1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements the ELF-specific dumper for llvm-readobj.
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/MapVector.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/Demangle/Demangle.h"
34 #include "llvm/Object/ELF.h"
35 #include "llvm/Object/ELFObjectFile.h"
36 #include "llvm/Object/ELFTypes.h"
37 #include "llvm/Object/Error.h"
38 #include "llvm/Object/ObjectFile.h"
39 #include "llvm/Object/RelocationResolver.h"
40 #include "llvm/Object/StackMapParser.h"
41 #include "llvm/Support/AMDGPUMetadata.h"
42 #include "llvm/Support/ARMAttributeParser.h"
43 #include "llvm/Support/ARMBuildAttributes.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Endian.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/FormatVariadic.h"
50 #include "llvm/Support/FormattedStream.h"
51 #include "llvm/Support/LEB128.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/MipsABIFlags.h"
54 #include "llvm/Support/RISCVAttributeParser.h"
55 #include "llvm/Support/RISCVAttributes.h"
56 #include "llvm/Support/ScopedPrinter.h"
57 #include "llvm/Support/raw_ostream.h"
66 #include <system_error>
70 using namespace llvm::object
;
73 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
77 #define ENUM_ENT(enum, altName) \
78 { #enum, altName, ELF::enum }
80 #define ENUM_ENT_1(enum) \
81 { #enum, #enum, ELF::enum }
83 #define TYPEDEF_ELF_TYPES(ELFT) \
84 using ELFO = ELFFile<ELFT>; \
85 using Elf_Addr = typename ELFT::Addr; \
86 using Elf_Shdr = typename ELFT::Shdr; \
87 using Elf_Sym = typename ELFT::Sym; \
88 using Elf_Dyn = typename ELFT::Dyn; \
89 using Elf_Dyn_Range = typename ELFT::DynRange; \
90 using Elf_Rel = typename ELFT::Rel; \
91 using Elf_Rela = typename ELFT::Rela; \
92 using Elf_Relr = typename ELFT::Relr; \
93 using Elf_Rel_Range = typename ELFT::RelRange; \
94 using Elf_Rela_Range = typename ELFT::RelaRange; \
95 using Elf_Relr_Range = typename ELFT::RelrRange; \
96 using Elf_Phdr = typename ELFT::Phdr; \
97 using Elf_Half = typename ELFT::Half; \
98 using Elf_Ehdr = typename ELFT::Ehdr; \
99 using Elf_Word = typename ELFT::Word; \
100 using Elf_Hash = typename ELFT::Hash; \
101 using Elf_GnuHash = typename ELFT::GnuHash; \
102 using Elf_Note = typename ELFT::Note; \
103 using Elf_Sym_Range = typename ELFT::SymRange; \
104 using Elf_Versym = typename ELFT::Versym; \
105 using Elf_Verneed = typename ELFT::Verneed; \
106 using Elf_Vernaux = typename ELFT::Vernaux; \
107 using Elf_Verdef = typename ELFT::Verdef; \
108 using Elf_Verdaux = typename ELFT::Verdaux; \
109 using Elf_CGProfile = typename ELFT::CGProfile; \
110 using uintX_t = typename ELFT::uint;
114 template <class ELFT
> class DumpStyle
;
116 template <class ELFT
> struct RelSymbol
{
117 RelSymbol(const typename
ELFT::Sym
*S
, StringRef N
)
118 : Sym(S
), Name(N
.str()) {}
119 const typename
ELFT::Sym
*Sym
;
123 /// Represents a contiguous uniform range in the file. We cannot just create a
124 /// range directly because when creating one of these from the .dynamic table
125 /// the size, entity size and virtual address are different entries in arbitrary
126 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
127 struct DynRegionInfo
{
128 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
)
129 : Obj(&Owner
), Dumper(&D
) {}
130 DynRegionInfo(const Binary
&Owner
, const ObjDumper
&D
, const uint8_t *A
,
131 uint64_t S
, uint64_t ES
)
132 : Addr(A
), Size(S
), EntSize(ES
), Obj(&Owner
), Dumper(&D
) {}
134 /// Address in current address space.
135 const uint8_t *Addr
= nullptr;
136 /// Size in bytes of the region.
138 /// Size of each entity in the region.
139 uint64_t EntSize
= 0;
141 /// Owner object. Used for error reporting.
143 /// Dumper used for error reporting.
144 const ObjDumper
*Dumper
;
145 /// Error prefix. Used for error reporting to provide more information.
147 /// Region size name. Used for error reporting.
148 StringRef SizePrintName
= "size";
149 /// Entry size name. Used for error reporting. If this field is empty, errors
150 /// will not mention the entry size.
151 StringRef EntSizePrintName
= "entry size";
153 template <typename Type
> ArrayRef
<Type
> getAsArrayRef() const {
154 const Type
*Start
= reinterpret_cast<const Type
*>(Addr
);
156 return {Start
, Start
};
158 const uint64_t Offset
=
159 Addr
- (const uint8_t *)Obj
->getMemoryBufferRef().getBufferStart();
160 const uint64_t ObjSize
= Obj
->getMemoryBufferRef().getBufferSize();
162 if (Size
> ObjSize
- Offset
) {
163 Dumper
->reportUniqueWarning(
164 "unable to read data at 0x" + Twine::utohexstr(Offset
) +
165 " of size 0x" + Twine::utohexstr(Size
) + " (" + SizePrintName
+
166 "): it goes past the end of the file of size 0x" +
167 Twine::utohexstr(ObjSize
));
168 return {Start
, Start
};
171 if (EntSize
== sizeof(Type
) && (Size
% EntSize
== 0))
172 return {Start
, Start
+ (Size
/ EntSize
)};
175 if (!Context
.empty())
176 Msg
+= Context
+ " has ";
178 Msg
+= ("invalid " + SizePrintName
+ " (0x" + Twine::utohexstr(Size
) + ")")
180 if (!EntSizePrintName
.empty())
182 (" or " + EntSizePrintName
+ " (0x" + Twine::utohexstr(EntSize
) + ")")
185 Dumper
->reportUniqueWarning(Msg
);
186 return {Start
, Start
};
195 struct GroupSection
{
197 std::string Signature
;
203 std::vector
<GroupMember
> Members
;
220 std::vector
<VerdAux
> AuxV
;
236 std::vector
<VernAux
> AuxV
;
246 template <class ELFT
> class Relocation
{
248 Relocation(const typename
ELFT::Rel
&R
, bool IsMips64EL
)
249 : Type(R
.getType(IsMips64EL
)), Symbol(R
.getSymbol(IsMips64EL
)),
250 Offset(R
.r_offset
), Info(R
.r_info
) {}
252 Relocation(const typename
ELFT::Rela
&R
, bool IsMips64EL
)
253 : Relocation((const typename
ELFT::Rel
&)R
, IsMips64EL
) {
259 typename
ELFT::uint Offset
;
260 typename
ELFT::uint Info
;
261 Optional
<int64_t> Addend
;
264 template <typename ELFT
> class ELFDumper
: public ObjDumper
{
266 ELFDumper(const object::ELFObjectFile
<ELFT
> &ObjF
, ScopedPrinter
&Writer
);
268 void printFileHeaders() override
;
269 void printSectionHeaders() override
;
270 void printRelocations() override
;
271 void printDependentLibs() override
;
272 void printDynamicRelocations() override
;
273 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
274 void printHashSymbols() override
;
275 void printSectionDetails() override
;
276 void printUnwindInfo() override
;
278 void printDynamicTable() override
;
279 void printNeededLibraries() override
;
280 void printProgramHeaders(bool PrintProgramHeaders
,
281 cl::boolOrDefault PrintSectionMapping
) override
;
282 void printHashTable() override
;
283 void printGnuHashTable() override
;
284 void printLoadName() override
;
285 void printVersionInfo() override
;
286 void printGroupSections() override
;
288 void printArchSpecificInfo() override
;
290 void printStackMap() const override
;
292 void printHashHistograms() override
;
294 void printCGProfile() override
;
295 void printAddrsig() override
;
297 void printNotes() override
;
299 void printELFLinkerOptions() override
;
300 void printStackSizes() override
;
302 const object::ELFObjectFile
<ELFT
> &getElfObject() const { return ObjF
; };
305 std::unique_ptr
<DumpStyle
<ELFT
>> ELFDumperStyle
;
307 TYPEDEF_ELF_TYPES(ELFT
)
309 Expected
<DynRegionInfo
> createDRI(uint64_t Offset
, uint64_t Size
,
311 if (Offset
+ Size
< Offset
|| Offset
+ Size
> Obj
.getBufSize())
312 return createError("offset (0x" + Twine::utohexstr(Offset
) +
313 ") + size (0x" + Twine::utohexstr(Size
) +
314 ") is greater than the file size (0x" +
315 Twine::utohexstr(Obj
.getBufSize()) + ")");
316 return DynRegionInfo(ObjF
, *this, Obj
.base() + Offset
, Size
, EntSize
);
319 void printAttributes();
320 void printMipsReginfo();
321 void printMipsOptions();
323 std::pair
<const Elf_Phdr
*, const Elf_Shdr
*> findDynamic();
324 void loadDynamicTable();
325 void parseDynamicTable();
327 Expected
<StringRef
> getSymbolVersion(const Elf_Sym
&Sym
,
328 bool &IsDefault
) const;
329 Error
LoadVersionMap() const;
331 const object::ELFObjectFile
<ELFT
> &ObjF
;
332 const ELFFile
<ELFT
> &Obj
;
333 DynRegionInfo DynRelRegion
;
334 DynRegionInfo DynRelaRegion
;
335 DynRegionInfo DynRelrRegion
;
336 DynRegionInfo DynPLTRelRegion
;
337 Optional
<DynRegionInfo
> DynSymRegion
;
338 DynRegionInfo DynamicTable
;
339 StringRef DynamicStringTable
;
340 const Elf_Hash
*HashTable
= nullptr;
341 const Elf_GnuHash
*GnuHashTable
= nullptr;
342 const Elf_Shdr
*DotSymtabSec
= nullptr;
343 const Elf_Shdr
*DotDynsymSec
= nullptr;
344 const Elf_Shdr
*DotCGProfileSec
= nullptr;
345 const Elf_Shdr
*DotAddrsigSec
= nullptr;
346 ArrayRef
<Elf_Word
> ShndxTable
;
347 Optional
<uint64_t> SONameOffset
;
349 const Elf_Shdr
*SymbolVersionSection
= nullptr; // .gnu.version
350 const Elf_Shdr
*SymbolVersionNeedSection
= nullptr; // .gnu.version_r
351 const Elf_Shdr
*SymbolVersionDefSection
= nullptr; // .gnu.version_d
353 struct VersionEntry
{
357 mutable SmallVector
<Optional
<VersionEntry
>, 16> VersionMap
;
359 std::string
describe(const Elf_Shdr
&Sec
) const;
362 unsigned getHashTableEntSize() const {
363 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
364 // sections. This violates the ELF specification.
365 if (Obj
.getHeader().e_machine
== ELF::EM_S390
||
366 Obj
.getHeader().e_machine
== ELF::EM_ALPHA
)
371 Elf_Dyn_Range
dynamic_table() const {
372 // A valid .dynamic section contains an array of entries terminated
373 // with a DT_NULL entry. However, sometimes the section content may
374 // continue past the DT_NULL entry, so to dump the section correctly,
375 // we first find the end of the entries by iterating over them.
376 Elf_Dyn_Range Table
= DynamicTable
.getAsArrayRef
<Elf_Dyn
>();
379 while (Size
< Table
.size())
380 if (Table
[Size
++].getTag() == DT_NULL
)
383 return Table
.slice(0, Size
);
386 Optional
<DynRegionInfo
> getDynSymRegion() const { return DynSymRegion
; }
388 Elf_Sym_Range
dynamic_symbols() const {
390 return Elf_Sym_Range();
391 return DynSymRegion
->getAsArrayRef
<Elf_Sym
>();
394 Elf_Rel_Range
dyn_rels() const;
395 Elf_Rela_Range
dyn_relas() const;
396 Elf_Relr_Range
dyn_relrs() const;
397 std::string
getFullSymbolName(const Elf_Sym
&Symbol
, unsigned SymIndex
,
398 Optional
<StringRef
> StrTable
,
399 bool IsDynamic
) const;
400 Expected
<unsigned> getSymbolSectionIndex(const Elf_Sym
&Symbol
,
401 unsigned SymIndex
) const;
402 Expected
<StringRef
> getSymbolSectionName(const Elf_Sym
&Symbol
,
403 unsigned SectionIndex
) const;
404 std::string
getStaticSymbolName(uint32_t Index
) const;
405 StringRef
getDynamicString(uint64_t Value
) const;
406 Expected
<StringRef
> getSymbolVersionByIndex(uint32_t VersionSymbolIndex
,
407 bool &IsDefault
) const;
409 void printSymbolsHelper(bool IsDynamic
) const;
410 std::string
getDynamicEntry(uint64_t Type
, uint64_t Value
) const;
412 const Elf_Shdr
*findSectionByName(StringRef Name
) const;
414 const Elf_Shdr
*getDotSymtabSec() const { return DotSymtabSec
; }
415 const Elf_Shdr
*getDotCGProfileSec() const { return DotCGProfileSec
; }
416 const Elf_Shdr
*getDotAddrsigSec() const { return DotAddrsigSec
; }
417 ArrayRef
<Elf_Word
> getShndxTable() const { return ShndxTable
; }
418 StringRef
getDynamicStringTable() const { return DynamicStringTable
; }
419 const DynRegionInfo
&getDynRelRegion() const { return DynRelRegion
; }
420 const DynRegionInfo
&getDynRelaRegion() const { return DynRelaRegion
; }
421 const DynRegionInfo
&getDynRelrRegion() const { return DynRelrRegion
; }
422 const DynRegionInfo
&getDynPLTRelRegion() const { return DynPLTRelRegion
; }
423 const DynRegionInfo
&getDynamicTableRegion() const { return DynamicTable
; }
424 const Elf_Hash
*getHashTable() const { return HashTable
; }
425 const Elf_GnuHash
*getGnuHashTable() const { return GnuHashTable
; }
427 Expected
<ArrayRef
<Elf_Versym
>> getVersionTable(const Elf_Shdr
&Sec
,
428 ArrayRef
<Elf_Sym
> *SymTab
,
429 StringRef
*StrTab
) const;
430 Expected
<std::vector
<VerDef
>>
431 getVersionDefinitions(const Elf_Shdr
&Sec
) const;
432 Expected
<std::vector
<VerNeed
>>
433 getVersionDependencies(const Elf_Shdr
&Sec
) const;
435 Expected
<RelSymbol
<ELFT
>> getRelocationTarget(const Relocation
<ELFT
> &R
,
436 const Elf_Shdr
*SymTab
) const;
439 template <class ELFT
>
440 static std::string
describe(const ELFFile
<ELFT
> &Obj
,
441 const typename
ELFT::Shdr
&Sec
) {
442 unsigned SecNdx
= &Sec
- &cantFail(Obj
.sections()).front();
443 return (object::getELFSectionTypeName(Obj
.getHeader().e_machine
,
445 " section with index " + Twine(SecNdx
))
449 template <class ELFT
>
450 std::string ELFDumper
<ELFT
>::describe(const Elf_Shdr
&Sec
) const {
451 return ::describe(Obj
, Sec
);
454 template <class ELFT
>
455 static Expected
<StringRef
> getLinkAsStrtab(const ELFFile
<ELFT
> &Obj
,
456 const typename
ELFT::Shdr
&Sec
) {
457 Expected
<const typename
ELFT::Shdr
*> StrTabSecOrErr
=
458 Obj
.getSection(Sec
.sh_link
);
460 return createError("invalid section linked to " + describe(Obj
, Sec
) +
461 ": " + toString(StrTabSecOrErr
.takeError()));
463 Expected
<StringRef
> StrTabOrErr
= Obj
.getStringTable(**StrTabSecOrErr
);
465 return createError("invalid string table linked to " + describe(Obj
, Sec
) +
466 ": " + toString(StrTabOrErr
.takeError()));
470 // Returns the linked symbol table and associated string table for a given section.
471 template <class ELFT
>
472 static Expected
<std::pair
<typename
ELFT::SymRange
, StringRef
>>
473 getLinkAsSymtab(const ELFFile
<ELFT
> &Obj
, const typename
ELFT::Shdr
&Sec
,
474 unsigned ExpectedType
) {
475 Expected
<const typename
ELFT::Shdr
*> SymtabOrErr
=
476 Obj
.getSection(Sec
.sh_link
);
478 return createError("invalid section linked to " + describe(Obj
, Sec
) +
479 ": " + toString(SymtabOrErr
.takeError()));
481 if ((*SymtabOrErr
)->sh_type
!= ExpectedType
)
483 "invalid section linked to " + describe(Obj
, Sec
) + ": expected " +
484 object::getELFSectionTypeName(Obj
.getHeader().e_machine
, ExpectedType
) +
486 object::getELFSectionTypeName(Obj
.getHeader().e_machine
,
487 (*SymtabOrErr
)->sh_type
));
489 Expected
<StringRef
> StrTabOrErr
= getLinkAsStrtab(Obj
, **SymtabOrErr
);
492 "can't get a string table for the symbol table linked to " +
493 describe(Obj
, Sec
) + ": " + toString(StrTabOrErr
.takeError()));
495 Expected
<typename
ELFT::SymRange
> SymsOrErr
= Obj
.symbols(*SymtabOrErr
);
497 return createError("unable to read symbols from the " + describe(Obj
, Sec
) +
498 ": " + toString(SymsOrErr
.takeError()));
500 return std::make_pair(*SymsOrErr
, *StrTabOrErr
);
503 template <class ELFT
>
504 Expected
<ArrayRef
<typename
ELFT::Versym
>>
505 ELFDumper
<ELFT
>::getVersionTable(const Elf_Shdr
&Sec
, ArrayRef
<Elf_Sym
> *SymTab
,
506 StringRef
*StrTab
) const {
507 assert((!SymTab
&& !StrTab
) || (SymTab
&& StrTab
));
508 if (uintptr_t(Obj
.base() + Sec
.sh_offset
) % sizeof(uint16_t) != 0)
509 return createError("the " + describe(Sec
) + " is misaligned");
511 Expected
<ArrayRef
<Elf_Versym
>> VersionsOrErr
=
512 Obj
.template getSectionContentsAsArray
<Elf_Versym
>(Sec
);
514 return createError("cannot read content of " + describe(Sec
) + ": " +
515 toString(VersionsOrErr
.takeError()));
517 Expected
<std::pair
<ArrayRef
<Elf_Sym
>, StringRef
>> SymTabOrErr
=
518 getLinkAsSymtab(Obj
, Sec
, SHT_DYNSYM
);
520 reportUniqueWarning(SymTabOrErr
.takeError());
521 return *VersionsOrErr
;
524 if (SymTabOrErr
->first
.size() != VersionsOrErr
->size())
525 reportUniqueWarning(describe(Sec
) + ": the number of entries (" +
526 Twine(VersionsOrErr
->size()) +
527 ") does not match the number of symbols (" +
528 Twine(SymTabOrErr
->first
.size()) +
529 ") in the symbol table with index " +
533 std::tie(*SymTab
, *StrTab
) = *SymTabOrErr
;
534 return *VersionsOrErr
;
537 template <class ELFT
>
538 Expected
<std::vector
<VerDef
>>
539 ELFDumper
<ELFT
>::getVersionDefinitions(const Elf_Shdr
&Sec
) const {
540 Expected
<StringRef
> StrTabOrErr
= getLinkAsStrtab(Obj
, Sec
);
542 return StrTabOrErr
.takeError();
544 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Sec
);
546 return createError("cannot read content of " + describe(Sec
) + ": " +
547 toString(ContentsOrErr
.takeError()));
549 const uint8_t *Start
= ContentsOrErr
->data();
550 const uint8_t *End
= Start
+ ContentsOrErr
->size();
552 auto ExtractNextAux
= [&](const uint8_t *&VerdauxBuf
,
553 unsigned VerDefNdx
) -> Expected
<VerdAux
> {
554 if (VerdauxBuf
+ sizeof(Elf_Verdaux
) > End
)
555 return createError("invalid " + describe(Sec
) + ": version definition " +
557 " refers to an auxiliary entry that goes past the end "
560 auto *Verdaux
= reinterpret_cast<const Elf_Verdaux
*>(VerdauxBuf
);
561 VerdauxBuf
+= Verdaux
->vda_next
;
564 Aux
.Offset
= VerdauxBuf
- Start
;
565 if (Verdaux
->vda_name
<= StrTabOrErr
->size())
566 Aux
.Name
= std::string(StrTabOrErr
->drop_front(Verdaux
->vda_name
));
568 Aux
.Name
= "<invalid vda_name: " + to_string(Verdaux
->vda_name
) + ">";
572 std::vector
<VerDef
> Ret
;
573 const uint8_t *VerdefBuf
= Start
;
574 for (unsigned I
= 1; I
<= /*VerDefsNum=*/Sec
.sh_info
; ++I
) {
575 if (VerdefBuf
+ sizeof(Elf_Verdef
) > End
)
576 return createError("invalid " + describe(Sec
) + ": version definition " +
577 Twine(I
) + " goes past the end of the section");
579 if (uintptr_t(VerdefBuf
) % sizeof(uint32_t) != 0)
581 "invalid " + describe(Sec
) +
582 ": found a misaligned version definition entry at offset 0x" +
583 Twine::utohexstr(VerdefBuf
- Start
));
585 unsigned Version
= *reinterpret_cast<const Elf_Half
*>(VerdefBuf
);
587 return createError("unable to dump " + describe(Sec
) + ": version " +
588 Twine(Version
) + " is not yet supported");
590 const Elf_Verdef
*D
= reinterpret_cast<const Elf_Verdef
*>(VerdefBuf
);
591 VerDef
&VD
= *Ret
.emplace(Ret
.end());
592 VD
.Offset
= VerdefBuf
- Start
;
593 VD
.Version
= D
->vd_version
;
594 VD
.Flags
= D
->vd_flags
;
597 VD
.Hash
= D
->vd_hash
;
599 const uint8_t *VerdauxBuf
= VerdefBuf
+ D
->vd_aux
;
600 for (unsigned J
= 0; J
< D
->vd_cnt
; ++J
) {
601 if (uintptr_t(VerdauxBuf
) % sizeof(uint32_t) != 0)
602 return createError("invalid " + describe(Sec
) +
603 ": found a misaligned auxiliary entry at offset 0x" +
604 Twine::utohexstr(VerdauxBuf
- Start
));
606 Expected
<VerdAux
> AuxOrErr
= ExtractNextAux(VerdauxBuf
, I
);
608 return AuxOrErr
.takeError();
611 VD
.Name
= AuxOrErr
->Name
;
613 VD
.AuxV
.push_back(*AuxOrErr
);
616 VerdefBuf
+= D
->vd_next
;
622 template <class ELFT
>
623 Expected
<std::vector
<VerNeed
>>
624 ELFDumper
<ELFT
>::getVersionDependencies(const Elf_Shdr
&Sec
) const {
626 Expected
<StringRef
> StrTabOrErr
= getLinkAsStrtab(Obj
, Sec
);
628 reportUniqueWarning(StrTabOrErr
.takeError());
630 StrTab
= *StrTabOrErr
;
632 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Sec
);
634 return createError("cannot read content of " + describe(Sec
) + ": " +
635 toString(ContentsOrErr
.takeError()));
637 const uint8_t *Start
= ContentsOrErr
->data();
638 const uint8_t *End
= Start
+ ContentsOrErr
->size();
639 const uint8_t *VerneedBuf
= Start
;
641 std::vector
<VerNeed
> Ret
;
642 for (unsigned I
= 1; I
<= /*VerneedNum=*/Sec
.sh_info
; ++I
) {
643 if (VerneedBuf
+ sizeof(Elf_Verdef
) > End
)
644 return createError("invalid " + describe(Sec
) + ": version dependency " +
645 Twine(I
) + " goes past the end of the section");
647 if (uintptr_t(VerneedBuf
) % sizeof(uint32_t) != 0)
649 "invalid " + describe(Sec
) +
650 ": found a misaligned version dependency entry at offset 0x" +
651 Twine::utohexstr(VerneedBuf
- Start
));
653 unsigned Version
= *reinterpret_cast<const Elf_Half
*>(VerneedBuf
);
655 return createError("unable to dump " + describe(Sec
) + ": version " +
656 Twine(Version
) + " is not yet supported");
658 const Elf_Verneed
*Verneed
=
659 reinterpret_cast<const Elf_Verneed
*>(VerneedBuf
);
661 VerNeed
&VN
= *Ret
.emplace(Ret
.end());
662 VN
.Version
= Verneed
->vn_version
;
663 VN
.Cnt
= Verneed
->vn_cnt
;
664 VN
.Offset
= VerneedBuf
- Start
;
666 if (Verneed
->vn_file
< StrTab
.size())
667 VN
.File
= std::string(StrTab
.drop_front(Verneed
->vn_file
));
669 VN
.File
= "<corrupt vn_file: " + to_string(Verneed
->vn_file
) + ">";
671 const uint8_t *VernauxBuf
= VerneedBuf
+ Verneed
->vn_aux
;
672 for (unsigned J
= 0; J
< Verneed
->vn_cnt
; ++J
) {
673 if (uintptr_t(VernauxBuf
) % sizeof(uint32_t) != 0)
674 return createError("invalid " + describe(Sec
) +
675 ": found a misaligned auxiliary entry at offset 0x" +
676 Twine::utohexstr(VernauxBuf
- Start
));
678 if (VernauxBuf
+ sizeof(Elf_Vernaux
) > End
)
680 "invalid " + describe(Sec
) + ": version dependency " + Twine(I
) +
681 " refers to an auxiliary entry that goes past the end "
684 const Elf_Vernaux
*Vernaux
=
685 reinterpret_cast<const Elf_Vernaux
*>(VernauxBuf
);
687 VernAux
&Aux
= *VN
.AuxV
.emplace(VN
.AuxV
.end());
688 Aux
.Hash
= Vernaux
->vna_hash
;
689 Aux
.Flags
= Vernaux
->vna_flags
;
690 Aux
.Other
= Vernaux
->vna_other
;
691 Aux
.Offset
= VernauxBuf
- Start
;
692 if (StrTab
.size() <= Vernaux
->vna_name
)
693 Aux
.Name
= "<corrupt>";
695 Aux
.Name
= std::string(StrTab
.drop_front(Vernaux
->vna_name
));
697 VernauxBuf
+= Vernaux
->vna_next
;
699 VerneedBuf
+= Verneed
->vn_next
;
704 template <class ELFT
>
705 void ELFDumper
<ELFT
>::printSymbolsHelper(bool IsDynamic
) const {
706 Optional
<StringRef
> StrTable
;
708 Elf_Sym_Range
Syms(nullptr, nullptr);
709 const Elf_Shdr
*SymtabSec
= IsDynamic
? DotDynsymSec
: DotSymtabSec
;
712 StrTable
= DynamicStringTable
;
713 Syms
= dynamic_symbols();
714 Entries
= Syms
.size();
715 } else if (DotSymtabSec
) {
716 if (Expected
<StringRef
> StrTableOrErr
=
717 Obj
.getStringTableForSymtab(*DotSymtabSec
))
718 StrTable
= *StrTableOrErr
;
721 "unable to get the string table for the SHT_SYMTAB section: " +
722 toString(StrTableOrErr
.takeError()));
724 if (Expected
<Elf_Sym_Range
> SymsOrErr
= Obj
.symbols(DotSymtabSec
))
728 "unable to read symbols from the SHT_SYMTAB section: " +
729 toString(SymsOrErr
.takeError()));
730 Entries
= DotSymtabSec
->getEntityCount();
732 if (Syms
.begin() == Syms
.end())
735 // The st_other field has 2 logical parts. The first two bits hold the symbol
736 // visibility (STV_*) and the remainder hold other platform-specific values.
737 bool NonVisibilityBitsUsed
= llvm::find_if(Syms
, [](const Elf_Sym
&S
) {
738 return S
.st_other
& ~0x3;
741 ELFDumperStyle
->printSymtabMessage(SymtabSec
, Entries
, NonVisibilityBitsUsed
);
742 for (const Elf_Sym
&Sym
: Syms
)
743 ELFDumperStyle
->printSymbol(Sym
, &Sym
- Syms
.begin(), StrTable
, IsDynamic
,
744 NonVisibilityBitsUsed
);
747 template <class ELFT
> class MipsGOTParser
;
749 template <typename ELFT
> class DumpStyle
{
751 TYPEDEF_ELF_TYPES(ELFT
)
753 DumpStyle(const ELFDumper
<ELFT
> &Dumper
)
754 : Obj(Dumper
.getElfObject().getELFFile()), ElfObj(Dumper
.getElfObject()),
756 FileName
= ElfObj
.getFileName();
759 virtual ~DumpStyle() = default;
761 virtual void printFileHeaders() = 0;
762 virtual void printGroupSections() = 0;
763 virtual void printRelocations() = 0;
764 virtual void printSectionHeaders() = 0;
765 virtual void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) = 0;
766 virtual void printHashSymbols() {}
767 virtual void printSectionDetails() {}
768 virtual void printDependentLibs() = 0;
769 virtual void printDynamic() {}
770 virtual void printDynamicRelocations() = 0;
771 virtual void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
772 bool NonVisibilityBitsUsed
) {}
773 virtual void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
774 Optional
<StringRef
> StrTable
, bool IsDynamic
,
775 bool NonVisibilityBitsUsed
) = 0;
776 virtual void printProgramHeaders(bool PrintProgramHeaders
,
777 cl::boolOrDefault PrintSectionMapping
) = 0;
778 virtual void printVersionSymbolSection(const Elf_Shdr
*Sec
) = 0;
779 virtual void printVersionDefinitionSection(const Elf_Shdr
*Sec
) = 0;
780 virtual void printVersionDependencySection(const Elf_Shdr
*Sec
) = 0;
781 virtual void printHashHistograms() = 0;
782 virtual void printCGProfile() = 0;
783 virtual void printAddrsig() = 0;
784 virtual void printNotes() = 0;
785 virtual void printELFLinkerOptions() = 0;
786 virtual void printStackSizes() = 0;
787 void printNonRelocatableStackSizes(std::function
<void()> PrintHeader
);
788 void printRelocatableStackSizes(std::function
<void()> PrintHeader
);
789 void printFunctionStackSize(uint64_t SymValue
,
790 Optional
<const Elf_Shdr
*> FunctionSec
,
791 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
,
793 void printStackSize(const Relocation
<ELFT
> &R
, const Elf_Shdr
&RelocSec
,
794 unsigned Ndx
, const Elf_Shdr
*SymTab
,
795 const Elf_Shdr
*FunctionSec
, const Elf_Shdr
&StackSizeSec
,
796 const RelocationResolver
&Resolver
, DataExtractor Data
);
797 virtual void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) = 0;
798 virtual void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
799 virtual void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) = 0;
800 virtual void printMipsABIFlags() = 0;
801 const ELFDumper
<ELFT
> &dumper() const { return Dumper
; }
802 void reportUniqueWarning(Error Err
) const;
803 void reportUniqueWarning(const Twine
&Msg
) const;
806 std::vector
<GroupSection
> getGroups();
808 void printDependentLibsHelper(
809 function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
810 function_ref
<void(StringRef
, uint64_t)> OnSectionEntry
);
812 virtual void printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
813 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) = 0;
814 virtual void printRelrReloc(const Elf_Relr
&R
) = 0;
815 virtual void printDynamicReloc(const Relocation
<ELFT
> &R
) = 0;
816 void forEachRelocationDo(
817 const Elf_Shdr
&Sec
, bool RawRelr
,
818 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
819 const Elf_Shdr
&, const Elf_Shdr
*)>
821 llvm::function_ref
<void(const Elf_Relr
&)> RelrFn
);
822 void printRelocationsHelper(const Elf_Shdr
&Sec
);
823 void printDynamicRelocationsHelper();
824 virtual void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
825 const DynRegionInfo
&Reg
){};
827 StringRef
getPrintableSectionName(const Elf_Shdr
&Sec
) const;
830 const ELFFile
<ELFT
> &Obj
;
831 const ELFObjectFile
<ELFT
> &ElfObj
;
834 const ELFDumper
<ELFT
> &Dumper
;
837 template <typename ELFT
> class GNUStyle
: public DumpStyle
<ELFT
> {
838 formatted_raw_ostream
&OS
;
841 TYPEDEF_ELF_TYPES(ELFT
)
843 GNUStyle(ScopedPrinter
&W
, const ELFDumper
<ELFT
> &Dumper
)
844 : DumpStyle
<ELFT
>(Dumper
),
845 OS(static_cast<formatted_raw_ostream
&>(W
.getOStream())) {
846 assert(&W
.getOStream() == &llvm::fouts());
849 void printFileHeaders() override
;
850 void printGroupSections() override
;
851 void printRelocations() override
;
852 void printSectionHeaders() override
;
853 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
854 void printHashSymbols() override
;
855 void printSectionDetails() override
;
856 void printDependentLibs() override
;
857 void printDynamic() override
;
858 void printDynamicRelocations() override
;
859 void printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Offset
,
860 bool NonVisibilityBitsUsed
) override
;
861 void printProgramHeaders(bool PrintProgramHeaders
,
862 cl::boolOrDefault PrintSectionMapping
) override
;
863 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
864 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
865 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
866 void printHashHistograms() override
;
867 void printCGProfile() override
;
868 void printAddrsig() override
;
869 void printNotes() override
;
870 void printELFLinkerOptions() override
;
871 void printStackSizes() override
;
872 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
873 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
874 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
875 void printMipsABIFlags() override
;
878 void printHashHistogram(const Elf_Hash
&HashTable
);
879 void printGnuHashHistogram(const Elf_GnuHash
&GnuHashTable
);
881 void printHashTableSymbols(const Elf_Hash
&HashTable
);
882 void printGnuHashTableSymbols(const Elf_GnuHash
&GnuHashTable
);
888 Field(StringRef S
, unsigned Col
) : Str(std::string(S
)), Column(Col
) {}
889 Field(unsigned Col
) : Column(Col
) {}
892 template <typename T
, typename TEnum
>
893 std::string
printEnum(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
) {
894 for (const EnumEntry
<TEnum
> &EnumItem
: EnumValues
)
895 if (EnumItem
.Value
== Value
)
896 return std::string(EnumItem
.AltName
);
897 return to_hexString(Value
, false);
900 template <typename T
, typename TEnum
>
901 std::string
printFlags(T Value
, ArrayRef
<EnumEntry
<TEnum
>> EnumValues
,
902 TEnum EnumMask1
= {}, TEnum EnumMask2
= {},
903 TEnum EnumMask3
= {}) {
905 for (const EnumEntry
<TEnum
> &Flag
: EnumValues
) {
910 if (Flag
.Value
& EnumMask1
)
911 EnumMask
= EnumMask1
;
912 else if (Flag
.Value
& EnumMask2
)
913 EnumMask
= EnumMask2
;
914 else if (Flag
.Value
& EnumMask3
)
915 EnumMask
= EnumMask3
;
916 bool IsEnum
= (Flag
.Value
& EnumMask
) != 0;
917 if ((!IsEnum
&& (Value
& Flag
.Value
) == Flag
.Value
) ||
918 (IsEnum
&& (Value
& EnumMask
) == Flag
.Value
)) {
927 formatted_raw_ostream
&printField(struct Field F
) {
929 OS
.PadToColumn(F
.Column
);
934 void printHashedSymbol(const Elf_Sym
*Sym
, unsigned SymIndex
,
935 StringRef StrTable
, uint32_t Bucket
);
936 void printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
937 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) override
;
938 void printRelrReloc(const Elf_Relr
&R
) override
;
940 void printRelRelaReloc(const Relocation
<ELFT
> &R
,
941 const RelSymbol
<ELFT
> &RelSym
);
942 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
943 Optional
<StringRef
> StrTable
, bool IsDynamic
,
944 bool NonVisibilityBitsUsed
) override
;
945 void printDynamicRelocHeader(unsigned Type
, StringRef Name
,
946 const DynRegionInfo
&Reg
) override
;
947 void printDynamicReloc(const Relocation
<ELFT
> &R
) override
;
949 std::string
getSymbolSectionNdx(const Elf_Sym
&Symbol
, unsigned SymIndex
);
950 void printProgramHeaders();
951 void printSectionMapping();
952 void printGNUVersionSectionProlog(const typename
ELFT::Shdr
&Sec
,
953 const Twine
&Label
, unsigned EntriesNum
);
956 template <class ELFT
>
957 void DumpStyle
<ELFT
>::reportUniqueWarning(Error Err
) const {
958 this->dumper().reportUniqueWarning(std::move(Err
));
961 template <class ELFT
>
962 void DumpStyle
<ELFT
>::reportUniqueWarning(const Twine
&Msg
) const {
963 this->dumper().reportUniqueWarning(Msg
);
966 template <typename ELFT
> class LLVMStyle
: public DumpStyle
<ELFT
> {
968 TYPEDEF_ELF_TYPES(ELFT
)
970 LLVMStyle(ScopedPrinter
&W
, const ELFDumper
<ELFT
> &Dumper
)
971 : DumpStyle
<ELFT
>(Dumper
), W(W
) {}
973 void printFileHeaders() override
;
974 void printGroupSections() override
;
975 void printRelocations() override
;
976 void printSectionHeaders() override
;
977 void printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) override
;
978 void printDependentLibs() override
;
979 void printDynamic() override
;
980 void printDynamicRelocations() override
;
981 void printProgramHeaders(bool PrintProgramHeaders
,
982 cl::boolOrDefault PrintSectionMapping
) override
;
983 void printVersionSymbolSection(const Elf_Shdr
*Sec
) override
;
984 void printVersionDefinitionSection(const Elf_Shdr
*Sec
) override
;
985 void printVersionDependencySection(const Elf_Shdr
*Sec
) override
;
986 void printHashHistograms() override
;
987 void printCGProfile() override
;
988 void printAddrsig() override
;
989 void printNotes() override
;
990 void printELFLinkerOptions() override
;
991 void printStackSizes() override
;
992 void printStackSizeEntry(uint64_t Size
, StringRef FuncName
) override
;
993 void printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) override
;
994 void printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) override
;
995 void printMipsABIFlags() override
;
998 void printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
999 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) override
;
1000 void printRelrReloc(const Elf_Relr
&R
) override
;
1001 void printDynamicReloc(const Relocation
<ELFT
> &R
) override
;
1003 void printRelRelaReloc(const Relocation
<ELFT
> &R
, StringRef SymbolName
);
1004 void printSymbols();
1005 void printDynamicSymbols();
1006 void printSymbolSection(const Elf_Sym
&Symbol
, unsigned SymIndex
);
1007 void printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
1008 Optional
<StringRef
> StrTable
, bool IsDynamic
,
1009 bool /*NonVisibilityBitsUsed*/) override
;
1010 void printProgramHeaders();
1011 void printSectionMapping() {}
1016 } // end anonymous namespace
1020 template <class ELFT
>
1021 static std::unique_ptr
<ObjDumper
> createELFDumper(const ELFObjectFile
<ELFT
> &Obj
,
1022 ScopedPrinter
&Writer
) {
1023 return std::make_unique
<ELFDumper
<ELFT
>>(Obj
, Writer
);
1026 std::unique_ptr
<ObjDumper
> createELFDumper(const object::ELFObjectFileBase
&Obj
,
1027 ScopedPrinter
&Writer
) {
1028 // Little-endian 32-bit
1029 if (const ELF32LEObjectFile
*ELFObj
= dyn_cast
<ELF32LEObjectFile
>(&Obj
))
1030 return createELFDumper(*ELFObj
, Writer
);
1032 // Big-endian 32-bit
1033 if (const ELF32BEObjectFile
*ELFObj
= dyn_cast
<ELF32BEObjectFile
>(&Obj
))
1034 return createELFDumper(*ELFObj
, Writer
);
1036 // Little-endian 64-bit
1037 if (const ELF64LEObjectFile
*ELFObj
= dyn_cast
<ELF64LEObjectFile
>(&Obj
))
1038 return createELFDumper(*ELFObj
, Writer
);
1040 // Big-endian 64-bit
1041 return createELFDumper(*cast
<ELF64BEObjectFile
>(&Obj
), Writer
);
1044 } // end namespace llvm
1046 template <class ELFT
> Error ELFDumper
<ELFT
>::LoadVersionMap() const {
1047 // If there is no dynamic symtab or version table, there is nothing to do.
