit(V
);
659 SVal
VisitUndefinedVal(UndefinedVal V
) { return V
; }
660 SVal
VisitUnknownVal(UnknownVal V
) { return V
; }
661 SVal
VisitLocConcreteInt(loc::ConcreteInt V
) {
663 if (CastTy
->isBooleanType())
664 return VB
.makeTruthVal(V
.getValue().getBoolValue(), CastTy
);
666 // Pointer to integer.
667 if (CastTy
->isIntegralOrEnumerationType()) {
668 llvm::APSInt Value
= V
.getValue();
669 VB
.getBasicValueFactory().getAPSIntType(CastTy
).apply(Value
);
670 return VB
.makeIntVal(Value
);
673 // Pointer to any pointer.
674 if (Loc::isLocType(CastTy
)) {
675 llvm::APSInt Value
= V
.getValue();
676 VB
.getBasicValueFactory().getAPSIntType(CastTy
).apply(Value
);
677 return loc::ConcreteInt(VB
.getBasicValueFactory().getValue(Value
));
680 // Pointer to whatever else.
683 SVal
VisitLocGotoLabel(loc::GotoLabel V
) {
685 if (CastTy
->isBooleanType())
686 // Labels are always true.
687 return VB
.makeTruthVal(true, CastTy
);
689 // Pointer to integer.
690 if (CastTy
->isIntegralOrEnumerationType()) {
691 const unsigned BitWidth
= Context
.getIntWidth(CastTy
);
692 return VB
.makeLocAsInteger(V
, BitWidth
);
695 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
696 if (!IsUnknownOriginalType
) {
698 if (isa
<ArrayType
>(OriginalTy
))
699 if (CastTy
->isPointerType() || CastTy
->isReferenceType())
703 // Pointer to any pointer.
704 if (Loc::isLocType(CastTy
))
707 // Pointer to whatever else.
710 SVal
VisitLocMemRegionVal(loc::MemRegionVal V
) {
712 if (CastTy
->isBooleanType()) {
713 const MemRegion
*R
= V
.getRegion();
714 if (const FunctionCodeRegion
*FTR
= dyn_cast
<FunctionCodeRegion
>(R
))
715 if (const FunctionDecl
*FD
= dyn_cast
<FunctionDecl
>(FTR
->getDecl()))
717 // FIXME: Currently we are using an extent symbol here,
718 // because there are no generic region address metadata
719 // symbols to use, only content metadata.
720 return nonloc::SymbolVal(
721 VB
.getSymbolManager().getExtentSymbol(FTR
));
723 if (const SymbolicRegion
*SymR
= R
->getSymbolicBase()) {
724 SymbolRef Sym
= SymR
->getSymbol();
725 QualType Ty
= Sym
->getType();
726 // This change is needed for architectures with varying
727 // pointer widths. See the amdgcn opencl reproducer with
728 // this change as an example: solver-sym-simplification-ptr-bool.cl
729 if (!Ty
->isReferenceType())
730 return VB
.makeNonLoc(
731 Sym
, BO_NE
, VB
.getBasicValueFactory().getZeroWithTypeSize(Ty
),
734 // Non-symbolic memory regions are always true.
735 return VB
.makeTruthVal(true, CastTy
);
738 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
739 // Try to cast to array
740 const auto *ArrayTy
=
741 IsUnknownOriginalType
743 : dyn_cast
<ArrayType
>(OriginalTy
.getCanonicalType());
745 // Pointer to integer.
746 if (CastTy
->isIntegralOrEnumerationType()) {
750 // We will always decay to a pointer.
751 QualType ElemTy
= ArrayTy
->getElementType();
752 Val
= VB
.getStateManager().ArrayToPointer(V
, ElemTy
);
753 // FIXME: Keep these here for now in case we decide soon that we
754 // need the original decayed type.
755 // QualType elemTy = cast<ArrayType>(originalTy)->getElementType();
756 // QualType pointerTy = C.getPointerType(elemTy);
758 const unsigned BitWidth
= Context
.getIntWidth(CastTy
);
759 return VB
.makeLocAsInteger(Val
.castAs
<Loc
>(), BitWidth
);
762 // Pointer to pointer.
763 if (Loc::isLocType(CastTy
)) {
765 if (IsUnknownOriginalType
) {
766 // When retrieving symbolic pointer and expecting a non-void pointer,
767 // wrap them into element regions of the expected type if necessary.
