1 //===- InputSection.cpp ---------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "InputSection.h"
11 #include "InputFiles.h"
12 #include "OutputSections.h"
13 #include "Relocations.h"
14 #include "SymbolTable.h"
16 #include "SyntheticSections.h"
18 #include "lld/Common/CommonLinkerContext.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Compression.h"
21 #include "llvm/Support/Endian.h"
22 #include "llvm/Support/xxhash.h"
29 using namespace llvm::ELF
;
30 using namespace llvm::object
;
31 using namespace llvm::support
;
32 using namespace llvm::support::endian
;
33 using namespace llvm::sys
;
35 using namespace lld::elf
;
37 DenseSet
<std::pair
<const Symbol
*, uint64_t>> elf::ppc64noTocRelax
;
39 // Returns a string to construct an error message.
40 std::string
lld::toString(const InputSectionBase
*sec
) {
41 return (toString(sec
->file
) + ":(" + sec
->name
+ ")").str();
45 static ArrayRef
<uint8_t> getSectionContents(ObjFile
<ELFT
> &file
,
46 const typename
ELFT::Shdr
&hdr
) {
47 if (hdr
.sh_type
== SHT_NOBITS
)
48 return ArrayRef
<uint8_t>(nullptr, hdr
.sh_size
);
49 return check(file
.getObj().getSectionContents(hdr
));
52 InputSectionBase::InputSectionBase(InputFile
*file
, uint64_t flags
,
53 uint32_t type
, uint64_t entsize
,
54 uint32_t link
, uint32_t info
,
55 uint32_t addralign
, ArrayRef
<uint8_t> data
,
56 StringRef name
, Kind sectionKind
)
57 : SectionBase(sectionKind
, name
, flags
, entsize
, addralign
, type
, info
,
59 file(file
), content_(data
.data()), size(data
.size()) {
60 // In order to reduce memory allocation, we assume that mergeable
61 // sections are smaller than 4 GiB, which is not an unreasonable
62 // assumption as of 2017.
63 if (sectionKind
== SectionBase::Merge
&& content().size() > UINT32_MAX
)
64 error(toString(this) + ": section too large");
66 // The ELF spec states that a value of 0 means the section has
67 // no alignment constraints.
68 uint32_t v
= std::max
<uint32_t>(addralign
, 1);
69 if (!isPowerOf2_64(v
))
70 fatal(toString(this) + ": sh_addralign is not a power of 2");
73 // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
75 if (flags
& SHF_COMPRESSED
)
76 invokeELFT(parseCompressedHeader
,);
79 // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the
80 // output section. However, for relocatable linking without
81 // --force-group-allocation, the SHF_GROUP flag and section groups are retained.
82 static uint64_t getFlags(uint64_t flags
) {
83 flags
&= ~(uint64_t)SHF_INFO_LINK
;
84 if (config
->resolveGroups
)
85 flags
&= ~(uint64_t)SHF_GROUP
;
90 InputSectionBase::InputSectionBase(ObjFile
<ELFT
> &file
,
91 const typename
ELFT::Shdr
&hdr
,
92 StringRef name
, Kind sectionKind
)
93 : InputSectionBase(&file
, getFlags(hdr
.sh_flags
), hdr
.sh_type
,
94 hdr
.sh_entsize
, hdr
.sh_link
, hdr
.sh_info
,
95 hdr
.sh_addralign
, getSectionContents(file
, hdr
), name
,
97 // We reject object files having insanely large alignments even though
98 // they are allowed by the spec. I think 4GB is a reasonable limitation.
99 // We might want to relax this in the future.
100 if (hdr
.sh_addralign
> UINT32_MAX
)
101 fatal(toString(&file
) + ": section sh_addralign is too large");
104 size_t InputSectionBase::getSize() const {
105 if (auto *s
= dyn_cast
<SyntheticSection
>(this))
107 return size
- bytesDropped
;
110 template <class ELFT
>
111 static void decompressAux(const InputSectionBase
&sec
, uint8_t *out
,
113 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(sec
.content_
);
114 auto compressed
= ArrayRef
<uint8_t>(sec
.content_
, sec
.compressedSize
)
115 .slice(sizeof(typename
ELFT::Chdr
));
116 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
117 ? compression::zlib::decompress(compressed
, out
, size
)
118 : compression::zstd::decompress(compressed
, out
, size
))
119 fatal(toString(&sec
) +
120 ": decompress failed: " + llvm::toString(std::move(e
)));
123 void InputSectionBase::decompress() const {
124 uint8_t *uncompressedBuf
;
126 static std::mutex mu
;
127 std::lock_guard
<std::mutex
> lock(mu
);
128 uncompressedBuf
= bAlloc().Allocate
<uint8_t>(size
);
131 invokeELFT(decompressAux
, *this, uncompressedBuf
, size
);
132 content_
= uncompressedBuf
;
136 template <class ELFT
> RelsOrRelas
<ELFT
> InputSectionBase::relsOrRelas() const {
139 RelsOrRelas
<ELFT
> ret
;
140 typename
ELFT::Shdr shdr
=
141 cast
<ELFFileBase
>(file
)->getELFShdrs
<ELFT
>()[relSecIdx
];
142 if (shdr
.sh_type
== SHT_REL
) {
143 ret
.rels
= ArrayRef(reinterpret_cast<const typename
ELFT::Rel
*>(
144 file
->mb
.getBufferStart() + shdr
.sh_offset
),
145 shdr
.sh_size
/ sizeof(typename
ELFT::Rel
));
147 assert(shdr
.sh_type
== SHT_RELA
);
148 ret
.relas
= ArrayRef(reinterpret_cast<const typename
ELFT::Rela
*>(
149 file
->mb
.getBufferStart() + shdr
.sh_offset
),
150 shdr
.sh_size
/ sizeof(typename
ELFT::Rela
));
155 uint64_t SectionBase::getOffset(uint64_t offset
) const {
158 auto *os
= cast
<OutputSection
>(this);
159 // For output sections we treat offset -1 as the end of the section.
160 return offset
== uint64_t(-1) ? os
->size
: offset
;
165 return cast
<InputSection
>(this)->outSecOff
+ offset
;
167 // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
168 // crtbeginT.o may reference the start of an empty .eh_frame to identify the
169 // start of the output .eh_frame. Just return offset.
171 // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
172 // discarded due to GC/ICF. We should compute the output section offset.
173 const EhInputSection
*es
= cast
<EhInputSection
>(this);
174 if (!es
->content().empty())
175 if (InputSection
*isec
= es
->getParent())
176 return isec
->outSecOff
+ es
->getParentOffset(offset
);
180 const MergeInputSection
*ms
= cast
<MergeInputSection
>(this);
181 if (InputSection
*isec
= ms
->getParent())
182 return isec
->outSecOff
+ ms
->getParentOffset(offset
);
183 return ms
->getParentOffset(offset
);
185 llvm_unreachable("invalid section kind");
188 uint64_t SectionBase::getVA(uint64_t offset
) const {
189 const OutputSection
*out
= getOutputSection();
190 return (out
? out
->addr
: 0) + getOffset(offset
);
193 OutputSection
*SectionBase::getOutputSection() {
195 if (auto *isec
= dyn_cast
<InputSection
>(this))
197 else if (auto *ms
= dyn_cast
<MergeInputSection
>(this))
198 sec
= ms
->getParent();
199 else if (auto *eh
= dyn_cast
<EhInputSection
>(this))
200 sec
= eh
->getParent();
202 return cast
<OutputSection
>(this);
203 return sec
? sec
->getParent() : nullptr;
206 // When a section is compressed, `rawData` consists with a header followed
207 // by zlib-compressed data. This function parses a header to initialize
208 // `uncompressedSize` member and remove the header from `rawData`.