1048 if (!DynSymRegion
|| !SymbolVersionSection
)
1049 return Error::success();
1051 // Has the VersionMap already been loaded?
1052 if (!VersionMap
.empty())
1053 return Error::success();
1055 // The first two version indexes are reserved.
1056 // Index 0 is LOCAL, index 1 is GLOBAL.
1057 VersionMap
.push_back(VersionEntry());
1058 VersionMap
.push_back(VersionEntry());
1060 auto InsertEntry
= [this](unsigned N
, StringRef Version
, bool IsVerdef
) {
1061 if (N
>= VersionMap
.size())
1062 VersionMap
.resize(N
+ 1);
1063 VersionMap
[N
] = {std::string(Version
), IsVerdef
};
1066 if (SymbolVersionDefSection
) {
1067 Expected
<std::vector
<VerDef
>> Defs
=
1068 this->getVersionDefinitions(*SymbolVersionDefSection
);
1070 return Defs
.takeError();
1071 for (const VerDef
&Def
: *Defs
)
1072 InsertEntry(Def
.Ndx
& ELF::VERSYM_VERSION
, Def
.Name
, true);
1075 if (SymbolVersionNeedSection
) {
1076 Expected
<std::vector
<VerNeed
>> Deps
=
1077 this->getVersionDependencies(*SymbolVersionNeedSection
);
1079 return Deps
.takeError();
1080 for (const VerNeed
&Dep
: *Deps
)
1081 for (const VernAux
&Aux
: Dep
.AuxV
)
1082 InsertEntry(Aux
.Other
& ELF::VERSYM_VERSION
, Aux
.Name
, false);
1085 return Error::success();
1088 template <typename ELFT
>
1089 Expected
<StringRef
> ELFDumper
<ELFT
>::getSymbolVersion(const Elf_Sym
&Sym
,
1090 bool &IsDefault
) const {
1091 // This is a dynamic symbol. Look in the GNU symbol version table.
1092 if (!SymbolVersionSection
) {
1093 // No version table.
1098 assert(DynSymRegion
&& "DynSymRegion has not been initialised");
1099 // Determine the position in the symbol table of this entry.
1100 size_t EntryIndex
= (reinterpret_cast<uintptr_t>(&Sym
) -
1101 reinterpret_cast<uintptr_t>(DynSymRegion
->Addr
)) /
1104 // Get the corresponding version index entry.
1105 if (Expected
<const Elf_Versym
*> EntryOrErr
=
1106 Obj
.template getEntry
<Elf_Versym
>(*SymbolVersionSection
, EntryIndex
))
1107 return this->getSymbolVersionByIndex((*EntryOrErr
)->vs_index
, IsDefault
);
1109 return EntryOrErr
.takeError();
1112 template <typename ELFT
>
1113 Expected
<RelSymbol
<ELFT
>>
1114 ELFDumper
<ELFT
>::getRelocationTarget(const Relocation
<ELFT
> &R
,
1115 const Elf_Shdr
*SymTab
) const {
1117 return RelSymbol
<ELFT
>(nullptr, "");
1119 Expected
<const Elf_Sym
*> SymOrErr
=
1120 Obj
.template getEntry
<Elf_Sym
>(*SymTab
, R
.Symbol
);
1122 return SymOrErr
.takeError();
1123 const Elf_Sym
*Sym
= *SymOrErr
;
1125 return RelSymbol
<ELFT
>(nullptr, "");
1127 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(*SymTab
);
1129 return StrTableOrErr
.takeError();
1131 const Elf_Sym
*FirstSym
=
1132 cantFail(Obj
.template getEntry
<Elf_Sym
>(*SymTab
, 0));
1133 std::string SymbolName
= getFullSymbolName(
1134 *Sym
, Sym
- FirstSym
, *StrTableOrErr
, SymTab
->sh_type
== SHT_DYNSYM
);
1135 return RelSymbol
<ELFT
>(Sym
, SymbolName
);
1138 static std::string
maybeDemangle(StringRef Name
) {
1139 return opts::Demangle
? demangle(std::string(Name
)) : Name
.str();
1142 template <typename ELFT
>
1143 std::string ELFDumper
<ELFT
>::getStaticSymbolName(uint32_t Index
) const {
1144 auto Warn
= [&](Error E
) -> std::string
{
1145 this->reportUniqueWarning("unable to read the name of symbol with index " +
1146 Twine(Index
) + ": " + toString(std::move(E
)));
1150 Expected
<const typename
ELFT::Sym
*> SymOrErr
=
1151 Obj
.getSymbol(DotSymtabSec
, Index
);
1153 return Warn(SymOrErr
.takeError());
1155 Expected
<StringRef
> StrTabOrErr
= Obj
.getStringTableForSymtab(*DotSymtabSec
);
1157 return Warn(StrTabOrErr
.takeError());
1159 Expected
<StringRef
> NameOrErr
= (*SymOrErr
)->getName(*StrTabOrErr
);
1161 return Warn(NameOrErr
.takeError());
1162 return maybeDemangle(*NameOrErr
);
1165 template <typename ELFT
>
1167 ELFDumper
<ELFT
>::getSymbolVersionByIndex(uint32_t SymbolVersionIndex
,
1168 bool &IsDefault
) const {
1169 size_t VersionIndex
= SymbolVersionIndex
& VERSYM_VERSION
;
1171 // Special markers for unversioned symbols.
1172 if (VersionIndex
== VER_NDX_LOCAL
|| VersionIndex
== VER_NDX_GLOBAL
) {
1177 // Lookup this symbol in the version table.
1178 if (Error E
= LoadVersionMap())
1179 return std::move(E
);
1180 if (VersionIndex
>= VersionMap
.size() || !VersionMap
[VersionIndex
])
1181 return createError("SHT_GNU_versym section refers to a version index " +
1182 Twine(VersionIndex
) + " which is missing");
1184 const VersionEntry
&Entry
= *VersionMap
[VersionIndex
];
1186 IsDefault
= !(SymbolVersionIndex
& VERSYM_HIDDEN
);
1189 return Entry
.Name
.c_str();
1192 template <typename ELFT
>
1193 std::string ELFDumper
<ELFT
>::getFullSymbolName(const Elf_Sym
&Symbol
,
1195 Optional
<StringRef
> StrTable
,
1196 bool IsDynamic
) const {
1200 std::string SymbolName
;
1201 if (Expected
<StringRef
> NameOrErr
= Symbol
.getName(*StrTable
)) {
1202 SymbolName
= maybeDemangle(*NameOrErr
);
1204 reportUniqueWarning(NameOrErr
.takeError());
1208 if (SymbolName
.empty() && Symbol
.getType() == ELF::STT_SECTION
) {
1209 Expected
<unsigned> SectionIndex
= getSymbolSectionIndex(Symbol
, SymIndex
);
1210 if (!SectionIndex
) {
1211 reportUniqueWarning(SectionIndex
.takeError());
1214 Expected
<StringRef
> NameOrErr
= getSymbolSectionName(Symbol
, *SectionIndex
);
1216 reportUniqueWarning(NameOrErr
.takeError());
1217 return ("<section " + Twine(*SectionIndex
) + ">").str();
1219 return std::string(*NameOrErr
);
1226 Expected
<StringRef
> VersionOrErr
= getSymbolVersion(Symbol
, IsDefault
);
1227 if (!VersionOrErr
) {
1228 reportUniqueWarning(VersionOrErr
.takeError());
1229 return SymbolName
+ "@<corrupt>";
1232 if (!VersionOrErr
->empty()) {
1233 SymbolName
+= (IsDefault
? "@@" : "@");
1234 SymbolName
+= *VersionOrErr
;
1239 template <typename ELFT
>
1241 ELFDumper
<ELFT
>::getSymbolSectionIndex(const Elf_Sym
&Symbol
,
1242 unsigned SymIndex
) const {
1243 unsigned Ndx
= Symbol
.st_shndx
;
1244 if (Ndx
== SHN_XINDEX
)
1245 return object::getExtendedSymbolTableIndex
<ELFT
>(Symbol
, SymIndex
,
1247 if (Ndx
!= SHN_UNDEF
&& Ndx
< SHN_LORESERVE
)
1250 auto CreateErr
= [&](const Twine
&Name
, Optional
<unsigned> Offset
= None
) {
1253 Desc
= (Name
+ "+0x" + Twine::utohexstr(*Offset
)).str();
1257 "unable to get section index for symbol with st_shndx = 0x" +
1258 Twine::utohexstr(Ndx
) + " (" + Desc
+ ")");
1261 if (Ndx
>= ELF::SHN_LOPROC
&& Ndx
<= ELF::SHN_HIPROC
)
1262 return CreateErr("SHN_LOPROC", Ndx
- ELF::SHN_LOPROC
);
1263 if (Ndx
>= ELF::SHN_LOOS
&& Ndx
<= ELF::SHN_HIOS
)
1264 return CreateErr("SHN_LOOS", Ndx
- ELF::SHN_LOOS
);
1265 if (Ndx
== ELF::SHN_UNDEF
)
1266 return CreateErr("SHN_UNDEF");
1267 if (Ndx
== ELF::SHN_ABS
)
1268 return CreateErr("SHN_ABS");
1269 if (Ndx
== ELF::SHN_COMMON
)
1270 return CreateErr("SHN_COMMON");
1271 return CreateErr("SHN_LORESERVE", Ndx
- SHN_LORESERVE
);
1274 template <typename ELFT
>
1276 ELFDumper
<ELFT
>::getSymbolSectionName(const Elf_Sym
&Symbol
,
1277 unsigned SectionIndex
) const {
1278 Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(SectionIndex
);
1280 return SecOrErr
.takeError();
1281 return Obj
.getSectionName(**SecOrErr
);
1284 template <class ELFO
>
1285 static const typename
ELFO::Elf_Shdr
*
1286 findNotEmptySectionByAddress(const ELFO
&Obj
, StringRef FileName
,
1288 for (const typename
ELFO::Elf_Shdr
&Shdr
: cantFail(Obj
.sections()))
1289 if (Shdr
.sh_addr
== Addr
&& Shdr
.sh_size
> 0)
1294 static const EnumEntry
<unsigned> ElfClass
[] = {
1295 {"None", "none", ELF::ELFCLASSNONE
},
1296 {"32-bit", "ELF32", ELF::ELFCLASS32
},
1297 {"64-bit", "ELF64", ELF::ELFCLASS64
},
1300 static const EnumEntry
<unsigned> ElfDataEncoding
[] = {
1301 {"None", "none", ELF::ELFDATANONE
},
1302 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB
},
1303 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB
},
1306 static const EnumEntry
<unsigned> ElfObjectFileType
[] = {
1307 {"None", "NONE (none)", ELF::ET_NONE
},
1308 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL
},
1309 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC
},
1310 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN
},
1311 {"Core", "CORE (Core file)", ELF::ET_CORE
},
1314 static const EnumEntry
<unsigned> ElfOSABI
[] = {
1315 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE
},
1316 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX
},
1317 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD
},
1318 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX
},
1319 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD
},
1320 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS
},
1321 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX
},
1322 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX
},
1323 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD
},
1324 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64
},
1325 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO
},
1326 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD
},
1327 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS
},
1328 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK
},
1329 {"AROS", "AROS", ELF::ELFOSABI_AROS
},
1330 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS
},
1331 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI
},
1332 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE
}
1335 static const EnumEntry
<unsigned> AMDGPUElfOSABI
[] = {
1336 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA
},
1337 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL
},
1338 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D
}
1341 static const EnumEntry
<unsigned> ARMElfOSABI
[] = {
1342 {"ARM", "ARM", ELF::ELFOSABI_ARM
}
1345 static const EnumEntry
<unsigned> C6000ElfOSABI
[] = {
1346 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI
},
1347 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX
}
1350 static const EnumEntry
<unsigned> ElfMachineType
[] = {
1351 ENUM_ENT(EM_NONE
, "None"),
1352 ENUM_ENT(EM_M32
, "WE32100"),
1353 ENUM_ENT(EM_SPARC
, "Sparc"),
1354 ENUM_ENT(EM_386
, "Intel 80386"),
1355 ENUM_ENT(EM_68K
, "MC68000"),
1356 ENUM_ENT(EM_88K
, "MC88000"),
1357 ENUM_ENT(EM_IAMCU
, "EM_IAMCU"),
1358 ENUM_ENT(EM_860
, "Intel 80860"),
1359 ENUM_ENT(EM_MIPS
, "MIPS R3000"),
1360 ENUM_ENT(EM_S370
, "IBM System/370"),
1361 ENUM_ENT(EM_MIPS_RS3_LE
, "MIPS R3000 little-endian"),
1362 ENUM_ENT(EM_PARISC
, "HPPA"),
1363 ENUM_ENT(EM_VPP500
, "Fujitsu VPP500"),
1364 ENUM_ENT(EM_SPARC32PLUS
, "Sparc v8+"),
1365 ENUM_ENT(EM_960
, "Intel 80960"),
1366 ENUM_ENT(EM_PPC
, "PowerPC"),
1367 ENUM_ENT(EM_PPC64
, "PowerPC64"),
1368 ENUM_ENT(EM_S390
, "IBM S/390"),
1369 ENUM_ENT(EM_SPU
, "SPU"),
1370 ENUM_ENT(EM_V800
, "NEC V800 series"),
1371 ENUM_ENT(EM_FR20
, "Fujistsu FR20"),
1372 ENUM_ENT(EM_RH32
, "TRW RH-32"),
1373 ENUM_ENT(EM_RCE
, "Motorola RCE"),
1374 ENUM_ENT(EM_ARM
, "ARM"),
1375 ENUM_ENT(EM_ALPHA
, "EM_ALPHA"),
1376 ENUM_ENT(EM_SH
, "Hitachi SH"),
1377 ENUM_ENT(EM_SPARCV9
, "Sparc v9"),
1378 ENUM_ENT(EM_TRICORE
, "Siemens Tricore"),
1379 ENUM_ENT(EM_ARC
, "ARC"),
1380 ENUM_ENT(EM_H8_300
, "Hitachi H8/300"),
1381 ENUM_ENT(EM_H8_300H
, "Hitachi H8/300H"),
1382 ENUM_ENT(EM_H8S
, "Hitachi H8S"),
1383 ENUM_ENT(EM_H8_500
, "Hitachi H8/500"),
1384 ENUM_ENT(EM_IA_64
, "Intel IA-64"),
1385 ENUM_ENT(EM_MIPS_X
, "Stanford MIPS-X"),
1386 ENUM_ENT(EM_COLDFIRE
, "Motorola Coldfire"),
1387 ENUM_ENT(EM_68HC12
, "Motorola MC68HC12 Microcontroller"),
1388 ENUM_ENT(EM_MMA
, "Fujitsu Multimedia Accelerator"),
1389 ENUM_ENT(EM_PCP
, "Siemens PCP"),
1390 ENUM_ENT(EM_NCPU
, "Sony nCPU embedded RISC processor"),
1391 ENUM_ENT(EM_NDR1
, "Denso NDR1 microprocesspr"),
1392 ENUM_ENT(EM_STARCORE
, "Motorola Star*Core processor"),
1393 ENUM_ENT(EM_ME16
, "Toyota ME16 processor"),
1394 ENUM_ENT(EM_ST100
, "STMicroelectronics ST100 processor"),
1395 ENUM_ENT(EM_TINYJ
, "Advanced Logic Corp. TinyJ embedded processor"),
1396 ENUM_ENT(EM_X86_64
, "Advanced Micro Devices X86-64"),
1397 ENUM_ENT(EM_PDSP
, "Sony DSP processor"),
1398 ENUM_ENT(EM_PDP10
, "Digital Equipment Corp. PDP-10"),
1399 ENUM_ENT(EM_PDP11
, "Digital Equipment Corp. PDP-11"),
1400 ENUM_ENT(EM_FX66
, "Siemens FX66 microcontroller"),
1401 ENUM_ENT(EM_ST9PLUS
, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1402 ENUM_ENT(EM_ST7
, "STMicroelectronics ST7 8-bit microcontroller"),
1403 ENUM_ENT(EM_68HC16
, "Motorola MC68HC16 Microcontroller"),
1404 ENUM_ENT(EM_68HC11
, "Motorola MC68HC11 Microcontroller"),
1405 ENUM_ENT(EM_68HC08
, "Motorola MC68HC08 Microcontroller"),
1406 ENUM_ENT(EM_68HC05
, "Motorola MC68HC05 Microcontroller"),
1407 ENUM_ENT(EM_SVX
, "Silicon Graphics SVx"),
1408 ENUM_ENT(EM_ST19
, "STMicroelectronics ST19 8-bit microcontroller"),
1409 ENUM_ENT(EM_VAX
, "Digital VAX"),
1410 ENUM_ENT(EM_CRIS
, "Axis Communications 32-bit embedded processor"),
1411 ENUM_ENT(EM_JAVELIN
, "Infineon Technologies 32-bit embedded cpu"),
1412 ENUM_ENT(EM_FIREPATH
, "Element 14 64-bit DSP processor"),
1413 ENUM_ENT(EM_ZSP
, "LSI Logic's 16-bit DSP processor"),
1414 ENUM_ENT(EM_MMIX
, "Donald Knuth's educational 64-bit processor"),
1415 ENUM_ENT(EM_HUANY
, "Harvard Universitys's machine-independent object format"),
1416 ENUM_ENT(EM_PRISM
, "Vitesse Prism"),
1417 ENUM_ENT(EM_AVR
, "Atmel AVR 8-bit microcontroller"),
1418 ENUM_ENT(EM_FR30
, "Fujitsu FR30"),
1419 ENUM_ENT(EM_D10V
, "Mitsubishi D10V"),
1420 ENUM_ENT(EM_D30V
, "Mitsubishi D30V"),
1421 ENUM_ENT(EM_V850
, "NEC v850"),
1422 ENUM_ENT(EM_M32R
, "Renesas M32R (formerly Mitsubishi M32r)"),
1423 ENUM_ENT(EM_MN10300
, "Matsushita MN10300"),
1424 ENUM_ENT(EM_MN10200
, "Matsushita MN10200"),
1425 ENUM_ENT(EM_PJ
, "picoJava"),
1426 ENUM_ENT(EM_OPENRISC
, "OpenRISC 32-bit embedded processor"),
1427 ENUM_ENT(EM_ARC_COMPACT
, "EM_ARC_COMPACT"),
1428 ENUM_ENT(EM_XTENSA
, "Tensilica Xtensa Processor"),
1429 ENUM_ENT(EM_VIDEOCORE
, "Alphamosaic VideoCore processor"),
1430 ENUM_ENT(EM_TMM_GPP
, "Thompson Multimedia General Purpose Processor"),
1431 ENUM_ENT(EM_NS32K
, "National Semiconductor 32000 series"),
1432 ENUM_ENT(EM_TPC
, "Tenor Network TPC processor"),
1433 ENUM_ENT(EM_SNP1K
, "EM_SNP1K"),
1434 ENUM_ENT(EM_ST200
, "STMicroelectronics ST200 microcontroller"),
1435 ENUM_ENT(EM_IP2K
, "Ubicom IP2xxx 8-bit microcontrollers"),
1436 ENUM_ENT(EM_MAX
, "MAX Processor"),
1437 ENUM_ENT(EM_CR
, "National Semiconductor CompactRISC"),
1438 ENUM_ENT(EM_F2MC16
, "Fujitsu F2MC16"),
1439 ENUM_ENT(EM_MSP430
, "Texas Instruments msp430 microcontroller"),
1440 ENUM_ENT(EM_BLACKFIN
, "Analog Devices Blackfin"),
1441 ENUM_ENT(EM_SE_C33
, "S1C33 Family of Seiko Epson processors"),
1442 ENUM_ENT(EM_SEP
, "Sharp embedded microprocessor"),
1443 ENUM_ENT(EM_ARCA
, "Arca RISC microprocessor"),
1444 ENUM_ENT(EM_UNICORE
, "Unicore"),
1445 ENUM_ENT(EM_EXCESS
, "eXcess 16/32/64-bit configurable embedded CPU"),
1446 ENUM_ENT(EM_DXP
, "Icera Semiconductor Inc. Deep Execution Processor"),
1447 ENUM_ENT(EM_ALTERA_NIOS2
, "Altera Nios"),
1448 ENUM_ENT(EM_CRX
, "National Semiconductor CRX microprocessor"),
1449 ENUM_ENT(EM_XGATE
, "Motorola XGATE embedded processor"),
1450 ENUM_ENT(EM_C166
, "Infineon Technologies xc16x"),
1451 ENUM_ENT(EM_M16C
, "Renesas M16C"),
1452 ENUM_ENT(EM_DSPIC30F
, "Microchip Technology dsPIC30F Digital Signal Controller"),
1453 ENUM_ENT(EM_CE
, "Freescale Communication Engine RISC core"),
1454 ENUM_ENT(EM_M32C
, "Renesas M32C"),
1455 ENUM_ENT(EM_TSK3000
, "Altium TSK3000 core"),
1456 ENUM_ENT(EM_RS08
, "Freescale RS08 embedded processor"),
1457 ENUM_ENT(EM_SHARC
, "EM_SHARC"),
1458 ENUM_ENT(EM_ECOG2
, "Cyan Technology eCOG2 microprocessor"),
1459 ENUM_ENT(EM_SCORE7
, "SUNPLUS S+Core"),
1460 ENUM_ENT(EM_DSP24
, "New Japan Radio (NJR) 24-bit DSP Processor"),
1461 ENUM_ENT(EM_VIDEOCORE3
, "Broadcom VideoCore III processor"),
1462 ENUM_ENT(EM_LATTICEMICO32
, "Lattice Mico32"),
1463 ENUM_ENT(EM_SE_C17
, "Seiko Epson C17 family"),
1464 ENUM_ENT(EM_TI_C6000
, "Texas Instruments TMS320C6000 DSP family"),
1465 ENUM_ENT(EM_TI_C2000
, "Texas Instruments TMS320C2000 DSP family"),
1466 ENUM_ENT(EM_TI_C5500
, "Texas Instruments TMS320C55x DSP family"),
1467 ENUM_ENT(EM_MMDSP_PLUS
, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1468 ENUM_ENT(EM_CYPRESS_M8C
, "Cypress M8C microprocessor"),
1469 ENUM_ENT(EM_R32C
, "Renesas R32C series microprocessors"),
1470 ENUM_ENT(EM_TRIMEDIA
, "NXP Semiconductors TriMedia architecture family"),
1471 ENUM_ENT(EM_HEXAGON
, "Qualcomm Hexagon"),
1472 ENUM_ENT(EM_8051
, "Intel 8051 and variants"),
1473 ENUM_ENT(EM_STXP7X
, "STMicroelectronics STxP7x family"),
1474 ENUM_ENT(EM_NDS32
, "Andes Technology compact code size embedded RISC processor family"),
1475 ENUM_ENT(EM_ECOG1
, "Cyan Technology eCOG1 microprocessor"),
1476 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1477 // an identical number to EM_ECOG1.
1478 ENUM_ENT(EM_ECOG1X
, "Cyan Technology eCOG1X family"),
1479 ENUM_ENT(EM_MAXQ30
, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1480 ENUM_ENT(EM_XIMO16
, "New Japan Radio (NJR) 16-bit DSP Processor"),
1481 ENUM_ENT(EM_MANIK
, "M2000 Reconfigurable RISC Microprocessor"),
1482 ENUM_ENT(EM_CRAYNV2
, "Cray Inc. NV2 vector architecture"),
1483 ENUM_ENT(EM_RX
, "Renesas RX"),
1484 ENUM_ENT(EM_METAG
, "Imagination Technologies Meta processor architecture"),
1485 ENUM_ENT(EM_MCST_ELBRUS
, "MCST Elbrus general purpose hardware architecture"),
1486 ENUM_ENT(EM_ECOG16
, "Cyan Technology eCOG16 family"),
1487 ENUM_ENT(EM_CR16
, "Xilinx MicroBlaze"),
1488 ENUM_ENT(EM_ETPU
, "Freescale Extended Time Processing Unit"),
1489 ENUM_ENT(EM_SLE9X
, "Infineon Technologies SLE9X core"),
1490 ENUM_ENT(EM_L10M
, "EM_L10M"),
1491 ENUM_ENT(EM_K10M
, "EM_K10M"),
1492 ENUM_ENT(EM_AARCH64
, "AArch64"),
1493 ENUM_ENT(EM_AVR32
, "Atmel Corporation 32-bit microprocessor family"),
1494 ENUM_ENT(EM_STM8
, "STMicroeletronics STM8 8-bit microcontroller"),
1495 ENUM_ENT(EM_TILE64
, "Tilera TILE64 multicore architecture family"),
1496 ENUM_ENT(EM_TILEPRO
, "Tilera TILEPro multicore architecture family"),
1497 ENUM_ENT(EM_CUDA
, "NVIDIA CUDA architecture"),
1498 ENUM_ENT(EM_TILEGX
, "Tilera TILE-Gx multicore architecture family"),
1499 ENUM_ENT(EM_CLOUDSHIELD
, "EM_CLOUDSHIELD"),
1500 ENUM_ENT(EM_COREA_1ST
, "EM_COREA_1ST"),
1501 ENUM_ENT(EM_COREA_2ND
, "EM_COREA_2ND"),
1502 ENUM_ENT(EM_ARC_COMPACT2
, "EM_ARC_COMPACT2"),
1503 ENUM_ENT(EM_OPEN8
, "EM_OPEN8"),
1504 ENUM_ENT(EM_RL78
, "Renesas RL78"),
1505 ENUM_ENT(EM_VIDEOCORE5
, "Broadcom VideoCore V processor"),
1506 ENUM_ENT(EM_78KOR
, "EM_78KOR"),
1507 ENUM_ENT(EM_56800EX
, "EM_56800EX"),
1508 ENUM_ENT(EM_AMDGPU
, "EM_AMDGPU"),
1509 ENUM_ENT(EM_RISCV
, "RISC-V"),
1510 ENUM_ENT(EM_LANAI
, "EM_LANAI"),
1511 ENUM_ENT(EM_BPF
, "EM_BPF"),
1512 ENUM_ENT(EM_VE
, "NEC SX-Aurora Vector Engine"),
1515 static const EnumEntry
<unsigned> ElfSymbolBindings
[] = {
1516 {"Local", "LOCAL", ELF::STB_LOCAL
},
1517 {"Global", "GLOBAL", ELF::STB_GLOBAL
},
1518 {"Weak", "WEAK", ELF::STB_WEAK
},
1519 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE
}};
1521 static const EnumEntry
<unsigned> ElfSymbolVisibilities
[] = {
1522 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT
},
1523 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL
},
1524 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN
},
1525 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED
}};
1527 static const EnumEntry
<unsigned> AMDGPUSymbolTypes
[] = {
1528 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL
}
1531 static const char *getGroupType(uint32_t Flag
) {
1532 if (Flag
& ELF::GRP_COMDAT
)
1538 static const EnumEntry
<unsigned> ElfSectionFlags
[] = {
1539 ENUM_ENT(SHF_WRITE
, "W"),
1540 ENUM_ENT(SHF_ALLOC
, "A"),
1541 ENUM_ENT(SHF_EXECINSTR
, "X"),
1542 ENUM_ENT(SHF_MERGE
, "M"),
1543 ENUM_ENT(SHF_STRINGS
, "S"),
1544 ENUM_ENT(SHF_INFO_LINK
, "I"),
1545 ENUM_ENT(SHF_LINK_ORDER
, "L"),
1546 ENUM_ENT(SHF_OS_NONCONFORMING
, "O"),
1547 ENUM_ENT(SHF_GROUP
, "G"),
1548 ENUM_ENT(SHF_TLS
, "T"),
1549 ENUM_ENT(SHF_COMPRESSED
, "C"),
1550 ENUM_ENT(SHF_EXCLUDE
, "E"),
1553 static const EnumEntry
<unsigned> ElfXCoreSectionFlags
[] = {
1554 ENUM_ENT(XCORE_SHF_CP_SECTION
, ""),
1555 ENUM_ENT(XCORE_SHF_DP_SECTION
, "")
1558 static const EnumEntry
<unsigned> ElfARMSectionFlags
[] = {
1559 ENUM_ENT(SHF_ARM_PURECODE
, "y")
1562 static const EnumEntry
<unsigned> ElfHexagonSectionFlags
[] = {
1563 ENUM_ENT(SHF_HEX_GPREL
, "")
1566 static const EnumEntry
<unsigned> ElfMipsSectionFlags
[] = {
1567 ENUM_ENT(SHF_MIPS_NODUPES
, ""),
1568 ENUM_ENT(SHF_MIPS_NAMES
, ""),
1569 ENUM_ENT(SHF_MIPS_LOCAL
, ""),
1570 ENUM_ENT(SHF_MIPS_NOSTRIP
, ""),
1571 ENUM_ENT(SHF_MIPS_GPREL
, ""),
1572 ENUM_ENT(SHF_MIPS_MERGE
, ""),
1573 ENUM_ENT(SHF_MIPS_ADDR
, ""),
1574 ENUM_ENT(SHF_MIPS_STRING
, "")
1577 static const EnumEntry
<unsigned> ElfX86_64SectionFlags
[] = {
1578 ENUM_ENT(SHF_X86_64_LARGE
, "l")
1581 static std::vector
<EnumEntry
<unsigned>>
1582 getSectionFlagsForTarget(unsigned EMachine
) {
1583 std::vector
<EnumEntry
<unsigned>> Ret(std::begin(ElfSectionFlags
),
1584 std::end(ElfSectionFlags
));
1587 Ret
.insert(Ret
.end(), std::begin(ElfARMSectionFlags
),
1588 std::end(ElfARMSectionFlags
));
1591 Ret
.insert(Ret
.end(), std::begin(ElfHexagonSectionFlags
),
1592 std::end(ElfHexagonSectionFlags
));
1595 Ret
.insert(Ret
.end(), std::begin(ElfMipsSectionFlags
),
1596 std::end(ElfMipsSectionFlags
));
1599 Ret
.insert(Ret
.end(), std::begin(ElfX86_64SectionFlags
),
1600 std::end(ElfX86_64SectionFlags
));
1603 Ret
.insert(Ret
.end(), std::begin(ElfXCoreSectionFlags
),
1604 std::end(ElfXCoreSectionFlags
));
1612 static std::string
getGNUFlags(unsigned EMachine
, uint64_t Flags
) {
1613 // Here we are trying to build the flags string in the same way as GNU does.
1614 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1615 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1616 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1617 // "p". It only will print "E" when no other processor flag is set.
1619 bool HasUnknownFlag
= false;
1620 bool HasOSFlag
= false;
1621 bool HasProcFlag
= false;
1622 std::vector
<EnumEntry
<unsigned>> FlagsList
=
1623 getSectionFlagsForTarget(EMachine
);
1625 // Take the least significant bit as a flag.
1626 uint64_t Flag
= Flags
& -Flags
;
1629 // Find the flag in the known flags list.
1630 auto I
= llvm::find_if(FlagsList
, [=](const EnumEntry
<unsigned> &E
) {
1631 // Flags with empty names are not printed in GNU style output.
1632 return E
.Value
== Flag
&& !E
.AltName
.empty();
1634 if (I
!= FlagsList
.end()) {
1639 // If we did not find a matching regular flag, then we deal with an OS
1640 // specific flag, processor specific flag or an unknown flag.
1641 if (Flag
& ELF::SHF_MASKOS
) {
1643 Flags
&= ~ELF::SHF_MASKOS
;
1644 } else if (Flag
& ELF::SHF_MASKPROC
) {
1646 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1647 // bit if set so that it doesn't also get printed.
1648 Flags
&= ~ELF::SHF_MASKPROC
;
1650 HasUnknownFlag
= true;
1654 // "o", "p" and "x" are printed last.
1664 static StringRef
segmentTypeToString(unsigned Arch
, unsigned Type
) {
1665 // Check potentially overlapped processor-specific program header type.
1668 switch (Type
) { LLVM_READOBJ_ENUM_CASE(ELF
, PT_ARM_EXIDX
); }
1671 case ELF::EM_MIPS_RS3_LE
:
1673 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_REGINFO
);
1674 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_RTPROC
);
1675 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_OPTIONS
);
1676 LLVM_READOBJ_ENUM_CASE(ELF
, PT_MIPS_ABIFLAGS
);
1682 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NULL
);
1683 LLVM_READOBJ_ENUM_CASE(ELF
, PT_LOAD
);
1684 LLVM_READOBJ_ENUM_CASE(ELF
, PT_DYNAMIC
);
1685 LLVM_READOBJ_ENUM_CASE(ELF
, PT_INTERP
);
1686 LLVM_READOBJ_ENUM_CASE(ELF
, PT_NOTE
);
1687 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SHLIB
);
1688 LLVM_READOBJ_ENUM_CASE(ELF
, PT_PHDR
);
1689 LLVM_READOBJ_ENUM_CASE(ELF
, PT_TLS
);
1691 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_EH_FRAME
);
1692 LLVM_READOBJ_ENUM_CASE(ELF
, PT_SUNW_UNWIND
);
1694 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_STACK
);
1695 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_RELRO
);
1696 LLVM_READOBJ_ENUM_CASE(ELF
, PT_GNU_PROPERTY
);
1698 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_RANDOMIZE
);
1699 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_WXNEEDED
);
1700 LLVM_READOBJ_ENUM_CASE(ELF
, PT_OPENBSD_BOOTDATA
);
1706 static std::string
getGNUPtType(unsigned Arch
, unsigned Type
) {
1707 StringRef Seg
= segmentTypeToString(Arch
, Type
);
1709 return std::string("<unknown>: ") + to_string(format_hex(Type
, 1));
1711 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1712 if (Seg
.startswith("PT_ARM_"))
1713 return Seg
.drop_front(7).str();
1715 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1716 if (Seg
.startswith("PT_MIPS_"))
1717 return Seg
.drop_front(8).str();
1719 // E.g. "PT_LOAD" -> "LOAD".