768 // It is necessary to make sure that the retrieved value makes sense,
769 // because there's no other cast in the AST that would tell us to cast
770 // it to the correct pointer type. We might need to do that for non-void
772 // FIXME: We really need a single good function to perform casts for us
773 // correctly every time we need it.
774 const MemRegion
*R
= V
.getRegion();
775 if (CastTy
->isPointerType() && !CastTy
->isVoidPointerType()) {
776 if (const auto *SR
= dyn_cast
<SymbolicRegion
>(R
)) {
777 QualType SRTy
= SR
->getSymbol()->getType();
779 auto HasSameUnqualifiedPointeeType
= [](QualType ty1
,
781 return ty1
->getPointeeType().getCanonicalType().getTypePtr() ==
782 ty2
->getPointeeType().getCanonicalType().getTypePtr();
784 if (!HasSameUnqualifiedPointeeType(SRTy
, CastTy
)) {
785 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(SR
, CastTy
))
790 // Next fixes pointer dereference using type different from its initial
791 // one. See PR37503 and PR49007 for details.
792 if (const auto *ER
= dyn_cast
<ElementRegion
>(R
)) {
793 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(ER
, CastTy
))
800 if (OriginalTy
->isIntegralOrEnumerationType() ||
801 OriginalTy
->isBlockPointerType() ||
802 OriginalTy
->isFunctionPointerType())
807 // Are we casting from an array to a pointer? If so just pass on
808 // the decayed value.
809 if (CastTy
->isPointerType() || CastTy
->isReferenceType()) {
810 // We will always decay to a pointer.
811 QualType ElemTy
= ArrayTy
->getElementType();
812 return VB
.getStateManager().ArrayToPointer(V
, ElemTy
);
814 // Are we casting from an array to an integer? If so, cast the decayed
815 // pointer value to an integer.
816 assert(CastTy
->isIntegralOrEnumerationType());
819 // Other pointer to pointer.
820 assert(Loc::isLocType(OriginalTy
) || OriginalTy
->isFunctionType() ||
821 CastTy
->isReferenceType());
823 // We get a symbolic function pointer for a dereference of a function
824 // pointer, but it is of function type. Example:
827 // void (*my_func)(int * x);
832 // int f1_a(struct FPRec* foo) {
834 // (*foo->my_func)(&x);
835 // return bar(x)+1; // no-warning
838 // Get the result of casting a region to a different type.
839 const MemRegion
*R
= V
.getRegion();
840 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(R
, CastTy
))
844 // Pointer to whatever else.
845 // FIXME: There can be gross cases where one casts the result of a
846 // function (that returns a pointer) to some other value that happens to
847 // fit within that pointer value. We currently have no good way to model
848 // such operations. When this happens, the underlying operation is that
849 // the caller is reasoning about bits. Conceptually we are layering a
850 // "view" of a location on top of those bits. Perhaps we need to be more
851 // lazy about mutual possible views, even on an SVal? This may be
852 // necessary for bit-level reasoning as well.
855 SVal
VisitNonLocCompoundVal(nonloc::CompoundVal V
) {
856 // Compound to whatever.
859 SVal
VisitNonLocConcreteInt(nonloc::ConcreteInt V
) {
860 auto CastedValue
= [V
, this]() {
861 llvm::APSInt Value
= V
.getValue();
862 VB
.getBasicValueFactory().getAPSIntType(CastTy
).apply(Value
);
867 if (CastTy
->isBooleanType())
868 return VB
.makeTruthVal(V
.getValue().getBoolValue(), CastTy
);
870 // Integer to pointer.
871 if (CastTy
->isIntegralOrEnumerationType())
872 return VB
.makeIntVal(CastedValue());
874 // Integer to pointer.
875 if (Loc::isLocType(CastTy
))
876 return VB
.makeIntLocVal(CastedValue());
878 // Pointer to whatever else.
881 SVal
VisitNonLocLazyCompoundVal(nonloc::LazyCompoundVal V
) {
882 // LazyCompound to whatever.
885 SVal
VisitNonLocLocAsInteger(nonloc::LocAsInteger V
) {
888 // Pointer as integer to bool.
889 if (CastTy
->isBooleanType())
890 // Pass to Loc function.
893 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
894 // Pointer as integer to pointer.
