1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass transforms loops by placing phi nodes at the end of the loops for
10 // all values that are live across the loop boundary. For example, it turns
11 // the left into the right code:
13 // for (...) for (...)
18 // X3 = phi(X1, X2) X3 = phi(X1, X2)
19 // ... = X3 + 4 X4 = phi(X3)
22 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
23 // be trivially eliminated by InstCombine. The major benefit of this
24 // transformation is that it makes many other loop optimizations, such as
25 // LoopUnswitching, simpler.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/Transforms/Utils/LCSSA.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/BasicAliasAnalysis.h"
34 #include "llvm/Analysis/BranchProbabilityInfo.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/IRBuilder.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/PredIteratorCache.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Transforms/Utils.h"
51 #include "llvm/Transforms/Utils/Local.h"
52 #include "llvm/Transforms/Utils/LoopUtils.h"
53 #include "llvm/Transforms/Utils/SSAUpdater.h"
56 #define DEBUG_TYPE "lcssa"
58 STATISTIC(NumLCSSA
, "Number of live out of a loop variables");
60 #ifdef EXPENSIVE_CHECKS
61 static bool VerifyLoopLCSSA
= true;
63 static bool VerifyLoopLCSSA
= false;
65 static cl::opt
<bool, true>
66 VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA
),
68 cl::desc("Verify loop lcssa form (time consuming)"));
70 /// Return true if the specified block is in the list.
71 static bool isExitBlock(BasicBlock
*BB
,
72 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
) {
73 return is_contained(ExitBlocks
, BB
);
76 /// For every instruction from the worklist, check to see if it has any uses
77 /// that are outside the current loop. If so, insert LCSSA PHI nodes and
79 bool llvm::formLCSSAForInstructions(SmallVectorImpl
<Instruction
*> &Worklist
,
80 const DominatorTree
&DT
, const LoopInfo
&LI
,
81 ScalarEvolution
*SE
, IRBuilderBase
&Builder
,
82 SmallVectorImpl
<PHINode
*> *PHIsToRemove
) {
83 SmallVector
<Use
*, 16> UsesToRewrite
;
84 SmallSetVector
<PHINode
*, 16> LocalPHIsToRemove
;
85 PredIteratorCache PredCache
;
88 IRBuilderBase::InsertPointGuard
InsertPtGuard(Builder
);
90 // Cache the Loop ExitBlocks across this loop. We expect to get a lot of
91 // instructions within the same loops, computing the exit blocks is
92 // expensive, and we're not mutating the loop structure.
93 SmallDenseMap
<Loop
*, SmallVector
<BasicBlock
*,1>> LoopExitBlocks
;
95 while (!Worklist
.empty()) {
96 UsesToRewrite
.clear();
98 Instruction
*I
= Worklist
.pop_back_val();
99 assert(!I
->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
100 BasicBlock
*InstBB
= I
->getParent();
101 Loop
*L
= LI
.getLoopFor(InstBB
);
102 assert(L
&& "Instruction belongs to a BB that's not part of a loop");
103 if (!LoopExitBlocks
.count(L
))
104 L
->getExitBlocks(LoopExitBlocks
[L
]);
105 assert(LoopExitBlocks
.count(L
));
106 const SmallVectorImpl
<BasicBlock
*> &ExitBlocks
= LoopExitBlocks
[L
];
108 if (ExitBlocks
.empty())
111 for (Use
&U
: I
->uses()) {
112 Instruction
*User
= cast
<Instruction
>(U
.getUser());
113 BasicBlock
*UserBB
= User
->getParent();
115 // For practical purposes, we consider that the use in a PHI
116 // occurs in the respective predecessor block. For more info,
117 // see the `phi` doc in LangRef and the LCSSA doc.
118 if (auto *PN
= dyn_cast
<PHINode
>(User
))
119 UserBB
= PN
->getIncomingBlock(U
);
121 if (InstBB
!= UserBB
&& !L
->contains(UserBB
))
122 UsesToRewrite
.push_back(&U
);
125 // If there are no uses outside the loop, exit with no change.
