[AArch64][SME2] Add multi-vector saturating doubling multiply high intrinsics
[llvm-project.git] / lld / ELF / Symbols.cpp
blobc2375e07f248c339eec99ab4896ca96202dd1120
1 //===- Symbols.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Symbols.h"
10 #include "Driver.h"
11 #include "InputFiles.h"
12 #include "InputSection.h"
13 #include "OutputSections.h"
14 #include "SyntheticSections.h"
15 #include "Target.h"
16 #include "Writer.h"
17 #include "lld/Common/ErrorHandler.h"
18 #include "llvm/Demangle/Demangle.h"
19 #include "llvm/Support/Compiler.h"
20 #include <cstring>
22 using namespace llvm;
23 using namespace llvm::object;
24 using namespace llvm::ELF;
25 using namespace lld;
26 using namespace lld::elf;
28 static_assert(sizeof(SymbolUnion) <= 64, "SymbolUnion too large");
30 template <typename T> struct AssertSymbol {
31 static_assert(std::is_trivially_destructible<T>(),
32 "Symbol types must be trivially destructible");
33 static_assert(sizeof(T) <= sizeof(SymbolUnion), "SymbolUnion too small");
34 static_assert(alignof(T) <= alignof(SymbolUnion),
35 "SymbolUnion not aligned enough");
38 LLVM_ATTRIBUTE_UNUSED static inline void assertSymbols() {
39 AssertSymbol<Defined>();
40 AssertSymbol<CommonSymbol>();
41 AssertSymbol<Undefined>();
42 AssertSymbol<SharedSymbol>();
43 AssertSymbol<LazyObject>();
46 // Returns a symbol for an error message.
47 static std::string maybeDemangleSymbol(StringRef symName) {
48 if (elf::config->demangle)
49 return demangle(symName.str());
50 return symName.str();
53 std::string lld::toString(const elf::Symbol &sym) {
54 StringRef name = sym.getName();
55 std::string ret = maybeDemangleSymbol(name);
57 const char *suffix = sym.getVersionSuffix();
58 if (*suffix == '@')
59 ret += suffix;
60 return ret;
63 Defined *ElfSym::bss;
64 Defined *ElfSym::etext1;
65 Defined *ElfSym::etext2;
66 Defined *ElfSym::edata1;
67 Defined *ElfSym::edata2;
68 Defined *ElfSym::end1;
69 Defined *ElfSym::end2;
70 Defined *ElfSym::globalOffsetTable;
71 Defined *ElfSym::mipsGp;
72 Defined *ElfSym::mipsGpDisp;
73 Defined *ElfSym::mipsLocalGp;
74 Defined *ElfSym::relaIpltStart;
75 Defined *ElfSym::relaIpltEnd;
76 Defined *ElfSym::tlsModuleBase;
77 SmallVector<SymbolAux, 0> elf::symAux;
79 static uint64_t getSymVA(const Symbol &sym, int64_t addend) {
80 switch (sym.kind()) {
81 case Symbol::DefinedKind: {
82 auto &d = cast<Defined>(sym);
83 SectionBase *isec = d.section;
85 // This is an absolute symbol.
86 if (!isec)
87 return d.value;
89 assert(isec != &InputSection::discarded);
91 uint64_t offset = d.value;
93 // An object in an SHF_MERGE section might be referenced via a
94 // section symbol (as a hack for reducing the number of local
95 // symbols).
96 // Depending on the addend, the reference via a section symbol
97 // refers to a different object in the merge section.
98 // Since the objects in the merge section are not necessarily
99 // contiguous in the output, the addend can thus affect the final
100 // VA in a non-linear way.
101 // To make this work, we incorporate the addend into the section
102 // offset (and zero out the addend for later processing) so that
103 // we find the right object in the section.
104 if (d.isSection())
105 offset += addend;
107 // In the typical case, this is actually very simple and boils
108 // down to adding together 3 numbers:
109 // 1. The address of the output section.
110 // 2. The offset of the input section within the output section.
111 // 3. The offset within the input section (this addition happens
112 // inside InputSection::getOffset).
114 // If you understand the data structures involved with this next
115 // line (and how they get built), then you have a pretty good
116 // understanding of the linker.
