[DebugInfo] Avoid re-ordering assignments in LCSSA
[llvm-project.git] / llvm / tools / llvm-readobj / ELFDumper.cpp
blobc9372181be849f2f52b75d28b4faf1f59217dbab
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/ELF.h"
35 #include "llvm/Object/ELFObjectFile.h"
36 #include "llvm/Object/ELFTypes.h"
37 #include "llvm/Object/Error.h"
38 #include "llvm/Object/ObjectFile.h"
39 #include "llvm/Object/RelocationResolver.h"
40 #include "llvm/Object/StackMapParser.h"
41 #include "llvm/Support/AMDGPUMetadata.h"
42 #include "llvm/Support/ARMAttributeParser.h"
43 #include "llvm/Support/ARMBuildAttributes.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Endian.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/LEB128.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/MipsABIFlags.h"
54 #include "llvm/Support/RISCVAttributeParser.h"
55 #include "llvm/Support/RISCVAttributes.h"
56 #include "llvm/Support/ScopedPrinter.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cinttypes>
60 #include <cstddef>
61 #include <cstdint>
62 #include <cstdlib>
63 #include <iterator>
64 #include <memory>
65 #include <string>
66 #include <system_error>
67 #include <vector>
69 using namespace llvm;
70 using namespace llvm::object;
71 using namespace ELF;
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
74 case ns::enum: \
75 return #enum;
77 #define ENUM_ENT(enum, altName) \
78 { #enum, altName, ELF::enum }
80 #define ENUM_ENT_1(enum) \
81 { #enum, #enum, ELF::enum }
83 #define TYPEDEF_ELF_TYPES(ELFT) \
84 using ELFO = ELFFile<ELFT>; \
85 using Elf_Addr = typename ELFT::Addr; \
86 using Elf_Shdr = typename ELFT::Shdr; \
87 using Elf_Sym = typename ELFT::Sym; \
88 using Elf_Dyn = typename ELFT::Dyn; \
89 using Elf_Dyn_Range = typename ELFT::DynRange; \
90 using Elf_Rel = typename ELFT::Rel; \
91 using Elf_Rela = typename ELFT::Rela; \
92 using Elf_Relr = typename ELFT::Relr; \
93 using Elf_Rel_Range = typename ELFT::RelRange; \
94 using Elf_Rela_Range = typename ELFT::RelaRange; \
95 using Elf_Relr_Range = typename ELFT::RelrRange; \
96 using Elf_Phdr = typename ELFT::Phdr; \
97 using Elf_Half = typename ELFT::Half; \
98 using Elf_Ehdr = typename ELFT::Ehdr; \
99 using Elf_Word = typename ELFT::Word; \
100 using Elf_Hash = typename ELFT::Hash; \
101 using Elf_GnuHash = typename ELFT::GnuHash; \
102 using Elf_Note = typename ELFT::Note; \
103 using Elf_Sym_Range = typename ELFT::SymRange; \
104 using Elf_Versym = typename ELFT::Versym; \
105 using Elf_Verneed = typename ELFT::Verneed; \
106 using Elf_Vernaux = typename ELFT::Vernaux; \
107 using Elf_Verdef = typename ELFT::Verdef; \
108 using Elf_Verdaux = typename ELFT::Verdaux; \
109 using Elf_CGProfile = typename ELFT::CGProfile; \
110 using uintX_t = typename ELFT::uint;
112 namespace {
114 template <class ELFT> class DumpStyle;
116 template <class ELFT> struct RelSymbol {
117 RelSymbol(const typename ELFT::Sym *S, StringRef N)
118 : Sym(S), Name(N.str()) {}
119 const typename ELFT::Sym *Sym;
120 std::string Name;
123 /// Represents a contiguous uniform range in the file. We cannot just create a
124 /// range directly because when creating one of these from the .dynamic table
125 /// the size, entity size and virtual address are different entries in arbitrary
126 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
127 struct DynRegionInfo {
128 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
129 : Obj(&Owner), Dumper(&D) {}
130 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
131 uint64_t S, uint64_t ES)
132 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
134 /// Address in current address space.
135 const uint8_t *Addr = nullptr;
136 /// Size in bytes of the region.
137 uint64_t Size = 0;
138 /// Size of each entity in the region.
139 uint64_t EntSize = 0;
141 /// Owner object. Used for error reporting.
142 const Binary *Obj;
143 /// Dumper used for error reporting.
144 const ObjDumper *Dumper;
145 /// Error prefix. Used for error reporting to provide more information.
146 std::string Context;
147 /// Region size name. Used for error reporting.
148 StringRef SizePrintName = "size";
149 /// Entry size name. Used for error reporting. If this field is empty, errors
150 /// will not mention the entry size.
151 StringRef EntSizePrintName = "entry size";
153 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
154 const Type *Start = reinterpret_cast<const Type *>(Addr);
155 if (!Start)
156 return {Start, Start};
158 const uint64_t Offset =
159 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
160 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
162 if (Size > ObjSize - Offset) {
163 Dumper->reportUniqueWarning(
164 "unable to read data at 0x" + Twine::utohexstr(Offset) +
165 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
166 "): it goes past the end of the file of size 0x" +
167 Twine::utohexstr(ObjSize));
168 return {Start, Start};
171 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
172 return {Start, Start + (Size / EntSize)};
174 std::string Msg;
175 if (!Context.empty())
176 Msg += Context + " has ";
178 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
179 .str();
180 if (!EntSizePrintName.empty())
181 Msg +=
182 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
183 .str();
185 Dumper->reportUniqueWarning(Msg);
186 return {Start, Start};
190 struct GroupMember {
191 StringRef Name;
192 uint64_t Index;
195 struct GroupSection {
196 StringRef Name;
197 std::string Signature;
198 uint64_t ShName;
199 uint64_t Index;
200 uint32_t Link;
201 uint32_t Info;
202 uint32_t Type;
203 std::vector<GroupMember> Members;
206 namespace {
207 struct VerdAux {
208 unsigned Offset;
209 std::string Name;
212 struct VerDef {
213 unsigned Offset;
214 unsigned Version;
215 unsigned Flags;
216 unsigned Ndx;
217 unsigned Cnt;
218 unsigned Hash;
219 std::string Name;
220 std::vector<VerdAux> AuxV;
223 struct VernAux {
224 unsigned Hash;
225 unsigned Flags;
226 unsigned Other;
227 unsigned Offset;
228 std::string Name;
231 struct VerNeed {
232 unsigned Version;
233 unsigned Cnt;
234 unsigned Offset;
235 std::string File;
236 std::vector<VernAux> AuxV;
239 struct NoteType {
240 uint32_t ID;
241 StringRef Name;
244 } // namespace
246 template <class ELFT> class Relocation {
247 public:
248 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
249 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
250 Offset(R.r_offset), Info(R.r_info) {}
252 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
253 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
254 Addend = R.r_addend;
257 uint32_t Type;
258 uint32_t Symbol;
259 typename ELFT::uint Offset;
260 typename ELFT::uint Info;
261 Optional<int64_t> Addend;
264 template <typename ELFT> class ELFDumper : public ObjDumper {
265 public:
266 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
268 void printFileHeaders() override;
269 void printSectionHeaders() override;
270 void printRelocations() override;
271 void printDependentLibs() override;
272 void printDynamicRelocations() override;
273 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
274 void printHashSymbols() override;
275 void printSectionDetails() override;
276 void printUnwindInfo() override;
278 void printDynamicTable() override;
279 void printNeededLibraries() override;
280 void printProgramHeaders(bool PrintProgramHeaders,
281 cl::boolOrDefault PrintSectionMapping) override;
282 void printHashTable() override;
283 void printGnuHashTable() override;
284 void printLoadName() override;
285 void printVersionInfo() override;
286 void printGroupSections() override;
288 void printArchSpecificInfo() override;
290 void printStackMap() const override;
292 void printHashHistograms() override;
294 void printCGProfile() override;
295 void printAddrsig() override;
297 void printNotes() override;
299 void printELFLinkerOptions() override;
300 void printStackSizes() override;
302 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
304 private:
305 std::unique_ptr<DumpStyle<ELFT>> ELFDumperStyle;
307 TYPEDEF_ELF_TYPES(ELFT)
309 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
310 uint64_t EntSize) {
311 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
312 return createError("offset (0x" + Twine::utohexstr(Offset) +
313 ") + size (0x" + Twine::utohexstr(Size) +
314 ") is greater than the file size (0x" +
315 Twine::utohexstr(Obj.getBufSize()) + ")");
316 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
319 void printAttributes();
320 void printMipsReginfo();
321 void printMipsOptions();
323 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
324 void loadDynamicTable();
325 void parseDynamicTable();
327 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
328 bool &IsDefault) const;
329 Error LoadVersionMap() const;
331 const object::ELFObjectFile<ELFT> &ObjF;
332 const ELFFile<ELFT> &Obj;
333 DynRegionInfo DynRelRegion;
334 DynRegionInfo DynRelaRegion;
335 DynRegionInfo DynRelrRegion;
336 DynRegionInfo DynPLTRelRegion;
337 Optional<DynRegionInfo> DynSymRegion;
338 DynRegionInfo DynamicTable;
339 StringRef DynamicStringTable;
340 const Elf_Hash *HashTable = nullptr;
341 const Elf_GnuHash *GnuHashTable = nullptr;
342 const Elf_Shdr *DotSymtabSec = nullptr;
343 const Elf_Shdr *DotDynsymSec = nullptr;
344 const Elf_Shdr *DotCGProfileSec = nullptr;
345 const Elf_Shdr *DotAddrsigSec = nullptr;
346 ArrayRef<Elf_Word> ShndxTable;
347 Optional<uint64_t> SONameOffset;
349 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
350 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
351 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
353 struct VersionEntry {
354 std::string Name;
355 bool IsVerDef;
357 mutable SmallVector<Optional<VersionEntry>, 16> VersionMap;
359 std::string describe(const Elf_Shdr &Sec) const;
361 public:
362 unsigned getHashTableEntSize() const {
363 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
364 // sections. This violates the ELF specification.
365 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
366 Obj.getHeader().e_machine == ELF::EM_ALPHA)
367 return 8;
368 return 4;
371 Elf_Dyn_Range dynamic_table() const {
372 // A valid .dynamic section contains an array of entries terminated
373 // with a DT_NULL entry. However, sometimes the section content may
374 // continue past the DT_NULL entry, so to dump the section correctly,
375 // we first find the end of the entries by iterating over them.
376 Elf_Dyn_Range Table = DynamicTable.getAsArrayRef<Elf_Dyn>();
378 size_t Size = 0;
379 while (Size < Table.size())
380 if (Table[Size++].getTag() == DT_NULL)
381 break;
383 return Table.slice(0, Size);
386 Optional<DynRegionInfo> getDynSymRegion() const { return DynSymRegion; }
388 Elf_Sym_Range dynamic_symbols() const {
389 if (!DynSymRegion)
390 return Elf_Sym_Range();
391 return DynSymRegion->getAsArrayRef<Elf_Sym>();
394 Elf_Rel_Range dyn_rels() const;
395 Elf_Rela_Range dyn_relas() const;
396 Elf_Relr_Range dyn_relrs() const;
397 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
398 Optional<StringRef> StrTable,
399 bool IsDynamic) const;
400 Expected<unsigned> getSymbolSectionIndex(const Elf_Sym &Symbol,
401 unsigned SymIndex) const;
402 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
403 unsigned SectionIndex) const;
404 std::string getStaticSymbolName(uint32_t Index) const;
405 StringRef getDynamicString(uint64_t Value) const;
406 Expected<StringRef> getSymbolVersionByIndex(uint32_t VersionSymbolIndex,
407 bool &IsDefault) const;
409 void printSymbolsHelper(bool IsDynamic) const;
410 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
412 const Elf_Shdr *findSectionByName(StringRef Name) const;
414 const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; }
415 const Elf_Shdr *getDotCGProfileSec() const { return DotCGProfileSec; }
416 const Elf_Shdr *getDotAddrsigSec() const { return DotAddrsigSec; }
417 ArrayRef<Elf_Word> getShndxTable() const { return ShndxTable; }
418 StringRef getDynamicStringTable() const { return DynamicStringTable; }
419 const DynRegionInfo &getDynRelRegion() const { return DynRelRegion; }
420 const DynRegionInfo &getDynRelaRegion() const { return DynRelaRegion; }
421 const DynRegionInfo &getDynRelrRegion() const { return DynRelrRegion; }
422 const DynRegionInfo &getDynPLTRelRegion() const { return DynPLTRelRegion; }
423 const DynRegionInfo &getDynamicTableRegion() const { return DynamicTable; }
424 const Elf_Hash *getHashTable() const { return HashTable; }
425 const Elf_GnuHash *getGnuHashTable() const { return GnuHashTable; }
427 Expected<ArrayRef<Elf_Versym>> getVersionTable(const Elf_Shdr &Sec,
428 ArrayRef<Elf_Sym> *SymTab,
429 StringRef *StrTab) const;
430 Expected<std::vector<VerDef>>
431 getVersionDefinitions(const Elf_Shdr &Sec) const;
432 Expected<std::vector<VerNeed>>
433 getVersionDependencies(const Elf_Shdr &Sec) const;
435 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
436 const Elf_Shdr *SymTab) const;
439 template <class ELFT>
440 static std::string describe(const ELFFile<ELFT> &Obj,
441 const typename ELFT::Shdr &Sec) {
442 unsigned SecNdx = &Sec - &cantFail(Obj.sections()).front();
443 return (object::getELFSectionTypeName(Obj.getHeader().e_machine,
444 Sec.sh_type) +
445 " section with index " + Twine(SecNdx))
446 .str();
449 template <class ELFT>
450 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
451 return ::describe(Obj, Sec);
454 template <class ELFT>
455 static Expected<StringRef> getLinkAsStrtab(const ELFFile<ELFT> &Obj,
456 const typename ELFT::Shdr &Sec) {
457 Expected<const typename ELFT::Shdr *> StrTabSecOrErr =
458 Obj.getSection(Sec.sh_link);
459 if (!StrTabSecOrErr)
460 return createError("invalid section linked to " + describe(Obj, Sec) +
461 ": " + toString(StrTabSecOrErr.takeError()));
463 Expected<StringRef> StrTabOrErr = Obj.getStringTable(**StrTabSecOrErr);
464 if (!StrTabOrErr)
465 return createError("invalid string table linked to " + describe(Obj, Sec) +
466 ": " + toString(StrTabOrErr.takeError()));
467 return *StrTabOrErr;
470 // Returns the linked symbol table and associated string table for a given section.
471 template <class ELFT>
472 static Expected<std::pair<typename ELFT::SymRange, StringRef>>
473 getLinkAsSymtab(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec,
474 unsigned ExpectedType) {
475 Expected<const typename ELFT::Shdr *> SymtabOrErr =
476 Obj.getSection(Sec.sh_link);
477 if (!SymtabOrErr)
478 return createError("invalid section linked to " + describe(Obj, Sec) +
479 ": " + toString(SymtabOrErr.takeError()));
481 if ((*SymtabOrErr)->sh_type != ExpectedType)
482 return createError(
483 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
484 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
485 ", but got " +
486 object::getELFSectionTypeName(Obj.getHeader().e_machine,
487 (*SymtabOrErr)->sh_type));
489 Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, **SymtabOrErr);
490 if (!StrTabOrErr)
491 return createError(
492 "can't get a string table for the symbol table linked to " +
493 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
495 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
496 if (!SymsOrErr)
497 return createError("unable to read symbols from the " + describe(Obj, Sec) +
498 ": " + toString(SymsOrErr.takeError()));
500 return std::make_pair(*SymsOrErr, *StrTabOrErr);
503 template <class ELFT>
504 Expected<ArrayRef<typename ELFT::Versym>>
505 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
506 StringRef *StrTab) const {
507 assert((!SymTab && !StrTab) || (SymTab && StrTab));
508 if (uintptr_t(Obj.base() + Sec.sh_offset) % sizeof(uint16_t) != 0)
509 return createError("the " + describe(Sec) + " is misaligned");
511 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
512 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
513 if (!VersionsOrErr)
514 return createError("cannot read content of " + describe(Sec) + ": " +
515 toString(VersionsOrErr.takeError()));
517 Expected<std::pair<ArrayRef<Elf_Sym>, StringRef>> SymTabOrErr =
518 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
519 if (!SymTabOrErr) {
520 reportUniqueWarning(SymTabOrErr.takeError());
521 return *VersionsOrErr;
524 if (SymTabOrErr->first.size() != VersionsOrErr->size())
525 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
526 Twine(VersionsOrErr->size()) +
527 ") does not match the number of symbols (" +
528 Twine(SymTabOrErr->first.size()) +
529 ") in the symbol table with index " +
530 Twine(Sec.sh_link));
532 if (SymTab)
533 std::tie(*SymTab, *StrTab) = *SymTabOrErr;
534 return *VersionsOrErr;
537 template <class ELFT>
538 Expected<std::vector<VerDef>>
539 ELFDumper<ELFT>::getVersionDefinitions(const Elf_Shdr &Sec) const {
540 Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec);
541 if (!StrTabOrErr)
542 return StrTabOrErr.takeError();
544 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
545 if (!ContentsOrErr)
546 return createError("cannot read content of " + describe(Sec) + ": " +
547 toString(ContentsOrErr.takeError()));
549 const uint8_t *Start = ContentsOrErr->data();
550 const uint8_t *End = Start + ContentsOrErr->size();
552 auto ExtractNextAux = [&](const uint8_t *&VerdauxBuf,
553 unsigned VerDefNdx) -> Expected<VerdAux> {
554 if (VerdauxBuf + sizeof(Elf_Verdaux) > End)
555 return createError("invalid " + describe(Sec) + ": version definition " +
556 Twine(VerDefNdx) +
557 " refers to an auxiliary entry that goes past the end "
558 "of the section");
560 auto *Verdaux = reinterpret_cast<const Elf_Verdaux *>(VerdauxBuf);
561 VerdauxBuf += Verdaux->vda_next;
563 VerdAux Aux;
564 Aux.Offset = VerdauxBuf - Start;
565 if (Verdaux->vda_name <= StrTabOrErr->size())
566 Aux.Name = std::string(StrTabOrErr->drop_front(Verdaux->vda_name));
567 else
568 Aux.Name = "<invalid vda_name: " + to_string(Verdaux->vda_name) + ">";
569 return Aux;
572 std::vector<VerDef> Ret;
573 const uint8_t *VerdefBuf = Start;
574 for (unsigned I = 1; I <= /*VerDefsNum=*/Sec.sh_info; ++I) {
575 if (VerdefBuf + sizeof(Elf_Verdef) > End)
576 return createError("invalid " + describe(Sec) + ": version definition " +
577 Twine(I) + " goes past the end of the section");
579 if (uintptr_t(VerdefBuf) % sizeof(uint32_t) != 0)
580 return createError(
581 "invalid " + describe(Sec) +
582 ": found a misaligned version definition entry at offset 0x" +
583 Twine::utohexstr(VerdefBuf - Start));
585 unsigned Version = *reinterpret_cast<const Elf_Half *>(VerdefBuf);
586 if (Version != 1)
587 return createError("unable to dump " + describe(Sec) + ": version " +
588 Twine(Version) + " is not yet supported");
590 const Elf_Verdef *D = reinterpret_cast<const Elf_Verdef *>(VerdefBuf);
591 VerDef &VD = *Ret.emplace(Ret.end());
592 VD.Offset = VerdefBuf - Start;
593 VD.Version = D->vd_version;
594 VD.Flags = D->vd_flags;
595 VD.Ndx = D->vd_ndx;
596 VD.Cnt = D->vd_cnt;
597 VD.Hash = D->vd_hash;
599 const uint8_t *VerdauxBuf = VerdefBuf + D->vd_aux;
600 for (unsigned J = 0; J < D->vd_cnt; ++J) {
601 if (uintptr_t(VerdauxBuf) % sizeof(uint32_t) != 0)
602 return createError("invalid " + describe(Sec) +
603 ": found a misaligned auxiliary entry at offset 0x" +
604 Twine::utohexstr(VerdauxBuf - Start));
606 Expected<VerdAux> AuxOrErr = ExtractNextAux(VerdauxBuf, I);
607 if (!AuxOrErr)
608 return AuxOrErr.takeError();
610 if (J == 0)
611 VD.Name = AuxOrErr->Name;
612 else
613 VD.AuxV.push_back(*AuxOrErr);
616 VerdefBuf += D->vd_next;
619 return Ret;
622 template <class ELFT>
623 Expected<std::vector<VerNeed>>
624 ELFDumper<ELFT>::getVersionDependencies(const Elf_Shdr &Sec) const {
625 StringRef StrTab;
626 Expected<StringRef> StrTabOrErr = getLinkAsStrtab(Obj, Sec);
627 if (!StrTabOrErr)
628 reportUniqueWarning(StrTabOrErr.takeError());
629 else
630 StrTab = *StrTabOrErr;
632 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
633 if (!ContentsOrErr)
634 return createError("cannot read content of " + describe(Sec) + ": " +
635 toString(ContentsOrErr.takeError()));
637 const uint8_t *Start = ContentsOrErr->data();
638 const uint8_t *End = Start + ContentsOrErr->size();
639 const uint8_t *VerneedBuf = Start;
641 std::vector<VerNeed> Ret;
642 for (unsigned I = 1; I <= /*VerneedNum=*/Sec.sh_info; ++I) {
643 if (VerneedBuf + sizeof(Elf_Verdef) > End)
644 return createError("invalid " + describe(Sec) + ": version dependency " +
645 Twine(I) + " goes past the end of the section");
647 if (uintptr_t(VerneedBuf) % sizeof(uint32_t) != 0)
648 return createError(
649 "invalid " + describe(Sec) +
650 ": found a misaligned version dependency entry at offset 0x" +
651 Twine::utohexstr(VerneedBuf - Start));
653 unsigned Version = *reinterpret_cast<const Elf_Half *>(VerneedBuf);
654 if (Version != 1)
655 return createError("unable to dump " + describe(Sec) + ": version " +
656 Twine(Version) + " is not yet supported");
658 const Elf_Verneed *Verneed =
659 reinterpret_cast<const Elf_Verneed *>(VerneedBuf);
661 VerNeed &VN = *Ret.emplace(Ret.end());
662 VN.Version = Verneed->vn_version;
663 VN.Cnt = Verneed->vn_cnt;
664 VN.Offset = VerneedBuf - Start;
666 if (Verneed->vn_file < StrTab.size())
667 VN.File = std::string(StrTab.drop_front(Verneed->vn_file));
668 else
669 VN.File = "<corrupt vn_file: " + to_string(Verneed->vn_file) + ">";
671 const uint8_t *VernauxBuf = VerneedBuf + Verneed->vn_aux;
672 for (unsigned J = 0; J < Verneed->vn_cnt; ++J) {
673 if (uintptr_t(VernauxBuf) % sizeof(uint32_t) != 0)
674 return createError("invalid " + describe(Sec) +
675 ": found a misaligned auxiliary entry at offset 0x" +
676 Twine::utohexstr(VernauxBuf - Start));
678 if (VernauxBuf + sizeof(Elf_Vernaux) > End)
679 return createError(
680 "invalid " + describe(Sec) + ": version dependency " + Twine(I) +
681 " refers to an auxiliary entry that goes past the end "
682 "of the section");
684 const Elf_Vernaux *Vernaux =
685 reinterpret_cast<const Elf_Vernaux *>(VernauxBuf);
687 VernAux &Aux = *VN.AuxV.emplace(VN.AuxV.end());
688 Aux.Hash = Vernaux->vna_hash;
689 Aux.Flags = Vernaux->vna_flags;
690 Aux.Other = Vernaux->vna_other;
691 Aux.Offset = VernauxBuf - Start;
692 if (StrTab.size() <= Vernaux->vna_name)
693 Aux.Name = "<corrupt>";
694 else
695 Aux.Name = std::string(StrTab.drop_front(Vernaux->vna_name));
697 VernauxBuf += Vernaux->vna_next;
699 VerneedBuf += Verneed->vn_next;
701 return Ret;
704 template <class ELFT>
705 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic) const {
706 Optional<StringRef> StrTable;
707 size_t Entries = 0;
708 Elf_Sym_Range Syms(nullptr, nullptr);
709 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
711 if (IsDynamic) {
712 StrTable = DynamicStringTable;
713 Syms = dynamic_symbols();
714 Entries = Syms.size();
715 } else if (DotSymtabSec) {
716 if (Expected<StringRef> StrTableOrErr =
717 Obj.getStringTableForSymtab(*DotSymtabSec))
718 StrTable = *StrTableOrErr;
719 else
720 reportUniqueWarning(
721 "unable to get the string table for the SHT_SYMTAB section: " +
722 toString(StrTableOrErr.takeError()));
724 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
725 Syms = *SymsOrErr;
726 else
727 reportUniqueWarning(
728 "unable to read symbols from the SHT_SYMTAB section: " +
729 toString(SymsOrErr.takeError()));
730 Entries = DotSymtabSec->getEntityCount();
732 if (Syms.begin() == Syms.end())
733 return;
735 // The st_other field has 2 logical parts. The first two bits hold the symbol
736 // visibility (STV_*) and the remainder hold other platform-specific values.