126 if (UsesToRewrite
.empty())
129 ++NumLCSSA
; // We are applying the transformation
131 // Invoke instructions are special in that their result value is not
132 // available along their unwind edge. The code below tests to see whether
133 // DomBB dominates the value, so adjust DomBB to the normal destination
134 // block, which is effectively where the value is first usable.
135 BasicBlock
*DomBB
= InstBB
;
136 if (auto *Inv
= dyn_cast
<InvokeInst
>(I
))
137 DomBB
= Inv
->getNormalDest();
139 const DomTreeNode
*DomNode
= DT
.getNode(DomBB
);
141 SmallVector
<PHINode
*, 16> AddedPHIs
;
142 SmallVector
<PHINode
*, 8> PostProcessPHIs
;
144 SmallVector
<PHINode
*, 4> InsertedPHIs
;
145 SSAUpdater
SSAUpdate(&InsertedPHIs
);
146 SSAUpdate
.Initialize(I
->getType(), I
->getName());
148 // Force re-computation of I, as some users now need to use the new PHI
153 // Insert the LCSSA phi's into all of the exit blocks dominated by the
154 // value, and add them to the Phi's map.
155 for (BasicBlock
*ExitBB
: ExitBlocks
) {
156 if (!DT
.dominates(DomNode
, DT
.getNode(ExitBB
)))
159 // If we already inserted something for this BB, don't reprocess it.
160 if (SSAUpdate
.HasValueForBlock(ExitBB
))
162 Builder
.SetInsertPoint(&ExitBB
->front());
163 PHINode
*PN
= Builder
.CreatePHI(I
->getType(), PredCache
.size(ExitBB
),
164 I
->getName() + ".lcssa");
165 // Get the debug location from the original instruction.
166 PN
->setDebugLoc(I
->getDebugLoc());
168 // Add inputs from inside the loop for this PHI. This is valid
169 // because `I` dominates `ExitBB` (checked above). This implies
170 // that every incoming block/edge is dominated by `I` as well,
171 // i.e. we can add uses of `I` to those incoming edges/append to the incoming
172 // blocks without violating the SSA dominance property.
173 for (BasicBlock
*Pred
: PredCache
.get(ExitBB
)) {
174 PN
->addIncoming(I
, Pred
);
176 // If the exit block has a predecessor not within the loop, arrange for
177 // the incoming value use corresponding to that predecessor to be
178 // rewritten in terms of a different LCSSA PHI.
179 if (!L
->contains(Pred
))
180 UsesToRewrite
.push_back(
181 &PN
->getOperandUse(PN
->getOperandNumForIncomingValue(
182 PN
->getNumIncomingValues() - 1)));
185 AddedPHIs
.push_back(PN
);
187 // Remember that this phi makes the value alive in this block.
188 SSAUpdate
.AddAvailableValue(ExitBB
, PN
);
190 // LoopSimplify might fail to simplify some loops (e.g. when indirect
191 // branches are involved). In such situations, it might happen that an
192 // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
193 // create PHIs in such an exit block, we are also inserting PHIs into L2's
194 // header. This could break LCSSA form for L2 because these inserted PHIs
195 // can also have uses outside of L2. Remember all PHIs in such situation
196 // as to revisit than later on. FIXME: Remove this if indirectbr support
197 // into LoopSimplify gets improved.
198 if (auto *OtherLoop
= LI
.getLoopFor(ExitBB
))
199 if (!L
->contains(OtherLoop
))
200 PostProcessPHIs
.push_back(PN
);
203 // Rewrite all uses outside the loop in terms of the new PHIs we just
205 for (Use
*UseToRewrite
: UsesToRewrite
) {
206 Instruction
*User
= cast
<Instruction
>(UseToRewrite
->getUser());
207 BasicBlock
*UserBB
= User
->getParent();
209 // For practical purposes, we consider that the use in a PHI
210 // occurs in the respective predecessor block. For more info,
211 // see the `phi` doc in LangRef and the LCSSA doc.