209 template <typename ELFT
> void InputSectionBase::parseCompressedHeader() {
210 flags
&= ~(uint64_t)SHF_COMPRESSED
;
213 if (content().size() < sizeof(typename
ELFT::Chdr
)) {
214 error(toString(this) + ": corrupted compressed section");
218 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content().data());
219 if (hdr
->ch_type
== ELFCOMPRESS_ZLIB
) {
220 if (!compression::zlib::isAvailable())
221 error(toString(this) + " is compressed with ELFCOMPRESS_ZLIB, but lld is "
222 "not built with zlib support");
223 } else if (hdr
->ch_type
== ELFCOMPRESS_ZSTD
) {
224 if (!compression::zstd::isAvailable())
225 error(toString(this) + " is compressed with ELFCOMPRESS_ZSTD, but lld is "
226 "not built with zstd support");
228 error(toString(this) + ": unsupported compression type (" +
229 Twine(hdr
->ch_type
) + ")");
234 compressedSize
= size
;
236 addralign
= std::max
<uint32_t>(hdr
->ch_addralign
, 1);
239 InputSection
*InputSectionBase::getLinkOrderDep() const {
240 assert(flags
& SHF_LINK_ORDER
);
243 return cast
<InputSection
>(file
->getSections()[link
]);
246 // Find a symbol that encloses a given location.
247 Defined
*InputSectionBase::getEnclosingSymbol(uint64_t offset
,
248 uint8_t type
) const {
249 if (file
->isInternal())
251 for (Symbol
*b
: file
->getSymbols())
252 if (Defined
*d
= dyn_cast
<Defined
>(b
))
253 if (d
->section
== this && d
->value
<= offset
&&
254 offset
< d
->value
+ d
->size
&& (type
== 0 || type
== d
->type
))
259 // Returns an object file location string. Used to construct an error message.
260 std::string
InputSectionBase::getLocation(uint64_t offset
) const {
261 std::string secAndOffset
=
262 (name
+ "+0x" + Twine::utohexstr(offset
) + ")").str();
264 // We don't have file for synthetic sections.
266 return (config
->outputFile
+ ":(" + secAndOffset
).str();
268 std::string filename
= toString(file
);
269 if (Defined
*d
= getEnclosingFunction(offset
))
270 return filename
+ ":(function " + toString(*d
) + ": " + secAndOffset
;
272 return filename
+ ":(" + secAndOffset
;
275 // This function is intended to be used for constructing an error message.
276 // The returned message looks like this:
278 // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
280 // Returns an empty string if there's no way to get line info.
281 std::string
InputSectionBase::getSrcMsg(const Symbol
&sym
,
282 uint64_t offset
) const {
283 return file
->getSrcMsg(sym
, *this, offset
);
286 // Returns a filename string along with an optional section name. This
287 // function is intended to be used for constructing an error
288 // message. The returned message looks like this:
290 // path/to/foo.o:(function bar)
294 // path/to/foo.o:(function bar) in archive path/to/bar.a
295 std::string
InputSectionBase::getObjMsg(uint64_t off
) const {
296 std::string filename
= std::string(file
->getName());
299 if (!file
->archiveName
.empty())
300 archive
= (" in archive " + file
->archiveName
).str();
302 // Find a symbol that encloses a given location. getObjMsg may be called
303 // before ObjFile::initSectionsAndLocalSyms where local symbols are
305 if (Defined
*d
= getEnclosingSymbol(off
))
306 return filename
+ ":(" + toString(*d
) + ")" + archive
;
308 // If there's no symbol, print out the offset in the section.
309 return (filename
+ ":(" + name
+ "+0x" + utohexstr(off
) + ")" + archive
)
313 PotentialSpillSection::PotentialSpillSection(const InputSectionBase
&source
,
314 InputSectionDescription
&isd
)
315 : InputSection(source
.file
, source
.flags
, source
.type
, source
.addralign
, {},
316 source
.name
, SectionBase::Spill
),
319 InputSection
InputSection::discarded(nullptr, 0, 0, 0, ArrayRef
<uint8_t>(), "");
321 InputSection::InputSection(InputFile
*f
, uint64_t flags
, uint32_t type
,
322 uint32_t addralign
, ArrayRef
<uint8_t> data
,
323 StringRef name
, Kind k
)
324 : InputSectionBase(f
, flags
, type
,
325 /*Entsize*/ 0, /*Link*/ 0, /*Info*/ 0, addralign
, data
,
327 assert(f
|| this == &InputSection::discarded
);
330 template <class ELFT
>
331 InputSection::InputSection(ObjFile
<ELFT
> &f
, const typename
ELFT::Shdr
&header
,
333 : InputSectionBase(f
, header
, name
, InputSectionBase::Regular
) {}
335 // Copy SHT_GROUP section contents. Used only for the -r option.
336 template <class ELFT
> void InputSection::copyShtGroup(uint8_t *buf
) {
337 // ELFT::Word is the 32-bit integral type in the target endianness.
338 using u32
= typename
ELFT::Word
;
339 ArrayRef
<u32
> from
= getDataAs
<u32
>();
340 auto *to
= reinterpret_cast<u32
*>(buf
);
342 // The first entry is not a section number but a flag.
345 // Adjust section numbers because section numbers in an input object files are
346 // different in the output. We also need to handle combined or discarded
348 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
349 DenseSet
<uint32_t> seen
;
350 for (uint32_t idx
: from
.slice(1)) {
351 OutputSection
*osec
= sections
[idx
]->getOutputSection();
352 if (osec
&& seen
.insert(osec
->sectionIndex
).second
)
353 *to
++ = osec
->sectionIndex
;
357 InputSectionBase
*InputSection::getRelocatedSection() const {
358 if (file
->isInternal() || !isStaticRelSecType(type
))
360 ArrayRef
<InputSectionBase
*> sections
= file
->getSections();
361 return sections
[info
];
364 template <class ELFT
, class RelTy
>
365 void InputSection::copyRelocations(uint8_t *buf
) {
366 if (config
->relax
&& !config
->relocatable
&&
367 (config
->emachine
== EM_RISCV
|| config
->emachine
== EM_LOONGARCH
)) {
368 // On LoongArch and RISC-V, relaxation might change relocations: copy
369 // from internal ones that are updated by relaxation.
370 InputSectionBase
*sec
= getRelocatedSection();
371 copyRelocations
<ELFT
, RelTy
>(buf
, llvm::make_range(sec
->relocations
.begin(),
372 sec
->relocations
.end()));
374 // Convert the raw relocations in the input section into Relocation objects
375 // suitable to be used by copyRelocations below.
377 const ObjFile
<ELFT
> &file
;
378 Relocation
operator()(const RelTy
&rel
) const {
379 // RelExpr is not used so set to a dummy value.
380 return Relocation
{R_NONE
, rel
.getType(config
->isMips64EL
), rel
.r_offset
,
381 getAddend
<ELFT
>(rel
), &file
.getRelocTargetSym(rel
)};
385 using RawRels
= ArrayRef
<RelTy
>;
387 llvm::mapped_iterator
<typename
RawRels::iterator
, MapRel
>;
388 auto mapRel
= MapRel
{*getFile
<ELFT
>()};
389 RawRels rawRels
= getDataAs
<RelTy
>();
390 auto rels
= llvm::make_range(MapRelIter(rawRels
.begin(), mapRel
),
391 MapRelIter(rawRels
.end(), mapRel
));
392 copyRelocations
<ELFT
, RelTy
>(buf
, rels
);
396 // This is used for -r and --emit-relocs. We can't use memcpy to copy
397 // relocations because we need to update symbol table offset and section index
398 // for each relocation. So we copy relocations one by one.
