[JITLink] Add support of R_X86_64_32S relocation
[llvm-project.git] / llvm / lib / ExecutionEngine / ExecutionEngine.cpp
blobc8bbf0bcdfda7b206816e2922d1958eba966f44e
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the common interface used by the various execution engine
10 // subclasses.
12 // FIXME: This file needs to be updated to support scalable vectors
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ExecutionEngine/GenericValue.h"
21 #include "llvm/ExecutionEngine/JITEventListener.h"
22 #include "llvm/ExecutionEngine/ObjectCache.h"
23 #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/Object/Archive.h"
32 #include "llvm/Object/ObjectFile.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/DynamicLibrary.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/Host.h"
37 #include "llvm/Support/TargetRegistry.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Target/TargetMachine.h"
40 #include <cmath>
41 #include <cstring>
42 #include <mutex>
43 using namespace llvm;
45 #define DEBUG_TYPE "jit"
47 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
48 STATISTIC(NumGlobals , "Number of global vars initialized");
50 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
51 std::unique_ptr<Module> M, std::string *ErrorStr,
52 std::shared_ptr<MCJITMemoryManager> MemMgr,
53 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
54 std::unique_ptr<TargetMachine> TM) = nullptr;
56 ExecutionEngine *(*ExecutionEngine::InterpCtor)(std::unique_ptr<Module> M,
57 std::string *ErrorStr) =nullptr;
59 void JITEventListener::anchor() {}
61 void ObjectCache::anchor() {}
63 void ExecutionEngine::Init(std::unique_ptr<Module> M) {
64 CompilingLazily = false;
65 GVCompilationDisabled = false;
66 SymbolSearchingDisabled = false;
68 // IR module verification is enabled by default in debug builds, and disabled
69 // by default in release builds.
70 #ifndef NDEBUG
71 VerifyModules = true;
72 #else
73 VerifyModules = false;
74 #endif
76 assert(M && "Module is null?");
77 Modules.push_back(std::move(M));
80 ExecutionEngine::ExecutionEngine(std::unique_ptr<Module> M)
81 : DL(M->getDataLayout()), LazyFunctionCreator(nullptr) {
82 Init(std::move(M));
85 ExecutionEngine::ExecutionEngine(DataLayout DL, std::unique_ptr<Module> M)
86 : DL(std::move(DL)), LazyFunctionCreator(nullptr) {
87 Init(std::move(M));
90 ExecutionEngine::~ExecutionEngine() {
91 clearAllGlobalMappings();
94 namespace {
95 /// Helper class which uses a value handler to automatically deletes the
96 /// memory block when the GlobalVariable is destroyed.
97 class GVMemoryBlock final : public CallbackVH {
98 GVMemoryBlock(const GlobalVariable *GV)
99 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
101 public:
102 /// Returns the address the GlobalVariable should be written into. The
103 /// GVMemoryBlock object prefixes that.
104 static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
105 Type *ElTy = GV->getValueType();
106 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
107 void *RawMemory = ::operator new(
108 alignTo(sizeof(GVMemoryBlock), TD.getPreferredAlign(GV)) + GVSize);
109 new(RawMemory) GVMemoryBlock(GV);
110 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
113 void deleted() override {
114 // We allocated with operator new and with some extra memory hanging off the
115 // end, so don't just delete this. I'm not sure if this is actually
116 // required.
117 this->~GVMemoryBlock();
118 ::operator delete(this);
121 } // anonymous namespace
123 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
124 return GVMemoryBlock::Create(GV, getDataLayout());
127 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) {
128 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
131 void
132 ExecutionEngine::addObjectFile(object::OwningBinary<object::ObjectFile> O) {
133 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile.");
136 void ExecutionEngine::addArchive(object::OwningBinary<object::Archive> A) {
137 llvm_unreachable("ExecutionEngine subclass doesn't implement addArchive.");
140 bool ExecutionEngine::removeModule(Module *M) {
141 for (auto I = Modules.begin(), E = Modules.end(); I != E; ++I) {
142 Module *Found = I->get();
143 if (Found == M) {
144 I->release();
145 Modules.erase(I);
146 clearGlobalMappingsFromModule(M);
147 return true;
150 return false;
153 Function *ExecutionEngine::FindFunctionNamed(StringRef FnName) {
154 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
155 Function *F = Modules[i]->getFunction(FnName);
156 if (F && !F->isDeclaration())
157 return F;
159 return nullptr;
162 GlobalVariable *ExecutionEngine::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
163 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
164 GlobalVariable *GV = Modules[i]->getGlobalVariable(Name,AllowInternal);
165 if (GV && !GV->isDeclaration())
166 return GV;
168 return nullptr;
171 uint64_t ExecutionEngineState::RemoveMapping(StringRef Name) {
172 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(Name);
173 uint64_t OldVal;
175 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
176 // GlobalAddressMap.