737 bool NonVisibilityBitsUsed = llvm::find_if(Syms, [](const Elf_Sym &S) {
738 return S.st_other & ~0x3;
739 }) != Syms.end();
741 ELFDumperStyle->printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed);
742 for (const Elf_Sym &Sym : Syms)
743 ELFDumperStyle->printSymbol(Sym, &Sym - Syms.begin(), StrTable, IsDynamic,
744 NonVisibilityBitsUsed);
747 template <class ELFT> class MipsGOTParser;
749 template <typename ELFT> class DumpStyle {
750 public:
751 TYPEDEF_ELF_TYPES(ELFT)
753 DumpStyle(const ELFDumper<ELFT> &Dumper)
754 : Obj(Dumper.getElfObject().getELFFile()), ElfObj(Dumper.getElfObject()),
755 Dumper(Dumper) {
756 FileName = ElfObj.getFileName();
759 virtual ~DumpStyle() = default;
761 virtual void printFileHeaders() = 0;
762 virtual void printGroupSections() = 0;
763 virtual void printRelocations() = 0;
764 virtual void printSectionHeaders() = 0;
765 virtual void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) = 0;
766 virtual void printHashSymbols() {}
767 virtual void printSectionDetails() {}
768 virtual void printDependentLibs() = 0;
769 virtual void printDynamic() {}
770 virtual void printDynamicRelocations() = 0;
771 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
772 bool NonVisibilityBitsUsed) {}
773 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
774 Optional<StringRef> StrTable, bool IsDynamic,
775 bool NonVisibilityBitsUsed) = 0;
776 virtual void printProgramHeaders(bool PrintProgramHeaders,
777 cl::boolOrDefault PrintSectionMapping) = 0;
778 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
779 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
780 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
781 virtual void printHashHistograms() = 0;
782 virtual void printCGProfile() = 0;
783 virtual void printAddrsig() = 0;
784 virtual void printNotes() = 0;
785 virtual void printELFLinkerOptions() = 0;
786 virtual void printStackSizes() = 0;
787 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
788 void printRelocatableStackSizes(std::function<void()> PrintHeader);
789 void printFunctionStackSize(uint64_t SymValue,
790 Optional<const Elf_Shdr *> FunctionSec,
791 const Elf_Shdr &StackSizeSec, DataExtractor Data,
792 uint64_t *Offset);
793 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
794 unsigned Ndx, const Elf_Shdr *SymTab,
795 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
796 const RelocationResolver &Resolver, DataExtractor Data);
797 virtual void printStackSizeEntry(uint64_t Size, StringRef FuncName) = 0;
798 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
799 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
800 virtual void printMipsABIFlags() = 0;
801 const ELFDumper<ELFT> &dumper() const { return Dumper; }
802 void reportUniqueWarning(Error Err) const;
803 void reportUniqueWarning(const Twine &Msg) const;
805 protected:
806 std::vector<GroupSection> getGroups();
808 void printDependentLibsHelper(
809 function_ref<void(const Elf_Shdr &)> OnSectionStart,
810 function_ref<void(StringRef, uint64_t)> OnSectionEntry);
812 virtual void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
813 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) = 0;
814 virtual void printRelrReloc(const Elf_Relr &R) = 0;
815 virtual void printDynamicReloc(const Relocation<ELFT> &R) = 0;
816 void forEachRelocationDo(
817 const Elf_Shdr &Sec, bool RawRelr,
818 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
819 const Elf_Shdr &, const Elf_Shdr *)>
820 RelRelaFn,
821 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
822 void printRelocationsHelper(const Elf_Shdr &Sec);
823 void printDynamicRelocationsHelper();
824 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
825 const DynRegionInfo &Reg){};
827 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
829 StringRef FileName;
830 const ELFFile<ELFT> &Obj;
831 const ELFObjectFile<ELFT> &ElfObj;
833 private:
834 const ELFDumper<ELFT> &Dumper;
837 template <typename ELFT> class GNUStyle : public DumpStyle<ELFT> {
838 formatted_raw_ostream &OS;
840 public:
841 TYPEDEF_ELF_TYPES(ELFT)
843 GNUStyle(ScopedPrinter &W, const ELFDumper<ELFT> &Dumper)
844 : DumpStyle<ELFT>(Dumper),
845 OS(static_cast<formatted_raw_ostream &>(W.getOStream())) {
846 assert(&W.getOStream() == &llvm::fouts());
849 void printFileHeaders() override;
850 void printGroupSections() override;
851 void printRelocations() override;
852 void printSectionHeaders() override;
853 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
854 void printHashSymbols() override;
855 void printSectionDetails() override;
856 void printDependentLibs() override;
857 void printDynamic() override;
858 void printDynamicRelocations() override;
859 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
860 bool NonVisibilityBitsUsed) override;
861 void printProgramHeaders(bool PrintProgramHeaders,
862 cl::boolOrDefault PrintSectionMapping) override;
863 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
864 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
865 void printVersionDependencySection(const Elf_Shdr *Sec) override;
866 void printHashHistograms() override;
867 void printCGProfile() override;
868 void printAddrsig() override;
869 void printNotes() override;
870 void printELFLinkerOptions() override;
871 void printStackSizes() override;
872 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
873 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
874 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
875 void printMipsABIFlags() override;
877 private:
878 void printHashHistogram(const Elf_Hash &HashTable);
879 void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable);
881 void printHashTableSymbols(const Elf_Hash &HashTable);
882 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
884 struct Field {
885 std::string Str;
886 unsigned Column;
888 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
889 Field(unsigned Col) : Column(Col) {}
892 template <typename T, typename TEnum>
893 std::string printEnum(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues) {
894 for (const EnumEntry<TEnum> &EnumItem : EnumValues)
895 if (EnumItem.Value == Value)
896 return std::string(EnumItem.AltName);
897 return to_hexString(Value, false);
900 template <typename T, typename TEnum>
901 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
902 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
903 TEnum EnumMask3 = {}) {
904 std::string Str;
905 for (const EnumEntry<TEnum> &Flag : EnumValues) {
906 if (Flag.Value == 0)
907 continue;
909 TEnum EnumMask{};
910 if (Flag.Value & EnumMask1)
911 EnumMask = EnumMask1;
912 else if (Flag.Value & EnumMask2)
913 EnumMask = EnumMask2;
914 else if (Flag.Value & EnumMask3)
915 EnumMask = EnumMask3;
916 bool IsEnum = (Flag.Value & EnumMask) != 0;
917 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
918 (IsEnum && (Value & EnumMask) == Flag.Value)) {
919 if (!Str.empty())
920 Str += ", ";
921 Str += Flag.AltName;
924 return Str;
927 formatted_raw_ostream &printField(struct Field F) {
928 if (F.Column != 0)
929 OS.PadToColumn(F.Column);
930 OS << F.Str;
931 OS.flush();
932 return OS;
934 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
935 StringRef StrTable, uint32_t Bucket);
936 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
937 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) override;
938 void printRelrReloc(const Elf_Relr &R) override;
940 void printRelRelaReloc(const Relocation<ELFT> &R,
941 const RelSymbol<ELFT> &RelSym);
942 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
943 Optional<StringRef> StrTable, bool IsDynamic,
944 bool NonVisibilityBitsUsed) override;
945 void printDynamicRelocHeader(unsigned Type, StringRef Name,
946 const DynRegionInfo &Reg) override;
947 void printDynamicReloc(const Relocation<ELFT> &R) override;
949 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex);
950 void printProgramHeaders();
951 void printSectionMapping();
952 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
953 const Twine &Label, unsigned EntriesNum);
956 template <class ELFT>
957 void DumpStyle<ELFT>::reportUniqueWarning(Error Err) const {
958 this->dumper().reportUniqueWarning(std::move(Err));
961 template <class ELFT>
962 void DumpStyle<ELFT>::reportUniqueWarning(const Twine &Msg) const {
963 this->dumper().reportUniqueWarning(Msg);
966 template <typename ELFT> class LLVMStyle : public DumpStyle<ELFT> {
967 public:
968 TYPEDEF_ELF_TYPES(ELFT)
970 LLVMStyle(ScopedPrinter &W, const ELFDumper<ELFT> &Dumper)
971 : DumpStyle<ELFT>(Dumper), W(W) {}
973 void printFileHeaders() override;
974 void printGroupSections() override;
975 void printRelocations() override;
976 void printSectionHeaders() override;
977 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) override;
978 void printDependentLibs() override;
979 void printDynamic() override;
980 void printDynamicRelocations() override;
981 void printProgramHeaders(bool PrintProgramHeaders,
982 cl::boolOrDefault PrintSectionMapping) override;
983 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
984 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
985 void printVersionDependencySection(const Elf_Shdr *Sec) override;
986 void printHashHistograms() override;
987 void printCGProfile() override;
988 void printAddrsig() override;
989 void printNotes() override;
990 void printELFLinkerOptions() override;
991 void printStackSizes() override;
992 void printStackSizeEntry(uint64_t Size, StringRef FuncName) override;
993 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
994 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
995 void printMipsABIFlags() override;
997 private:
998 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
999 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) override;
1000 void printRelrReloc(const Elf_Relr &R) override;
1001 void printDynamicReloc(const Relocation<ELFT> &R) override;
1003 void printRelRelaReloc(const Relocation<ELFT> &R, StringRef SymbolName);
1004 void printSymbols();
1005 void printDynamicSymbols();
1006 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex);
1007 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
1008 Optional<StringRef> StrTable, bool IsDynamic,
1009 bool /*NonVisibilityBitsUsed*/) override;
1010 void printProgramHeaders();
1011 void printSectionMapping() {}
1013 ScopedPrinter &W;
1016 } // end anonymous namespace
1018 namespace llvm {
1020 template <class ELFT>
1021 static std::unique_ptr<ObjDumper> createELFDumper(const ELFObjectFile<ELFT> &Obj,
1022 ScopedPrinter &Writer) {
1023 return std::make_unique<ELFDumper<ELFT>>(Obj, Writer);
1026 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
1027 ScopedPrinter &Writer) {
1028 // Little-endian 32-bit
1029 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
1030 return createELFDumper(*ELFObj, Writer);
1032 // Big-endian 32-bit
1033 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
1034 return createELFDumper(*ELFObj, Writer);
1036 // Little-endian 64-bit
1037 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
1038 return createELFDumper(*ELFObj, Writer);
1040 // Big-endian 64-bit
1041 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
1044 } // end namespace llvm
1046 template <class ELFT> Error ELFDumper<ELFT>::LoadVersionMap() const {
1047 // If there is no dynamic symtab or version table, there is nothing to do.
1048 if (!DynSymRegion || !SymbolVersionSection)
1049 return Error::success();
1051 // Has the VersionMap already been loaded?
1052 if (!VersionMap.empty())
1053 return Error::success();
1055 // The first two version indexes are reserved.
1056 // Index 0 is LOCAL, index 1 is GLOBAL.
1057 VersionMap.push_back(VersionEntry());
1058 VersionMap.push_back(VersionEntry());
1060 auto InsertEntry = [this](unsigned N, StringRef Version, bool IsVerdef) {
1061 if (N >= VersionMap.size())
1062 VersionMap.resize(N + 1);
1063 VersionMap[N] = {std::string(Version), IsVerdef};
1066 if (SymbolVersionDefSection) {
1067 Expected<std::vector<VerDef>> Defs =
1068 this->getVersionDefinitions(*SymbolVersionDefSection);
1069 if (!Defs)
1070 return Defs.takeError();
1071 for (const VerDef &Def : *Defs)
1072 InsertEntry(Def.Ndx & ELF::VERSYM_VERSION, Def.Name, true);
1075 if (SymbolVersionNeedSection) {
1076 Expected<std::vector<VerNeed>> Deps =
1077 this->getVersionDependencies(*SymbolVersionNeedSection);
1078 if (!Deps)
1079 return Deps.takeError();
1080 for (const VerNeed &Dep : *Deps)
1081 for (const VernAux &Aux : Dep.AuxV)
1082 InsertEntry(Aux.Other & ELF::VERSYM_VERSION, Aux.Name, false);
1085 return Error::success();
1088 template <typename ELFT>
1089 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
1090 bool &IsDefault) const {
1091 // This is a dynamic symbol. Look in the GNU symbol version table.
1092 if (!SymbolVersionSection) {
1093 // No version table.
1094 IsDefault = false;
1095 return "";
1098 assert(DynSymRegion && "DynSymRegion has not been initialised");
1099 // Determine the position in the symbol table of this entry.
1100 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
1101 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
1102 sizeof(Elf_Sym);
1104 // Get the corresponding version index entry.
1105 if (Expected<const Elf_Versym *> EntryOrErr =
1106 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex))
1107 return this->getSymbolVersionByIndex((*EntryOrErr)->vs_index, IsDefault);
1108 else
1109 return EntryOrErr.takeError();
1112 template <typename ELFT>
1113 Expected<RelSymbol<ELFT>>
1114 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
1115 const Elf_Shdr *SymTab) const {
1116 if (R.Symbol == 0)
1117 return RelSymbol<ELFT>(nullptr, "");
1119 Expected<const Elf_Sym *> SymOrErr =
1120 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
1121 if (!SymOrErr)
1122 return SymOrErr.takeError();
1123 const Elf_Sym *Sym = *SymOrErr;
1124 if (!Sym)
1125 return RelSymbol<ELFT>(nullptr, "");
1127 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
1128 if (!StrTableOrErr)
1129 return StrTableOrErr.takeError();
1131 const Elf_Sym *FirstSym =
1132 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
1133 std::string SymbolName = getFullSymbolName(
1134 *Sym, Sym - FirstSym, *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
1135 return RelSymbol<ELFT>(Sym, SymbolName);
1138 static std::string maybeDemangle(StringRef Name) {
1139 return opts::Demangle ? demangle(std::string(Name)) : Name.str();
1142 template <typename ELFT>
1143 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
1144 auto Warn = [&](Error E) -> std::string {
1145 this->reportUniqueWarning("unable to read the name of symbol with index " +
1146 Twine(Index) + ": " + toString(std::move(E)));
1147 return "<?>";
1150 Expected<const typename ELFT::Sym *> SymOrErr =
1151 Obj.getSymbol(DotSymtabSec, Index);
1152 if (!SymOrErr)
1153 return Warn(SymOrErr.takeError());
1155 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
1156 if (!StrTabOrErr)
1157 return Warn(StrTabOrErr.takeError());
1159 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
1160 if (!NameOrErr)
1161 return Warn(NameOrErr.takeError());
1162 return maybeDemangle(*NameOrErr);
1165 template <typename ELFT>
1166 Expected<StringRef>
1167 ELFDumper<ELFT>::getSymbolVersionByIndex(uint32_t SymbolVersionIndex,
1168 bool &IsDefault) const {
1169 size_t VersionIndex = SymbolVersionIndex & VERSYM_VERSION;
1171 // Special markers for unversioned symbols.
1172 if (VersionIndex == VER_NDX_LOCAL || VersionIndex == VER_NDX_GLOBAL) {
1173 IsDefault = false;
1174 return "";
1177 // Lookup this symbol in the version table.
1178 if (Error E = LoadVersionMap())
1179 return std::move(E);
1180 if (VersionIndex >= VersionMap.size() || !VersionMap[VersionIndex])
1181 return createError("SHT_GNU_versym section refers to a version index " +
1182 Twine(VersionIndex) + " which is missing");
1184 const VersionEntry &Entry = *VersionMap[VersionIndex];
1185 if (Entry.IsVerDef)
1186 IsDefault = !(SymbolVersionIndex & VERSYM_HIDDEN);
1187 else
1188 IsDefault = false;
1189 return Entry.Name.c_str();
1192 template <typename ELFT>
1193 std::string ELFDumper<ELFT>::getFullSymbolName(const Elf_Sym &Symbol,
1194 unsigned SymIndex,
1195 Optional<StringRef> StrTable,
1196 bool IsDynamic) const {
1197 if (!StrTable)
1198 return "<?>";
1200 std::string SymbolName;
1201 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
1202 SymbolName = maybeDemangle(*NameOrErr);
1203 } else {
1204 reportUniqueWarning(NameOrErr.takeError());
1205 return "<?>";
1208 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
1209 Expected<unsigned> SectionIndex = getSymbolSectionIndex(Symbol, SymIndex);
1210 if (!SectionIndex) {
1211 reportUniqueWarning(SectionIndex.takeError());
1212 return "<?>";
1214 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
1215 if (!NameOrErr) {
1216 reportUniqueWarning(NameOrErr.takeError());
1217 return ("<section " + Twine(*SectionIndex) + ">").str();
1219 return std::string(*NameOrErr);
1222 if (!IsDynamic)
1223 return SymbolName;
1225 bool IsDefault;
1226 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
1227 if (!VersionOrErr) {
1228 reportUniqueWarning(VersionOrErr.takeError());
1229 return SymbolName + "@<corrupt>";
1232 if (!VersionOrErr->empty()) {
1233 SymbolName += (IsDefault ? "@@" : "@");
1234 SymbolName += *VersionOrErr;
1236 return SymbolName;
1239 template <typename ELFT>
1240 Expected<unsigned>
1241 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol,
1242 unsigned SymIndex) const {
1243 unsigned Ndx = Symbol.st_shndx;
1244 if (Ndx == SHN_XINDEX)
1245 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
1246 ShndxTable);
1247 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
1248 return Ndx;
1250 auto CreateErr = [&](const Twine &Name, Optional<unsigned> Offset = None) {
1251 std::string Desc;
1252 if (Offset)
1253 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
1254 else
1255 Desc = Name.str();
1256 return createError(
1257 "unable to get section index for symbol with st_shndx = 0x" +
1258 Twine::utohexstr(Ndx) + " (" + Desc + ")");
1261 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
1262 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
1263 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
1264 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
1265 if (Ndx == ELF::SHN_UNDEF)
1266 return CreateErr("SHN_UNDEF");
1267 if (Ndx == ELF::SHN_ABS)
1268 return CreateErr("SHN_ABS");
1269 if (Ndx == ELF::SHN_COMMON)
1270 return CreateErr("SHN_COMMON");
1271 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
1274 template <typename ELFT>
1275 Expected<StringRef>
1276 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
1277 unsigned SectionIndex) const {
1278 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
1279 if (!SecOrErr)
1280 return SecOrErr.takeError();
1281 return Obj.getSectionName(**SecOrErr);
1284 template <class ELFO>
1285 static const typename ELFO::Elf_Shdr *
1286 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
1287 uint64_t Addr) {
1288 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1289 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1290 return &Shdr;
1291 return nullptr;
1294 static const EnumEntry<unsigned> ElfClass[] = {
1295 {"None", "none", ELF::ELFCLASSNONE},
1296 {"32-bit", "ELF32", ELF::ELFCLASS32},
1297 {"64-bit", "ELF64", ELF::ELFCLASS64},
1300 static const EnumEntry<unsigned> ElfDataEncoding[] = {
1301 {"None", "none", ELF::ELFDATANONE},
1302 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1303 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
1306 static const EnumEntry<unsigned> ElfObjectFileType[] = {
1307 {"None", "NONE (none)", ELF::ET_NONE},
1308 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1309 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1310 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1311 {"Core", "CORE (Core file)", ELF::ET_CORE},
1314 static const EnumEntry<unsigned> ElfOSABI[] = {
1315 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1316 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1317 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1318 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1319 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1320 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1321 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1322 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1323 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1324 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1325 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1326 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1327 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1328 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1329 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1330 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1331 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1332 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1335 static const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1336 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1337 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1338 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1341 static const EnumEntry<unsigned> ARMElfOSABI[] = {
1342 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1345 static const EnumEntry<unsigned> C6000ElfOSABI[] = {
1346 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1347 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1350 static const EnumEntry<unsigned> ElfMachineType[] = {
1351 ENUM_ENT(EM_NONE, "None"),
1352 ENUM_ENT(EM_M32, "WE32100"),
1353 ENUM_ENT(EM_SPARC, "Sparc"),
1354 ENUM_ENT(EM_386, "Intel 80386"),
1355 ENUM_ENT(EM_68K, "MC68000"),
1356 ENUM_ENT(EM_88K, "MC88000"),
1357 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
1358 ENUM_ENT(EM_860, "Intel 80860"),
1359 ENUM_ENT(EM_MIPS, "MIPS R3000"),
1360 ENUM_ENT(EM_S370, "IBM System/370"),
1361 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
1362 ENUM_ENT(EM_PARISC, "HPPA"),
1363 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
1364 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
1365 ENUM_ENT(EM_960, "Intel 80960"),
1366 ENUM_ENT(EM_PPC, "PowerPC"),
1367 ENUM_ENT(EM_PPC64, "PowerPC64"),
1368 ENUM_ENT(EM_S390, "IBM S/390"),
1369 ENUM_ENT(EM_SPU, "SPU"),
1370 ENUM_ENT(EM_V800, "NEC V800 series"),
1371 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
1372 ENUM_ENT(EM_RH32, "TRW RH-32"),
1373 ENUM_ENT(EM_RCE, "Motorola RCE"),
1374 ENUM_ENT(EM_ARM, "ARM"),
1375 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
1376 ENUM_ENT(EM_SH, "Hitachi SH"),
1377 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
1378 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
1379 ENUM_ENT(EM_ARC, "ARC"),
1380 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
1381 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
1382 ENUM_ENT(EM_H8S, "Hitachi H8S"),
1383 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
1384 ENUM_ENT(EM_IA_64, "Intel IA-64"),
1385 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
1386 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
1387 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
1388 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
1389 ENUM_ENT(EM_PCP, "Siemens PCP"),
1390 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
1391 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
1392 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
1393 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
1394 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
1395 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
1396 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
1397 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
1398 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
1399 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
1400 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
1401 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1402 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
1403 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
1404 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
1405 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
1406 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
1407 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
1408 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
1409 ENUM_ENT(EM_VAX, "Digital VAX"),
1410 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
1411 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
1412 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
1413 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
1414 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
1415 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
1416 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
1417 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
1418 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
1419 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
1420 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
1421 ENUM_ENT(EM_V850, "NEC v850"),
1422 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
1423 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
1424 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
1425 ENUM_ENT(EM_PJ, "picoJava"),
1426 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
1427 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
1428 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
1429 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
1430 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
1431 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
1432 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
1433 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
1434 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
1435 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
1436 ENUM_ENT(EM_MAX, "MAX Processor"),
1437 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
1438 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
1439 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
1440 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
1441 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
1442 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
1443 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
1444 ENUM_ENT(EM_UNICORE, "Unicore"),
1445 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
1446 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
1447 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
1448 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
1449 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
1450 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
1451 ENUM_ENT(EM_M16C, "Renesas M16C"),
1452 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
1453 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
1454 ENUM_ENT(EM_M32C, "Renesas M32C"),
1455 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
1456 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
1457 ENUM_ENT(EM_SHARC, "EM_SHARC"),
1458 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
1459 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
1460 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
1461 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
1462 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1463 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
1464 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
1465 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
1466 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
1467 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1468 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
1469 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
1470 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
1471 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
1472 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
1473 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
1474 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
1475 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
1476 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1477 // an identical number to EM_ECOG1.
1478 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
1479 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1480 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
1481 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
1482 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
1483 ENUM_ENT(EM_RX, "Renesas RX"),
1484 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
1485 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
1486 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
1487 ENUM_ENT(EM_CR16, "Xilinx MicroBlaze"),
1488 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
1489 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
1490 ENUM_ENT(EM_L10M, "EM_L10M"),
1491 ENUM_ENT(EM_K10M, "EM_K10M"),
1492 ENUM_ENT(EM_AARCH64, "AArch64"),
1493 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1494 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1495 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1496 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1497 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1498 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1499 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1500 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1501 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1502 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1503 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1504 ENUM_ENT(EM_RL78, "Renesas RL78"),
1505 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1506 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1507 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1508 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1509 ENUM_ENT(EM_RISCV, "RISC-V"),
1510 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1511 ENUM_ENT(EM_BPF, "EM_BPF"),
1512 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
1515 static const EnumEntry<unsigned> ElfSymbolBindings[] = {
1516 {"Local", "LOCAL", ELF::STB_LOCAL},
1517 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1518 {"Weak", "WEAK", ELF::STB_WEAK},
1519 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1521 static const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1522 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1523 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1524 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1525 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1527 static const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1528 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1531 static const char *getGroupType(uint32_t Flag) {
1532 if (Flag & ELF::GRP_COMDAT)
1533 return "COMDAT";
1534 else
1535 return "(unknown)";
1538 static const EnumEntry<unsigned> ElfSectionFlags[] = {
1539 ENUM_ENT(SHF_WRITE, "W"),
1540 ENUM_ENT(SHF_ALLOC, "A"),
1541 ENUM_ENT(SHF_EXECINSTR, "X"),
1542 ENUM_ENT(SHF_MERGE, "M"),
1543 ENUM_ENT(SHF_STRINGS, "S"),
1544 ENUM_ENT(SHF_INFO_LINK, "I"),
1545 ENUM_ENT(SHF_LINK_ORDER, "L"),
1546 ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1547 ENUM_ENT(SHF_GROUP, "G"),
1548 ENUM_ENT(SHF_TLS, "T"),
1549 ENUM_ENT(SHF_COMPRESSED, "C"),
1550 ENUM_ENT(SHF_EXCLUDE, "E"),
1553 static const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1554 ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1555 ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1558 static const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1559 ENUM_ENT(SHF_ARM_PURECODE, "y")
1562 static const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1563 ENUM_ENT(SHF_HEX_GPREL, "")
1566 static const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1567 ENUM_ENT(SHF_MIPS_NODUPES, ""),
1568 ENUM_ENT(SHF_MIPS_NAMES, ""),
1569 ENUM_ENT(SHF_MIPS_LOCAL, ""),
1570 ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1571 ENUM_ENT(SHF_MIPS_GPREL, ""),
1572 ENUM_ENT(SHF_MIPS_MERGE, ""),
1573 ENUM_ENT(SHF_MIPS_ADDR, ""),
1574 ENUM_ENT(SHF_MIPS_STRING, "")
1577 static const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1578 ENUM_ENT(SHF_X86_64_LARGE, "l")
1581 static std::vector<EnumEntry<unsigned>>
1582 getSectionFlagsForTarget(unsigned EMachine) {
1583 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1584 std::end(ElfSectionFlags));
1585 switch (EMachine) {
1586 case EM_ARM:
1587 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1588 std::end(ElfARMSectionFlags));
1589 break;
1590 case EM_HEXAGON:
1591 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1592 std::end(ElfHexagonSectionFlags));
1593 break;
1594 case EM_MIPS:
1595 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1596 std::end(ElfMipsSectionFlags));
1597 break;
1598 case EM_X86_64:
1599 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1600 std::end(ElfX86_64SectionFlags));
1601 break;
1602 case EM_XCORE:
1603 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1604 std::end(ElfXCoreSectionFlags));
1605 break;
1606 default:
1607 break;
1609 return Ret;
1612 static std::string getGNUFlags(unsigned EMachine, uint64_t Flags) {
1613 // Here we are trying to build the flags string in the same way as GNU does.
1614 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1615 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1616 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1617 // "p". It only will print "E" when no other processor flag is set.
1618 std::string Str;
1619 bool HasUnknownFlag = false;
1620 bool HasOSFlag = false;
1621 bool HasProcFlag = false;
1622 std::vector<EnumEntry<unsigned>> FlagsList =
1623 getSectionFlagsForTarget(EMachine);
1624 while (Flags) {
1625 // Take the least significant bit as a flag.
1626 uint64_t Flag = Flags & -Flags;
1627 Flags -= Flag;
1629 // Find the flag in the known flags list.
1630 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1631 // Flags with empty names are not printed in GNU style output.
1632 return E.Value == Flag && !E.AltName.empty();
1634 if (I != FlagsList.end()) {
1635 Str += I->AltName;
1636 continue;
1639 // If we did not find a matching regular flag, then we deal with an OS
1640 // specific flag, processor specific flag or an unknown flag.
1641 if (Flag & ELF::SHF_MASKOS) {
1642 HasOSFlag = true;
1643 Flags &= ~ELF::SHF_MASKOS;
1644 } else if (Flag & ELF::SHF_MASKPROC) {
1645 HasProcFlag = true;
1646 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1647 // bit if set so that it doesn't also get printed.
1648 Flags &= ~ELF::SHF_MASKPROC;
1649 } else {
1650 HasUnknownFlag = true;
1654 // "o", "p" and "x" are printed last.
1655 if (HasOSFlag)
1656 Str += "o";
1657 if (HasProcFlag)
1658 Str += "p";
1659 if (HasUnknownFlag)
1660 Str += "x";
1661 return Str;
1664 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1665 // Check potentially overlapped processor-specific program header type.
1666 switch (Arch) {
1667 case ELF::EM_ARM:
1668 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1669 break;
1670 case ELF::EM_MIPS:
1671 case ELF::EM_MIPS_RS3_LE:
1672 switch (Type) {
1673 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1674 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1675 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1676 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1678 break;
1681 switch (Type) {
1682 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1683 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1684 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1685 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1686 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1687 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1688 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1689 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1691 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1692 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1694 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1695 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1696 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1698 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1699 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1700 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1701 default:
1702 return "";
1706 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1707 StringRef Seg = segmentTypeToString(Arch, Type);
1708 if (Seg.empty())
1709 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1711 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1712 if (Seg.startswith("PT_ARM_"))
1713 return Seg.drop_front(7).str();
1715 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1716 if (Seg.startswith("PT_MIPS_"))
1717 return Seg.drop_front(8).str();
1719 // E.g. "PT_LOAD" -> "LOAD".