399 template <class ELFT
, class RelTy
, class RelIt
>
400 void InputSection::copyRelocations(uint8_t *buf
,
401 llvm::iterator_range
<RelIt
> rels
) {
402 const TargetInfo
&target
= *elf::target
;
403 InputSectionBase
*sec
= getRelocatedSection();
404 (void)sec
->contentMaybeDecompress(); // uncompress if needed
406 for (const Relocation
&rel
: rels
) {
407 RelType type
= rel
.type
;
408 const ObjFile
<ELFT
> *file
= getFile
<ELFT
>();
409 Symbol
&sym
= *rel
.sym
;
411 auto *p
= reinterpret_cast<typename
ELFT::Rela
*>(buf
);
412 buf
+= sizeof(RelTy
);
414 if (RelTy::HasAddend
)
415 p
->r_addend
= rel
.addend
;
417 // Output section VA is zero for -r, so r_offset is an offset within the
418 // section, but for --emit-relocs it is a virtual address.
419 p
->r_offset
= sec
->getVA(rel
.offset
);
420 p
->setSymbolAndType(in
.symTab
->getSymbolIndex(sym
), type
,
423 if (sym
.type
== STT_SECTION
) {
424 // We combine multiple section symbols into only one per
425 // section. This means we have to update the addend. That is
426 // trivial for Elf_Rela, but for Elf_Rel we have to write to the
427 // section data. We do that by adding to the Relocation vector.
429 // .eh_frame is horribly special and can reference discarded sections. To
430 // avoid having to parse and recreate .eh_frame, we just replace any
431 // relocation in it pointing to discarded sections with R_*_NONE, which
432 // hopefully creates a frame that is ignored at runtime. Also, don't warn
433 // on .gcc_except_table and debug sections.
435 // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
436 auto *d
= dyn_cast
<Defined
>(&sym
);
438 if (!isDebugSection(*sec
) && sec
->name
!= ".eh_frame" &&
439 sec
->name
!= ".gcc_except_table" && sec
->name
!= ".got2" &&
440 sec
->name
!= ".toc") {
441 uint32_t secIdx
= cast
<Undefined
>(sym
).discardedSecIdx
;
442 Elf_Shdr_Impl
<ELFT
> sec
= file
->template getELFShdrs
<ELFT
>()[secIdx
];
443 warn("relocation refers to a discarded section: " +
444 CHECK(file
->getObj().getSectionName(sec
), file
) +
445 "\n>>> referenced by " + getObjMsg(p
->r_offset
));
447 p
->setSymbolAndType(0, 0, false);
450 SectionBase
*section
= d
->section
;
451 assert(section
->isLive());
453 int64_t addend
= rel
.addend
;
454 const uint8_t *bufLoc
= sec
->content().begin() + rel
.offset
;
455 if (!RelTy::HasAddend
)
456 addend
= target
.getImplicitAddend(bufLoc
, type
);
458 if (config
->emachine
== EM_MIPS
&&
459 target
.getRelExpr(type
, sym
, bufLoc
) == R_MIPS_GOTREL
) {
460 // Some MIPS relocations depend on "gp" value. By default,
461 // this value has 0x7ff0 offset from a .got section. But
462 // relocatable files produced by a compiler or a linker
463 // might redefine this default value and we must use it
464 // for a calculation of the relocation result. When we
465 // generate EXE or DSO it's trivial. Generating a relocatable
466 // output is more difficult case because the linker does
467 // not calculate relocations in this mode and loses
468 // individual "gp" values used by each input object file.
469 // As a workaround we add the "gp" value to the relocation
470 // addend and save it back to the file.
471 addend
+= sec
->getFile
<ELFT
>()->mipsGp0
;
474 if (RelTy::HasAddend
)
475 p
->r_addend
= sym
.getVA(addend
) - section
->getOutputSection()->addr
;
476 // For SHF_ALLOC sections relocated by REL, append a relocation to
477 // sec->relocations so that relocateAlloc transitively called by
478 // writeSections will update the implicit addend. Non-SHF_ALLOC sections
479 // utilize relocateNonAlloc to process raw relocations and do not need
480 // this sec->relocations change.
481 else if (config
->relocatable
&& (sec
->flags
& SHF_ALLOC
) &&
482 type
!= target
.noneRel
)
483 sec
->addReloc({R_ABS
, type
, rel
.offset
, addend
, &sym
});
484 } else if (config
->emachine
== EM_PPC
&& type
== R_PPC_PLTREL24
&&
485 p
->r_addend
>= 0x8000 && sec
->file
->ppc32Got2
) {
486 // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
487 // indicates that r30 is relative to the input section .got2
488 // (r_addend>=0x8000), after linking, r30 should be relative to the output
489 // section .got2 . To compensate for the shift, adjust r_addend by
490 // ppc32Got->outSecOff.
491 p
->r_addend
+= sec
->file
->ppc32Got2
->outSecOff
;
496 // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
497 // references specially. The general rule is that the value of the symbol in
498 // this context is the address of the place P. A further special case is that
499 // branch relocations to an undefined weak reference resolve to the next
501 static uint32_t getARMUndefinedRelativeWeakVA(RelType type
, uint32_t a
,
504 // Unresolved branch relocations to weak references resolve to next
505 // instruction, this will be either 2 or 4 bytes on from P.
506 case R_ARM_THM_JUMP8
:
507 case R_ARM_THM_JUMP11
:
514 case R_ARM_THM_JUMP19
:
515 case R_ARM_THM_JUMP24
:
518 // We don't want an interworking BLX to ARM
520 // Unresolved non branch pc-relative relocations
521 // R_ARM_TARGET2 which can be resolved relatively is not present as it never
522 // targets a weak-reference.
523 case R_ARM_MOVW_PREL_NC
:
524 case R_ARM_MOVT_PREL
:
526 case R_ARM_THM_ALU_PREL_11_0
:
527 case R_ARM_THM_MOVW_PREL_NC
:
528 case R_ARM_THM_MOVT_PREL
:
531 // p + a is unrepresentable as negative immediates can't be encoded.
535 llvm_unreachable("ARM pc-relative relocation expected\n");
538 // The comment above getARMUndefinedRelativeWeakVA applies to this function.
539 static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
541 // Unresolved branch relocations to weak references resolve to next
542 // instruction, this is 4 bytes on from P.
543 case R_AARCH64_CALL26
:
544 case R_AARCH64_CONDBR19
:
545 case R_AARCH64_JUMP26
:
546 case R_AARCH64_TSTBR14
:
548 // Unresolved non branch pc-relative relocations
549 case R_AARCH64_PREL16
:
550 case R_AARCH64_PREL32
:
551 case R_AARCH64_PREL64
:
552 case R_AARCH64_ADR_PREL_LO21
:
553 case R_AARCH64_LD_PREL_LO19
:
554 case R_AARCH64_PLT32
:
557 llvm_unreachable("AArch64 pc-relative relocation expected\n");
560 static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type
, uint64_t p
) {
565 case R_RISCV_CALL_PLT
:
566 case R_RISCV_RVC_BRANCH
:
567 case R_RISCV_RVC_JUMP
:
575 // ARM SBREL relocations are of the form S + A - B where B is the static base
576 // The ARM ABI defines base to be "addressing origin of the output segment
577 // defining the symbol S". We defined the "addressing origin"/static base to be
578 // the base of the PT_LOAD segment containing the Sym.