117 uint64_t va = isec->getVA(offset);
118 if (d.isSection())
119 va -= addend;
121 // MIPS relocatable files can mix regular and microMIPS code.
122 // Linker needs to distinguish such code. To do so microMIPS
123 // symbols has the `STO_MIPS_MICROMIPS` flag in the `st_other`
124 // field. Unfortunately, the `MIPS::relocate()` method has
125 // a symbol value only. To pass type of the symbol (regular/microMIPS)
126 // to that routine as well as other places where we write
127 // a symbol value as-is (.dynamic section, `Elf_Ehdr::e_entry`
128 // field etc) do the same trick as compiler uses to mark microMIPS
129 // for CPU - set the less-significant bit.
130 if (config->emachine == EM_MIPS && isMicroMips() &&
131 ((sym.stOther & STO_MIPS_MICROMIPS) || sym.hasFlag(NEEDS_COPY)))
132 va |= 1;
134 if (d.isTls() && !config->relocatable) {
135 // Use the address of the TLS segment's first section rather than the
136 // segment's address, because segment addresses aren't initialized until
137 // after sections are finalized. (e.g. Measuring the size of .rela.dyn
138 // for Android relocation packing requires knowing TLS symbol addresses
139 // during section finalization.)
140 if (!Out::tlsPhdr || !Out::tlsPhdr->firstSec)
141 fatal(toString(d.file) +
142 " has an STT_TLS symbol but doesn't have an SHF_TLS section");
143 return va - Out::tlsPhdr->firstSec->addr;
145 return va;
147 case Symbol::SharedKind:
148 case Symbol::UndefinedKind:
149 return 0;
150 case Symbol::LazyObjectKind:
151 llvm_unreachable("lazy symbol reached writer");
152 case Symbol::CommonKind:
153 llvm_unreachable("common symbol reached writer");
154 case Symbol::PlaceholderKind:
155 llvm_unreachable("placeholder symbol reached writer");
157 llvm_unreachable("invalid symbol kind");
160 uint64_t Symbol::getVA(int64_t addend) const {
161 return getSymVA(*this, addend) + addend;
164 uint64_t Symbol::getGotVA() const {
165 if (gotInIgot)
166 return in.igotPlt->getVA() + getGotPltOffset();
167 return in.got->getVA() + getGotOffset();
170 uint64_t Symbol::getGotOffset() const {
171 return getGotIdx() * target->gotEntrySize;
174 uint64_t Symbol::getGotPltVA() const {
175 if (isInIplt)
176 return in.igotPlt->getVA() + getGotPltOffset();
177 return in.gotPlt->getVA() + getGotPltOffset();
180 uint64_t Symbol::getGotPltOffset() const {
181 if (isInIplt)
182 return getPltIdx() * target->gotEntrySize;
183 return (getPltIdx() + target->gotPltHeaderEntriesNum) * target->gotEntrySize;
186 uint64_t Symbol::getPltVA() const {
187 uint64_t outVA = isInIplt
188 ? in.iplt->getVA() + getPltIdx() * target->ipltEntrySize
189 : in.plt->getVA() + in.plt->headerSize +
190 getPltIdx() * target->pltEntrySize;
192 // While linking microMIPS code PLT code are always microMIPS
193 // code. Set the less-significant bit to track that fact.
194 // See detailed comment in the `getSymVA` function.
195 if (config->emachine == EM_MIPS && isMicroMips())
196 outVA |= 1;
197 return outVA;
200 uint64_t Symbol::getSize() const {
201 if (const auto *dr = dyn_cast<Defined>(this))
202 return dr->size;
203 return cast<SharedSymbol>(this)->size;
206 OutputSection *Symbol::getOutputSection() const {
207 if (auto *s = dyn_cast<Defined>(this)) {
208 if (auto *sec = s->section)
209 return sec->getOutputSection();
210 return nullptr;
212 return nullptr;
215 // If a symbol name contains '@', the characters after that is
216 // a symbol version name. This function parses that.
217 void Symbol::parseSymbolVersion() {
218 // Return if localized by a local: pattern in a version script.
219 if (versionId == VER_NDX_LOCAL)
220 return;
221 StringRef s = getName();
222 size_t pos = s.find('@');
223 if (pos == StringRef::npos)
224 return;
225 StringRef verstr = s.substr(pos + 1);
227 // Truncate the symbol name so that it doesn't include the version string.