1720 assert(Seg.startswith("PT_"));
1721 return Seg.drop_front(3).str();
1724 static const EnumEntry<unsigned> ElfSegmentFlags[] = {
1725 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1726 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1727 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1730 static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1731 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1732 ENUM_ENT(EF_MIPS_PIC, "pic"),
1733 ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1734 ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1735 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1736 ENUM_ENT(EF_MIPS_FP64, "fp64"),
1737 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1738 ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1739 ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1740 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1741 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1742 ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1743 ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1744 ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1745 ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1746 ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1747 ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1748 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1749 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1750 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1751 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1752 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1753 ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1754 ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1755 ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1756 ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1757 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1758 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1759 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1760 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1761 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1762 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1763 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1764 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1765 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1766 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1767 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1768 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1769 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1770 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1771 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1772 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1773 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1776 static const EnumEntry<unsigned> ElfHeaderAMDGPUFlags[] = {
1777 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1778 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1779 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1780 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1781 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1782 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1783 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1784 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1785 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1786 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1787 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1788 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1789 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1790 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1791 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1792 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1793 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1794 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1795 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1796 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1797 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1798 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1799 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1800 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1801 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1802 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1803 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1804 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1805 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1806 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1807 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1808 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1809 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1810 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1811 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1812 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1813 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1814 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1815 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1816 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1817 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1818 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1819 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1820 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1821 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1822 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_XNACK),
1823 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_SRAM_ECC)
1826 static const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1827 ENUM_ENT(EF_RISCV_RVC, "RVC"),
1828 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1829 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1830 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1831 ENUM_ENT(EF_RISCV_RVE, "RVE")
1834 static const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1835 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1836 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1837 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1840 static const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1841 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1842 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1843 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1844 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1847 static const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1848 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1851 static const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1852 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1853 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1854 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1857 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1858 switch (Odk) {
1859 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1860 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1861 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1862 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1863 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1864 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1865 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1866 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1867 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1868 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1869 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1870 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1871 default:
1872 return "Unknown";
1876 template <typename ELFT>
1877 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1878 ELFDumper<ELFT>::findDynamic() {
1879 // Try to locate the PT_DYNAMIC header.
1880 const Elf_Phdr *DynamicPhdr = nullptr;
1881 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1882 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1883 if (Phdr.p_type != ELF::PT_DYNAMIC)
1884 continue;
1885 DynamicPhdr = &Phdr;
1886 break;
1888 } else {
1889 this->reportUniqueWarning(
1890 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1891 toString(PhdrsOrErr.takeError()));
1894 // Try to locate the .dynamic section in the sections header table.
1895 const Elf_Shdr *DynamicSec = nullptr;
1896 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1897 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1898 continue;
1899 DynamicSec = &Sec;
1900 break;
1903 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1904 ObjF.getMemoryBufferRef().getBufferSize()) ||
1905 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1906 DynamicPhdr->p_offset))) {
1907 reportUniqueWarning(
1908 "PT_DYNAMIC segment offset (0x" +
1909 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1910 Twine::utohexstr(DynamicPhdr->p_filesz) +
1911 ") exceeds the size of the file (0x" +
1912 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1913 // Don't use the broken dynamic header.
1914 DynamicPhdr = nullptr;
1917 if (DynamicPhdr && DynamicSec) {
1918 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1919 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1920 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1921 reportUniqueWarning(describe(*DynamicSec) +
1922 " is not contained within the "
1923 "PT_DYNAMIC segment");
1925 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1926 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1927 "PT_DYNAMIC segment");
1930 return std::make_pair(DynamicPhdr, DynamicSec);
1933 template <typename ELFT>
1934 void ELFDumper<ELFT>::loadDynamicTable() {
1935 const Elf_Phdr *DynamicPhdr;
1936 const Elf_Shdr *DynamicSec;
1937 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1938 if (!DynamicPhdr && !DynamicSec)
1939 return;
1941 DynRegionInfo FromPhdr(ObjF, *this);
1942 bool IsPhdrTableValid = false;
1943 if (DynamicPhdr) {
1944 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1945 // validated in findDynamic() and so createDRI() is not expected to fail.
1946 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1947 sizeof(Elf_Dyn)));
1948 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1949 FromPhdr.EntSizePrintName = "";
1950 IsPhdrTableValid = !FromPhdr.getAsArrayRef<Elf_Dyn>().empty();
1953 // Locate the dynamic table described in a section header.
1954 // Ignore sh_entsize and use the expected value for entry size explicitly.
1955 // This allows us to dump dynamic sections with a broken sh_entsize
1956 // field.
1957 DynRegionInfo FromSec(ObjF, *this);
1958 bool IsSecTableValid = false;
1959 if (DynamicSec) {
1960 Expected<DynRegionInfo> RegOrErr =
1961 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1962 if (RegOrErr) {
1963 FromSec = *RegOrErr;
1964 FromSec.Context = describe(*DynamicSec);
1965 FromSec.EntSizePrintName = "";
1966 IsSecTableValid = !FromSec.getAsArrayRef<Elf_Dyn>().empty();
1967 } else {
1968 reportUniqueWarning("unable to read the dynamic table from " +
1969 describe(*DynamicSec) + ": " +
1970 toString(RegOrErr.takeError()));
1974 // When we only have information from one of the SHT_DYNAMIC section header or
1975 // PT_DYNAMIC program header, just use that.
1976 if (!DynamicPhdr || !DynamicSec) {
1977 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1978 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1979 parseDynamicTable();
1980 } else {
1981 reportUniqueWarning("no valid dynamic table was found");
1983 return;
1986 // At this point we have tables found from the section header and from the
1987 // dynamic segment. Usually they match, but we have to do sanity checks to
1988 // verify that.
1990 if (FromPhdr.Addr != FromSec.Addr)
1991 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1992 "program header disagree about "
1993 "the location of the dynamic table");
1995 if (!IsPhdrTableValid && !IsSecTableValid) {
1996 reportUniqueWarning("no valid dynamic table was found");
1997 return;
2000 // Information in the PT_DYNAMIC program header has priority over the
2001 // information in a section header.
2002 if (IsPhdrTableValid) {
2003 if (!IsSecTableValid)
2004 reportUniqueWarning(
2005 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
2006 DynamicTable = FromPhdr;
2007 } else {
2008 reportUniqueWarning(
2009 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
2010 DynamicTable = FromSec;
2013 parseDynamicTable();
2016 template <typename ELFT>
2017 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
2018 ScopedPrinter &Writer)
2019 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
2020 DynRelRegion(O, *this), DynRelaRegion(O, *this), DynRelrRegion(O, *this),
2021 DynPLTRelRegion(O, *this), DynamicTable(O, *this) {
2022 if (opts::Output == opts::GNU)
2023 ELFDumperStyle.reset(new GNUStyle<ELFT>(Writer, *this));
2024 else
2025 ELFDumperStyle.reset(new LLVMStyle<ELFT>(Writer, *this));
2027 if (!O.IsContentValid())
2028 return;
2030 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
2031 for (const Elf_Shdr &Sec : Sections) {
2032 switch (Sec.sh_type) {
2033 case ELF::SHT_SYMTAB:
2034 if (!DotSymtabSec)
2035 DotSymtabSec = &Sec;
2036 break;
2037 case ELF::SHT_DYNSYM:
2038 if (!DotDynsymSec)
2039 DotDynsymSec = &Sec;
2041 if (!DynSymRegion) {
2042 Expected<DynRegionInfo> RegOrErr =
2043 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
2044 if (RegOrErr) {
2045 DynSymRegion = *RegOrErr;
2046 DynSymRegion->Context = describe(Sec);
2048 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
2049 DynamicStringTable = *E;
2050 else
2051 reportUniqueWarning("unable to get the string table for the " +
2052 describe(Sec) + ": " + toString(E.takeError()));
2053 } else {
2054 reportUniqueWarning("unable to read dynamic symbols from " +
2055 describe(Sec) + ": " +
2056 toString(RegOrErr.takeError()));
2059 break;
2060 case ELF::SHT_SYMTAB_SHNDX:
2061 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr = Obj.getSHNDXTable(Sec))
2062 ShndxTable = *ShndxTableOrErr;
2063 else
2064 this->reportUniqueWarning(ShndxTableOrErr.takeError());
2065 break;
2066 case ELF::SHT_GNU_versym:
2067 if (!SymbolVersionSection)
2068 SymbolVersionSection = &Sec;
2069 break;
2070 case ELF::SHT_GNU_verdef:
2071 if (!SymbolVersionDefSection)
2072 SymbolVersionDefSection = &Sec;
2073 break;
2074 case ELF::SHT_GNU_verneed:
2075 if (!SymbolVersionNeedSection)
2076 SymbolVersionNeedSection = &Sec;
2077 break;
2078 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE:
2079 if (!DotCGProfileSec)
2080 DotCGProfileSec = &Sec;
2081 break;
2082 case ELF::SHT_LLVM_ADDRSIG:
2083 if (!DotAddrsigSec)
2084 DotAddrsigSec = &Sec;
2085 break;
2089 loadDynamicTable();
2092 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
2093 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
2094 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
2095 this->reportUniqueWarning(Msg);
2096 return Error::success();
2098 if (!MappedAddrOrError) {
2099 this->reportUniqueWarning("unable to parse DT_" +
2100 Obj.getDynamicTagAsString(Tag) + ": " +
2101 llvm::toString(MappedAddrOrError.takeError()));
2102 return nullptr;
2104 return MappedAddrOrError.get();
2107 const char *StringTableBegin = nullptr;
2108 uint64_t StringTableSize = 0;
2109 Optional<DynRegionInfo> DynSymFromTable;
2110 for (const Elf_Dyn &Dyn : dynamic_table()) {
2111 switch (Dyn.d_tag) {
2112 case ELF::DT_HASH:
2113 HashTable = reinterpret_cast<const Elf_Hash *>(
2114 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2115 break;
2116 case ELF::DT_GNU_HASH:
2117 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2118 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2119 break;
2120 case ELF::DT_STRTAB:
2121 StringTableBegin = reinterpret_cast<const char *>(
2122 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2123 break;
2124 case ELF::DT_STRSZ:
2125 StringTableSize = Dyn.getVal();
2126 break;
2127 case ELF::DT_SYMTAB: {
2128 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2129 // no program headers), we ignore its value.
2130 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2131 DynSymFromTable.emplace(ObjF, *this);
2132 DynSymFromTable->Addr = VA;
2133 DynSymFromTable->EntSize = sizeof(Elf_Sym);
2134 DynSymFromTable->EntSizePrintName = "";
2136 break;
2138 case ELF::DT_SYMENT: {
2139 uint64_t Val = Dyn.getVal();
2140 if (Val != sizeof(Elf_Sym))
2141 this->reportUniqueWarning("DT_SYMENT value of 0x" +
2142 Twine::utohexstr(Val) +
2143 " is not the size of a symbol (0x" +
2144 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
2145 break;
2147 case ELF::DT_RELA:
2148 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2149 break;
2150 case ELF::DT_RELASZ:
2151 DynRelaRegion.Size = Dyn.getVal();
2152 DynRelaRegion.SizePrintName = "DT_RELASZ value";
2153 break;
2154 case ELF::DT_RELAENT:
2155 DynRelaRegion.EntSize = Dyn.getVal();
2156 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2157 break;
2158 case ELF::DT_SONAME:
2159 SONameOffset = Dyn.getVal();
2160 break;
2161 case ELF::DT_REL:
2162 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2163 break;
2164 case ELF::DT_RELSZ:
2165 DynRelRegion.Size = Dyn.getVal();
2166 DynRelRegion.SizePrintName = "DT_RELSZ value";
2167 break;
2168 case ELF::DT_RELENT:
2169 DynRelRegion.EntSize = Dyn.getVal();
2170 DynRelRegion.EntSizePrintName = "DT_RELENT value";
2171 break;
2172 case ELF::DT_RELR:
2173 case ELF::DT_ANDROID_RELR:
2174 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2175 break;
2176 case ELF::DT_RELRSZ:
2177 case ELF::DT_ANDROID_RELRSZ:
2178 DynRelrRegion.Size = Dyn.getVal();
2179 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2180 ? "DT_RELRSZ value"
2181 : "DT_ANDROID_RELRSZ value";
2182 break;
2183 case ELF::DT_RELRENT:
2184 case ELF::DT_ANDROID_RELRENT:
2185 DynRelrRegion.EntSize = Dyn.getVal();
2186 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2187 ? "DT_RELRENT value"
2188 : "DT_ANDROID_RELRENT value";
2189 break;
2190 case ELF::DT_PLTREL:
2191 if (Dyn.getVal() == DT_REL)
2192 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2193 else if (Dyn.getVal() == DT_RELA)
2194 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2195 else
2196 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2197 Twine((uint64_t)Dyn.getVal()));
2198 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2199 break;
2200 case ELF::DT_JMPREL:
2201 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2202 break;
2203 case ELF::DT_PLTRELSZ:
2204 DynPLTRelRegion.Size = Dyn.getVal();
2205 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2206 break;
2210 if (StringTableBegin) {
2211 const uint64_t FileSize = Obj.getBufSize();
2212 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2213 if (StringTableSize > FileSize - Offset)
2214 reportUniqueWarning(
2215 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2216 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2217 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2218 else
2219 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2222 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2223 if (DynSymRegion) {
2224 // Often we find the information about the dynamic symbol table
2225 // location in the SHT_DYNSYM section header. However, the value in
2226 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2227 // locate .dynsym at runtime. The location we find in the section header
2228 // and the location we find here should match.
2229 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2230 reportUniqueWarning(
2231 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2232 "the location of the dynamic symbol table"));
2234 // According to the ELF gABI: "The number of symbol table entries should
2235 // equal nchain". Check to see if the DT_HASH hash table nchain value
2236 // conflicts with the number of symbols in the dynamic symbol table
2237 // according to the section header.
2238 if (HashTable && IsHashTableSupported) {
2239 if (DynSymRegion->EntSize == 0)
2240 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2241 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2242 reportUniqueWarning(
2243 "hash table nchain (" + Twine(HashTable->nchain) +
2244 ") differs from symbol count derived from SHT_DYNSYM section "
2245 "header (" +
2246 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2250 // Delay the creation of the actual dynamic symbol table until now, so that
2251 // checks can always be made against the section header-based properties,
2252 // without worrying about tag order.
2253 if (DynSymFromTable) {
2254 if (!DynSymRegion) {
2255 DynSymRegion = DynSymFromTable;
2256 } else {
2257 DynSymRegion->Addr = DynSymFromTable->Addr;
2258 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2259 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2263 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2264 // present.
2265 if (HashTable && IsHashTableSupported && DynSymRegion) {
2266 const uint64_t FileSize = Obj.getBufSize();
2267 const uint64_t DerivedSize =
2268 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2269 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2270 if (DerivedSize > FileSize - Offset)
2271 reportUniqueWarning(
2272 "the size (0x" + Twine::utohexstr(DerivedSize) +
2273 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2274 ", derived from the hash table, goes past the end of the file (0x" +
2275 Twine::utohexstr(FileSize) + ") and will be ignored");
2276 else
2277 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2281 template <typename ELFT>
2282 typename ELFDumper<ELFT>::Elf_Rel_Range ELFDumper<ELFT>::dyn_rels() const {
2283 return DynRelRegion.getAsArrayRef<Elf_Rel>();
2286 template <typename ELFT>
2287 typename ELFDumper<ELFT>::Elf_Rela_Range ELFDumper<ELFT>::dyn_relas() const {
2288 return DynRelaRegion.getAsArrayRef<Elf_Rela>();
2291 template <typename ELFT>
2292 typename ELFDumper<ELFT>::Elf_Relr_Range ELFDumper<ELFT>::dyn_relrs() const {
2293 return DynRelrRegion.getAsArrayRef<Elf_Relr>();
2296 template <class ELFT> void ELFDumper<ELFT>::printFileHeaders() {
2297 ELFDumperStyle->printFileHeaders();
2300 template <class ELFT> void ELFDumper<ELFT>::printSectionHeaders() {
2301 ELFDumperStyle->printSectionHeaders();
2304 template <class ELFT> void ELFDumper<ELFT>::printRelocations() {
2305 ELFDumperStyle->printRelocations();
2308 template <class ELFT>
2309 void ELFDumper<ELFT>::printProgramHeaders(
2310 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
2311 ELFDumperStyle->printProgramHeaders(PrintProgramHeaders, PrintSectionMapping);
2314 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2315 // Dump version symbol section.
2316 ELFDumperStyle->printVersionSymbolSection(SymbolVersionSection);
2318 // Dump version definition section.
2319 ELFDumperStyle->printVersionDefinitionSection(SymbolVersionDefSection);
2321 // Dump version dependency section.
2322 ELFDumperStyle->printVersionDependencySection(SymbolVersionNeedSection);
2325 template <class ELFT> void ELFDumper<ELFT>::printDependentLibs() {
2326 ELFDumperStyle->printDependentLibs();
2329 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocations() {
2330 ELFDumperStyle->printDynamicRelocations();
2333 template <class ELFT>
2334 void ELFDumper<ELFT>::printSymbols(bool PrintSymbols,
2335 bool PrintDynamicSymbols) {
2336 ELFDumperStyle->printSymbols(PrintSymbols, PrintDynamicSymbols);
2339 template <class ELFT> void ELFDumper<ELFT>::printHashSymbols() {
2340 ELFDumperStyle->printHashSymbols();
2343 template <class ELFT> void ELFDumper<ELFT>::printSectionDetails() {
2344 ELFDumperStyle->printSectionDetails();
2347 template <class ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2348 ELFDumperStyle->printHashHistograms();
2351 template <class ELFT> void ELFDumper<ELFT>::printCGProfile() {
2352 ELFDumperStyle->printCGProfile();
2355 template <class ELFT> void ELFDumper<ELFT>::printNotes() {
2356 ELFDumperStyle->printNotes();
2359 template <class ELFT> void ELFDumper<ELFT>::printELFLinkerOptions() {
2360 ELFDumperStyle->printELFLinkerOptions();
2363 template <class ELFT> void ELFDumper<ELFT>::printStackSizes() {
2364 ELFDumperStyle->printStackSizes();
2367 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2368 { #enum, prefix##_##enum }
2370 static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2371 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2372 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2373 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2374 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2375 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2378 static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2379 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2380 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2381 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2382 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2383 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2384 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2385 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2386 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2387 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2388 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2389 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2390 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2391 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2392 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2393 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2394 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2395 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2396 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2397 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2398 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2399 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2400 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2401 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2402 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2403 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2404 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2405 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2408 static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2409 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2410 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2411 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2412 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2413 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2414 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2415 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2416 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2417 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2418 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2419 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2420 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2421 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2422 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2423 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2424 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2427 #undef LLVM_READOBJ_DT_FLAG_ENT
2429 template <typename T, typename TFlag>
2430 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2431 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2432 for (const EnumEntry<TFlag> &Flag : Flags)
2433 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2434 SetFlags.push_back(Flag);
2436 for (const EnumEntry<TFlag> &Flag : SetFlags)
2437 OS << Flag.Name << " ";
2440 template <class ELFT>
2441 const typename ELFT::Shdr *
2442 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2443 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2444 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2445 if (*NameOrErr == Name)
2446 return &Shdr;
2447 } else {
2448 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2449 ": " + toString(NameOrErr.takeError()));
2452 return nullptr;
2455 template <class ELFT>
2456 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2457 uint64_t Value) const {
2458 auto FormatHexValue = [](uint64_t V) {
2459 std::string Str;
2460 raw_string_ostream OS(Str);
2461 const char *ConvChar =
2462 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2463 OS << format(ConvChar, V);
2464 return OS.str();
2467 auto FormatFlags = [](uint64_t V,
2468 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2469 std::string Str;
2470 raw_string_ostream OS(Str);
2471 printFlags(V, Array, OS);
2472 return OS.str();
2475 // Handle custom printing of architecture specific tags
2476 switch (Obj.getHeader().e_machine) {
2477 case EM_AARCH64:
2478 switch (Type) {
2479 case DT_AARCH64_BTI_PLT:
2480 case DT_AARCH64_PAC_PLT:
2481 case DT_AARCH64_VARIANT_PCS:
2482 return std::to_string(Value);
2483 default:
2484 break;
2486 break;
2487 case EM_HEXAGON:
2488 switch (Type) {
2489 case DT_HEXAGON_VER:
2490 return std::to_string(Value);
2491 case DT_HEXAGON_SYMSZ:
2492 case DT_HEXAGON_PLT:
2493 return FormatHexValue(Value);
2494 default:
2495 break;
2497 break;
2498 case EM_MIPS:
2499 switch (Type) {
2500 case DT_MIPS_RLD_VERSION:
2501 case DT_MIPS_LOCAL_GOTNO:
2502 case DT_MIPS_SYMTABNO:
2503 case DT_MIPS_UNREFEXTNO:
2504 return std::to_string(Value);
2505 case DT_MIPS_TIME_STAMP:
2506 case DT_MIPS_ICHECKSUM:
2507 case DT_MIPS_IVERSION:
2508 case DT_MIPS_BASE_ADDRESS:
2509 case DT_MIPS_MSYM:
2510 case DT_MIPS_CONFLICT:
2511 case DT_MIPS_LIBLIST:
2512 case DT_MIPS_CONFLICTNO:
2513 case DT_MIPS_LIBLISTNO:
2514 case DT_MIPS_GOTSYM:
2515 case DT_MIPS_HIPAGENO:
2516 case DT_MIPS_RLD_MAP:
2517 case DT_MIPS_DELTA_CLASS:
2518 case DT_MIPS_DELTA_CLASS_NO:
2519 case DT_MIPS_DELTA_INSTANCE:
2520 case DT_MIPS_DELTA_RELOC:
2521 case DT_MIPS_DELTA_RELOC_NO:
2522 case DT_MIPS_DELTA_SYM:
2523 case DT_MIPS_DELTA_SYM_NO:
2524 case DT_MIPS_DELTA_CLASSSYM:
2525 case DT_MIPS_DELTA_CLASSSYM_NO:
2526 case DT_MIPS_CXX_FLAGS:
2527 case DT_MIPS_PIXIE_INIT:
2528 case DT_MIPS_SYMBOL_LIB:
2529 case DT_MIPS_LOCALPAGE_GOTIDX:
2530 case DT_MIPS_LOCAL_GOTIDX:
2531 case DT_MIPS_HIDDEN_GOTIDX:
2532 case DT_MIPS_PROTECTED_GOTIDX:
2533 case DT_MIPS_OPTIONS:
2534 case DT_MIPS_INTERFACE:
2535 case DT_MIPS_DYNSTR_ALIGN:
2536 case DT_MIPS_INTERFACE_SIZE:
2537 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2538 case DT_MIPS_PERF_SUFFIX:
2539 case DT_MIPS_COMPACT_SIZE:
2540 case DT_MIPS_GP_VALUE:
2541 case DT_MIPS_AUX_DYNAMIC:
2542 case DT_MIPS_PLTGOT:
2543 case DT_MIPS_RWPLT:
2544 case DT_MIPS_RLD_MAP_REL:
2545 return FormatHexValue(Value);
2546 case DT_MIPS_FLAGS:
2547 return FormatFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags));
2548 default:
2549 break;
2551 break;
2552 default:
2553 break;
2556 switch (Type) {
2557 case DT_PLTREL:
2558 if (Value == DT_REL)
2559 return "REL";
2560 if (Value == DT_RELA)
2561 return "RELA";
2562 LLVM_FALLTHROUGH;
2563 case DT_PLTGOT:
2564 case DT_HASH:
2565 case DT_STRTAB:
2566 case DT_SYMTAB:
2567 case DT_RELA:
2568 case DT_INIT:
2569 case DT_FINI:
2570 case DT_REL:
2571 case DT_JMPREL:
2572 case DT_INIT_ARRAY:
2573 case DT_FINI_ARRAY:
2574 case DT_PREINIT_ARRAY:
2575 case DT_DEBUG:
2576 case DT_VERDEF:
2577 case DT_VERNEED:
2578 case DT_VERSYM:
2579 case DT_GNU_HASH:
2580 case DT_NULL:
2581 return FormatHexValue(Value);
2582 case DT_RELACOUNT:
2583 case DT_RELCOUNT:
2584 case DT_VERDEFNUM:
2585 case DT_VERNEEDNUM:
2586 return std::to_string(Value);
2587 case DT_PLTRELSZ:
2588 case DT_RELASZ:
2589 case DT_RELAENT:
2590 case DT_STRSZ:
2591 case DT_SYMENT:
2592 case DT_RELSZ:
2593 case DT_RELENT:
2594 case DT_INIT_ARRAYSZ:
2595 case DT_FINI_ARRAYSZ:
2596 case DT_PREINIT_ARRAYSZ:
2597 case DT_ANDROID_RELSZ:
2598 case DT_ANDROID_RELASZ:
2599 return std::to_string(Value) + " (bytes)";
2600 case DT_NEEDED:
2601 case DT_SONAME:
2602 case DT_AUXILIARY:
2603 case DT_USED:
2604 case DT_FILTER:
2605 case DT_RPATH:
2606 case DT_RUNPATH: {
2607 const std::map<uint64_t, const char *> TagNames = {
2608 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2609 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2610 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2611 {DT_RUNPATH, "Library runpath"},
2614 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2615 .str();
2617 case DT_FLAGS:
2618 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags));
2619 case DT_FLAGS_1:
2620 return FormatFlags(Value, makeArrayRef(ElfDynamicDTFlags1));
2621 default:
2622 return FormatHexValue(Value);
2626 template <class ELFT>
2627 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2628 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2629 reportUniqueWarning("string table was not found");
2630 return "<?>";
2633 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2634 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2635 Msg);
2636 return "<?>";
2639 const uint64_t FileSize = Obj.getBufSize();
2640 const uint64_t Offset =
2641 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2642 if (DynamicStringTable.size() > FileSize - Offset)
2643 return WarnAndReturn(" with size 0x" +
2644 Twine::utohexstr(DynamicStringTable.size()) +
2645 " goes past the end of the file (0x" +
2646 Twine::utohexstr(FileSize) + ")",
2647 Offset);
2649 if (Value >= DynamicStringTable.size())
2650 return WarnAndReturn(
2651 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2652 ": it goes past the end of the table (0x" +
2653 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2654 Offset);
2656 if (DynamicStringTable.back() != '\0')
2657 return WarnAndReturn(": unable to read the string at 0x" +
2658 Twine::utohexstr(Offset + Value) +
2659 ": the string table is not null-terminated",
2660 Offset);
2662 return DynamicStringTable.data() + Value;
2665 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2666 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2667 Ctx.printUnwindInformation();
2670 namespace {
2672 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2673 if (Obj.getHeader().e_machine == EM_ARM) {
2674 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2675 DotSymtabSec);
2676 Ctx.PrintUnwindInformation();
2678 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2679 Ctx.printUnwindInformation();
2682 } // end anonymous namespace
2684 template <class ELFT> void ELFDumper<ELFT>::printDynamicTable() {
2685 ELFDumperStyle->printDynamic();
2688 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2689 ListScope D(W, "NeededLibraries");
2691 std::vector<StringRef> Libs;
2692 for (const auto &Entry : dynamic_table())
2693 if (Entry.d_tag == ELF::DT_NEEDED)
2694 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2696 llvm::sort(Libs);
2698 for (StringRef L : Libs)
2699 W.startLine() << L << "\n";
2702 template <class ELFT>
2703 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2704 const typename ELFT::Hash *H,
2705 bool *IsHeaderValid = nullptr) {
2706 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2707 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2708 if (Dumper.getHashTableEntSize() == 8) {
2709 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2710 return E.Value == Obj.getHeader().e_machine;
2712 if (IsHeaderValid)
2713 *IsHeaderValid = false;
2714 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2715 " is not supported: it contains non-standard 8 "
2716 "byte entries on " +
2717 It->AltName + " platform");
2720 auto MakeError = [&](const Twine &Msg = "") {
2721 return createError("the hash table at offset 0x" +
2722 Twine::utohexstr(SecOffset) +
2723 " goes past the end of the file (0x" +
2724 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2727 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2728 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2730 if (IsHeaderValid)
2731 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2733 if (Obj.getBufSize() - SecOffset < HeaderSize)
2734 return MakeError();
2736 if (Obj.getBufSize() - SecOffset - HeaderSize <
2737 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2738 return MakeError(", nbucket = " + Twine(H->nbucket) +
2739 ", nchain = " + Twine(H->nchain));
2740 return Error::success();
2743 template <class ELFT>
2744 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2745 const typename ELFT::GnuHash *GnuHashTable,
2746 bool *IsHeaderValid = nullptr) {
2747 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2748 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2749 "GnuHashTable must always point to a location inside the file");
2751 uint64_t TableOffset = TableData - Obj.base();
2752 if (IsHeaderValid)
2753 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2754 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2755 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2756 Obj.getBufSize())
2757 return createError("unable to dump the SHT_GNU_HASH "
2758 "section at 0x" +
2759 Twine::utohexstr(TableOffset) +
2760 ": it goes past the end of the file");
2761 return Error::success();
2764 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2765 DictScope D(W, "HashTable");
2766 if (!HashTable)
2767 return;
2769 bool IsHeaderValid;
2770 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2771 if (IsHeaderValid) {
2772 W.printNumber("Num Buckets", HashTable->nbucket);
2773 W.printNumber("Num Chains", HashTable->nchain);
2776 if (Err) {
2777 reportUniqueWarning(std::move(Err));
2778 return;
2781 W.printList("Buckets", HashTable->buckets());
2782 W.printList("Chains", HashTable->chains());
2785 template <class ELFT>
2786 static Expected<ArrayRef<typename ELFT::Word>>
2787 getGnuHashTableChains(Optional<DynRegionInfo> DynSymRegion,
2788 const typename ELFT::GnuHash *GnuHashTable) {
2789 if (!DynSymRegion)
2790 return createError("no dynamic symbol table found");
2792 ArrayRef<typename ELFT::Sym> DynSymTable =
2793 DynSymRegion->getAsArrayRef<typename ELFT::Sym>();
2794 size_t NumSyms = DynSymTable.size();
2795 if (!NumSyms)
2796 return createError("the dynamic symbol table is empty");
2798 if (GnuHashTable->symndx < NumSyms)
2799 return GnuHashTable->values(NumSyms);
2801 // A normal empty GNU hash table section produced by linker might have
2802 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2803 // and have dummy null values in the Bloom filter and in the buckets
2804 // vector (or no values at all). It happens because the value of symndx is not
2805 // important for dynamic loaders when the GNU hash table is empty. They just
2806 // skip the whole object during symbol lookup. In such cases, the symndx value
2807 // is irrelevant and we should not report a warning.