579 // The procedure call standard only defines a Read Write Position Independent
580 // RWPI variant so in practice we should expect the static base to be the base
581 // of the RW segment.
582 static uint64_t getARMStaticBase(const Symbol
&sym
) {
583 OutputSection
*os
= sym
.getOutputSection();
584 if (!os
|| !os
->ptLoad
|| !os
->ptLoad
->firstSec
)
585 fatal("SBREL relocation to " + sym
.getName() + " without static base");
586 return os
->ptLoad
->firstSec
->addr
;
589 // For R_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
590 // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
591 // is calculated using PCREL_HI20's symbol.
593 // This function returns the R_RISCV_PCREL_HI20 relocation from
594 // R_RISCV_PCREL_LO12's symbol and addend.
595 static Relocation
*getRISCVPCRelHi20(const Symbol
*sym
, uint64_t addend
) {
596 const Defined
*d
= cast
<Defined
>(sym
);
598 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " +
602 InputSection
*isec
= cast
<InputSection
>(d
->section
);
605 warn("non-zero addend in R_RISCV_PCREL_LO12 relocation to " +
606 isec
->getObjMsg(d
->value
) + " is ignored");
608 // Relocations are sorted by offset, so we can use std::equal_range to do
613 std::equal_range(isec
->relocs().begin(), isec
->relocs().end(), r
,
614 [](const Relocation
&lhs
, const Relocation
&rhs
) {
615 return lhs
.offset
< rhs
.offset
;
618 for (auto it
= range
.first
; it
!= range
.second
; ++it
)
619 if (it
->type
== R_RISCV_PCREL_HI20
|| it
->type
== R_RISCV_GOT_HI20
||
620 it
->type
== R_RISCV_TLS_GD_HI20
|| it
->type
== R_RISCV_TLS_GOT_HI20
)
623 errorOrWarn("R_RISCV_PCREL_LO12 relocation points to " +
624 isec
->getObjMsg(d
->value
) +
625 " without an associated R_RISCV_PCREL_HI20 relocation");
629 // A TLS symbol's virtual address is relative to the TLS segment. Add a
630 // target-specific adjustment to produce a thread-pointer-relative offset.
631 static int64_t getTlsTpOffset(const Symbol
&s
) {
632 // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
633 if (&s
== ElfSym::tlsModuleBase
)
636 // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
637 // while most others use Variant 1. At run time TP will be aligned to p_align.
639 // Variant 1. TP will be followed by an optional gap (which is the size of 2
640 // pointers on ARM/AArch64, 0 on other targets), followed by alignment
641 // padding, then the static TLS blocks. The alignment padding is added so that
642 // (TP + gap + padding) is congruent to p_vaddr modulo p_align.
644 // Variant 2. Static TLS blocks, followed by alignment padding are placed
645 // before TP. The alignment padding is added so that (TP - padding -
646 // p_memsz) is congruent to p_vaddr modulo p_align.
647 PhdrEntry
*tls
= Out::tlsPhdr
;
648 switch (config
->emachine
) {
652 return s
.getVA(0) + config
->wordsize
* 2 +
653 ((tls
->p_vaddr
- config
->wordsize
* 2) & (tls
->p_align
- 1));
657 // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
658 // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
659 // data and 0xf000 of the program's TLS segment.
660 return s
.getVA(0) + (tls
->p_vaddr
& (tls
->p_align
- 1)) - 0x7000;
663 return s
.getVA(0) + (tls
->p_vaddr
& (tls
->p_align
- 1));
671 return s
.getVA(0) - tls
->p_memsz
-
672 ((-tls
->p_vaddr
- tls
->p_memsz
) & (tls
->p_align
- 1));
674 llvm_unreachable("unhandled Config->EMachine");
678 uint64_t InputSectionBase::getRelocTargetVA(const InputFile
*file
, RelType type
,
679 int64_t a
, uint64_t p
,
680 const Symbol
&sym
, RelExpr expr
) {
684 case R_RELAX_TLS_LD_TO_LE_ABS
:
685 case R_RELAX_GOT_PC_NOPIC
:
695 return sym
.getVA(a
) - getARMStaticBase(sym
);
697 case R_RELAX_TLS_GD_TO_IE_ABS
:
698 return sym
.getGotVA() + a
;
699 case R_LOONGARCH_GOT
:
700 // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc type
701 // for their page offsets. The arithmetics are different in the TLS case
702 // so we have to duplicate some logic here.
703 if (sym
.hasFlag(NEEDS_TLSGD
) && type
!= R_LARCH_TLS_IE_PC_LO12
)
704 // Like R_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
705 return in
.got
->getGlobalDynAddr(sym
) + a
;
706 return getRelocTargetVA(file
, type
, a
, p
, sym
, R_GOT
);
708 return in
.got
->getVA() + a
- p
;
709 case R_GOTPLTONLY_PC
:
710 return in
.gotPlt
->getVA() + a
- p
;
712 case R_PPC64_RELAX_TOC
:
713 return sym
.getVA(a
) - in
.got
->getVA();
715 return sym
.getVA(a
) - in
.gotPlt
->getVA();
717 case R_RELAX_TLS_GD_TO_IE_GOTPLT
:
718 return sym
.getGotVA() + a
- in
.gotPlt
->getVA();
719 case R_TLSLD_GOT_OFF
:
721 case R_RELAX_TLS_GD_TO_IE_GOT_OFF
:
722 return sym
.getGotOffset() + a
;
723 case R_AARCH64_GOT_PAGE_PC
:
724 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC
:
725 return getAArch64Page(sym
.getGotVA() + a
) - getAArch64Page(p
);
726 case R_AARCH64_GOT_PAGE
:
727 return sym
.getGotVA() + a
- getAArch64Page(in
.got
->getVA());
729 case R_RELAX_TLS_GD_TO_IE
:
730 return sym
.getGotVA() + a
- p
;
731 case R_GOTPLT_GOTREL
:
732 return sym
.getGotPltVA() + a
- in
.got
->getVA();
734 return sym
.getGotPltVA() + a
- p
;
735 case R_LOONGARCH_GOT_PAGE_PC
:
736 if (sym
.hasFlag(NEEDS_TLSGD
))
737 return getLoongArchPageDelta(in
.got
->getGlobalDynAddr(sym
) + a
, p
, type
);
738 return getLoongArchPageDelta(sym
.getGotVA() + a
, p
, type
);
740 return sym
.getVA(a
) - in
.mipsGot
->getGp(file
);
742 return in
.mipsGot
->getGp(file
) + a
;
743 case R_MIPS_GOT_GP_PC
: {
744 // R_MIPS_LO16 expression has R_MIPS_GOT_GP_PC type iif the target
745 // is _gp_disp symbol. In that case we should use the following
746 // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
747 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
748 // microMIPS variants of these relocations use slightly different
749 // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
750 // to correctly handle less-significant bit of the microMIPS symbol.
751 uint64_t v
= in
.mipsGot
->getGp(file
) + a
- p
;
752 if (type
== R_MIPS_LO16
|| type
== R_MICROMIPS_LO16
)
754 if (type
== R_MICROMIPS_LO16
|| type
== R_MICROMIPS_HI16
)
758 case R_MIPS_GOT_LOCAL_PAGE
:
759 // If relocation against MIPS local symbol requires GOT entry, this entry
760 // should be initialized by 'page address'. This address is high 16-bits
761 // of sum the symbol's value and the addend.