228 nameSize = pos;
230 if (verstr.empty())
231 return;
233 // If this is not in this DSO, it is not a definition.
234 if (!isDefined())
235 return;
237 // '@@' in a symbol name means the default version.
238 // It is usually the most recent one.
239 bool isDefault = (verstr[0] == '@');
240 if (isDefault)
241 verstr = verstr.substr(1);
243 for (const VersionDefinition &ver : namedVersionDefs()) {
244 if (ver.name != verstr)
245 continue;
247 if (isDefault)
248 versionId = ver.id;
249 else
250 versionId = ver.id | VERSYM_HIDDEN;
251 return;
254 // It is an error if the specified version is not defined.
255 // Usually version script is not provided when linking executable,
256 // but we may still want to override a versioned symbol from DSO,
257 // so we do not report error in this case. We also do not error
258 // if the symbol has a local version as it won't be in the dynamic
259 // symbol table.
260 if (config->shared && versionId != VER_NDX_LOCAL)
261 error(toString(file) + ": symbol " + s + " has undefined version " +
262 verstr);
265 void Symbol::extract() const {
266 if (file->lazy) {
267 file->lazy = false;
268 parseFile(file);
272 uint8_t Symbol::computeBinding() const {
273 auto v = visibility();
274 if ((v != STV_DEFAULT && v != STV_PROTECTED) || versionId == VER_NDX_LOCAL)
275 return STB_LOCAL;
276 if (binding == STB_GNU_UNIQUE && !config->gnuUnique)
277 return STB_GLOBAL;
278 return binding;
281 bool Symbol::includeInDynsym() const {
282 if (computeBinding() == STB_LOCAL)
283 return false;
284 if (!isDefined() && !isCommon())
285 // This should unconditionally return true, unfortunately glibc -static-pie
286 // expects undefined weak symbols not to exist in .dynsym, e.g.
287 // __pthread_mutex_lock reference in _dl_add_to_namespace_list,
288 // __pthread_initialize_minimal reference in csu/libc-start.c.
289 return !(isUndefWeak() && config->noDynamicLinker);
291 return exportDynamic || inDynamicList;
294 // Print out a log message for --trace-symbol.
295 void elf::printTraceSymbol(const Symbol &sym, StringRef name) {
296 std::string s;
297 if (sym.isUndefined())
298 s = ": reference to ";
299 else if (sym.isLazy())
300 s = ": lazy definition of ";
301 else if (sym.isShared())
302 s = ": shared definition of ";
303 else if (sym.isCommon())
304 s = ": common definition of ";
305 else
306 s = ": definition of ";
308 message(toString(sym.file) + s + name);
311 static void recordWhyExtract(const InputFile *reference,
312 const InputFile &extracted, const Symbol &sym) {
313 ctx.whyExtractRecords.emplace_back(toString(reference), &extracted, sym);
316 void elf::maybeWarnUnorderableSymbol(const Symbol *sym) {
317 if (!config->warnSymbolOrdering)
318 return;
320 // If UnresolvedPolicy::Ignore is used, no "undefined symbol" error/warning
321 // is emitted. It makes sense to not warn on undefined symbols.
323 // Note, ld.bfd --symbol-ordering-file= does not warn on undefined symbols,
324 // but we don't have to be compatible here.
325 if (sym->isUndefined() &&
326 config->unresolvedSymbols == UnresolvedPolicy::Ignore)
327 return;
329 const InputFile *file = sym->file;
330 auto *d = dyn_cast<Defined>(sym);
332 auto report = [&](StringRef s) { warn(toString(file) + s + sym->getName()); };
334 if (sym->isUndefined())
335 report(": unable to order undefined symbol: ");
336 else if (sym->isShared())
337 report(": unable to order shared symbol: ");
338 else if (d && !d->section)
339 report(": unable to order absolute symbol: ");
340 else if (d && isa<OutputSection>(d->section))
341 report(": unable to order synthetic symbol: ");
342 else if (d && !d->section->isLive())
343 report(": unable to order discarded symbol: ");
346 // Returns true if a symbol can be replaced at load-time by a symbol
347 // with the same name defined in other ELF executable or DSO.