2808 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2809 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2810 return createError(
2811 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2812 ") is greater than or equal to the number of dynamic symbols (" +
2813 Twine(NumSyms) + ")");
2814 // There is no way to represent an array of (dynamic symbols count - symndx)
2815 // length.
2816 return ArrayRef<typename ELFT::Word>();
2819 template <typename ELFT>
2820 void ELFDumper<ELFT>::printGnuHashTable() {
2821 DictScope D(W, "GnuHashTable");
2822 if (!GnuHashTable)
2823 return;
2825 bool IsHeaderValid;
2826 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2827 if (IsHeaderValid) {
2828 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2829 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2830 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2831 W.printNumber("Shift Count", GnuHashTable->shift2);
2834 if (Err) {
2835 reportUniqueWarning(std::move(Err));
2836 return;
2839 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2840 W.printHexList("Bloom Filter", BloomFilter);
2842 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2843 W.printList("Buckets", Buckets);
2845 Expected<ArrayRef<Elf_Word>> Chains =
2846 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2847 if (!Chains) {
2848 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2849 "section: " +
2850 toString(Chains.takeError()));
2851 return;
2854 W.printHexList("Values", *Chains);
2857 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2858 StringRef SOName = "<Not found>";
2859 if (SONameOffset)
2860 SOName = getDynamicString(*SONameOffset);
2861 W.printString("LoadName", SOName);
2864 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2865 switch (Obj.getHeader().e_machine) {
2866 case EM_ARM:
2867 case EM_RISCV:
2868 printAttributes();
2869 break;
2870 case EM_MIPS: {
2871 ELFDumperStyle->printMipsABIFlags();
2872 printMipsOptions();
2873 printMipsReginfo();
2874 MipsGOTParser<ELFT> Parser(*this);
2875 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2876 reportUniqueWarning(std::move(E));
2877 else if (!Parser.isGotEmpty())
2878 ELFDumperStyle->printMipsGOT(Parser);
2880 if (Error E = Parser.findPLT(dynamic_table()))
2881 reportUniqueWarning(std::move(E));
2882 else if (!Parser.isPltEmpty())
2883 ELFDumperStyle->printMipsPLT(Parser);
2884 break;
2886 default:
2887 break;
2891 template <class ELFT> void ELFDumper<ELFT>::printAttributes() {
2892 if (!Obj.isLE()) {
2893 W.startLine() << "Attributes not implemented.\n";
2894 return;
2897 const unsigned Machine = Obj.getHeader().e_machine;
2898 assert((Machine == EM_ARM || Machine == EM_RISCV) &&
2899 "Attributes not implemented.");
2901 DictScope BA(W, "BuildAttributes");
2902 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2903 if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES &&
2904 Sec.sh_type != ELF::SHT_RISCV_ATTRIBUTES)
2905 continue;
2907 ArrayRef<uint8_t> Contents;
2908 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2909 Obj.getSectionContents(Sec)) {
2910 Contents = *ContentOrErr;
2911 if (Contents.empty()) {
2912 reportUniqueWarning("the " + describe(Sec) + " is empty");
2913 continue;
2915 } else {
2916 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2917 ": " + toString(ContentOrErr.takeError()));
2918 continue;
2921 W.printHex("FormatVersion", Contents[0]);
2923 auto ParseAttrubutes = [&]() {
2924 if (Machine == EM_ARM)
2925 return ARMAttributeParser(&W).parse(Contents, support::little);
2926 return RISCVAttributeParser(&W).parse(Contents, support::little);
2929 if (Error E = ParseAttrubutes())
2930 reportUniqueWarning("unable to dump attributes from the " +
2931 describe(Sec) + ": " + toString(std::move(E)));
2935 namespace {
2937 template <class ELFT> class MipsGOTParser {
2938 public:
2939 TYPEDEF_ELF_TYPES(ELFT)
2940 using Entry = typename ELFO::Elf_Addr;
2941 using Entries = ArrayRef<Entry>;
2943 const bool IsStatic;
2944 const ELFO &Obj;
2945 const ELFDumper<ELFT> &Dumper;
2947 MipsGOTParser(const ELFDumper<ELFT> &D);
2948 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2949 Error findPLT(Elf_Dyn_Range DynTable);
2951 bool isGotEmpty() const { return GotEntries.empty(); }
2952 bool isPltEmpty() const { return PltEntries.empty(); }
2954 uint64_t getGp() const;
2956 const Entry *getGotLazyResolver() const;
2957 const Entry *getGotModulePointer() const;
2958 const Entry *getPltLazyResolver() const;
2959 const Entry *getPltModulePointer() const;
2961 Entries getLocalEntries() const;
2962 Entries getGlobalEntries() const;
2963 Entries getOtherEntries() const;
2964 Entries getPltEntries() const;
2966 uint64_t getGotAddress(const Entry * E) const;
2967 int64_t getGotOffset(const Entry * E) const;
2968 const Elf_Sym *getGotSym(const Entry *E) const;
2970 uint64_t getPltAddress(const Entry * E) const;
2971 const Elf_Sym *getPltSym(const Entry *E) const;
2973 StringRef getPltStrTable() const { return PltStrTable; }
2974 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2976 private:
2977 const Elf_Shdr *GotSec;
2978 size_t LocalNum;
2979 size_t GlobalNum;
2981 const Elf_Shdr *PltSec;
2982 const Elf_Shdr *PltRelSec;
2983 const Elf_Shdr *PltSymTable;
2984 StringRef FileName;
2986 Elf_Sym_Range GotDynSyms;
2987 StringRef PltStrTable;
2989 Entries GotEntries;
2990 Entries PltEntries;
2993 } // end anonymous namespace
2995 template <class ELFT>
2996 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2997 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2998 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2999 PltRelSec(nullptr), PltSymTable(nullptr),
3000 FileName(D.getElfObject().getFileName()) {}
3002 template <class ELFT>
3003 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
3004 Elf_Sym_Range DynSyms) {
3005 // See "Global Offset Table" in Chapter 5 in the following document
3006 // for detailed GOT description.
3007 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3009 // Find static GOT secton.
3010 if (IsStatic) {
3011 GotSec = Dumper.findSectionByName(".got");
3012 if (!GotSec)
3013 return Error::success();
3015 ArrayRef<uint8_t> Content =
3016 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3017 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3018 Content.size() / sizeof(Entry));
3019 LocalNum = GotEntries.size();
3020 return Error::success();
3023 // Lookup dynamic table tags which define the GOT layout.
3024 Optional<uint64_t> DtPltGot;
3025 Optional<uint64_t> DtLocalGotNum;
3026 Optional<uint64_t> DtGotSym;
3027 for (const auto &Entry : DynTable) {
3028 switch (Entry.getTag()) {
3029 case ELF::DT_PLTGOT:
3030 DtPltGot = Entry.getVal();
3031 break;
3032 case ELF::DT_MIPS_LOCAL_GOTNO:
3033 DtLocalGotNum = Entry.getVal();
3034 break;
3035 case ELF::DT_MIPS_GOTSYM:
3036 DtGotSym = Entry.getVal();
3037 break;
3041 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3042 return Error::success();
3044 if (!DtPltGot)
3045 return createError("cannot find PLTGOT dynamic tag");
3046 if (!DtLocalGotNum)
3047 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3048 if (!DtGotSym)
3049 return createError("cannot find MIPS_GOTSYM dynamic tag");
3051 size_t DynSymTotal = DynSyms.size();
3052 if (*DtGotSym > DynSymTotal)
3053 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3054 ") exceeds the number of dynamic symbols (" +
3055 Twine(DynSymTotal) + ")");
3057 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3058 if (!GotSec)
3059 return createError("there is no non-empty GOT section at 0x" +
3060 Twine::utohexstr(*DtPltGot));
3062 LocalNum = *DtLocalGotNum;
3063 GlobalNum = DynSymTotal - *DtGotSym;
3065 ArrayRef<uint8_t> Content =
3066 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3067 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3068 Content.size() / sizeof(Entry));
3069 GotDynSyms = DynSyms.drop_front(*DtGotSym);
3071 return Error::success();
3074 template <class ELFT>
3075 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3076 // Lookup dynamic table tags which define the PLT layout.
3077 Optional<uint64_t> DtMipsPltGot;
3078 Optional<uint64_t> DtJmpRel;
3079 for (const auto &Entry : DynTable) {
3080 switch (Entry.getTag()) {
3081 case ELF::DT_MIPS_PLTGOT:
3082 DtMipsPltGot = Entry.getVal();
3083 break;
3084 case ELF::DT_JMPREL:
3085 DtJmpRel = Entry.getVal();
3086 break;
3090 if (!DtMipsPltGot && !DtJmpRel)
3091 return Error::success();
3093 // Find PLT section.
3094 if (!DtMipsPltGot)
3095 return createError("cannot find MIPS_PLTGOT dynamic tag");
3096 if (!DtJmpRel)
3097 return createError("cannot find JMPREL dynamic tag");
3099 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3100 if (!PltSec)
3101 return createError("there is no non-empty PLTGOT section at 0x" +
3102 Twine::utohexstr(*DtMipsPltGot));
3104 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3105 if (!PltRelSec)
3106 return createError("there is no non-empty RELPLT section at 0x" +
3107 Twine::utohexstr(*DtJmpRel));
3109 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3110 Obj.getSectionContents(*PltSec))
3111 PltEntries =
3112 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3113 PltContentOrErr->size() / sizeof(Entry));
3114 else
3115 return createError("unable to read PLTGOT section content: " +
3116 toString(PltContentOrErr.takeError()));
3118 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3119 Obj.getSection(PltRelSec->sh_link))
3120 PltSymTable = *PltSymTableOrErr;
3121 else
3122 return createError("unable to get a symbol table linked to the " +
3123 describe(Obj, *PltRelSec) + ": " +
3124 toString(PltSymTableOrErr.takeError()));
3126 if (Expected<StringRef> StrTabOrErr =
3127 Obj.getStringTableForSymtab(*PltSymTable))
3128 PltStrTable = *StrTabOrErr;
3129 else
3130 return createError("unable to get a string table for the " +
3131 describe(Obj, *PltSymTable) + ": " +
3132 toString(StrTabOrErr.takeError()));
3134 return Error::success();
3137 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3138 return GotSec->sh_addr + 0x7ff0;
3141 template <class ELFT>
3142 const typename MipsGOTParser<ELFT>::Entry *
3143 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3144 return LocalNum > 0 ? &GotEntries[0] : nullptr;
3147 template <class ELFT>
3148 const typename MipsGOTParser<ELFT>::Entry *
3149 MipsGOTParser<ELFT>::getGotModulePointer() const {
3150 if (LocalNum < 2)
3151 return nullptr;
3152 const Entry &E = GotEntries[1];
3153 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3154 return nullptr;
3155 return &E;
3158 template <class ELFT>
3159 typename MipsGOTParser<ELFT>::Entries
3160 MipsGOTParser<ELFT>::getLocalEntries() const {
3161 size_t Skip = getGotModulePointer() ? 2 : 1;
3162 if (LocalNum - Skip <= 0)
3163 return Entries();
3164 return GotEntries.slice(Skip, LocalNum - Skip);
3167 template <class ELFT>
3168 typename MipsGOTParser<ELFT>::Entries
3169 MipsGOTParser<ELFT>::getGlobalEntries() const {
3170 if (GlobalNum == 0)
3171 return Entries();
3172 return GotEntries.slice(LocalNum, GlobalNum);
3175 template <class ELFT>
3176 typename MipsGOTParser<ELFT>::Entries
3177 MipsGOTParser<ELFT>::getOtherEntries() const {
3178 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3179 if (OtherNum == 0)
3180 return Entries();
3181 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3184 template <class ELFT>
3185 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3186 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3187 return GotSec->sh_addr + Offset;
3190 template <class ELFT>
3191 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3192 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3193 return Offset - 0x7ff0;
3196 template <class ELFT>
3197 const typename MipsGOTParser<ELFT>::Elf_Sym *
3198 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3199 int64_t Offset = std::distance(GotEntries.data(), E);
3200 return &GotDynSyms[Offset - LocalNum];
3203 template <class ELFT>
3204 const typename MipsGOTParser<ELFT>::Entry *
3205 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3206 return PltEntries.empty() ? nullptr : &PltEntries[0];
3209 template <class ELFT>
3210 const typename MipsGOTParser<ELFT>::Entry *
3211 MipsGOTParser<ELFT>::getPltModulePointer() const {
3212 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3215 template <class ELFT>
3216 typename MipsGOTParser<ELFT>::Entries
3217 MipsGOTParser<ELFT>::getPltEntries() const {
3218 if (PltEntries.size() <= 2)
3219 return Entries();
3220 return PltEntries.slice(2, PltEntries.size() - 2);
3223 template <class ELFT>
3224 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3225 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3226 return PltSec->sh_addr + Offset;
3229 template <class ELFT>
3230 const typename MipsGOTParser<ELFT>::Elf_Sym *
3231 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3232 int64_t Offset = std::distance(getPltEntries().data(), E);
3233 if (PltRelSec->sh_type == ELF::SHT_REL) {
3234 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3235 return unwrapOrError(FileName,
3236 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3237 } else {
3238 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3239 return unwrapOrError(FileName,
3240 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3244 static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3245 {"None", Mips::AFL_EXT_NONE},
3246 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
3247 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3248 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3249 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3250 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3251 {"LSI R4010", Mips::AFL_EXT_4010},
3252 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3253 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3254 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3255 {"MIPS R4650", Mips::AFL_EXT_4650},
3256 {"MIPS R5900", Mips::AFL_EXT_5900},
3257 {"MIPS R10000", Mips::AFL_EXT_10000},
3258 {"NEC VR4100", Mips::AFL_EXT_4100},
3259 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3260 {"NEC VR4120", Mips::AFL_EXT_4120},
3261 {"NEC VR5400", Mips::AFL_EXT_5400},
3262 {"NEC VR5500", Mips::AFL_EXT_5500},
3263 {"RMI Xlr", Mips::AFL_EXT_XLR},
3264 {"Toshiba R3900", Mips::AFL_EXT_3900}
3267 static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3268 {"DSP", Mips::AFL_ASE_DSP},
3269 {"DSPR2", Mips::AFL_ASE_DSPR2},
3270 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3271 {"MCU", Mips::AFL_ASE_MCU},
3272 {"MDMX", Mips::AFL_ASE_MDMX},
3273 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3274 {"MT", Mips::AFL_ASE_MT},
3275 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3276 {"VZ", Mips::AFL_ASE_VIRT},
3277 {"MSA", Mips::AFL_ASE_MSA},
3278 {"MIPS16", Mips::AFL_ASE_MIPS16},
3279 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3280 {"XPA", Mips::AFL_ASE_XPA},
3281 {"CRC", Mips::AFL_ASE_CRC},
3282 {"GINV", Mips::AFL_ASE_GINV},
3285 static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3286 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3287 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3288 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3289 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3290 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3291 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3292 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3293 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3294 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3295 Mips::Val_GNU_MIPS_ABI_FP_64A}
3298 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3299 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3302 static int getMipsRegisterSize(uint8_t Flag) {
3303 switch (Flag) {
3304 case Mips::AFL_REG_NONE:
3305 return 0;
3306 case Mips::AFL_REG_32:
3307 return 32;
3308 case Mips::AFL_REG_64:
3309 return 64;
3310 case Mips::AFL_REG_128:
3311 return 128;
3312 default:
3313 return -1;
3317 template <class ELFT>
3318 static void printMipsReginfoData(ScopedPrinter &W,
3319 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3320 W.printHex("GP", Reginfo.ri_gp_value);
3321 W.printHex("General Mask", Reginfo.ri_gprmask);
3322 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3323 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3324 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3325 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3328 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3329 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3330 if (!RegInfoSec) {
3331 W.startLine() << "There is no .reginfo section in the file.\n";
3332 return;
3335 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3336 Obj.getSectionContents(*RegInfoSec);
3337 if (!ContentsOrErr) {
3338 this->reportUniqueWarning(
3339 "unable to read the content of the .reginfo section (" +
3340 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3341 return;
3344 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3345 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3346 Twine::utohexstr(ContentsOrErr->size()) + ")");
3347 return;
3350 DictScope GS(W, "MIPS RegInfo");
3351 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3352 ContentsOrErr->data()));
3355 template <class ELFT>
3356 static Expected<const Elf_Mips_Options<ELFT> *>
3357 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3358 bool &IsSupported) {
3359 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3360 return createError("the .MIPS.options section has an invalid size (0x" +
3361 Twine::utohexstr(SecData.size()) + ")");
3363 const Elf_Mips_Options<ELFT> *O =
3364 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3365 const uint8_t Size = O->size;
3366 if (Size > SecData.size()) {
3367 const uint64_t Offset = SecData.data() - SecBegin;
3368 const uint64_t SecSize = Offset + SecData.size();
3369 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3370 " at offset 0x" + Twine::utohexstr(Offset) +
3371 " goes past the end of the .MIPS.options "
3372 "section of size 0x" +
3373 Twine::utohexstr(SecSize));
3376 IsSupported = O->kind == ODK_REGINFO;
3377 const size_t ExpectedSize =
3378 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3380 if (IsSupported)
3381 if (Size < ExpectedSize)
3382 return createError(
3383 "a .MIPS.options entry of kind " +
3384 Twine(getElfMipsOptionsOdkType(O->kind)) +
3385 " has an invalid size (0x" + Twine::utohexstr(Size) +
3386 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3388 SecData = SecData.drop_front(Size);
3389 return O;
3392 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3393 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3394 if (!MipsOpts) {
3395 W.startLine() << "There is no .MIPS.options section in the file.\n";
3396 return;
3399 DictScope GS(W, "MIPS Options");
3401 ArrayRef<uint8_t> Data =
3402 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3403 const uint8_t *const SecBegin = Data.begin();
3404 while (!Data.empty()) {
3405 bool IsSupported;
3406 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3407 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3408 if (!OptsOrErr) {
3409 reportUniqueWarning(OptsOrErr.takeError());
3410 break;
3413 unsigned Kind = (*OptsOrErr)->kind;
3414 const char *Type = getElfMipsOptionsOdkType(Kind);
3415 if (!IsSupported) {
3416 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3417 << ")\n";
3418 continue;
3421 DictScope GS(W, Type);
3422 if (Kind == ODK_REGINFO)
3423 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3424 else
3425 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3429 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3430 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3431 if (!StackMapSection)
3432 return;
3434 auto Warn = [&](Error &&E) {
3435 this->reportUniqueWarning("unable to read the stack map from " +
3436 describe(*StackMapSection) + ": " +
3437 toString(std::move(E)));
3440 Expected<ArrayRef<uint8_t>> ContentOrErr =
3441 Obj.getSectionContents(*StackMapSection);
3442 if (!ContentOrErr) {
3443 Warn(ContentOrErr.takeError());
3444 return;
3447 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3448 *ContentOrErr)) {
3449 Warn(std::move(E));
3450 return;
3453 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3456 template <class ELFT> void ELFDumper<ELFT>::printGroupSections() {
3457 ELFDumperStyle->printGroupSections();
3460 template <class ELFT> void ELFDumper<ELFT>::printAddrsig() {
3461 ELFDumperStyle->printAddrsig();
3464 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3465 StringRef Str2) {
3466 OS.PadToColumn(2u);
3467 OS << Str1;
3468 OS.PadToColumn(37u);
3469 OS << Str2 << "\n";
3470 OS.flush();
3473 template <class ELFT>
3474 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3475 StringRef FileName) {
3476 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3477 if (ElfHeader.e_shnum != 0)
3478 return to_string(ElfHeader.e_shnum);
3480 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3481 if (!ArrOrErr) {
3482 // In this case we can ignore an error, because we have already reported a
3483 // warning about the broken section header table earlier.
3484 consumeError(ArrOrErr.takeError());
3485 return "<?>";
3488 if (ArrOrErr->empty())
3489 return "0";
3490 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3493 template <class ELFT>
3494 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3495 StringRef FileName) {
3496 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3497 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3498 return to_string(ElfHeader.e_shstrndx);
3500 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3501 if (!ArrOrErr) {
3502 // In this case we can ignore an error, because we have already reported a
3503 // warning about the broken section header table earlier.
3504 consumeError(ArrOrErr.takeError());
3505 return "<?>";
3508 if (ArrOrErr->empty())
3509 return "65535 (corrupt: out of range)";
3510 return to_string(ElfHeader.e_shstrndx) + " (" +
3511 to_string((*ArrOrErr)[0].sh_link) + ")";
3514 template <class ELFT> void GNUStyle<ELFT>::printFileHeaders() {
3515 const Elf_Ehdr &e = this->Obj.getHeader();
3516 OS << "ELF Header:\n";
3517 OS << " Magic: ";
3518 std::string Str;
3519 for (int i = 0; i < ELF::EI_NIDENT; i++)
3520 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3521 OS << "\n";
3522 Str = printEnum(e.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
3523 printFields(OS, "Class:", Str);
3524 Str = printEnum(e.e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding));
3525 printFields(OS, "Data:", Str);
3526 OS.PadToColumn(2u);
3527 OS << "Version:";
3528 OS.PadToColumn(37u);
3529 OS << to_hexString(e.e_ident[ELF::EI_VERSION]);
3530 if (e.e_version == ELF::EV_CURRENT)
3531 OS << " (current)";
3532 OS << "\n";
3533 Str = printEnum(e.e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI));
3534 printFields(OS, "OS/ABI:", Str);
3535 printFields(OS,
3536 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3538 Str = printEnum(e.e_type, makeArrayRef(ElfObjectFileType));
3539 if (makeArrayRef(ElfObjectFileType).end() ==
3540 llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3541 return E.Value == e.e_type;
3542 })) {
3543 if (e.e_type >= ET_LOPROC)
3544 Str = "Processor Specific: (" + Str + ")";
3545 else if (e.e_type >= ET_LOOS)
3546 Str = "OS Specific: (" + Str + ")";
3547 else
3548 Str = "<unknown>: " + Str;
3550 printFields(OS, "Type:", Str);
3552 Str = printEnum(e.e_machine, makeArrayRef(ElfMachineType));
3553 printFields(OS, "Machine:", Str);
3554 Str = "0x" + to_hexString(e.e_version);
3555 printFields(OS, "Version:", Str);
3556 Str = "0x" + to_hexString(e.e_entry);
3557 printFields(OS, "Entry point address:", Str);
3558 Str = to_string(e.e_phoff) + " (bytes into file)";
3559 printFields(OS, "Start of program headers:", Str);
3560 Str = to_string(e.e_shoff) + " (bytes into file)";
3561 printFields(OS, "Start of section headers:", Str);
3562 std::string ElfFlags;
3563 if (e.e_machine == EM_MIPS)
3564 ElfFlags =
3565 printFlags(e.e_flags, makeArrayRef(ElfHeaderMipsFlags),
3566 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
3567 unsigned(ELF::EF_MIPS_MACH));
3568 else if (e.e_machine == EM_RISCV)
3569 ElfFlags = printFlags(e.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
3570 Str = "0x" + to_hexString(e.e_flags);
3571 if (!ElfFlags.empty())
3572 Str = Str + ", " + ElfFlags;
3573 printFields(OS, "Flags:", Str);
3574 Str = to_string(e.e_ehsize) + " (bytes)";
3575 printFields(OS, "Size of this header:", Str);
3576 Str = to_string(e.e_phentsize) + " (bytes)";
3577 printFields(OS, "Size of program headers:", Str);
3578 Str = to_string(e.e_phnum);
3579 printFields(OS, "Number of program headers:", Str);
3580 Str = to_string(e.e_shentsize) + " (bytes)";
3581 printFields(OS, "Size of section headers:", Str);
3582 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3583 printFields(OS, "Number of section headers:", Str);
3584 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3585 printFields(OS, "Section header string table index:", Str);
3588 template <class ELFT> std::vector<GroupSection> DumpStyle<ELFT>::getGroups() {
3589 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3590 const Elf_Shdr &Symtab) -> StringRef {
3591 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3592 if (!StrTableOrErr) {
3593 reportUniqueWarning("unable to get the string table for " +
3594 describe(Obj, Symtab) + ": " +
3595 toString(StrTableOrErr.takeError()));
3596 return "<?>";
3599 StringRef Strings = *StrTableOrErr;
3600 if (Sym.st_name >= Strings.size()) {
3601 reportUniqueWarning("unable to get the name of the symbol with index " +
3602 Twine(SymNdx) + ": st_name (0x" +
3603 Twine::utohexstr(Sym.st_name) +
3604 ") is past the end of the string table of size 0x" +
3605 Twine::utohexstr(Strings.size()));
3606 return "<?>";
3609 return StrTableOrErr->data() + Sym.st_name;
3612 std::vector<GroupSection> Ret;
3613 uint64_t I = 0;
3614 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3615 ++I;
3616 if (Sec.sh_type != ELF::SHT_GROUP)
3617 continue;
3619 StringRef Signature = "<?>";
3620 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3621 if (Expected<const Elf_Sym *> SymOrErr =
3622 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3623 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3624 else
3625 reportUniqueWarning("unable to get the signature symbol for " +
3626 describe(Obj, Sec) + ": " +
3627 toString(SymOrErr.takeError()));
3628 } else {
3629 reportUniqueWarning("unable to get the symbol table for " +
3630 describe(Obj, Sec) + ": " +
3631 toString(SymtabOrErr.takeError()));
3634 ArrayRef<Elf_Word> Data;
3635 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3636 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3637 if (ContentsOrErr->empty())
3638 reportUniqueWarning("unable to read the section group flag from the " +
3639 describe(Obj, Sec) + ": the section is empty");
3640 else
3641 Data = *ContentsOrErr;
3642 } else {
3643 reportUniqueWarning("unable to get the content of the " +
3644 describe(Obj, Sec) + ": " +
3645 toString(ContentsOrErr.takeError()));
3648 Ret.push_back({getPrintableSectionName(Sec),
3649 maybeDemangle(Signature),
3650 Sec.sh_name,
3651 I - 1,
3652 Sec.sh_link,
3653 Sec.sh_info,
3654 Data.empty() ? Elf_Word(0) : Data[0],
3655 {}});
3657 if (Data.empty())
3658 continue;
3660 std::vector<GroupMember> &GM = Ret.back().Members;
3661 for (uint32_t Ndx : Data.slice(1)) {
3662 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3663 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3664 } else {
3665 reportUniqueWarning("unable to get the section with index " +
3666 Twine(Ndx) + " when dumping the " +
3667 describe(Obj, Sec) + ": " +
3668 toString(SecOrErr.takeError()));
3669 GM.push_back({"<?>", Ndx});
3673 return Ret;
3676 static DenseMap<uint64_t, const GroupSection *>
3677 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3678 DenseMap<uint64_t, const GroupSection *> Ret;
3679 for (const GroupSection &G : Groups)
3680 for (const GroupMember &GM : G.Members)
3681 Ret.insert({GM.Index, &G});
3682 return Ret;
3685 template <class ELFT> void GNUStyle<ELFT>::printGroupSections() {
3686 std::vector<GroupSection> V = this->getGroups();
3687 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3688 for (const GroupSection &G : V) {
3689 OS << "\n"
3690 << getGroupType(G.Type) << " group section ["
3691 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3692 << "] contains " << G.Members.size() << " sections:\n"
3693 << " [Index] Name\n";
3694 for (const GroupMember &GM : G.Members) {
3695 const GroupSection *MainGroup = Map[GM.Index];
3696 if (MainGroup != &G)
3697 this->reportUniqueWarning(
3698 "section with index " + Twine(GM.Index) +
3699 ", included in the group section with index " +
3700 Twine(MainGroup->Index) +
3701 ", was also found in the group section with index " +
3702 Twine(G.Index));
3703 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3707 if (V.empty())
3708 OS << "There are no section groups in this file.\n";
3711 template <class ELFT>
3712 void GNUStyle<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3713 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3714 Expected<RelSymbol<ELFT>> Target =
3715 this->dumper().getRelocationTarget(R, SymTab);
3716 if (!Target)
3717 this->reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3718 " in " + describe(this->Obj, Sec) + ": " +
3719 toString(Target.takeError()));
3720 else
3721 printRelRelaReloc(R, *Target);
3724 template <class ELFT> void GNUStyle<ELFT>::printRelrReloc(const Elf_Relr &R) {
3725 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3728 template <class ELFT>
3729 void GNUStyle<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3730 const RelSymbol<ELFT> &RelSym) {
3731 // First two fields are bit width dependent. The rest of them are fixed width.
