[DebugInfo] Avoid re-ordering assignments in LCSSA
[llvm-project.git] / llvm / lib / Transforms / Utils / LCSSA.cpp
bloba601ec9349e022d46e04a5915efffb72653f7010
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
13 // for (...) for (...)
14 // if (c) if (c)
15 // X1 = ... X1 = ...
16 // else else
17 // X2 = ... X2 = ...
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
20 // ... = X4 + 4
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
54 using namespace llvm;
56 #define DEBUG_TYPE "lcssa"
58 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
60 #ifdef EXPENSIVE_CHECKS
61 static bool VerifyLoopLCSSA = true;
62 #else
63 static bool VerifyLoopLCSSA = false;
64 #endif
65 static cl::opt<bool, true>
66 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
67 cl::Hidden,
68 cl::desc("Verify loop lcssa form (time consuming)"));
70 /// Return true if the specified block is in the list.
71 static bool isExitBlock(BasicBlock *BB,
72 const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
73 return is_contained(ExitBlocks, BB);
76 /// For every instruction from the worklist, check to see if it has any uses
77 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
78 /// rewrite the uses.
79 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
80 const DominatorTree &DT, const LoopInfo &LI,
81 ScalarEvolution *SE, IRBuilderBase &Builder,
82 SmallVectorImpl<PHINode *> *PHIsToRemove) {
83 SmallVector<Use *, 16> UsesToRewrite;
84 SmallSetVector<PHINode *, 16> LocalPHIsToRemove;
85 PredIteratorCache PredCache;
86 bool Changed = false;
88 IRBuilderBase::InsertPointGuard InsertPtGuard(Builder);
90 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
91 // instructions within the same loops, computing the exit blocks is
92 // expensive, and we're not mutating the loop structure.
93 SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
95 while (!Worklist.empty()) {
96 UsesToRewrite.clear();
98 Instruction *I = Worklist.pop_back_val();
99 assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
100 BasicBlock *InstBB = I->getParent();
101 Loop *L = LI.getLoopFor(InstBB);
102 assert(L && "Instruction belongs to a BB that's not part of a loop");
103 if (!LoopExitBlocks.count(L))
104 L->getExitBlocks(LoopExitBlocks[L]);
105 assert(LoopExitBlocks.count(L));
106 const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
108 if (ExitBlocks.empty())
109 continue;
111 for (Use &U : I->uses()) {
112 Instruction *User = cast<Instruction>(U.getUser());
113 BasicBlock *UserBB = User->getParent();
115 // For practical purposes, we consider that the use in a PHI
116 // occurs in the respective predecessor block. For more info,
117 // see the `phi` doc in LangRef and the LCSSA doc.
118 if (auto *PN = dyn_cast<PHINode>(User))
119 UserBB = PN->getIncomingBlock(U);
121 if (InstBB != UserBB && !L->contains(UserBB))
122 UsesToRewrite.push_back(&U);
125 // If there are no uses outside the loop, exit with no change.
126 if (UsesToRewrite.empty())
127 continue;
129 ++NumLCSSA; // We are applying the transformation
131 // Invoke instructions are special in that their result value is not
132 // available along their unwind edge. The code below tests to see whether
133 // DomBB dominates the value, so adjust DomBB to the normal destination
134 // block, which is effectively where the value is first usable.
135 BasicBlock *DomBB = InstBB;
136 if (auto *Inv = dyn_cast<InvokeInst>(I))
137 DomBB = Inv->getNormalDest();
139 const DomTreeNode *DomNode = DT.getNode(DomBB);
141 SmallVector<PHINode *, 16> AddedPHIs;
142 SmallVector<PHINode *, 8> PostProcessPHIs;
144 SmallVector<PHINode *, 4> InsertedPHIs;
145 SSAUpdater SSAUpdate(&InsertedPHIs);
146 SSAUpdate.Initialize(I->getType(), I->getName());
148 // Force re-computation of I, as some users now need to use the new PHI
149 // node.
150 if (SE)
151 SE->forgetValue(I);
153 // Insert the LCSSA phi's into all of the exit blocks dominated by the
154 // value, and add them to the Phi's map.
155 for (BasicBlock *ExitBB : ExitBlocks) {
156 if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
157 continue;
159 // If we already inserted something for this BB, don't reprocess it.