212 if (auto *PN
= dyn_cast
<PHINode
>(User
))
213 UserBB
= PN
->getIncomingBlock(*UseToRewrite
);
215 // If this use is in an exit block, rewrite to use the newly inserted PHI.
216 // This is required for correctness because SSAUpdate doesn't handle uses
217 // in the same block. It assumes the PHI we inserted is at the end of the
219 if (isa
<PHINode
>(UserBB
->begin()) && isExitBlock(UserBB
, ExitBlocks
)) {
220 UseToRewrite
->set(&UserBB
->front());
224 // If we added a single PHI, it must dominate all uses and we can directly
226 if (AddedPHIs
.size() == 1) {
227 UseToRewrite
->set(AddedPHIs
[0]);
231 // Otherwise, do full PHI insertion.
232 SSAUpdate
.RewriteUse(*UseToRewrite
);
235 SmallVector
<DbgValueInst
*, 4> DbgValues
;
236 llvm::findDbgValues(DbgValues
, I
);
238 // Update pre-existing debug value uses that reside outside the loop.
239 auto &Ctx
= I
->getContext();
240 for (auto DVI
: DbgValues
) {
241 BasicBlock
*UserBB
= DVI
->getParent();
242 if (InstBB
== UserBB
|| L
->contains(UserBB
))
244 // We currently only handle debug values residing in blocks that were
245 // traversed while rewriting the uses. If we inserted just a single PHI,
246 // we will handle all relevant debug values.
247 Value
*V
= AddedPHIs
.size() == 1 ? AddedPHIs
[0]
248 : SSAUpdate
.FindValueForBlock(UserBB
);
250 DVI
->setOperand(0, MetadataAsValue::get(Ctx
, ValueAsMetadata::get(V
)));
253 // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
254 // to post-process them to keep LCSSA form.
255 for (PHINode
*InsertedPN
: InsertedPHIs
) {
256 if (auto *OtherLoop
= LI
.getLoopFor(InsertedPN
->getParent()))
257 if (!L
->contains(OtherLoop
))
258 PostProcessPHIs
.push_back(InsertedPN
);
261 // Post process PHI instructions that were inserted into another disjoint
262 // loop and update their exits properly.
263 for (auto *PostProcessPN
: PostProcessPHIs
)
264 if (!PostProcessPN
->use_empty())
265 Worklist
.push_back(PostProcessPN
);
267 // Keep track of PHI nodes that we want to remove because they did not have
268 // any uses rewritten.
269 for (PHINode
*PN
: AddedPHIs
)
271 LocalPHIsToRemove
.insert(PN
);
276 // Remove PHI nodes that did not have any uses rewritten or add them to
277 // PHIsToRemove, so the caller can remove them after some additional cleanup.
278 // We need to redo the use_empty() check here, because even if the PHI node
279 // wasn't used when added to LocalPHIsToRemove, later added PHI nodes can be
280 // using it. This cleanup is not guaranteed to handle trees/cycles of PHI
281 // nodes that only are used by each other. Such situations has only been
282 // noticed when the input IR contains unreachable code, and leaving some extra
283 // redundant PHI nodes in such situations is considered a minor problem.
285 PHIsToRemove
->append(LocalPHIsToRemove
.begin(), LocalPHIsToRemove
.end());
287 for (PHINode
*PN
: LocalPHIsToRemove
)
289 PN
->eraseFromParent();
294 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
295 static void computeBlocksDominatingExits(
296 Loop
&L
, const DominatorTree
&DT
, SmallVector
<BasicBlock
*, 8> &ExitBlocks
,
297 SmallSetVector
<BasicBlock
*, 8> &BlocksDominatingExits
) {
298 SmallVector
<BasicBlock
*, 8> BBWorklist
;
300 // We start from the exit blocks, as every block trivially dominates itself
302 for (BasicBlock
*BB
: ExitBlocks
)
303 BBWorklist
.push_back(BB
);
305 while (!BBWorklist
.empty()) {
306 BasicBlock
*BB
= BBWorklist
.pop_back_val();
308 // Check if this is a loop header. If this is the case, we're done.