177 if (I == GlobalAddressMap.end())
178 OldVal = 0;
179 else {
180 GlobalAddressReverseMap.erase(I->second);
181 OldVal = I->second;
182 GlobalAddressMap.erase(I);
185 return OldVal;
188 std::string ExecutionEngine::getMangledName(const GlobalValue *GV) {
189 assert(GV->hasName() && "Global must have name.");
191 std::lock_guard<sys::Mutex> locked(lock);
192 SmallString<128> FullName;
194 const DataLayout &DL =
195 GV->getParent()->getDataLayout().isDefault()
196 ? getDataLayout()
197 : GV->getParent()->getDataLayout();
199 Mangler::getNameWithPrefix(FullName, GV->getName(), DL);
200 return std::string(FullName.str());
203 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
204 std::lock_guard<sys::Mutex> locked(lock);
205 addGlobalMapping(getMangledName(GV), (uint64_t) Addr);
208 void ExecutionEngine::addGlobalMapping(StringRef Name, uint64_t Addr) {
209 std::lock_guard<sys::Mutex> locked(lock);
211 assert(!Name.empty() && "Empty GlobalMapping symbol name!");
213 LLVM_DEBUG(dbgs() << "JIT: Map \'" << Name << "\' to [" << Addr << "]\n";);
214 uint64_t &CurVal = EEState.getGlobalAddressMap()[Name];
215 assert((!CurVal || !Addr) && "GlobalMapping already established!");
216 CurVal = Addr;
218 // If we are using the reverse mapping, add it too.
219 if (!EEState.getGlobalAddressReverseMap().empty()) {
220 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
221 assert((!V.empty() || !Name.empty()) &&
222 "GlobalMapping already established!");
223 V = std::string(Name);
227 void ExecutionEngine::clearAllGlobalMappings() {
228 std::lock_guard<sys::Mutex> locked(lock);
230 EEState.getGlobalAddressMap().clear();
231 EEState.getGlobalAddressReverseMap().clear();
234 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
235 std::lock_guard<sys::Mutex> locked(lock);
237 for (GlobalObject &GO : M->global_objects())
238 EEState.RemoveMapping(getMangledName(&GO));
241 uint64_t ExecutionEngine::updateGlobalMapping(const GlobalValue *GV,
242 void *Addr) {
243 std::lock_guard<sys::Mutex> locked(lock);
244 return updateGlobalMapping(getMangledName(GV), (uint64_t) Addr);
247 uint64_t ExecutionEngine::updateGlobalMapping(StringRef Name, uint64_t Addr) {
248 std::lock_guard<sys::Mutex> locked(lock);
250 ExecutionEngineState::GlobalAddressMapTy &Map =
251 EEState.getGlobalAddressMap();
253 // Deleting from the mapping?
254 if (!Addr)
255 return EEState.RemoveMapping(Name);
257 uint64_t &CurVal = Map[Name];
258 uint64_t OldVal = CurVal;
260 if (CurVal && !EEState.getGlobalAddressReverseMap().empty())
261 EEState.getGlobalAddressReverseMap().erase(CurVal);
262 CurVal = Addr;
264 // If we are using the reverse mapping, add it too.
265 if (!EEState.getGlobalAddressReverseMap().empty()) {
266 std::string &V = EEState.getGlobalAddressReverseMap()[CurVal];
267 assert((!V.empty() || !Name.empty()) &&
268 "GlobalMapping already established!");
269 V = std::string(Name);
271 return OldVal;
274 uint64_t ExecutionEngine::getAddressToGlobalIfAvailable(StringRef S) {
275 std::lock_guard<sys::Mutex> locked(lock);
276 uint64_t Address = 0;
277 ExecutionEngineState::GlobalAddressMapTy::iterator I =
278 EEState.getGlobalAddressMap().find(S);
279 if (I != EEState.getGlobalAddressMap().end())
280 Address = I->second;
281 return Address;
285 void *ExecutionEngine::getPointerToGlobalIfAvailable(StringRef S) {
286 std::lock_guard<sys::Mutex> locked(lock);
287 if (void* Address = (void *) getAddressToGlobalIfAvailable(S))
288 return Address;
289 return nullptr;
292 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
293 std::lock_guard<sys::Mutex> locked(lock);
294 return getPointerToGlobalIfAvailable(getMangledName(GV));
297 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
298 std::lock_guard<sys::Mutex> locked(lock);
300 // If we haven't computed the reverse mapping yet, do so first.
301 if (EEState.getGlobalAddressReverseMap().empty()) {
302 for (ExecutionEngineState::GlobalAddressMapTy::iterator
303 I = EEState.getGlobalAddressMap().begin(),
304 E = EEState.getGlobalAddressMap().end(); I != E; ++I) {
305 StringRef Name = I->first();
306 uint64_t Addr = I->second;
307 EEState.getGlobalAddressReverseMap().insert(
308 std::make_pair(Addr, std::string(Name)));
312 std::map<uint64_t, std::string>::iterator I =
313 EEState.getGlobalAddressReverseMap().find((uint64_t) Addr);
315 if (I != EEState.getGlobalAddressReverseMap().end()) {
316 StringRef Name = I->second;
317 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
318 if (GlobalValue *GV = Modules[i]->getNamedValue(Name))
319 return GV;
321 return nullptr;
324 namespace {
325 class ArgvArray {
326 std::unique_ptr<char[]> Array;
327 std::vector<std::unique_ptr<char[]>> Values;
328 public:
329 /// Turn a vector of strings into a nice argv style array of pointers to null
330 /// terminated strings.