348 bool elf::computeIsPreemptible(const Symbol &sym) {
349 assert(!sym.isLocal() || sym.isPlaceholder());
351 // Only symbols with default visibility that appear in dynsym can be
352 // preempted. Symbols with protected visibility cannot be preempted.
353 if (!sym.includeInDynsym() || sym.visibility() != STV_DEFAULT)
354 return false;
356 // At this point copy relocations have not been created yet, so any
357 // symbol that is not defined locally is preemptible.
358 if (!sym.isDefined())
359 return true;
361 if (!config->shared)
362 return false;
364 // If -Bsymbolic or --dynamic-list is specified, or -Bsymbolic-functions is
365 // specified and the symbol is STT_FUNC, the symbol is preemptible iff it is
366 // in the dynamic list. -Bsymbolic-non-weak-functions is a non-weak subset of
367 // -Bsymbolic-functions.
368 if (config->symbolic ||
369 (config->bsymbolic == BsymbolicKind::Functions && sym.isFunc()) ||
370 (config->bsymbolic == BsymbolicKind::NonWeakFunctions && sym.isFunc() &&
371 sym.binding != STB_WEAK))
372 return sym.inDynamicList;
373 return true;
376 // Merge symbol properties.
378 // When we have many symbols of the same name, we choose one of them,
379 // and that's the result of symbol resolution. However, symbols that
380 // were not chosen still affect some symbol properties.
381 void Symbol::mergeProperties(const Symbol &other) {
382 if (other.exportDynamic)
383 exportDynamic = true;
385 // DSO symbols do not affect visibility in the output.
386 if (!other.isShared() && other.visibility() != STV_DEFAULT) {
387 uint8_t v = visibility(), ov = other.visibility();
388 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
392 void Symbol::resolve(const Undefined &other) {
393 if (other.visibility() != STV_DEFAULT) {
394 uint8_t v = visibility(), ov = other.visibility();
395 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
397 // An undefined symbol with non default visibility must be satisfied
398 // in the same DSO.
400 // If this is a non-weak defined symbol in a discarded section, override the
401 // existing undefined symbol for better error message later.
402 if (isPlaceholder() || (isShared() && other.visibility() != STV_DEFAULT) ||
403 (isUndefined() && other.binding != STB_WEAK && other.discardedSecIdx)) {
404 other.overwrite(*this);
405 return;
408 if (traced)
409 printTraceSymbol(other, getName());
411 if (isLazy()) {
412 // An undefined weak will not extract archive members. See comment on Lazy
413 // in Symbols.h for the details.
414 if (other.binding == STB_WEAK) {
415 binding = STB_WEAK;
416 type = other.type;
417 return;
420 // Do extra check for --warn-backrefs.
422 // --warn-backrefs is an option to prevent an undefined reference from
423 // extracting an archive member written earlier in the command line. It can
424 // be used to keep compatibility with GNU linkers to some degree. I'll
425 // explain the feature and why you may find it useful in this comment.
427 // lld's symbol resolution semantics is more relaxed than traditional Unix
428 // linkers. For example,
430 // ld.lld foo.a bar.o
432 // succeeds even if bar.o contains an undefined symbol that has to be
433 // resolved by some object file in foo.a. Traditional Unix linkers don't
434 // allow this kind of backward reference, as they visit each file only once
435 // from left to right in the command line while resolving all undefined
436 // symbols at the moment of visiting.
438 // In the above case, since there's no undefined symbol when a linker visits
439 // foo.a, no files are pulled out from foo.a, and because the linker forgets
440 // about foo.a after visiting, it can't resolve undefined symbols in bar.o
441 // that could have been resolved otherwise.
443 // That lld accepts more relaxed form means that (besides it'd make more
444 // sense) you can accidentally write a command line or a build file that
445 // works only with lld, even if you have a plan to distribute it to wider
446 // users who may be using GNU linkers. With --warn-backrefs, you can detect
447 // a library order that doesn't work with other Unix linkers.
449 // The option is also useful to detect cyclic dependencies between static
450 // archives. Again, lld accepts
452 // ld.lld foo.a bar.a
454 // even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
455 // handled as an error.