762 return in
.mipsGot
->getVA() + in
.mipsGot
->getPageEntryOffset(file
, sym
, a
) -
763 in
.mipsGot
->getGp(file
);
765 case R_MIPS_GOT_OFF32
:
766 // In case of MIPS if a GOT relocation has non-zero addend this addend
767 // should be applied to the GOT entry content not to the GOT entry offset.
768 // That is why we use separate expression type.
769 return in
.mipsGot
->getVA() + in
.mipsGot
->getSymEntryOffset(file
, sym
, a
) -
770 in
.mipsGot
->getGp(file
);
772 return in
.mipsGot
->getVA() + in
.mipsGot
->getGlobalDynOffset(file
, sym
) -
773 in
.mipsGot
->getGp(file
);
775 return in
.mipsGot
->getVA() + in
.mipsGot
->getTlsIndexOffset(file
) -
776 in
.mipsGot
->getGp(file
);
777 case R_AARCH64_PAGE_PC
: {
778 uint64_t val
= sym
.isUndefWeak() ? p
+ a
: sym
.getVA(a
);
779 return getAArch64Page(val
) - getAArch64Page(p
);
781 case R_RISCV_PC_INDIRECT
: {
782 if (const Relocation
*hiRel
= getRISCVPCRelHi20(&sym
, a
))
783 return getRelocTargetVA(file
, hiRel
->type
, hiRel
->addend
, sym
.getVA(),
784 *hiRel
->sym
, hiRel
->expr
);
787 case R_LOONGARCH_PAGE_PC
:
788 return getLoongArchPageDelta(sym
.getVA(a
), p
, type
);
792 if (expr
== R_ARM_PCA
)
793 // Some PC relative ARM (Thumb) relocations align down the place.
795 if (sym
.isUndefined()) {
796 // On ARM and AArch64 a branch to an undefined weak resolves to the next
797 // instruction, otherwise the place. On RISC-V, resolve an undefined weak
798 // to the same instruction to cause an infinite loop (making the user
799 // aware of the issue) while ensuring no overflow.
800 // Note: if the symbol is hidden, its binding has been converted to local,
801 // so we just check isUndefined() here.
802 if (config
->emachine
== EM_ARM
)
803 dest
= getARMUndefinedRelativeWeakVA(type
, a
, p
);
804 else if (config
->emachine
== EM_AARCH64
)
805 dest
= getAArch64UndefinedRelativeWeakVA(type
, p
) + a
;
806 else if (config
->emachine
== EM_PPC
)
808 else if (config
->emachine
== EM_RISCV
)
809 dest
= getRISCVUndefinedRelativeWeakVA(type
, p
) + a
;
818 return sym
.getPltVA() + a
;
820 case R_PPC64_CALL_PLT
:
821 return sym
.getPltVA() + a
- p
;
822 case R_LOONGARCH_PLT_PAGE_PC
:
823 return getLoongArchPageDelta(sym
.getPltVA() + a
, p
, type
);
825 return sym
.getPltVA() + a
- in
.gotPlt
->getVA();
827 return sym
.getPltVA() + a
- in
.got
->getVA();
829 // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
830 // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
831 // target VA computation.
832 return sym
.getPltVA() - p
;
834 uint64_t symVA
= sym
.getVA(a
);
835 // If we have an undefined weak symbol, we might get here with a symbol
836 // address of zero. That could overflow, but the code must be unreachable,
837 // so don't bother doing anything at all.
841 // PPC64 V2 ABI describes two entry points to a function. The global entry
842 // point is used for calls where the caller and callee (may) have different
843 // TOC base pointers and r2 needs to be modified to hold the TOC base for
844 // the callee. For local calls the caller and callee share the same
845 // TOC base and so the TOC pointer initialization code should be skipped by
846 // branching to the local entry point.
847 return symVA
- p
+ getPPC64GlobalEntryToLocalEntryOffset(sym
.stOther
);
849 case R_PPC64_TOCBASE
:
850 return getPPC64TocBase() + a
;
852 case R_PPC64_RELAX_GOT_PC
:
853 return sym
.getVA(a
) - p
;
854 case R_RELAX_TLS_GD_TO_LE
:
855 case R_RELAX_TLS_IE_TO_LE
:
856 case R_RELAX_TLS_LD_TO_LE
:
858 // It is not very clear what to return if the symbol is undefined. With
859 // --noinhibit-exec, even a non-weak undefined reference may reach here.
860 // Just return A, which matches R_ABS, and the behavior of some dynamic
862 if (sym
.isUndefined())
864 return getTlsTpOffset(sym
) + a
;
865 case R_RELAX_TLS_GD_TO_LE_NEG
:
867 if (sym
.isUndefined())
869 return -getTlsTpOffset(sym
) + a
;
871 return sym
.getSize() + a
;
873 return in
.got
->getTlsDescAddr(sym
) + a
;
875 return in
.got
->getTlsDescAddr(sym
) + a
- p
;
876 case R_TLSDESC_GOTPLT
:
877 return in
.got
->getTlsDescAddr(sym
) + a
- in
.gotPlt
->getVA();
878 case R_AARCH64_TLSDESC_PAGE
:
879 return getAArch64Page(in
.got
->getTlsDescAddr(sym
) + a
) - getAArch64Page(p
);
880 case R_LOONGARCH_TLSDESC_PAGE_PC
:
881 return getLoongArchPageDelta(in
.got
->getTlsDescAddr(sym
) + a
, p
, type
);
883 return in
.got
->getGlobalDynOffset(sym
) + a
;
885 return in
.got
->getGlobalDynAddr(sym
) + a
- in
.gotPlt
->getVA();
887 return in
.got
->getGlobalDynAddr(sym
) + a
- p
;
888 case R_LOONGARCH_TLSGD_PAGE_PC
:
889 return getLoongArchPageDelta(in
.got
->getGlobalDynAddr(sym
) + a
, p
, type
);
891 return in
.got
->getVA() + in
.got
->getTlsIndexOff() + a
- in
.gotPlt
->getVA();
893 return in
.got
->getTlsIndexOff() + a
;
895 return in
.got
->getTlsIndexVA() + a
- p
;
897 llvm_unreachable("invalid expression");
901 // This function applies relocations to sections without SHF_ALLOC bit.
902 // Such sections are never mapped to memory at runtime. Debug sections are
903 // an example. Relocations in non-alloc sections are much easier to
904 // handle than in allocated sections because it will never need complex
905 // treatment such as GOT or PLT (because at runtime no one refers them).
906 // So, we handle relocations for non-alloc sections directly in this
907 // function as a performance optimization.