331 void *reset(LLVMContext &C, ExecutionEngine *EE,
332 const std::vector<std::string> &InputArgv);
334 } // anonymous namespace
335 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
336 const std::vector<std::string> &InputArgv) {
337 Values.clear(); // Free the old contents.
338 Values.reserve(InputArgv.size());
339 unsigned PtrSize = EE->getDataLayout().getPointerSize();
340 Array = std::make_unique<char[]>((InputArgv.size()+1)*PtrSize);
342 LLVM_DEBUG(dbgs() << "JIT: ARGV = " << (void *)Array.get() << "\n");
343 Type *SBytePtr = Type::getInt8PtrTy(C);
345 for (unsigned i = 0; i != InputArgv.size(); ++i) {
346 unsigned Size = InputArgv[i].size()+1;
347 auto Dest = std::make_unique<char[]>(Size);
348 LLVM_DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void *)Dest.get()
349 << "\n");
351 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest.get());
352 Dest[Size-1] = 0;
354 // Endian safe: Array[i] = (PointerTy)Dest;
355 EE->StoreValueToMemory(PTOGV(Dest.get()),
356 (GenericValue*)(&Array[i*PtrSize]), SBytePtr);
357 Values.push_back(std::move(Dest));
360 // Null terminate it
361 EE->StoreValueToMemory(PTOGV(nullptr),
362 (GenericValue*)(&Array[InputArgv.size()*PtrSize]),
363 SBytePtr);
364 return Array.get();
367 void ExecutionEngine::runStaticConstructorsDestructors(Module &module,
368 bool isDtors) {
369 StringRef Name(isDtors ? "llvm.global_dtors" : "llvm.global_ctors");
370 GlobalVariable *GV = module.getNamedGlobal(Name);
372 // If this global has internal linkage, or if it has a use, then it must be
373 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
374 // this is the case, don't execute any of the global ctors, __main will do
375 // it.
376 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
378 // Should be an array of '{ i32, void ()* }' structs. The first value is
379 // the init priority, which we ignore.
380 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
381 if (!InitList)
382 return;
383 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
384 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
385 if (!CS) continue;
387 Constant *FP = CS->getOperand(1);
388 if (FP->isNullValue())
389 continue; // Found a sentinal value, ignore.
391 // Strip off constant expression casts.
392 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
393 if (CE->isCast())
394 FP = CE->getOperand(0);
396 // Execute the ctor/dtor function!
397 if (Function *F = dyn_cast<Function>(FP))
398 runFunction(F, None);
400 // FIXME: It is marginally lame that we just do nothing here if we see an
401 // entry we don't recognize. It might not be unreasonable for the verifier
402 // to not even allow this and just assert here.
406 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
407 // Execute global ctors/dtors for each module in the program.
408 for (std::unique_ptr<Module> &M : Modules)
409 runStaticConstructorsDestructors(*M, isDtors);
412 #ifndef NDEBUG
413 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
414 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
415 unsigned PtrSize = EE->getDataLayout().getPointerSize();
416 for (unsigned i = 0; i < PtrSize; ++i)
417 if (*(i + (uint8_t*)Loc))
418 return false;
419 return true;
421 #endif
423 int ExecutionEngine::runFunctionAsMain(Function *Fn,
424 const std::vector<std::string> &argv,
425 const char * const * envp) {
426 std::vector<GenericValue> GVArgs;
427 GenericValue GVArgc;
428 GVArgc.IntVal = APInt(32, argv.size());
430 // Check main() type
431 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
432 FunctionType *FTy = Fn->getFunctionType();
433 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
435 // Check the argument types.
436 if (NumArgs > 3)
437 report_fatal_error("Invalid number of arguments of main() supplied");
438 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
439 report_fatal_error("Invalid type for third argument of main() supplied");
440 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
441 report_fatal_error("Invalid type for second argument of main() supplied");
442 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
443 report_fatal_error("Invalid type for first argument of main() supplied");
444 if (!FTy->getReturnType()->isIntegerTy() &&
445 !FTy->getReturnType()->isVoidTy())
446 report_fatal_error("Invalid return type of main() supplied");
448 ArgvArray CArgv;
449 ArgvArray CEnv;
450 if (NumArgs) {
451 GVArgs.push_back(GVArgc); // Arg #0 = argc.
452 if (NumArgs > 1) {
453 // Arg #1 = argv.
454 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
455 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
456 "argv[0] was null after CreateArgv");
457 if (NumArgs > 2) {
458 std::vector<std::string> EnvVars;
459 for (unsigned i = 0; envp[i]; ++i)
460 EnvVars.emplace_back(envp[i]);
461 // Arg #2 = envp.
462 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
467 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
470 EngineBuilder::EngineBuilder() : EngineBuilder(nullptr) {}
472 EngineBuilder::EngineBuilder(std::unique_ptr<Module> M)
473 : M(std::move(M)), WhichEngine(EngineKind::Either), ErrorStr(nullptr),
474 OptLevel(CodeGenOpt::Default), MemMgr(nullptr), Resolver(nullptr) {
475 // IR module verification is enabled by default in debug builds, and disabled
476 // by default in release builds.
477 #ifndef NDEBUG
478 VerifyModules = true;
479 #else
480 VerifyModules = false;
481 #endif
484 EngineBuilder::~EngineBuilder() = default;
486 EngineBuilder &EngineBuilder::setMCJITMemoryManager(
487 std::unique_ptr<RTDyldMemoryManager> mcjmm) {
488 auto SharedMM = std::shared_ptr<RTDyldMemoryManager>(std::move(mcjmm));
489 MemMgr = SharedMM;
490 Resolver = SharedMM;
491 return *this;
494 EngineBuilder&
495 EngineBuilder::setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM) {
496 MemMgr = std::shared_ptr<MCJITMemoryManager>(std::move(MM));
497 return *this;
500 EngineBuilder &
501 EngineBuilder::setSymbolResolver(std::unique_ptr<LegacyJITSymbolResolver> SR) {
502 Resolver = std::shared_ptr<LegacyJITSymbolResolver>(std::move(SR));
503 return *this;
506 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
507 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership.