1720 assert(Seg
.startswith("PT_"));
1721 return Seg
.drop_front(3).str();
1724 static const EnumEntry
<unsigned> ElfSegmentFlags
[] = {
1725 LLVM_READOBJ_ENUM_ENT(ELF
, PF_X
),
1726 LLVM_READOBJ_ENUM_ENT(ELF
, PF_W
),
1727 LLVM_READOBJ_ENUM_ENT(ELF
, PF_R
)
1730 static const EnumEntry
<unsigned> ElfHeaderMipsFlags
[] = {
1731 ENUM_ENT(EF_MIPS_NOREORDER
, "noreorder"),
1732 ENUM_ENT(EF_MIPS_PIC
, "pic"),
1733 ENUM_ENT(EF_MIPS_CPIC
, "cpic"),
1734 ENUM_ENT(EF_MIPS_ABI2
, "abi2"),
1735 ENUM_ENT(EF_MIPS_32BITMODE
, "32bitmode"),
1736 ENUM_ENT(EF_MIPS_FP64
, "fp64"),
1737 ENUM_ENT(EF_MIPS_NAN2008
, "nan2008"),
1738 ENUM_ENT(EF_MIPS_ABI_O32
, "o32"),
1739 ENUM_ENT(EF_MIPS_ABI_O64
, "o64"),
1740 ENUM_ENT(EF_MIPS_ABI_EABI32
, "eabi32"),
1741 ENUM_ENT(EF_MIPS_ABI_EABI64
, "eabi64"),
1742 ENUM_ENT(EF_MIPS_MACH_3900
, "3900"),
1743 ENUM_ENT(EF_MIPS_MACH_4010
, "4010"),
1744 ENUM_ENT(EF_MIPS_MACH_4100
, "4100"),
1745 ENUM_ENT(EF_MIPS_MACH_4650
, "4650"),
1746 ENUM_ENT(EF_MIPS_MACH_4120
, "4120"),
1747 ENUM_ENT(EF_MIPS_MACH_4111
, "4111"),
1748 ENUM_ENT(EF_MIPS_MACH_SB1
, "sb1"),
1749 ENUM_ENT(EF_MIPS_MACH_OCTEON
, "octeon"),
1750 ENUM_ENT(EF_MIPS_MACH_XLR
, "xlr"),
1751 ENUM_ENT(EF_MIPS_MACH_OCTEON2
, "octeon2"),
1752 ENUM_ENT(EF_MIPS_MACH_OCTEON3
, "octeon3"),
1753 ENUM_ENT(EF_MIPS_MACH_5400
, "5400"),
1754 ENUM_ENT(EF_MIPS_MACH_5900
, "5900"),
1755 ENUM_ENT(EF_MIPS_MACH_5500
, "5500"),
1756 ENUM_ENT(EF_MIPS_MACH_9000
, "9000"),
1757 ENUM_ENT(EF_MIPS_MACH_LS2E
, "loongson-2e"),
1758 ENUM_ENT(EF_MIPS_MACH_LS2F
, "loongson-2f"),
1759 ENUM_ENT(EF_MIPS_MACH_LS3A
, "loongson-3a"),
1760 ENUM_ENT(EF_MIPS_MICROMIPS
, "micromips"),
1761 ENUM_ENT(EF_MIPS_ARCH_ASE_M16
, "mips16"),
1762 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX
, "mdmx"),
1763 ENUM_ENT(EF_MIPS_ARCH_1
, "mips1"),
1764 ENUM_ENT(EF_MIPS_ARCH_2
, "mips2"),
1765 ENUM_ENT(EF_MIPS_ARCH_3
, "mips3"),
1766 ENUM_ENT(EF_MIPS_ARCH_4
, "mips4"),
1767 ENUM_ENT(EF_MIPS_ARCH_5
, "mips5"),
1768 ENUM_ENT(EF_MIPS_ARCH_32
, "mips32"),
1769 ENUM_ENT(EF_MIPS_ARCH_64
, "mips64"),
1770 ENUM_ENT(EF_MIPS_ARCH_32R2
, "mips32r2"),
1771 ENUM_ENT(EF_MIPS_ARCH_64R2
, "mips64r2"),
1772 ENUM_ENT(EF_MIPS_ARCH_32R6
, "mips32r6"),
1773 ENUM_ENT(EF_MIPS_ARCH_64R6
, "mips64r6")
1776 static const EnumEntry
<unsigned> ElfHeaderAMDGPUFlags
[] = {
1777 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_NONE
),
1778 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R600
),
1779 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_R630
),
1780 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RS880
),
1781 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV670
),
1782 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV710
),
1783 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV730
),
1784 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_RV770
),
1785 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CEDAR
),
1786 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CYPRESS
),
1787 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_JUNIPER
),
1788 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_REDWOOD
),
1789 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_SUMO
),
1790 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_BARTS
),
1791 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAICOS
),
1792 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_CAYMAN
),
1793 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_R600_TURKS
),
1794 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX600
),
1795 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX601
),
1796 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX602
),
1797 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX700
),
1798 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX701
),
1799 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX702
),
1800 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX703
),
1801 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX704
),
1802 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX705
),
1803 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX801
),
1804 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX802
),
1805 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX803
),
1806 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX805
),
1807 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX810
),
1808 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX900
),
1809 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX902
),
1810 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX904
),
1811 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX906
),
1812 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX908
),
1813 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX909
),
1814 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX90C
),
1815 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1010
),
1816 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1011
),
1817 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1012
),
1818 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1030
),
1819 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1031
),
1820 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1032
),
1821 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_MACH_AMDGCN_GFX1033
),
1822 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_XNACK
),
1823 LLVM_READOBJ_ENUM_ENT(ELF
, EF_AMDGPU_SRAM_ECC
)
1826 static const EnumEntry
<unsigned> ElfHeaderRISCVFlags
[] = {
1827 ENUM_ENT(EF_RISCV_RVC
, "RVC"),
1828 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE
, "single-float ABI"),
1829 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE
, "double-float ABI"),
1830 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD
, "quad-float ABI"),
1831 ENUM_ENT(EF_RISCV_RVE
, "RVE")
1834 static const EnumEntry
<unsigned> ElfSymOtherFlags
[] = {
1835 LLVM_READOBJ_ENUM_ENT(ELF
, STV_INTERNAL
),
1836 LLVM_READOBJ_ENUM_ENT(ELF
, STV_HIDDEN
),
1837 LLVM_READOBJ_ENUM_ENT(ELF
, STV_PROTECTED
)
1840 static const EnumEntry
<unsigned> ElfMipsSymOtherFlags
[] = {
1841 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1842 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1843 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PIC
),
1844 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MICROMIPS
)
1847 static const EnumEntry
<unsigned> ElfAArch64SymOtherFlags
[] = {
1848 LLVM_READOBJ_ENUM_ENT(ELF
, STO_AARCH64_VARIANT_PCS
)
1851 static const EnumEntry
<unsigned> ElfMips16SymOtherFlags
[] = {
1852 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_OPTIONAL
),
1853 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_PLT
),
1854 LLVM_READOBJ_ENUM_ENT(ELF
, STO_MIPS_MIPS16
)
1857 static const char *getElfMipsOptionsOdkType(unsigned Odk
) {
1859 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_NULL
);
1860 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_REGINFO
);
1861 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_EXCEPTIONS
);
1862 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAD
);
1863 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWPATCH
);
1864 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_FILL
);
1865 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_TAGS
);
1866 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWAND
);
1867 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_HWOR
);
1868 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_GP_GROUP
);
1869 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_IDENT
);
1870 LLVM_READOBJ_ENUM_CASE(ELF
, ODK_PAGESIZE
);
1876 template <typename ELFT
>
1877 std::pair
<const typename
ELFT::Phdr
*, const typename
ELFT::Shdr
*>
1878 ELFDumper
<ELFT
>::findDynamic() {
1879 // Try to locate the PT_DYNAMIC header.
1880 const Elf_Phdr
*DynamicPhdr
= nullptr;
1881 if (Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= Obj
.program_headers()) {
1882 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
1883 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
)
1885 DynamicPhdr
= &Phdr
;
1889 this->reportUniqueWarning(
1890 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1891 toString(PhdrsOrErr
.takeError()));
1894 // Try to locate the .dynamic section in the sections header table.
1895 const Elf_Shdr
*DynamicSec
= nullptr;
1896 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
1897 if (Sec
.sh_type
!= ELF::SHT_DYNAMIC
)
1903 if (DynamicPhdr
&& ((DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
>
1904 ObjF
.getMemoryBufferRef().getBufferSize()) ||
1905 (DynamicPhdr
->p_offset
+ DynamicPhdr
->p_filesz
<
1906 DynamicPhdr
->p_offset
))) {
1907 reportUniqueWarning(
1908 "PT_DYNAMIC segment offset (0x" +
1909 Twine::utohexstr(DynamicPhdr
->p_offset
) + ") + file size (0x" +
1910 Twine::utohexstr(DynamicPhdr
->p_filesz
) +
1911 ") exceeds the size of the file (0x" +
1912 Twine::utohexstr(ObjF
.getMemoryBufferRef().getBufferSize()) + ")");
1913 // Don't use the broken dynamic header.
1914 DynamicPhdr
= nullptr;
1917 if (DynamicPhdr
&& DynamicSec
) {
1918 if (DynamicSec
->sh_addr
+ DynamicSec
->sh_size
>
1919 DynamicPhdr
->p_vaddr
+ DynamicPhdr
->p_memsz
||
1920 DynamicSec
->sh_addr
< DynamicPhdr
->p_vaddr
)
1921 reportUniqueWarning(describe(*DynamicSec
) +
1922 " is not contained within the "
1923 "PT_DYNAMIC segment");
1925 if (DynamicSec
->sh_addr
!= DynamicPhdr
->p_vaddr
)
1926 reportUniqueWarning(describe(*DynamicSec
) + " is not at the start of "
1927 "PT_DYNAMIC segment");
1930 return std::make_pair(DynamicPhdr
, DynamicSec
);
1933 template <typename ELFT
>
1934 void ELFDumper
<ELFT
>::loadDynamicTable() {
1935 const Elf_Phdr
*DynamicPhdr
;
1936 const Elf_Shdr
*DynamicSec
;
1937 std::tie(DynamicPhdr
, DynamicSec
) = findDynamic();
1938 if (!DynamicPhdr
&& !DynamicSec
)
1941 DynRegionInfo
FromPhdr(ObjF
, *this);
1942 bool IsPhdrTableValid
= false;
1944 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1945 // validated in findDynamic() and so createDRI() is not expected to fail.
1946 FromPhdr
= cantFail(createDRI(DynamicPhdr
->p_offset
, DynamicPhdr
->p_filesz
,
1948 FromPhdr
.SizePrintName
= "PT_DYNAMIC size";
1949 FromPhdr
.EntSizePrintName
= "";
1950 IsPhdrTableValid
= !FromPhdr
.getAsArrayRef
<Elf_Dyn
>().empty();
1953 // Locate the dynamic table described in a section header.
1954 // Ignore sh_entsize and use the expected value for entry size explicitly.
1955 // This allows us to dump dynamic sections with a broken sh_entsize
1957 DynRegionInfo
FromSec(ObjF
, *this);
1958 bool IsSecTableValid
= false;
1960 Expected
<DynRegionInfo
> RegOrErr
=
1961 createDRI(DynamicSec
->sh_offset
, DynamicSec
->sh_size
, sizeof(Elf_Dyn
));
1963 FromSec
= *RegOrErr
;
1964 FromSec
.Context
= describe(*DynamicSec
);
1965 FromSec
.EntSizePrintName
= "";
1966 IsSecTableValid
= !FromSec
.getAsArrayRef
<Elf_Dyn
>().empty();
1968 reportUniqueWarning("unable to read the dynamic table from " +
1969 describe(*DynamicSec
) + ": " +
1970 toString(RegOrErr
.takeError()));
1974 // When we only have information from one of the SHT_DYNAMIC section header or
1975 // PT_DYNAMIC program header, just use that.
1976 if (!DynamicPhdr
|| !DynamicSec
) {
1977 if ((DynamicPhdr
&& IsPhdrTableValid
) || (DynamicSec
&& IsSecTableValid
)) {
1978 DynamicTable
= DynamicPhdr
? FromPhdr
: FromSec
;
1979 parseDynamicTable();
1981 reportUniqueWarning("no valid dynamic table was found");
1986 // At this point we have tables found from the section header and from the
1987 // dynamic segment. Usually they match, but we have to do sanity checks to
1990 if (FromPhdr
.Addr
!= FromSec
.Addr
)
1991 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1992 "program header disagree about "
1993 "the location of the dynamic table");
1995 if (!IsPhdrTableValid
&& !IsSecTableValid
) {
1996 reportUniqueWarning("no valid dynamic table was found");
2000 // Information in the PT_DYNAMIC program header has priority over the
2001 // information in a section header.
2002 if (IsPhdrTableValid
) {
2003 if (!IsSecTableValid
)
2004 reportUniqueWarning(
2005 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
2006 DynamicTable
= FromPhdr
;
2008 reportUniqueWarning(
2009 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
2010 DynamicTable
= FromSec
;
2013 parseDynamicTable();
2016 template <typename ELFT
>
2017 ELFDumper
<ELFT
>::ELFDumper(const object::ELFObjectFile
<ELFT
> &O
,
2018 ScopedPrinter
&Writer
)
2019 : ObjDumper(Writer
, O
.getFileName()), ObjF(O
), Obj(O
.getELFFile()),
2020 DynRelRegion(O
, *this), DynRelaRegion(O
, *this), DynRelrRegion(O
, *this),
2021 DynPLTRelRegion(O
, *this), DynamicTable(O
, *this) {
2022 if (opts::Output
== opts::GNU
)
2023 ELFDumperStyle
.reset(new GNUStyle
<ELFT
>(Writer
, *this));
2025 ELFDumperStyle
.reset(new LLVMStyle
<ELFT
>(Writer
, *this));
2027 if (!O
.IsContentValid())
2030 typename
ELFT::ShdrRange Sections
= cantFail(Obj
.sections());
2031 for (const Elf_Shdr
&Sec
: Sections
) {
2032 switch (Sec
.sh_type
) {
2033 case ELF::SHT_SYMTAB
:
2035 DotSymtabSec
= &Sec
;
2037 case ELF::SHT_DYNSYM
:
2039 DotDynsymSec
= &Sec
;
2041 if (!DynSymRegion
) {
2042 Expected
<DynRegionInfo
> RegOrErr
=
2043 createDRI(Sec
.sh_offset
, Sec
.sh_size
, Sec
.sh_entsize
);
2045 DynSymRegion
= *RegOrErr
;
2046 DynSymRegion
->Context
= describe(Sec
);
2048 if (Expected
<StringRef
> E
= Obj
.getStringTableForSymtab(Sec
))
2049 DynamicStringTable
= *E
;
2051 reportUniqueWarning("unable to get the string table for the " +
2052 describe(Sec
) + ": " + toString(E
.takeError()));
2054 reportUniqueWarning("unable to read dynamic symbols from " +
2055 describe(Sec
) + ": " +
2056 toString(RegOrErr
.takeError()));
2060 case ELF::SHT_SYMTAB_SHNDX
:
2061 if (Expected
<ArrayRef
<Elf_Word
>> ShndxTableOrErr
= Obj
.getSHNDXTable(Sec
))
2062 ShndxTable
= *ShndxTableOrErr
;
2064 this->reportUniqueWarning(ShndxTableOrErr
.takeError());
2066 case ELF::SHT_GNU_versym
:
2067 if (!SymbolVersionSection
)
2068 SymbolVersionSection
= &Sec
;
2070 case ELF::SHT_GNU_verdef
:
2071 if (!SymbolVersionDefSection
)
2072 SymbolVersionDefSection
= &Sec
;
2074 case ELF::SHT_GNU_verneed
:
2075 if (!SymbolVersionNeedSection
)
2076 SymbolVersionNeedSection
= &Sec
;
2078 case ELF::SHT_LLVM_CALL_GRAPH_PROFILE
:
2079 if (!DotCGProfileSec
)
2080 DotCGProfileSec
= &Sec
;
2082 case ELF::SHT_LLVM_ADDRSIG
:
2084 DotAddrsigSec
= &Sec
;
2092 template <typename ELFT
> void ELFDumper
<ELFT
>::parseDynamicTable() {
2093 auto toMappedAddr
= [&](uint64_t Tag
, uint64_t VAddr
) -> const uint8_t * {
2094 auto MappedAddrOrError
= Obj
.toMappedAddr(VAddr
, [&](const Twine
&Msg
) {
2095 this->reportUniqueWarning(Msg
);
2096 return Error::success();
2098 if (!MappedAddrOrError
) {
2099 this->reportUniqueWarning("unable to parse DT_" +
2100 Obj
.getDynamicTagAsString(Tag
) + ": " +
2101 llvm::toString(MappedAddrOrError
.takeError()));
2104 return MappedAddrOrError
.get();
2107 const char *StringTableBegin
= nullptr;
2108 uint64_t StringTableSize
= 0;
2109 Optional
<DynRegionInfo
> DynSymFromTable
;
2110 for (const Elf_Dyn
&Dyn
: dynamic_table()) {
2111 switch (Dyn
.d_tag
) {
2113 HashTable
= reinterpret_cast<const Elf_Hash
*>(
2114 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2116 case ELF::DT_GNU_HASH
:
2117 GnuHashTable
= reinterpret_cast<const Elf_GnuHash
*>(
2118 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2120 case ELF::DT_STRTAB
:
2121 StringTableBegin
= reinterpret_cast<const char *>(
2122 toMappedAddr(Dyn
.getTag(), Dyn
.getPtr()));
2125 StringTableSize
= Dyn
.getVal();
2127 case ELF::DT_SYMTAB
: {
2128 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2129 // no program headers), we ignore its value.
2130 if (const uint8_t *VA
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr())) {
2131 DynSymFromTable
.emplace(ObjF
, *this);
2132 DynSymFromTable
->Addr
= VA
;
2133 DynSymFromTable
->EntSize
= sizeof(Elf_Sym
);
2134 DynSymFromTable
->EntSizePrintName
= "";
2138 case ELF::DT_SYMENT
: {
2139 uint64_t Val
= Dyn
.getVal();
2140 if (Val
!= sizeof(Elf_Sym
))
2141 this->reportUniqueWarning("DT_SYMENT value of 0x" +
2142 Twine::utohexstr(Val
) +
2143 " is not the size of a symbol (0x" +
2144 Twine::utohexstr(sizeof(Elf_Sym
)) + ")");
2148 DynRelaRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2150 case ELF::DT_RELASZ
:
2151 DynRelaRegion
.Size
= Dyn
.getVal();
2152 DynRelaRegion
.SizePrintName
= "DT_RELASZ value";
2154 case ELF::DT_RELAENT
:
2155 DynRelaRegion
.EntSize
= Dyn
.getVal();
2156 DynRelaRegion
.EntSizePrintName
= "DT_RELAENT value";
2158 case ELF::DT_SONAME
:
2159 SONameOffset
= Dyn
.getVal();
2162 DynRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2165 DynRelRegion
.Size
= Dyn
.getVal();
2166 DynRelRegion
.SizePrintName
= "DT_RELSZ value";
2168 case ELF::DT_RELENT
:
2169 DynRelRegion
.EntSize
= Dyn
.getVal();
2170 DynRelRegion
.EntSizePrintName
= "DT_RELENT value";
2173 case ELF::DT_ANDROID_RELR
:
2174 DynRelrRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2176 case ELF::DT_RELRSZ
:
2177 case ELF::DT_ANDROID_RELRSZ
:
2178 DynRelrRegion
.Size
= Dyn
.getVal();
2179 DynRelrRegion
.SizePrintName
= Dyn
.d_tag
== ELF::DT_RELRSZ
2181 : "DT_ANDROID_RELRSZ value";
2183 case ELF::DT_RELRENT
:
2184 case ELF::DT_ANDROID_RELRENT
:
2185 DynRelrRegion
.EntSize
= Dyn
.getVal();
2186 DynRelrRegion
.EntSizePrintName
= Dyn
.d_tag
== ELF::DT_RELRENT
2187 ? "DT_RELRENT value"
2188 : "DT_ANDROID_RELRENT value";
2190 case ELF::DT_PLTREL
:
2191 if (Dyn
.getVal() == DT_REL
)
2192 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rel
);
2193 else if (Dyn
.getVal() == DT_RELA
)
2194 DynPLTRelRegion
.EntSize
= sizeof(Elf_Rela
);
2196 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2197 Twine((uint64_t)Dyn
.getVal()));
2198 DynPLTRelRegion
.EntSizePrintName
= "PLTREL entry size";
2200 case ELF::DT_JMPREL
:
2201 DynPLTRelRegion
.Addr
= toMappedAddr(Dyn
.getTag(), Dyn
.getPtr());
2203 case ELF::DT_PLTRELSZ
:
2204 DynPLTRelRegion
.Size
= Dyn
.getVal();
2205 DynPLTRelRegion
.SizePrintName
= "DT_PLTRELSZ value";
2210 if (StringTableBegin
) {
2211 const uint64_t FileSize
= Obj
.getBufSize();
2212 const uint64_t Offset
= (const uint8_t *)StringTableBegin
- Obj
.base();
2213 if (StringTableSize
> FileSize
- Offset
)
2214 reportUniqueWarning(
2215 "the dynamic string table at 0x" + Twine::utohexstr(Offset
) +
2216 " goes past the end of the file (0x" + Twine::utohexstr(FileSize
) +
2217 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize
));
2219 DynamicStringTable
= StringRef(StringTableBegin
, StringTableSize
);
2222 const bool IsHashTableSupported
= getHashTableEntSize() == 4;
2224 // Often we find the information about the dynamic symbol table
2225 // location in the SHT_DYNSYM section header. However, the value in
2226 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2227 // locate .dynsym at runtime. The location we find in the section header
2228 // and the location we find here should match.
2229 if (DynSymFromTable
&& DynSymFromTable
->Addr
!= DynSymRegion
->Addr
)
2230 reportUniqueWarning(
2231 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2232 "the location of the dynamic symbol table"));
2234 // According to the ELF gABI: "The number of symbol table entries should
2235 // equal nchain". Check to see if the DT_HASH hash table nchain value
2236 // conflicts with the number of symbols in the dynamic symbol table
2237 // according to the section header.
2238 if (HashTable
&& IsHashTableSupported
) {
2239 if (DynSymRegion
->EntSize
== 0)
2240 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2241 else if (HashTable
->nchain
!= DynSymRegion
->Size
/ DynSymRegion
->EntSize
)
2242 reportUniqueWarning(
2243 "hash table nchain (" + Twine(HashTable
->nchain
) +
2244 ") differs from symbol count derived from SHT_DYNSYM section "
2246 Twine(DynSymRegion
->Size
/ DynSymRegion
->EntSize
) + ")");
2250 // Delay the creation of the actual dynamic symbol table until now, so that
2251 // checks can always be made against the section header-based properties,
2252 // without worrying about tag order.
2253 if (DynSymFromTable
) {
2254 if (!DynSymRegion
) {
2255 DynSymRegion
= DynSymFromTable
;
2257 DynSymRegion
->Addr
= DynSymFromTable
->Addr
;
2258 DynSymRegion
->EntSize
= DynSymFromTable
->EntSize
;
2259 DynSymRegion
->EntSizePrintName
= DynSymFromTable
->EntSizePrintName
;
2263 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2265 if (HashTable
&& IsHashTableSupported
&& DynSymRegion
) {
2266 const uint64_t FileSize
= Obj
.getBufSize();
2267 const uint64_t DerivedSize
=
2268 (uint64_t)HashTable
->nchain
* DynSymRegion
->EntSize
;
2269 const uint64_t Offset
= (const uint8_t *)DynSymRegion
->Addr
- Obj
.base();
2270 if (DerivedSize
> FileSize
- Offset
)
2271 reportUniqueWarning(
2272 "the size (0x" + Twine::utohexstr(DerivedSize
) +
2273 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset
) +
2274 ", derived from the hash table, goes past the end of the file (0x" +
2275 Twine::utohexstr(FileSize
) + ") and will be ignored");
2277 DynSymRegion
->Size
= HashTable
->nchain
* DynSymRegion
->EntSize
;
2281 template <typename ELFT
>
2282 typename ELFDumper
<ELFT
>::Elf_Rel_Range ELFDumper
<ELFT
>::dyn_rels() const {
2283 return DynRelRegion
.getAsArrayRef
<Elf_Rel
>();
2286 template <typename ELFT
>
2287 typename ELFDumper
<ELFT
>::Elf_Rela_Range ELFDumper
<ELFT
>::dyn_relas() const {
2288 return DynRelaRegion
.getAsArrayRef
<Elf_Rela
>();
2291 template <typename ELFT
>
2292 typename ELFDumper
<ELFT
>::Elf_Relr_Range ELFDumper
<ELFT
>::dyn_relrs() const {
2293 return DynRelrRegion
.getAsArrayRef
<Elf_Relr
>();
2296 template <class ELFT
> void ELFDumper
<ELFT
>::printFileHeaders() {
2297 ELFDumperStyle
->printFileHeaders();
2300 template <class ELFT
> void ELFDumper
<ELFT
>::printSectionHeaders() {
2301 ELFDumperStyle
->printSectionHeaders();
2304 template <class ELFT
> void ELFDumper
<ELFT
>::printRelocations() {
2305 ELFDumperStyle
->printRelocations();
2308 template <class ELFT
>
2309 void ELFDumper
<ELFT
>::printProgramHeaders(
2310 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
2311 ELFDumperStyle
->printProgramHeaders(PrintProgramHeaders
, PrintSectionMapping
);
2314 template <typename ELFT
> void ELFDumper
<ELFT
>::printVersionInfo() {
2315 // Dump version symbol section.
2316 ELFDumperStyle
->printVersionSymbolSection(SymbolVersionSection
);
2318 // Dump version definition section.
2319 ELFDumperStyle
->printVersionDefinitionSection(SymbolVersionDefSection
);
2321 // Dump version dependency section.
2322 ELFDumperStyle
->printVersionDependencySection(SymbolVersionNeedSection
);
2325 template <class ELFT
> void ELFDumper
<ELFT
>::printDependentLibs() {
2326 ELFDumperStyle
->printDependentLibs();
2329 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicRelocations() {
2330 ELFDumperStyle
->printDynamicRelocations();
2333 template <class ELFT
>
2334 void ELFDumper
<ELFT
>::printSymbols(bool PrintSymbols
,
2335 bool PrintDynamicSymbols
) {
2336 ELFDumperStyle
->printSymbols(PrintSymbols
, PrintDynamicSymbols
);
2339 template <class ELFT
> void ELFDumper
<ELFT
>::printHashSymbols() {
2340 ELFDumperStyle
->printHashSymbols();
2343 template <class ELFT
> void ELFDumper
<ELFT
>::printSectionDetails() {
2344 ELFDumperStyle
->printSectionDetails();
2347 template <class ELFT
> void ELFDumper
<ELFT
>::printHashHistograms() {
2348 ELFDumperStyle
->printHashHistograms();
2351 template <class ELFT
> void ELFDumper
<ELFT
>::printCGProfile() {
2352 ELFDumperStyle
->printCGProfile();
2355 template <class ELFT
> void ELFDumper
<ELFT
>::printNotes() {
2356 ELFDumperStyle
->printNotes();
2359 template <class ELFT
> void ELFDumper
<ELFT
>::printELFLinkerOptions() {
2360 ELFDumperStyle
->printELFLinkerOptions();
2363 template <class ELFT
> void ELFDumper
<ELFT
>::printStackSizes() {
2364 ELFDumperStyle
->printStackSizes();
2367 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2368 { #enum, prefix##_##enum }
2370 static const EnumEntry
<unsigned> ElfDynamicDTFlags
[] = {
2371 LLVM_READOBJ_DT_FLAG_ENT(DF
, ORIGIN
),
2372 LLVM_READOBJ_DT_FLAG_ENT(DF
, SYMBOLIC
),
2373 LLVM_READOBJ_DT_FLAG_ENT(DF
, TEXTREL
),
2374 LLVM_READOBJ_DT_FLAG_ENT(DF
, BIND_NOW
),
2375 LLVM_READOBJ_DT_FLAG_ENT(DF
, STATIC_TLS
)
2378 static const EnumEntry
<unsigned> ElfDynamicDTFlags1
[] = {
2379 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOW
),
2380 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAL
),
2381 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GROUP
),
2382 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODELETE
),
2383 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, LOADFLTR
),
2384 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INITFIRST
),
2385 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOOPEN
),
2386 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ORIGIN
),
2387 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DIRECT
),
2388 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, TRANS
),
2389 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, INTERPOSE
),
2390 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODEFLIB
),
2391 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODUMP
),
2392 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, CONFALT
),
2393 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, ENDFILTEE
),
2394 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELDNE
),
2395 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, DISPRELPND
),
2396 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NODIRECT
),
2397 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, IGNMULDEF
),
2398 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOKSYMS
),
2399 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NOHDR
),
2400 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, EDITED
),
2401 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, NORELOC
),
2402 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SYMINTPOSE
),
2403 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, GLOBAUDIT
),
2404 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, SINGLETON
),
2405 LLVM_READOBJ_DT_FLAG_ENT(DF_1
, PIE
),
2408 static const EnumEntry
<unsigned> ElfDynamicDTMipsFlags
[] = {
2409 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NONE
),
2410 LLVM_READOBJ_DT_FLAG_ENT(RHF
, QUICKSTART
),
2411 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NOTPOT
),
2412 LLVM_READOBJ_DT_FLAG_ENT(RHS
, NO_LIBRARY_REPLACEMENT
),
2413 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_MOVE
),
2414 LLVM_READOBJ_DT_FLAG_ENT(RHF
, SGI_ONLY
),
2415 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_INIT
),
2416 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DELTA_C_PLUS_PLUS
),
2417 LLVM_READOBJ_DT_FLAG_ENT(RHF
, GUARANTEE_START_INIT
),
2418 LLVM_READOBJ_DT_FLAG_ENT(RHF
, PIXIE
),
2419 LLVM_READOBJ_DT_FLAG_ENT(RHF
, DEFAULT_DELAY_LOAD
),
2420 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTART
),
2421 LLVM_READOBJ_DT_FLAG_ENT(RHF
, REQUICKSTARTED
),
2422 LLVM_READOBJ_DT_FLAG_ENT(RHF
, CORD
),
2423 LLVM_READOBJ_DT_FLAG_ENT(RHF
, NO_UNRES_UNDEF
),
2424 LLVM_READOBJ_DT_FLAG_ENT(RHF
, RLD_ORDER_SAFE
)
2427 #undef LLVM_READOBJ_DT_FLAG_ENT
2429 template <typename T
, typename TFlag
>
2430 void printFlags(T Value
, ArrayRef
<EnumEntry
<TFlag
>> Flags
, raw_ostream
&OS
) {
2431 SmallVector
<EnumEntry
<TFlag
>, 10> SetFlags
;
2432 for (const EnumEntry
<TFlag
> &Flag
: Flags
)
2433 if (Flag
.Value
!= 0 && (Value
& Flag
.Value
) == Flag
.Value
)
2434 SetFlags
.push_back(Flag
);
2436 for (const EnumEntry
<TFlag
> &Flag
: SetFlags
)
2437 OS
<< Flag
.Name
<< " ";
2440 template <class ELFT
>
2441 const typename
ELFT::Shdr
*
2442 ELFDumper
<ELFT
>::findSectionByName(StringRef Name
) const {
2443 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
2444 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Shdr
)) {
2445 if (*NameOrErr
== Name
)
2448 reportUniqueWarning("unable to read the name of " + describe(Shdr
) +
2449 ": " + toString(NameOrErr
.takeError()));
2455 template <class ELFT
>
2456 std::string ELFDumper
<ELFT
>::getDynamicEntry(uint64_t Type
,
2457 uint64_t Value
) const {
2458 auto FormatHexValue
= [](uint64_t V
) {
2460 raw_string_ostream
OS(Str
);
2461 const char *ConvChar
=
2462 (opts::Output
== opts::GNU
) ? "0x%" PRIx64
: "0x%" PRIX64
;
2463 OS
<< format(ConvChar
, V
);
2467 auto FormatFlags
= [](uint64_t V
,
2468 llvm::ArrayRef
<llvm::EnumEntry
<unsigned int>> Array
) {
2470 raw_string_ostream
OS(Str
);
2471 printFlags(V
, Array
, OS
);
2475 // Handle custom printing of architecture specific tags
2476 switch (Obj
.getHeader().e_machine
) {
2479 case DT_AARCH64_BTI_PLT
:
2480 case DT_AARCH64_PAC_PLT
:
2481 case DT_AARCH64_VARIANT_PCS
:
2482 return std::to_string(Value
);
2489 case DT_HEXAGON_VER
:
2490 return std::to_string(Value
);
2491 case DT_HEXAGON_SYMSZ
:
2492 case DT_HEXAGON_PLT
:
2493 return FormatHexValue(Value
);
2500 case DT_MIPS_RLD_VERSION
:
2501 case DT_MIPS_LOCAL_GOTNO
:
2502 case DT_MIPS_SYMTABNO
:
2503 case DT_MIPS_UNREFEXTNO
:
2504 return std::to_string(Value
);
2505 case DT_MIPS_TIME_STAMP
:
2506 case DT_MIPS_ICHECKSUM
:
2507 case DT_MIPS_IVERSION
:
2508 case DT_MIPS_BASE_ADDRESS
:
2510 case DT_MIPS_CONFLICT
:
2511 case DT_MIPS_LIBLIST
:
2512 case DT_MIPS_CONFLICTNO
:
2513 case DT_MIPS_LIBLISTNO
:
2514 case DT_MIPS_GOTSYM
:
2515 case DT_MIPS_HIPAGENO
:
2516 case DT_MIPS_RLD_MAP
:
2517 case DT_MIPS_DELTA_CLASS
:
2518 case DT_MIPS_DELTA_CLASS_NO
:
2519 case DT_MIPS_DELTA_INSTANCE
:
2520 case DT_MIPS_DELTA_RELOC
:
2521 case DT_MIPS_DELTA_RELOC_NO
:
2522 case DT_MIPS_DELTA_SYM
:
2523 case DT_MIPS_DELTA_SYM_NO
:
2524 case DT_MIPS_DELTA_CLASSSYM
:
2525 case DT_MIPS_DELTA_CLASSSYM_NO
:
2526 case DT_MIPS_CXX_FLAGS
:
2527 case DT_MIPS_PIXIE_INIT
:
2528 case DT_MIPS_SYMBOL_LIB
:
2529 case DT_MIPS_LOCALPAGE_GOTIDX
:
2530 case DT_MIPS_LOCAL_GOTIDX
:
2531 case DT_MIPS_HIDDEN_GOTIDX
:
2532 case DT_MIPS_PROTECTED_GOTIDX
:
2533 case DT_MIPS_OPTIONS
:
2534 case DT_MIPS_INTERFACE
:
2535 case DT_MIPS_DYNSTR_ALIGN
:
2536 case DT_MIPS_INTERFACE_SIZE
:
2537 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR
:
2538 case DT_MIPS_PERF_SUFFIX
:
2539 case DT_MIPS_COMPACT_SIZE
:
2540 case DT_MIPS_GP_VALUE
:
2541 case DT_MIPS_AUX_DYNAMIC
:
2542 case DT_MIPS_PLTGOT
:
2544 case DT_MIPS_RLD_MAP_REL
:
2545 return FormatHexValue(Value
);
2547 return FormatFlags(Value
, makeArrayRef(ElfDynamicDTMipsFlags
));
2558 if (Value
== DT_REL
)
2560 if (Value
== DT_RELA
)
2574 case DT_PREINIT_ARRAY
:
2581 return FormatHexValue(Value
);
2586 return std::to_string(Value
);
2594 case DT_INIT_ARRAYSZ
:
2595 case DT_FINI_ARRAYSZ
:
2596 case DT_PREINIT_ARRAYSZ
:
2597 case DT_ANDROID_RELSZ
:
2598 case DT_ANDROID_RELASZ
:
2599 return std::to_string(Value
) + " (bytes)";
2607 const std::map
<uint64_t, const char *> TagNames
= {
2608 {DT_NEEDED
, "Shared library"}, {DT_SONAME
, "Library soname"},
2609 {DT_AUXILIARY
, "Auxiliary library"}, {DT_USED
, "Not needed object"},
2610 {DT_FILTER
, "Filter library"}, {DT_RPATH
, "Library rpath"},
2611 {DT_RUNPATH
, "Library runpath"},
2614 return (Twine(TagNames
.at(Type
)) + ": [" + getDynamicString(Value
) + "]")
2618 return FormatFlags(Value
, makeArrayRef(ElfDynamicDTFlags
));
2620 return FormatFlags(Value
, makeArrayRef(ElfDynamicDTFlags1
));
2622 return FormatHexValue(Value
);
2626 template <class ELFT
>
2627 StringRef ELFDumper
<ELFT
>::getDynamicString(uint64_t Value
) const {
2628 if (DynamicStringTable
.empty() && !DynamicStringTable
.data()) {
2629 reportUniqueWarning("string table was not found");
2633 auto WarnAndReturn
= [this](const Twine
&Msg
, uint64_t Offset
) {
2634 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset
) +
2639 const uint64_t FileSize
= Obj
.getBufSize();
2640 const uint64_t Offset
=
2641 (const uint8_t *)DynamicStringTable
.data() - Obj
.base();
2642 if (DynamicStringTable
.size() > FileSize
- Offset
)
2643 return WarnAndReturn(" with size 0x" +
2644 Twine::utohexstr(DynamicStringTable
.size()) +
2645 " goes past the end of the file (0x" +
2646 Twine::utohexstr(FileSize
) + ")",
2649 if (Value
>= DynamicStringTable
.size())
2650 return WarnAndReturn(
2651 ": unable to read the string at 0x" + Twine::utohexstr(Offset
+ Value
) +
2652 ": it goes past the end of the table (0x" +
2653 Twine::utohexstr(Offset
+ DynamicStringTable
.size()) + ")",
2656 if (DynamicStringTable
.back() != '\0')
2657 return WarnAndReturn(": unable to read the string at 0x" +
2658 Twine::utohexstr(Offset
+ Value
) +
2659 ": the string table is not null-terminated",
2662 return DynamicStringTable
.data() + Value
;
2665 template <class ELFT
> void ELFDumper
<ELFT
>::printUnwindInfo() {
2666 DwarfCFIEH::PrinterContext
<ELFT
> Ctx(W
, ObjF
);
2667 Ctx
.printUnwindInformation();
2672 template <> void ELFDumper
<ELF32LE
>::printUnwindInfo() {
2673 if (Obj
.getHeader().e_machine
== EM_ARM
) {
2674 ARM::EHABI::PrinterContext
<ELF32LE
> Ctx(W
, Obj
, ObjF
.getFileName(),
2676 Ctx
.PrintUnwindInformation();
2678 DwarfCFIEH::PrinterContext
<ELF32LE
> Ctx(W
, ObjF
);
2679 Ctx
.printUnwindInformation();
2682 } // end anonymous namespace
2684 template <class ELFT
> void ELFDumper
<ELFT
>::printDynamicTable() {
2685 ELFDumperStyle
->printDynamic();
2688 template <class ELFT
> void ELFDumper
<ELFT
>::printNeededLibraries() {
2689 ListScope
D(W
, "NeededLibraries");
2691 std::vector
<StringRef
> Libs
;
2692 for (const auto &Entry
: dynamic_table())
2693 if (Entry
.d_tag
== ELF::DT_NEEDED
)
2694 Libs
.push_back(getDynamicString(Entry
.d_un
.d_val
));
2698 for (StringRef L
: Libs
)
2699 W
.startLine() << L
<< "\n";
2702 template <class ELFT
>
2703 static Error
checkHashTable(const ELFDumper
<ELFT
> &Dumper
,
2704 const typename
ELFT::Hash
*H
,
2705 bool *IsHeaderValid
= nullptr) {
2706 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
2707 const uint64_t SecOffset
= (const uint8_t *)H
- Obj
.base();
2708 if (Dumper
.getHashTableEntSize() == 8) {
2709 auto It
= llvm::find_if(ElfMachineType
, [&](const EnumEntry
<unsigned> &E
) {
2710 return E
.Value
== Obj
.getHeader().e_machine
;
2713 *IsHeaderValid
= false;
2714 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset
) +
2715 " is not supported: it contains non-standard 8 "
2716 "byte entries on " +
2717 It
->AltName
+ " platform");
2720 auto MakeError
= [&](const Twine
&Msg
= "") {
2721 return createError("the hash table at offset 0x" +
2722 Twine::utohexstr(SecOffset
) +
2723 " goes past the end of the file (0x" +
2724 Twine::utohexstr(Obj
.getBufSize()) + ")" + Msg
);
2727 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2728 const unsigned HeaderSize
= 2 * sizeof(typename
ELFT::Word
);
2731 *IsHeaderValid
= Obj
.getBufSize() - SecOffset
>= HeaderSize
;
2733 if (Obj
.getBufSize() - SecOffset
< HeaderSize
)
2736 if (Obj
.getBufSize() - SecOffset
- HeaderSize
<
2737 ((uint64_t)H
->nbucket
+ H
->nchain
) * sizeof(typename
ELFT::Word
))
2738 return MakeError(", nbucket = " + Twine(H
->nbucket
) +
2739 ", nchain = " + Twine(H
->nchain
));
2740 return Error::success();
2743 template <class ELFT
>
2744 static Error
checkGNUHashTable(const ELFFile
<ELFT
> &Obj
,
2745 const typename
ELFT::GnuHash
*GnuHashTable
,
2746 bool *IsHeaderValid
= nullptr) {
2747 const uint8_t *TableData
= reinterpret_cast<const uint8_t *>(GnuHashTable
);
2748 assert(TableData
>= Obj
.base() && TableData
< Obj
.base() + Obj
.getBufSize() &&
2749 "GnuHashTable must always point to a location inside the file");
2751 uint64_t TableOffset
= TableData
- Obj
.base();
2753 *IsHeaderValid
= TableOffset
+ /*Header size:*/ 16 < Obj
.getBufSize();
2754 if (TableOffset
+ 16 + (uint64_t)GnuHashTable
->nbuckets
* 4 +
2755 (uint64_t)GnuHashTable
->maskwords
* sizeof(typename
ELFT::Off
) >=
2757 return createError("unable to dump the SHT_GNU_HASH "
2759 Twine::utohexstr(TableOffset
) +
2760 ": it goes past the end of the file");
2761 return Error::success();
2764 template <typename ELFT
> void ELFDumper
<ELFT
>::printHashTable() {
2765 DictScope
D(W
, "HashTable");
2770 Error Err
= checkHashTable(*this, HashTable
, &IsHeaderValid
);
2771 if (IsHeaderValid
) {
2772 W
.printNumber("Num Buckets", HashTable
->nbucket
);
2773 W
.printNumber("Num Chains", HashTable
->nchain
);
2777 reportUniqueWarning(std::move(Err
));
2781 W
.printList("Buckets", HashTable
->buckets());
2782 W
.printList("Chains", HashTable
->chains());
2785 template <class ELFT
>
2786 static Expected
<ArrayRef
<typename
ELFT::Word
>>
2787 getGnuHashTableChains(Optional
<DynRegionInfo
> DynSymRegion
,
2788 const typename
ELFT::GnuHash
*GnuHashTable
) {
2790 return createError("no dynamic symbol table found");
2792 ArrayRef
<typename
ELFT::Sym
> DynSymTable
=
2793 DynSymRegion
->getAsArrayRef
<typename
ELFT::Sym
>();
2794 size_t NumSyms
= DynSymTable
.size();
2796 return createError("the dynamic symbol table is empty");
2798 if (GnuHashTable
->symndx
< NumSyms
)
2799 return GnuHashTable
->values(NumSyms
);
2801 // A normal empty GNU hash table section produced by linker might have
2802 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2803 // and have dummy null values in the Bloom filter and in the buckets
2804 // vector (or no values at all). It happens because the value of symndx is not
2805 // important for dynamic loaders when the GNU hash table is empty. They just
2806 // skip the whole object during symbol lookup. In such cases, the symndx value
2807 // is irrelevant and we should not report a warning.