908 template <class ELFT
, class RelTy
>
909 void InputSection::relocateNonAlloc(uint8_t *buf
, ArrayRef
<RelTy
> rels
) {
910 const unsigned bits
= sizeof(typename
ELFT::uint
) * 8;
911 const TargetInfo
&target
= *elf::target
;
912 const auto emachine
= config
->emachine
;
913 const bool isDebug
= isDebugSection(*this);
914 const bool isDebugLine
= isDebug
&& name
== ".debug_line";
915 std::optional
<uint64_t> tombstone
;
917 if (name
== ".debug_loc" || name
== ".debug_ranges")
919 else if (name
== ".debug_names")
920 tombstone
= UINT64_MAX
; // tombstone value
924 for (const auto &patAndValue
: llvm::reverse(config
->deadRelocInNonAlloc
))
925 if (patAndValue
.first
.match(this->name
)) {
926 tombstone
= patAndValue
.second
;
930 const InputFile
*f
= this->file
;
931 for (auto it
= rels
.begin(), end
= rels
.end(); it
!= end
; ++it
) {
932 const RelTy
&rel
= *it
;
933 const RelType type
= rel
.getType(config
->isMips64EL
);
934 const uint64_t offset
= rel
.r_offset
;
935 uint8_t *bufLoc
= buf
+ offset
;
936 int64_t addend
= getAddend
<ELFT
>(rel
);
937 if (!RelTy::HasAddend
)
938 addend
+= target
.getImplicitAddend(bufLoc
, type
);
940 Symbol
&sym
= f
->getRelocTargetSym(rel
);
941 RelExpr expr
= target
.getRelExpr(type
, sym
, bufLoc
);
944 auto *ds
= dyn_cast
<Defined
>(&sym
);
946 if (emachine
== EM_RISCV
&& type
== R_RISCV_SET_ULEB128
) {
948 it
->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128
&&
949 it
->r_offset
== offset
) {
951 if (!ds
&& tombstone
) {
954 val
= sym
.getVA(addend
) -
955 (f
->getRelocTargetSym(*it
).getVA(0) + getAddend
<ELFT
>(*it
));
957 if (overwriteULEB128(bufLoc
, val
) >= 0x80)
958 errorOrWarn(getLocation(offset
) + ": ULEB128 value " + Twine(val
) +
959 " exceeds available space; references '" +
960 lld::toString(sym
) + "'");
963 errorOrWarn(getLocation(offset
) +
964 ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128");
968 if (tombstone
&& (expr
== R_ABS
|| expr
== R_DTPREL
)) {
969 // Resolve relocations in .debug_* referencing (discarded symbols or ICF
970 // folded section symbols) to a tombstone value. Resolving to addend is
971 // unsatisfactory because the result address range may collide with a
972 // valid range of low address, or leave multiple CUs claiming ownership of
973 // the same range of code, which may confuse consumers.
975 // To address the problems, we use -1 as a tombstone value for most
976 // .debug_* sections. We have to ignore the addend because we don't want
977 // to resolve an address attribute (which may have a non-zero addend) to
978 // -1+addend (wrap around to a low address).
980 // R_DTPREL type relocations represent an offset into the dynamic thread
981 // vector. The computed value is st_value plus a non-negative offset.
982 // Negative values are invalid, so -1 can be used as the tombstone value.
984 // If the referenced symbol is relative to a discarded section (due to
985 // --gc-sections, COMDAT, etc), it has been converted to a Undefined.
986 // `ds->folded` catches the ICF folded case. However, resolving a
987 // relocation in .debug_line to -1 would stop debugger users from setting
988 // breakpoints on the folded-in function, so exclude .debug_line.
990 // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
991 // (base address selection entry), use 1 (which is used by GNU ld for
994 // TODO To reduce disruption, we use 0 instead of -1 as the tombstone
995 // value. Enable -1 in a future release.
996 if (!ds
|| (ds
->folded
&& !isDebugLine
)) {
997 // If -z dead-reloc-in-nonalloc= is specified, respect it.
998 uint64_t value
= SignExtend64
<bits
>(*tombstone
);
999 // For a 32-bit local TU reference in .debug_names, X86_64::relocate
1000 // requires that the unsigned value for R_X86_64_32 is truncated to
1001 // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
1002 // absolute relocations and do not need this change.
1003 if (emachine
== EM_X86_64
&& type
== R_X86_64_32
)
1004 value
= static_cast<uint32_t>(value
);
1005 target
.relocateNoSym(bufLoc
, type
, value
);
1010 // For a relocatable link, content relocated by relocation types with an
1011 // explicit addend, such as RELA, remain unchanged and we can stop here.
1012 // While content relocated by relocation types with an implicit addend, such
1013 // as REL, needs the implicit addend updated.
1014 if (config
->relocatable
&& (RelTy::HasAddend
|| sym
.type
!= STT_SECTION
))
1017 // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
1019 if (LLVM_LIKELY(expr
== R_ABS
) || expr
== R_DTPREL
|| expr
== R_GOTPLTREL
||
1020 expr
== R_RISCV_ADD
) {
1021 target
.relocateNoSym(bufLoc
, type
, SignExtend64
<bits
>(sym
.getVA(addend
)));
1025 if (expr
== R_SIZE
) {
1026 target
.relocateNoSym(bufLoc
, type
,
1027 SignExtend64
<bits
>(sym
.getSize() + addend
));
1031 std::string msg
= getLocation(offset
) + ": has non-ABS relocation " +
1032 toString(type
) + " against symbol '" + toString(sym
) +
1034 if (expr
!= R_PC
&& !(emachine
== EM_386
&& type
== R_386_GOTPC
)) {
1039 // If the control reaches here, we found a PC-relative relocation in a
1040 // non-ALLOC section. Since non-ALLOC section is not loaded into memory
1041 // at runtime, the notion of PC-relative doesn't make sense here. So,
1042 // this is a usage error. However, GNU linkers historically accept such
1043 // relocations without any errors and relocate them as if they were at
1044 // address 0. For bug-compatibility, we accept them with warnings. We
1045 // know Steel Bank Common Lisp as of 2018 have this bug.
1047 // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
1048 // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
1049 // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
1050 // keep this bug-compatible code for a while.
1052 target
.relocateNoSym(
1054 SignExtend64
<bits
>(sym
.getVA(addend
- offset
- outSecOff
)));
1058 template <class ELFT
>
1059 void InputSectionBase::relocate(uint8_t *buf
, uint8_t *bufEnd
) {
1060 if ((flags
& SHF_EXECINSTR
) && LLVM_UNLIKELY(getFile
<ELFT
>()->splitStack
))
1061 adjustSplitStackFunctionPrologues
<ELFT
>(buf
, bufEnd
);
1063 if (flags
& SHF_ALLOC
) {
1064 target
->relocateAlloc(*this, buf
);
1068 auto *sec
= cast
<InputSection
>(this);
1069 // For a relocatable link, also call relocateNonAlloc() to rewrite applicable
1070 // locations with tombstone values.
1071 const RelsOrRelas
<ELFT
> rels
= sec
->template relsOrRelas
<ELFT
>();
1072 if (rels
.areRelocsRel())
1073 sec
->relocateNonAlloc
<ELFT
>(buf
, rels
.rels
);
1075 sec
->relocateNonAlloc
<ELFT
>(buf
, rels
.relas
);
1078 // For each function-defining prologue, find any calls to __morestack,
1079 // and replace them with calls to __morestack_non_split.
1080 static void switchMorestackCallsToMorestackNonSplit(
1081 DenseSet
<Defined
*> &prologues
,
1082 SmallVector
<Relocation
*, 0> &morestackCalls
) {
1084 // If the target adjusted a function's prologue, all calls to
1085 // __morestack inside that function should be switched to
1086 // __morestack_non_split.
1087 Symbol
*moreStackNonSplit
= symtab
.find("__morestack_non_split");
1088 if (!moreStackNonSplit
) {
1089 error("mixing split-stack objects requires a definition of "
1090 "__morestack_non_split");
1094 // Sort both collections to compare addresses efficiently.
1095 llvm::sort(morestackCalls
, [](const Relocation
*l
, const Relocation
*r
) {
1096 return l
->offset
< r
->offset
;
1098 std::vector
<Defined
*> functions(prologues
.begin(), prologues
.end());
1099 llvm::sort(functions
, [](const Defined
*l
, const Defined
*r
) {
1100 return l
->value
< r
->value
;
1103 auto it
= morestackCalls
.begin();
1104 for (Defined
*f
: functions
) {
1105 // Find the first call to __morestack within the function.