457 // Here is how the option works. We assign a group ID to each file. A file
458 // with a smaller group ID can pull out object files from an archive file
459 // with an equal or greater group ID. Otherwise, it is a reverse dependency
460 // and an error.
462 // A file outside --{start,end}-group gets a fresh ID when instantiated. All
463 // files within the same --{start,end}-group get the same group ID. E.g.
465 // ld.lld A B --start-group C D --end-group E
467 // A forms group 0. B form group 1. C and D (including their member object
468 // files) form group 2. E forms group 3. I think that you can see how this
469 // group assignment rule simulates the traditional linker's semantics.
470 bool backref = config->warnBackrefs && other.file &&
471 file->groupId < other.file->groupId;
472 extract();
474 if (!config->whyExtract.empty())
475 recordWhyExtract(other.file, *file, *this);
477 // We don't report backward references to weak symbols as they can be
478 // overridden later.
480 // A traditional linker does not error for -ldef1 -lref -ldef2 (linking
481 // sandwich), where def2 may or may not be the same as def1. We don't want
482 // to warn for this case, so dismiss the warning if we see a subsequent lazy
483 // definition. this->file needs to be saved because in the case of LTO it
484 // may be reset to nullptr or be replaced with a file named lto.tmp.
485 if (backref && !isWeak())
486 ctx.backwardReferences.try_emplace(this,
487 std::make_pair(other.file, file));
488 return;
491 // Undefined symbols in a SharedFile do not change the binding.
492 if (isa_and_nonnull<SharedFile>(other.file))
493 return;
495 if (isUndefined() || isShared()) {
496 // The binding will be weak if there is at least one reference and all are
497 // weak. The binding has one opportunity to change to weak: if the first
498 // reference is weak.
499 if (other.binding != STB_WEAK || !referenced)
500 binding = other.binding;
504 // Compare two symbols. Return true if the new symbol should win.
505 bool Symbol::shouldReplace(const Defined &other) const {
506 if (LLVM_UNLIKELY(isCommon())) {
507 if (config->warnCommon)
508 warn("common " + getName() + " is overridden");
509 return !other.isWeak();
511 if (!isDefined())
512 return true;
514 // Incoming STB_GLOBAL overrides STB_WEAK/STB_GNU_UNIQUE. -fgnu-unique changes
515 // some vague linkage data in COMDAT from STB_WEAK to STB_GNU_UNIQUE. Treat
516 // STB_GNU_UNIQUE like STB_WEAK so that we prefer the first among all
517 // STB_WEAK/STB_GNU_UNIQUE copies. If we prefer an incoming STB_GNU_UNIQUE to
518 // an existing STB_WEAK, there may be discarded section errors because the
519 // selected copy may be in a non-prevailing COMDAT.
520 return !isGlobal() && other.isGlobal();
523 void elf::reportDuplicate(const Symbol &sym, const InputFile *newFile,
524 InputSectionBase *errSec, uint64_t errOffset) {
525 if (config->allowMultipleDefinition)
526 return;
527 // In glibc<2.32, crti.o has .gnu.linkonce.t.__x86.get_pc_thunk.bx, which
528 // is sort of proto-comdat. There is actually no duplicate if we have
529 // full support for .gnu.linkonce.
530 const Defined *d = dyn_cast<Defined>(&sym);
531 if (!d || d->getName() == "__x86.get_pc_thunk.bx")
532 return;
533 // Allow absolute symbols with the same value for GNU ld compatibility.