895 if (!IsUnknownOriginalType
&& Loc::isLocType(CastTy
) &&
896 OriginalTy
->isIntegralOrEnumerationType()) {
897 if (const MemRegion
*R
= L
.getAsRegion())
898 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(R
, CastTy
))
903 // Pointer as integer with region to integer/pointer.
904 const MemRegion
*R
= L
.getAsRegion();
905 if (!IsUnknownOriginalType
&& R
) {
906 if (CastTy
->isIntegralOrEnumerationType())
907 return VisitLocMemRegionVal(loc::MemRegionVal(R
));
909 if (Loc::isLocType(CastTy
)) {
910 assert(Loc::isLocType(OriginalTy
) || OriginalTy
->isFunctionType() ||
911 CastTy
->isReferenceType());
912 // Delegate to store manager to get the result of casting a region to a
913 // different type. If the MemRegion* returned is NULL, this expression
914 // Evaluates to UnknownVal.
915 if (auto OptMemRegV
= VB
.getCastedMemRegionVal(R
, CastTy
))
919 if (Loc::isLocType(CastTy
)) {
920 if (IsUnknownOriginalType
)
921 return VisitLocMemRegionVal(loc::MemRegionVal(R
));
925 SymbolRef SE
= nullptr;
927 if (const SymbolicRegion
*SR
=
928 dyn_cast
<SymbolicRegion
>(R
->StripCasts())) {
929 SE
= SR
->getSymbol();
933 if (!CastTy
->isFloatingType() || !SE
|| SE
->getType()->isFloatingType()) {
934 // FIXME: Correctly support promotions/truncations.
935 const unsigned CastSize
= Context
.getIntWidth(CastTy
);
936 if (CastSize
== V
.getNumBits())
939 return VB
.makeLocAsInteger(L
, CastSize
);
943 // Pointer as integer to whatever else.
946 SVal
VisitNonLocSymbolVal(nonloc::SymbolVal V
) {
947 SymbolRef SE
= V
.getSymbol();
949 const bool IsUnknownOriginalType
= OriginalTy
.isNull();
951 if (!IsUnknownOriginalType
&& CastTy
->isBooleanType()) {
952 // Non-float to bool.
953 if (Loc::isLocType(OriginalTy
) ||
954 OriginalTy
->isIntegralOrEnumerationType() ||
955 OriginalTy
->isMemberPointerType()) {
956 BasicValueFactory
&BVF
= VB
.getBasicValueFactory();
957 return VB
.makeNonLoc(SE
, BO_NE
, BVF
.getValue(0, SE
->getType()), CastTy
);
960 // Symbol to integer, float.
961 QualType T
= Context
.getCanonicalType(SE
->getType());
963 // Produce SymbolCast if CastTy and T are different integers.
964 // NOTE: In the end the type of SymbolCast shall be equal to CastTy.
965 if (T
->isIntegralOrUnscopedEnumerationType() &&
966 CastTy
->isIntegralOrUnscopedEnumerationType()) {
967 AnalyzerOptions
&Opts
= VB
.getStateManager()
969 .getAnalysisManager()
970 .getAnalyzerOptions();
971 // If appropriate option is disabled, ignore the cast.
972 // NOTE: ShouldSupportSymbolicIntegerCasts is `false` by default.
973 if (!Opts
.ShouldSupportSymbolicIntegerCasts
)
975 return simplifySymbolCast(V
, CastTy
);
977 if (!Loc::isLocType(CastTy
))
978 if (!IsUnknownOriginalType
|| !CastTy
->isFloatingType() ||
980 return VB
.makeNonLoc(SE
, T
, CastTy
);
983 // Symbol to pointer and whatever else.
986 SVal
VisitNonLocPointerToMember(nonloc::PointerToMember V
) {
987 // Member pointer to whatever.
991 /// Reduce cast expression by removing redundant intermediate casts.
993 /// - (char)(short)(int x) -> (char)(int x)
994 /// - (int)(int x) -> int x
996 /// \param V -- SymbolVal, which pressumably contains SymbolCast or any symbol
997 /// that is applicable for cast operation.
998 /// \param CastTy -- QualType, which `V` shall be cast to.
999 /// \return SVal with simplified cast expression.
1000 /// \note: Currently only support integral casts.
1001 nonloc::SymbolVal
simplifySymbolCast(nonloc::SymbolVal V
, QualType CastTy
) {
1002 // We use seven conditions to recognize a simplification case.