2808 ArrayRef
<typename
ELFT::Word
> Buckets
= GnuHashTable
->buckets();
2809 if (!llvm::all_of(Buckets
, [](typename
ELFT::Word V
) { return V
== 0; }))
2811 "the first hashed symbol index (" + Twine(GnuHashTable
->symndx
) +
2812 ") is greater than or equal to the number of dynamic symbols (" +
2813 Twine(NumSyms
) + ")");
2814 // There is no way to represent an array of (dynamic symbols count - symndx)
2816 return ArrayRef
<typename
ELFT::Word
>();
2819 template <typename ELFT
>
2820 void ELFDumper
<ELFT
>::printGnuHashTable() {
2821 DictScope
D(W
, "GnuHashTable");
2826 Error Err
= checkGNUHashTable
<ELFT
>(Obj
, GnuHashTable
, &IsHeaderValid
);
2827 if (IsHeaderValid
) {
2828 W
.printNumber("Num Buckets", GnuHashTable
->nbuckets
);
2829 W
.printNumber("First Hashed Symbol Index", GnuHashTable
->symndx
);
2830 W
.printNumber("Num Mask Words", GnuHashTable
->maskwords
);
2831 W
.printNumber("Shift Count", GnuHashTable
->shift2
);
2835 reportUniqueWarning(std::move(Err
));
2839 ArrayRef
<typename
ELFT::Off
> BloomFilter
= GnuHashTable
->filter();
2840 W
.printHexList("Bloom Filter", BloomFilter
);
2842 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
->buckets();
2843 W
.printList("Buckets", Buckets
);
2845 Expected
<ArrayRef
<Elf_Word
>> Chains
=
2846 getGnuHashTableChains
<ELFT
>(DynSymRegion
, GnuHashTable
);
2848 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2850 toString(Chains
.takeError()));
2854 W
.printHexList("Values", *Chains
);
2857 template <typename ELFT
> void ELFDumper
<ELFT
>::printLoadName() {
2858 StringRef SOName
= "<Not found>";
2860 SOName
= getDynamicString(*SONameOffset
);
2861 W
.printString("LoadName", SOName
);
2864 template <class ELFT
> void ELFDumper
<ELFT
>::printArchSpecificInfo() {
2865 switch (Obj
.getHeader().e_machine
) {
2871 ELFDumperStyle
->printMipsABIFlags();
2874 MipsGOTParser
<ELFT
> Parser(*this);
2875 if (Error E
= Parser
.findGOT(dynamic_table(), dynamic_symbols()))
2876 reportUniqueWarning(std::move(E
));
2877 else if (!Parser
.isGotEmpty())
2878 ELFDumperStyle
->printMipsGOT(Parser
);
2880 if (Error E
= Parser
.findPLT(dynamic_table()))
2881 reportUniqueWarning(std::move(E
));
2882 else if (!Parser
.isPltEmpty())
2883 ELFDumperStyle
->printMipsPLT(Parser
);
2891 template <class ELFT
> void ELFDumper
<ELFT
>::printAttributes() {
2893 W
.startLine() << "Attributes not implemented.\n";
2897 const unsigned Machine
= Obj
.getHeader().e_machine
;
2898 assert((Machine
== EM_ARM
|| Machine
== EM_RISCV
) &&
2899 "Attributes not implemented.");
2901 DictScope
BA(W
, "BuildAttributes");
2902 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
2903 if (Sec
.sh_type
!= ELF::SHT_ARM_ATTRIBUTES
&&
2904 Sec
.sh_type
!= ELF::SHT_RISCV_ATTRIBUTES
)
2907 ArrayRef
<uint8_t> Contents
;
2908 if (Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
2909 Obj
.getSectionContents(Sec
)) {
2910 Contents
= *ContentOrErr
;
2911 if (Contents
.empty()) {
2912 reportUniqueWarning("the " + describe(Sec
) + " is empty");
2916 reportUniqueWarning("unable to read the content of the " + describe(Sec
) +
2917 ": " + toString(ContentOrErr
.takeError()));
2921 W
.printHex("FormatVersion", Contents
[0]);
2923 auto ParseAttrubutes
= [&]() {
2924 if (Machine
== EM_ARM
)
2925 return ARMAttributeParser(&W
).parse(Contents
, support::little
);
2926 return RISCVAttributeParser(&W
).parse(Contents
, support::little
);
2929 if (Error E
= ParseAttrubutes())
2930 reportUniqueWarning("unable to dump attributes from the " +
2931 describe(Sec
) + ": " + toString(std::move(E
)));
2937 template <class ELFT
> class MipsGOTParser
{
2939 TYPEDEF_ELF_TYPES(ELFT
)
2940 using Entry
= typename
ELFO::Elf_Addr
;
2941 using Entries
= ArrayRef
<Entry
>;
2943 const bool IsStatic
;
2945 const ELFDumper
<ELFT
> &Dumper
;
2947 MipsGOTParser(const ELFDumper
<ELFT
> &D
);
2948 Error
findGOT(Elf_Dyn_Range DynTable
, Elf_Sym_Range DynSyms
);
2949 Error
findPLT(Elf_Dyn_Range DynTable
);
2951 bool isGotEmpty() const { return GotEntries
.empty(); }
2952 bool isPltEmpty() const { return PltEntries
.empty(); }
2954 uint64_t getGp() const;
2956 const Entry
*getGotLazyResolver() const;
2957 const Entry
*getGotModulePointer() const;
2958 const Entry
*getPltLazyResolver() const;
2959 const Entry
*getPltModulePointer() const;
2961 Entries
getLocalEntries() const;
2962 Entries
getGlobalEntries() const;
2963 Entries
getOtherEntries() const;
2964 Entries
getPltEntries() const;
2966 uint64_t getGotAddress(const Entry
* E
) const;
2967 int64_t getGotOffset(const Entry
* E
) const;
2968 const Elf_Sym
*getGotSym(const Entry
*E
) const;
2970 uint64_t getPltAddress(const Entry
* E
) const;
2971 const Elf_Sym
*getPltSym(const Entry
*E
) const;
2973 StringRef
getPltStrTable() const { return PltStrTable
; }
2974 const Elf_Shdr
*getPltSymTable() const { return PltSymTable
; }
2977 const Elf_Shdr
*GotSec
;
2981 const Elf_Shdr
*PltSec
;
2982 const Elf_Shdr
*PltRelSec
;
2983 const Elf_Shdr
*PltSymTable
;
2986 Elf_Sym_Range GotDynSyms
;
2987 StringRef PltStrTable
;
2993 } // end anonymous namespace
2995 template <class ELFT
>
2996 MipsGOTParser
<ELFT
>::MipsGOTParser(const ELFDumper
<ELFT
> &D
)
2997 : IsStatic(D
.dynamic_table().empty()), Obj(D
.getElfObject().getELFFile()),
2998 Dumper(D
), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2999 PltRelSec(nullptr), PltSymTable(nullptr),
3000 FileName(D
.getElfObject().getFileName()) {}
3002 template <class ELFT
>
3003 Error MipsGOTParser
<ELFT
>::findGOT(Elf_Dyn_Range DynTable
,
3004 Elf_Sym_Range DynSyms
) {
3005 // See "Global Offset Table" in Chapter 5 in the following document
3006 // for detailed GOT description.
3007 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
3009 // Find static GOT secton.
3011 GotSec
= Dumper
.findSectionByName(".got");
3013 return Error::success();
3015 ArrayRef
<uint8_t> Content
=
3016 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
3017 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
3018 Content
.size() / sizeof(Entry
));
3019 LocalNum
= GotEntries
.size();
3020 return Error::success();
3023 // Lookup dynamic table tags which define the GOT layout.
3024 Optional
<uint64_t> DtPltGot
;
3025 Optional
<uint64_t> DtLocalGotNum
;
3026 Optional
<uint64_t> DtGotSym
;
3027 for (const auto &Entry
: DynTable
) {
3028 switch (Entry
.getTag()) {
3029 case ELF::DT_PLTGOT
:
3030 DtPltGot
= Entry
.getVal();
3032 case ELF::DT_MIPS_LOCAL_GOTNO
:
3033 DtLocalGotNum
= Entry
.getVal();
3035 case ELF::DT_MIPS_GOTSYM
:
3036 DtGotSym
= Entry
.getVal();
3041 if (!DtPltGot
&& !DtLocalGotNum
&& !DtGotSym
)
3042 return Error::success();
3045 return createError("cannot find PLTGOT dynamic tag");
3047 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3049 return createError("cannot find MIPS_GOTSYM dynamic tag");
3051 size_t DynSymTotal
= DynSyms
.size();
3052 if (*DtGotSym
> DynSymTotal
)
3053 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym
) +
3054 ") exceeds the number of dynamic symbols (" +
3055 Twine(DynSymTotal
) + ")");
3057 GotSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtPltGot
);
3059 return createError("there is no non-empty GOT section at 0x" +
3060 Twine::utohexstr(*DtPltGot
));
3062 LocalNum
= *DtLocalGotNum
;
3063 GlobalNum
= DynSymTotal
- *DtGotSym
;
3065 ArrayRef
<uint8_t> Content
=
3066 unwrapOrError(FileName
, Obj
.getSectionContents(*GotSec
));
3067 GotEntries
= Entries(reinterpret_cast<const Entry
*>(Content
.data()),
3068 Content
.size() / sizeof(Entry
));
3069 GotDynSyms
= DynSyms
.drop_front(*DtGotSym
);
3071 return Error::success();
3074 template <class ELFT
>
3075 Error MipsGOTParser
<ELFT
>::findPLT(Elf_Dyn_Range DynTable
) {
3076 // Lookup dynamic table tags which define the PLT layout.
3077 Optional
<uint64_t> DtMipsPltGot
;
3078 Optional
<uint64_t> DtJmpRel
;
3079 for (const auto &Entry
: DynTable
) {
3080 switch (Entry
.getTag()) {
3081 case ELF::DT_MIPS_PLTGOT
:
3082 DtMipsPltGot
= Entry
.getVal();
3084 case ELF::DT_JMPREL
:
3085 DtJmpRel
= Entry
.getVal();
3090 if (!DtMipsPltGot
&& !DtJmpRel
)
3091 return Error::success();
3093 // Find PLT section.
3095 return createError("cannot find MIPS_PLTGOT dynamic tag");
3097 return createError("cannot find JMPREL dynamic tag");
3099 PltSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtMipsPltGot
);
3101 return createError("there is no non-empty PLTGOT section at 0x" +
3102 Twine::utohexstr(*DtMipsPltGot
));
3104 PltRelSec
= findNotEmptySectionByAddress(Obj
, FileName
, *DtJmpRel
);
3106 return createError("there is no non-empty RELPLT section at 0x" +
3107 Twine::utohexstr(*DtJmpRel
));
3109 if (Expected
<ArrayRef
<uint8_t>> PltContentOrErr
=
3110 Obj
.getSectionContents(*PltSec
))
3112 Entries(reinterpret_cast<const Entry
*>(PltContentOrErr
->data()),
3113 PltContentOrErr
->size() / sizeof(Entry
));
3115 return createError("unable to read PLTGOT section content: " +
3116 toString(PltContentOrErr
.takeError()));
3118 if (Expected
<const Elf_Shdr
*> PltSymTableOrErr
=
3119 Obj
.getSection(PltRelSec
->sh_link
))
3120 PltSymTable
= *PltSymTableOrErr
;
3122 return createError("unable to get a symbol table linked to the " +
3123 describe(Obj
, *PltRelSec
) + ": " +
3124 toString(PltSymTableOrErr
.takeError()));
3126 if (Expected
<StringRef
> StrTabOrErr
=
3127 Obj
.getStringTableForSymtab(*PltSymTable
))
3128 PltStrTable
= *StrTabOrErr
;
3130 return createError("unable to get a string table for the " +
3131 describe(Obj
, *PltSymTable
) + ": " +
3132 toString(StrTabOrErr
.takeError()));
3134 return Error::success();
3137 template <class ELFT
> uint64_t MipsGOTParser
<ELFT
>::getGp() const {
3138 return GotSec
->sh_addr
+ 0x7ff0;
3141 template <class ELFT
>
3142 const typename MipsGOTParser
<ELFT
>::Entry
*
3143 MipsGOTParser
<ELFT
>::getGotLazyResolver() const {
3144 return LocalNum
> 0 ? &GotEntries
[0] : nullptr;
3147 template <class ELFT
>
3148 const typename MipsGOTParser
<ELFT
>::Entry
*
3149 MipsGOTParser
<ELFT
>::getGotModulePointer() const {
3152 const Entry
&E
= GotEntries
[1];
3153 if ((E
>> (sizeof(Entry
) * 8 - 1)) == 0)
3158 template <class ELFT
>
3159 typename MipsGOTParser
<ELFT
>::Entries
3160 MipsGOTParser
<ELFT
>::getLocalEntries() const {
3161 size_t Skip
= getGotModulePointer() ? 2 : 1;
3162 if (LocalNum
- Skip
<= 0)
3164 return GotEntries
.slice(Skip
, LocalNum
- Skip
);
3167 template <class ELFT
>
3168 typename MipsGOTParser
<ELFT
>::Entries
3169 MipsGOTParser
<ELFT
>::getGlobalEntries() const {
3172 return GotEntries
.slice(LocalNum
, GlobalNum
);
3175 template <class ELFT
>
3176 typename MipsGOTParser
<ELFT
>::Entries
3177 MipsGOTParser
<ELFT
>::getOtherEntries() const {
3178 size_t OtherNum
= GotEntries
.size() - LocalNum
- GlobalNum
;
3181 return GotEntries
.slice(LocalNum
+ GlobalNum
, OtherNum
);
3184 template <class ELFT
>
3185 uint64_t MipsGOTParser
<ELFT
>::getGotAddress(const Entry
*E
) const {
3186 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
3187 return GotSec
->sh_addr
+ Offset
;
3190 template <class ELFT
>
3191 int64_t MipsGOTParser
<ELFT
>::getGotOffset(const Entry
*E
) const {
3192 int64_t Offset
= std::distance(GotEntries
.data(), E
) * sizeof(Entry
);
3193 return Offset
- 0x7ff0;
3196 template <class ELFT
>
3197 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
3198 MipsGOTParser
<ELFT
>::getGotSym(const Entry
*E
) const {
3199 int64_t Offset
= std::distance(GotEntries
.data(), E
);
3200 return &GotDynSyms
[Offset
- LocalNum
];
3203 template <class ELFT
>
3204 const typename MipsGOTParser
<ELFT
>::Entry
*
3205 MipsGOTParser
<ELFT
>::getPltLazyResolver() const {
3206 return PltEntries
.empty() ? nullptr : &PltEntries
[0];
3209 template <class ELFT
>
3210 const typename MipsGOTParser
<ELFT
>::Entry
*
3211 MipsGOTParser
<ELFT
>::getPltModulePointer() const {
3212 return PltEntries
.size() < 2 ? nullptr : &PltEntries
[1];
3215 template <class ELFT
>
3216 typename MipsGOTParser
<ELFT
>::Entries
3217 MipsGOTParser
<ELFT
>::getPltEntries() const {
3218 if (PltEntries
.size() <= 2)
3220 return PltEntries
.slice(2, PltEntries
.size() - 2);
3223 template <class ELFT
>
3224 uint64_t MipsGOTParser
<ELFT
>::getPltAddress(const Entry
*E
) const {
3225 int64_t Offset
= std::distance(PltEntries
.data(), E
) * sizeof(Entry
);
3226 return PltSec
->sh_addr
+ Offset
;
3229 template <class ELFT
>
3230 const typename MipsGOTParser
<ELFT
>::Elf_Sym
*
3231 MipsGOTParser
<ELFT
>::getPltSym(const Entry
*E
) const {
3232 int64_t Offset
= std::distance(getPltEntries().data(), E
);
3233 if (PltRelSec
->sh_type
== ELF::SHT_REL
) {
3234 Elf_Rel_Range Rels
= unwrapOrError(FileName
, Obj
.rels(*PltRelSec
));
3235 return unwrapOrError(FileName
,
3236 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
3238 Elf_Rela_Range Rels
= unwrapOrError(FileName
, Obj
.relas(*PltRelSec
));
3239 return unwrapOrError(FileName
,
3240 Obj
.getRelocationSymbol(Rels
[Offset
], PltSymTable
));
3244 static const EnumEntry
<unsigned> ElfMipsISAExtType
[] = {
3245 {"None", Mips::AFL_EXT_NONE
},
3246 {"Broadcom SB-1", Mips::AFL_EXT_SB1
},
3247 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON
},
3248 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2
},
3249 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP
},
3250 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3
},
3251 {"LSI R4010", Mips::AFL_EXT_4010
},
3252 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E
},
3253 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F
},
3254 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A
},
3255 {"MIPS R4650", Mips::AFL_EXT_4650
},
3256 {"MIPS R5900", Mips::AFL_EXT_5900
},
3257 {"MIPS R10000", Mips::AFL_EXT_10000
},
3258 {"NEC VR4100", Mips::AFL_EXT_4100
},
3259 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111
},
3260 {"NEC VR4120", Mips::AFL_EXT_4120
},
3261 {"NEC VR5400", Mips::AFL_EXT_5400
},
3262 {"NEC VR5500", Mips::AFL_EXT_5500
},
3263 {"RMI Xlr", Mips::AFL_EXT_XLR
},
3264 {"Toshiba R3900", Mips::AFL_EXT_3900
}
3267 static const EnumEntry
<unsigned> ElfMipsASEFlags
[] = {
3268 {"DSP", Mips::AFL_ASE_DSP
},
3269 {"DSPR2", Mips::AFL_ASE_DSPR2
},
3270 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA
},
3271 {"MCU", Mips::AFL_ASE_MCU
},
3272 {"MDMX", Mips::AFL_ASE_MDMX
},
3273 {"MIPS-3D", Mips::AFL_ASE_MIPS3D
},
3274 {"MT", Mips::AFL_ASE_MT
},
3275 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS
},
3276 {"VZ", Mips::AFL_ASE_VIRT
},
3277 {"MSA", Mips::AFL_ASE_MSA
},
3278 {"MIPS16", Mips::AFL_ASE_MIPS16
},
3279 {"microMIPS", Mips::AFL_ASE_MICROMIPS
},
3280 {"XPA", Mips::AFL_ASE_XPA
},
3281 {"CRC", Mips::AFL_ASE_CRC
},
3282 {"GINV", Mips::AFL_ASE_GINV
},
3285 static const EnumEntry
<unsigned> ElfMipsFpABIType
[] = {
3286 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY
},
3287 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE
},
3288 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE
},
3289 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT
},
3290 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3291 Mips::Val_GNU_MIPS_ABI_FP_OLD_64
},
3292 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX
},
3293 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64
},
3294 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3295 Mips::Val_GNU_MIPS_ABI_FP_64A
}
3298 static const EnumEntry
<unsigned> ElfMipsFlags1
[] {
3299 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG
},
3302 static int getMipsRegisterSize(uint8_t Flag
) {
3304 case Mips::AFL_REG_NONE
:
3306 case Mips::AFL_REG_32
:
3308 case Mips::AFL_REG_64
:
3310 case Mips::AFL_REG_128
:
3317 template <class ELFT
>
3318 static void printMipsReginfoData(ScopedPrinter
&W
,
3319 const Elf_Mips_RegInfo
<ELFT
> &Reginfo
) {
3320 W
.printHex("GP", Reginfo
.ri_gp_value
);
3321 W
.printHex("General Mask", Reginfo
.ri_gprmask
);
3322 W
.printHex("Co-Proc Mask0", Reginfo
.ri_cprmask
[0]);
3323 W
.printHex("Co-Proc Mask1", Reginfo
.ri_cprmask
[1]);
3324 W
.printHex("Co-Proc Mask2", Reginfo
.ri_cprmask
[2]);
3325 W
.printHex("Co-Proc Mask3", Reginfo
.ri_cprmask
[3]);
3328 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsReginfo() {
3329 const Elf_Shdr
*RegInfoSec
= findSectionByName(".reginfo");
3331 W
.startLine() << "There is no .reginfo section in the file.\n";
3335 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
3336 Obj
.getSectionContents(*RegInfoSec
);
3337 if (!ContentsOrErr
) {
3338 this->reportUniqueWarning(
3339 "unable to read the content of the .reginfo section (" +
3340 describe(*RegInfoSec
) + "): " + toString(ContentsOrErr
.takeError()));
3344 if (ContentsOrErr
->size() < sizeof(Elf_Mips_RegInfo
<ELFT
>)) {
3345 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3346 Twine::utohexstr(ContentsOrErr
->size()) + ")");
3350 DictScope
GS(W
, "MIPS RegInfo");
3351 printMipsReginfoData(W
, *reinterpret_cast<const Elf_Mips_RegInfo
<ELFT
> *>(
3352 ContentsOrErr
->data()));
3355 template <class ELFT
>
3356 static Expected
<const Elf_Mips_Options
<ELFT
> *>
3357 readMipsOptions(const uint8_t *SecBegin
, ArrayRef
<uint8_t> &SecData
,
3358 bool &IsSupported
) {
3359 if (SecData
.size() < sizeof(Elf_Mips_Options
<ELFT
>))
3360 return createError("the .MIPS.options section has an invalid size (0x" +
3361 Twine::utohexstr(SecData
.size()) + ")");
3363 const Elf_Mips_Options
<ELFT
> *O
=
3364 reinterpret_cast<const Elf_Mips_Options
<ELFT
> *>(SecData
.data());
3365 const uint8_t Size
= O
->size
;
3366 if (Size
> SecData
.size()) {
3367 const uint64_t Offset
= SecData
.data() - SecBegin
;
3368 const uint64_t SecSize
= Offset
+ SecData
.size();
3369 return createError("a descriptor of size 0x" + Twine::utohexstr(Size
) +
3370 " at offset 0x" + Twine::utohexstr(Offset
) +
3371 " goes past the end of the .MIPS.options "
3372 "section of size 0x" +
3373 Twine::utohexstr(SecSize
));
3376 IsSupported
= O
->kind
== ODK_REGINFO
;
3377 const size_t ExpectedSize
=
3378 sizeof(Elf_Mips_Options
<ELFT
>) + sizeof(Elf_Mips_RegInfo
<ELFT
>);
3381 if (Size
< ExpectedSize
)
3383 "a .MIPS.options entry of kind " +
3384 Twine(getElfMipsOptionsOdkType(O
->kind
)) +
3385 " has an invalid size (0x" + Twine::utohexstr(Size
) +
3386 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize
));
3388 SecData
= SecData
.drop_front(Size
);
3392 template <class ELFT
> void ELFDumper
<ELFT
>::printMipsOptions() {
3393 const Elf_Shdr
*MipsOpts
= findSectionByName(".MIPS.options");
3395 W
.startLine() << "There is no .MIPS.options section in the file.\n";
3399 DictScope
GS(W
, "MIPS Options");
3401 ArrayRef
<uint8_t> Data
=
3402 unwrapOrError(ObjF
.getFileName(), Obj
.getSectionContents(*MipsOpts
));
3403 const uint8_t *const SecBegin
= Data
.begin();
3404 while (!Data
.empty()) {
3406 Expected
<const Elf_Mips_Options
<ELFT
> *> OptsOrErr
=
3407 readMipsOptions
<ELFT
>(SecBegin
, Data
, IsSupported
);
3409 reportUniqueWarning(OptsOrErr
.takeError());
3413 unsigned Kind
= (*OptsOrErr
)->kind
;
3414 const char *Type
= getElfMipsOptionsOdkType(Kind
);
3416 W
.startLine() << "Unsupported MIPS options tag: " << Type
<< " (" << Kind
3421 DictScope
GS(W
, Type
);
3422 if (Kind
== ODK_REGINFO
)
3423 printMipsReginfoData(W
, (*OptsOrErr
)->getRegInfo());
3425 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3429 template <class ELFT
> void ELFDumper
<ELFT
>::printStackMap() const {
3430 const Elf_Shdr
*StackMapSection
= findSectionByName(".llvm_stackmaps");
3431 if (!StackMapSection
)
3434 auto Warn
= [&](Error
&&E
) {
3435 this->reportUniqueWarning("unable to read the stack map from " +
3436 describe(*StackMapSection
) + ": " +
3437 toString(std::move(E
)));
3440 Expected
<ArrayRef
<uint8_t>> ContentOrErr
=
3441 Obj
.getSectionContents(*StackMapSection
);
3442 if (!ContentOrErr
) {
3443 Warn(ContentOrErr
.takeError());
3447 if (Error E
= StackMapParser
<ELFT::TargetEndianness
>::validateHeader(
3453 prettyPrintStackMap(W
, StackMapParser
<ELFT::TargetEndianness
>(*ContentOrErr
));
3456 template <class ELFT
> void ELFDumper
<ELFT
>::printGroupSections() {
3457 ELFDumperStyle
->printGroupSections();
3460 template <class ELFT
> void ELFDumper
<ELFT
>::printAddrsig() {
3461 ELFDumperStyle
->printAddrsig();
3464 static inline void printFields(formatted_raw_ostream
&OS
, StringRef Str1
,
3468 OS
.PadToColumn(37u);
3473 template <class ELFT
>
3474 static std::string
getSectionHeadersNumString(const ELFFile
<ELFT
> &Obj
,
3475 StringRef FileName
) {
3476 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3477 if (ElfHeader
.e_shnum
!= 0)
3478 return to_string(ElfHeader
.e_shnum
);
3480 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3482 // In this case we can ignore an error, because we have already reported a
3483 // warning about the broken section header table earlier.
3484 consumeError(ArrOrErr
.takeError());
3488 if (ArrOrErr
->empty())
3490 return "0 (" + to_string((*ArrOrErr
)[0].sh_size
) + ")";
3493 template <class ELFT
>
3494 static std::string
getSectionHeaderTableIndexString(const ELFFile
<ELFT
> &Obj
,
3495 StringRef FileName
) {
3496 const typename
ELFT::Ehdr
&ElfHeader
= Obj
.getHeader();
3497 if (ElfHeader
.e_shstrndx
!= SHN_XINDEX
)
3498 return to_string(ElfHeader
.e_shstrndx
);
3500 Expected
<ArrayRef
<typename
ELFT::Shdr
>> ArrOrErr
= Obj
.sections();
3502 // In this case we can ignore an error, because we have already reported a
3503 // warning about the broken section header table earlier.