1106 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
)
1108 // Adjust all calls inside the function.
1109 while (it
!= morestackCalls
.end() && (*it
)->offset
< f
->value
+ f
->size
) {
1110 (*it
)->sym
= moreStackNonSplit
;
1116 static bool enclosingPrologueAttempted(uint64_t offset
,
1117 const DenseSet
<Defined
*> &prologues
) {
1118 for (Defined
*f
: prologues
)
1119 if (f
->value
<= offset
&& offset
< f
->value
+ f
->size
)
1124 // If a function compiled for split stack calls a function not
1125 // compiled for split stack, then the caller needs its prologue
1126 // adjusted to ensure that the called function will have enough stack
1127 // available. Find those functions, and adjust their prologues.
1128 template <class ELFT
>
1129 void InputSectionBase::adjustSplitStackFunctionPrologues(uint8_t *buf
,
1131 DenseSet
<Defined
*> prologues
;
1132 SmallVector
<Relocation
*, 0> morestackCalls
;
1134 for (Relocation
&rel
: relocs()) {
1135 // Ignore calls into the split-stack api.
1136 if (rel
.sym
->getName().starts_with("__morestack")) {
1137 if (rel
.sym
->getName() == "__morestack")
1138 morestackCalls
.push_back(&rel
);
1142 // A relocation to non-function isn't relevant. Sometimes
1143 // __morestack is not marked as a function, so this check comes
1144 // after the name check.
1145 if (rel
.sym
->type
!= STT_FUNC
)
1148 // If the callee's-file was compiled with split stack, nothing to do. In
1149 // this context, a "Defined" symbol is one "defined by the binary currently
1150 // being produced". So an "undefined" symbol might be provided by a shared
1151 // library. It is not possible to tell how such symbols were compiled, so be
1153 if (Defined
*d
= dyn_cast
<Defined
>(rel
.sym
))
1154 if (InputSection
*isec
= cast_or_null
<InputSection
>(d
->section
))
1155 if (!isec
|| !isec
->getFile
<ELFT
>() || isec
->getFile
<ELFT
>()->splitStack
)
1158 if (enclosingPrologueAttempted(rel
.offset
, prologues
))
1161 if (Defined
*f
= getEnclosingFunction(rel
.offset
)) {
1162 prologues
.insert(f
);
1163 if (target
->adjustPrologueForCrossSplitStack(buf
+ f
->value
, end
,
1166 if (!getFile
<ELFT
>()->someNoSplitStack
)
1167 error(lld::toString(this) + ": " + f
->getName() +
1168 " (with -fsplit-stack) calls " + rel
.sym
->getName() +
1169 " (without -fsplit-stack), but couldn't adjust its prologue");
1173 if (target
->needsMoreStackNonSplit
)
1174 switchMorestackCallsToMorestackNonSplit(prologues
, morestackCalls
);
1177 template <class ELFT
> void InputSection::writeTo(uint8_t *buf
) {
1178 if (LLVM_UNLIKELY(type
== SHT_NOBITS
))
1180 // If -r or --emit-relocs is given, then an InputSection
1181 // may be a relocation section.
1182 if (LLVM_UNLIKELY(type
== SHT_RELA
)) {
1183 copyRelocations
<ELFT
, typename
ELFT::Rela
>(buf
);
1186 if (LLVM_UNLIKELY(type
== SHT_REL
)) {
1187 copyRelocations
<ELFT
, typename
ELFT::Rel
>(buf
);
1191 // If -r is given, we may have a SHT_GROUP section.
1192 if (LLVM_UNLIKELY(type
== SHT_GROUP
)) {
1193 copyShtGroup
<ELFT
>(buf
);
1197 // If this is a compressed section, uncompress section contents directly
1200 auto *hdr
= reinterpret_cast<const typename
ELFT::Chdr
*>(content_
);
1201 auto compressed
= ArrayRef
<uint8_t>(content_
, compressedSize
)
1202 .slice(sizeof(typename
ELFT::Chdr
));
1203 size_t size
= this->size
;
1204 if (Error e
= hdr
->ch_type
== ELFCOMPRESS_ZLIB
1205 ? compression::zlib::decompress(compressed
, buf
, size
)
1206 : compression::zstd::decompress(compressed
, buf
, size
))
1207 fatal(toString(this) +
1208 ": decompress failed: " + llvm::toString(std::move(e
)));
1209 uint8_t *bufEnd
= buf
+ size
;
1210 relocate
<ELFT
>(buf
, bufEnd
);
1214 // Copy section contents from source object file to output file
1215 // and then apply relocations.
1216 memcpy(buf
, content().data(), content().size());
1217 relocate
<ELFT
>(buf
, buf
+ content().size());
1220 void InputSection::replace(InputSection
*other
) {
1221 addralign
= std::max(addralign
, other
->addralign
);
1223 // When a section is replaced with another section that was allocated to
1224 // another partition, the replacement section (and its associated sections)
1225 // need to be placed in the main partition so that both partitions will be
1226 // able to access it.
1227 if (partition
!= other
->partition
) {
1229 for (InputSection
*isec
: dependentSections
)
1230 isec
->partition
= 1;
1237 template <class ELFT
>
1238 EhInputSection::EhInputSection(ObjFile
<ELFT
> &f
,
1239 const typename
ELFT::Shdr
&header
,
1241 : InputSectionBase(f
, header
, name
, InputSectionBase::EHFrame
) {}
1243 SyntheticSection
*EhInputSection::getParent() const {
1244 return cast_or_null
<SyntheticSection
>(parent
);
1247 // .eh_frame is a sequence of CIE or FDE records.
1248 // This function splits an input section into records and returns them.
1249 template <class ELFT
> void EhInputSection::split() {
1250 const RelsOrRelas
<ELFT
> rels
= relsOrRelas
<ELFT
>();
1251 // getReloc expects the relocations to be sorted by r_offset. See the comment
1253 if (rels
.areRelocsRel()) {
1254 SmallVector
<typename
ELFT::Rel
, 0> storage
;
1255 split
<ELFT
>(sortRels(rels
.rels
, storage
));
1257 SmallVector
<typename
ELFT::Rela
, 0> storage
;
1258 split
<ELFT
>(sortRels(rels
.relas
, storage
));
1262 template <class ELFT
, class RelTy
>
1263 void EhInputSection::split(ArrayRef
<RelTy
> rels
) {
1264 ArrayRef
<uint8_t> d
= content();
1265 const char *msg
= nullptr;
1267 while (!d
.empty()) {
1269 msg
= "CIE/FDE too small";
1272 uint64_t size
= endian::read32
<ELFT::Endianness
>(d
.data());
1273 if (size
== 0) // ZERO terminator
1275 uint32_t id
= endian::read32
<ELFT::Endianness
>(d
.data() + 4);
1277 if (LLVM_UNLIKELY(size
> d
.size())) {
1278 // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
1279 // but we do not support that format yet.
1280 msg
= size
== UINT32_MAX
+ uint64_t(4)
1281 ? "CIE/FDE too large"
1282 : "CIE/FDE ends past the end of the section";
1286 // Find the first relocation that points to [off,off+size). Relocations
1287 // have been sorted by r_offset.