1003 // For the clarity let `CastTy` be `C`, SE->getType() - `T`, root type -
1004 // `R`, prefix `u` for unsigned, `s` for signed, no prefix - any sign: E.g.
1005 // (char)(short)(uint x)
1006 // ( sC )( sT )( uR x)
1008 // C === R (the same type)
1009 // (char)(char x) -> (char x)
1010 // (long)(long x) -> (long x)
1011 // Note: Comparisons operators below are for bit width.
1013 // (short)(short)(int x) -> (short)(int x)
1014 // (int)(long)(char x) -> (int)(char x) (sizeof(long) == sizeof(int))
1015 // (long)(ullong)(char x) -> (long)(char x) (sizeof(long) ==
1018 // (short)(int)(char x) -> (short)(char x)
1019 // (char)(int)(short x) -> (char)(short x)
1020 // (short)(int)(short x) -> (short x)
1022 // (int)(short)(uchar x) -> (int)(uchar x)
1023 // (uint)(short)(uchar x) -> (uint)(uchar x)
1024 // (int)(ushort)(uchar x) -> (int)(uchar x)
1026 // (int)(short)(char x) -> (int)(char x)
1027 // (uint)(short)(char x) -> (uint)(char x)
1029 // (int)(char)(char x) -> (int)(char x)
1030 // (uint)(short)(short x) -> (uint)(short x)
1032 // (int)(uchar)(uchar x) -> (int)(uchar x)
1033 // (uint)(ushort)(ushort x) -> (uint)(ushort x)
1034 // (llong)(ulong)(uint x) -> (llong)(uint x) (sizeof(ulong) ==
1037 SymbolRef SE
= V
.getSymbol();
1038 QualType T
= Context
.getCanonicalType(SE
->getType());
1043 if (!isa
<SymbolCast
>(SE
))
1044 return VB
.makeNonLoc(SE
, T
, CastTy
);
1046 SymbolRef RootSym
= cast
<SymbolCast
>(SE
)->getOperand();
1047 QualType RT
= RootSym
->getType().getCanonicalType();
1049 // FIXME support simplification from non-integers.
1050 if (!RT
->isIntegralOrEnumerationType())
1051 return VB
.makeNonLoc(SE
, T
, CastTy
);
1053 BasicValueFactory
&BVF
= VB
.getBasicValueFactory();
1054 APSIntType CTy
= BVF
.getAPSIntType(CastTy
);
1055 APSIntType TTy
= BVF
.getAPSIntType(T
);
1057 const auto WC
= CTy
.getBitWidth();
1058 const auto WT
= TTy
.getBitWidth();
1061 const bool isSameType
= (RT
== CastTy
);
1063 return nonloc::SymbolVal(RootSym
);
1064 return VB
.makeNonLoc(RootSym
, RT
, CastTy
);
1067 APSIntType RTy
= BVF
.getAPSIntType(RT
);
1068 const auto WR
= RTy
.getBitWidth();
1069 const bool UT
= TTy
.isUnsigned();
1070 const bool UR
= RTy
.isUnsigned();
1072 if (((WT
> WR
) && (UR
|| !UT
)) || ((WT
== WR
) && (UT
== UR
)))
1073 return VB
.makeNonLoc(RootSym
, RT
, CastTy
);
1075 return VB
.makeNonLoc(SE
, T
, CastTy
);
1078 } // end anonymous namespace
1080 /// Cast a given SVal to another SVal using given QualType's.
1081 /// \param V -- SVal that should be casted.
1082 /// \param CastTy -- QualType that V should be casted according to.
1083 /// \param OriginalTy -- QualType which is associated to V. It provides
1084 /// additional information about what type the cast performs from.
1085 /// \returns the most appropriate casted SVal.
1086 /// Note: Many cases don't use an exact OriginalTy. It can be extracted
1087 /// from SVal or the cast can performs unconditionaly. Always pass OriginalTy!
1088 /// It can be crucial in certain cases and generates different results.
1089 /// FIXME: If `OriginalTy.isNull()` is true, then cast performs based on CastTy
1090 /// only. This behavior is uncertain and should be improved.
1091 SVal
SValBuilder::evalCast(SVal V
, QualType CastTy
, QualType OriginalTy
) {
1092 EvalCastVisitor TRV
{*this, CastTy
, OriginalTy
};
1093 return TRV
.Visit(V
);