509 // Make sure we can resolve symbols in the program as well. The zero arg
510 // to the function tells DynamicLibrary to load the program, not a library.
511 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr))
512 return nullptr;
514 // If the user specified a memory manager but didn't specify which engine to
515 // create, we assume they only want the JIT, and we fail if they only want
516 // the interpreter.
517 if (MemMgr) {
518 if (WhichEngine & EngineKind::JIT)
519 WhichEngine = EngineKind::JIT;
520 else {
521 if (ErrorStr)
522 *ErrorStr = "Cannot create an interpreter with a memory manager.";
523 return nullptr;
527 // Unless the interpreter was explicitly selected or the JIT is not linked,
528 // try making a JIT.
529 if ((WhichEngine & EngineKind::JIT) && TheTM) {
530 if (!TM->getTarget().hasJIT()) {
531 errs() << "WARNING: This target JIT is not designed for the host"
532 << " you are running. If bad things happen, please choose"
533 << " a different -march switch.\n";
536 ExecutionEngine *EE = nullptr;
537 if (ExecutionEngine::MCJITCtor)
538 EE = ExecutionEngine::MCJITCtor(std::move(M), ErrorStr, std::move(MemMgr),
539 std::move(Resolver), std::move(TheTM));
541 if (EE) {
542 EE->setVerifyModules(VerifyModules);
543 return EE;
547 // If we can't make a JIT and we didn't request one specifically, try making
548 // an interpreter instead.
549 if (WhichEngine & EngineKind::Interpreter) {
550 if (ExecutionEngine::InterpCtor)
551 return ExecutionEngine::InterpCtor(std::move(M), ErrorStr);
552 if (ErrorStr)
553 *ErrorStr = "Interpreter has not been linked in.";
554 return nullptr;
557 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::MCJITCtor) {
558 if (ErrorStr)
559 *ErrorStr = "JIT has not been linked in.";
562 return nullptr;
565 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
566 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
567 return getPointerToFunction(F);
569 std::lock_guard<sys::Mutex> locked(lock);
570 if (void* P = getPointerToGlobalIfAvailable(GV))
571 return P;
573 // Global variable might have been added since interpreter started.
574 if (GlobalVariable *GVar =
575 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
576 emitGlobalVariable(GVar);
577 else
578 llvm_unreachable("Global hasn't had an address allocated yet!");
580 return getPointerToGlobalIfAvailable(GV);
583 /// Converts a Constant* into a GenericValue, including handling of
584 /// ConstantExpr values.
585 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
586 // If its undefined, return the garbage.
587 if (isa<UndefValue>(C)) {
588 GenericValue Result;
589 switch (C->getType()->getTypeID()) {
590 default:
591 break;
592 case Type::IntegerTyID:
593 case Type::X86_FP80TyID:
594 case Type::FP128TyID:
595 case Type::PPC_FP128TyID:
596 // Although the value is undefined, we still have to construct an APInt
597 // with the correct bit width.
598 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
599 break;
600 case Type::StructTyID: {
601 // if the whole struct is 'undef' just reserve memory for the value.
602 if(StructType *STy = dyn_cast<StructType>(C->getType())) {
603 unsigned int elemNum = STy->getNumElements();
604 Result.AggregateVal.resize(elemNum);
605 for (unsigned int i = 0; i < elemNum; ++i) {
606 Type *ElemTy = STy->getElementType(i);
607 if (ElemTy->isIntegerTy())
608 Result.AggregateVal[i].IntVal =
609 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
610 else if (ElemTy->isAggregateType()) {
611 const Constant *ElemUndef = UndefValue::get(ElemTy);
612 Result.AggregateVal[i] = getConstantValue(ElemUndef);
617 break;
618 case Type::ScalableVectorTyID:
619 report_fatal_error(
620 "Scalable vector support not yet implemented in ExecutionEngine");
621 case Type::FixedVectorTyID:
622 // if the whole vector is 'undef' just reserve memory for the value.
623 auto *VTy = cast<FixedVectorType>(C->getType());
624 Type *ElemTy = VTy->getElementType();
625 unsigned int elemNum = VTy->getNumElements();
626 Result.AggregateVal.resize(elemNum);
627 if (ElemTy->isIntegerTy())
628 for (unsigned int i = 0; i < elemNum; ++i)
629 Result.AggregateVal[i].IntVal =
630 APInt(ElemTy->getPrimitiveSizeInBits(), 0);
631 break;
633 return Result;
636 // Otherwise, if the value is a ConstantExpr...