160 if (SSAUpdate.HasValueForBlock(ExitBB))
161 continue;
162 Builder.SetInsertPoint(&ExitBB->front());
163 PHINode *PN = Builder.CreatePHI(I->getType(), PredCache.size(ExitBB),
164 I->getName() + ".lcssa");
165 // Get the debug location from the original instruction.
166 PN->setDebugLoc(I->getDebugLoc());
168 // Add inputs from inside the loop for this PHI. This is valid
169 // because `I` dominates `ExitBB` (checked above). This implies
170 // that every incoming block/edge is dominated by `I` as well,
171 // i.e. we can add uses of `I` to those incoming edges/append to the incoming
172 // blocks without violating the SSA dominance property.
173 for (BasicBlock *Pred : PredCache.get(ExitBB)) {
174 PN->addIncoming(I, Pred);
176 // If the exit block has a predecessor not within the loop, arrange for
177 // the incoming value use corresponding to that predecessor to be
178 // rewritten in terms of a different LCSSA PHI.
179 if (!L->contains(Pred))
180 UsesToRewrite.push_back(
181 &PN->getOperandUse(PN->getOperandNumForIncomingValue(
182 PN->getNumIncomingValues() - 1)));
185 AddedPHIs.push_back(PN);
187 // Remember that this phi makes the value alive in this block.
188 SSAUpdate.AddAvailableValue(ExitBB, PN);
190 // LoopSimplify might fail to simplify some loops (e.g. when indirect
191 // branches are involved). In such situations, it might happen that an
192 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
193 // create PHIs in such an exit block, we are also inserting PHIs into L2's
194 // header. This could break LCSSA form for L2 because these inserted PHIs
195 // can also have uses outside of L2. Remember all PHIs in such situation
196 // as to revisit than later on. FIXME: Remove this if indirectbr support
197 // into LoopSimplify gets improved.
198 if (auto *OtherLoop = LI.getLoopFor(ExitBB))
199 if (!L->contains(OtherLoop))
200 PostProcessPHIs.push_back(PN);
203 // Rewrite all uses outside the loop in terms of the new PHIs we just
204 // inserted.
205 for (Use *UseToRewrite : UsesToRewrite) {
206 Instruction *User = cast<Instruction>(UseToRewrite->getUser());
207 BasicBlock *UserBB = User->getParent();
209 // For practical purposes, we consider that the use in a PHI
210 // occurs in the respective predecessor block. For more info,
211 // see the `phi` doc in LangRef and the LCSSA doc.
212 if (auto *PN = dyn_cast<PHINode>(User))
213 UserBB = PN->getIncomingBlock(*UseToRewrite);
215 // If this use is in an exit block, rewrite to use the newly inserted PHI.
216 // This is required for correctness because SSAUpdate doesn't handle uses
217 // in the same block. It assumes the PHI we inserted is at the end of the
218 // block.
219 if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
220 UseToRewrite->set(&UserBB->front());
221 continue;
224 // If we added a single PHI, it must dominate all uses and we can directly
225 // rename it.
226 if (AddedPHIs.size() == 1) {
227 UseToRewrite->set(AddedPHIs[0]);
228 continue;
231 // Otherwise, do full PHI insertion.
232 SSAUpdate.RewriteUse(*UseToRewrite);
235 SmallVector<DbgValueInst *, 4> DbgValues;
236 llvm::findDbgValues(DbgValues, I);
238 // Update pre-existing debug value uses that reside outside the loop.
239 auto &Ctx = I->getContext();
240 for (auto DVI : DbgValues) {
241 BasicBlock *UserBB = DVI->getParent();
242 if (InstBB == UserBB || L->contains(UserBB))
243 continue;
244 // We currently only handle debug values residing in blocks that were
245 // traversed while rewriting the uses. If we inserted just a single PHI,
246 // we will handle all relevant debug values.
247 Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
248 : SSAUpdate.FindValueForBlock(UserBB);
249 if (V)
250 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
253 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
254 // to post-process them to keep LCSSA form.
255 for (PHINode *InsertedPN : InsertedPHIs) {
256 if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
257 if (!L->contains(OtherLoop))
258 PostProcessPHIs.push_back(InsertedPN);
261 // Post process PHI instructions that were inserted into another disjoint
262 // loop and update their exits properly.
263 for (auto *PostProcessPN : PostProcessPHIs)
264 if (!PostProcessPN->use_empty())
265 Worklist.push_back(PostProcessPN);
267 // Keep track of PHI nodes that we want to remove because they did not have
268 // any uses rewritten.