3504 consumeError(ArrOrErr
.takeError());
3508 if (ArrOrErr
->empty())
3509 return "65535 (corrupt: out of range)";
3510 return to_string(ElfHeader
.e_shstrndx
) + " (" +
3511 to_string((*ArrOrErr
)[0].sh_link
) + ")";
3514 template <class ELFT
> void GNUStyle
<ELFT
>::printFileHeaders() {
3515 const Elf_Ehdr
&e
= this->Obj
.getHeader();
3516 OS
<< "ELF Header:\n";
3519 for (int i
= 0; i
< ELF::EI_NIDENT
; i
++)
3520 OS
<< format(" %02x", static_cast<int>(e
.e_ident
[i
]));
3522 Str
= printEnum(e
.e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
3523 printFields(OS
, "Class:", Str
);
3524 Str
= printEnum(e
.e_ident
[ELF::EI_DATA
], makeArrayRef(ElfDataEncoding
));
3525 printFields(OS
, "Data:", Str
);
3528 OS
.PadToColumn(37u);
3529 OS
<< to_hexString(e
.e_ident
[ELF::EI_VERSION
]);
3530 if (e
.e_version
== ELF::EV_CURRENT
)
3533 Str
= printEnum(e
.e_ident
[ELF::EI_OSABI
], makeArrayRef(ElfOSABI
));
3534 printFields(OS
, "OS/ABI:", Str
);
3536 "ABI Version:", std::to_string(e
.e_ident
[ELF::EI_ABIVERSION
]));
3538 Str
= printEnum(e
.e_type
, makeArrayRef(ElfObjectFileType
));
3539 if (makeArrayRef(ElfObjectFileType
).end() ==
3540 llvm::find_if(ElfObjectFileType
, [&](const EnumEntry
<unsigned> &E
) {
3541 return E
.Value
== e
.e_type
;
3543 if (e
.e_type
>= ET_LOPROC
)
3544 Str
= "Processor Specific: (" + Str
+ ")";
3545 else if (e
.e_type
>= ET_LOOS
)
3546 Str
= "OS Specific: (" + Str
+ ")";
3548 Str
= "<unknown>: " + Str
;
3550 printFields(OS
, "Type:", Str
);
3552 Str
= printEnum(e
.e_machine
, makeArrayRef(ElfMachineType
));
3553 printFields(OS
, "Machine:", Str
);
3554 Str
= "0x" + to_hexString(e
.e_version
);
3555 printFields(OS
, "Version:", Str
);
3556 Str
= "0x" + to_hexString(e
.e_entry
);
3557 printFields(OS
, "Entry point address:", Str
);
3558 Str
= to_string(e
.e_phoff
) + " (bytes into file)";
3559 printFields(OS
, "Start of program headers:", Str
);
3560 Str
= to_string(e
.e_shoff
) + " (bytes into file)";
3561 printFields(OS
, "Start of section headers:", Str
);
3562 std::string ElfFlags
;
3563 if (e
.e_machine
== EM_MIPS
)
3565 printFlags(e
.e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
3566 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
3567 unsigned(ELF::EF_MIPS_MACH
));
3568 else if (e
.e_machine
== EM_RISCV
)
3569 ElfFlags
= printFlags(e
.e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
3570 Str
= "0x" + to_hexString(e
.e_flags
);
3571 if (!ElfFlags
.empty())
3572 Str
= Str
+ ", " + ElfFlags
;
3573 printFields(OS
, "Flags:", Str
);
3574 Str
= to_string(e
.e_ehsize
) + " (bytes)";
3575 printFields(OS
, "Size of this header:", Str
);
3576 Str
= to_string(e
.e_phentsize
) + " (bytes)";
3577 printFields(OS
, "Size of program headers:", Str
);
3578 Str
= to_string(e
.e_phnum
);
3579 printFields(OS
, "Number of program headers:", Str
);
3580 Str
= to_string(e
.e_shentsize
) + " (bytes)";
3581 printFields(OS
, "Size of section headers:", Str
);
3582 Str
= getSectionHeadersNumString(this->Obj
, this->FileName
);
3583 printFields(OS
, "Number of section headers:", Str
);
3584 Str
= getSectionHeaderTableIndexString(this->Obj
, this->FileName
);
3585 printFields(OS
, "Section header string table index:", Str
);
3588 template <class ELFT
> std::vector
<GroupSection
> DumpStyle
<ELFT
>::getGroups() {
3589 auto GetSignature
= [&](const Elf_Sym
&Sym
, unsigned SymNdx
,
3590 const Elf_Shdr
&Symtab
) -> StringRef
{
3591 Expected
<StringRef
> StrTableOrErr
= Obj
.getStringTableForSymtab(Symtab
);
3592 if (!StrTableOrErr
) {
3593 reportUniqueWarning("unable to get the string table for " +
3594 describe(Obj
, Symtab
) + ": " +
3595 toString(StrTableOrErr
.takeError()));
3599 StringRef Strings
= *StrTableOrErr
;
3600 if (Sym
.st_name
>= Strings
.size()) {
3601 reportUniqueWarning("unable to get the name of the symbol with index " +
3602 Twine(SymNdx
) + ": st_name (0x" +
3603 Twine::utohexstr(Sym
.st_name
) +
3604 ") is past the end of the string table of size 0x" +
3605 Twine::utohexstr(Strings
.size()));
3609 return StrTableOrErr
->data() + Sym
.st_name
;
3612 std::vector
<GroupSection
> Ret
;
3614 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
3616 if (Sec
.sh_type
!= ELF::SHT_GROUP
)
3619 StringRef Signature
= "<?>";
3620 if (Expected
<const Elf_Shdr
*> SymtabOrErr
= Obj
.getSection(Sec
.sh_link
)) {
3621 if (Expected
<const Elf_Sym
*> SymOrErr
=
3622 Obj
.template getEntry
<Elf_Sym
>(**SymtabOrErr
, Sec
.sh_info
))
3623 Signature
= GetSignature(**SymOrErr
, Sec
.sh_info
, **SymtabOrErr
);
3625 reportUniqueWarning("unable to get the signature symbol for " +
3626 describe(Obj
, Sec
) + ": " +
3627 toString(SymOrErr
.takeError()));
3629 reportUniqueWarning("unable to get the symbol table for " +
3630 describe(Obj
, Sec
) + ": " +
3631 toString(SymtabOrErr
.takeError()));
3634 ArrayRef
<Elf_Word
> Data
;
3635 if (Expected
<ArrayRef
<Elf_Word
>> ContentsOrErr
=
3636 Obj
.template getSectionContentsAsArray
<Elf_Word
>(Sec
)) {
3637 if (ContentsOrErr
->empty())
3638 reportUniqueWarning("unable to read the section group flag from the " +
3639 describe(Obj
, Sec
) + ": the section is empty");
3641 Data
= *ContentsOrErr
;
3643 reportUniqueWarning("unable to get the content of the " +
3644 describe(Obj
, Sec
) + ": " +
3645 toString(ContentsOrErr
.takeError()));
3648 Ret
.push_back({getPrintableSectionName(Sec
),
3649 maybeDemangle(Signature
),
3654 Data
.empty() ? Elf_Word(0) : Data
[0],
3660 std::vector
<GroupMember
> &GM
= Ret
.back().Members
;
3661 for (uint32_t Ndx
: Data
.slice(1)) {
3662 if (Expected
<const Elf_Shdr
*> SecOrErr
= Obj
.getSection(Ndx
)) {
3663 GM
.push_back({getPrintableSectionName(**SecOrErr
), Ndx
});
3665 reportUniqueWarning("unable to get the section with index " +
3666 Twine(Ndx
) + " when dumping the " +
3667 describe(Obj
, Sec
) + ": " +
3668 toString(SecOrErr
.takeError()));
3669 GM
.push_back({"<?>", Ndx
});
3676 static DenseMap
<uint64_t, const GroupSection
*>
3677 mapSectionsToGroups(ArrayRef
<GroupSection
> Groups
) {
3678 DenseMap
<uint64_t, const GroupSection
*> Ret
;
3679 for (const GroupSection
&G
: Groups
)
3680 for (const GroupMember
&GM
: G
.Members
)
3681 Ret
.insert({GM
.Index
, &G
});
3685 template <class ELFT
> void GNUStyle
<ELFT
>::printGroupSections() {
3686 std::vector
<GroupSection
> V
= this->getGroups();
3687 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
3688 for (const GroupSection
&G
: V
) {
3690 << getGroupType(G
.Type
) << " group section ["
3691 << format_decimal(G
.Index
, 5) << "] `" << G
.Name
<< "' [" << G
.Signature
3692 << "] contains " << G
.Members
.size() << " sections:\n"
3693 << " [Index] Name\n";
3694 for (const GroupMember
&GM
: G
.Members
) {
3695 const GroupSection
*MainGroup
= Map
[GM
.Index
];
3696 if (MainGroup
!= &G
)
3697 this->reportUniqueWarning(
3698 "section with index " + Twine(GM
.Index
) +
3699 ", included in the group section with index " +
3700 Twine(MainGroup
->Index
) +
3701 ", was also found in the group section with index " +
3703 OS
<< " [" << format_decimal(GM
.Index
, 5) << "] " << GM
.Name
<< "\n";
3708 OS
<< "There are no section groups in this file.\n";
3711 template <class ELFT
>
3712 void GNUStyle
<ELFT
>::printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
3713 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) {
3714 Expected
<RelSymbol
<ELFT
>> Target
=
3715 this->dumper().getRelocationTarget(R
, SymTab
);
3717 this->reportUniqueWarning("unable to print relocation " + Twine(RelIndex
) +
3718 " in " + describe(this->Obj
, Sec
) + ": " +
3719 toString(Target
.takeError()));
3721 printRelRelaReloc(R
, *Target
);
3724 template <class ELFT
> void GNUStyle
<ELFT
>::printRelrReloc(const Elf_Relr
&R
) {
3725 OS
<< to_string(format_hex_no_prefix(R
, ELFT::Is64Bits
? 16 : 8)) << "\n";
3728 template <class ELFT
>
3729 void GNUStyle
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
3730 const RelSymbol
<ELFT
> &RelSym
) {
3731 // First two fields are bit width dependent. The rest of them are fixed width.
3732 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
3733 Field Fields
[5] = {0, 10 + Bias
, 19 + 2 * Bias
, 42 + 2 * Bias
, 53 + 2 * Bias
};
3734 unsigned Width
= ELFT::Is64Bits
? 16 : 8;
3736 Fields
[0].Str
= to_string(format_hex_no_prefix(R
.Offset
, Width
));
3737 Fields
[1].Str
= to_string(format_hex_no_prefix(R
.Info
, Width
));
3739 SmallString
<32> RelocName
;
3740 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
3741 Fields
[2].Str
= RelocName
.c_str();
3745 to_string(format_hex_no_prefix(RelSym
.Sym
->getValue(), Width
));
3747 Fields
[4].Str
= std::string(RelSym
.Name
);
3748 for (const Field
&F
: Fields
)
3752 if (Optional
<int64_t> A
= R
.Addend
) {
3753 int64_t RelAddend
= *A
;
3754 if (!RelSym
.Name
.empty()) {
3755 if (RelAddend
< 0) {
3757 RelAddend
= std::abs(RelAddend
);
3762 Addend
+= to_hexString(RelAddend
, false);
3764 OS
<< Addend
<< "\n";
3767 template <class ELFT
>
3768 static void printRelocHeaderFields(formatted_raw_ostream
&OS
, unsigned SType
) {
3769 bool IsRela
= SType
== ELF::SHT_RELA
|| SType
== ELF::SHT_ANDROID_RELA
;
3770 bool IsRelr
= SType
== ELF::SHT_RELR
|| SType
== ELF::SHT_ANDROID_RELR
;
3775 if (IsRelr
&& opts::RawRelr
)
3781 << " Symbol's Value Symbol's Name";
3783 OS
<< " Info Type Sym. Value Symbol's Name";
3789 template <class ELFT
>
3790 void GNUStyle
<ELFT
>::printDynamicRelocHeader(unsigned Type
, StringRef Name
,
3791 const DynRegionInfo
&Reg
) {
3792 uint64_t Offset
= Reg
.Addr
- this->Obj
.base();
3793 OS
<< "\n'" << Name
.str().c_str() << "' relocation section at offset 0x"
3794 << to_hexString(Offset
, false) << " contains " << Reg
.Size
<< " bytes:\n";
3795 printRelocHeaderFields
<ELFT
>(OS
, Type
);
3798 template <class ELFT
>
3799 static bool isRelocationSec(const typename
ELFT::Shdr
&Sec
) {
3800 return Sec
.sh_type
== ELF::SHT_REL
|| Sec
.sh_type
== ELF::SHT_RELA
||
3801 Sec
.sh_type
== ELF::SHT_RELR
|| Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3802 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
||
3803 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
;
3806 template <class ELFT
> void GNUStyle
<ELFT
>::printRelocations() {
3807 auto GetEntriesNum
= [&](const Elf_Shdr
&Sec
) -> Expected
<size_t> {
3808 // Android's packed relocation section needs to be unpacked first
3809 // to get the actual number of entries.
3810 if (Sec
.sh_type
== ELF::SHT_ANDROID_REL
||
3811 Sec
.sh_type
== ELF::SHT_ANDROID_RELA
) {
3812 Expected
<std::vector
<typename
ELFT::Rela
>> RelasOrErr
=
3813 this->Obj
.android_relas(Sec
);
3815 return RelasOrErr
.takeError();
3816 return RelasOrErr
->size();
3819 if (!opts::RawRelr
&& (Sec
.sh_type
== ELF::SHT_RELR
||
3820 Sec
.sh_type
== ELF::SHT_ANDROID_RELR
)) {
3821 Expected
<Elf_Relr_Range
> RelrsOrErr
= this->Obj
.relrs(Sec
);
3823 return RelrsOrErr
.takeError();
3824 return this->Obj
.decode_relrs(*RelrsOrErr
).size();
3827 return Sec
.getEntityCount();
3830 bool HasRelocSections
= false;
3831 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
3832 if (!isRelocationSec
<ELFT
>(Sec
))
3834 HasRelocSections
= true;
3836 std::string EntriesNum
= "<?>";
3837 if (Expected
<size_t> NumOrErr
= GetEntriesNum(Sec
))
3838 EntriesNum
= std::to_string(*NumOrErr
);
3840 this->reportUniqueWarning("unable to get the number of relocations in " +
3841 describe(this->Obj
, Sec
) + ": " +
3842 toString(NumOrErr
.takeError()));
3844 uintX_t Offset
= Sec
.sh_offset
;
3845 StringRef Name
= this->getPrintableSectionName(Sec
);
3846 OS
<< "\nRelocation section '" << Name
<< "' at offset 0x"
3847 << to_hexString(Offset
, false) << " contains " << EntriesNum
3849 printRelocHeaderFields
<ELFT
>(OS
, Sec
.sh_type
);
3850 this->printRelocationsHelper(Sec
);
3852 if (!HasRelocSections
)
3853 OS
<< "\nThere are no relocations in this file.\n";
3856 // Print the offset of a particular section from anyone of the ranges:
3857 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3858 // If 'Type' does not fall within any of those ranges, then a string is
3859 // returned as '<unknown>' followed by the type value.
3860 static std::string
getSectionTypeOffsetString(unsigned Type
) {
3861 if (Type
>= SHT_LOOS
&& Type
<= SHT_HIOS
)
3862 return "LOOS+0x" + to_hexString(Type
- SHT_LOOS
);
3863 else if (Type
>= SHT_LOPROC
&& Type
<= SHT_HIPROC
)
3864 return "LOPROC+0x" + to_hexString(Type
- SHT_LOPROC
);
3865 else if (Type
>= SHT_LOUSER
&& Type
<= SHT_HIUSER
)
3866 return "LOUSER+0x" + to_hexString(Type
- SHT_LOUSER
);
3867 return "0x" + to_hexString(Type
) + ": <unknown>";
3870 static std::string
getSectionTypeString(unsigned Machine
, unsigned Type
) {
3871 StringRef Name
= getELFSectionTypeName(Machine
, Type
);
3873 // Handle SHT_GNU_* type names.
3874 if (Name
.startswith("SHT_GNU_")) {
3875 if (Name
== "SHT_GNU_HASH")
3877 // E.g. SHT_GNU_verneed -> VERNEED.
3878 return Name
.drop_front(8).upper();
3881 if (Name
== "SHT_SYMTAB_SHNDX")
3882 return "SYMTAB SECTION INDICES";
3884 if (Name
.startswith("SHT_"))
3885 return Name
.drop_front(4).str();
3886 return getSectionTypeOffsetString(Type
);
3889 static void printSectionDescription(formatted_raw_ostream
&OS
,
3890 unsigned EMachine
) {
3891 OS
<< "Key to Flags:\n";
3892 OS
<< " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3894 OS
<< " L (link order), O (extra OS processing required), G (group), T "
3896 OS
<< " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3898 if (EMachine
== EM_X86_64
)
3899 OS
<< " l (large), ";
3900 else if (EMachine
== EM_ARM
)
3901 OS
<< " y (purecode), ";
3905 OS
<< "p (processor specific)\n";
3908 template <class ELFT
> void GNUStyle
<ELFT
>::printSectionHeaders() {
3909 unsigned Bias
= ELFT::Is64Bits
? 0 : 8;
3910 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
3911 OS
<< "There are " << to_string(Sections
.size())
3912 << " section headers, starting at offset "
3913 << "0x" << to_hexString(this->Obj
.getHeader().e_shoff
, false) << ":\n\n";
3914 OS
<< "Section Headers:\n";
3915 Field Fields
[11] = {
3916 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3917 {"Address", 41}, {"Off", 58 - Bias
}, {"Size", 65 - Bias
},
3918 {"ES", 72 - Bias
}, {"Flg", 75 - Bias
}, {"Lk", 79 - Bias
},
3919 {"Inf", 82 - Bias
}, {"Al", 86 - Bias
}};
3920 for (const Field
&F
: Fields
)
3924 StringRef SecStrTable
;
3925 if (Expected
<StringRef
> SecStrTableOrErr
= this->Obj
.getSectionStringTable(
3926 Sections
, this->dumper().WarningHandler
))
3927 SecStrTable
= *SecStrTableOrErr
;
3929 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
3931 size_t SectionIndex
= 0;
3932 for (const Elf_Shdr
&Sec
: Sections
) {
3933 Fields
[0].Str
= to_string(SectionIndex
);
3934 if (SecStrTable
.empty())
3935 Fields
[1].Str
= "<no-strings>";
3937 Fields
[1].Str
= std::string(unwrapOrError
<StringRef
>(
3938 this->FileName
, this->Obj
.getSectionName(Sec
, SecStrTable
)));
3940 getSectionTypeString(this->Obj
.getHeader().e_machine
, Sec
.sh_type
);
3942 to_string(format_hex_no_prefix(Sec
.sh_addr
, ELFT::Is64Bits
? 16 : 8));
3943 Fields
[4].Str
= to_string(format_hex_no_prefix(Sec
.sh_offset
, 6));
3944 Fields
[5].Str
= to_string(format_hex_no_prefix(Sec
.sh_size
, 6));
3945 Fields
[6].Str
= to_string(format_hex_no_prefix(Sec
.sh_entsize
, 2));
3946 Fields
[7].Str
= getGNUFlags(this->Obj
.getHeader().e_machine
, Sec
.sh_flags
);
3947 Fields
[8].Str
= to_string(Sec
.sh_link
);
3948 Fields
[9].Str
= to_string(Sec
.sh_info
);
3949 Fields
[10].Str
= to_string(Sec
.sh_addralign
);
3951 OS
.PadToColumn(Fields
[0].Column
);
3952 OS
<< "[" << right_justify(Fields
[0].Str
, 2) << "]";
3953 for (int i
= 1; i
< 7; i
++)
3954 printField(Fields
[i
]);
3955 OS
.PadToColumn(Fields
[7].Column
);
3956 OS
<< right_justify(Fields
[7].Str
, 3);
3957 OS
.PadToColumn(Fields
[8].Column
);
3958 OS
<< right_justify(Fields
[8].Str
, 2);
3959 OS
.PadToColumn(Fields
[9].Column
);
3960 OS
<< right_justify(Fields
[9].Str
, 3);
3961 OS
.PadToColumn(Fields
[10].Column
);
3962 OS
<< right_justify(Fields
[10].Str
, 2);
3966 printSectionDescription(OS
, this->Obj
.getHeader().e_machine
);
3969 template <class ELFT
>
3970 void GNUStyle
<ELFT
>::printSymtabMessage(const Elf_Shdr
*Symtab
, size_t Entries
,
3971 bool NonVisibilityBitsUsed
) {
3974 Name
= this->getPrintableSectionName(*Symtab
);
3976 OS
<< "\nSymbol table '" << Name
<< "'";
3978 OS
<< "\nSymbol table for image";
3979 OS
<< " contains " << Entries
<< " entries:\n";
3982 OS
<< " Num: Value Size Type Bind Vis";
3984 OS
<< " Num: Value Size Type Bind Vis";
3986 if (NonVisibilityBitsUsed
)
3988 OS
<< " Ndx Name\n";
3991 template <class ELFT
>
3992 std::string GNUStyle
<ELFT
>::getSymbolSectionNdx(const Elf_Sym
&Symbol
,
3993 unsigned SymIndex
) {
3994 unsigned SectionIndex
= Symbol
.st_shndx
;
3995 switch (SectionIndex
) {
3996 case ELF::SHN_UNDEF
:
4000 case ELF::SHN_COMMON
:
4002 case ELF::SHN_XINDEX
: {
4003 Expected
<uint32_t> IndexOrErr
= object::getExtendedSymbolTableIndex
<ELFT
>(
4004 Symbol
, SymIndex
, this->dumper().getShndxTable());
4006 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
4007 "getExtendedSymbolTableIndex should only fail due to an invalid "
4008 "SHT_SYMTAB_SHNDX table/reference");
4009 this->reportUniqueWarning(IndexOrErr
.takeError());
4010 return "RSV[0xffff]";
4012 return to_string(format_decimal(*IndexOrErr
, 3));
4016 // Processor specific
4017 if (SectionIndex
>= ELF::SHN_LOPROC
&& SectionIndex
<= ELF::SHN_HIPROC
)
4018 return std::string("PRC[0x") +
4019 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4021 if (SectionIndex
>= ELF::SHN_LOOS
&& SectionIndex
<= ELF::SHN_HIOS
)
4022 return std::string("OS[0x") +
4023 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4024 // Architecture reserved:
4025 if (SectionIndex
>= ELF::SHN_LORESERVE
&&
4026 SectionIndex
<= ELF::SHN_HIRESERVE
)
4027 return std::string("RSV[0x") +
4028 to_string(format_hex_no_prefix(SectionIndex
, 4)) + "]";
4029 // A normal section with an index
4030 return to_string(format_decimal(SectionIndex
, 3));
4034 template <class ELFT
>
4035 void GNUStyle
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
4036 Optional
<StringRef
> StrTable
, bool IsDynamic
,
4037 bool NonVisibilityBitsUsed
) {
4038 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4039 Field Fields
[8] = {0, 8, 17 + Bias
, 23 + Bias
,
4040 31 + Bias
, 38 + Bias
, 48 + Bias
, 51 + Bias
};
4041 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 6)) + ":";
4043 to_string(format_hex_no_prefix(Symbol
.st_value
, ELFT::Is64Bits
? 16 : 8));
4044 Fields
[2].Str
= to_string(format_decimal(Symbol
.st_size
, 5));
4046 unsigned char SymbolType
= Symbol
.getType();
4047 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
4048 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
4049 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
4051 Fields
[3].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
4054 printEnum(Symbol
.getBinding(), makeArrayRef(ElfSymbolBindings
));
4056 printEnum(Symbol
.getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
4058 if (Symbol
.st_other
& ~0x3) {
4059 if (this->Obj
.getHeader().e_machine
== ELF::EM_AARCH64
) {
4060 uint8_t Other
= Symbol
.st_other
& ~0x3;
4061 if (Other
& STO_AARCH64_VARIANT_PCS
) {
4062 Other
&= ~STO_AARCH64_VARIANT_PCS
;
4063 Fields
[5].Str
+= " [VARIANT_PCS";
4065 Fields
[5].Str
.append(" | " + to_hexString(Other
, false));
4066 Fields
[5].Str
.append("]");
4070 " [<other: " + to_string(format_hex(Symbol
.st_other
, 2)) + ">]";
4074 Fields
[6].Column
+= NonVisibilityBitsUsed
? 13 : 0;
4075 Fields
[6].Str
= getSymbolSectionNdx(Symbol
, SymIndex
);
4078 this->dumper().getFullSymbolName(Symbol
, SymIndex
, StrTable
, IsDynamic
);
4079 for (const Field
&Entry
: Fields
)
4084 template <class ELFT
>
4085 void GNUStyle
<ELFT
>::printHashedSymbol(const Elf_Sym
*Symbol
, unsigned SymIndex
,
4086 StringRef StrTable
, uint32_t Bucket
) {
4087 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4088 Field Fields
[9] = {0, 6, 11, 20 + Bias
, 25 + Bias
,
4089 34 + Bias
, 41 + Bias
, 49 + Bias
, 53 + Bias
};
4090 Fields
[0].Str
= to_string(format_decimal(SymIndex
, 5));
4091 Fields
[1].Str
= to_string(format_decimal(Bucket
, 3)) + ":";
4093 Fields
[2].Str
= to_string(
4094 format_hex_no_prefix(Symbol
->st_value
, ELFT::Is64Bits
? 16 : 8));
4095 Fields
[3].Str
= to_string(format_decimal(Symbol
->st_size
, 5));
4097 unsigned char SymbolType
= Symbol
->getType();
4098 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
4099 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
4100 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
4102 Fields
[4].Str
= printEnum(SymbolType
, makeArrayRef(ElfSymbolTypes
));
4105 printEnum(Symbol
->getBinding(), makeArrayRef(ElfSymbolBindings
));
4107 printEnum(Symbol
->getVisibility(), makeArrayRef(ElfSymbolVisibilities
));
4108 Fields
[7].Str
= getSymbolSectionNdx(*Symbol
, SymIndex
);
4110 this->dumper().getFullSymbolName(*Symbol
, SymIndex
, StrTable
, true);
4112 for (const Field
&Entry
: Fields
)
4117 template <class ELFT
>
4118 void GNUStyle
<ELFT
>::printSymbols(bool PrintSymbols
, bool PrintDynamicSymbols
) {
4119 if (!PrintSymbols
&& !PrintDynamicSymbols
)
4121 // GNU readelf prints both the .dynsym and .symtab with --symbols.
4122 this->dumper().printSymbolsHelper(true);
4124 this->dumper().printSymbolsHelper(false);
4127 template <class ELFT
>
4128 void GNUStyle
<ELFT
>::printHashTableSymbols(const Elf_Hash
&SysVHash
) {
4129 StringRef StringTable
= this->dumper().getDynamicStringTable();
4130 if (StringTable
.empty())
4134 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4136 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4139 Elf_Sym_Range DynSyms
= this->dumper().dynamic_symbols();
4140 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
4142 Optional
<DynRegionInfo
> DynSymRegion
= this->dumper().getDynSymRegion();
4143 this->reportUniqueWarning(
4144 Twine("unable to print symbols for the .hash table: the "
4145 "dynamic symbol table ") +
4146 (DynSymRegion
? "is empty" : "was not found"));
4150 auto Buckets
= SysVHash
.buckets();
4151 auto Chains
= SysVHash
.chains();
4152 for (uint32_t Buc
= 0; Buc
< SysVHash
.nbucket
; Buc
++) {
4153 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
4155 std::vector
<bool> Visited(SysVHash
.nchain
);
4156 for (uint32_t Ch
= Buckets
[Buc
]; Ch
< SysVHash
.nchain
; Ch
= Chains
[Ch
]) {
4157 if (Ch
== ELF::STN_UNDEF
)
4161 this->reportUniqueWarning(".hash section is invalid: bucket " +
4163 ": a cycle was detected in the linked chain");
4167 printHashedSymbol(FirstSym
+ Ch
, Ch
, StringTable
, Buc
);
4173 template <class ELFT
>
4174 void GNUStyle
<ELFT
>::printGnuHashTableSymbols(const Elf_GnuHash
&GnuHash
) {
4175 StringRef StringTable
= this->dumper().getDynamicStringTable();
4176 if (StringTable
.empty())
4179 Elf_Sym_Range DynSyms
= this->dumper().dynamic_symbols();
4180 const Elf_Sym
*FirstSym
= DynSyms
.empty() ? nullptr : &DynSyms
[0];
4181 Optional
<DynRegionInfo
> DynSymRegion
= this->dumper().getDynSymRegion();
4183 this->reportUniqueWarning(
4184 Twine("unable to print symbols for the .gnu.hash table: the "
4185 "dynamic symbol table ") +
4186 (DynSymRegion
? "is empty" : "was not found"));
4190 auto GetSymbol
= [&](uint64_t SymIndex
,
4191 uint64_t SymsTotal
) -> const Elf_Sym
* {
4192 if (SymIndex
>= SymsTotal
) {
4193 this->reportUniqueWarning(
4194 "unable to print hashed symbol with index " + Twine(SymIndex
) +
4195 ", which is greater than or equal to the number of dynamic symbols "
4197 Twine::utohexstr(SymsTotal
) + ")");
4200 return FirstSym
+ SymIndex
;
4203 Expected
<ArrayRef
<Elf_Word
>> ValuesOrErr
=
4204 getGnuHashTableChains
<ELFT
>(DynSymRegion
, &GnuHash
);
4205 ArrayRef
<Elf_Word
> Values
;
4207 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4209 toString(ValuesOrErr
.takeError()));
4211 Values
= *ValuesOrErr
;
4213 ArrayRef
<Elf_Word
> Buckets
= GnuHash
.buckets();
4214 for (uint32_t Buc
= 0; Buc
< GnuHash
.nbuckets
; Buc
++) {
4215 if (Buckets
[Buc
] == ELF::STN_UNDEF
)
4217 uint32_t Index
= Buckets
[Buc
];
4218 // Print whole chain.
4220 uint32_t SymIndex
= Index
++;
4221 if (const Elf_Sym
*Sym
= GetSymbol(SymIndex
, DynSyms
.size()))
4222 printHashedSymbol(Sym
, SymIndex
, StringTable
, Buc
);
4226 if (SymIndex
< GnuHash
.symndx
) {
4227 this->reportUniqueWarning(
4228 "unable to read the hash value for symbol with index " +
4230 ", which is less than the index of the first hashed symbol (" +
4231 Twine(GnuHash
.symndx
) + ")");
4235 // Chain ends at symbol with stopper bit.
4236 if ((Values
[SymIndex
- GnuHash
.symndx
] & 1) == 1)
4242 template <class ELFT
> void GNUStyle
<ELFT
>::printHashSymbols() {
4243 if (const Elf_Hash
*SysVHash
= this->dumper().getHashTable()) {
4244 OS
<< "\n Symbol table of .hash for image:\n";
4245 if (Error E
= checkHashTable
<ELFT
>(this->dumper(), SysVHash
))
4246 this->reportUniqueWarning(std::move(E
));
4248 printHashTableSymbols(*SysVHash
);
4251 // Try printing the .gnu.hash table.
4252 if (const Elf_GnuHash
*GnuHash
= this->dumper().getGnuHashTable()) {
4253 OS
<< "\n Symbol table of .gnu.hash for image:\n";
4255 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4257 OS
<< " Num Buc: Value Size Type Bind Vis Ndx Name";
4260 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, GnuHash
))
4261 this->reportUniqueWarning(std::move(E
));
4263 printGnuHashTableSymbols(*GnuHash
);
4267 template <class ELFT
> void GNUStyle
<ELFT
>::printSectionDetails() {
4268 ArrayRef
<Elf_Shdr
> Sections
= cantFail(this->Obj
.sections());
4269 OS
<< "There are " << to_string(Sections
.size())
4270 << " section headers, starting at offset "
4271 << "0x" << to_hexString(this->Obj
.getHeader().e_shoff
, false) << ":\n\n";
4273 OS
<< "Section Headers:\n";
4275 auto PrintFields
= [&](ArrayRef
<Field
> V
) {
4276 for (const Field
&F
: V
)
4281 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4283 constexpr bool Is64
= ELFT::Is64Bits
;
4284 PrintFields({{"Type", 7},
4285 {Is64
? "Address" : "Addr", 23},
4286 {"Off", Is64
? 40 : 32},
4287 {"Size", Is64
? 47 : 39},
4288 {"ES", Is64
? 54 : 46},
4289 {"Lk", Is64
? 59 : 51},
4290 {"Inf", Is64
? 62 : 54},
4291 {"Al", Is64
? 66 : 57}});
4292 PrintFields({{"Flags", 7}});
4294 StringRef SecStrTable
;
4295 if (Expected
<StringRef
> SecStrTableOrErr
= this->Obj
.getSectionStringTable(
4296 Sections
, this->dumper().WarningHandler
))
4297 SecStrTable
= *SecStrTableOrErr
;
4299 this->reportUniqueWarning(SecStrTableOrErr
.takeError());
4301 size_t SectionIndex
= 0;
4302 const unsigned AddrSize
= Is64
? 16 : 8;
4303 for (const Elf_Shdr
&S
: Sections
) {
4304 StringRef Name
= "<?>";
4305 if (Expected
<StringRef
> NameOrErr
=
4306 this->Obj
.getSectionName(S
, SecStrTable
))
4309 this->reportUniqueWarning(NameOrErr
.takeError());
4312 OS
<< "[" << right_justify(to_string(SectionIndex
), 2) << "]";
4313 PrintFields({{Name
, 7}});
4315 {{getSectionTypeString(this->Obj
.getHeader().e_machine
, S
.sh_type
), 7},
4316 {to_string(format_hex_no_prefix(S
.sh_addr
, AddrSize
)), 23},
4317 {to_string(format_hex_no_prefix(S
.sh_offset
, 6)), Is64
? 39 : 32},
4318 {to_string(format_hex_no_prefix(S
.sh_size
, 6)), Is64
? 47 : 39},
4319 {to_string(format_hex_no_prefix(S
.sh_entsize
, 2)), Is64
? 54 : 46},
4320 {to_string(S
.sh_link
), Is64
? 59 : 51},
4321 {to_string(S
.sh_info
), Is64
? 63 : 55},
4322 {to_string(S
.sh_addralign
), Is64
? 66 : 58}});
4325 OS
<< "[" << to_string(format_hex_no_prefix(S
.sh_flags
, AddrSize
)) << "]: ";
4327 DenseMap
<unsigned, StringRef
> FlagToName
= {
4328 {SHF_WRITE
, "WRITE"}, {SHF_ALLOC
, "ALLOC"},
4329 {SHF_EXECINSTR
, "EXEC"}, {SHF_MERGE
, "MERGE"},
4330 {SHF_STRINGS
, "STRINGS"}, {SHF_INFO_LINK
, "INFO LINK"},
4331 {SHF_LINK_ORDER
, "LINK ORDER"}, {SHF_OS_NONCONFORMING
, "OS NONCONF"},
4332 {SHF_GROUP
, "GROUP"}, {SHF_TLS
, "TLS"},
4333 {SHF_COMPRESSED
, "COMPRESSED"}, {SHF_EXCLUDE
, "EXCLUDE"}};
4335 uint64_t Flags
= S
.sh_flags
;
4336 uint64_t UnknownFlags
= 0;
4337 bool NeedsComma
= false;
4339 // Take the least significant bit as a flag.
4340 uint64_t Flag
= Flags
& -Flags
;
4343 auto It
= FlagToName
.find(Flag
);
4344 if (It
!= FlagToName
.end()) {
4350 UnknownFlags
|= Flag
;
4354 auto PrintUnknownFlags
= [&](uint64_t Mask
, StringRef Name
) {
4355 uint64_t FlagsToPrint
= UnknownFlags
& Mask
;
4362 << to_string(format_hex_no_prefix(FlagsToPrint
, AddrSize
)) << ")";
4363 UnknownFlags
&= ~Mask
;
4367 PrintUnknownFlags(SHF_MASKOS
, "OS");
4368 PrintUnknownFlags(SHF_MASKPROC
, "PROC");
4369 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4376 static inline std::string
printPhdrFlags(unsigned Flag
) {
4378 Str
= (Flag
& PF_R
) ? "R" : " ";
4379 Str
+= (Flag
& PF_W
) ? "W" : " ";
4380 Str
+= (Flag
& PF_X
) ? "E" : " ";
4384 template <class ELFT
>
4385 static bool checkTLSSections(const typename
ELFT::Phdr
&Phdr
,
4386 const typename
ELFT::Shdr
&Sec
) {
4387 if (Sec
.sh_flags
& ELF::SHF_TLS
) {
4388 // .tbss must only be shown in the PT_TLS segment.
4389 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
4390 return Phdr
.p_type
== ELF::PT_TLS
;
4392 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4394 return (Phdr
.p_type
== ELF::PT_TLS
) || (Phdr
.p_type
== ELF::PT_LOAD
) ||
4395 (Phdr
.p_type
== ELF::PT_GNU_RELRO
);
4398 // PT_TLS must only have SHF_TLS sections.
4399 return Phdr
.p_type
!= ELF::PT_TLS
;
4402 template <class ELFT
>
4403 static bool checkOffsets(const typename
ELFT::Phdr
&Phdr
,
4404 const typename
ELFT::Shdr
&Sec
) {
4405 // SHT_NOBITS sections don't need to have an offset inside the segment.
4406 if (Sec
.sh_type
== ELF::SHT_NOBITS
)
4409 if (Sec
.sh_offset
< Phdr
.p_offset
)
4412 // Only non-empty sections can be at the end of a segment.
4413 if (Sec
.sh_size
== 0)
4414 return (Sec
.sh_offset
+ 1 <= Phdr
.p_offset
+ Phdr
.p_filesz
);
4415 return Sec
.sh_offset
+ Sec
.sh_size
<= Phdr
.p_offset
+ Phdr
.p_filesz
;
4418 // Check that an allocatable section belongs to a virtual address
4419 // space of a segment.
4420 template <class ELFT
>
4421 static bool checkVMA(const typename
ELFT::Phdr
&Phdr
,
4422 const typename
ELFT::Shdr
&Sec
) {
4423 if (!(Sec
.sh_flags
& ELF::SHF_ALLOC
))
4426 if (Sec
.sh_addr
< Phdr
.p_vaddr
)
4430 (Sec
.sh_type
== ELF::SHT_NOBITS
) && ((Sec
.sh_flags
& ELF::SHF_TLS
) != 0);
4431 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4432 bool IsTbssInNonTLS
= IsTbss
&& Phdr
.p_type
!= ELF::PT_TLS
;
4433 // Only non-empty sections can be at the end of a segment.