637 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
638 Constant *Op0 = CE->getOperand(0);
639 switch (CE->getOpcode()) {
640 case Instruction::GetElementPtr: {
641 // Compute the index
642 GenericValue Result = getConstantValue(Op0);
643 APInt Offset(DL.getPointerSizeInBits(), 0);
644 cast<GEPOperator>(CE)->accumulateConstantOffset(DL, Offset);
646 char* tmp = (char*) Result.PointerVal;
647 Result = PTOGV(tmp + Offset.getSExtValue());
648 return Result;
650 case Instruction::Trunc: {
651 GenericValue GV = getConstantValue(Op0);
652 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
653 GV.IntVal = GV.IntVal.trunc(BitWidth);
654 return GV;
656 case Instruction::ZExt: {
657 GenericValue GV = getConstantValue(Op0);
658 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
659 GV.IntVal = GV.IntVal.zext(BitWidth);
660 return GV;
662 case Instruction::SExt: {
663 GenericValue GV = getConstantValue(Op0);
664 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
665 GV.IntVal = GV.IntVal.sext(BitWidth);
666 return GV;
668 case Instruction::FPTrunc: {
669 // FIXME long double
670 GenericValue GV = getConstantValue(Op0);
671 GV.FloatVal = float(GV.DoubleVal);
672 return GV;
674 case Instruction::FPExt:{
675 // FIXME long double
676 GenericValue GV = getConstantValue(Op0);
677 GV.DoubleVal = double(GV.FloatVal);
678 return GV;
680 case Instruction::UIToFP: {
681 GenericValue GV = getConstantValue(Op0);
682 if (CE->getType()->isFloatTy())
683 GV.FloatVal = float(GV.IntVal.roundToDouble());
684 else if (CE->getType()->isDoubleTy())
685 GV.DoubleVal = GV.IntVal.roundToDouble();
686 else if (CE->getType()->isX86_FP80Ty()) {
687 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
688 (void)apf.convertFromAPInt(GV.IntVal,
689 false,
690 APFloat::rmNearestTiesToEven);
691 GV.IntVal = apf.bitcastToAPInt();
693 return GV;
695 case Instruction::SIToFP: {
696 GenericValue GV = getConstantValue(Op0);
697 if (CE->getType()->isFloatTy())
698 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
699 else if (CE->getType()->isDoubleTy())
700 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
701 else if (CE->getType()->isX86_FP80Ty()) {
702 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended());
703 (void)apf.convertFromAPInt(GV.IntVal,
704 true,
705 APFloat::rmNearestTiesToEven);
706 GV.IntVal = apf.bitcastToAPInt();
708 return GV;
710 case Instruction::FPToUI: // double->APInt conversion handles sign
711 case Instruction::FPToSI: {
712 GenericValue GV = getConstantValue(Op0);
713 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
714 if (Op0->getType()->isFloatTy())
715 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
716 else if (Op0->getType()->isDoubleTy())
717 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
718 else if (Op0->getType()->isX86_FP80Ty()) {
719 APFloat apf = APFloat(APFloat::x87DoubleExtended(), GV.IntVal);
720 uint64_t v;
721 bool ignored;
722 (void)apf.convertToInteger(makeMutableArrayRef(v), BitWidth,
723 CE->getOpcode()==Instruction::FPToSI,
724 APFloat::rmTowardZero, &ignored);
725 GV.IntVal = v; // endian?
727 return GV;
729 case Instruction::PtrToInt: {
730 GenericValue GV = getConstantValue(Op0);
731 uint32_t PtrWidth = DL.getTypeSizeInBits(Op0->getType());
732 assert(PtrWidth <= 64 && "Bad pointer width");
733 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
734 uint32_t IntWidth = DL.getTypeSizeInBits(CE->getType());
735 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
736 return GV;
738 case Instruction::IntToPtr: {
739 GenericValue GV = getConstantValue(Op0);
740 uint32_t PtrWidth = DL.getTypeSizeInBits(CE->getType());
741 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
742 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
743 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
744 return GV;
746 case Instruction::BitCast: {
747 GenericValue GV = getConstantValue(Op0);
748 Type* DestTy = CE->getType();
749 switch (Op0->getType()->getTypeID()) {
750 default: llvm_unreachable("Invalid bitcast operand");
751 case Type::IntegerTyID:
752 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
753 if (DestTy->isFloatTy())
754 GV.FloatVal = GV.IntVal.bitsToFloat();
755 else if (DestTy->isDoubleTy())
756 GV.DoubleVal = GV.IntVal.bitsToDouble();
757 break;
758 case Type::FloatTyID:
759 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
760 GV.IntVal = APInt::floatToBits(GV.FloatVal);
761 break;
762 case Type::DoubleTyID:
763 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
764 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
765 break;
766 case Type::PointerTyID:
767 assert(DestTy->isPointerTy() && "Invalid bitcast");
768 break; // getConstantValue(Op0) above already converted it
770 return GV;
772 case Instruction::Add:
773 case Instruction::FAdd:
774 case Instruction::Sub:
775 case Instruction::FSub:
776 case Instruction::Mul:
777 case Instruction::FMul:
778 case Instruction::UDiv:
779 case Instruction::SDiv:
780 case Instruction::URem:
781 case Instruction::SRem:
782 case Instruction::And:
783 case Instruction::Or:
784 case Instruction::Xor: {
785 GenericValue LHS = getConstantValue(Op0);
786 GenericValue RHS = getConstantValue(CE->getOperand(1));
787 GenericValue GV;
788 switch (CE->getOperand(0)->getType()->getTypeID()) {
789 default: llvm_unreachable("Bad add type!");
790 case Type::IntegerTyID:
791 switch (CE->getOpcode()) {
792 default: llvm_unreachable("Invalid integer opcode");
793 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
794 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
795 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
796 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