3732 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3733 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3734 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3736 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3737 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3739 SmallString<32> RelocName;
3740 this->Obj.getRelocationTypeName(R.Type, RelocName);
3741 Fields[2].Str = RelocName.c_str();
3743 if (RelSym.Sym)
3744 Fields[3].Str =
3745 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3747 Fields[4].Str = std::string(RelSym.Name);
3748 for (const Field &F : Fields)
3749 printField(F);
3751 std::string Addend;
3752 if (Optional<int64_t> A = R.Addend) {
3753 int64_t RelAddend = *A;
3754 if (!RelSym.Name.empty()) {
3755 if (RelAddend < 0) {
3756 Addend = " - ";
3757 RelAddend = std::abs(RelAddend);
3758 } else {
3759 Addend = " + ";
3762 Addend += to_hexString(RelAddend, false);
3764 OS << Addend << "\n";
3767 template <class ELFT>
3768 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3769 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3770 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3771 if (ELFT::Is64Bits)
3772 OS << " ";
3773 else
3774 OS << " ";
3775 if (IsRelr && opts::RawRelr)
3776 OS << "Data ";
3777 else
3778 OS << "Offset";
3779 if (ELFT::Is64Bits)
3780 OS << " Info Type"
3781 << " Symbol's Value Symbol's Name";
3782 else
3783 OS << " Info Type Sym. Value Symbol's Name";
3784 if (IsRela)
3785 OS << " + Addend";
3786 OS << "\n";
3789 template <class ELFT>
3790 void GNUStyle<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3791 const DynRegionInfo &Reg) {
3792 uint64_t Offset = Reg.Addr - this->Obj.base();
3793 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3794 << to_hexString(Offset, false) << " contains " << Reg.Size << " bytes:\n";
3795 printRelocHeaderFields<ELFT>(OS, Type);
3798 template <class ELFT>
3799 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3800 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3801 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3802 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3803 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3806 template <class ELFT> void GNUStyle<ELFT>::printRelocations() {
3807 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3808 // Android's packed relocation section needs to be unpacked first
3809 // to get the actual number of entries.
3810 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3811 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3812 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3813 this->Obj.android_relas(Sec);
3814 if (!RelasOrErr)
3815 return RelasOrErr.takeError();
3816 return RelasOrErr->size();
3819 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3820 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3821 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3822 if (!RelrsOrErr)
3823 return RelrsOrErr.takeError();
3824 return this->Obj.decode_relrs(*RelrsOrErr).size();
3827 return Sec.getEntityCount();
3830 bool HasRelocSections = false;
3831 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3832 if (!isRelocationSec<ELFT>(Sec))
3833 continue;
3834 HasRelocSections = true;
3836 std::string EntriesNum = "<?>";
3837 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3838 EntriesNum = std::to_string(*NumOrErr);
3839 else
3840 this->reportUniqueWarning("unable to get the number of relocations in " +
3841 describe(this->Obj, Sec) + ": " +
3842 toString(NumOrErr.takeError()));
3844 uintX_t Offset = Sec.sh_offset;
3845 StringRef Name = this->getPrintableSectionName(Sec);
3846 OS << "\nRelocation section '" << Name << "' at offset 0x"
3847 << to_hexString(Offset, false) << " contains " << EntriesNum
3848 << " entries:\n";
3849 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3850 this->printRelocationsHelper(Sec);
3852 if (!HasRelocSections)
3853 OS << "\nThere are no relocations in this file.\n";
3856 // Print the offset of a particular section from anyone of the ranges:
3857 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3858 // If 'Type' does not fall within any of those ranges, then a string is
3859 // returned as '<unknown>' followed by the type value.
3860 static std::string getSectionTypeOffsetString(unsigned Type) {
3861 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3862 return "LOOS+0x" + to_hexString(Type - SHT_LOOS);
3863 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3864 return "LOPROC+0x" + to_hexString(Type - SHT_LOPROC);
3865 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3866 return "LOUSER+0x" + to_hexString(Type - SHT_LOUSER);
3867 return "0x" + to_hexString(Type) + ": <unknown>";
3870 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3871 StringRef Name = getELFSectionTypeName(Machine, Type);
3873 // Handle SHT_GNU_* type names.
3874 if (Name.startswith("SHT_GNU_")) {
3875 if (Name == "SHT_GNU_HASH")
3876 return "GNU_HASH";
3877 // E.g. SHT_GNU_verneed -> VERNEED.
3878 return Name.drop_front(8).upper();
3881 if (Name == "SHT_SYMTAB_SHNDX")
3882 return "SYMTAB SECTION INDICES";
3884 if (Name.startswith("SHT_"))
3885 return Name.drop_front(4).str();
3886 return getSectionTypeOffsetString(Type);
3889 static void printSectionDescription(formatted_raw_ostream &OS,
3890 unsigned EMachine) {
3891 OS << "Key to Flags:\n";
3892 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3893 "(info),\n";
3894 OS << " L (link order), O (extra OS processing required), G (group), T "
3895 "(TLS),\n";
3896 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3898 if (EMachine == EM_X86_64)
3899 OS << " l (large), ";
3900 else if (EMachine == EM_ARM)
3901 OS << " y (purecode), ";
3902 else
3903 OS << " ";
3905 OS << "p (processor specific)\n";
3908 template <class ELFT> void GNUStyle<ELFT>::printSectionHeaders() {
3909 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3910 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3911 OS << "There are " << to_string(Sections.size())
3912 << " section headers, starting at offset "
3913 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
3914 OS << "Section Headers:\n";
3915 Field Fields[11] = {
3916 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3917 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3918 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3919 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3920 for (const Field &F : Fields)
3921 printField(F);
3922 OS << "\n";
3924 StringRef SecStrTable;
3925 if (Expected<StringRef> SecStrTableOrErr = this->Obj.getSectionStringTable(
3926 Sections, this->dumper().WarningHandler))
3927 SecStrTable = *SecStrTableOrErr;
3928 else
3929 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3931 size_t SectionIndex = 0;
3932 for (const Elf_Shdr &Sec : Sections) {
3933 Fields[0].Str = to_string(SectionIndex);
3934 if (SecStrTable.empty())
3935 Fields[1].Str = "<no-strings>";
3936 else
3937 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3938 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3939 Fields[2].Str =
3940 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3941 Fields[3].Str =
3942 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3943 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3944 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3945 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3946 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_machine, Sec.sh_flags);
3947 Fields[8].Str = to_string(Sec.sh_link);
3948 Fields[9].Str = to_string(Sec.sh_info);
3949 Fields[10].Str = to_string(Sec.sh_addralign);
3951 OS.PadToColumn(Fields[0].Column);
3952 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3953 for (int i = 1; i < 7; i++)
3954 printField(Fields[i]);
3955 OS.PadToColumn(Fields[7].Column);
3956 OS << right_justify(Fields[7].Str, 3);
3957 OS.PadToColumn(Fields[8].Column);
3958 OS << right_justify(Fields[8].Str, 2);
3959 OS.PadToColumn(Fields[9].Column);
3960 OS << right_justify(Fields[9].Str, 3);
3961 OS.PadToColumn(Fields[10].Column);
3962 OS << right_justify(Fields[10].Str, 2);
3963 OS << "\n";
3964 ++SectionIndex;
3966 printSectionDescription(OS, this->Obj.getHeader().e_machine);
3969 template <class ELFT>
3970 void GNUStyle<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab, size_t Entries,
3971 bool NonVisibilityBitsUsed) {
3972 StringRef Name;
3973 if (Symtab)
3974 Name = this->getPrintableSectionName(*Symtab);
3975 if (!Name.empty())
3976 OS << "\nSymbol table '" << Name << "'";
3977 else
3978 OS << "\nSymbol table for image";
3979 OS << " contains " << Entries << " entries:\n";
3981 if (ELFT::Is64Bits)
3982 OS << " Num: Value Size Type Bind Vis";
3983 else
3984 OS << " Num: Value Size Type Bind Vis";
3986 if (NonVisibilityBitsUsed)
3987 OS << " ";
3988 OS << " Ndx Name\n";
3991 template <class ELFT>
3992 std::string GNUStyle<ELFT>::getSymbolSectionNdx(const Elf_Sym &Symbol,
3993 unsigned SymIndex) {
3994 unsigned SectionIndex = Symbol.st_shndx;
3995 switch (SectionIndex) {
3996 case ELF::SHN_UNDEF:
3997 return "UND";
3998 case ELF::SHN_ABS:
3999 return "ABS";
4000 case ELF::SHN_COMMON:
4001 return "COM";
4002 case ELF::SHN_XINDEX: {
4003 Expected<uint32_t> IndexOrErr = object::getExtendedSymbolTableIndex<ELFT>(
4004 Symbol, SymIndex, this->dumper().getShndxTable());
4005 if (!IndexOrErr) {
4006 assert(Symbol.st_shndx == SHN_XINDEX &&
4007 "getExtendedSymbolTableIndex should only fail due to an invalid "
4008 "SHT_SYMTAB_SHNDX table/reference");
4009 this->reportUniqueWarning(IndexOrErr.takeError());
4010 return "RSV[0xffff]";
4012 return to_string(format_decimal(*IndexOrErr, 3));
4014 default:
4015 // Find if:
4016 // Processor specific
4017 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4018 return std::string("PRC[0x") +
4019 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4020 // OS specific
4021 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4022 return std::string("OS[0x") +
4023 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4024 // Architecture reserved:
4025 if (SectionIndex >= ELF::SHN_LORESERVE &&
4026 SectionIndex <= ELF::SHN_HIRESERVE)
4027 return std::string("RSV[0x") +
4028 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4029 // A normal section with an index
4030 return to_string(format_decimal(SectionIndex, 3));
4034 template <class ELFT>
4035 void GNUStyle<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
4036 Optional<StringRef> StrTable, bool IsDynamic,
4037 bool NonVisibilityBitsUsed) {
4038 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4039 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
4040 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4041 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
4042 Fields[1].Str =
4043 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
4044 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
4046 unsigned char SymbolType = Symbol.getType();
4047 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4048 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4049 Fields[3].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
4050 else
4051 Fields[3].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
4053 Fields[4].Str =
4054 printEnum(Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
4055 Fields[5].Str =
4056 printEnum(Symbol.getVisibility(), makeArrayRef(ElfSymbolVisibilities));
4058 if (Symbol.st_other & ~0x3) {
4059 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
4060 uint8_t Other = Symbol.st_other & ~0x3;
4061 if (Other & STO_AARCH64_VARIANT_PCS) {
4062 Other &= ~STO_AARCH64_VARIANT_PCS;
4063 Fields[5].Str += " [VARIANT_PCS";
4064 if (Other != 0)
4065 Fields[5].Str.append(" | " + to_hexString(Other, false));
4066 Fields[5].Str.append("]");
4068 } else {
4069 Fields[5].Str +=
4070 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
4074 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4075 Fields[6].Str = getSymbolSectionNdx(Symbol, SymIndex);
4077 Fields[7].Str =
4078 this->dumper().getFullSymbolName(Symbol, SymIndex, StrTable, IsDynamic);
4079 for (const Field &Entry : Fields)
4080 printField(Entry);
4081 OS << "\n";
4084 template <class ELFT>
4085 void GNUStyle<ELFT>::printHashedSymbol(const Elf_Sym *Symbol, unsigned SymIndex,
4086 StringRef StrTable, uint32_t Bucket) {
4087 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4088 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
4089 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4090 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
4091 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4093 Fields[2].Str = to_string(
4094 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4095 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4097 unsigned char SymbolType = Symbol->getType();
4098 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4099 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4100 Fields[4].Str = printEnum(SymbolType, makeArrayRef(AMDGPUSymbolTypes));
4101 else
4102 Fields[4].Str = printEnum(SymbolType, makeArrayRef(ElfSymbolTypes));
4104 Fields[5].Str =
4105 printEnum(Symbol->getBinding(), makeArrayRef(ElfSymbolBindings));
4106 Fields[6].Str =
4107 printEnum(Symbol->getVisibility(), makeArrayRef(ElfSymbolVisibilities));
4108 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex);
4109 Fields[8].Str =
4110 this->dumper().getFullSymbolName(*Symbol, SymIndex, StrTable, true);
4112 for (const Field &Entry : Fields)
4113 printField(Entry);
4114 OS << "\n";
4117 template <class ELFT>
4118 void GNUStyle<ELFT>::printSymbols(bool PrintSymbols, bool PrintDynamicSymbols) {
4119 if (!PrintSymbols && !PrintDynamicSymbols)
4120 return;
4121 // GNU readelf prints both the .dynsym and .symtab with --symbols.
4122 this->dumper().printSymbolsHelper(true);
4123 if (PrintSymbols)
4124 this->dumper().printSymbolsHelper(false);
4127 template <class ELFT>
4128 void GNUStyle<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
4129 StringRef StringTable = this->dumper().getDynamicStringTable();
4130 if (StringTable.empty())
4131 return;
4133 if (ELFT::Is64Bits)
4134 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4135 else
4136 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4137 OS << "\n";
4139 Elf_Sym_Range DynSyms = this->dumper().dynamic_symbols();
4140 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4141 if (!FirstSym) {
4142 Optional<DynRegionInfo> DynSymRegion = this->dumper().getDynSymRegion();
4143 this->reportUniqueWarning(
4144 Twine("unable to print symbols for the .hash table: the "
4145 "dynamic symbol table ") +
4146 (DynSymRegion ? "is empty" : "was not found"));
4147 return;
4150 auto Buckets = SysVHash.buckets();
4151 auto Chains = SysVHash.chains();
4152 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4153 if (Buckets[Buc] == ELF::STN_UNDEF)
4154 continue;
4155 std::vector<bool> Visited(SysVHash.nchain);
4156 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4157 if (Ch == ELF::STN_UNDEF)
4158 break;
4160 if (Visited[Ch]) {
4161 this->reportUniqueWarning(".hash section is invalid: bucket " +
4162 Twine(Ch) +
4163 ": a cycle was detected in the linked chain");
4164 break;
4167 printHashedSymbol(FirstSym + Ch, Ch, StringTable, Buc);
4168 Visited[Ch] = true;
4173 template <class ELFT>
4174 void GNUStyle<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
4175 StringRef StringTable = this->dumper().getDynamicStringTable();
4176 if (StringTable.empty())
4177 return;
4179 Elf_Sym_Range DynSyms = this->dumper().dynamic_symbols();
4180 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4181 Optional<DynRegionInfo> DynSymRegion = this->dumper().getDynSymRegion();
4182 if (!FirstSym) {
4183 this->reportUniqueWarning(
4184 Twine("unable to print symbols for the .gnu.hash table: the "
4185 "dynamic symbol table ") +
4186 (DynSymRegion ? "is empty" : "was not found"));
4187 return;
4190 auto GetSymbol = [&](uint64_t SymIndex,
4191 uint64_t SymsTotal) -> const Elf_Sym * {
4192 if (SymIndex >= SymsTotal) {
4193 this->reportUniqueWarning(
4194 "unable to print hashed symbol with index " + Twine(SymIndex) +
4195 ", which is greater than or equal to the number of dynamic symbols "
4196 "(" +
4197 Twine::utohexstr(SymsTotal) + ")");
4198 return nullptr;
4200 return FirstSym + SymIndex;
4203 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4204 getGnuHashTableChains<ELFT>(DynSymRegion, &GnuHash);
4205 ArrayRef<Elf_Word> Values;
4206 if (!ValuesOrErr)
4207 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4208 "section: " +
4209 toString(ValuesOrErr.takeError()));
4210 else
4211 Values = *ValuesOrErr;
4213 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4214 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4215 if (Buckets[Buc] == ELF::STN_UNDEF)
4216 continue;
4217 uint32_t Index = Buckets[Buc];
4218 // Print whole chain.
4219 while (true) {
4220 uint32_t SymIndex = Index++;
4221 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4222 printHashedSymbol(Sym, SymIndex, StringTable, Buc);
4223 else
4224 break;
4226 if (SymIndex < GnuHash.symndx) {
4227 this->reportUniqueWarning(
4228 "unable to read the hash value for symbol with index " +
4229 Twine(SymIndex) +
4230 ", which is less than the index of the first hashed symbol (" +
4231 Twine(GnuHash.symndx) + ")");
4232 break;
4235 // Chain ends at symbol with stopper bit.
4236 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4237 break;
4242 template <class ELFT> void GNUStyle<ELFT>::printHashSymbols() {
4243 if (const Elf_Hash *SysVHash = this->dumper().getHashTable()) {
4244 OS << "\n Symbol table of .hash for image:\n";
4245 if (Error E = checkHashTable<ELFT>(this->dumper(), SysVHash))
4246 this->reportUniqueWarning(std::move(E));
4247 else
4248 printHashTableSymbols(*SysVHash);
4251 // Try printing the .gnu.hash table.
4252 if (const Elf_GnuHash *GnuHash = this->dumper().getGnuHashTable()) {
4253 OS << "\n Symbol table of .gnu.hash for image:\n";
4254 if (ELFT::Is64Bits)
4255 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4256 else
4257 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4258 OS << "\n";
4260 if (Error E = checkGNUHashTable<ELFT>(this->Obj, GnuHash))
4261 this->reportUniqueWarning(std::move(E));
4262 else
4263 printGnuHashTableSymbols(*GnuHash);
4267 template <class ELFT> void GNUStyle<ELFT>::printSectionDetails() {
4268 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4269 OS << "There are " << to_string(Sections.size())
4270 << " section headers, starting at offset "
4271 << "0x" << to_hexString(this->Obj.getHeader().e_shoff, false) << ":\n\n";
4273 OS << "Section Headers:\n";
4275 auto PrintFields = [&](ArrayRef<Field> V) {
4276 for (const Field &F : V)
4277 printField(F);
4278 OS << "\n";
4281 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4283 constexpr bool Is64 = ELFT::Is64Bits;
4284 PrintFields({{"Type", 7},
4285 {Is64 ? "Address" : "Addr", 23},
4286 {"Off", Is64 ? 40 : 32},
4287 {"Size", Is64 ? 47 : 39},
4288 {"ES", Is64 ? 54 : 46},
4289 {"Lk", Is64 ? 59 : 51},
4290 {"Inf", Is64 ? 62 : 54},
4291 {"Al", Is64 ? 66 : 57}});
4292 PrintFields({{"Flags", 7}});
4294 StringRef SecStrTable;
4295 if (Expected<StringRef> SecStrTableOrErr = this->Obj.getSectionStringTable(
4296 Sections, this->dumper().WarningHandler))
4297 SecStrTable = *SecStrTableOrErr;
4298 else
4299 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4301 size_t SectionIndex = 0;
4302 const unsigned AddrSize = Is64 ? 16 : 8;
4303 for (const Elf_Shdr &S : Sections) {
4304 StringRef Name = "<?>";
4305 if (Expected<StringRef> NameOrErr =
4306 this->Obj.getSectionName(S, SecStrTable))
4307 Name = *NameOrErr;
4308 else
4309 this->reportUniqueWarning(NameOrErr.takeError());
4311 OS.PadToColumn(2);
4312 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4313 PrintFields({{Name, 7}});
4314 PrintFields(
4315 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4316 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4317 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4318 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4319 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4320 {to_string(S.sh_link), Is64 ? 59 : 51},
4321 {to_string(S.sh_info), Is64 ? 63 : 55},
4322 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4324 OS.PadToColumn(7);
4325 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4327 DenseMap<unsigned, StringRef> FlagToName = {
4328 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4329 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4330 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4331 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4332 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4333 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4335 uint64_t Flags = S.sh_flags;
4336 uint64_t UnknownFlags = 0;
4337 bool NeedsComma = false;
4338 while (Flags) {
4339 // Take the least significant bit as a flag.
4340 uint64_t Flag = Flags & -Flags;
4341 Flags -= Flag;
4343 auto It = FlagToName.find(Flag);
4344 if (It != FlagToName.end()) {
4345 if (NeedsComma)
4346 OS << ", ";
4347 NeedsComma = true;
4348 OS << It->second;
4349 } else {
4350 UnknownFlags |= Flag;
4354 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4355 uint64_t FlagsToPrint = UnknownFlags & Mask;
4356 if (!FlagsToPrint)
4357 return;
4359 if (NeedsComma)
4360 OS << ", ";
4361 OS << Name << " ("
4362 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4363 UnknownFlags &= ~Mask;
4364 NeedsComma = true;
4367 PrintUnknownFlags(SHF_MASKOS, "OS");
4368 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4369 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4371 OS << "\n";
4372 ++SectionIndex;
4376 static inline std::string printPhdrFlags(unsigned Flag) {
4377 std::string Str;
4378 Str = (Flag & PF_R) ? "R" : " ";
4379 Str += (Flag & PF_W) ? "W" : " ";
4380 Str += (Flag & PF_X) ? "E" : " ";
4381 return Str;
4384 template <class ELFT>
4385 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4386 const typename ELFT::Shdr &Sec) {
4387 if (Sec.sh_flags & ELF::SHF_TLS) {
4388 // .tbss must only be shown in the PT_TLS segment.
4389 if (Sec.sh_type == ELF::SHT_NOBITS)
4390 return Phdr.p_type == ELF::PT_TLS;
4392 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4393 // segments.
4394 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4395 (Phdr.p_type == ELF::PT_GNU_RELRO);
4398 // PT_TLS must only have SHF_TLS sections.
4399 return Phdr.p_type != ELF::PT_TLS;
4402 template <class ELFT>
4403 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4404 const typename ELFT::Shdr &Sec) {
4405 // SHT_NOBITS sections don't need to have an offset inside the segment.
4406 if (Sec.sh_type == ELF::SHT_NOBITS)
4407 return true;
4409 if (Sec.sh_offset < Phdr.p_offset)
4410 return false;
4412 // Only non-empty sections can be at the end of a segment.
4413 if (Sec.sh_size == 0)
4414 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4415 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4418 // Check that an allocatable section belongs to a virtual address
4419 // space of a segment.
4420 template <class ELFT>
4421 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4422 const typename ELFT::Shdr &Sec) {
4423 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4424 return true;
4426 if (Sec.sh_addr < Phdr.p_vaddr)
4427 return false;
4429 bool IsTbss =
4430 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4431 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4432 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4433 // Only non-empty sections can be at the end of a segment.
4434 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4435 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4436 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4439 template <class ELFT>
4440 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4441 const typename ELFT::Shdr &Sec) {
4442 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4443 return true;
4445 // We get here when we have an empty section. Only non-empty sections can be
4446 // at the start or at the end of PT_DYNAMIC.
4447 // Is section within the phdr both based on offset and VMA?
4448 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4449 (Sec.sh_offset > Phdr.p_offset &&
4450 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4451 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4452 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4453 return CheckOffset && CheckVA;
4456 template <class ELFT>
4457 void GNUStyle<ELFT>::printProgramHeaders(
4458 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4459 if (PrintProgramHeaders)
4460 printProgramHeaders();
4462 // Display the section mapping along with the program headers, unless
4463 // -section-mapping is explicitly set to false.
4464 if (PrintSectionMapping != cl::BOU_FALSE)
4465 printSectionMapping();
4468 template <class ELFT> void GNUStyle<ELFT>::printProgramHeaders() {
4469 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4470 const Elf_Ehdr &Header = this->Obj.getHeader();
4471 Field Fields[8] = {2, 17, 26, 37 + Bias,
4472 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4473 OS << "\nElf file type is "
4474 << printEnum(Header.e_type, makeArrayRef(ElfObjectFileType)) << "\n"
4475 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4476 << "There are " << Header.e_phnum << " program headers,"
4477 << " starting at offset " << Header.e_phoff << "\n\n"
4478 << "Program Headers:\n";
4479 if (ELFT::Is64Bits)
4480 OS << " Type Offset VirtAddr PhysAddr "
4481 << " FileSiz MemSiz Flg Align\n";
4482 else
4483 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4484 << "MemSiz Flg Align\n";
4486 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4487 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4489 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4490 if (!PhdrsOrErr) {
4491 this->reportUniqueWarning("unable to dump program headers: " +
4492 toString(PhdrsOrErr.takeError()));
4493 return;
4496 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4497 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4498 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4499 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4500 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4501 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4502 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4503 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4504 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4505 for (const Field &F : Fields)
4506 printField(F);
4507 if (Phdr.p_type == ELF::PT_INTERP) {
4508 OS << "\n";
4509 auto ReportBadInterp = [&](const Twine &Msg) {
4510 this->reportUniqueWarning(
4511 "unable to read program interpreter name at offset 0x" +
4512 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4515 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4516 ReportBadInterp("it goes past the end of the file (0x" +
4517 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4518 continue;
4521 const char *Data =
4522 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4523 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4524 size_t Len = strnlen(Data, MaxSize);
4525 if (Len == MaxSize) {
4526 ReportBadInterp("it is not null-terminated");
4527 continue;
4530 OS << " [Requesting program interpreter: ";
4531 OS << StringRef(Data, Len) << "]";
4533 OS << "\n";
4537 template <class ELFT> void GNUStyle<ELFT>::printSectionMapping() {
4538 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4539 DenseSet<const Elf_Shdr *> BelongsToSegment;
4540 int Phnum = 0;
4542 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4543 if (!PhdrsOrErr) {
4544 this->reportUniqueWarning(
4545 "can't read program headers to build section to segment mapping: " +
4546 toString(PhdrsOrErr.takeError()));
4547 return;
4550 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4551 std::string Sections;
4552 OS << format(" %2.2d ", Phnum++);
4553 // Check if each section is in a segment and then print mapping.