309 if (L
.getHeader() == BB
)
312 // Otherwise, add its immediate predecessor in the dominator tree to the
313 // worklist, unless we visited it already.
314 BasicBlock
*IDomBB
= DT
.getNode(BB
)->getIDom()->getBlock();
316 // Exit blocks can have an immediate dominator not beloinging to the
317 // loop. For an exit block to be immediately dominated by another block
318 // outside the loop, it implies not all paths from that dominator, to the
319 // exit block, go through the loop.
330 // C is the exit block of the loop and it's immediately dominated by A,
331 // which doesn't belong to the loop.
332 if (!L
.contains(IDomBB
))
335 if (BlocksDominatingExits
.insert(IDomBB
))
336 BBWorklist
.push_back(IDomBB
);
340 bool llvm::formLCSSA(Loop
&L
, const DominatorTree
&DT
, const LoopInfo
*LI
,
341 ScalarEvolution
*SE
) {
342 bool Changed
= false;
344 #ifdef EXPENSIVE_CHECKS
345 // Verify all sub-loops are in LCSSA form already.
346 for (Loop
*SubLoop
: L
)
347 assert(SubLoop
->isRecursivelyLCSSAForm(DT
, *LI
) && "Subloop not in LCSSA!");
350 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
351 L
.getExitBlocks(ExitBlocks
);
352 if (ExitBlocks
.empty())
355 SmallSetVector
<BasicBlock
*, 8> BlocksDominatingExits
;
357 // We want to avoid use-scanning leveraging dominance informations.
358 // If a block doesn't dominate any of the loop exits, the none of the values
359 // defined in the loop can be used outside.
360 // We compute the set of blocks fullfilling the conditions in advance
361 // walking the dominator tree upwards until we hit a loop header.
362 computeBlocksDominatingExits(L
, DT
, ExitBlocks
, BlocksDominatingExits
);
364 SmallVector
<Instruction
*, 8> Worklist
;
366 // Look at all the instructions in the loop, checking to see if they have uses
367 // outside the loop. If so, put them into the worklist to rewrite those uses.
368 for (BasicBlock
*BB
: BlocksDominatingExits
) {
369 // Skip blocks that are part of any sub-loops, they must be in LCSSA
371 if (LI
->getLoopFor(BB
) != &L
)
373 for (Instruction
&I
: *BB
) {
374 // Reject two common cases fast: instructions with no uses (like stores)
375 // and instructions with one use that is in the same block as this.
377 (I
.hasOneUse() && I
.user_back()->getParent() == BB
&&
378 !isa
<PHINode
>(I
.user_back())))
381 // Tokens cannot be used in PHI nodes, so we skip over them.
382 // We can run into tokens which are live out of a loop with catchswitch
383 // instructions in Windows EH if the catchswitch has one catchpad which
384 // is inside the loop and another which is not.
385 if (I
.getType()->isTokenTy())
388 Worklist
.push_back(&I
);
392 IRBuilder
<> Builder(L
.getHeader()->getContext());
393 Changed
= formLCSSAForInstructions(Worklist
, DT
, *LI
, SE
, Builder
);
395 // If we modified the code, remove any caches about the loop from SCEV to
396 // avoid dangling entries.
397 // FIXME: This is a big hammer, can we clear the cache more selectively?
401 assert(L
.isLCSSAForm(DT
));
406 /// Process a loop nest depth first.
407 bool llvm::formLCSSARecursively(Loop
&L
, const DominatorTree
&DT
,
408 const LoopInfo
*LI
, ScalarEvolution
*SE
) {
409 bool Changed
= false;
411 // Recurse depth-first through inner loops.