797 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
798 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
799 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
800 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
801 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
802 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
804 break;
805 case Type::FloatTyID:
806 switch (CE->getOpcode()) {
807 default: llvm_unreachable("Invalid float opcode");
808 case Instruction::FAdd:
809 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
810 case Instruction::FSub:
811 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
812 case Instruction::FMul:
813 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
814 case Instruction::FDiv:
815 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
816 case Instruction::FRem:
817 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
819 break;
820 case Type::DoubleTyID:
821 switch (CE->getOpcode()) {
822 default: llvm_unreachable("Invalid double opcode");
823 case Instruction::FAdd:
824 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
825 case Instruction::FSub:
826 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
827 case Instruction::FMul:
828 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
829 case Instruction::FDiv:
830 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
831 case Instruction::FRem:
832 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
834 break;
835 case Type::X86_FP80TyID:
836 case Type::PPC_FP128TyID:
837 case Type::FP128TyID: {
838 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics();
839 APFloat apfLHS = APFloat(Sem, LHS.IntVal);
840 switch (CE->getOpcode()) {
841 default: llvm_unreachable("Invalid long double opcode");
842 case Instruction::FAdd:
843 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven);
844 GV.IntVal = apfLHS.bitcastToAPInt();
845 break;
846 case Instruction::FSub:
847 apfLHS.subtract(APFloat(Sem, RHS.IntVal),
848 APFloat::rmNearestTiesToEven);
849 GV.IntVal = apfLHS.bitcastToAPInt();
850 break;
851 case Instruction::FMul:
852 apfLHS.multiply(APFloat(Sem, RHS.IntVal),
853 APFloat::rmNearestTiesToEven);
854 GV.IntVal = apfLHS.bitcastToAPInt();
855 break;
856 case Instruction::FDiv:
857 apfLHS.divide(APFloat(Sem, RHS.IntVal),
858 APFloat::rmNearestTiesToEven);
859 GV.IntVal = apfLHS.bitcastToAPInt();
860 break;
861 case Instruction::FRem:
862 apfLHS.mod(APFloat(Sem, RHS.IntVal));
863 GV.IntVal = apfLHS.bitcastToAPInt();
864 break;
867 break;
869 return GV;
871 default:
872 break;
875 SmallString<256> Msg;
876 raw_svector_ostream OS(Msg);
877 OS << "ConstantExpr not handled: " << *CE;
878 report_fatal_error(OS.str());
881 // Otherwise, we have a simple constant.
882 GenericValue Result;
883 switch (C->getType()->getTypeID()) {
884 case Type::FloatTyID:
885 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
886 break;
887 case Type::DoubleTyID:
888 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
889 break;
890 case Type::X86_FP80TyID:
891 case Type::FP128TyID:
892 case Type::PPC_FP128TyID:
893 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
894 break;
895 case Type::IntegerTyID:
896 Result.IntVal = cast<ConstantInt>(C)->getValue();
897 break;
898 case Type::PointerTyID:
899 while (auto *A = dyn_cast<GlobalAlias>(C)) {
900 C = A->getAliasee();
902 if (isa<ConstantPointerNull>(C))
903 Result.PointerVal = nullptr;
904 else if (const Function *F = dyn_cast<Function>(C))
905 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
906 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
907 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
908 else
909 llvm_unreachable("Unknown constant pointer type!");
910 break;
911 case Type::ScalableVectorTyID:
912 report_fatal_error(
913 "Scalable vector support not yet implemented in ExecutionEngine");
914 case Type::FixedVectorTyID: {
915 unsigned elemNum;
916 Type* ElemTy;
917 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
918 const ConstantVector *CV = dyn_cast<ConstantVector>(C);
919 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C);
921 if (CDV) {
922 elemNum = CDV->getNumElements();
923 ElemTy = CDV->getElementType();
924 } else if (CV || CAZ) {
925 auto *VTy = cast<FixedVectorType>(C->getType());
926 elemNum = VTy->getNumElements();
927 ElemTy = VTy->getElementType();
928 } else {
929 llvm_unreachable("Unknown constant vector type!");
932 Result.AggregateVal.resize(elemNum);
933 // Check if vector holds floats.
934 if(ElemTy->isFloatTy()) {
935 if (CAZ) {
936 GenericValue floatZero;
937 floatZero.FloatVal = 0.f;
938 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
939 floatZero);
940 break;
942 if(CV) {
943 for (unsigned i = 0; i < elemNum; ++i)
944 if (!isa<UndefValue>(CV->getOperand(i)))
945 Result.AggregateVal[i].FloatVal = cast<ConstantFP>(
946 CV->getOperand(i))->getValueAPF().convertToFloat();
947 break;
949 if(CDV)
950 for (unsigned i = 0; i < elemNum; ++i)
951 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i);
953 break;
955 // Check if vector holds doubles.
956 if (ElemTy->isDoubleTy()) {
957 if (CAZ) {
958 GenericValue doubleZero;
959 doubleZero.DoubleVal = 0.0;
960 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
961 doubleZero);
962 break;
964 if(CV) {
965 for (unsigned i = 0; i < elemNum; ++i)
966 if (!isa<UndefValue>(CV->getOperand(i)))
967 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>(
968 CV->getOperand(i))->getValueAPF().convertToDouble();
969 break;
971 if(CDV)
972 for (unsigned i = 0; i < elemNum; ++i)
973 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i);
975 break;
977 // Check if vector holds integers.