4434 if (Sec
.sh_size
== 0 || IsTbssInNonTLS
)
4435 return Sec
.sh_addr
+ 1 <= Phdr
.p_vaddr
+ Phdr
.p_memsz
;
4436 return Sec
.sh_addr
+ Sec
.sh_size
<= Phdr
.p_vaddr
+ Phdr
.p_memsz
;
4439 template <class ELFT
>
4440 static bool checkPTDynamic(const typename
ELFT::Phdr
&Phdr
,
4441 const typename
ELFT::Shdr
&Sec
) {
4442 if (Phdr
.p_type
!= ELF::PT_DYNAMIC
|| Phdr
.p_memsz
== 0 || Sec
.sh_size
!= 0)
4445 // We get here when we have an empty section. Only non-empty sections can be
4446 // at the start or at the end of PT_DYNAMIC.
4447 // Is section within the phdr both based on offset and VMA?
4448 bool CheckOffset
= (Sec
.sh_type
== ELF::SHT_NOBITS
) ||
4449 (Sec
.sh_offset
> Phdr
.p_offset
&&
4450 Sec
.sh_offset
< Phdr
.p_offset
+ Phdr
.p_filesz
);
4451 bool CheckVA
= !(Sec
.sh_flags
& ELF::SHF_ALLOC
) ||
4452 (Sec
.sh_addr
> Phdr
.p_vaddr
&& Sec
.sh_addr
< Phdr
.p_memsz
);
4453 return CheckOffset
&& CheckVA
;
4456 template <class ELFT
>
4457 void GNUStyle
<ELFT
>::printProgramHeaders(
4458 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
4459 if (PrintProgramHeaders
)
4460 printProgramHeaders();
4462 // Display the section mapping along with the program headers, unless
4463 // -section-mapping is explicitly set to false.
4464 if (PrintSectionMapping
!= cl::BOU_FALSE
)
4465 printSectionMapping();
4468 template <class ELFT
> void GNUStyle
<ELFT
>::printProgramHeaders() {
4469 unsigned Bias
= ELFT::Is64Bits
? 8 : 0;
4470 const Elf_Ehdr
&Header
= this->Obj
.getHeader();
4471 Field Fields
[8] = {2, 17, 26, 37 + Bias
,
4472 48 + Bias
, 56 + Bias
, 64 + Bias
, 68 + Bias
};
4473 OS
<< "\nElf file type is "
4474 << printEnum(Header
.e_type
, makeArrayRef(ElfObjectFileType
)) << "\n"
4475 << "Entry point " << format_hex(Header
.e_entry
, 3) << "\n"
4476 << "There are " << Header
.e_phnum
<< " program headers,"
4477 << " starting at offset " << Header
.e_phoff
<< "\n\n"
4478 << "Program Headers:\n";
4480 OS
<< " Type Offset VirtAddr PhysAddr "
4481 << " FileSiz MemSiz Flg Align\n";
4483 OS
<< " Type Offset VirtAddr PhysAddr FileSiz "
4484 << "MemSiz Flg Align\n";
4486 unsigned Width
= ELFT::Is64Bits
? 18 : 10;
4487 unsigned SizeWidth
= ELFT::Is64Bits
? 8 : 7;
4489 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4491 this->reportUniqueWarning("unable to dump program headers: " +
4492 toString(PhdrsOrErr
.takeError()));
4496 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4497 Fields
[0].Str
= getGNUPtType(Header
.e_machine
, Phdr
.p_type
);
4498 Fields
[1].Str
= to_string(format_hex(Phdr
.p_offset
, 8));
4499 Fields
[2].Str
= to_string(format_hex(Phdr
.p_vaddr
, Width
));
4500 Fields
[3].Str
= to_string(format_hex(Phdr
.p_paddr
, Width
));
4501 Fields
[4].Str
= to_string(format_hex(Phdr
.p_filesz
, SizeWidth
));
4502 Fields
[5].Str
= to_string(format_hex(Phdr
.p_memsz
, SizeWidth
));
4503 Fields
[6].Str
= printPhdrFlags(Phdr
.p_flags
);
4504 Fields
[7].Str
= to_string(format_hex(Phdr
.p_align
, 1));
4505 for (const Field
&F
: Fields
)
4507 if (Phdr
.p_type
== ELF::PT_INTERP
) {
4509 auto ReportBadInterp
= [&](const Twine
&Msg
) {
4510 this->reportUniqueWarning(
4511 "unable to read program interpreter name at offset 0x" +
4512 Twine::utohexstr(Phdr
.p_offset
) + ": " + Msg
);
4515 if (Phdr
.p_offset
>= this->Obj
.getBufSize()) {
4516 ReportBadInterp("it goes past the end of the file (0x" +
4517 Twine::utohexstr(this->Obj
.getBufSize()) + ")");
4522 reinterpret_cast<const char *>(this->Obj
.base()) + Phdr
.p_offset
;
4523 size_t MaxSize
= this->Obj
.getBufSize() - Phdr
.p_offset
;
4524 size_t Len
= strnlen(Data
, MaxSize
);
4525 if (Len
== MaxSize
) {
4526 ReportBadInterp("it is not null-terminated");
4530 OS
<< " [Requesting program interpreter: ";
4531 OS
<< StringRef(Data
, Len
) << "]";
4537 template <class ELFT
> void GNUStyle
<ELFT
>::printSectionMapping() {
4538 OS
<< "\n Section to Segment mapping:\n Segment Sections...\n";
4539 DenseSet
<const Elf_Shdr
*> BelongsToSegment
;
4542 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
4544 this->reportUniqueWarning(
4545 "can't read program headers to build section to segment mapping: " +
4546 toString(PhdrsOrErr
.takeError()));
4550 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
4551 std::string Sections
;
4552 OS
<< format(" %2.2d ", Phnum
++);
4553 // Check if each section is in a segment and then print mapping.
4554 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4555 if (Sec
.sh_type
== ELF::SHT_NULL
)
4558 // readelf additionally makes sure it does not print zero sized sections
4559 // at end of segments and for PT_DYNAMIC both start and end of section
4560 // .tbss must only be shown in PT_TLS section.
4561 if (checkTLSSections
<ELFT
>(Phdr
, Sec
) && checkOffsets
<ELFT
>(Phdr
, Sec
) &&
4562 checkVMA
<ELFT
>(Phdr
, Sec
) && checkPTDynamic
<ELFT
>(Phdr
, Sec
)) {
4564 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4566 BelongsToSegment
.insert(&Sec
);
4569 OS
<< Sections
<< "\n";
4573 // Display sections that do not belong to a segment.
4574 std::string Sections
;
4575 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
4576 if (BelongsToSegment
.find(&Sec
) == BelongsToSegment
.end())
4578 unwrapOrError(this->FileName
, this->Obj
.getSectionName(Sec
)).str() +
4581 if (!Sections
.empty()) {
4582 OS
<< " None " << Sections
<< '\n';
4589 template <class ELFT
>
4590 RelSymbol
<ELFT
> getSymbolForReloc(const ELFDumper
<ELFT
> &Dumper
,
4591 const Relocation
<ELFT
> &Reloc
) {
4592 using Elf_Sym
= typename
ELFT::Sym
;
4593 auto WarnAndReturn
= [&](const Elf_Sym
*Sym
,
4594 const Twine
&Reason
) -> RelSymbol
<ELFT
> {
4595 Dumper
.reportUniqueWarning(
4596 "unable to get name of the dynamic symbol with index " +
4597 Twine(Reloc
.Symbol
) + ": " + Reason
);
4598 return {Sym
, "<corrupt>"};
4601 ArrayRef
<Elf_Sym
> Symbols
= Dumper
.dynamic_symbols();
4602 const Elf_Sym
*FirstSym
= Symbols
.begin();
4604 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4606 // We might have an object without a section header. In this case the size of
4607 // Symbols is zero, because there is no way to know the size of the dynamic
4608 // table. We should allow this case and not print a warning.
4609 if (!Symbols
.empty() && Reloc
.Symbol
>= Symbols
.size())
4610 return WarnAndReturn(
4612 "index is greater than or equal to the number of dynamic symbols (" +
4613 Twine(Symbols
.size()) + ")");
4615 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
4616 const uint64_t FileSize
= Obj
.getBufSize();
4617 const uint64_t SymOffset
= ((const uint8_t *)FirstSym
- Obj
.base()) +
4618 (uint64_t)Reloc
.Symbol
* sizeof(Elf_Sym
);
4619 if (SymOffset
+ sizeof(Elf_Sym
) > FileSize
)
4620 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset
) +
4621 " goes past the end of the file (0x" +
4622 Twine::utohexstr(FileSize
) + ")");
4624 const Elf_Sym
*Sym
= FirstSym
+ Reloc
.Symbol
;
4625 Expected
<StringRef
> ErrOrName
= Sym
->getName(Dumper
.getDynamicStringTable());
4627 return WarnAndReturn(Sym
, toString(ErrOrName
.takeError()));
4629 return {Sym
== FirstSym
? nullptr : Sym
, maybeDemangle(*ErrOrName
)};
4633 template <class ELFT
>
4634 void GNUStyle
<ELFT
>::printDynamicReloc(const Relocation
<ELFT
> &R
) {
4635 printRelRelaReloc(R
, getSymbolForReloc(this->dumper(), R
));
4638 template <class ELFT
>
4639 static size_t getMaxDynamicTagSize(const ELFFile
<ELFT
> &Obj
,
4640 typename
ELFT::DynRange Tags
) {
4642 for (const typename
ELFT::Dyn
&Dyn
: Tags
)
4643 Max
= std::max(Max
, Obj
.getDynamicTagAsString(Dyn
.d_tag
).size());
4647 template <class ELFT
> void GNUStyle
<ELFT
>::printDynamic() {
4648 Elf_Dyn_Range Table
= this->dumper().dynamic_table();
4652 OS
<< "Dynamic section at offset "
4653 << format_hex(reinterpret_cast<const uint8_t *>(
4654 this->dumper().getDynamicTableRegion().Addr
) -
4657 << " contains " << Table
.size() << " entries:\n";
4659 // The type name is surrounded with round brackets, hence add 2.
4660 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
) + 2;
4661 // The "Name/Value" column should be indented from the "Type" column by N
4662 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4664 OS
<< " Tag" + std::string(ELFT::Is64Bits
? 16 : 8, ' ') + "Type"
4665 << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
4667 std::string ValueFmt
= " %-" + std::to_string(MaxTagSize
) + "s ";
4668 for (auto Entry
: Table
) {
4669 uintX_t Tag
= Entry
.getTag();
4671 std::string("(") + this->Obj
.getDynamicTagAsString(Tag
).c_str() + ")";
4672 std::string Value
= this->dumper().getDynamicEntry(Tag
, Entry
.getVal());
4673 OS
<< " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10)
4674 << format(ValueFmt
.c_str(), Type
.c_str()) << Value
<< "\n";
4678 template <class ELFT
> void GNUStyle
<ELFT
>::printDynamicRelocations() {
4679 this->printDynamicRelocationsHelper();
4682 template <class ELFT
>
4683 void DumpStyle
<ELFT
>::printRelocationsHelper(const Elf_Shdr
&Sec
) {
4684 this->forEachRelocationDo(
4686 [&](const Relocation
<ELFT
> &R
, unsigned Ndx
, const Elf_Shdr
&Sec
,
4687 const Elf_Shdr
*SymTab
) { printReloc(R
, Ndx
, Sec
, SymTab
); },
4688 [&](const Elf_Relr
&R
) { printRelrReloc(R
); });
4691 template <class ELFT
> void DumpStyle
<ELFT
>::printDynamicRelocationsHelper() {
4692 const bool IsMips64EL
= this->Obj
.isMips64EL();
4693 const DynRegionInfo
&DynRelaRegion
= this->dumper().getDynRelaRegion();
4694 if (DynRelaRegion
.Size
> 0) {
4695 printDynamicRelocHeader(ELF::SHT_RELA
, "RELA", DynRelaRegion
);
4696 for (const Elf_Rela
&Rela
: this->dumper().dyn_relas())
4697 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
4700 const DynRegionInfo
&DynRelRegion
= this->dumper().getDynRelRegion();
4701 if (DynRelRegion
.Size
> 0) {
4702 printDynamicRelocHeader(ELF::SHT_REL
, "REL", DynRelRegion
);
4703 for (const Elf_Rel
&Rel
: this->dumper().dyn_rels())
4704 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4707 const DynRegionInfo
&DynRelrRegion
= this->dumper().getDynRelrRegion();
4708 if (DynRelrRegion
.Size
> 0) {
4709 printDynamicRelocHeader(ELF::SHT_REL
, "RELR", DynRelrRegion
);
4710 Elf_Relr_Range Relrs
= this->dumper().dyn_relrs();
4711 for (const Elf_Rel
&Rel
: Obj
.decode_relrs(Relrs
))
4712 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4715 const DynRegionInfo
&DynPLTRelRegion
= this->dumper().getDynPLTRelRegion();
4716 if (DynPLTRelRegion
.Size
) {
4717 if (DynPLTRelRegion
.EntSize
== sizeof(Elf_Rela
)) {
4718 printDynamicRelocHeader(ELF::SHT_RELA
, "PLT", DynPLTRelRegion
);
4719 for (const Elf_Rela
&Rela
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rela
>())
4720 printDynamicReloc(Relocation
<ELFT
>(Rela
, IsMips64EL
));
4722 printDynamicRelocHeader(ELF::SHT_REL
, "PLT", DynPLTRelRegion
);
4723 for (const Elf_Rel
&Rel
: DynPLTRelRegion
.getAsArrayRef
<Elf_Rel
>())
4724 printDynamicReloc(Relocation
<ELFT
>(Rel
, IsMips64EL
));
4729 template <class ELFT
>
4730 void GNUStyle
<ELFT
>::printGNUVersionSectionProlog(
4731 const typename
ELFT::Shdr
&Sec
, const Twine
&Label
, unsigned EntriesNum
) {
4732 // Don't inline the SecName, because it might report a warning to stderr and
4733 // corrupt the output.
4734 StringRef SecName
= this->getPrintableSectionName(Sec
);
4735 OS
<< Label
<< " section '" << SecName
<< "' "
4736 << "contains " << EntriesNum
<< " entries:\n";
4738 StringRef LinkedSecName
= "<corrupt>";
4739 if (Expected
<const typename
ELFT::Shdr
*> LinkedSecOrErr
=
4740 this->Obj
.getSection(Sec
.sh_link
))
4741 LinkedSecName
= this->getPrintableSectionName(**LinkedSecOrErr
);
4743 this->reportUniqueWarning("invalid section linked to " +
4744 describe(this->Obj
, Sec
) + ": " +
4745 toString(LinkedSecOrErr
.takeError()));
4747 OS
<< " Addr: " << format_hex_no_prefix(Sec
.sh_addr
, 16)
4748 << " Offset: " << format_hex(Sec
.sh_offset
, 8)
4749 << " Link: " << Sec
.sh_link
<< " (" << LinkedSecName
<< ")\n";
4752 template <class ELFT
>
4753 void GNUStyle
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
4757 printGNUVersionSectionProlog(*Sec
, "Version symbols",
4758 Sec
->sh_size
/ sizeof(Elf_Versym
));
4759 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
4760 this->dumper().getVersionTable(*Sec
, /*SymTab=*/nullptr,
4761 /*StrTab=*/nullptr);
4762 if (!VerTableOrErr
) {
4763 this->reportUniqueWarning(VerTableOrErr
.takeError());
4767 ArrayRef
<Elf_Versym
> VerTable
= *VerTableOrErr
;
4768 std::vector
<StringRef
> Versions
;
4769 for (size_t I
= 0, E
= VerTable
.size(); I
< E
; ++I
) {
4770 unsigned Ndx
= VerTable
[I
].vs_index
;
4771 if (Ndx
== VER_NDX_LOCAL
|| Ndx
== VER_NDX_GLOBAL
) {
4772 Versions
.emplace_back(Ndx
== VER_NDX_LOCAL
? "*local*" : "*global*");
4777 Expected
<StringRef
> NameOrErr
=
4778 this->dumper().getSymbolVersionByIndex(Ndx
, IsDefault
);
4780 this->reportUniqueWarning("unable to get a version for entry " +
4781 Twine(I
) + " of " + describe(this->Obj
, *Sec
) +
4782 ": " + toString(NameOrErr
.takeError()));
4783 Versions
.emplace_back("<corrupt>");
4786 Versions
.emplace_back(*NameOrErr
);
4789 // readelf prints 4 entries per line.
4790 uint64_t Entries
= VerTable
.size();
4791 for (uint64_t VersymRow
= 0; VersymRow
< Entries
; VersymRow
+= 4) {
4792 OS
<< " " << format_hex_no_prefix(VersymRow
, 3) << ":";
4793 for (uint64_t I
= 0; (I
< 4) && (I
+ VersymRow
) < Entries
; ++I
) {
4794 unsigned Ndx
= VerTable
[VersymRow
+ I
].vs_index
;
4795 OS
<< format("%4x%c", Ndx
& VERSYM_VERSION
,
4796 Ndx
& VERSYM_HIDDEN
? 'h' : ' ');
4797 OS
<< left_justify("(" + std::string(Versions
[VersymRow
+ I
]) + ")", 13);
4804 static std::string
versionFlagToString(unsigned Flags
) {
4809 auto AddFlag
= [&Ret
, &Flags
](unsigned Flag
, StringRef Name
) {
4810 if (!(Flags
& Flag
))
4818 AddFlag(VER_FLG_BASE
, "BASE");
4819 AddFlag(VER_FLG_WEAK
, "WEAK");
4820 AddFlag(VER_FLG_INFO
, "INFO");
4821 AddFlag(~0, "<unknown>");
4825 template <class ELFT
>
4826 void GNUStyle
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
4830 printGNUVersionSectionProlog(*Sec
, "Version definition", Sec
->sh_info
);
4832 Expected
<std::vector
<VerDef
>> V
= this->dumper().getVersionDefinitions(*Sec
);
4834 this->reportUniqueWarning(V
.takeError());
4838 for (const VerDef
&Def
: *V
) {
4839 OS
<< format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4840 Def
.Offset
, Def
.Version
,
4841 versionFlagToString(Def
.Flags
).c_str(), Def
.Ndx
, Def
.Cnt
,
4844 for (const VerdAux
&Aux
: Def
.AuxV
)
4845 OS
<< format(" 0x%04x: Parent %u: %s\n", Aux
.Offset
, ++I
,
4852 template <class ELFT
>
4853 void GNUStyle
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
4857 unsigned VerneedNum
= Sec
->sh_info
;
4858 printGNUVersionSectionProlog(*Sec
, "Version needs", VerneedNum
);
4860 Expected
<std::vector
<VerNeed
>> V
=
4861 this->dumper().getVersionDependencies(*Sec
);
4863 this->reportUniqueWarning(V
.takeError());
4867 for (const VerNeed
&VN
: *V
) {
4868 OS
<< format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN
.Offset
,
4869 VN
.Version
, VN
.File
.data(), VN
.Cnt
);
4870 for (const VernAux
&Aux
: VN
.AuxV
)
4871 OS
<< format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux
.Offset
,
4872 Aux
.Name
.data(), versionFlagToString(Aux
.Flags
).c_str(),
4878 template <class ELFT
>
4879 void GNUStyle
<ELFT
>::printHashHistogram(const Elf_Hash
&HashTable
) {
4880 size_t NBucket
= HashTable
.nbucket
;
4881 size_t NChain
= HashTable
.nchain
;
4882 ArrayRef
<Elf_Word
> Buckets
= HashTable
.buckets();
4883 ArrayRef
<Elf_Word
> Chains
= HashTable
.chains();
4884 size_t TotalSyms
= 0;
4885 // If hash table is correct, we have at least chains with 0 length
4886 size_t MaxChain
= 1;
4887 size_t CumulativeNonZero
= 0;
4889 if (NChain
== 0 || NBucket
== 0)
4892 std::vector
<size_t> ChainLen(NBucket
, 0);
4893 // Go over all buckets and and note chain lengths of each bucket (total
4894 // unique chain lengths).
4895 for (size_t B
= 0; B
< NBucket
; B
++) {
4896 std::vector
<bool> Visited(NChain
);
4897 for (size_t C
= Buckets
[B
]; C
< NChain
; C
= Chains
[C
]) {
4898 if (C
== ELF::STN_UNDEF
)
4901 this->reportUniqueWarning(".hash section is invalid: bucket " +
4903 ": a cycle was detected in the linked chain");
4907 if (MaxChain
<= ++ChainLen
[B
])
4910 TotalSyms
+= ChainLen
[B
];
4916 std::vector
<size_t> Count(MaxChain
, 0);
4917 // Count how long is the chain for each bucket
4918 for (size_t B
= 0; B
< NBucket
; B
++)
4919 ++Count
[ChainLen
[B
]];
4920 // Print Number of buckets with each chain lengths and their cumulative
4921 // coverage of the symbols
4922 OS
<< "Histogram for bucket list length (total of " << NBucket
4924 << " Length Number % of total Coverage\n";
4925 for (size_t I
= 0; I
< MaxChain
; I
++) {
4926 CumulativeNonZero
+= Count
[I
] * I
;
4927 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
4928 (Count
[I
] * 100.0) / NBucket
,
4929 (CumulativeNonZero
* 100.0) / TotalSyms
);
4933 template <class ELFT
>
4934 void GNUStyle
<ELFT
>::printGnuHashHistogram(const Elf_GnuHash
&GnuHashTable
) {
4935 Expected
<ArrayRef
<Elf_Word
>> ChainsOrErr
= getGnuHashTableChains
<ELFT
>(
4936 this->dumper().getDynSymRegion(), &GnuHashTable
);
4938 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
4939 toString(ChainsOrErr
.takeError()));
4943 ArrayRef
<Elf_Word
> Chains
= *ChainsOrErr
;
4944 size_t Symndx
= GnuHashTable
.symndx
;
4945 size_t TotalSyms
= 0;
4946 size_t MaxChain
= 1;
4947 size_t CumulativeNonZero
= 0;
4949 size_t NBucket
= GnuHashTable
.nbuckets
;
4950 if (Chains
.empty() || NBucket
== 0)
4953 ArrayRef
<Elf_Word
> Buckets
= GnuHashTable
.buckets();
4954 std::vector
<size_t> ChainLen(NBucket
, 0);
4955 for (size_t B
= 0; B
< NBucket
; B
++) {
4959 for (size_t C
= Buckets
[B
] - Symndx
;
4960 C
< Chains
.size() && (Chains
[C
] & 1) == 0; C
++)
4961 if (MaxChain
< ++Len
)
4971 std::vector
<size_t> Count(MaxChain
, 0);
4972 for (size_t B
= 0; B
< NBucket
; B
++)
4973 ++Count
[ChainLen
[B
]];
4974 // Print Number of buckets with each chain lengths and their cumulative
4975 // coverage of the symbols
4976 OS
<< "Histogram for `.gnu.hash' bucket list length (total of " << NBucket
4978 << " Length Number % of total Coverage\n";
4979 for (size_t I
= 0; I
< MaxChain
; I
++) {
4980 CumulativeNonZero
+= Count
[I
] * I
;
4981 OS
<< format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I
, Count
[I
],
4982 (Count
[I
] * 100.0) / NBucket
,
4983 (CumulativeNonZero
* 100.0) / TotalSyms
);
4987 // Hash histogram shows statistics of how efficient the hash was for the
4988 // dynamic symbol table. The table shows the number of hash buckets for
4989 // different lengths of chains as an absolute number and percentage of the total
4990 // buckets, and the cumulative coverage of symbols for each set of buckets.
4991 template <class ELFT
> void GNUStyle
<ELFT
>::printHashHistograms() {
4992 // Print histogram for the .hash section.
4993 if (const Elf_Hash
*HashTable
= this->dumper().getHashTable()) {
4994 if (Error E
= checkHashTable
<ELFT
>(this->dumper(), HashTable
))
4995 this->reportUniqueWarning(std::move(E
));
4997 printHashHistogram(*HashTable
);
5000 // Print histogram for the .gnu.hash section.
5001 if (const Elf_GnuHash
*GnuHashTable
= this->dumper().getGnuHashTable()) {
5002 if (Error E
= checkGNUHashTable
<ELFT
>(this->Obj
, GnuHashTable
))
5003 this->reportUniqueWarning(std::move(E
));
5005 printGnuHashHistogram(*GnuHashTable
);
5009 template <class ELFT
> void GNUStyle
<ELFT
>::printCGProfile() {
5010 OS
<< "GNUStyle::printCGProfile not implemented\n";
5013 static Expected
<std::vector
<uint64_t>> toULEB128Array(ArrayRef
<uint8_t> Data
) {
5014 std::vector
<uint64_t> Ret
;
5015 const uint8_t *Cur
= Data
.begin();
5016 const uint8_t *End
= Data
.end();
5017 while (Cur
!= End
) {
5020 Ret
.push_back(decodeULEB128(Cur
, &Size
, End
, &Err
));
5022 return createError(Err
);
5028 template <class ELFT
>
5029 static Expected
<std::vector
<uint64_t>>
5030 decodeAddrsigSection(const ELFFile
<ELFT
> &Obj
, const typename
ELFT::Shdr
&Sec
) {
5031 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Sec
);
5033 return ContentsOrErr
.takeError();
5035 if (Expected
<std::vector
<uint64_t>> SymsOrErr
=
5036 toULEB128Array(*ContentsOrErr
))
5039 return createError("unable to decode " + describe(Obj
, Sec
) + ": " +
5040 toString(SymsOrErr
.takeError()));
5043 template <class ELFT
> void GNUStyle
<ELFT
>::printAddrsig() {
5044 const Elf_Shdr
*Sec
= this->dumper().getDotAddrsigSec();
5048 Expected
<std::vector
<uint64_t>> SymsOrErr
=
5049 decodeAddrsigSection(this->Obj
, *Sec
);
5051 this->reportUniqueWarning(SymsOrErr
.takeError());
5055 StringRef Name
= this->getPrintableSectionName(*Sec
);
5056 OS
<< "\nAddress-significant symbols section '" << Name
<< "'"
5057 << " contains " << SymsOrErr
->size() << " entries:\n";
5058 OS
<< " Num: Name\n";
5060 Field Fields
[2] = {0, 8};
5061 size_t SymIndex
= 0;
5062 for (uint64_t Sym
: *SymsOrErr
) {
5063 Fields
[0].Str
= to_string(format_decimal(++SymIndex
, 6)) + ":";
5064 Fields
[1].Str
= this->dumper().getStaticSymbolName(Sym
);
5065 for (const Field
&Entry
: Fields
)
5071 template <typename ELFT
>
5072 static std::string
getGNUProperty(uint32_t Type
, uint32_t DataSize
,
5073 ArrayRef
<uint8_t> Data
) {
5075 raw_string_ostream
OS(str
);
5077 auto DumpBit
= [&](uint32_t Flag
, StringRef Name
) {
5078 if (PrData
& Flag
) {
5088 OS
<< format("<application-specific type 0x%x>", Type
);
5090 case GNU_PROPERTY_STACK_SIZE
: {
5091 OS
<< "stack size: ";
5092 if (DataSize
== sizeof(typename
ELFT::uint
))
5093 OS
<< formatv("{0:x}",
5094 (uint64_t)(*(const typename
ELFT::Addr
*)Data
.data()));
5096 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5099 case GNU_PROPERTY_NO_COPY_ON_PROTECTED
:
5100 OS
<< "no copy on protected";
5102 OS
<< format(" <corrupt length: 0x%x>", DataSize
);
5104 case GNU_PROPERTY_AARCH64_FEATURE_1_AND
:
5105 case GNU_PROPERTY_X86_FEATURE_1_AND
:
5106 OS
<< ((Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) ? "aarch64 feature: "
5108 if (DataSize
!= 4) {
5109 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5112 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
5117 if (Type
== GNU_PROPERTY_AARCH64_FEATURE_1_AND
) {
5118 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI
, "BTI");
5119 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC
, "PAC");
5121 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT
, "IBT");
5122 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK
, "SHSTK");
5125 OS
<< format("<unknown flags: 0x%x>", PrData
);
5127 case GNU_PROPERTY_X86_ISA_1_NEEDED
:
5128 case GNU_PROPERTY_X86_ISA_1_USED
:
5130 << (Type
== GNU_PROPERTY_X86_ISA_1_NEEDED
? "needed: " : "used: ");
5131 if (DataSize
!= 4) {
5132 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5135 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
5140 DumpBit(GNU_PROPERTY_X86_ISA_1_CMOV
, "CMOV");
5141 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE
, "SSE");
5142 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE2
, "SSE2");
5143 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE3
, "SSE3");
5144 DumpBit(GNU_PROPERTY_X86_ISA_1_SSSE3
, "SSSE3");
5145 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_1
, "SSE4_1");
5146 DumpBit(GNU_PROPERTY_X86_ISA_1_SSE4_2
, "SSE4_2");
5147 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX
, "AVX");
5148 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX2
, "AVX2");
5149 DumpBit(GNU_PROPERTY_X86_ISA_1_FMA
, "FMA");
5150 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512F
, "AVX512F");
5151 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512CD
, "AVX512CD");
5152 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512ER
, "AVX512ER");
5153 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512PF
, "AVX512PF");
5154 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512VL
, "AVX512VL");
5155 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512DQ
, "AVX512DQ");
5156 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512BW
, "AVX512BW");
5157 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS
, "AVX512_4FMAPS");
5158 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW
, "AVX512_4VNNIW");
5159 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_BITALG
, "AVX512_BITALG");
5160 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_IFMA
, "AVX512_IFMA");
5161 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI
, "AVX512_VBMI");
5162 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2
, "AVX512_VBMI2");
5163 DumpBit(GNU_PROPERTY_X86_ISA_1_AVX512_VNNI
, "AVX512_VNNI");
5165 OS
<< format("<unknown flags: 0x%x>", PrData
);
5168 case GNU_PROPERTY_X86_FEATURE_2_NEEDED
:
5169 case GNU_PROPERTY_X86_FEATURE_2_USED
:
5170 OS
<< "x86 feature "
5171 << (Type
== GNU_PROPERTY_X86_FEATURE_2_NEEDED
? "needed: " : "used: ");
5172 if (DataSize
!= 4) {
5173 OS
<< format("<corrupt length: 0x%x>", DataSize
);
5176 PrData
= support::endian::read32
<ELFT::TargetEndianness
>(Data
.data());
5181 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86
, "x86");
5182 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87
, "x87");
5183 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX
, "MMX");
5184 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM
, "XMM");
5185 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM
, "YMM");
5186 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM
, "ZMM");
5187 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR
, "FXSR");
5188 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE
, "XSAVE");
5189 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT
, "XSAVEOPT");
5190 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC
, "XSAVEC");
5192 OS
<< format("<unknown flags: 0x%x>", PrData
);
5197 template <typename ELFT
>
5198 static SmallVector
<std::string
, 4> getGNUPropertyList(ArrayRef
<uint8_t> Arr
) {
5199 using Elf_Word
= typename
ELFT::Word
;
5201 SmallVector
<std::string
, 4> Properties
;
5202 while (Arr
.size() >= 8) {
5203 uint32_t Type
= *reinterpret_cast<const Elf_Word
*>(Arr
.data());
5204 uint32_t DataSize
= *reinterpret_cast<const Elf_Word
*>(Arr
.data() + 4);
5205 Arr
= Arr
.drop_front(8);
5207 // Take padding size into account if present.
5208 uint64_t PaddedSize
= alignTo(DataSize
, sizeof(typename
ELFT::uint
));
5210 raw_string_ostream
OS(str
);
5211 if (Arr
.size() < PaddedSize
) {
5212 OS
<< format("<corrupt type (0x%x) datasz: 0x%x>", Type
, DataSize
);
5213 Properties
.push_back(OS
.str());
5216 Properties
.push_back(
5217 getGNUProperty
<ELFT
>(Type
, DataSize
, Arr
.take_front(PaddedSize
)));
5218 Arr
= Arr
.drop_front(PaddedSize
);
5222 Properties
.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5233 template <typename ELFT
> static GNUAbiTag
getGNUAbiTag(ArrayRef
<uint8_t> Desc
) {
5234 typedef typename
ELFT::Word Elf_Word
;
5236 ArrayRef
<Elf_Word
> Words(reinterpret_cast<const Elf_Word
*>(Desc
.begin()),
5237 reinterpret_cast<const Elf_Word
*>(Desc
.end()));
5239 if (Words
.size() < 4)
5240 return {"", "", /*IsValid=*/false};
5242 static const char *OSNames
[] = {
5243 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5245 StringRef OSName
= "Unknown";
5246 if (Words
[0] < array_lengthof(OSNames
))
5247 OSName
= OSNames
[Words
[0]];
5248 uint32_t Major
= Words
[1], Minor
= Words
[2], Patch
= Words
[3];
5250 raw_string_ostream
ABI(str
);
5251 ABI
<< Major
<< "." << Minor
<< "." << Patch
;
5252 return {std::string(OSName
), ABI
.str(), /*IsValid=*/true};
5255 static std::string
getGNUBuildId(ArrayRef
<uint8_t> Desc
) {
5257 raw_string_ostream
OS(str
);
5258 for (uint8_t B
: Desc
)
5259 OS
<< format_hex_no_prefix(B
, 2);
5263 static StringRef
getGNUGoldVersion(ArrayRef
<uint8_t> Desc
) {
5264 return StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5267 template <typename ELFT
>
5268 static void printGNUNote(raw_ostream
&OS
, uint32_t NoteType
,
5269 ArrayRef
<uint8_t> Desc
) {
5273 case ELF::NT_GNU_ABI_TAG
: {
5274 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
5275 if (!AbiTag
.IsValid
)
5276 OS
<< " <corrupt GNU_ABI_TAG>";
5278 OS
<< " OS: " << AbiTag
.OSName
<< ", ABI: " << AbiTag
.ABI
;
5281 case ELF::NT_GNU_BUILD_ID
: {
5282 OS
<< " Build ID: " << getGNUBuildId(Desc
);
5285 case ELF::NT_GNU_GOLD_VERSION
:
5286 OS
<< " Version: " << getGNUGoldVersion(Desc
);
5288 case ELF::NT_GNU_PROPERTY_TYPE_0
:
5289 OS
<< " Properties:";
5290 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
5291 OS
<< " " << Property
<< "\n";
5302 template <typename ELFT
>
5303 static AMDNote
getAMDNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5307 case ELF::NT_AMD_AMDGPU_HSA_METADATA
:
5310 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
5311 case ELF::NT_AMD_AMDGPU_ISA
:
5314 std::string(reinterpret_cast<const char *>(Desc
.data()), Desc
.size())};
5323 template <typename ELFT
>
5324 static AMDGPUNote
getAMDGPUNote(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
) {
5328 case ELF::NT_AMDGPU_METADATA
: {
5329 StringRef MsgPackString
=
5330 StringRef(reinterpret_cast<const char *>(Desc
.data()), Desc
.size());
5331 msgpack::Document MsgPackDoc
;
5332 if (!MsgPackDoc
.readFromBlob(MsgPackString
, /*Multi=*/false))
5333 return {"AMDGPU Metadata", "Invalid AMDGPU Metadata"};
5335 AMDGPU::HSAMD::V3::MetadataVerifier
Verifier(true);
5336 std::string HSAMetadataString
;
5337 if (!Verifier
.verify(MsgPackDoc
.getRoot()))
5338 HSAMetadataString
= "Invalid AMDGPU Metadata\n";
5340 raw_string_ostream
StrOS(HSAMetadataString
);
5341 MsgPackDoc
.toYAML(StrOS
);
5343 return {"AMDGPU Metadata", StrOS
.str()};
5348 struct CoreFileMapping
{
5349 uint64_t Start
, End
, Offset
;
5355 std::vector
<CoreFileMapping
> Mappings
;
5358 static Expected
<CoreNote
> readCoreNote(DataExtractor Desc
) {
5359 // Expected format of the NT_FILE note description:
5360 // 1. # of file mappings (call it N)
5362 // 3. N (start, end, offset) triples
5363 // 4. N packed filenames (null delimited)
5364 // Each field is an Elf_Addr, except for filenames which are char* strings.
