[NFC][opt] Improve help message (#97805)
[llvm-project.git] / lld / ELF / InputSection.h
blob58e5306fd6dcdfbe691d0cc747fa4102b37823ab
1 //===- InputSection.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLD_ELF_INPUT_SECTION_H
10 #define LLD_ELF_INPUT_SECTION_H
12 #include "Config.h"
13 #include "Relocations.h"
14 #include "lld/Common/CommonLinkerContext.h"
15 #include "lld/Common/LLVM.h"
16 #include "lld/Common/Memory.h"
17 #include "llvm/ADT/CachedHashString.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/TinyPtrVector.h"
21 #include "llvm/Object/ELF.h"
22 #include "llvm/Support/Compiler.h"
24 namespace lld {
25 namespace elf {
27 class InputFile;
28 class Symbol;
30 class Defined;
31 struct Partition;
32 class SyntheticSection;
33 template <class ELFT> class ObjFile;
34 class OutputSection;
36 LLVM_LIBRARY_VISIBILITY extern std::vector<Partition> partitions;
38 // Returned by InputSectionBase::relsOrRelas. At least one member is empty.
39 template <class ELFT> struct RelsOrRelas {
40 ArrayRef<typename ELFT::Rel> rels;
41 ArrayRef<typename ELFT::Rela> relas;
42 bool areRelocsRel() const { return rels.size(); }
45 // This is the base class of all sections that lld handles. Some are sections in
46 // input files, some are sections in the produced output file and some exist
47 // just as a convenience for implementing special ways of combining some
48 // sections.
49 class SectionBase {
50 public:
51 enum Kind { Regular, Synthetic, Spill, EHFrame, Merge, Output };
53 Kind kind() const { return (Kind)sectionKind; }
55 uint8_t sectionKind : 3;
57 // The next two bit fields are only used by InputSectionBase, but we
58 // put them here so the struct packs better.
60 uint8_t bss : 1;
62 // Set for sections that should not be folded by ICF.
63 uint8_t keepUnique : 1;
65 uint8_t partition = 1;
66 uint32_t type;
67 StringRef name;
69 // The 1-indexed partition that this section is assigned to by the garbage
70 // collector, or 0 if this section is dead. Normally there is only one
71 // partition, so this will either be 0 or 1.
72 elf::Partition &getPartition() const;
74 // These corresponds to the fields in Elf_Shdr.
75 uint64_t flags;
76 uint32_t addralign;
77 uint32_t entsize;
78 uint32_t link;
79 uint32_t info;
81 OutputSection *getOutputSection();
82 const OutputSection *getOutputSection() const {
83 return const_cast<SectionBase *>(this)->getOutputSection();
86 // Translate an offset in the input section to an offset in the output
87 // section.
88 uint64_t getOffset(uint64_t offset) const;
90 uint64_t getVA(uint64_t offset = 0) const;
92 bool isLive() const { return partition != 0; }
93 void markLive() { partition = 1; }
94 void markDead() { partition = 0; }
96 protected:
97 constexpr SectionBase(Kind sectionKind, StringRef name, uint64_t flags,
98 uint32_t entsize, uint32_t addralign, uint32_t type,
99 uint32_t info, uint32_t link)
100 : sectionKind(sectionKind), bss(false), keepUnique(false), type(type),
101 name(name), flags(flags), addralign(addralign), entsize(entsize),
102 link(link), info(info) {}
105 struct SymbolAnchor {
106 uint64_t offset;
107 Defined *d;
108 bool end; // true for the anchor of st_value+st_size
111 struct RelaxAux {
112 // This records symbol start and end offsets which will be adjusted according
113 // to the nearest relocDeltas element.
114 SmallVector<SymbolAnchor, 0> anchors;
115 // For relocations[i], the actual offset is
116 // r_offset - (i ? relocDeltas[i-1] : 0).
117 std::unique_ptr<uint32_t[]> relocDeltas;
118 // For relocations[i], the actual type is relocTypes[i].
119 std::unique_ptr<RelType[]> relocTypes;
120 SmallVector<uint32_t, 0> writes;
123 // This corresponds to a section of an input file.