978 if (ElemTy->isIntegerTy()) {
979 if (CAZ) {
980 GenericValue intZero;
981 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull);
982 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(),
983 intZero);
984 break;
986 if(CV) {
987 for (unsigned i = 0; i < elemNum; ++i)
988 if (!isa<UndefValue>(CV->getOperand(i)))
989 Result.AggregateVal[i].IntVal = cast<ConstantInt>(
990 CV->getOperand(i))->getValue();
991 else {
992 Result.AggregateVal[i].IntVal =
993 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0);
995 break;
997 if(CDV)
998 for (unsigned i = 0; i < elemNum; ++i)
999 Result.AggregateVal[i].IntVal = APInt(
1000 CDV->getElementType()->getPrimitiveSizeInBits(),
1001 CDV->getElementAsInteger(i));
1003 break;
1005 llvm_unreachable("Unknown constant pointer type!");
1006 } break;
1008 default:
1009 SmallString<256> Msg;
1010 raw_svector_ostream OS(Msg);
1011 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
1012 report_fatal_error(OS.str());
1015 return Result;
1018 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
1019 GenericValue *Ptr, Type *Ty) {
1020 const unsigned StoreBytes = getDataLayout().getTypeStoreSize(Ty);
1022 switch (Ty->getTypeID()) {
1023 default:
1024 dbgs() << "Cannot store value of type " << *Ty << "!\n";
1025 break;
1026 case Type::IntegerTyID:
1027 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
1028 break;
1029 case Type::FloatTyID:
1030 *((float*)Ptr) = Val.FloatVal;
1031 break;
1032 case Type::DoubleTyID:
1033 *((double*)Ptr) = Val.DoubleVal;
1034 break;
1035 case Type::X86_FP80TyID:
1036 memcpy(Ptr, Val.IntVal.getRawData(), 10);
1037 break;
1038 case Type::PointerTyID:
1039 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
1040 if (StoreBytes != sizeof(PointerTy))
1041 memset(&(Ptr->PointerVal), 0, StoreBytes);
1043 *((PointerTy*)Ptr) = Val.PointerVal;
1044 break;
1045 case Type::FixedVectorTyID:
1046 case Type::ScalableVectorTyID:
1047 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) {
1048 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
1049 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal;
1050 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
1051 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal;
1052 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) {
1053 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8;
1054 StoreIntToMemory(Val.AggregateVal[i].IntVal,
1055 (uint8_t*)Ptr + numOfBytes*i, numOfBytes);
1058 break;
1061 if (sys::IsLittleEndianHost != getDataLayout().isLittleEndian())
1062 // Host and target are different endian - reverse the stored bytes.
1063 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
1066 /// FIXME: document
1068 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
1069 GenericValue *Ptr,
1070 Type *Ty) {
1071 const unsigned LoadBytes = getDataLayout().getTypeStoreSize(Ty);
1073 switch (Ty->getTypeID()) {
1074 case Type::IntegerTyID:
1075 // An APInt with all words initially zero.
1076 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
1077 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
1078 break;
1079 case Type::FloatTyID:
1080 Result.FloatVal = *((float*)Ptr);
1081 break;
1082 case Type::DoubleTyID:
1083 Result.DoubleVal = *((double*)Ptr);
1084 break;
1085 case Type::PointerTyID:
1086 Result.PointerVal = *((PointerTy*)Ptr);
1087 break;
1088 case Type::X86_FP80TyID: {
1089 // This is endian dependent, but it will only work on x86 anyway.
1090 // FIXME: Will not trap if loading a signaling NaN.
1091 uint64_t y[2];
1092 memcpy(y, Ptr, 10);
1093 Result.IntVal = APInt(80, y);
1094 break;
1096 case Type::ScalableVectorTyID:
1097 report_fatal_error(
1098 "Scalable vector support not yet implemented in ExecutionEngine");
1099 case Type::FixedVectorTyID: {
1100 auto *VT = cast<FixedVectorType>(Ty);
1101 Type *ElemT = VT->getElementType();
1102 const unsigned numElems = VT->getNumElements();
1103 if (ElemT->isFloatTy()) {
1104 Result.AggregateVal.resize(numElems);
1105 for (unsigned i = 0; i < numElems; ++i)
1106 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i);
1108 if (ElemT->isDoubleTy()) {
1109 Result.AggregateVal.resize(numElems);
1110 for (unsigned i = 0; i < numElems; ++i)
1111 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i);
1113 if (ElemT->isIntegerTy()) {
1114 GenericValue intZero;
1115 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth();
1116 intZero.IntVal = APInt(elemBitWidth, 0);
1117 Result.AggregateVal.resize(numElems, intZero);
1118 for (unsigned i = 0; i < numElems; ++i)
1119 LoadIntFromMemory(Result.AggregateVal[i].IntVal,
1120 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8);
1122 break;
1124 default:
1125 SmallString<256> Msg;
1126 raw_svector_ostream OS(Msg);
1127 OS << "Cannot load value of type " << *Ty << "!";
1128 report_fatal_error(OS.str());
1132 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
1133 LLVM_DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
1134 LLVM_DEBUG(Init->dump());
1135 if (isa<UndefValue>(Init))
1136 return;
1138 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
1139 unsigned ElementSize =
1140 getDataLayout().getTypeAllocSize(CP->getType()->getElementType());
1141 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
1142 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
1143 return;
1146 if (isa<ConstantAggregateZero>(Init)) {
1147 memset(Addr, 0, (size_t)getDataLayout().getTypeAllocSize(Init->getType()));
1148 return;
1151 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
1152 unsigned ElementSize =
1153 getDataLayout().getTypeAllocSize(CPA->getType()->getElementType());
1154 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
1155 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
1156 return;
1159 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
1160 const StructLayout *SL =
1161 getDataLayout().getStructLayout(cast<StructType>(CPS->getType()));
1162 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
1163 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
1164 return;
1167 if (const ConstantDataSequential *CDS =
1168 dyn_cast<ConstantDataSequential>(Init)) {
1169 // CDS is already laid out in host memory order.