5367 const int Bytes
= Desc
.getAddressSize();
5369 if (!Desc
.isValidOffsetForAddress(2))
5370 return createError("the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5371 " is too short, expected at least 0x" +
5372 Twine::utohexstr(Bytes
* 2));
5373 if (Desc
.getData().back() != 0)
5374 return createError("the note is not NUL terminated");
5376 uint64_t DescOffset
= 0;
5377 uint64_t FileCount
= Desc
.getAddress(&DescOffset
);
5378 Ret
.PageSize
= Desc
.getAddress(&DescOffset
);
5380 if (!Desc
.isValidOffsetForAddress(3 * FileCount
* Bytes
))
5381 return createError("unable to read file mappings (found " +
5382 Twine(FileCount
) + "): the note of size 0x" +
5383 Twine::utohexstr(Desc
.size()) + " is too short");
5385 uint64_t FilenamesOffset
= 0;
5386 DataExtractor
Filenames(
5387 Desc
.getData().drop_front(DescOffset
+ 3 * FileCount
* Bytes
),
5388 Desc
.isLittleEndian(), Desc
.getAddressSize());
5390 Ret
.Mappings
.resize(FileCount
);
5392 for (CoreFileMapping
&Mapping
: Ret
.Mappings
) {
5394 if (!Filenames
.isValidOffsetForDataOfSize(FilenamesOffset
, 1))
5396 "unable to read the file name for the mapping with index " +
5397 Twine(I
) + ": the note of size 0x" + Twine::utohexstr(Desc
.size()) +
5399 Mapping
.Start
= Desc
.getAddress(&DescOffset
);
5400 Mapping
.End
= Desc
.getAddress(&DescOffset
);
5401 Mapping
.Offset
= Desc
.getAddress(&DescOffset
);
5402 Mapping
.Filename
= Filenames
.getCStrRef(&FilenamesOffset
);
5408 template <typename ELFT
>
5409 static void printCoreNote(raw_ostream
&OS
, const CoreNote
&Note
) {
5410 // Length of "0x<address>" string.
5411 const int FieldWidth
= ELFT::Is64Bits
? 18 : 10;
5413 OS
<< " Page size: " << format_decimal(Note
.PageSize
, 0) << '\n';
5414 OS
<< " " << right_justify("Start", FieldWidth
) << " "
5415 << right_justify("End", FieldWidth
) << " "
5416 << right_justify("Page Offset", FieldWidth
) << '\n';
5417 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
5418 OS
<< " " << format_hex(Mapping
.Start
, FieldWidth
) << " "
5419 << format_hex(Mapping
.End
, FieldWidth
) << " "
5420 << format_hex(Mapping
.Offset
, FieldWidth
) << "\n "
5421 << Mapping
.Filename
<< '\n';
5425 static const NoteType GenericNoteTypes
[] = {
5426 {ELF::NT_VERSION
, "NT_VERSION (version)"},
5427 {ELF::NT_ARCH
, "NT_ARCH (architecture)"},
5428 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN
, "OPEN"},
5429 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC
, "func"},
5432 static const NoteType GNUNoteTypes
[] = {
5433 {ELF::NT_GNU_ABI_TAG
, "NT_GNU_ABI_TAG (ABI version tag)"},
5434 {ELF::NT_GNU_HWCAP
, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5435 {ELF::NT_GNU_BUILD_ID
, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5436 {ELF::NT_GNU_GOLD_VERSION
, "NT_GNU_GOLD_VERSION (gold version)"},
5437 {ELF::NT_GNU_PROPERTY_TYPE_0
, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5440 static const NoteType FreeBSDNoteTypes
[] = {
5441 {ELF::NT_FREEBSD_THRMISC
, "NT_THRMISC (thrmisc structure)"},
5442 {ELF::NT_FREEBSD_PROCSTAT_PROC
, "NT_PROCSTAT_PROC (proc data)"},
5443 {ELF::NT_FREEBSD_PROCSTAT_FILES
, "NT_PROCSTAT_FILES (files data)"},
5444 {ELF::NT_FREEBSD_PROCSTAT_VMMAP
, "NT_PROCSTAT_VMMAP (vmmap data)"},
5445 {ELF::NT_FREEBSD_PROCSTAT_GROUPS
, "NT_PROCSTAT_GROUPS (groups data)"},
5446 {ELF::NT_FREEBSD_PROCSTAT_UMASK
, "NT_PROCSTAT_UMASK (umask data)"},
5447 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT
, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5448 {ELF::NT_FREEBSD_PROCSTAT_OSREL
, "NT_PROCSTAT_OSREL (osreldate data)"},
5449 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS
,
5450 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5451 {ELF::NT_FREEBSD_PROCSTAT_AUXV
, "NT_PROCSTAT_AUXV (auxv data)"},
5454 static const NoteType AMDNoteTypes
[] = {
5455 {ELF::NT_AMD_AMDGPU_HSA_METADATA
,
5456 "NT_AMD_AMDGPU_HSA_METADATA (HSA Metadata)"},
5457 {ELF::NT_AMD_AMDGPU_ISA
, "NT_AMD_AMDGPU_ISA (ISA Version)"},
5458 {ELF::NT_AMD_AMDGPU_PAL_METADATA
,
5459 "NT_AMD_AMDGPU_PAL_METADATA (PAL Metadata)"},
5462 static const NoteType AMDGPUNoteTypes
[] = {
5463 {ELF::NT_AMDGPU_METADATA
, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5466 static const NoteType CoreNoteTypes
[] = {
5467 {ELF::NT_PRSTATUS
, "NT_PRSTATUS (prstatus structure)"},
5468 {ELF::NT_FPREGSET
, "NT_FPREGSET (floating point registers)"},
5469 {ELF::NT_PRPSINFO
, "NT_PRPSINFO (prpsinfo structure)"},
5470 {ELF::NT_TASKSTRUCT
, "NT_TASKSTRUCT (task structure)"},
5471 {ELF::NT_AUXV
, "NT_AUXV (auxiliary vector)"},
5472 {ELF::NT_PSTATUS
, "NT_PSTATUS (pstatus structure)"},
5473 {ELF::NT_FPREGS
, "NT_FPREGS (floating point registers)"},
5474 {ELF::NT_PSINFO
, "NT_PSINFO (psinfo structure)"},
5475 {ELF::NT_LWPSTATUS
, "NT_LWPSTATUS (lwpstatus_t structure)"},
5476 {ELF::NT_LWPSINFO
, "NT_LWPSINFO (lwpsinfo_t structure)"},
5477 {ELF::NT_WIN32PSTATUS
, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5479 {ELF::NT_PPC_VMX
, "NT_PPC_VMX (ppc Altivec registers)"},
5480 {ELF::NT_PPC_VSX
, "NT_PPC_VSX (ppc VSX registers)"},
5481 {ELF::NT_PPC_TAR
, "NT_PPC_TAR (ppc TAR register)"},
5482 {ELF::NT_PPC_PPR
, "NT_PPC_PPR (ppc PPR register)"},
5483 {ELF::NT_PPC_DSCR
, "NT_PPC_DSCR (ppc DSCR register)"},
5484 {ELF::NT_PPC_EBB
, "NT_PPC_EBB (ppc EBB registers)"},
5485 {ELF::NT_PPC_PMU
, "NT_PPC_PMU (ppc PMU registers)"},
5486 {ELF::NT_PPC_TM_CGPR
, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5487 {ELF::NT_PPC_TM_CFPR
,
5488 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5489 {ELF::NT_PPC_TM_CVMX
,
5490 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5491 {ELF::NT_PPC_TM_CVSX
, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5492 {ELF::NT_PPC_TM_SPR
, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5493 {ELF::NT_PPC_TM_CTAR
, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5494 {ELF::NT_PPC_TM_CPPR
, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5495 {ELF::NT_PPC_TM_CDSCR
, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5497 {ELF::NT_386_TLS
, "NT_386_TLS (x86 TLS information)"},
5498 {ELF::NT_386_IOPERM
, "NT_386_IOPERM (x86 I/O permissions)"},
5499 {ELF::NT_X86_XSTATE
, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5501 {ELF::NT_S390_HIGH_GPRS
, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5502 {ELF::NT_S390_TIMER
, "NT_S390_TIMER (s390 timer register)"},
5503 {ELF::NT_S390_TODCMP
, "NT_S390_TODCMP (s390 TOD comparator register)"},
5504 {ELF::NT_S390_TODPREG
, "NT_S390_TODPREG (s390 TOD programmable register)"},
5505 {ELF::NT_S390_CTRS
, "NT_S390_CTRS (s390 control registers)"},
5506 {ELF::NT_S390_PREFIX
, "NT_S390_PREFIX (s390 prefix register)"},
5507 {ELF::NT_S390_LAST_BREAK
,
5508 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5509 {ELF::NT_S390_SYSTEM_CALL
,
5510 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5511 {ELF::NT_S390_TDB
, "NT_S390_TDB (s390 transaction diagnostic block)"},
5512 {ELF::NT_S390_VXRS_LOW
,
5513 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5514 {ELF::NT_S390_VXRS_HIGH
, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5515 {ELF::NT_S390_GS_CB
, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5516 {ELF::NT_S390_GS_BC
,
5517 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5519 {ELF::NT_ARM_VFP
, "NT_ARM_VFP (arm VFP registers)"},
5520 {ELF::NT_ARM_TLS
, "NT_ARM_TLS (AArch TLS registers)"},
5521 {ELF::NT_ARM_HW_BREAK
,
5522 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5523 {ELF::NT_ARM_HW_WATCH
,
5524 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5526 {ELF::NT_FILE
, "NT_FILE (mapped files)"},
5527 {ELF::NT_PRXFPREG
, "NT_PRXFPREG (user_xfpregs structure)"},
5528 {ELF::NT_SIGINFO
, "NT_SIGINFO (siginfo_t data)"},
5531 template <class ELFT
>
5532 const StringRef
getNoteTypeName(const typename
ELFT::Note
&Note
,
5534 uint32_t Type
= Note
.getType();
5535 auto FindNote
= [&](ArrayRef
<NoteType
> V
) -> StringRef
{
5536 for (const NoteType
&N
: V
)
5542 StringRef Name
= Note
.getName();
5544 return FindNote(GNUNoteTypes
);
5545 if (Name
== "FreeBSD")
5546 return FindNote(FreeBSDNoteTypes
);
5548 return FindNote(AMDNoteTypes
);
5549 if (Name
== "AMDGPU")
5550 return FindNote(AMDGPUNoteTypes
);
5552 if (ELFType
== ELF::ET_CORE
)
5553 return FindNote(CoreNoteTypes
);
5554 return FindNote(GenericNoteTypes
);
5557 template <class ELFT
>
5558 static void printNotesHelper(
5559 const ELFDumper
<ELFT
> &Dumper
,
5560 llvm::function_ref
<void(Optional
<StringRef
>, typename
ELFT::Off
,
5561 typename
ELFT::Addr
)>
5563 llvm::function_ref
<Error(const typename
ELFT::Note
&)> ProcessNoteFn
,
5564 llvm::function_ref
<void()> FinishNotesFn
) {
5565 const ELFFile
<ELFT
> &Obj
= Dumper
.getElfObject().getELFFile();
5567 ArrayRef
<typename
ELFT::Shdr
> Sections
= cantFail(Obj
.sections());
5568 if (Obj
.getHeader().e_type
!= ELF::ET_CORE
&& !Sections
.empty()) {
5569 for (const typename
ELFT::Shdr
&S
: Sections
) {
5570 if (S
.sh_type
!= SHT_NOTE
)
5572 StartNotesFn(expectedToOptional(Obj
.getSectionName(S
)), S
.sh_offset
,
5574 Error Err
= Error::success();
5576 for (const typename
ELFT::Note Note
: Obj
.notes(S
, Err
)) {
5577 if (Error E
= ProcessNoteFn(Note
))
5578 Dumper
.reportUniqueWarning(
5579 "unable to read note with index " + Twine(I
) + " from the " +
5580 describe(Obj
, S
) + ": " + toString(std::move(E
)));
5584 Dumper
.reportUniqueWarning("unable to read notes from the " +
5585 describe(Obj
, S
) + ": " +
5586 toString(std::move(Err
)));
5592 Expected
<ArrayRef
<typename
ELFT::Phdr
>> PhdrsOrErr
= Obj
.program_headers();
5594 Dumper
.reportUniqueWarning(
5595 "unable to read program headers to locate the PT_NOTE segment: " +
5596 toString(PhdrsOrErr
.takeError()));
5601 for (const typename
ELFT::Phdr
&P
: *PhdrsOrErr
) {
5603 if (P
.p_type
!= PT_NOTE
)
5605 StartNotesFn(/*SecName=*/None
, P
.p_offset
, P
.p_filesz
);
5606 Error Err
= Error::success();
5608 for (const typename
ELFT::Note Note
: Obj
.notes(P
, Err
)) {
5609 if (Error E
= ProcessNoteFn(Note
))
5610 Dumper
.reportUniqueWarning("unable to read note with index " +
5612 " from the PT_NOTE segment with index " +
5613 Twine(I
) + ": " + toString(std::move(E
)));
5617 Dumper
.reportUniqueWarning(
5618 "unable to read notes from the PT_NOTE segment with index " +
5619 Twine(I
) + ": " + toString(std::move(Err
)));
5624 template <class ELFT
> void GNUStyle
<ELFT
>::printNotes() {
5625 auto PrintHeader
= [&](Optional
<StringRef
> SecName
,
5626 const typename
ELFT::Off Offset
,
5627 const typename
ELFT::Addr Size
) {
5628 OS
<< "Displaying notes found ";
5631 OS
<< "in: " << *SecName
<< "\n";
5633 OS
<< "at file offset " << format_hex(Offset
, 10) << " with length "
5634 << format_hex(Size
, 10) << ":\n";
5636 OS
<< " Owner Data size \tDescription\n";
5639 auto ProcessNote
= [&](const Elf_Note
&Note
) -> Error
{
5640 StringRef Name
= Note
.getName();
5641 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
5642 Elf_Word Type
= Note
.getType();
5644 // Print the note owner/type.
5645 OS
<< " " << left_justify(Name
, 20) << ' '
5646 << format_hex(Descriptor
.size(), 10) << '\t';
5648 StringRef NoteType
=
5649 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
5650 if (!NoteType
.empty())
5651 OS
<< NoteType
<< '\n';
5653 OS
<< "Unknown note type: (" << format_hex(Type
, 10) << ")\n";
5655 // Print the description, or fallback to printing raw bytes for unknown
5657 if (Name
== "GNU") {
5658 printGNUNote
<ELFT
>(OS
, Type
, Descriptor
);
5659 } else if (Name
== "AMD") {
5660 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
5661 if (!N
.Type
.empty())
5662 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
5663 } else if (Name
== "AMDGPU") {
5664 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
5665 if (!N
.Type
.empty())
5666 OS
<< " " << N
.Type
<< ":\n " << N
.Value
<< '\n';
5667 } else if (Name
== "CORE") {
5668 if (Type
== ELF::NT_FILE
) {
5669 DataExtractor
DescExtractor(Descriptor
,
5670 ELFT::TargetEndianness
== support::little
,
5672 if (Expected
<CoreNote
> NoteOrErr
= readCoreNote(DescExtractor
))
5673 printCoreNote
<ELFT
>(OS
, *NoteOrErr
);
5675 return NoteOrErr
.takeError();
5677 } else if (!Descriptor
.empty()) {
5678 OS
<< " description data:";
5679 for (uint8_t B
: Descriptor
)
5680 OS
<< " " << format("%02x", B
);
5683 return Error::success();
5686 printNotesHelper(this->dumper(), PrintHeader
, ProcessNote
, []() {});
5689 template <class ELFT
> void GNUStyle
<ELFT
>::printELFLinkerOptions() {
5690 OS
<< "printELFLinkerOptions not implemented!\n";
5693 template <class ELFT
>
5694 void DumpStyle
<ELFT
>::printDependentLibsHelper(
5695 function_ref
<void(const Elf_Shdr
&)> OnSectionStart
,
5696 function_ref
<void(StringRef
, uint64_t)> OnLibEntry
) {
5697 auto Warn
= [this](unsigned SecNdx
, StringRef Msg
) {
5698 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
5699 Twine(SecNdx
) + " is broken: " + Msg
);
5703 for (const Elf_Shdr
&Shdr
: cantFail(Obj
.sections())) {
5705 if (Shdr
.sh_type
!= ELF::SHT_LLVM_DEPENDENT_LIBRARIES
)
5708 OnSectionStart(Shdr
);
5710 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
= Obj
.getSectionContents(Shdr
);
5711 if (!ContentsOrErr
) {
5712 Warn(I
, toString(ContentsOrErr
.takeError()));
5716 ArrayRef
<uint8_t> Contents
= *ContentsOrErr
;
5717 if (!Contents
.empty() && Contents
.back() != 0) {
5718 Warn(I
, "the content is not null-terminated");
5722 for (const uint8_t *I
= Contents
.begin(), *E
= Contents
.end(); I
< E
;) {
5723 StringRef
Lib((const char *)I
);
5724 OnLibEntry(Lib
, I
- Contents
.begin());
5725 I
+= Lib
.size() + 1;
5730 template <class ELFT
>
5731 void DumpStyle
<ELFT
>::forEachRelocationDo(
5732 const Elf_Shdr
&Sec
, bool RawRelr
,
5733 llvm::function_ref
<void(const Relocation
<ELFT
> &, unsigned,
5734 const Elf_Shdr
&, const Elf_Shdr
*)>
5736 llvm::function_ref
<void(const Elf_Relr
&)> RelrFn
) {
5737 auto Warn
= [&](Error
&&E
,
5738 const Twine
&Prefix
= "unable to read relocations from") {
5739 this->reportUniqueWarning(Prefix
+ " " + describe(Obj
, Sec
) + ": " +
5740 toString(std::move(E
)));
5743 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
5744 // For them we should not treat the value of the sh_link field as an index of
5746 const Elf_Shdr
*SymTab
;
5747 if (Sec
.sh_type
!= ELF::SHT_RELR
&& Sec
.sh_type
!= ELF::SHT_ANDROID_RELR
) {
5748 Expected
<const Elf_Shdr
*> SymTabOrErr
= Obj
.getSection(Sec
.sh_link
);
5750 Warn(SymTabOrErr
.takeError(), "unable to locate a symbol table for");
5753 SymTab
= *SymTabOrErr
;
5756 unsigned RelNdx
= 0;
5757 const bool IsMips64EL
= this->Obj
.isMips64EL();
5758 switch (Sec
.sh_type
) {
5760 if (Expected
<Elf_Rel_Range
> RangeOrErr
= Obj
.rels(Sec
)) {
5761 for (const Elf_Rel
&R
: *RangeOrErr
)
5762 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), ++RelNdx
, Sec
, SymTab
);
5764 Warn(RangeOrErr
.takeError());
5768 if (Expected
<Elf_Rela_Range
> RangeOrErr
= Obj
.relas(Sec
)) {
5769 for (const Elf_Rela
&R
: *RangeOrErr
)
5770 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), ++RelNdx
, Sec
, SymTab
);
5772 Warn(RangeOrErr
.takeError());
5776 case ELF::SHT_ANDROID_RELR
: {
5777 Expected
<Elf_Relr_Range
> RangeOrErr
= Obj
.relrs(Sec
);
5779 Warn(RangeOrErr
.takeError());
5783 for (const Elf_Relr
&R
: *RangeOrErr
)
5788 for (const Elf_Rel
&R
: Obj
.decode_relrs(*RangeOrErr
))
5789 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), ++RelNdx
, Sec
,
5790 /*SymTab=*/nullptr);
5793 case ELF::SHT_ANDROID_REL
:
5794 case ELF::SHT_ANDROID_RELA
:
5795 if (Expected
<std::vector
<Elf_Rela
>> RelasOrErr
= Obj
.android_relas(Sec
)) {
5796 for (const Elf_Rela
&R
: *RelasOrErr
)
5797 RelRelaFn(Relocation
<ELFT
>(R
, IsMips64EL
), ++RelNdx
, Sec
, SymTab
);
5799 Warn(RelasOrErr
.takeError());
5805 template <class ELFT
>
5806 StringRef DumpStyle
<ELFT
>::getPrintableSectionName(const Elf_Shdr
&Sec
) const {
5807 StringRef Name
= "<?>";
5808 if (Expected
<StringRef
> SecNameOrErr
=
5809 Obj
.getSectionName(Sec
, this->dumper().WarningHandler
))
5810 Name
= *SecNameOrErr
;
5812 this->reportUniqueWarning("unable to get the name of " +
5813 describe(Obj
, Sec
) + ": " +
5814 toString(SecNameOrErr
.takeError()));
5818 template <class ELFT
> void GNUStyle
<ELFT
>::printDependentLibs() {
5819 bool SectionStarted
= false;
5824 std::vector
<NameOffset
> SecEntries
;
5826 auto PrintSection
= [&]() {
5827 OS
<< "Dependent libraries section " << Current
.Name
<< " at offset "
5828 << format_hex(Current
.Offset
, 1) << " contains " << SecEntries
.size()
5830 for (NameOffset Entry
: SecEntries
)
5831 OS
<< " [" << format("%6" PRIx64
, Entry
.Offset
) << "] " << Entry
.Name
5837 auto OnSectionStart
= [&](const Elf_Shdr
&Shdr
) {
5840 SectionStarted
= true;
5841 Current
.Offset
= Shdr
.sh_offset
;
5842 Current
.Name
= this->getPrintableSectionName(Shdr
);
5844 auto OnLibEntry
= [&](StringRef Lib
, uint64_t Offset
) {
5845 SecEntries
.push_back(NameOffset
{Lib
, Offset
});
5848 this->printDependentLibsHelper(OnSectionStart
, OnLibEntry
);
5853 template <class ELFT
>
5854 void DumpStyle
<ELFT
>::printFunctionStackSize(
5855 uint64_t SymValue
, Optional
<const Elf_Shdr
*> FunctionSec
,
5856 const Elf_Shdr
&StackSizeSec
, DataExtractor Data
, uint64_t *Offset
) {
5857 uint32_t FuncSymIndex
= 0;
5858 if (const Elf_Shdr
*SymTab
= this->dumper().getDotSymtabSec()) {
5859 if (Expected
<Elf_Sym_Range
> SymsOrError
= Obj
.symbols(SymTab
)) {
5860 uint32_t Index
= (uint32_t)-1;
5861 for (const Elf_Sym
&Sym
: *SymsOrError
) {
5864 if (Sym
.st_shndx
== ELF::SHN_UNDEF
|| Sym
.getType() != ELF::STT_FUNC
)
5867 if (Expected
<uint64_t> SymAddrOrErr
=
5868 ElfObj
.toSymbolRef(SymTab
, Index
).getAddress()) {
5869 if (SymValue
!= *SymAddrOrErr
)
5872 std::string Name
= this->dumper().getStaticSymbolName(Index
);
5873 reportUniqueWarning("unable to get address of symbol '" + Name
+
5874 "': " + toString(SymAddrOrErr
.takeError()));
5878 // Check if the symbol is in the right section. FunctionSec == None
5879 // means "any section".
5881 if (Expected
<const Elf_Shdr
*> SecOrErr
=
5882 Obj
.getSection(Sym
, SymTab
, this->dumper().getShndxTable())) {
5883 if (*FunctionSec
!= *SecOrErr
)
5886 std::string Name
= this->dumper().getStaticSymbolName(Index
);
5887 // Note: it is impossible to trigger this error currently, it is
5889 reportUniqueWarning("unable to get section of symbol '" + Name
+
5890 "': " + toString(SecOrErr
.takeError()));
5895 FuncSymIndex
= Index
;
5899 reportUniqueWarning("unable to read the symbol table: " +
5900 toString(SymsOrError
.takeError()));
5904 std::string FuncName
= "?";
5906 reportUniqueWarning(
5907 "could not identify function symbol for stack size entry in " +
5908 describe(Obj
, StackSizeSec
));
5910 FuncName
= this->dumper().getStaticSymbolName(FuncSymIndex
);
5912 // Extract the size. The expectation is that Offset is pointing to the right
5913 // place, i.e. past the function address.
5914 uint64_t PrevOffset
= *Offset
;
5915 uint64_t StackSize
= Data
.getULEB128(Offset
);
5916 // getULEB128() does not advance Offset if it is not able to extract a valid
5918 if (*Offset
== PrevOffset
) {
5919 reportUniqueWarning("could not extract a valid stack size from " +
5920 describe(Obj
, StackSizeSec
));
5923 printStackSizeEntry(StackSize
, FuncName
);
5926 template <class ELFT
>
5927 void GNUStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
5929 OS
<< format_decimal(Size
, 11);
5931 OS
<< FuncName
<< "\n";
5934 template <class ELFT
>
5935 void DumpStyle
<ELFT
>::printStackSize(const Relocation
<ELFT
> &R
,
5936 const Elf_Shdr
&RelocSec
, unsigned Ndx
,
5937 const Elf_Shdr
*SymTab
,
5938 const Elf_Shdr
*FunctionSec
,
5939 const Elf_Shdr
&StackSizeSec
,
5940 const RelocationResolver
&Resolver
,
5941 DataExtractor Data
) {
5942 // This function ignores potentially erroneous input, unless it is directly
5943 // related to stack size reporting.
5944 const Elf_Sym
*Sym
= nullptr;
5945 Expected
<RelSymbol
<ELFT
>> TargetOrErr
=
5946 this->dumper().getRelocationTarget(R
, SymTab
);
5948 reportUniqueWarning("unable to get the target of relocation with index " +
5949 Twine(Ndx
) + " in " + describe(Obj
, RelocSec
) + ": " +
5950 toString(TargetOrErr
.takeError()));
5952 Sym
= TargetOrErr
->Sym
;
5954 uint64_t RelocSymValue
= 0;
5956 Expected
<const Elf_Shdr
*> SectionOrErr
=
5957 this->Obj
.getSection(*Sym
, SymTab
, this->dumper().getShndxTable());
5958 if (!SectionOrErr
) {
5959 reportUniqueWarning(
5960 "cannot identify the section for relocation symbol '" +
5961 (*TargetOrErr
).Name
+ "': " + toString(SectionOrErr
.takeError()));
5962 } else if (*SectionOrErr
!= FunctionSec
) {
5963 reportUniqueWarning("relocation symbol '" + (*TargetOrErr
).Name
+
5964 "' is not in the expected section");
5965 // Pretend that the symbol is in the correct section and report its
5966 // stack size anyway.
5967 FunctionSec
= *SectionOrErr
;
5970 RelocSymValue
= Sym
->st_value
;
5973 uint64_t Offset
= R
.Offset
;
5974 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
5975 reportUniqueWarning("found invalid relocation offset (0x" +
5976 Twine::utohexstr(Offset
) + ") into " +
5977 describe(Obj
, StackSizeSec
) +
5978 " while trying to extract a stack size entry");
5983 Resolver(R
.Type
, Offset
, RelocSymValue
, Data
.getAddress(&Offset
),
5984 R
.Addend
.getValueOr(0));
5985 this->printFunctionStackSize(SymValue
, FunctionSec
, StackSizeSec
, Data
,
5989 template <class ELFT
>
5990 void DumpStyle
<ELFT
>::printNonRelocatableStackSizes(
5991 std::function
<void()> PrintHeader
) {
5992 // This function ignores potentially erroneous input, unless it is directly
5993 // related to stack size reporting.
5994 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
5995 if (this->getPrintableSectionName(Sec
) != ".stack_sizes")
5998 ArrayRef
<uint8_t> Contents
=
5999 unwrapOrError(this->FileName
, Obj
.getSectionContents(Sec
));
6000 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6001 uint64_t Offset
= 0;
6002 while (Offset
< Contents
.size()) {
6003 // The function address is followed by a ULEB representing the stack
6004 // size. Check for an extra byte before we try to process the entry.
6005 if (!Data
.isValidOffsetForDataOfSize(Offset
, sizeof(Elf_Addr
) + 1)) {
6006 reportUniqueWarning(
6007 describe(Obj
, Sec
) +
6008 " ended while trying to extract a stack size entry");
6011 uint64_t SymValue
= Data
.getAddress(&Offset
);
6012 printFunctionStackSize(SymValue
, /*FunctionSec=*/None
, Sec
, Data
,
6018 template <class ELFT
>
6019 void DumpStyle
<ELFT
>::printRelocatableStackSizes(
6020 std::function
<void()> PrintHeader
) {
6021 // Build a map between stack size sections and their corresponding relocation
6023 llvm::MapVector
<const Elf_Shdr
*, const Elf_Shdr
*> StackSizeRelocMap
;
6024 for (const Elf_Shdr
&Sec
: cantFail(Obj
.sections())) {
6025 StringRef SectionName
;
6026 if (Expected
<StringRef
> NameOrErr
= Obj
.getSectionName(Sec
))
6027 SectionName
= *NameOrErr
;
6029 consumeError(NameOrErr
.takeError());
6031 // A stack size section that we haven't encountered yet is mapped to the
6032 // null section until we find its corresponding relocation section.
6033 if (SectionName
== ".stack_sizes")
6034 if (StackSizeRelocMap
6035 .insert(std::make_pair(&Sec
, (const Elf_Shdr
*)nullptr))
6039 // Check relocation sections if they are relocating contents of a
6040 // stack sizes section.
6041 if (Sec
.sh_type
!= ELF::SHT_RELA
&& Sec
.sh_type
!= ELF::SHT_REL
)
6044 Expected
<const Elf_Shdr
*> RelSecOrErr
= Obj
.getSection(Sec
.sh_info
);
6046 reportUniqueWarning(describe(Obj
, Sec
) +
6047 ": failed to get a relocated section: " +
6048 toString(RelSecOrErr
.takeError()));
6052 const Elf_Shdr
*ContentsSec
= *RelSecOrErr
;
6053 if (this->getPrintableSectionName(**RelSecOrErr
) != ".stack_sizes")
6056 // Insert a mapping from the stack sizes section to its relocation section.
6057 StackSizeRelocMap
[ContentsSec
] = &Sec
;
6060 for (const auto &StackSizeMapEntry
: StackSizeRelocMap
) {
6062 const Elf_Shdr
*StackSizesELFSec
= StackSizeMapEntry
.first
;
6063 const Elf_Shdr
*RelocSec
= StackSizeMapEntry
.second
;
6065 // Warn about stack size sections without a relocation section.
6067 reportWarning(createError(".stack_sizes (" +
6068 describe(Obj
, *StackSizesELFSec
) +
6069 ") does not have a corresponding "
6070 "relocation section"),
6075 // A .stack_sizes section header's sh_link field is supposed to point
6076 // to the section that contains the functions whose stack sizes are
6078 const Elf_Shdr
*FunctionSec
= unwrapOrError(
6079 this->FileName
, Obj
.getSection(StackSizesELFSec
->sh_link
));
6081 SupportsRelocation IsSupportedFn
;
6082 RelocationResolver Resolver
;
6083 std::tie(IsSupportedFn
, Resolver
) = getRelocationResolver(ElfObj
);
6084 ArrayRef
<uint8_t> Contents
=
6085 unwrapOrError(this->FileName
, Obj
.getSectionContents(*StackSizesELFSec
));
6086 DataExtractor
Data(Contents
, Obj
.isLE(), sizeof(Elf_Addr
));
6088 forEachRelocationDo(
6089 *RelocSec
, /*RawRelr=*/false,
6090 [&](const Relocation
<ELFT
> &R
, unsigned Ndx
, const Elf_Shdr
&Sec
,
6091 const Elf_Shdr
*SymTab
) {
6092 if (!IsSupportedFn
|| !IsSupportedFn(R
.Type
)) {
6093 reportUniqueWarning(
6094 describe(Obj
, *RelocSec
) +
6095 " contains an unsupported relocation with index " + Twine(Ndx
) +
6096 ": " + Obj
.getRelocationTypeName(R
.Type
));
6100 this->printStackSize(R
, *RelocSec
, Ndx
, SymTab
, FunctionSec
,
6101 *StackSizesELFSec
, Resolver
, Data
);
6103 [](const Elf_Relr
&) {
6104 llvm_unreachable("can't get here, because we only support "
6105 "SHT_REL/SHT_RELA sections");
6110 template <class ELFT
>
6111 void GNUStyle
<ELFT
>::printStackSizes() {
6112 bool HeaderHasBeenPrinted
= false;
6113 auto PrintHeader
= [&]() {
6114 if (HeaderHasBeenPrinted
)
6116 OS
<< "\nStack Sizes:\n";
6121 HeaderHasBeenPrinted
= true;
6124 // For non-relocatable objects, look directly for sections whose name starts
6125 // with .stack_sizes and process the contents.
6126 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
6127 this->printRelocatableStackSizes(PrintHeader
);
6129 this->printNonRelocatableStackSizes(PrintHeader
);
6132 template <class ELFT
>
6133 void GNUStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
6134 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6135 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6137 OS
<< format_hex_no_prefix(Parser
.getGotAddress(E
), 8 + Bias
);
6138 OS
.PadToColumn(11 + Bias
);
6139 OS
<< format_decimal(Parser
.getGotOffset(E
), 6) << "(gp)";
6140 OS
.PadToColumn(22 + Bias
);
6141 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6142 OS
.PadToColumn(31 + 2 * Bias
);
6143 OS
<< Purpose
<< "\n";
6146 OS
<< (Parser
.IsStatic
? "Static GOT:\n" : "Primary GOT:\n");
6147 OS
<< " Canonical gp value: "
6148 << format_hex_no_prefix(Parser
.getGp(), 8 + Bias
) << "\n\n";
6150 OS
<< " Reserved entries:\n";
6152 OS
<< " Address Access Initial Purpose\n";
6154 OS
<< " Address Access Initial Purpose\n";
6155 PrintEntry(Parser
.getGotLazyResolver(), "Lazy resolver");
6156 if (Parser
.getGotModulePointer())
6157 PrintEntry(Parser
.getGotModulePointer(), "Module pointer (GNU extension)");
6159 if (!Parser
.getLocalEntries().empty()) {
6161 OS
<< " Local entries:\n";
6163 OS
<< " Address Access Initial\n";
6165 OS
<< " Address Access Initial\n";
6166 for (auto &E
: Parser
.getLocalEntries())
6170 if (Parser
.IsStatic
)
6173 if (!Parser
.getGlobalEntries().empty()) {
6175 OS
<< " Global entries:\n";
6177 OS
<< " Address Access Initial Sym.Val."