4554 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4555 if (Sec.sh_type == ELF::SHT_NULL)
4556 continue;
4558 // readelf additionally makes sure it does not print zero sized sections
4559 // at end of segments and for PT_DYNAMIC both start and end of section
4560 // .tbss must only be shown in PT_TLS section.
4561 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4562 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4563 Sections +=
4564 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4565 " ";
4566 BelongsToSegment.insert(&Sec);
4569 OS << Sections << "\n";
4570 OS.flush();
4573 // Display sections that do not belong to a segment.
4574 std::string Sections;
4575 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4576 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4577 Sections +=
4578 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4579 ' ';
4581 if (!Sections.empty()) {
4582 OS << " None " << Sections << '\n';
4583 OS.flush();
4587 namespace {
4589 template <class ELFT>
4590 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4591 const Relocation<ELFT> &Reloc) {
4592 using Elf_Sym = typename ELFT::Sym;
4593 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4594 const Twine &Reason) -> RelSymbol<ELFT> {
4595 Dumper.reportUniqueWarning(
4596 "unable to get name of the dynamic symbol with index " +
4597 Twine(Reloc.Symbol) + ": " + Reason);
4598 return {Sym, "<corrupt>"};
4601 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4602 const Elf_Sym *FirstSym = Symbols.begin();
4603 if (!FirstSym)
4604 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4606 // We might have an object without a section header. In this case the size of
4607 // Symbols is zero, because there is no way to know the size of the dynamic
4608 // table. We should allow this case and not print a warning.
4609 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4610 return WarnAndReturn(
4611 nullptr,
4612 "index is greater than or equal to the number of dynamic symbols (" +
4613 Twine(Symbols.size()) + ")");
4615 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4616 const uint64_t FileSize = Obj.getBufSize();
4617 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4618 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4619 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4620 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4621 " goes past the end of the file (0x" +
4622 Twine::utohexstr(FileSize) + ")");
4624 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4625 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4626 if (!ErrOrName)
4627 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4629 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4631 } // namespace
4633 template <class ELFT>
4634 void GNUStyle<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4635 printRelRelaReloc(R, getSymbolForReloc(this->dumper(), R));
4638 template <class ELFT>
4639 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4640 typename ELFT::DynRange Tags) {
4641 size_t Max = 0;
4642 for (const typename ELFT::Dyn &Dyn : Tags)
4643 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4644 return Max;
4647 template <class ELFT> void GNUStyle<ELFT>::printDynamic() {
4648 Elf_Dyn_Range Table = this->dumper().dynamic_table();
4649 if (Table.empty())
4650 return;
4652 OS << "Dynamic section at offset "
4653 << format_hex(reinterpret_cast<const uint8_t *>(
4654 this->dumper().getDynamicTableRegion().Addr) -
4655 this->Obj.base(),
4657 << " contains " << Table.size() << " entries:\n";
4659 // The type name is surrounded with round brackets, hence add 2.
4660 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4661 // The "Name/Value" column should be indented from the "Type" column by N
4662 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4663 // space (1) = 3.
4664 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4665 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4667 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4668 for (auto Entry : Table) {
4669 uintX_t Tag = Entry.getTag();
4670 std::string Type =
4671 std::string("(") + this->Obj.getDynamicTagAsString(Tag).c_str() + ")";
4672 std::string Value = this->dumper().getDynamicEntry(Tag, Entry.getVal());
4673 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4674 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4678 template <class ELFT> void GNUStyle<ELFT>::printDynamicRelocations() {
4679 this->printDynamicRelocationsHelper();
4682 template <class ELFT>
4683 void DumpStyle<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4684 this->forEachRelocationDo(
4685 Sec, opts::RawRelr,
4686 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4687 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4688 [&](const Elf_Relr &R) { printRelrReloc(R); });
4691 template <class ELFT> void DumpStyle<ELFT>::printDynamicRelocationsHelper() {
4692 const bool IsMips64EL = this->Obj.isMips64EL();
4693 const DynRegionInfo &DynRelaRegion = this->dumper().getDynRelaRegion();
4694 if (DynRelaRegion.Size > 0) {
4695 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", DynRelaRegion);
4696 for (const Elf_Rela &Rela : this->dumper().dyn_relas())
4697 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4700 const DynRegionInfo &DynRelRegion = this->dumper().getDynRelRegion();
4701 if (DynRelRegion.Size > 0) {
4702 printDynamicRelocHeader(ELF::SHT_REL, "REL", DynRelRegion);
4703 for (const Elf_Rel &Rel : this->dumper().dyn_rels())
4704 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4707 const DynRegionInfo &DynRelrRegion = this->dumper().getDynRelrRegion();
4708 if (DynRelrRegion.Size > 0) {
4709 printDynamicRelocHeader(ELF::SHT_REL, "RELR", DynRelrRegion);
4710 Elf_Relr_Range Relrs = this->dumper().dyn_relrs();
4711 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4712 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4715 const DynRegionInfo &DynPLTRelRegion = this->dumper().getDynPLTRelRegion();
4716 if (DynPLTRelRegion.Size) {
4717 if (DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4718 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", DynPLTRelRegion);
4719 for (const Elf_Rela &Rela : DynPLTRelRegion.getAsArrayRef<Elf_Rela>())
4720 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4721 } else {
4722 printDynamicRelocHeader(ELF::SHT_REL, "PLT", DynPLTRelRegion);
4723 for (const Elf_Rel &Rel : DynPLTRelRegion.getAsArrayRef<Elf_Rel>())
4724 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4729 template <class ELFT>
4730 void GNUStyle<ELFT>::printGNUVersionSectionProlog(
4731 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4732 // Don't inline the SecName, because it might report a warning to stderr and
4733 // corrupt the output.
4734 StringRef SecName = this->getPrintableSectionName(Sec);
4735 OS << Label << " section '" << SecName << "' "
4736 << "contains " << EntriesNum << " entries:\n";
4738 StringRef LinkedSecName = "<corrupt>";
4739 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4740 this->Obj.getSection(Sec.sh_link))
4741 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4742 else
4743 this->reportUniqueWarning("invalid section linked to " +
4744 describe(this->Obj, Sec) + ": " +
4745 toString(LinkedSecOrErr.takeError()));
4747 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4748 << " Offset: " << format_hex(Sec.sh_offset, 8)
4749 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4752 template <class ELFT>
4753 void GNUStyle<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4754 if (!Sec)
4755 return;
4757 printGNUVersionSectionProlog(*Sec, "Version symbols",
4758 Sec->sh_size / sizeof(Elf_Versym));
4759 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4760 this->dumper().getVersionTable(*Sec, /*SymTab=*/nullptr,
4761 /*StrTab=*/nullptr);
4762 if (!VerTableOrErr) {
4763 this->reportUniqueWarning(VerTableOrErr.takeError());
4764 return;
4767 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4768 std::vector<StringRef> Versions;
4769 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4770 unsigned Ndx = VerTable[I].vs_index;
4771 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4772 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4773 continue;
4776 bool IsDefault;
4777 Expected<StringRef> NameOrErr =
4778 this->dumper().getSymbolVersionByIndex(Ndx, IsDefault);
4779 if (!NameOrErr) {
4780 this->reportUniqueWarning("unable to get a version for entry " +
4781 Twine(I) + " of " + describe(this->Obj, *Sec) +
4782 ": " + toString(NameOrErr.takeError()));
4783 Versions.emplace_back("<corrupt>");
4784 continue;
4786 Versions.emplace_back(*NameOrErr);
4789 // readelf prints 4 entries per line.
4790 uint64_t Entries = VerTable.size();
4791 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4792 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4793 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4794 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4795 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4796 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4797 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4799 OS << '\n';
4801 OS << '\n';
4804 static std::string versionFlagToString(unsigned Flags) {
4805 if (Flags == 0)
4806 return "none";
4808 std::string Ret;
4809 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4810 if (!(Flags & Flag))
4811 return;
4812 if (!Ret.empty())
4813 Ret += " | ";
4814 Ret += Name;
4815 Flags &= ~Flag;
4818 AddFlag(VER_FLG_BASE, "BASE");
4819 AddFlag(VER_FLG_WEAK, "WEAK");
4820 AddFlag(VER_FLG_INFO, "INFO");
4821 AddFlag(~0, "<unknown>");
4822 return Ret;
4825 template <class ELFT>
4826 void GNUStyle<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4827 if (!Sec)
4828 return;
4830 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4832 Expected<std::vector<VerDef>> V = this->dumper().getVersionDefinitions(*Sec);
4833 if (!V) {
4834 this->reportUniqueWarning(V.takeError());
4835 return;
4838 for (const VerDef &Def : *V) {
4839 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4840 Def.Offset, Def.Version,
4841 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4842 Def.Name.data());
4843 unsigned I = 0;
4844 for (const VerdAux &Aux : Def.AuxV)
4845 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4846 Aux.Name.data());
4849 OS << '\n';
4852 template <class ELFT>
4853 void GNUStyle<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4854 if (!Sec)
4855 return;
4857 unsigned VerneedNum = Sec->sh_info;
4858 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4860 Expected<std::vector<VerNeed>> V =
4861 this->dumper().getVersionDependencies(*Sec);
4862 if (!V) {
4863 this->reportUniqueWarning(V.takeError());
4864 return;
4867 for (const VerNeed &VN : *V) {
4868 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4869 VN.Version, VN.File.data(), VN.Cnt);
4870 for (const VernAux &Aux : VN.AuxV)
4871 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
4872 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
4873 Aux.Other);
4875 OS << '\n';
4878 template <class ELFT>
4879 void GNUStyle<ELFT>::printHashHistogram(const Elf_Hash &HashTable) {
4880 size_t NBucket = HashTable.nbucket;
4881 size_t NChain = HashTable.nchain;
4882 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
4883 ArrayRef<Elf_Word> Chains = HashTable.chains();
4884 size_t TotalSyms = 0;
4885 // If hash table is correct, we have at least chains with 0 length
4886 size_t MaxChain = 1;
4887 size_t CumulativeNonZero = 0;
4889 if (NChain == 0 || NBucket == 0)
4890 return;
4892 std::vector<size_t> ChainLen(NBucket, 0);
4893 // Go over all buckets and and note chain lengths of each bucket (total
4894 // unique chain lengths).
4895 for (size_t B = 0; B < NBucket; B++) {
4896 std::vector<bool> Visited(NChain);
4897 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
4898 if (C == ELF::STN_UNDEF)
4899 break;
4900 if (Visited[C]) {
4901 this->reportUniqueWarning(".hash section is invalid: bucket " +
4902 Twine(C) +
4903 ": a cycle was detected in the linked chain");
4904 break;
4906 Visited[C] = true;
4907 if (MaxChain <= ++ChainLen[B])
4908 MaxChain++;
4910 TotalSyms += ChainLen[B];
4913 if (!TotalSyms)
4914 return;
4916 std::vector<size_t> Count(MaxChain, 0);
4917 // Count how long is the chain for each bucket
4918 for (size_t B = 0; B < NBucket; B++)
4919 ++Count[ChainLen[B]];
4920 // Print Number of buckets with each chain lengths and their cumulative
4921 // coverage of the symbols
4922 OS << "Histogram for bucket list length (total of " << NBucket
4923 << " buckets)\n"
4924 << " Length Number % of total Coverage\n";
4925 for (size_t I = 0; I < MaxChain; I++) {
4926 CumulativeNonZero += Count[I] * I;
4927 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4928 (Count[I] * 100.0) / NBucket,
4929 (CumulativeNonZero * 100.0) / TotalSyms);
4933 template <class ELFT>
4934 void GNUStyle<ELFT>::printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) {
4935 Expected<ArrayRef<Elf_Word>> ChainsOrErr = getGnuHashTableChains<ELFT>(
4936 this->dumper().getDynSymRegion(), &GnuHashTable);
4937 if (!ChainsOrErr) {
4938 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4939 toString(ChainsOrErr.takeError()));
4940 return;
4943 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
4944 size_t Symndx = GnuHashTable.symndx;
4945 size_t TotalSyms = 0;
4946 size_t MaxChain = 1;
4947 size_t CumulativeNonZero = 0;
4949 size_t NBucket = GnuHashTable.nbuckets;
4950 if (Chains.empty() || NBucket == 0)
4951 return;
4953 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
4954 std::vector<size_t> ChainLen(NBucket, 0);
4955 for (size_t B = 0; B < NBucket; B++) {
4956 if (!Buckets[B])
4957 continue;
4958 size_t Len = 1;
4959 for (size_t C = Buckets[B] - Symndx;
4960 C < Chains.size() && (Chains[C] & 1) == 0; C++)
4961 if (MaxChain < ++Len)
4962 MaxChain++;
4963 ChainLen[B] = Len;
4964 TotalSyms += Len;
4966 MaxChain++;
4968 if (!TotalSyms)
4969 return;
4971 std::vector<size_t> Count(MaxChain, 0);
4972 for (size_t B = 0; B < NBucket; B++)
4973 ++Count[ChainLen[B]];
4974 // Print Number of buckets with each chain lengths and their cumulative
4975 // coverage of the symbols
4976 OS << "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4977 << " buckets)\n"
4978 << " Length Number % of total Coverage\n";
4979 for (size_t I = 0; I < MaxChain; I++) {
4980 CumulativeNonZero += Count[I] * I;
4981 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
4982 (Count[I] * 100.0) / NBucket,
4983 (CumulativeNonZero * 100.0) / TotalSyms);
4987 // Hash histogram shows statistics of how efficient the hash was for the
4988 // dynamic symbol table. The table shows the number of hash buckets for
4989 // different lengths of chains as an absolute number and percentage of the total
4990 // buckets, and the cumulative coverage of symbols for each set of buckets.
4991 template <class ELFT> void GNUStyle<ELFT>::printHashHistograms() {
4992 // Print histogram for the .hash section.
4993 if (const Elf_Hash *HashTable = this->dumper().getHashTable()) {
4994 if (Error E = checkHashTable<ELFT>(this->dumper(), HashTable))
4995 this->reportUniqueWarning(std::move(E));
4996 else
4997 printHashHistogram(*HashTable);
5000 // Print histogram for the .gnu.hash section.
5001 if (const Elf_GnuHash *GnuHashTable = this->dumper().getGnuHashTable()) {
5002 if (Error E = checkGNUHashTable<ELFT>(this->Obj, GnuHashTable))
5003 this->reportUniqueWarning(std::move(E));
5004 else
5005 printGnuHashHistogram(*GnuHashTable);
5009 template <class ELFT> void GNUStyle<ELFT>::printCGProfile() {
5010 OS << "GNUStyle::printCGProfile not implemented\n";
5013 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
5014 std::vector<uint64_t> Ret;
5015 const uint8_t *Cur = Data.begin();
5016 const uint8_t *End = Data.end();
5017 while (Cur != End) {
5018 unsigned Size;
5019 const char *Err;
5020 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
5021 if (Err)
5022 return createError(Err);
5023 Cur += Size;
5025 return Ret;
5028 template <class ELFT>
5029 static Expected<std::vector<uint64_t>>
5030 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
5031 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
5032 if (!ContentsOrErr)
5033 return ContentsOrErr.takeError();
5035 if (Expected<std::vector<uint64_t>> SymsOrErr =
5036 toULEB128Array(*ContentsOrErr))
5037 return *SymsOrErr;
5038 else
5039 return createError("unable to decode " + describe(Obj, Sec) + ": " +
5040 toString(SymsOrErr.takeError()));
5043 template <class ELFT> void GNUStyle<ELFT>::printAddrsig() {
5044 const Elf_Shdr *Sec = this->dumper().getDotAddrsigSec();
5045 if (!Sec)
5046 return;
5048 Expected<std::vector<uint64_t>> SymsOrErr =
5049 decodeAddrsigSection(this->Obj, *Sec);
5050 if (!SymsOrErr) {
5051 this->reportUniqueWarning(SymsOrErr.takeError());
5052 return;
5055 StringRef Name = this->getPrintableSectionName(*Sec);
5056 OS << "\nAddress-significant symbols section '" << Name << "'"
5057 << " contains " << SymsOrErr->size() << " entries:\n";
5058 OS << " Num: Name\n";
5060 Field Fields[2] = {0, 8};
5061 size_t SymIndex = 0;
5062 for (uint64_t Sym : *SymsOrErr) {
5063 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
5064 Fields[1].Str = this->dumper().getStaticSymbolName(Sym);
5065 for (const Field &Entry : Fields)
5066 printField(Entry);
5067 OS << "\n";
5071 template <typename ELFT>
5072 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5073 ArrayRef<uint8_t> Data) {
5074 std::string str;
5075 raw_string_ostream OS(str);
5076 uint32_t PrData;
5077 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5078 if (PrData & Flag) {
5079 PrData &= ~Flag;
5080 OS << Name;
5081 if (PrData)
5082 OS << ", ";
5086 switch (Type) {
5087 default:
5088 OS << format("<application-specific type 0x%x>", Type);
5089 return OS.str();
5090 case GNU_PROPERTY_STACK_SIZE: {
5091 OS << "stack size: ";
5092 if (DataSize == sizeof(typename ELFT::uint))
5093 OS << formatv("{0:x}",
5094 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5095 else
5096 OS << format("<corrupt length: 0x%x>", DataSize);
5097 return OS.str();
5099 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5100 OS << "no copy on protected";
5101 if (DataSize)
5102 OS << format(" <corrupt length: 0x%x>", DataSize);
5103 return OS.str();
5104 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5105 case GNU_PROPERTY_X86_FEATURE_1_AND:
5106 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5107 : "x86 feature: ");
5108 if (DataSize != 4) {
5109 OS << format("<corrupt length: 0x%x>", DataSize);
5110 return OS.str();
5112 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5113 if (PrData == 0) {
5114 OS << "<None>";
5115 return OS.str();
5117 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5118 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5119 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5120 } else {
5121 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5122 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5124 if (PrData)
5125 OS << format("<unknown flags: 0x%x>", PrData);
5126 return OS.str();
5127 case GNU_PROPERTY_X86_ISA_1_NEEDED:
5128 case GNU_PROPERTY_X86_ISA_1_USED:
5129 OS << "x86 ISA "
5130 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5131 if (DataSize != 4) {
5132 OS << format("<corrupt length: 0x%x>", DataSize);
5133 return OS.str();
5135 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5136 if (PrData == 0) {
5137 OS << "<None>";
5138 return OS.str();
5140 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV, "CMOV");
5141 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE, "SSE");
5142 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2, "SSE2");
5143 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3, "SSE3");
5144 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3, "SSSE3");
5145 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1, "SSE4_1");
5146 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2, "SSE4_2");
5147 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX, "AVX");
5148 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2, "AVX2");
5149 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA, "FMA");
5150 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F, "AVX512F");
5151 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD, "AVX512CD");
5152 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER, "AVX512ER");
5153 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF, "AVX512PF");
5154 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL, "AVX512VL");
5155 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ, "AVX512DQ");
5156 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW, "AVX512BW");
5157 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS, "AVX512_4FMAPS");
5158 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW, "AVX512_4VNNIW");
5159 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG, "AVX512_BITALG");
5160 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA, "AVX512_IFMA");
5161 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI, "AVX512_VBMI");
5162 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2, "AVX512_VBMI2");
5163 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI, "AVX512_VNNI");
5164 if (PrData)
5165 OS << format("<unknown flags: 0x%x>", PrData);
5166 return OS.str();
5167 break;
5168 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5169 case GNU_PROPERTY_X86_FEATURE_2_USED:
5170 OS << "x86 feature "
5171 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5172 if (DataSize != 4) {
5173 OS << format("<corrupt length: 0x%x>", DataSize);
5174 return OS.str();
5176 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5177 if (PrData == 0) {
5178 OS << "<None>";
5179 return OS.str();
5181 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5182 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5183 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5184 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5185 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5186 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5187 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5188 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5189 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5190 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5191 if (PrData)
5192 OS << format("<unknown flags: 0x%x>", PrData);
5193 return OS.str();
5197 template <typename ELFT>
5198 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5199 using Elf_Word = typename ELFT::Word;
5201 SmallVector<std::string, 4> Properties;
5202 while (Arr.size() >= 8) {
5203 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5204 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5205 Arr = Arr.drop_front(8);
5207 // Take padding size into account if present.
5208 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5209 std::string str;
5210 raw_string_ostream OS(str);
5211 if (Arr.size() < PaddedSize) {
5212 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5213 Properties.push_back(OS.str());
5214 break;
5216 Properties.push_back(
5217 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5218 Arr = Arr.drop_front(PaddedSize);
5221 if (!Arr.empty())
5222 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5224 return Properties;
5227 struct GNUAbiTag {
5228 std::string OSName;
5229 std::string ABI;
5230 bool IsValid;
5233 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5234 typedef typename ELFT::Word Elf_Word;
5236 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5237 reinterpret_cast<const Elf_Word *>(Desc.end()));
5239 if (Words.size() < 4)
5240 return {"", "", /*IsValid=*/false};
5242 static const char *OSNames[] = {
5243 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5245 StringRef OSName = "Unknown";
5246 if (Words[0] < array_lengthof(OSNames))
5247 OSName = OSNames[Words[0]];
5248 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5249 std::string str;
5250 raw_string_ostream ABI(str);
5251 ABI << Major << "." << Minor << "." << Patch;
5252 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5255 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5256 std::string str;
5257 raw_string_ostream OS(str);
5258 for (uint8_t B : Desc)
5259 OS << format_hex_no_prefix(B, 2);
5260 return OS.str();
5263 static StringRef getGNUGoldVersion(ArrayRef<uint8_t> Desc) {
5264 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5267 template <typename ELFT>
5268 static void printGNUNote(raw_ostream &OS, uint32_t NoteType,
5269 ArrayRef<uint8_t> Desc) {
5270 switch (NoteType) {
5271 default:
5272 return;
5273 case ELF::NT_GNU_ABI_TAG: {
5274 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5275 if (!AbiTag.IsValid)
5276 OS << " <corrupt GNU_ABI_TAG>";
5277 else
5278 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5279 break;
5281 case ELF::NT_GNU_BUILD_ID: {
5282 OS << " Build ID: " << getGNUBuildId(Desc);
5283 break;
5285 case ELF::NT_GNU_GOLD_VERSION:
5286 OS << " Version: " << getGNUGoldVersion(Desc);
5287 break;
5288 case ELF::NT_GNU_PROPERTY_TYPE_0:
5289 OS << " Properties:";
5290 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5291 OS << " " << Property << "\n";
5292 break;
5294 OS << '\n';
5297 struct AMDNote {
5298 std::string Type;
5299 std::string Value;
5302 template <typename ELFT>
5303 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5304 switch (NoteType) {
5305 default:
5306 return {"", ""};
5307 case ELF::NT_AMD_AMDGPU_HSA_METADATA:
5308 return {
5309 "HSA Metadata",
5310 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5311 case ELF::NT_AMD_AMDGPU_ISA:
5312 return {
5313 "ISA Version",
5314 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5318 struct AMDGPUNote {
5319 std::string Type;
5320 std::string Value;
5323 template <typename ELFT>
5324 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5325 switch (NoteType) {
5326 default:
5327 return {"", ""};
5328 case ELF::NT_AMDGPU_METADATA: {
5329 StringRef MsgPackString =
5330 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5331 msgpack::Document MsgPackDoc;
5332 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5333 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
5335 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5336 std::string HSAMetadataString;
5337 if (!Verifier.verify(MsgPackDoc.getRoot()))
5338 HSAMetadataString = "Invalid AMDGPU Metadata\n";
5340 raw_string_ostream StrOS(HSAMetadataString);
5341 MsgPackDoc.toYAML(StrOS);
5343 return {"AMDGPU Metadata", StrOS.str()};
5348 struct CoreFileMapping {
5349 uint64_t Start, End, Offset;
5350 StringRef Filename;
5353 struct CoreNote {
5354 uint64_t PageSize;
5355 std::vector<CoreFileMapping> Mappings;
5358 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5359 // Expected format of the NT_FILE note description:
5360 // 1. # of file mappings (call it N)
5361 // 2. Page size
5362 // 3. N (start, end, offset) triples
5363 // 4. N packed filenames (null delimited)
5364 // Each field is an Elf_Addr, except for filenames which are char* strings.
5366 CoreNote Ret;
5367 const int Bytes = Desc.getAddressSize();
5369 if (!Desc.isValidOffsetForAddress(2))
5370 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5371 " is too short, expected at least 0x" +
5372 Twine::utohexstr(Bytes * 2));
5373 if (Desc.getData().back() != 0)
5374 return createError("the note is not NUL terminated");
5376 uint64_t DescOffset = 0;
5377 uint64_t FileCount = Desc.getAddress(&DescOffset);
5378 Ret.PageSize = Desc.getAddress(&DescOffset);
5380 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5381 return createError("unable to read file mappings (found " +
5382 Twine(FileCount) + "): the note of size 0x" +
5383 Twine::utohexstr(Desc.size()) + " is too short");
5385 uint64_t FilenamesOffset = 0;
5386 DataExtractor Filenames(
5387 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5388 Desc.isLittleEndian(), Desc.getAddressSize());
5390 Ret.Mappings.resize(FileCount);
5391 size_t I = 0;
5392 for (CoreFileMapping &Mapping : Ret.Mappings) {
5393 ++I;
5394 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5395 return createError(
5396 "unable to read the file name for the mapping with index " +
5397 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5398 " is truncated");
5399 Mapping.Start = Desc.getAddress(&DescOffset);
5400 Mapping.End = Desc.getAddress(&DescOffset);
5401 Mapping.Offset = Desc.getAddress(&DescOffset);
5402 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5405 return Ret;
5408 template <typename ELFT>
5409 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5410 // Length of "0x<address>" string.