1288 const uint64_t off
= d
.data() - content().data();
1289 while (relI
!= rels
.size() && rels
[relI
].r_offset
< off
)
1291 unsigned firstRel
= -1;
1292 if (relI
!= rels
.size() && rels
[relI
].r_offset
< off
+ size
)
1294 (id
== 0 ? cies
: fdes
).emplace_back(off
, this, size
, firstRel
);
1298 errorOrWarn("corrupted .eh_frame: " + Twine(msg
) + "\n>>> defined in " +
1299 getObjMsg(d
.data() - content().data()));
1302 // Return the offset in an output section for a given input offset.
1303 uint64_t EhInputSection::getParentOffset(uint64_t offset
) const {
1304 auto it
= partition_point(
1305 fdes
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1306 if (it
== fdes
.begin() || it
[-1].inputOff
+ it
[-1].size
<= offset
) {
1307 it
= partition_point(
1308 cies
, [=](EhSectionPiece p
) { return p
.inputOff
<= offset
; });
1309 if (it
== cies
.begin()) // invalid piece
1312 if (it
[-1].outputOff
== -1) // invalid piece
1313 return offset
- it
[-1].inputOff
;
1314 return it
[-1].outputOff
+ (offset
- it
[-1].inputOff
);
1317 static size_t findNull(StringRef s
, size_t entSize
) {
1318 for (unsigned i
= 0, n
= s
.size(); i
!= n
; i
+= entSize
) {
1319 const char *b
= s
.begin() + i
;
1320 if (std::all_of(b
, b
+ entSize
, [](char c
) { return c
== 0; }))
1323 llvm_unreachable("");
1326 // Split SHF_STRINGS section. Such section is a sequence of
1327 // null-terminated strings.
1328 void MergeInputSection::splitStrings(StringRef s
, size_t entSize
) {
1329 const bool live
= !(flags
& SHF_ALLOC
) || !config
->gcSections
;
1330 const char *p
= s
.data(), *end
= s
.data() + s
.size();
1331 if (!std::all_of(end
- entSize
, end
, [](char c
) { return c
== 0; }))
1332 fatal(toString(this) + ": string is not null terminated");
1334 // Optimize the common case.
1336 size_t size
= strlen(p
);
1337 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1342 size_t size
= findNull(StringRef(p
, end
- p
), entSize
);
1343 pieces
.emplace_back(p
- s
.begin(), xxh3_64bits(StringRef(p
, size
)), live
);
1344 p
+= size
+ entSize
;
1349 // Split non-SHF_STRINGS section. Such section is a sequence of
1350 // fixed size records.
1351 void MergeInputSection::splitNonStrings(ArrayRef
<uint8_t> data
,
1353 size_t size
= data
.size();
1354 assert((size
% entSize
) == 0);
1355 const bool live
= !(flags
& SHF_ALLOC
) || !config
->gcSections
;
1357 pieces
.resize_for_overwrite(size
/ entSize
);
1358 for (size_t i
= 0, j
= 0; i
!= size
; i
+= entSize
, j
++)
1359 pieces
[j
] = {i
, (uint32_t)xxh3_64bits(data
.slice(i
, entSize
)), live
};
1362 template <class ELFT
>
1363 MergeInputSection::MergeInputSection(ObjFile
<ELFT
> &f
,
1364 const typename
ELFT::Shdr
&header
,
1366 : InputSectionBase(f
, header
, name
, InputSectionBase::Merge
) {}
1368 MergeInputSection::MergeInputSection(uint64_t flags
, uint32_t type
,
1369 uint64_t entsize
, ArrayRef
<uint8_t> data
,
1371 : InputSectionBase(nullptr, flags
, type
, entsize
, /*Link*/ 0, /*Info*/ 0,
1372 /*Alignment*/ entsize
, data
, name
, SectionBase::Merge
) {}
1374 // This function is called after we obtain a complete list of input sections
1375 // that need to be linked. This is responsible to split section contents
1376 // into small chunks for further processing.
1378 // Note that this function is called from parallelForEach. This must be
1379 // thread-safe (i.e. no memory allocation from the pools).
1380 void MergeInputSection::splitIntoPieces() {
1381 assert(pieces
.empty());
1383 if (flags
& SHF_STRINGS
)
1384 splitStrings(toStringRef(contentMaybeDecompress()), entsize
);
1386 splitNonStrings(contentMaybeDecompress(), entsize
);
1389 SectionPiece
&MergeInputSection::getSectionPiece(uint64_t offset
) {
1390 if (content().size() <= offset
)
1391 fatal(toString(this) + ": offset is outside the section");
1392 return partition_point(
1393 pieces
, [=](SectionPiece p
) { return p
.inputOff
<= offset
; })[-1];
1396 // Return the offset in an output section for a given input offset.
1397 uint64_t MergeInputSection::getParentOffset(uint64_t offset
) const {
1398 const SectionPiece
&piece
= getSectionPiece(offset
);
1399 return piece
.outputOff
+ (offset
- piece
.inputOff
);
1402 template InputSection::InputSection(ObjFile
<ELF32LE
> &, const ELF32LE::Shdr
&,
1404 template InputSection::InputSection(ObjFile
<ELF32BE
> &, const ELF32BE::Shdr
&,
1406 template InputSection::InputSection(ObjFile
<ELF64LE
> &, const ELF64LE::Shdr
&,
1408 template InputSection::InputSection(ObjFile
<ELF64BE
> &, const ELF64BE::Shdr
&,
1411 template void InputSection::writeTo
<ELF32LE
>(uint8_t *);
1412 template void InputSection::writeTo
<ELF32BE
>(uint8_t *);
1413 template void InputSection::writeTo
<ELF64LE
>(uint8_t *);
1414 template void InputSection::writeTo
<ELF64BE
>(uint8_t *);
1416 template RelsOrRelas
<ELF32LE
> InputSectionBase::relsOrRelas
<ELF32LE
>() const;
1417 template RelsOrRelas
<ELF32BE
> InputSectionBase::relsOrRelas
<ELF32BE
>() const;
1418 template RelsOrRelas
<ELF64LE
> InputSectionBase::relsOrRelas
<ELF64LE
>() const;
1419 template RelsOrRelas
<ELF64BE
> InputSectionBase::relsOrRelas
<ELF64BE
>() const;
1421 template MergeInputSection::MergeInputSection(ObjFile
<ELF32LE
> &,
1422 const ELF32LE::Shdr
&, StringRef
);
1423 template MergeInputSection::MergeInputSection(ObjFile
<ELF32BE
> &,
1424 const ELF32BE::Shdr
&, StringRef
);
1425 template MergeInputSection::MergeInputSection(ObjFile
<ELF64LE
> &,
1426 const ELF64LE::Shdr
&, StringRef
);
1427 template MergeInputSection::MergeInputSection(ObjFile
<ELF64BE
> &,
1428 const ELF64BE::Shdr
&, StringRef
);
1430 template EhInputSection::EhInputSection(ObjFile
<ELF32LE
> &,
1431 const ELF32LE::Shdr
&, StringRef
);
1432 template EhInputSection::EhInputSection(ObjFile
<ELF32BE
> &,
1433 const ELF32BE::Shdr
&, StringRef
);
1434 template EhInputSection::EhInputSection(ObjFile
<ELF64LE
> &,
1435 const ELF64LE::Shdr
&, StringRef
);
1436 template EhInputSection::EhInputSection(ObjFile
<ELF64BE
> &,
1437 const ELF64BE::Shdr
&, StringRef
);
1439 template void EhInputSection::split
<ELF32LE
>();
1440 template void EhInputSection::split
<ELF32BE
>();
1441 template void EhInputSection::split
<ELF64LE
>();
1442 template void EhInputSection::split
<ELF64BE
>();