269 for (PHINode *PN : AddedPHIs)
270 if (PN->use_empty())
271 LocalPHIsToRemove.insert(PN);
273 Changed = true;
276 // Remove PHI nodes that did not have any uses rewritten or add them to
277 // PHIsToRemove, so the caller can remove them after some additional cleanup.
278 // We need to redo the use_empty() check here, because even if the PHI node
279 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
280 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
281 // nodes that only are used by each other. Such situations has only been
282 // noticed when the input IR contains unreachable code, and leaving some extra
283 // redundant PHI nodes in such situations is considered a minor problem.
284 if (PHIsToRemove) {
285 PHIsToRemove->append(LocalPHIsToRemove.begin(), LocalPHIsToRemove.end());
286 } else {
287 for (PHINode *PN : LocalPHIsToRemove)
288 if (PN->use_empty())
289 PN->eraseFromParent();
291 return Changed;
294 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
295 static void computeBlocksDominatingExits(
296 Loop &L, const DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
297 SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
298 SmallVector<BasicBlock *, 8> BBWorklist;
300 // We start from the exit blocks, as every block trivially dominates itself
301 // (not strictly).
302 for (BasicBlock *BB : ExitBlocks)
303 BBWorklist.push_back(BB);
305 while (!BBWorklist.empty()) {
306 BasicBlock *BB = BBWorklist.pop_back_val();
308 // Check if this is a loop header. If this is the case, we're done.
309 if (L.getHeader() == BB)
310 continue;
312 // Otherwise, add its immediate predecessor in the dominator tree to the
313 // worklist, unless we visited it already.
314 BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
316 // Exit blocks can have an immediate dominator not beloinging to the
317 // loop. For an exit block to be immediately dominated by another block
318 // outside the loop, it implies not all paths from that dominator, to the
319 // exit block, go through the loop.
320 // Example:
322 // |---- A
323 // | |
324 // | B<--
325 // | | |
326 // |---> C --
327 // |
328 // D
330 // C is the exit block of the loop and it's immediately dominated by A,
331 // which doesn't belong to the loop.
332 if (!L.contains(IDomBB))
333 continue;
335 if (BlocksDominatingExits.insert(IDomBB))
336 BBWorklist.push_back(IDomBB);
340 bool llvm::formLCSSA(Loop &L, const DominatorTree &DT, const LoopInfo *LI,
341 ScalarEvolution *SE) {
342 bool Changed = false;
344 #ifdef EXPENSIVE_CHECKS
345 // Verify all sub-loops are in LCSSA form already.
346 for (Loop *SubLoop: L)
347 assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
348 #endif
350 SmallVector<BasicBlock *, 8> ExitBlocks;
351 L.getExitBlocks(ExitBlocks);
352 if (ExitBlocks.empty())
353 return false;
355 SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
357 // We want to avoid use-scanning leveraging dominance informations.
358 // If a block doesn't dominate any of the loop exits, the none of the values
359 // defined in the loop can be used outside.
360 // We compute the set of blocks fullfilling the conditions in advance
361 // walking the dominator tree upwards until we hit a loop header.
362 computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
364 SmallVector<Instruction *, 8> Worklist;
366 // Look at all the instructions in the loop, checking to see if they have uses
367 // outside the loop. If so, put them into the worklist to rewrite those uses.
368 for (BasicBlock *BB : BlocksDominatingExits) {
369 // Skip blocks that are part of any sub-loops, they must be in LCSSA
370 // already.
371 if (LI->getLoopFor(BB) != &L)
372 continue;
373 for (Instruction &I : *BB) {
374 // Reject two common cases fast: instructions with no uses (like stores)
375 // and instructions with one use that is in the same block as this.
376 if (I.use_empty() ||
377 (I.hasOneUse() && I.user_back()->getParent() == BB &&
378 !isa<PHINode>(I.user_back())))
379 continue;
381 // Tokens cannot be used in PHI nodes, so we skip over them.
382 // We can run into tokens which are live out of a loop with catchswitch
383 // instructions in Windows EH if the catchswitch has one catchpad which
384 // is inside the loop and another which is not.
385 if (I.getType()->isTokenTy())
386 continue;
388 Worklist.push_back(&I);
392 IRBuilder<> Builder(L.getHeader()->getContext());
393 Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE, Builder);
395 // If we modified the code, remove any caches about the loop from SCEV to
396 // avoid dangling entries.