5411 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5413 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5414 OS << " " << right_justify("Start", FieldWidth) << " "
5415 << right_justify("End", FieldWidth) << " "
5416 << right_justify("Page Offset", FieldWidth) << '\n';
5417 for (const CoreFileMapping &Mapping : Note.Mappings) {
5418 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5419 << format_hex(Mapping.End, FieldWidth) << " "
5420 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5421 << Mapping.Filename << '\n';
5425 static const NoteType GenericNoteTypes[] = {
5426 {ELF::NT_VERSION, "NT_VERSION (version)"},
5427 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5428 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5429 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5432 static const NoteType GNUNoteTypes[] = {
5433 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5434 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5435 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5436 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5437 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5440 static const NoteType FreeBSDNoteTypes[] = {
5441 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5442 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5443 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5444 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5445 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5446 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5447 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5448 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5449 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5450 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5451 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5454 static const NoteType AMDNoteTypes[] = {
5455 {ELF::NT_AMD_AMDGPU_HSA_METADATA,
5456 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
5457 {ELF::NT_AMD_AMDGPU_ISA, "NT_AMD_AMDGPU_ISA (ISA Version)"},
5458 {ELF::NT_AMD_AMDGPU_PAL_METADATA,
5459 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"},
5462 static const NoteType AMDGPUNoteTypes[] = {
5463 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5466 static const NoteType CoreNoteTypes[] = {
5467 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5468 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5469 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5470 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5471 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5472 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5473 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5474 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5475 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5476 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5477 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5479 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5480 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5481 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5482 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5483 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5484 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5485 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5486 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5487 {ELF::NT_PPC_TM_CFPR,
5488 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5489 {ELF::NT_PPC_TM_CVMX,
5490 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5491 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5492 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5493 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5494 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5495 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5497 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5498 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5499 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5501 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5502 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5503 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5504 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5505 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5506 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5507 {ELF::NT_S390_LAST_BREAK,
5508 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5509 {ELF::NT_S390_SYSTEM_CALL,
5510 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5511 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5512 {ELF::NT_S390_VXRS_LOW,
5513 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5514 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5515 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5516 {ELF::NT_S390_GS_BC,
5517 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5519 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5520 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5521 {ELF::NT_ARM_HW_BREAK,
5522 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5523 {ELF::NT_ARM_HW_WATCH,
5524 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5526 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5527 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5528 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5531 template <class ELFT>
5532 const StringRef getNoteTypeName(const typename ELFT::Note &Note,
5533 unsigned ELFType) {
5534 uint32_t Type = Note.getType();
5535 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5536 for (const NoteType &N : V)
5537 if (N.ID == Type)
5538 return N.Name;
5539 return "";
5542 StringRef Name = Note.getName();
5543 if (Name == "GNU")
5544 return FindNote(GNUNoteTypes);
5545 if (Name == "FreeBSD")
5546 return FindNote(FreeBSDNoteTypes);
5547 if (Name == "AMD")
5548 return FindNote(AMDNoteTypes);
5549 if (Name == "AMDGPU")
5550 return FindNote(AMDGPUNoteTypes);
5552 if (ELFType == ELF::ET_CORE)
5553 return FindNote(CoreNoteTypes);
5554 return FindNote(GenericNoteTypes);
5557 template <class ELFT>
5558 static void printNotesHelper(
5559 const ELFDumper<ELFT> &Dumper,
5560 llvm::function_ref<void(Optional<StringRef>, typename ELFT::Off,
5561 typename ELFT::Addr)>
5562 StartNotesFn,
5563 llvm::function_ref<Error(const typename ELFT::Note &)> ProcessNoteFn,
5564 llvm::function_ref<void()> FinishNotesFn) {
5565 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5567 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5568 if (Obj.getHeader().e_type != ELF::ET_CORE && !Sections.empty()) {
5569 for (const typename ELFT::Shdr &S : Sections) {
5570 if (S.sh_type != SHT_NOTE)
5571 continue;
5572 StartNotesFn(expectedToOptional(Obj.getSectionName(S)), S.sh_offset,
5573 S.sh_size);
5574 Error Err = Error::success();
5575 size_t I = 0;
5576 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5577 if (Error E = ProcessNoteFn(Note))
5578 Dumper.reportUniqueWarning(
5579 "unable to read note with index " + Twine(I) + " from the " +
5580 describe(Obj, S) + ": " + toString(std::move(E)));
5581 ++I;
5583 if (Err)
5584 Dumper.reportUniqueWarning("unable to read notes from the " +
5585 describe(Obj, S) + ": " +
5586 toString(std::move(Err)));
5587 FinishNotesFn();
5589 return;
5592 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5593 if (!PhdrsOrErr) {
5594 Dumper.reportUniqueWarning(
5595 "unable to read program headers to locate the PT_NOTE segment: " +
5596 toString(PhdrsOrErr.takeError()));
5597 return;
5600 size_t I = 0;
5601 for (const typename ELFT::Phdr &P : *PhdrsOrErr) {
5602 ++I;
5603 if (P.p_type != PT_NOTE)
5604 continue;
5605 StartNotesFn(/*SecName=*/None, P.p_offset, P.p_filesz);
5606 Error Err = Error::success();
5607 size_t Index = 0;
5608 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5609 if (Error E = ProcessNoteFn(Note))
5610 Dumper.reportUniqueWarning("unable to read note with index " +
5611 Twine(Index) +
5612 " from the PT_NOTE segment with index " +
5613 Twine(I) + ": " + toString(std::move(E)));
5614 ++Index;
5616 if (Err)
5617 Dumper.reportUniqueWarning(
5618 "unable to read notes from the PT_NOTE segment with index " +
5619 Twine(I) + ": " + toString(std::move(Err)));
5620 FinishNotesFn();
5624 template <class ELFT> void GNUStyle<ELFT>::printNotes() {
5625 auto PrintHeader = [&](Optional<StringRef> SecName,
5626 const typename ELFT::Off Offset,
5627 const typename ELFT::Addr Size) {
5628 OS << "Displaying notes found ";
5630 if (SecName)
5631 OS << "in: " << *SecName << "\n";
5632 else
5633 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5634 << format_hex(Size, 10) << ":\n";
5636 OS << " Owner Data size \tDescription\n";
5639 auto ProcessNote = [&](const Elf_Note &Note) -> Error {
5640 StringRef Name = Note.getName();
5641 ArrayRef<uint8_t> Descriptor = Note.getDesc();
5642 Elf_Word Type = Note.getType();
5644 // Print the note owner/type.
5645 OS << " " << left_justify(Name, 20) << ' '
5646 << format_hex(Descriptor.size(), 10) << '\t';
5648 StringRef NoteType =
5649 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5650 if (!NoteType.empty())
5651 OS << NoteType << '\n';
5652 else
5653 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5655 // Print the description, or fallback to printing raw bytes for unknown
5656 // owners.
5657 if (Name == "GNU") {
5658 printGNUNote<ELFT>(OS, Type, Descriptor);
5659 } else if (Name == "AMD") {
5660 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5661 if (!N.Type.empty())
5662 OS << " " << N.Type << ":\n " << N.Value << '\n';
5663 } else if (Name == "AMDGPU") {
5664 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5665 if (!N.Type.empty())
5666 OS << " " << N.Type << ":\n " << N.Value << '\n';
5667 } else if (Name == "CORE") {
5668 if (Type == ELF::NT_FILE) {
5669 DataExtractor DescExtractor(Descriptor,
5670 ELFT::TargetEndianness == support::little,
5671 sizeof(Elf_Addr));
5672 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor))
5673 printCoreNote<ELFT>(OS, *NoteOrErr);
5674 else
5675 return NoteOrErr.takeError();
5677 } else if (!Descriptor.empty()) {
5678 OS << " description data:";
5679 for (uint8_t B : Descriptor)
5680 OS << " " << format("%02x", B);
5681 OS << '\n';
5683 return Error::success();
5686 printNotesHelper(this->dumper(), PrintHeader, ProcessNote, []() {});
5689 template <class ELFT> void GNUStyle<ELFT>::printELFLinkerOptions() {
5690 OS << "printELFLinkerOptions not implemented!\n";
5693 template <class ELFT>
5694 void DumpStyle<ELFT>::printDependentLibsHelper(
5695 function_ref<void(const Elf_Shdr &)> OnSectionStart,
5696 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
5697 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
5698 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5699 Twine(SecNdx) + " is broken: " + Msg);
5702 unsigned I = -1;
5703 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
5704 ++I;
5705 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
5706 continue;
5708 OnSectionStart(Shdr);
5710 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
5711 if (!ContentsOrErr) {
5712 Warn(I, toString(ContentsOrErr.takeError()));
5713 continue;
5716 ArrayRef<uint8_t> Contents = *ContentsOrErr;
5717 if (!Contents.empty() && Contents.back() != 0) {
5718 Warn(I, "the content is not null-terminated");
5719 continue;
5722 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
5723 StringRef Lib((const char *)I);
5724 OnLibEntry(Lib, I - Contents.begin());
5725 I += Lib.size() + 1;
5730 template <class ELFT>
5731 void DumpStyle<ELFT>::forEachRelocationDo(
5732 const Elf_Shdr &Sec, bool RawRelr,
5733 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
5734 const Elf_Shdr &, const Elf_Shdr *)>
5735 RelRelaFn,
5736 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
5737 auto Warn = [&](Error &&E,
5738 const Twine &Prefix = "unable to read relocations from") {
5739 this->reportUniqueWarning(Prefix + " " + describe(Obj, Sec) + ": " +
5740 toString(std::move(E)));
5743 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5744 // For them we should not treat the value of the sh_link field as an index of
5745 // a symbol table.
5746 const Elf_Shdr *SymTab;
5747 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
5748 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
5749 if (!SymTabOrErr) {
5750 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
5751 return;
5753 SymTab = *SymTabOrErr;
5756 unsigned RelNdx = 0;
5757 const bool IsMips64EL = this->Obj.isMips64EL();
5758 switch (Sec.sh_type) {
5759 case ELF::SHT_REL:
5760 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
5761 for (const Elf_Rel &R : *RangeOrErr)
5762 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec, SymTab);
5763 } else {
5764 Warn(RangeOrErr.takeError());
5766 break;
5767 case ELF::SHT_RELA:
5768 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
5769 for (const Elf_Rela &R : *RangeOrErr)
5770 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec, SymTab);
5771 } else {
5772 Warn(RangeOrErr.takeError());
5774 break;
5775 case ELF::SHT_RELR:
5776 case ELF::SHT_ANDROID_RELR: {
5777 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
5778 if (!RangeOrErr) {
5779 Warn(RangeOrErr.takeError());
5780 break;
5782 if (RawRelr) {
5783 for (const Elf_Relr &R : *RangeOrErr)
5784 RelrFn(R);
5785 break;
5788 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
5789 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec,
5790 /*SymTab=*/nullptr);
5791 break;
5793 case ELF::SHT_ANDROID_REL:
5794 case ELF::SHT_ANDROID_RELA:
5795 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
5796 for (const Elf_Rela &R : *RelasOrErr)
5797 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), ++RelNdx, Sec, SymTab);
5798 } else {
5799 Warn(RelasOrErr.takeError());
5801 break;
5805 template <class ELFT>
5806 StringRef DumpStyle<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
5807 StringRef Name = "<?>";
5808 if (Expected<StringRef> SecNameOrErr =
5809 Obj.getSectionName(Sec, this->dumper().WarningHandler))
5810 Name = *SecNameOrErr;
5811 else
5812 this->reportUniqueWarning("unable to get the name of " +
5813 describe(Obj, Sec) + ": " +
5814 toString(SecNameOrErr.takeError()));
5815 return Name;
5818 template <class ELFT> void GNUStyle<ELFT>::printDependentLibs() {
5819 bool SectionStarted = false;
5820 struct NameOffset {
5821 StringRef Name;
5822 uint64_t Offset;
5824 std::vector<NameOffset> SecEntries;
5825 NameOffset Current;
5826 auto PrintSection = [&]() {
5827 OS << "Dependent libraries section " << Current.Name << " at offset "
5828 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
5829 << " entries:\n";
5830 for (NameOffset Entry : SecEntries)
5831 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
5832 << "\n";
5833 OS << "\n";
5834 SecEntries.clear();
5837 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
5838 if (SectionStarted)
5839 PrintSection();
5840 SectionStarted = true;
5841 Current.Offset = Shdr.sh_offset;
5842 Current.Name = this->getPrintableSectionName(Shdr);
5844 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
5845 SecEntries.push_back(NameOffset{Lib, Offset});
5848 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
5849 if (SectionStarted)
5850 PrintSection();
5853 template <class ELFT>
5854 void DumpStyle<ELFT>::printFunctionStackSize(
5855 uint64_t SymValue, Optional<const Elf_Shdr *> FunctionSec,
5856 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
5857 uint32_t FuncSymIndex = 0;
5858 if (const Elf_Shdr *SymTab = this->dumper().getDotSymtabSec()) {
5859 if (Expected<Elf_Sym_Range> SymsOrError = Obj.symbols(SymTab)) {
5860 uint32_t Index = (uint32_t)-1;
5861 for (const Elf_Sym &Sym : *SymsOrError) {
5862 ++Index;
5864 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
5865 continue;
5867 if (Expected<uint64_t> SymAddrOrErr =
5868 ElfObj.toSymbolRef(SymTab, Index).getAddress()) {
5869 if (SymValue != *SymAddrOrErr)
5870 continue;
5871 } else {
5872 std::string Name = this->dumper().getStaticSymbolName(Index);
5873 reportUniqueWarning("unable to get address of symbol '" + Name +
5874 "': " + toString(SymAddrOrErr.takeError()));
5875 break;
5878 // Check if the symbol is in the right section. FunctionSec == None
5879 // means "any section".
5880 if (FunctionSec) {
5881 if (Expected<const Elf_Shdr *> SecOrErr =
5882 Obj.getSection(Sym, SymTab, this->dumper().getShndxTable())) {
5883 if (*FunctionSec != *SecOrErr)
5884 continue;
5885 } else {
5886 std::string Name = this->dumper().getStaticSymbolName(Index);
5887 // Note: it is impossible to trigger this error currently, it is
5888 // untested.
5889 reportUniqueWarning("unable to get section of symbol '" + Name +
5890 "': " + toString(SecOrErr.takeError()));
5891 break;
5895 FuncSymIndex = Index;
5896 break;
5898 } else {
5899 reportUniqueWarning("unable to read the symbol table: " +
5900 toString(SymsOrError.takeError()));
5904 std::string FuncName = "?";
5905 if (!FuncSymIndex)
5906 reportUniqueWarning(
5907 "could not identify function symbol for stack size entry in " +
5908 describe(Obj, StackSizeSec));
5909 else
5910 FuncName = this->dumper().getStaticSymbolName(FuncSymIndex);
5912 // Extract the size. The expectation is that Offset is pointing to the right
5913 // place, i.e. past the function address.
5914 uint64_t PrevOffset = *Offset;
5915 uint64_t StackSize = Data.getULEB128(Offset);
5916 // getULEB128() does not advance Offset if it is not able to extract a valid
5917 // integer.
5918 if (*Offset == PrevOffset) {
5919 reportUniqueWarning("could not extract a valid stack size from " +
5920 describe(Obj, StackSizeSec));
5921 return;
5923 printStackSizeEntry(StackSize, FuncName);
5926 template <class ELFT>
5927 void GNUStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
5928 OS.PadToColumn(2);
5929 OS << format_decimal(Size, 11);
5930 OS.PadToColumn(18);
5931 OS << FuncName << "\n";
5934 template <class ELFT>
5935 void DumpStyle<ELFT>::printStackSize(const Relocation<ELFT> &R,
5936 const Elf_Shdr &RelocSec, unsigned Ndx,
5937 const Elf_Shdr *SymTab,
5938 const Elf_Shdr *FunctionSec,
5939 const Elf_Shdr &StackSizeSec,
5940 const RelocationResolver &Resolver,
5941 DataExtractor Data) {
5942 // This function ignores potentially erroneous input, unless it is directly
5943 // related to stack size reporting.
5944 const Elf_Sym *Sym = nullptr;
5945 Expected<RelSymbol<ELFT>> TargetOrErr =
5946 this->dumper().getRelocationTarget(R, SymTab);
5947 if (!TargetOrErr)
5948 reportUniqueWarning("unable to get the target of relocation with index " +
5949 Twine(Ndx) + " in " + describe(Obj, RelocSec) + ": " +
5950 toString(TargetOrErr.takeError()));
5951 else
5952 Sym = TargetOrErr->Sym;
5954 uint64_t RelocSymValue = 0;
5955 if (Sym) {
5956 Expected<const Elf_Shdr *> SectionOrErr =
5957 this->Obj.getSection(*Sym, SymTab, this->dumper().getShndxTable());
5958 if (!SectionOrErr) {
5959 reportUniqueWarning(
5960 "cannot identify the section for relocation symbol '" +
5961 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
5962 } else if (*SectionOrErr != FunctionSec) {
5963 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
5964 "' is not in the expected section");
5965 // Pretend that the symbol is in the correct section and report its
5966 // stack size anyway.
5967 FunctionSec = *SectionOrErr;
5970 RelocSymValue = Sym->st_value;
5973 uint64_t Offset = R.Offset;
5974 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
5975 reportUniqueWarning("found invalid relocation offset (0x" +
5976 Twine::utohexstr(Offset) + ") into " +
5977 describe(Obj, StackSizeSec) +
5978 " while trying to extract a stack size entry");
5979 return;
5982 uint64_t SymValue =
5983 Resolver(R.Type, Offset, RelocSymValue, Data.getAddress(&Offset),
5984 R.Addend.getValueOr(0));
5985 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
5986 &Offset);
5989 template <class ELFT>
5990 void DumpStyle<ELFT>::printNonRelocatableStackSizes(
5991 std::function<void()> PrintHeader) {
5992 // This function ignores potentially erroneous input, unless it is directly
5993 // related to stack size reporting.
5994 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
5995 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
5996 continue;
5997 PrintHeader();
5998 ArrayRef<uint8_t> Contents =
5999 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6000 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6001 uint64_t Offset = 0;
6002 while (Offset < Contents.size()) {
6003 // The function address is followed by a ULEB representing the stack
6004 // size. Check for an extra byte before we try to process the entry.
6005 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6006 reportUniqueWarning(
6007 describe(Obj, Sec) +
6008 " ended while trying to extract a stack size entry");
6009 break;
6011 uint64_t SymValue = Data.getAddress(&Offset);
6012 printFunctionStackSize(SymValue, /*FunctionSec=*/None, Sec, Data,
6013 &Offset);
6018 template <class ELFT>
6019 void DumpStyle<ELFT>::printRelocatableStackSizes(
6020 std::function<void()> PrintHeader) {
6021 // Build a map between stack size sections and their corresponding relocation
6022 // sections.
6023 llvm::MapVector<const Elf_Shdr *, const Elf_Shdr *> StackSizeRelocMap;
6024 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6025 StringRef SectionName;
6026 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6027 SectionName = *NameOrErr;
6028 else
6029 consumeError(NameOrErr.takeError());
6031 // A stack size section that we haven't encountered yet is mapped to the
6032 // null section until we find its corresponding relocation section.
6033 if (SectionName == ".stack_sizes")
6034 if (StackSizeRelocMap
6035 .insert(std::make_pair(&Sec, (const Elf_Shdr *)nullptr))
6036 .second)
6037 continue;
6039 // Check relocation sections if they are relocating contents of a
6040 // stack sizes section.
6041 if (Sec.sh_type != ELF::SHT_RELA && Sec.sh_type != ELF::SHT_REL)
6042 continue;
6044 Expected<const Elf_Shdr *> RelSecOrErr = Obj.getSection(Sec.sh_info);
6045 if (!RelSecOrErr) {
6046 reportUniqueWarning(describe(Obj, Sec) +
6047 ": failed to get a relocated section: " +
6048 toString(RelSecOrErr.takeError()));
6049 continue;
6052 const Elf_Shdr *ContentsSec = *RelSecOrErr;
6053 if (this->getPrintableSectionName(**RelSecOrErr) != ".stack_sizes")
6054 continue;
6056 // Insert a mapping from the stack sizes section to its relocation section.
6057 StackSizeRelocMap[ContentsSec] = &Sec;
6060 for (const auto &StackSizeMapEntry : StackSizeRelocMap) {
6061 PrintHeader();
6062 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6063 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6065 // Warn about stack size sections without a relocation section.
6066 if (!RelocSec) {
6067 reportWarning(createError(".stack_sizes (" +
6068 describe(Obj, *StackSizesELFSec) +
6069 ") does not have a corresponding "
6070 "relocation section"),
6071 FileName);
6072 continue;
6075 // A .stack_sizes section header's sh_link field is supposed to point
6076 // to the section that contains the functions whose stack sizes are
6077 // described in it.
6078 const Elf_Shdr *FunctionSec = unwrapOrError(
6079 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6081 SupportsRelocation IsSupportedFn;
6082 RelocationResolver Resolver;
6083 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(ElfObj);
6084 ArrayRef<uint8_t> Contents =
6085 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6086 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6088 forEachRelocationDo(
6089 *RelocSec, /*RawRelr=*/false,
6090 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6091 const Elf_Shdr *SymTab) {
6092 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6093 reportUniqueWarning(
6094 describe(Obj, *RelocSec) +
6095 " contains an unsupported relocation with index " + Twine(Ndx) +
6096 ": " + Obj.getRelocationTypeName(R.Type));
6097 return;
6100 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6101 *StackSizesELFSec, Resolver, Data);
6103 [](const Elf_Relr &) {
6104 llvm_unreachable("can't get here, because we only support "
6105 "SHT_REL/SHT_RELA sections");
6110 template <class ELFT>
6111 void GNUStyle<ELFT>::printStackSizes() {
6112 bool HeaderHasBeenPrinted = false;
6113 auto PrintHeader = [&]() {
6114 if (HeaderHasBeenPrinted)
6115 return;
6116 OS << "\nStack Sizes:\n";
6117 OS.PadToColumn(9);
6118 OS << "Size";
6119 OS.PadToColumn(18);
6120 OS << "Function\n";
6121 HeaderHasBeenPrinted = true;
6124 // For non-relocatable objects, look directly for sections whose name starts
6125 // with .stack_sizes and process the contents.
6126 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6127 this->printRelocatableStackSizes(PrintHeader);
6128 else
6129 this->printNonRelocatableStackSizes(PrintHeader);
6132 template <class ELFT>
6133 void GNUStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6134 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6135 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6136 OS.PadToColumn(2);
6137 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6138 OS.PadToColumn(11 + Bias);
6139 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6140 OS.PadToColumn(22 + Bias);
6141 OS << format_hex_no_prefix(*E, 8 + Bias);
6142 OS.PadToColumn(31 + 2 * Bias);
6143 OS << Purpose << "\n";
6146 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6147 OS << " Canonical gp value: "
6148 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6150 OS << " Reserved entries:\n";
6151 if (ELFT::Is64Bits)
6152 OS << " Address Access Initial Purpose\n";
6153 else
6154 OS << " Address Access Initial Purpose\n";
6155 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6156 if (Parser.getGotModulePointer())
6157 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6159 if (!Parser.getLocalEntries().empty()) {
6160 OS << "\n";
6161 OS << " Local entries:\n";
6162 if (ELFT::Is64Bits)
6163 OS << " Address Access Initial\n";
6164 else
6165 OS << " Address Access Initial\n";
6166 for (auto &E : Parser.getLocalEntries())
6167 PrintEntry(&E, "");
6170 if (Parser.IsStatic)
6171 return;
6173 if (!Parser.getGlobalEntries().empty()) {
6174 OS << "\n";
6175 OS << " Global entries:\n";
6176 if (ELFT::Is64Bits)
6177 OS << " Address Access Initial Sym.Val."
6178 << " Type Ndx Name\n";
6179 else
6180 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6181 for (auto &E : Parser.getGlobalEntries()) {
6182 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6183 const Elf_Sym &FirstSym = this->dumper().dynamic_symbols()[0];
6184 std::string SymName = this->dumper().getFullSymbolName(
6185 Sym, &Sym - &FirstSym, this->dumper().getDynamicStringTable(), false);
6187 OS.PadToColumn(2);
6188 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6189 OS.PadToColumn(11 + Bias);
6190 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6191 OS.PadToColumn(22 + Bias);
6192 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6193 OS.PadToColumn(31 + 2 * Bias);
6194 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6195 OS.PadToColumn(40 + 3 * Bias);
6196 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6197 OS.PadToColumn(48 + 3 * Bias);
6198 OS << getSymbolSectionNdx(
6199 Sym, &Sym - this->dumper().dynamic_symbols().begin());
6200 OS.PadToColumn(52 + 3 * Bias);
6201 OS << SymName << "\n";
6205 if (!Parser.getOtherEntries().empty())
6206 OS << "\n Number of TLS and multi-GOT entries "
6207 << Parser.getOtherEntries().size() << "\n";
6210 template <class ELFT>
6211 void GNUStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6212 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6213 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6214 OS.PadToColumn(2);
6215 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6216 OS.PadToColumn(11 + Bias);
6217 OS << format_hex_no_prefix(*E, 8 + Bias);
6218 OS.PadToColumn(20 + 2 * Bias);
6219 OS << Purpose << "\n";
6222 OS << "PLT GOT:\n\n";
6224 OS << " Reserved entries:\n";
6225 OS << " Address Initial Purpose\n";
6226 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6227 if (Parser.getPltModulePointer())
6228 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6230 if (!Parser.getPltEntries().empty()) {
6231 OS << "\n";
6232 OS << " Entries:\n";
6233 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6234 for (auto &E : Parser.getPltEntries()) {
6235 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6236 const Elf_Sym &FirstSym =
6237 *cantFail(this->Obj.template getEntry<const Elf_Sym>(
6238 *Parser.getPltSymTable(), 0));
6239 std::string SymName = this->dumper().getFullSymbolName(
6240 Sym, &Sym - &FirstSym, this->dumper().getDynamicStringTable(), false);
6242 OS.PadToColumn(2);
6243 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6244 OS.PadToColumn(11 + Bias);
6245 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6246 OS.PadToColumn(20 + 2 * Bias);
6247 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6248 OS.PadToColumn(29 + 3 * Bias);
6249 OS << printEnum(Sym.getType(), makeArrayRef(ElfSymbolTypes));
6250 OS.PadToColumn(37 + 3 * Bias);
6251 OS << getSymbolSectionNdx(
6252 Sym, &Sym - this->dumper().dynamic_symbols().begin());
6253 OS.PadToColumn(41 + 3 * Bias);
6254 OS << SymName << "\n";
6259 template <class ELFT>
6260 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6261 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6262 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6263 if (Sec == nullptr)
6264 return nullptr;
6266 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6267 Expected<ArrayRef<uint8_t>> DataOrErr =
6268 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6269 if (!DataOrErr)
6270 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6272 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6273 return createError(ErrPrefix + "it has a wrong size (" +
6274 Twine(DataOrErr->size()) + ")");
6275 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6278 template <class ELFT> void GNUStyle<ELFT>::printMipsABIFlags() {
6279 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6280 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6281 getMipsAbiFlagsSection(this->dumper()))
6282 Flags = *SecOrErr;
6283 else
6284 this->reportUniqueWarning(SecOrErr.takeError());
6285 if (!Flags)
6286 return;
6288 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6289 OS << "ISA: MIPS" << int(Flags->isa_level);
6290 if (Flags->isa_rev > 1)
6291 OS << "r" << int(Flags->isa_rev);
6292 OS << "\n";
6293 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6294 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6295 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6296 OS << "FP ABI: " << printEnum(Flags->fp_abi, makeArrayRef(ElfMipsFpABIType))
6297 << "\n";
6298 OS << "ISA Extension: "
6299 << printEnum(Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)) << "\n";
6300 if (Flags->ases == 0)
6301 OS << "ASEs: None\n";
6302 else
6303 // FIXME: Print each flag on a separate line.