534 if (!d->section && !errSec && errOffset && d->value == errOffset)
535 return;
536 if (!d->section || !errSec) {
537 error("duplicate symbol: " + toString(sym) + "\n>>> defined in " +
538 toString(sym.file) + "\n>>> defined in " + toString(newFile));
539 return;
542 // Construct and print an error message in the form of:
544 // ld.lld: error: duplicate symbol: foo
545 // >>> defined at bar.c:30
546 // >>> bar.o (/home/alice/src/bar.o)
547 // >>> defined at baz.c:563
548 // >>> baz.o in archive libbaz.a
549 auto *sec1 = cast<InputSectionBase>(d->section);
550 std::string src1 = sec1->getSrcMsg(sym, d->value);
551 std::string obj1 = sec1->getObjMsg(d->value);
552 std::string src2 = errSec->getSrcMsg(sym, errOffset);
553 std::string obj2 = errSec->getObjMsg(errOffset);
555 std::string msg = "duplicate symbol: " + toString(sym) + "\n>>> defined at ";
556 if (!src1.empty())
557 msg += src1 + "\n>>> ";
558 msg += obj1 + "\n>>> defined at ";
559 if (!src2.empty())
560 msg += src2 + "\n>>> ";
561 msg += obj2;
562 error(msg);
565 void Symbol::checkDuplicate(const Defined &other) const {
566 if (isDefined() && !isWeak() && !other.isWeak())
567 reportDuplicate(*this, other.file,
568 dyn_cast_or_null<InputSectionBase>(other.section),
569 other.value);
572 void Symbol::resolve(const CommonSymbol &other) {
573 if (other.exportDynamic)
574 exportDynamic = true;
575 if (other.visibility() != STV_DEFAULT) {
576 uint8_t v = visibility(), ov = other.visibility();
577 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
579 if (isDefined() && !isWeak()) {
580 if (config->warnCommon)
581 warn("common " + getName() + " is overridden");
582 return;
585 if (CommonSymbol *oldSym = dyn_cast<CommonSymbol>(this)) {
586 if (config->warnCommon)
587 warn("multiple common of " + getName());
588 oldSym->alignment = std::max(oldSym->alignment, other.alignment);
589 if (oldSym->size < other.size) {
590 oldSym->file = other.file;
591 oldSym->size = other.size;
593 return;
596 if (auto *s = dyn_cast<SharedSymbol>(this)) {
597 // Increase st_size if the shared symbol has a larger st_size. The shared
598 // symbol may be created from common symbols. The fact that some object
599 // files were linked into a shared object first should not change the
600 // regular rule that picks the largest st_size.
601 uint64_t size = s->size;
602 other.overwrite(*this);
603 if (size > cast<CommonSymbol>(this)->size)
604 cast<CommonSymbol>(this)->size = size;
605 } else {
606 other.overwrite(*this);
610 void Symbol::resolve(const Defined &other) {
611 if (other.exportDynamic)
612 exportDynamic = true;
613 if (other.visibility() != STV_DEFAULT) {
614 uint8_t v = visibility(), ov = other.visibility();
615 setVisibility(v == STV_DEFAULT ? ov : std::min(v, ov));
617 if (shouldReplace(other))
618 other.overwrite(*this);
621 void Symbol::resolve(const LazyObject &other) {
622 if (isPlaceholder()) {
623 other.overwrite(*this);
624 return;
627 // For common objects, we want to look for global or weak definitions that
628 // should be extracted as the canonical definition instead.
629 if (LLVM_UNLIKELY(isCommon()) && elf::config->fortranCommon &&
630 other.file->shouldExtractForCommon(getName())) {
631 ctx.backwardReferences.erase(this);
632 other.overwrite(*this);
633 other.extract();
634 return;
637 if (!isUndefined()) {
638 // See the comment in resolveUndefined().
639 if (isDefined())
640 ctx.backwardReferences.erase(this);
641 return;
644 // An undefined weak will not extract archive members. See comment on Lazy in
645 // Symbols.h for the details.
646 if (isWeak()) {
647 uint8_t ty = type;
648 other.overwrite(*this);
649 type = ty;
650 binding = STB_WEAK;
651 return;
654 const InputFile *oldFile = file;
655 other.extract();
656 if (!config->whyExtract.empty())
657 recordWhyExtract(oldFile, *file, *this);
660 void Symbol::resolve(const SharedSymbol &other) {
661 exportDynamic = true;
662 if (isPlaceholder()) {
663 other.overwrite(*this);
664 return;
666 if (isCommon()) {
667 // See the comment in resolveCommon() above.
668 if (other.size > cast<CommonSymbol>(this)->size)
669 cast<CommonSymbol>(this)->size = other.size;
670 return;
672 if (visibility() == STV_DEFAULT && (isUndefined() || isLazy())) {
673 // An undefined symbol with non default visibility must be satisfied
674 // in the same DSO.
675 uint8_t bind = binding;
676 other.overwrite(*this);
677 binding = bind;
678 } else if (traced)
679 printTraceSymbol(other, getName());