1170 StringRef Data = CDS->getRawDataValues();
1171 memcpy(Addr, Data.data(), Data.size());
1172 return;
1175 if (Init->getType()->isFirstClassType()) {
1176 GenericValue Val = getConstantValue(Init);
1177 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1178 return;
1181 LLVM_DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1182 llvm_unreachable("Unknown constant type to initialize memory with!");
1185 /// EmitGlobals - Emit all of the global variables to memory, storing their
1186 /// addresses into GlobalAddress. This must make sure to copy the contents of
1187 /// their initializers into the memory.
1188 void ExecutionEngine::emitGlobals() {
1189 // Loop over all of the global variables in the program, allocating the memory
1190 // to hold them. If there is more than one module, do a prepass over globals
1191 // to figure out how the different modules should link together.
1192 std::map<std::pair<std::string, Type*>,
1193 const GlobalValue*> LinkedGlobalsMap;
1195 if (Modules.size() != 1) {
1196 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1197 Module &M = *Modules[m];
1198 for (const auto &GV : M.globals()) {
1199 if (GV.hasLocalLinkage() || GV.isDeclaration() ||
1200 GV.hasAppendingLinkage() || !GV.hasName())
1201 continue;// Ignore external globals and globals with internal linkage.
1203 const GlobalValue *&GVEntry = LinkedGlobalsMap[std::make_pair(
1204 std::string(GV.getName()), GV.getType())];
1206 // If this is the first time we've seen this global, it is the canonical
1207 // version.
1208 if (!GVEntry) {
1209 GVEntry = &GV;
1210 continue;
1213 // If the existing global is strong, never replace it.
1214 if (GVEntry->hasExternalLinkage())
1215 continue;
1217 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1218 // symbol. FIXME is this right for common?
1219 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1220 GVEntry = &GV;
1225 std::vector<const GlobalValue*> NonCanonicalGlobals;
1226 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1227 Module &M = *Modules[m];
1228 for (const auto &GV : M.globals()) {
1229 // In the multi-module case, see what this global maps to.
1230 if (!LinkedGlobalsMap.empty()) {
1231 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1232 std::string(GV.getName()), GV.getType())]) {
1233 // If something else is the canonical global, ignore this one.
1234 if (GVEntry != &GV) {
1235 NonCanonicalGlobals.push_back(&GV);
1236 continue;
1241 if (!GV.isDeclaration()) {
1242 addGlobalMapping(&GV, getMemoryForGV(&GV));
1243 } else {
1244 // External variable reference. Try to use the dynamic loader to
1245 // get a pointer to it.
1246 if (void *SymAddr = sys::DynamicLibrary::SearchForAddressOfSymbol(
1247 std::string(GV.getName())))
1248 addGlobalMapping(&GV, SymAddr);
1249 else {
1250 report_fatal_error("Could not resolve external global address: "
1251 +GV.getName());
1256 // If there are multiple modules, map the non-canonical globals to their
1257 // canonical location.
1258 if (!NonCanonicalGlobals.empty()) {
1259 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1260 const GlobalValue *GV = NonCanonicalGlobals[i];
1261 const GlobalValue *CGV = LinkedGlobalsMap[std::make_pair(
1262 std::string(GV->getName()), GV->getType())];
1263 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1264 assert(Ptr && "Canonical global wasn't codegen'd!");
1265 addGlobalMapping(GV, Ptr);
1269 // Now that all of the globals are set up in memory, loop through them all
1270 // and initialize their contents.
1271 for (const auto &GV : M.globals()) {
1272 if (!GV.isDeclaration()) {
1273 if (!LinkedGlobalsMap.empty()) {
1274 if (const GlobalValue *GVEntry = LinkedGlobalsMap[std::make_pair(
1275 std::string(GV.getName()), GV.getType())])
1276 if (GVEntry != &GV) // Not the canonical variable.
1277 continue;
1279 emitGlobalVariable(&GV);
1285 // EmitGlobalVariable - This method emits the specified global variable to the
1286 // address specified in GlobalAddresses, or allocates new memory if it's not
1287 // already in the map.
1288 void ExecutionEngine::emitGlobalVariable(const GlobalVariable *GV) {
1289 void *GA = getPointerToGlobalIfAvailable(GV);
1291 if (!GA) {
1292 // If it's not already specified, allocate memory for the global.
1293 GA = getMemoryForGV(GV);
1295 // If we failed to allocate memory for this global, return.
1296 if (!GA) return;
1298 addGlobalMapping(GV, GA);
1301 // Don't initialize if it's thread local, let the client do it.
1302 if (!GV->isThreadLocal())
1303 InitializeMemory(GV->getInitializer(), GA);
1305 Type *ElTy = GV->getValueType();
1306 size_t GVSize = (size_t)getDataLayout().getTypeAllocSize(ElTy);
1307 NumInitBytes += (unsigned)GVSize;
1308 ++NumGlobals;