124 class InputSectionBase : public SectionBase {
125 public:
126 template <class ELFT>
127 InputSectionBase(ObjFile<ELFT> &file, const typename ELFT::Shdr &header,
128 StringRef name, Kind sectionKind);
130 InputSectionBase(InputFile *file, uint64_t flags, uint32_t type,
131 uint64_t entsize, uint32_t link, uint32_t info,
132 uint32_t addralign, ArrayRef<uint8_t> data, StringRef name,
133 Kind sectionKind);
135 static bool classof(const SectionBase *s) { return s->kind() != Output; }
137 // The file which contains this section. Its dynamic type is usually
138 // ObjFile<ELFT>, but may be an InputFile of InternalKind (for a synthetic
139 // section).
140 InputFile *file;
142 // Input sections are part of an output section. Special sections
143 // like .eh_frame and merge sections are first combined into a
144 // synthetic section that is then added to an output section. In all
145 // cases this points one level up.
146 SectionBase *parent = nullptr;
148 // Section index of the relocation section if exists.
149 uint32_t relSecIdx = 0;
151 // Getter when the dynamic type is ObjFile<ELFT>.
152 template <class ELFT> ObjFile<ELFT> *getFile() const {
153 return cast<ObjFile<ELFT>>(file);
156 // Used by --optimize-bb-jumps and RISC-V linker relaxation temporarily to
157 // indicate the number of bytes which is not counted in the size. This should
158 // be reset to zero after uses.
159 uint32_t bytesDropped = 0;
161 mutable bool compressed = false;
163 // Whether the section needs to be padded with a NOP filler due to
164 // deleteFallThruJmpInsn.
165 bool nopFiller = false;
167 void drop_back(unsigned num) {
168 assert(bytesDropped + num < 256);
169 bytesDropped += num;
172 void push_back(uint64_t num) {
173 assert(bytesDropped >= num);
174 bytesDropped -= num;
177 mutable const uint8_t *content_;
178 uint64_t size;
180 void trim() {
181 if (bytesDropped) {
182 size -= bytesDropped;
183 bytesDropped = 0;
187 ArrayRef<uint8_t> content() const {
188 return ArrayRef<uint8_t>(content_, size);
190 ArrayRef<uint8_t> contentMaybeDecompress() const {
191 if (compressed)
192 decompress();
193 return content();
196 // The next member in the section group if this section is in a group. This is
197 // used by --gc-sections.
198 InputSectionBase *nextInSectionGroup = nullptr;
200 template <class ELFT> RelsOrRelas<ELFT> relsOrRelas() const;
202 // InputSections that are dependent on us (reverse dependency for GC)
203 llvm::TinyPtrVector<InputSection *> dependentSections;
205 // Returns the size of this section (even if this is a common or BSS.)
206 size_t getSize() const;
208 InputSection *getLinkOrderDep() const;
210 // Get a symbol that encloses this offset from within the section. If type is
211 // not zero, return a symbol with the specified type.
212 Defined *getEnclosingSymbol(uint64_t offset, uint8_t type = 0) const;
213 Defined *getEnclosingFunction(uint64_t offset) const {
214 return getEnclosingSymbol(offset, llvm::ELF::STT_FUNC);
217 // Returns a source location string. Used to construct an error message.
218 std::string getLocation(uint64_t offset) const;
219 std::string getSrcMsg(const Symbol &sym, uint64_t offset) const;
220 std::string getObjMsg(uint64_t offset) const;
222 // Each section knows how to relocate itself. These functions apply
223 // relocations, assuming that Buf points to this section's copy in
224 // the mmap'ed output buffer.
225 template <class ELFT> void relocate(uint8_t *buf, uint8_t *bufEnd);
226 static uint64_t getRelocTargetVA(const InputFile *File, RelType Type,
227 int64_t A, uint64_t P, const Symbol &Sym,
228 RelExpr Expr);
230 // The native ELF reloc data type is not very convenient to handle.
231 // So we convert ELF reloc records to our own records in Relocations.cpp.
232 // This vector contains such "cooked" relocations.
233 SmallVector<Relocation, 0> relocations;
235 void addReloc(const Relocation &r) { relocations.push_back(r); }
236 MutableArrayRef<Relocation> relocs() { return relocations; }
237 ArrayRef<Relocation> relocs() const { return relocations; }
239 union {
240 // These are modifiers to jump instructions that are necessary when basic
241 // block sections are enabled. Basic block sections creates opportunities
242 // to relax jump instructions at basic block boundaries after reordering the
243 // basic blocks.
244 JumpInstrMod *jumpInstrMod = nullptr;
246 // Auxiliary information for RISC-V and LoongArch linker relaxation.
247 // They do not use jumpInstrMod.
248 RelaxAux *relaxAux;
250 // The compressed content size when `compressed` is true.