6304 OS << "ASEs: " << printFlags(Flags->ases, makeArrayRef(ElfMipsASEFlags))
6305 << "\n";
6306 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6307 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6308 OS << "\n";
6311 template <class ELFT> void LLVMStyle<ELFT>::printFileHeaders() {
6312 const Elf_Ehdr &E = this->Obj.getHeader();
6314 DictScope D(W, "ElfHeader");
6316 DictScope D(W, "Ident");
6317 W.printBinary("Magic", makeArrayRef(E.e_ident).slice(ELF::EI_MAG0, 4));
6318 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass));
6319 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6320 makeArrayRef(ElfDataEncoding));
6321 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6323 auto OSABI = makeArrayRef(ElfOSABI);
6324 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6325 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6326 switch (E.e_machine) {
6327 case ELF::EM_AMDGPU:
6328 OSABI = makeArrayRef(AMDGPUElfOSABI);
6329 break;
6330 case ELF::EM_ARM:
6331 OSABI = makeArrayRef(ARMElfOSABI);
6332 break;
6333 case ELF::EM_TI_C6000:
6334 OSABI = makeArrayRef(C6000ElfOSABI);
6335 break;
6338 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6339 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6340 W.printBinary("Unused", makeArrayRef(E.e_ident).slice(ELF::EI_PAD));
6343 W.printEnum("Type", E.e_type, makeArrayRef(ElfObjectFileType));
6344 W.printEnum("Machine", E.e_machine, makeArrayRef(ElfMachineType));
6345 W.printNumber("Version", E.e_version);
6346 W.printHex("Entry", E.e_entry);
6347 W.printHex("ProgramHeaderOffset", E.e_phoff);
6348 W.printHex("SectionHeaderOffset", E.e_shoff);
6349 if (E.e_machine == EM_MIPS)
6350 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderMipsFlags),
6351 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6352 unsigned(ELF::EF_MIPS_MACH));
6353 else if (E.e_machine == EM_AMDGPU)
6354 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderAMDGPUFlags),
6355 unsigned(ELF::EF_AMDGPU_MACH));
6356 else if (E.e_machine == EM_RISCV)
6357 W.printFlags("Flags", E.e_flags, makeArrayRef(ElfHeaderRISCVFlags));
6358 else
6359 W.printFlags("Flags", E.e_flags);
6360 W.printNumber("HeaderSize", E.e_ehsize);
6361 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6362 W.printNumber("ProgramHeaderCount", E.e_phnum);
6363 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6364 W.printString("SectionHeaderCount",
6365 getSectionHeadersNumString(this->Obj, this->FileName));
6366 W.printString("StringTableSectionIndex",
6367 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6371 template <class ELFT> void LLVMStyle<ELFT>::printGroupSections() {
6372 DictScope Lists(W, "Groups");
6373 std::vector<GroupSection> V = this->getGroups();
6374 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6375 for (const GroupSection &G : V) {
6376 DictScope D(W, "Group");
6377 W.printNumber("Name", G.Name, G.ShName);
6378 W.printNumber("Index", G.Index);
6379 W.printNumber("Link", G.Link);
6380 W.printNumber("Info", G.Info);
6381 W.printHex("Type", getGroupType(G.Type), G.Type);
6382 W.startLine() << "Signature: " << G.Signature << "\n";
6384 ListScope L(W, "Section(s) in group");
6385 for (const GroupMember &GM : G.Members) {
6386 const GroupSection *MainGroup = Map[GM.Index];
6387 if (MainGroup != &G)
6388 this->reportUniqueWarning(
6389 "section with index " + Twine(GM.Index) +
6390 ", included in the group section with index " +
6391 Twine(MainGroup->Index) +
6392 ", was also found in the group section with index " +
6393 Twine(G.Index));
6394 W.startLine() << GM.Name << " (" << GM.Index << ")\n";
6398 if (V.empty())
6399 W.startLine() << "There are no group sections in the file.\n";
6402 template <class ELFT> void LLVMStyle<ELFT>::printRelocations() {
6403 ListScope D(W, "Relocations");
6405 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6406 if (!isRelocationSec<ELFT>(Sec))
6407 continue;
6409 StringRef Name = this->getPrintableSectionName(Sec);
6410 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6411 W.startLine() << "Section (" << SecNdx << ") " << Name << " {\n";
6412 W.indent();
6413 this->printRelocationsHelper(Sec);
6414 W.unindent();
6415 W.startLine() << "}\n";
6419 template <class ELFT> void LLVMStyle<ELFT>::printRelrReloc(const Elf_Relr &R) {
6420 W.startLine() << W.hex(R) << "\n";
6423 template <class ELFT>
6424 void LLVMStyle<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
6425 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
6426 Expected<RelSymbol<ELFT>> Target =
6427 this->dumper().getRelocationTarget(R, SymTab);
6428 if (!Target) {
6429 this->reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
6430 " in " + describe(this->Obj, Sec) + ": " +
6431 toString(Target.takeError()));
6432 return;
6435 printRelRelaReloc(R, Target->Name);
6438 template <class ELFT>
6439 void LLVMStyle<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6440 StringRef SymbolName) {
6441 SmallString<32> RelocName;
6442 this->Obj.getRelocationTypeName(R.Type, RelocName);
6444 if (opts::ExpandRelocs) {
6445 DictScope Group(W, "Relocation");
6446 W.printHex("Offset", R.Offset);
6447 W.printNumber("Type", RelocName, R.Type);
6448 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6449 if (R.Addend)
6450 W.printHex("Addend", (uintX_t)*R.Addend);
6451 } else {
6452 raw_ostream &OS = W.startLine();
6453 OS << W.hex(R.Offset) << " " << RelocName << " "
6454 << (!SymbolName.empty() ? SymbolName : "-");
6455 if (R.Addend)
6456 OS << " " << W.hex((uintX_t)*R.Addend);
6457 OS << "\n";
6461 template <class ELFT> void LLVMStyle<ELFT>::printSectionHeaders() {
6462 ListScope SectionsD(W, "Sections");
6464 int SectionIndex = -1;
6465 std::vector<EnumEntry<unsigned>> FlagsList =
6466 getSectionFlagsForTarget(this->Obj.getHeader().e_machine);
6467 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6468 DictScope SectionD(W, "Section");
6469 W.printNumber("Index", ++SectionIndex);
6470 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
6471 W.printHex("Type",
6472 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
6473 Sec.sh_type),
6474 Sec.sh_type);
6475 W.printFlags("Flags", Sec.sh_flags, makeArrayRef(FlagsList));
6476 W.printHex("Address", Sec.sh_addr);
6477 W.printHex("Offset", Sec.sh_offset);
6478 W.printNumber("Size", Sec.sh_size);
6479 W.printNumber("Link", Sec.sh_link);
6480 W.printNumber("Info", Sec.sh_info);
6481 W.printNumber("AddressAlignment", Sec.sh_addralign);
6482 W.printNumber("EntrySize", Sec.sh_entsize);
6484 if (opts::SectionRelocations) {
6485 ListScope D(W, "Relocations");
6486 this->printRelocationsHelper(Sec);
6489 if (opts::SectionSymbols) {
6490 ListScope D(W, "Symbols");
6491 if (const Elf_Shdr *Symtab = this->dumper().getDotSymtabSec()) {
6492 StringRef StrTable = unwrapOrError(
6493 this->FileName, this->Obj.getStringTableForSymtab(*Symtab));
6495 typename ELFT::SymRange Symbols =
6496 unwrapOrError(this->FileName, this->Obj.symbols(Symtab));
6497 for (const Elf_Sym &Sym : Symbols) {
6498 const Elf_Shdr *SymSec = unwrapOrError(
6499 this->FileName, this->Obj.getSection(
6500 Sym, Symtab, this->dumper().getShndxTable()));
6501 if (SymSec == &Sec)
6502 printSymbol(Sym, &Sym - &Symbols[0], StrTable, false, false);
6507 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
6508 ArrayRef<uint8_t> Data =
6509 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
6510 W.printBinaryBlock(
6511 "SectionData",
6512 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
6517 template <class ELFT>
6518 void LLVMStyle<ELFT>::printSymbolSection(const Elf_Sym &Symbol,
6519 unsigned SymIndex) {
6520 auto GetSectionSpecialType = [&]() -> Optional<StringRef> {
6521 if (Symbol.isUndefined())
6522 return StringRef("Undefined");
6523 if (Symbol.isProcessorSpecific())
6524 return StringRef("Processor Specific");
6525 if (Symbol.isOSSpecific())
6526 return StringRef("Operating System Specific");
6527 if (Symbol.isAbsolute())
6528 return StringRef("Absolute");
6529 if (Symbol.isCommon())
6530 return StringRef("Common");
6531 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
6532 return StringRef("Reserved");
6533 return None;
6536 if (Optional<StringRef> Type = GetSectionSpecialType()) {
6537 W.printHex("Section", *Type, Symbol.st_shndx);
6538 return;
6541 Expected<unsigned> SectionIndex =
6542 this->dumper().getSymbolSectionIndex(Symbol, SymIndex);
6543 if (!SectionIndex) {
6544 assert(Symbol.st_shndx == SHN_XINDEX &&
6545 "getSymbolSectionIndex should only fail due to an invalid "
6546 "SHT_SYMTAB_SHNDX table/reference");
6547 this->reportUniqueWarning(SectionIndex.takeError());
6548 W.printHex("Section", "Reserved", SHN_XINDEX);
6549 return;
6552 Expected<StringRef> SectionName =
6553 this->dumper().getSymbolSectionName(Symbol, *SectionIndex);
6554 if (!SectionName) {
6555 // Don't report an invalid section name if the section headers are missing.
6556 // In such situations, all sections will be "invalid".
6557 if (!this->dumper().getElfObject().sections().empty())
6558 this->reportUniqueWarning(SectionName.takeError());
6559 else
6560 consumeError(SectionName.takeError());
6561 W.printHex("Section", "<?>", *SectionIndex);
6562 } else {
6563 W.printHex("Section", *SectionName, *SectionIndex);
6567 template <class ELFT>
6568 void LLVMStyle<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
6569 Optional<StringRef> StrTable, bool IsDynamic,
6570 bool /*NonVisibilityBitsUsed*/) {
6571 std::string FullSymbolName =
6572 this->dumper().getFullSymbolName(Symbol, SymIndex, StrTable, IsDynamic);
6573 unsigned char SymbolType = Symbol.getType();
6575 DictScope D(W, "Symbol");
6576 W.printNumber("Name", FullSymbolName, Symbol.st_name);
6577 W.printHex("Value", Symbol.st_value);
6578 W.printNumber("Size", Symbol.st_size);
6579 W.printEnum("Binding", Symbol.getBinding(), makeArrayRef(ElfSymbolBindings));
6580 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
6581 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
6582 W.printEnum("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes));
6583 else
6584 W.printEnum("Type", SymbolType, makeArrayRef(ElfSymbolTypes));
6585 if (Symbol.st_other == 0)
6586 // Usually st_other flag is zero. Do not pollute the output
6587 // by flags enumeration in that case.
6588 W.printNumber("Other", 0);
6589 else {
6590 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
6591 std::end(ElfSymOtherFlags));
6592 if (this->Obj.getHeader().e_machine == EM_MIPS) {
6593 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6594 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6595 // cases separately.
6596 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
6597 SymOtherFlags.insert(SymOtherFlags.end(),
6598 std::begin(ElfMips16SymOtherFlags),
6599 std::end(ElfMips16SymOtherFlags));
6600 else
6601 SymOtherFlags.insert(SymOtherFlags.end(),
6602 std::begin(ElfMipsSymOtherFlags),
6603 std::end(ElfMipsSymOtherFlags));
6604 } else if (this->Obj.getHeader().e_machine == EM_AARCH64) {
6605 SymOtherFlags.insert(SymOtherFlags.end(),
6606 std::begin(ElfAArch64SymOtherFlags),
6607 std::end(ElfAArch64SymOtherFlags));
6609 W.printFlags("Other", Symbol.st_other, makeArrayRef(SymOtherFlags), 0x3u);
6611 printSymbolSection(Symbol, SymIndex);
6614 template <class ELFT>
6615 void LLVMStyle<ELFT>::printSymbols(bool PrintSymbols,
6616 bool PrintDynamicSymbols) {
6617 if (PrintSymbols)
6618 printSymbols();
6619 if (PrintDynamicSymbols)
6620 printDynamicSymbols();
6623 template <class ELFT> void LLVMStyle<ELFT>::printSymbols() {
6624 ListScope Group(W, "Symbols");
6625 this->dumper().printSymbolsHelper(false);
6628 template <class ELFT> void LLVMStyle<ELFT>::printDynamicSymbols() {
6629 ListScope Group(W, "DynamicSymbols");
6630 this->dumper().printSymbolsHelper(true);
6633 template <class ELFT> void LLVMStyle<ELFT>::printDynamic() {
6634 Elf_Dyn_Range Table = this->dumper().dynamic_table();
6635 if (Table.empty())
6636 return;
6638 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
6640 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
6641 // The "Name/Value" column should be indented from the "Type" column by N
6642 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6643 // space (1) = -3.
6644 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
6645 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
6647 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
6648 for (auto Entry : Table) {
6649 uintX_t Tag = Entry.getTag();
6650 std::string Value = this->dumper().getDynamicEntry(Tag, Entry.getVal());
6651 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
6652 << " "
6653 << format(ValueFmt.c_str(),
6654 this->Obj.getDynamicTagAsString(Tag).c_str())
6655 << Value << "\n";
6657 W.startLine() << "]\n";
6660 template <class ELFT> void LLVMStyle<ELFT>::printDynamicRelocations() {
6661 W.startLine() << "Dynamic Relocations {\n";
6662 W.indent();
6663 this->printDynamicRelocationsHelper();
6664 W.unindent();
6665 W.startLine() << "}\n";
6668 template <class ELFT>
6669 void LLVMStyle<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
6670 RelSymbol<ELFT> S = getSymbolForReloc(this->dumper(), R);
6671 printRelRelaReloc(R, S.Name);
6674 template <class ELFT>
6675 void LLVMStyle<ELFT>::printProgramHeaders(
6676 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
6677 if (PrintProgramHeaders)
6678 printProgramHeaders();
6679 if (PrintSectionMapping == cl::BOU_TRUE)
6680 printSectionMapping();
6683 template <class ELFT> void LLVMStyle<ELFT>::printProgramHeaders() {
6684 ListScope L(W, "ProgramHeaders");
6686 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
6687 if (!PhdrsOrErr) {
6688 this->reportUniqueWarning("unable to dump program headers: " +
6689 toString(PhdrsOrErr.takeError()));
6690 return;
6693 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
6694 DictScope P(W, "ProgramHeader");
6695 StringRef Type =
6696 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
6698 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
6699 W.printHex("Offset", Phdr.p_offset);
6700 W.printHex("VirtualAddress", Phdr.p_vaddr);
6701 W.printHex("PhysicalAddress", Phdr.p_paddr);
6702 W.printNumber("FileSize", Phdr.p_filesz);
6703 W.printNumber("MemSize", Phdr.p_memsz);
6704 W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
6705 W.printNumber("Alignment", Phdr.p_align);
6709 template <class ELFT>
6710 void LLVMStyle<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
6711 ListScope SS(W, "VersionSymbols");
6712 if (!Sec)
6713 return;
6715 StringRef StrTable;
6716 ArrayRef<Elf_Sym> Syms;
6717 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
6718 this->dumper().getVersionTable(*Sec, &Syms, &StrTable);
6719 if (!VerTableOrErr) {
6720 this->reportUniqueWarning(VerTableOrErr.takeError());
6721 return;
6724 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
6725 return;
6727 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
6728 DictScope S(W, "Symbol");
6729 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
6730 W.printString("Name", this->dumper().getFullSymbolName(Syms[I], I, StrTable,
6731 /*IsDynamic=*/true));
6735 static const EnumEntry<unsigned> SymVersionFlags[] = {
6736 {"Base", "BASE", VER_FLG_BASE},
6737 {"Weak", "WEAK", VER_FLG_WEAK},
6738 {"Info", "INFO", VER_FLG_INFO}};
6740 template <class ELFT>
6741 void LLVMStyle<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
6742 ListScope SD(W, "VersionDefinitions");
6743 if (!Sec)
6744 return;
6746 Expected<std::vector<VerDef>> V = this->dumper().getVersionDefinitions(*Sec);
6747 if (!V) {
6748 this->reportUniqueWarning(V.takeError());
6749 return;
6752 for (const VerDef &D : *V) {
6753 DictScope Def(W, "Definition");
6754 W.printNumber("Version", D.Version);
6755 W.printFlags("Flags", D.Flags, makeArrayRef(SymVersionFlags));
6756 W.printNumber("Index", D.Ndx);
6757 W.printNumber("Hash", D.Hash);
6758 W.printString("Name", D.Name.c_str());
6759 W.printList(
6760 "Predecessors", D.AuxV,
6761 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
6765 template <class ELFT>
6766 void LLVMStyle<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
6767 ListScope SD(W, "VersionRequirements");
6768 if (!Sec)
6769 return;
6771 Expected<std::vector<VerNeed>> V = this->dumper().getVersionDependencies(*Sec);
6772 if (!V) {
6773 this->reportUniqueWarning(V.takeError());
6774 return;
6777 for (const VerNeed &VN : *V) {
6778 DictScope Entry(W, "Dependency");
6779 W.printNumber("Version", VN.Version);
6780 W.printNumber("Count", VN.Cnt);
6781 W.printString("FileName", VN.File.c_str());
6783 ListScope L(W, "Entries");
6784 for (const VernAux &Aux : VN.AuxV) {
6785 DictScope Entry(W, "Entry");
6786 W.printNumber("Hash", Aux.Hash);
6787 W.printFlags("Flags", Aux.Flags, makeArrayRef(SymVersionFlags));
6788 W.printNumber("Index", Aux.Other);
6789 W.printString("Name", Aux.Name.c_str());
6794 template <class ELFT> void LLVMStyle<ELFT>::printHashHistograms() {
6795 W.startLine() << "Hash Histogram not implemented!\n";
6798 template <class ELFT> void LLVMStyle<ELFT>::printCGProfile() {
6799 ListScope L(W, "CGProfile");
6800 if (!this->dumper().getDotCGProfileSec())
6801 return;
6803 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
6804 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(
6805 *this->dumper().getDotCGProfileSec());
6806 if (!CGProfileOrErr) {
6807 this->reportUniqueWarning(
6808 "unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6809 toString(CGProfileOrErr.takeError()));
6810 return;
6813 for (const Elf_CGProfile &CGPE : *CGProfileOrErr) {
6814 DictScope D(W, "CGProfileEntry");
6815 W.printNumber("From", this->dumper().getStaticSymbolName(CGPE.cgp_from),
6816 CGPE.cgp_from);
6817 W.printNumber("To", this->dumper().getStaticSymbolName(CGPE.cgp_to),
6818 CGPE.cgp_to);
6819 W.printNumber("Weight", CGPE.cgp_weight);
6823 template <class ELFT> void LLVMStyle<ELFT>::printAddrsig() {
6824 ListScope L(W, "Addrsig");
6825 const Elf_Shdr *Sec = this->dumper().getDotAddrsigSec();
6826 if (!Sec)
6827 return;
6829 Expected<std::vector<uint64_t>> SymsOrErr =
6830 decodeAddrsigSection(this->Obj, *Sec);
6831 if (!SymsOrErr) {
6832 this->reportUniqueWarning(SymsOrErr.takeError());
6833 return;
6836 for (uint64_t Sym : *SymsOrErr)
6837 W.printNumber("Sym", this->dumper().getStaticSymbolName(Sym), Sym);
6840 template <typename ELFT>
6841 static void printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
6842 ScopedPrinter &W) {
6843 switch (NoteType) {
6844 default:
6845 return;
6846 case ELF::NT_GNU_ABI_TAG: {
6847 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
6848 if (!AbiTag.IsValid) {
6849 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
6850 } else {
6851 W.printString("OS", AbiTag.OSName);
6852 W.printString("ABI", AbiTag.ABI);
6854 break;
6856 case ELF::NT_GNU_BUILD_ID: {
6857 W.printString("Build ID", getGNUBuildId(Desc));
6858 break;
6860 case ELF::NT_GNU_GOLD_VERSION:
6861 W.printString("Version", getGNUGoldVersion(Desc));
6862 break;
6863 case ELF::NT_GNU_PROPERTY_TYPE_0:
6864 ListScope D(W, "Property");
6865 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
6866 W.printString(Property);
6867 break;
6871 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
6872 W.printNumber("Page Size", Note.PageSize);
6873 for (const CoreFileMapping &Mapping : Note.Mappings) {
6874 ListScope D(W, "Mapping");
6875 W.printHex("Start", Mapping.Start);
6876 W.printHex("End", Mapping.End);
6877 W.printHex("Offset", Mapping.Offset);
6878 W.printString("Filename", Mapping.Filename);
6882 template <class ELFT> void LLVMStyle<ELFT>::printNotes() {
6883 ListScope L(W, "Notes");
6885 std::unique_ptr<DictScope> NoteScope;
6886 auto StartNotes = [&](Optional<StringRef> SecName,
6887 const typename ELFT::Off Offset,
6888 const typename ELFT::Addr Size) {
6889 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
6890 W.printString("Name", SecName ? *SecName : "<?>");
6891 W.printHex("Offset", Offset);
6892 W.printHex("Size", Size);
6895 auto EndNotes = [&] { NoteScope.reset(); };
6897 auto ProcessNote = [&](const Elf_Note &Note) -> Error {
6898 DictScope D2(W, "Note");
6899 StringRef Name = Note.getName();
6900 ArrayRef<uint8_t> Descriptor = Note.getDesc();
6901 Elf_Word Type = Note.getType();
6903 // Print the note owner/type.
6904 W.printString("Owner", Name);
6905 W.printHex("Data size", Descriptor.size());
6907 StringRef NoteType =
6908 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
6909 if (!NoteType.empty())
6910 W.printString("Type", NoteType);
6911 else
6912 W.printString("Type",
6913 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
6915 // Print the description, or fallback to printing raw bytes for unknown
6916 // owners.
6917 if (Name == "GNU") {
6918 printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W);
6919 } else if (Name == "AMD") {
6920 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
6921 if (!N.Type.empty())
6922 W.printString(N.Type, N.Value);
6923 } else if (Name == "AMDGPU") {
6924 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
6925 if (!N.Type.empty())
6926 W.printString(N.Type, N.Value);
6927 } else if (Name == "CORE") {
6928 if (Type == ELF::NT_FILE) {
6929 DataExtractor DescExtractor(Descriptor,
6930 ELFT::TargetEndianness == support::little,
6931 sizeof(Elf_Addr));
6932 if (Expected<CoreNote> Note = readCoreNote(DescExtractor))
6933 printCoreNoteLLVMStyle(*Note, W);
6934 else
6935 return Note.takeError();
6937 } else if (!Descriptor.empty()) {
6938 W.printBinaryBlock("Description data", Descriptor);
6940 return Error::success();
6943 printNotesHelper(this->dumper(), StartNotes, ProcessNote, EndNotes);
6946 template <class ELFT> void LLVMStyle<ELFT>::printELFLinkerOptions() {
6947 ListScope L(W, "LinkerOptions");
6949 unsigned I = -1;
6950 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
6951 ++I;
6952 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
6953 continue;
6955 Expected<ArrayRef<uint8_t>> ContentsOrErr =
6956 this->Obj.getSectionContents(Shdr);
6957 if (!ContentsOrErr) {
6958 this->reportUniqueWarning("unable to read the content of the "
6959 "SHT_LLVM_LINKER_OPTIONS section: " +
6960 toString(ContentsOrErr.takeError()));
6961 continue;
6963 if (ContentsOrErr->empty())
6964 continue;
6966 if (ContentsOrErr->back() != 0) {
6967 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
6968 Twine(I) +
6969 " is broken: the "
6970 "content is not null-terminated");
6971 continue;
6974 SmallVector<StringRef, 16> Strings;
6975 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
6976 if (Strings.size() % 2 != 0) {
6977 this->reportUniqueWarning(
6978 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
6979 " is broken: an incomplete "
6980 "key-value pair was found. The last possible key was: \"" +
6981 Strings.back() + "\"");
6982 continue;
6985 for (size_t I = 0; I < Strings.size(); I += 2)
6986 W.printString(Strings[I], Strings[I + 1]);
6990 template <class ELFT> void LLVMStyle<ELFT>::printDependentLibs() {
6991 ListScope L(W, "DependentLibs");
6992 this->printDependentLibsHelper(
6993 [](const Elf_Shdr &) {},
6994 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
6997 template <class ELFT>
6998 void LLVMStyle<ELFT>::printStackSizes() {
6999 ListScope L(W, "StackSizes");
7000 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7001 this->printRelocatableStackSizes([]() {});
7002 else
7003 this->printNonRelocatableStackSizes([]() {});
7006 template <class ELFT>
7007 void LLVMStyle<ELFT>::printStackSizeEntry(uint64_t Size, StringRef FuncName) {
7008 DictScope D(W, "Entry");
7009 W.printString("Function", FuncName);
7010 W.printHex("Size", Size);
7013 template <class ELFT>
7014 void LLVMStyle<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7015 auto PrintEntry = [&](const Elf_Addr *E) {
7016 W.printHex("Address", Parser.getGotAddress(E));
7017 W.printNumber("Access", Parser.getGotOffset(E));
7018 W.printHex("Initial", *E);
7021 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7023 W.printHex("Canonical gp value", Parser.getGp());
7025 ListScope RS(W, "Reserved entries");
7027 DictScope D(W, "Entry");
7028 PrintEntry(Parser.getGotLazyResolver());
7029 W.printString("Purpose", StringRef("Lazy resolver"));
7032 if (Parser.getGotModulePointer()) {
7033 DictScope D(W, "Entry");
7034 PrintEntry(Parser.getGotModulePointer());
7035 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7039 ListScope LS(W, "Local entries");
7040 for (auto &E : Parser.getLocalEntries()) {
7041 DictScope D(W, "Entry");
7042 PrintEntry(&E);
7046 if (Parser.IsStatic)
7047 return;
7050 ListScope GS(W, "Global entries");
7051 for (auto &E : Parser.getGlobalEntries()) {
7052 DictScope D(W, "Entry");
7054 PrintEntry(&E);
7056 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7057 W.printHex("Value", Sym.st_value);
7058 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7060 const unsigned SymIndex = &Sym - this->dumper().dynamic_symbols().begin();
7061 printSymbolSection(Sym, SymIndex);
7063 std::string SymName = this->dumper().getFullSymbolName(
7064 Sym, SymIndex, this->dumper().getDynamicStringTable(), true);
7065 W.printNumber("Name", SymName, Sym.st_name);
7069 W.printNumber("Number of TLS and multi-GOT entries",
7070 uint64_t(Parser.getOtherEntries().size()));
7073 template <class ELFT>
7074 void LLVMStyle<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7075 auto PrintEntry = [&](const Elf_Addr *E) {
7076 W.printHex("Address", Parser.getPltAddress(E));
7077 W.printHex("Initial", *E);
7080 DictScope GS(W, "PLT GOT");
7083 ListScope RS(W, "Reserved entries");
7085 DictScope D(W, "Entry");
7086 PrintEntry(Parser.getPltLazyResolver());
7087 W.printString("Purpose", StringRef("PLT lazy resolver"));
7090 if (auto E = Parser.getPltModulePointer()) {
7091 DictScope D(W, "Entry");
7092 PrintEntry(E);
7093 W.printString("Purpose", StringRef("Module pointer"));
7097 ListScope LS(W, "Entries");
7098 for (auto &E : Parser.getPltEntries()) {
7099 DictScope D(W, "Entry");
7100 PrintEntry(&E);
7102 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7103 W.printHex("Value", Sym.st_value);
7104 W.printEnum("Type", Sym.getType(), makeArrayRef(ElfSymbolTypes));
7105 printSymbolSection(Sym, &Sym - this->dumper().dynamic_symbols().begin());
7107 const Elf_Sym *FirstSym =
7108 cantFail(this->Obj.template getEntry<const Elf_Sym>(
7109 *Parser.getPltSymTable(), 0));
7110 std::string SymName = this->dumper().getFullSymbolName(
7111 Sym, &Sym - FirstSym, Parser.getPltStrTable(), true);
7112 W.printNumber("Name", SymName, Sym.st_name);
7117 template <class ELFT> void LLVMStyle<ELFT>::printMipsABIFlags() {
7118 const Elf_Mips_ABIFlags<ELFT> *Flags;
7119 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7120 getMipsAbiFlagsSection(this->dumper())) {
7121 Flags = *SecOrErr;
7122 if (!Flags) {
7123 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7124 return;
7126 } else {
7127 this->reportUniqueWarning(SecOrErr.takeError());
7128 return;
7131 raw_ostream &OS = W.getOStream();
7132 DictScope GS(W, "MIPS ABI Flags");
7134 W.printNumber("Version", Flags->version);
7135 W.startLine() << "ISA: ";
7136 if (Flags->isa_rev <= 1)
7137 OS << format("MIPS%u", Flags->isa_level);
7138 else
7139 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7140 OS << "\n";
7141 W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
7142 W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
7143 W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
7144 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7145 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7146 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7147 W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
7148 W.printHex("Flags 2", Flags->flags2);