412 for (Loop
*SubLoop
: L
.getSubLoops())
413 Changed
|= formLCSSARecursively(*SubLoop
, DT
, LI
, SE
);
415 Changed
|= formLCSSA(L
, DT
, LI
, SE
);
419 /// Process all loops in the function, inner-most out.
420 static bool formLCSSAOnAllLoops(const LoopInfo
*LI
, const DominatorTree
&DT
,
421 ScalarEvolution
*SE
) {
422 bool Changed
= false;
424 Changed
|= formLCSSARecursively(*L
, DT
, LI
, SE
);
429 struct LCSSAWrapperPass
: public FunctionPass
{
430 static char ID
; // Pass identification, replacement for typeid
431 LCSSAWrapperPass() : FunctionPass(ID
) {
432 initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
435 // Cached analysis information for the current function.
440 bool runOnFunction(Function
&F
) override
;
441 void verifyAnalysis() const override
{
442 // This check is very expensive. On the loop intensive compiles it may cause
443 // up to 10x slowdown. Currently it's disabled by default. LPPassManager
444 // always does limited form of the LCSSA verification. Similar reasoning
445 // was used for the LoopInfo verifier.
446 if (VerifyLoopLCSSA
) {
449 return L
->isRecursivelyLCSSAForm(*DT
, *LI
);
451 "LCSSA form is broken!");
455 /// This transformation requires natural loop information & requires that
456 /// loop preheaders be inserted into the CFG. It maintains both of these,
457 /// as well as the CFG. It also requires dominator information.
458 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
459 AU
.setPreservesCFG();
461 AU
.addRequired
<DominatorTreeWrapperPass
>();
462 AU
.addRequired
<LoopInfoWrapperPass
>();
463 AU
.addPreservedID(LoopSimplifyID
);
464 AU
.addPreserved
<AAResultsWrapperPass
>();
465 AU
.addPreserved
<BasicAAWrapperPass
>();
466 AU
.addPreserved
<GlobalsAAWrapperPass
>();
467 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
468 AU
.addPreserved
<SCEVAAWrapperPass
>();
469 AU
.addPreserved
<BranchProbabilityInfoWrapperPass
>();
470 AU
.addPreserved
<MemorySSAWrapperPass
>();
472 // This is needed to perform LCSSA verification inside LPPassManager
473 AU
.addRequired
<LCSSAVerificationPass
>();
474 AU
.addPreserved
<LCSSAVerificationPass
>();
479 char LCSSAWrapperPass::ID
= 0;
480 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
482 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
483 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
484 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass
)
485 INITIALIZE_PASS_END(LCSSAWrapperPass
, "lcssa", "Loop-Closed SSA Form Pass",
488 Pass
*llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
489 char &llvm::LCSSAID
= LCSSAWrapperPass::ID
;
491 /// Transform \p F into loop-closed SSA form.
492 bool LCSSAWrapperPass::runOnFunction(Function
&F
) {
493 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
494 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
495 auto *SEWP
= getAnalysisIfAvailable
<ScalarEvolutionWrapperPass
>();
496 SE
= SEWP
? &SEWP
->getSE() : nullptr;
498 return formLCSSAOnAllLoops(LI
, *DT
, SE
);
501 PreservedAnalyses
LCSSAPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
502 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
503 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
504 auto *SE
= AM
.getCachedResult
<ScalarEvolutionAnalysis
>(F
);
505 if (!formLCSSAOnAllLoops(&LI
, DT
, SE
))
506 return PreservedAnalyses::all();
508 PreservedAnalyses PA
;
509 PA
.preserveSet
<CFGAnalyses
>();
510 PA
.preserve
<BasicAA
>();
511 PA
.preserve
<GlobalsAA
>();
512 PA
.preserve
<SCEVAA
>();
513 PA
.preserve
<ScalarEvolutionAnalysis
>();
514 // BPI maps terminators to probabilities, since we don't modify the CFG, no
515 // updates are needed to preserve it.
516 PA
.preserve
<BranchProbabilityAnalysis
>();
517 PA
.preserve
<MemorySSAAnalysis
>();