251 size_t compressedSize;
254 // A function compiled with -fsplit-stack calling a function
255 // compiled without -fsplit-stack needs its prologue adjusted. Find
256 // such functions and adjust their prologues. This is very similar
257 // to relocation. See https://gcc.gnu.org/wiki/SplitStacks for more
258 // information.
259 template <typename ELFT>
260 void adjustSplitStackFunctionPrologues(uint8_t *buf, uint8_t *end);
263 template <typename T> llvm::ArrayRef<T> getDataAs() const {
264 size_t s = content().size();
265 assert(s % sizeof(T) == 0);
266 return llvm::ArrayRef<T>((const T *)content().data(), s / sizeof(T));
269 protected:
270 template <typename ELFT>
271 void parseCompressedHeader();
272 void decompress() const;
275 // SectionPiece represents a piece of splittable section contents.
276 // We allocate a lot of these and binary search on them. This means that they
277 // have to be as compact as possible, which is why we don't store the size (can
278 // be found by looking at the next one).
279 struct SectionPiece {
280 SectionPiece() = default;
281 SectionPiece(size_t off, uint32_t hash, bool live)
282 : inputOff(off), live(live), hash(hash >> 1) {}
284 uint32_t inputOff;
285 uint32_t live : 1;
286 uint32_t hash : 31;
287 uint64_t outputOff = 0;
290 static_assert(sizeof(SectionPiece) == 16, "SectionPiece is too big");
292 // This corresponds to a SHF_MERGE section of an input file.
293 class MergeInputSection : public InputSectionBase {
294 public:
295 template <class ELFT>
296 MergeInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
297 StringRef name);
298 MergeInputSection(uint64_t flags, uint32_t type, uint64_t entsize,
299 ArrayRef<uint8_t> data, StringRef name);
301 static bool classof(const SectionBase *s) { return s->kind() == Merge; }
302 void splitIntoPieces();
304 // Translate an offset in the input section to an offset in the parent
305 // MergeSyntheticSection.
306 uint64_t getParentOffset(uint64_t offset) const;
308 // Splittable sections are handled as a sequence of data
309 // rather than a single large blob of data.
310 SmallVector<SectionPiece, 0> pieces;
312 // Returns I'th piece's data. This function is very hot when
313 // string merging is enabled, so we want to inline.
314 LLVM_ATTRIBUTE_ALWAYS_INLINE
315 llvm::CachedHashStringRef getData(size_t i) const {
316 size_t begin = pieces[i].inputOff;
317 size_t end =
318 (pieces.size() - 1 == i) ? content().size() : pieces[i + 1].inputOff;
319 return {toStringRef(content().slice(begin, end - begin)), pieces[i].hash};
322 // Returns the SectionPiece at a given input section offset.
323 SectionPiece &getSectionPiece(uint64_t offset);
324 const SectionPiece &getSectionPiece(uint64_t offset) const {
325 return const_cast<MergeInputSection *>(this)->getSectionPiece(offset);
328 SyntheticSection *getParent() const {
329 return cast_or_null<SyntheticSection>(parent);
332 private:
333 void splitStrings(StringRef s, size_t size);
334 void splitNonStrings(ArrayRef<uint8_t> a, size_t size);
337 struct EhSectionPiece {
338 EhSectionPiece(size_t off, InputSectionBase *sec, uint32_t size,
339 unsigned firstRelocation)
340 : inputOff(off), sec(sec), size(size), firstRelocation(firstRelocation) {}
342 ArrayRef<uint8_t> data() const {
343 return {sec->content().data() + this->inputOff, size};
346 size_t inputOff;
347 ssize_t outputOff = -1;
348 InputSectionBase *sec;
349 uint32_t size;
350 unsigned firstRelocation;
353 // This corresponds to a .eh_frame section of an input file.
354 class EhInputSection : public InputSectionBase {
355 public:
356 template <class ELFT>
357 EhInputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
358 StringRef name);
359 static bool classof(const SectionBase *s) { return s->kind() == EHFrame; }
360 template <class ELFT> void split();
361 template <class ELFT, class RelTy> void split(ArrayRef<RelTy> rels);
363 // Splittable sections are handled as a sequence of data
364 // rather than a single large blob of data.
365 SmallVector<EhSectionPiece, 0> cies, fdes;
367 SyntheticSection *getParent() const;
368 uint64_t getParentOffset(uint64_t offset) const;
371 // This is a section that is added directly to an output section
372 // instead of needing special combination via a synthetic section. This
373 // includes all input sections with the exceptions of SHF_MERGE and
374 // .eh_frame. It also includes the synthetic sections themselves.