397 // FIXME: This is a big hammer, can we clear the cache more selectively?
398 if (SE && Changed)
399 SE->forgetLoop(&L);
401 assert(L.isLCSSAForm(DT));
403 return Changed;
406 /// Process a loop nest depth first.
407 bool llvm::formLCSSARecursively(Loop &L, const DominatorTree &DT,
408 const LoopInfo *LI, ScalarEvolution *SE) {
409 bool Changed = false;
411 // Recurse depth-first through inner loops.
412 for (Loop *SubLoop : L.getSubLoops())
413 Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
415 Changed |= formLCSSA(L, DT, LI, SE);
416 return Changed;
419 /// Process all loops in the function, inner-most out.
420 static bool formLCSSAOnAllLoops(const LoopInfo *LI, const DominatorTree &DT,
421 ScalarEvolution *SE) {
422 bool Changed = false;
423 for (auto &L : *LI)
424 Changed |= formLCSSARecursively(*L, DT, LI, SE);
425 return Changed;
428 namespace {
429 struct LCSSAWrapperPass : public FunctionPass {
430 static char ID; // Pass identification, replacement for typeid
431 LCSSAWrapperPass() : FunctionPass(ID) {
432 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
435 // Cached analysis information for the current function.
436 DominatorTree *DT;
437 LoopInfo *LI;
438 ScalarEvolution *SE;
440 bool runOnFunction(Function &F) override;
441 void verifyAnalysis() const override {
442 // This check is very expensive. On the loop intensive compiles it may cause
443 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
444 // always does limited form of the LCSSA verification. Similar reasoning
445 // was used for the LoopInfo verifier.
446 if (VerifyLoopLCSSA) {
447 assert(all_of(*LI,
448 [&](Loop *L) {
449 return L->isRecursivelyLCSSAForm(*DT, *LI);
450 }) &&
451 "LCSSA form is broken!");
455 /// This transformation requires natural loop information & requires that
456 /// loop preheaders be inserted into the CFG. It maintains both of these,
457 /// as well as the CFG. It also requires dominator information.
458 void getAnalysisUsage(AnalysisUsage &AU) const override {
459 AU.setPreservesCFG();
461 AU.addRequired<DominatorTreeWrapperPass>();
462 AU.addRequired<LoopInfoWrapperPass>();
463 AU.addPreservedID(LoopSimplifyID);
464 AU.addPreserved<AAResultsWrapperPass>();
465 AU.addPreserved<BasicAAWrapperPass>();
466 AU.addPreserved<GlobalsAAWrapperPass>();
467 AU.addPreserved<ScalarEvolutionWrapperPass>();
468 AU.addPreserved<SCEVAAWrapperPass>();
469 AU.addPreserved<BranchProbabilityInfoWrapperPass>();
470 AU.addPreserved<MemorySSAWrapperPass>();
472 // This is needed to perform LCSSA verification inside LPPassManager
473 AU.addRequired<LCSSAVerificationPass>();
474 AU.addPreserved<LCSSAVerificationPass>();
479 char LCSSAWrapperPass::ID = 0;
480 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
481 false, false)
482 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
483 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
484 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
485 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
486 false, false)
488 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
489 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
491 /// Transform \p F into loop-closed SSA form.
492 bool LCSSAWrapperPass::runOnFunction(Function &F) {
493 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
494 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
495 auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
496 SE = SEWP ? &SEWP->getSE() : nullptr;
498 return formLCSSAOnAllLoops(LI, *DT, SE);
501 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
502 auto &LI = AM.getResult<LoopAnalysis>(F);
503 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
504 auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
505 if (!formLCSSAOnAllLoops(&LI, DT, SE))
506 return PreservedAnalyses::all();
508 PreservedAnalyses PA;
509 PA.preserveSet<CFGAnalyses>();
510 PA.preserve<BasicAA>();
511 PA.preserve<GlobalsAA>();
512 PA.preserve<SCEVAA>();
513 PA.preserve<ScalarEvolutionAnalysis>();
514 // BPI maps terminators to probabilities, since we don't modify the CFG, no
515 // updates are needed to preserve it.
516 PA.preserve<BranchProbabilityAnalysis>();
517 PA.preserve<MemorySSAAnalysis>();
518 return PA;