375 class InputSection : public InputSectionBase {
376 public:
377 InputSection(InputFile *f, uint64_t flags, uint32_t type, uint32_t addralign,
378 ArrayRef<uint8_t> data, StringRef name, Kind k = Regular);
379 template <class ELFT>
380 InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
381 StringRef name);
383 static bool classof(const SectionBase *s) {
384 return s->kind() == SectionBase::Regular ||
385 s->kind() == SectionBase::Synthetic ||
386 s->kind() == SectionBase::Spill;
389 // Write this section to a mmap'ed file, assuming Buf is pointing to
390 // beginning of the output section.
391 template <class ELFT> void writeTo(uint8_t *buf);
393 OutputSection *getParent() const {
394 return reinterpret_cast<OutputSection *>(parent);
397 // This variable has two usages. Initially, it represents an index in the
398 // OutputSection's InputSection list, and is used when ordering SHF_LINK_ORDER
399 // sections. After assignAddresses is called, it represents the offset from
400 // the beginning of the output section this section was assigned to.
401 uint64_t outSecOff = 0;
403 InputSectionBase *getRelocatedSection() const;
405 template <class ELFT, class RelTy>
406 void relocateNonAlloc(uint8_t *buf, llvm::ArrayRef<RelTy> rels);
408 // Points to the canonical section. If ICF folds two sections, repl pointer of
409 // one section points to the other.
410 InputSection *repl = this;
412 // Used by ICF.
413 uint32_t eqClass[2] = {0, 0};
415 // Called by ICF to merge two input sections.
416 void replace(InputSection *other);
418 static InputSection discarded;
420 private:
421 template <class ELFT, class RelTy> void copyRelocations(uint8_t *buf);
423 template <class ELFT, class RelTy, class RelIt>
424 void copyRelocations(uint8_t *buf, llvm::iterator_range<RelIt> rels);
426 template <class ELFT> void copyShtGroup(uint8_t *buf);
429 // A marker for a potential spill location for another input section. This
430 // broadly acts as if it were the original section until address assignment.
431 // Then it is either replaced with the real input section or removed.
432 class PotentialSpillSection : public InputSection {
433 public:
434 // The containing input section description; used to quickly replace this stub
435 // with the actual section.
436 InputSectionDescription *isd;
438 // Next potential spill location for the same source input section.
439 PotentialSpillSection *next = nullptr;
441 PotentialSpillSection(const InputSectionBase &source,
442 InputSectionDescription &isd);
444 static bool classof(const SectionBase *sec) {
445 return sec->kind() == InputSectionBase::Spill;
449 static_assert(sizeof(InputSection) <= 160, "InputSection is too big");
451 class SyntheticSection : public InputSection {
452 public:
453 SyntheticSection(uint64_t flags, uint32_t type, uint32_t addralign,
454 StringRef name)
455 : InputSection(ctx.internalFile, flags, type, addralign, {}, name,
456 InputSectionBase::Synthetic) {}
458 virtual ~SyntheticSection() = default;
459 virtual size_t getSize() const = 0;
460 virtual bool updateAllocSize() { return false; }
461 // If the section has the SHF_ALLOC flag and the size may be changed if
462 // thunks are added, update the section size.
463 virtual bool isNeeded() const { return true; }
464 virtual void finalizeContents() {}
465 virtual void writeTo(uint8_t *buf) = 0;
467 static bool classof(const SectionBase *sec) {
468 return sec->kind() == InputSectionBase::Synthetic;
472 inline bool isStaticRelSecType(uint32_t type) {
473 return type == llvm::ELF::SHT_RELA || type == llvm::ELF::SHT_REL;
476 inline bool isDebugSection(const InputSectionBase &sec) {
477 return (sec.flags & llvm::ELF::SHF_ALLOC) == 0 &&
478 sec.name.starts_with(".debug");
481 // The set of TOC entries (.toc + addend) for which we should not apply
482 // toc-indirect to toc-relative relaxation. const Symbol * refers to the
483 // STT_SECTION symbol associated to the .toc input section.
484 extern llvm::DenseSet<std::pair<const Symbol *, uint64_t>> ppc64noTocRelax;
486 } // namespace elf
488 std::string toString(const elf::InputSectionBase *);
489 } // namespace lld
491 #endif