6178 << " Type Ndx Name\n";
6180 OS
<< " Address Access Initial Sym.Val. Type Ndx Name\n";
6181 for (auto &E
: Parser
.getGlobalEntries()) {
6182 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
6183 const Elf_Sym
&FirstSym
= this->dumper().dynamic_symbols()[0];
6184 std::string SymName
= this->dumper().getFullSymbolName(
6185 Sym
, &Sym
- &FirstSym
, this->dumper().getDynamicStringTable(), false);
6188 OS
<< to_string(format_hex_no_prefix(Parser
.getGotAddress(&E
), 8 + Bias
));
6189 OS
.PadToColumn(11 + Bias
);
6190 OS
<< to_string(format_decimal(Parser
.getGotOffset(&E
), 6)) + "(gp)";
6191 OS
.PadToColumn(22 + Bias
);
6192 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6193 OS
.PadToColumn(31 + 2 * Bias
);
6194 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6195 OS
.PadToColumn(40 + 3 * Bias
);
6196 OS
<< printEnum(Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
6197 OS
.PadToColumn(48 + 3 * Bias
);
6198 OS
<< getSymbolSectionNdx(
6199 Sym
, &Sym
- this->dumper().dynamic_symbols().begin());
6200 OS
.PadToColumn(52 + 3 * Bias
);
6201 OS
<< SymName
<< "\n";
6205 if (!Parser
.getOtherEntries().empty())
6206 OS
<< "\n Number of TLS and multi-GOT entries "
6207 << Parser
.getOtherEntries().size() << "\n";
6210 template <class ELFT
>
6211 void GNUStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
6212 size_t Bias
= ELFT::Is64Bits
? 8 : 0;
6213 auto PrintEntry
= [&](const Elf_Addr
*E
, StringRef Purpose
) {
6215 OS
<< format_hex_no_prefix(Parser
.getPltAddress(E
), 8 + Bias
);
6216 OS
.PadToColumn(11 + Bias
);
6217 OS
<< format_hex_no_prefix(*E
, 8 + Bias
);
6218 OS
.PadToColumn(20 + 2 * Bias
);
6219 OS
<< Purpose
<< "\n";
6222 OS
<< "PLT GOT:\n\n";
6224 OS
<< " Reserved entries:\n";
6225 OS
<< " Address Initial Purpose\n";
6226 PrintEntry(Parser
.getPltLazyResolver(), "PLT lazy resolver");
6227 if (Parser
.getPltModulePointer())
6228 PrintEntry(Parser
.getPltModulePointer(), "Module pointer");
6230 if (!Parser
.getPltEntries().empty()) {
6232 OS
<< " Entries:\n";
6233 OS
<< " Address Initial Sym.Val. Type Ndx Name\n";
6234 for (auto &E
: Parser
.getPltEntries()) {
6235 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
6236 const Elf_Sym
&FirstSym
=
6237 *cantFail(this->Obj
.template getEntry
<const Elf_Sym
>(
6238 *Parser
.getPltSymTable(), 0));
6239 std::string SymName
= this->dumper().getFullSymbolName(
6240 Sym
, &Sym
- &FirstSym
, this->dumper().getDynamicStringTable(), false);
6243 OS
<< to_string(format_hex_no_prefix(Parser
.getPltAddress(&E
), 8 + Bias
));
6244 OS
.PadToColumn(11 + Bias
);
6245 OS
<< to_string(format_hex_no_prefix(E
, 8 + Bias
));
6246 OS
.PadToColumn(20 + 2 * Bias
);
6247 OS
<< to_string(format_hex_no_prefix(Sym
.st_value
, 8 + Bias
));
6248 OS
.PadToColumn(29 + 3 * Bias
);
6249 OS
<< printEnum(Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
6250 OS
.PadToColumn(37 + 3 * Bias
);
6251 OS
<< getSymbolSectionNdx(
6252 Sym
, &Sym
- this->dumper().dynamic_symbols().begin());
6253 OS
.PadToColumn(41 + 3 * Bias
);
6254 OS
<< SymName
<< "\n";
6259 template <class ELFT
>
6260 Expected
<const Elf_Mips_ABIFlags
<ELFT
> *>
6261 getMipsAbiFlagsSection(const ELFDumper
<ELFT
> &Dumper
) {
6262 const typename
ELFT::Shdr
*Sec
= Dumper
.findSectionByName(".MIPS.abiflags");
6266 constexpr StringRef ErrPrefix
= "unable to read the .MIPS.abiflags section: ";
6267 Expected
<ArrayRef
<uint8_t>> DataOrErr
=
6268 Dumper
.getElfObject().getELFFile().getSectionContents(*Sec
);
6270 return createError(ErrPrefix
+ toString(DataOrErr
.takeError()));
6272 if (DataOrErr
->size() != sizeof(Elf_Mips_ABIFlags
<ELFT
>))
6273 return createError(ErrPrefix
+ "it has a wrong size (" +
6274 Twine(DataOrErr
->size()) + ")");
6275 return reinterpret_cast<const Elf_Mips_ABIFlags
<ELFT
> *>(DataOrErr
->data());
6278 template <class ELFT
> void GNUStyle
<ELFT
>::printMipsABIFlags() {
6279 const Elf_Mips_ABIFlags
<ELFT
> *Flags
= nullptr;
6280 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
6281 getMipsAbiFlagsSection(this->dumper()))
6284 this->reportUniqueWarning(SecOrErr
.takeError());
6288 OS
<< "MIPS ABI Flags Version: " << Flags
->version
<< "\n\n";
6289 OS
<< "ISA: MIPS" << int(Flags
->isa_level
);
6290 if (Flags
->isa_rev
> 1)
6291 OS
<< "r" << int(Flags
->isa_rev
);
6293 OS
<< "GPR size: " << getMipsRegisterSize(Flags
->gpr_size
) << "\n";
6294 OS
<< "CPR1 size: " << getMipsRegisterSize(Flags
->cpr1_size
) << "\n";
6295 OS
<< "CPR2 size: " << getMipsRegisterSize(Flags
->cpr2_size
) << "\n";
6296 OS
<< "FP ABI: " << printEnum(Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
))
6298 OS
<< "ISA Extension: "
6299 << printEnum(Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
)) << "\n";
6300 if (Flags
->ases
== 0)
6301 OS
<< "ASEs: None\n";
6303 // FIXME: Print each flag on a separate line.
6304 OS
<< "ASEs: " << printFlags(Flags
->ases
, makeArrayRef(ElfMipsASEFlags
))
6306 OS
<< "FLAGS 1: " << format_hex_no_prefix(Flags
->flags1
, 8, false) << "\n";
6307 OS
<< "FLAGS 2: " << format_hex_no_prefix(Flags
->flags2
, 8, false) << "\n";
6311 template <class ELFT
> void LLVMStyle
<ELFT
>::printFileHeaders() {
6312 const Elf_Ehdr
&E
= this->Obj
.getHeader();
6314 DictScope
D(W
, "ElfHeader");
6316 DictScope
D(W
, "Ident");
6317 W
.printBinary("Magic", makeArrayRef(E
.e_ident
).slice(ELF::EI_MAG0
, 4));
6318 W
.printEnum("Class", E
.e_ident
[ELF::EI_CLASS
], makeArrayRef(ElfClass
));
6319 W
.printEnum("DataEncoding", E
.e_ident
[ELF::EI_DATA
],
6320 makeArrayRef(ElfDataEncoding
));
6321 W
.printNumber("FileVersion", E
.e_ident
[ELF::EI_VERSION
]);
6323 auto OSABI
= makeArrayRef(ElfOSABI
);
6324 if (E
.e_ident
[ELF::EI_OSABI
] >= ELF::ELFOSABI_FIRST_ARCH
&&
6325 E
.e_ident
[ELF::EI_OSABI
] <= ELF::ELFOSABI_LAST_ARCH
) {
6326 switch (E
.e_machine
) {
6327 case ELF::EM_AMDGPU
:
6328 OSABI
= makeArrayRef(AMDGPUElfOSABI
);
6331 OSABI
= makeArrayRef(ARMElfOSABI
);
6333 case ELF::EM_TI_C6000
:
6334 OSABI
= makeArrayRef(C6000ElfOSABI
);
6338 W
.printEnum("OS/ABI", E
.e_ident
[ELF::EI_OSABI
], OSABI
);
6339 W
.printNumber("ABIVersion", E
.e_ident
[ELF::EI_ABIVERSION
]);
6340 W
.printBinary("Unused", makeArrayRef(E
.e_ident
).slice(ELF::EI_PAD
));
6343 W
.printEnum("Type", E
.e_type
, makeArrayRef(ElfObjectFileType
));
6344 W
.printEnum("Machine", E
.e_machine
, makeArrayRef(ElfMachineType
));
6345 W
.printNumber("Version", E
.e_version
);
6346 W
.printHex("Entry", E
.e_entry
);
6347 W
.printHex("ProgramHeaderOffset", E
.e_phoff
);
6348 W
.printHex("SectionHeaderOffset", E
.e_shoff
);
6349 if (E
.e_machine
== EM_MIPS
)
6350 W
.printFlags("Flags", E
.e_flags
, makeArrayRef(ElfHeaderMipsFlags
),
6351 unsigned(ELF::EF_MIPS_ARCH
), unsigned(ELF::EF_MIPS_ABI
),
6352 unsigned(ELF::EF_MIPS_MACH
));
6353 else if (E
.e_machine
== EM_AMDGPU
)
6354 W
.printFlags("Flags", E
.e_flags
, makeArrayRef(ElfHeaderAMDGPUFlags
),
6355 unsigned(ELF::EF_AMDGPU_MACH
));
6356 else if (E
.e_machine
== EM_RISCV
)
6357 W
.printFlags("Flags", E
.e_flags
, makeArrayRef(ElfHeaderRISCVFlags
));
6359 W
.printFlags("Flags", E
.e_flags
);
6360 W
.printNumber("HeaderSize", E
.e_ehsize
);
6361 W
.printNumber("ProgramHeaderEntrySize", E
.e_phentsize
);
6362 W
.printNumber("ProgramHeaderCount", E
.e_phnum
);
6363 W
.printNumber("SectionHeaderEntrySize", E
.e_shentsize
);
6364 W
.printString("SectionHeaderCount",
6365 getSectionHeadersNumString(this->Obj
, this->FileName
));
6366 W
.printString("StringTableSectionIndex",
6367 getSectionHeaderTableIndexString(this->Obj
, this->FileName
));
6371 template <class ELFT
> void LLVMStyle
<ELFT
>::printGroupSections() {
6372 DictScope
Lists(W
, "Groups");
6373 std::vector
<GroupSection
> V
= this->getGroups();
6374 DenseMap
<uint64_t, const GroupSection
*> Map
= mapSectionsToGroups(V
);
6375 for (const GroupSection
&G
: V
) {
6376 DictScope
D(W
, "Group");
6377 W
.printNumber("Name", G
.Name
, G
.ShName
);
6378 W
.printNumber("Index", G
.Index
);
6379 W
.printNumber("Link", G
.Link
);
6380 W
.printNumber("Info", G
.Info
);
6381 W
.printHex("Type", getGroupType(G
.Type
), G
.Type
);
6382 W
.startLine() << "Signature: " << G
.Signature
<< "\n";
6384 ListScope
L(W
, "Section(s) in group");
6385 for (const GroupMember
&GM
: G
.Members
) {
6386 const GroupSection
*MainGroup
= Map
[GM
.Index
];
6387 if (MainGroup
!= &G
)
6388 this->reportUniqueWarning(
6389 "section with index " + Twine(GM
.Index
) +
6390 ", included in the group section with index " +
6391 Twine(MainGroup
->Index
) +
6392 ", was also found in the group section with index " +
6394 W
.startLine() << GM
.Name
<< " (" << GM
.Index
<< ")\n";
6399 W
.startLine() << "There are no group sections in the file.\n";
6402 template <class ELFT
> void LLVMStyle
<ELFT
>::printRelocations() {
6403 ListScope
D(W
, "Relocations");
6405 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
6406 if (!isRelocationSec
<ELFT
>(Sec
))
6409 StringRef Name
= this->getPrintableSectionName(Sec
);
6410 unsigned SecNdx
= &Sec
- &cantFail(this->Obj
.sections()).front();
6411 W
.startLine() << "Section (" << SecNdx
<< ") " << Name
<< " {\n";
6413 this->printRelocationsHelper(Sec
);
6415 W
.startLine() << "}\n";
6419 template <class ELFT
> void LLVMStyle
<ELFT
>::printRelrReloc(const Elf_Relr
&R
) {
6420 W
.startLine() << W
.hex(R
) << "\n";
6423 template <class ELFT
>
6424 void LLVMStyle
<ELFT
>::printReloc(const Relocation
<ELFT
> &R
, unsigned RelIndex
,
6425 const Elf_Shdr
&Sec
, const Elf_Shdr
*SymTab
) {
6426 Expected
<RelSymbol
<ELFT
>> Target
=
6427 this->dumper().getRelocationTarget(R
, SymTab
);
6429 this->reportUniqueWarning("unable to print relocation " + Twine(RelIndex
) +
6430 " in " + describe(this->Obj
, Sec
) + ": " +
6431 toString(Target
.takeError()));
6435 printRelRelaReloc(R
, Target
->Name
);
6438 template <class ELFT
>
6439 void LLVMStyle
<ELFT
>::printRelRelaReloc(const Relocation
<ELFT
> &R
,
6440 StringRef SymbolName
) {
6441 SmallString
<32> RelocName
;
6442 this->Obj
.getRelocationTypeName(R
.Type
, RelocName
);
6444 if (opts::ExpandRelocs
) {
6445 DictScope
Group(W
, "Relocation");
6446 W
.printHex("Offset", R
.Offset
);
6447 W
.printNumber("Type", RelocName
, R
.Type
);
6448 W
.printNumber("Symbol", !SymbolName
.empty() ? SymbolName
: "-", R
.Symbol
);
6450 W
.printHex("Addend", (uintX_t
)*R
.Addend
);
6452 raw_ostream
&OS
= W
.startLine();
6453 OS
<< W
.hex(R
.Offset
) << " " << RelocName
<< " "
6454 << (!SymbolName
.empty() ? SymbolName
: "-");
6456 OS
<< " " << W
.hex((uintX_t
)*R
.Addend
);
6461 template <class ELFT
> void LLVMStyle
<ELFT
>::printSectionHeaders() {
6462 ListScope
SectionsD(W
, "Sections");
6464 int SectionIndex
= -1;
6465 std::vector
<EnumEntry
<unsigned>> FlagsList
=
6466 getSectionFlagsForTarget(this->Obj
.getHeader().e_machine
);
6467 for (const Elf_Shdr
&Sec
: cantFail(this->Obj
.sections())) {
6468 DictScope
SectionD(W
, "Section");
6469 W
.printNumber("Index", ++SectionIndex
);
6470 W
.printNumber("Name", this->getPrintableSectionName(Sec
), Sec
.sh_name
);
6472 object::getELFSectionTypeName(this->Obj
.getHeader().e_machine
,
6475 W
.printFlags("Flags", Sec
.sh_flags
, makeArrayRef(FlagsList
));
6476 W
.printHex("Address", Sec
.sh_addr
);
6477 W
.printHex("Offset", Sec
.sh_offset
);
6478 W
.printNumber("Size", Sec
.sh_size
);
6479 W
.printNumber("Link", Sec
.sh_link
);
6480 W
.printNumber("Info", Sec
.sh_info
);
6481 W
.printNumber("AddressAlignment", Sec
.sh_addralign
);
6482 W
.printNumber("EntrySize", Sec
.sh_entsize
);
6484 if (opts::SectionRelocations
) {
6485 ListScope
D(W
, "Relocations");
6486 this->printRelocationsHelper(Sec
);
6489 if (opts::SectionSymbols
) {
6490 ListScope
D(W
, "Symbols");
6491 if (const Elf_Shdr
*Symtab
= this->dumper().getDotSymtabSec()) {
6492 StringRef StrTable
= unwrapOrError(
6493 this->FileName
, this->Obj
.getStringTableForSymtab(*Symtab
));
6495 typename
ELFT::SymRange Symbols
=
6496 unwrapOrError(this->FileName
, this->Obj
.symbols(Symtab
));
6497 for (const Elf_Sym
&Sym
: Symbols
) {
6498 const Elf_Shdr
*SymSec
= unwrapOrError(
6499 this->FileName
, this->Obj
.getSection(
6500 Sym
, Symtab
, this->dumper().getShndxTable()));
6502 printSymbol(Sym
, &Sym
- &Symbols
[0], StrTable
, false, false);
6507 if (opts::SectionData
&& Sec
.sh_type
!= ELF::SHT_NOBITS
) {
6508 ArrayRef
<uint8_t> Data
=
6509 unwrapOrError(this->FileName
, this->Obj
.getSectionContents(Sec
));
6512 StringRef(reinterpret_cast<const char *>(Data
.data()), Data
.size()));
6517 template <class ELFT
>
6518 void LLVMStyle
<ELFT
>::printSymbolSection(const Elf_Sym
&Symbol
,
6519 unsigned SymIndex
) {
6520 auto GetSectionSpecialType
= [&]() -> Optional
<StringRef
> {
6521 if (Symbol
.isUndefined())
6522 return StringRef("Undefined");
6523 if (Symbol
.isProcessorSpecific())
6524 return StringRef("Processor Specific");
6525 if (Symbol
.isOSSpecific())
6526 return StringRef("Operating System Specific");
6527 if (Symbol
.isAbsolute())
6528 return StringRef("Absolute");
6529 if (Symbol
.isCommon())
6530 return StringRef("Common");
6531 if (Symbol
.isReserved() && Symbol
.st_shndx
!= SHN_XINDEX
)
6532 return StringRef("Reserved");
6536 if (Optional
<StringRef
> Type
= GetSectionSpecialType()) {
6537 W
.printHex("Section", *Type
, Symbol
.st_shndx
);
6541 Expected
<unsigned> SectionIndex
=
6542 this->dumper().getSymbolSectionIndex(Symbol
, SymIndex
);
6543 if (!SectionIndex
) {
6544 assert(Symbol
.st_shndx
== SHN_XINDEX
&&
6545 "getSymbolSectionIndex should only fail due to an invalid "
6546 "SHT_SYMTAB_SHNDX table/reference");
6547 this->reportUniqueWarning(SectionIndex
.takeError());
6548 W
.printHex("Section", "Reserved", SHN_XINDEX
);
6552 Expected
<StringRef
> SectionName
=
6553 this->dumper().getSymbolSectionName(Symbol
, *SectionIndex
);
6555 // Don't report an invalid section name if the section headers are missing.
6556 // In such situations, all sections will be "invalid".
6557 if (!this->dumper().getElfObject().sections().empty())
6558 this->reportUniqueWarning(SectionName
.takeError());
6560 consumeError(SectionName
.takeError());
6561 W
.printHex("Section", "<?>", *SectionIndex
);
6563 W
.printHex("Section", *SectionName
, *SectionIndex
);
6567 template <class ELFT
>
6568 void LLVMStyle
<ELFT
>::printSymbol(const Elf_Sym
&Symbol
, unsigned SymIndex
,
6569 Optional
<StringRef
> StrTable
, bool IsDynamic
,
6570 bool /*NonVisibilityBitsUsed*/) {
6571 std::string FullSymbolName
=
6572 this->dumper().getFullSymbolName(Symbol
, SymIndex
, StrTable
, IsDynamic
);
6573 unsigned char SymbolType
= Symbol
.getType();
6575 DictScope
D(W
, "Symbol");
6576 W
.printNumber("Name", FullSymbolName
, Symbol
.st_name
);
6577 W
.printHex("Value", Symbol
.st_value
);
6578 W
.printNumber("Size", Symbol
.st_size
);
6579 W
.printEnum("Binding", Symbol
.getBinding(), makeArrayRef(ElfSymbolBindings
));
6580 if (this->Obj
.getHeader().e_machine
== ELF::EM_AMDGPU
&&
6581 SymbolType
>= ELF::STT_LOOS
&& SymbolType
< ELF::STT_HIOS
)
6582 W
.printEnum("Type", SymbolType
, makeArrayRef(AMDGPUSymbolTypes
));
6584 W
.printEnum("Type", SymbolType
, makeArrayRef(ElfSymbolTypes
));
6585 if (Symbol
.st_other
== 0)
6586 // Usually st_other flag is zero. Do not pollute the output
6587 // by flags enumeration in that case.
6588 W
.printNumber("Other", 0);
6590 std::vector
<EnumEntry
<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags
),
6591 std::end(ElfSymOtherFlags
));
6592 if (this->Obj
.getHeader().e_machine
== EM_MIPS
) {
6593 // Someones in their infinite wisdom decided to make STO_MIPS_MIPS16
6594 // flag overlapped with other ST_MIPS_xxx flags. So consider both
6595 // cases separately.
6596 if ((Symbol
.st_other
& STO_MIPS_MIPS16
) == STO_MIPS_MIPS16
)
6597 SymOtherFlags
.insert(SymOtherFlags
.end(),
6598 std::begin(ElfMips16SymOtherFlags
),
6599 std::end(ElfMips16SymOtherFlags
));
6601 SymOtherFlags
.insert(SymOtherFlags
.end(),
6602 std::begin(ElfMipsSymOtherFlags
),
6603 std::end(ElfMipsSymOtherFlags
));
6604 } else if (this->Obj
.getHeader().e_machine
== EM_AARCH64
) {
6605 SymOtherFlags
.insert(SymOtherFlags
.end(),
6606 std::begin(ElfAArch64SymOtherFlags
),
6607 std::end(ElfAArch64SymOtherFlags
));
6609 W
.printFlags("Other", Symbol
.st_other
, makeArrayRef(SymOtherFlags
), 0x3u
);
6611 printSymbolSection(Symbol
, SymIndex
);
6614 template <class ELFT
>
6615 void LLVMStyle
<ELFT
>::printSymbols(bool PrintSymbols
,
6616 bool PrintDynamicSymbols
) {
6619 if (PrintDynamicSymbols
)
6620 printDynamicSymbols();
6623 template <class ELFT
> void LLVMStyle
<ELFT
>::printSymbols() {
6624 ListScope
Group(W
, "Symbols");
6625 this->dumper().printSymbolsHelper(false);
6628 template <class ELFT
> void LLVMStyle
<ELFT
>::printDynamicSymbols() {
6629 ListScope
Group(W
, "DynamicSymbols");
6630 this->dumper().printSymbolsHelper(true);
6633 template <class ELFT
> void LLVMStyle
<ELFT
>::printDynamic() {
6634 Elf_Dyn_Range Table
= this->dumper().dynamic_table();
6638 W
.startLine() << "DynamicSection [ (" << Table
.size() << " entries)\n";
6640 size_t MaxTagSize
= getMaxDynamicTagSize(this->Obj
, Table
);
6641 // The "Name/Value" column should be indented from the "Type" column by N
6642 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
6644 W
.startLine() << " Tag" << std::string(ELFT::Is64Bits
? 16 : 8, ' ')
6645 << "Type" << std::string(MaxTagSize
- 3, ' ') << "Name/Value\n";
6647 std::string ValueFmt
= "%-" + std::to_string(MaxTagSize
) + "s ";
6648 for (auto Entry
: Table
) {
6649 uintX_t Tag
= Entry
.getTag();
6650 std::string Value
= this->dumper().getDynamicEntry(Tag
, Entry
.getVal());
6651 W
.startLine() << " " << format_hex(Tag
, ELFT::Is64Bits
? 18 : 10, true)
6653 << format(ValueFmt
.c_str(),
6654 this->Obj
.getDynamicTagAsString(Tag
).c_str())
6657 W
.startLine() << "]\n";
6660 template <class ELFT
> void LLVMStyle
<ELFT
>::printDynamicRelocations() {
6661 W
.startLine() << "Dynamic Relocations {\n";
6663 this->printDynamicRelocationsHelper();
6665 W
.startLine() << "}\n";
6668 template <class ELFT
>
6669 void LLVMStyle
<ELFT
>::printDynamicReloc(const Relocation
<ELFT
> &R
) {
6670 RelSymbol
<ELFT
> S
= getSymbolForReloc(this->dumper(), R
);
6671 printRelRelaReloc(R
, S
.Name
);
6674 template <class ELFT
>
6675 void LLVMStyle
<ELFT
>::printProgramHeaders(
6676 bool PrintProgramHeaders
, cl::boolOrDefault PrintSectionMapping
) {
6677 if (PrintProgramHeaders
)
6678 printProgramHeaders();
6679 if (PrintSectionMapping
== cl::BOU_TRUE
)
6680 printSectionMapping();
6683 template <class ELFT
> void LLVMStyle
<ELFT
>::printProgramHeaders() {
6684 ListScope
L(W
, "ProgramHeaders");
6686 Expected
<ArrayRef
<Elf_Phdr
>> PhdrsOrErr
= this->Obj
.program_headers();
6688 this->reportUniqueWarning("unable to dump program headers: " +
6689 toString(PhdrsOrErr
.takeError()));
6693 for (const Elf_Phdr
&Phdr
: *PhdrsOrErr
) {
6694 DictScope
P(W
, "ProgramHeader");
6696 segmentTypeToString(this->Obj
.getHeader().e_machine
, Phdr
.p_type
);
6698 W
.printHex("Type", Type
.empty() ? "Unknown" : Type
, Phdr
.p_type
);
6699 W
.printHex("Offset", Phdr
.p_offset
);
6700 W
.printHex("VirtualAddress", Phdr
.p_vaddr
);
6701 W
.printHex("PhysicalAddress", Phdr
.p_paddr
);
6702 W
.printNumber("FileSize", Phdr
.p_filesz
);
6703 W
.printNumber("MemSize", Phdr
.p_memsz
);
6704 W
.printFlags("Flags", Phdr
.p_flags
, makeArrayRef(ElfSegmentFlags
));
6705 W
.printNumber("Alignment", Phdr
.p_align
);
6709 template <class ELFT
>
6710 void LLVMStyle
<ELFT
>::printVersionSymbolSection(const Elf_Shdr
*Sec
) {
6711 ListScope
SS(W
, "VersionSymbols");
6716 ArrayRef
<Elf_Sym
> Syms
;
6717 Expected
<ArrayRef
<Elf_Versym
>> VerTableOrErr
=
6718 this->dumper().getVersionTable(*Sec
, &Syms
, &StrTable
);
6719 if (!VerTableOrErr
) {
6720 this->reportUniqueWarning(VerTableOrErr
.takeError());
6724 if (StrTable
.empty() || Syms
.empty() || Syms
.size() != VerTableOrErr
->size())
6727 for (size_t I
= 0, E
= Syms
.size(); I
< E
; ++I
) {
6728 DictScope
S(W
, "Symbol");
6729 W
.printNumber("Version", (*VerTableOrErr
)[I
].vs_index
& VERSYM_VERSION
);
6730 W
.printString("Name", this->dumper().getFullSymbolName(Syms
[I
], I
, StrTable
,
6731 /*IsDynamic=*/true));
6735 static const EnumEntry
<unsigned> SymVersionFlags
[] = {
6736 {"Base", "BASE", VER_FLG_BASE
},
6737 {"Weak", "WEAK", VER_FLG_WEAK
},
6738 {"Info", "INFO", VER_FLG_INFO
}};
6740 template <class ELFT
>
6741 void LLVMStyle
<ELFT
>::printVersionDefinitionSection(const Elf_Shdr
*Sec
) {
6742 ListScope
SD(W
, "VersionDefinitions");
6746 Expected
<std::vector
<VerDef
>> V
= this->dumper().getVersionDefinitions(*Sec
);
6748 this->reportUniqueWarning(V
.takeError());
6752 for (const VerDef
&D
: *V
) {
6753 DictScope
Def(W
, "Definition");
6754 W
.printNumber("Version", D
.Version
);
6755 W
.printFlags("Flags", D
.Flags
, makeArrayRef(SymVersionFlags
));
6756 W
.printNumber("Index", D
.Ndx
);
6757 W
.printNumber("Hash", D
.Hash
);
6758 W
.printString("Name", D
.Name
.c_str());
6760 "Predecessors", D
.AuxV
,
6761 [](raw_ostream
&OS
, const VerdAux
&Aux
) { OS
<< Aux
.Name
.c_str(); });
6765 template <class ELFT
>
6766 void LLVMStyle
<ELFT
>::printVersionDependencySection(const Elf_Shdr
*Sec
) {
6767 ListScope
SD(W
, "VersionRequirements");
6771 Expected
<std::vector
<VerNeed
>> V
= this->dumper().getVersionDependencies(*Sec
);
6773 this->reportUniqueWarning(V
.takeError());
6777 for (const VerNeed
&VN
: *V
) {
6778 DictScope
Entry(W
, "Dependency");
6779 W
.printNumber("Version", VN
.Version
);
6780 W
.printNumber("Count", VN
.Cnt
);
6781 W
.printString("FileName", VN
.File
.c_str());
6783 ListScope
L(W
, "Entries");
6784 for (const VernAux
&Aux
: VN
.AuxV
) {
6785 DictScope
Entry(W
, "Entry");
6786 W
.printNumber("Hash", Aux
.Hash
);
6787 W
.printFlags("Flags", Aux
.Flags
, makeArrayRef(SymVersionFlags
));
6788 W
.printNumber("Index", Aux
.Other
);
6789 W
.printString("Name", Aux
.Name
.c_str());
6794 template <class ELFT
> void LLVMStyle
<ELFT
>::printHashHistograms() {
6795 W
.startLine() << "Hash Histogram not implemented!\n";
6798 template <class ELFT
> void LLVMStyle
<ELFT
>::printCGProfile() {
6799 ListScope
L(W
, "CGProfile");
6800 if (!this->dumper().getDotCGProfileSec())
6803 Expected
<ArrayRef
<Elf_CGProfile
>> CGProfileOrErr
=
6804 this->Obj
.template getSectionContentsAsArray
<Elf_CGProfile
>(
6805 *this->dumper().getDotCGProfileSec());
6806 if (!CGProfileOrErr
) {
6807 this->reportUniqueWarning(
6808 "unable to dump the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
6809 toString(CGProfileOrErr
.takeError()));
6813 for (const Elf_CGProfile
&CGPE
: *CGProfileOrErr
) {
6814 DictScope
D(W
, "CGProfileEntry");
6815 W
.printNumber("From", this->dumper().getStaticSymbolName(CGPE
.cgp_from
),
6817 W
.printNumber("To", this->dumper().getStaticSymbolName(CGPE
.cgp_to
),
6819 W
.printNumber("Weight", CGPE
.cgp_weight
);
6823 template <class ELFT
> void LLVMStyle
<ELFT
>::printAddrsig() {
6824 ListScope
L(W
, "Addrsig");
6825 const Elf_Shdr
*Sec
= this->dumper().getDotAddrsigSec();
6829 Expected
<std::vector
<uint64_t>> SymsOrErr
=
6830 decodeAddrsigSection(this->Obj
, *Sec
);
6832 this->reportUniqueWarning(SymsOrErr
.takeError());
6836 for (uint64_t Sym
: *SymsOrErr
)
6837 W
.printNumber("Sym", this->dumper().getStaticSymbolName(Sym
), Sym
);
6840 template <typename ELFT
>
6841 static void printGNUNoteLLVMStyle(uint32_t NoteType
, ArrayRef
<uint8_t> Desc
,
6846 case ELF::NT_GNU_ABI_TAG
: {
6847 const GNUAbiTag
&AbiTag
= getGNUAbiTag
<ELFT
>(Desc
);
6848 if (!AbiTag
.IsValid
) {
6849 W
.printString("ABI", "<corrupt GNU_ABI_TAG>");
6851 W
.printString("OS", AbiTag
.OSName
);
6852 W
.printString("ABI", AbiTag
.ABI
);
6856 case ELF::NT_GNU_BUILD_ID
: {
6857 W
.printString("Build ID", getGNUBuildId(Desc
));
6860 case ELF::NT_GNU_GOLD_VERSION
:
6861 W
.printString("Version", getGNUGoldVersion(Desc
));
6863 case ELF::NT_GNU_PROPERTY_TYPE_0
:
6864 ListScope
D(W
, "Property");
6865 for (const std::string
&Property
: getGNUPropertyList
<ELFT
>(Desc
))
6866 W
.printString(Property
);
6871 static void printCoreNoteLLVMStyle(const CoreNote
&Note
, ScopedPrinter
&W
) {
6872 W
.printNumber("Page Size", Note
.PageSize
);
6873 for (const CoreFileMapping
&Mapping
: Note
.Mappings
) {
6874 ListScope
D(W
, "Mapping");
6875 W
.printHex("Start", Mapping
.Start
);
6876 W
.printHex("End", Mapping
.End
);
6877 W
.printHex("Offset", Mapping
.Offset
);
6878 W
.printString("Filename", Mapping
.Filename
);
6882 template <class ELFT
> void LLVMStyle
<ELFT
>::printNotes() {
6883 ListScope
L(W
, "Notes");
6885 std::unique_ptr
<DictScope
> NoteScope
;
6886 auto StartNotes
= [&](Optional
<StringRef
> SecName
,
6887 const typename
ELFT::Off Offset
,
6888 const typename
ELFT::Addr Size
) {
6889 NoteScope
= std::make_unique
<DictScope
>(W
, "NoteSection");
6890 W
.printString("Name", SecName
? *SecName
: "<?>");
6891 W
.printHex("Offset", Offset
);
6892 W
.printHex("Size", Size
);
6895 auto EndNotes
= [&] { NoteScope
.reset(); };
6897 auto ProcessNote
= [&](const Elf_Note
&Note
) -> Error
{
6898 DictScope
D2(W
, "Note");
6899 StringRef Name
= Note
.getName();
6900 ArrayRef
<uint8_t> Descriptor
= Note
.getDesc();
6901 Elf_Word Type
= Note
.getType();
6903 // Print the note owner/type.
6904 W
.printString("Owner", Name
);
6905 W
.printHex("Data size", Descriptor
.size());
6907 StringRef NoteType
=
6908 getNoteTypeName
<ELFT
>(Note
, this->Obj
.getHeader().e_type
);
6909 if (!NoteType
.empty())
6910 W
.printString("Type", NoteType
);
6912 W
.printString("Type",
6913 "Unknown (" + to_string(format_hex(Type
, 10)) + ")");
6915 // Print the description, or fallback to printing raw bytes for unknown
6917 if (Name
== "GNU") {
6918 printGNUNoteLLVMStyle
<ELFT
>(Type
, Descriptor
, W
);
6919 } else if (Name
== "AMD") {
6920 const AMDNote N
= getAMDNote
<ELFT
>(Type
, Descriptor
);
6921 if (!N
.Type
.empty())
6922 W
.printString(N
.Type
, N
.Value
);
6923 } else if (Name
== "AMDGPU") {
6924 const AMDGPUNote N
= getAMDGPUNote
<ELFT
>(Type
, Descriptor
);
6925 if (!N
.Type
.empty())
6926 W
.printString(N
.Type
, N
.Value
);
6927 } else if (Name
== "CORE") {
6928 if (Type
== ELF::NT_FILE
) {
6929 DataExtractor
DescExtractor(Descriptor
,
6930 ELFT::TargetEndianness
== support::little
,
6932 if (Expected
<CoreNote
> Note
= readCoreNote(DescExtractor
))
6933 printCoreNoteLLVMStyle(*Note
, W
);
6935 return Note
.takeError();
6937 } else if (!Descriptor
.empty()) {
6938 W
.printBinaryBlock("Description data", Descriptor
);
6940 return Error::success();
6943 printNotesHelper(this->dumper(), StartNotes
, ProcessNote
, EndNotes
);
6946 template <class ELFT
> void LLVMStyle
<ELFT
>::printELFLinkerOptions() {
6947 ListScope
L(W
, "LinkerOptions");
6950 for (const Elf_Shdr
&Shdr
: cantFail(this->Obj
.sections())) {
6952 if (Shdr
.sh_type
!= ELF::SHT_LLVM_LINKER_OPTIONS
)
6955 Expected
<ArrayRef
<uint8_t>> ContentsOrErr
=
6956 this->Obj
.getSectionContents(Shdr
);
6957 if (!ContentsOrErr
) {
6958 this->reportUniqueWarning("unable to read the content of the "
6959 "SHT_LLVM_LINKER_OPTIONS section: " +
6960 toString(ContentsOrErr
.takeError()));
6963 if (ContentsOrErr
->empty())
6966 if (ContentsOrErr
->back() != 0) {
6967 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
6970 "content is not null-terminated");
6974 SmallVector
<StringRef
, 16> Strings
;
6975 toStringRef(ContentsOrErr
->drop_back()).split(Strings
, '\0');
6976 if (Strings
.size() % 2 != 0) {
6977 this->reportUniqueWarning(
6978 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I
) +
6979 " is broken: an incomplete "
6980 "key-value pair was found. The last possible key was: \"" +
6981 Strings
.back() + "\"");
6985 for (size_t I
= 0; I
< Strings
.size(); I
+= 2)
6986 W
.printString(Strings
[I
], Strings
[I
+ 1]);
6990 template <class ELFT
> void LLVMStyle
<ELFT
>::printDependentLibs() {
6991 ListScope
L(W
, "DependentLibs");
6992 this->printDependentLibsHelper(
6993 [](const Elf_Shdr
&) {},
6994 [this](StringRef Lib
, uint64_t) { W
.printString(Lib
); });
6997 template <class ELFT
>
6998 void LLVMStyle
<ELFT
>::printStackSizes() {
6999 ListScope
L(W
, "StackSizes");
7000 if (this->Obj
.getHeader().e_type
== ELF::ET_REL
)
7001 this->printRelocatableStackSizes([]() {});
7003 this->printNonRelocatableStackSizes([]() {});
7006 template <class ELFT
>
7007 void LLVMStyle
<ELFT
>::printStackSizeEntry(uint64_t Size
, StringRef FuncName
) {
7008 DictScope
D(W
, "Entry");
7009 W
.printString("Function", FuncName
);
7010 W
.printHex("Size", Size
);
7013 template <class ELFT
>
7014 void LLVMStyle
<ELFT
>::printMipsGOT(const MipsGOTParser
<ELFT
> &Parser
) {
7015 auto PrintEntry
= [&](const Elf_Addr
*E
) {
7016 W
.printHex("Address", Parser
.getGotAddress(E
));
7017 W
.printNumber("Access", Parser
.getGotOffset(E
));
7018 W
.printHex("Initial", *E
);
7021 DictScope
GS(W
, Parser
.IsStatic
? "Static GOT" : "Primary GOT");
7023 W
.printHex("Canonical gp value", Parser
.getGp());
7025 ListScope
RS(W
, "Reserved entries");
7027 DictScope
D(W
, "Entry");
7028 PrintEntry(Parser
.getGotLazyResolver());
7029 W
.printString("Purpose", StringRef("Lazy resolver"));
7032 if (Parser
.getGotModulePointer()) {
7033 DictScope
D(W
, "Entry");
7034 PrintEntry(Parser
.getGotModulePointer());
7035 W
.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7039 ListScope
LS(W
, "Local entries");
7040 for (auto &E
: Parser
.getLocalEntries()) {
7041 DictScope
D(W
, "Entry");
7046 if (Parser
.IsStatic
)
7050 ListScope
GS(W
, "Global entries");
7051 for (auto &E
: Parser
.getGlobalEntries()) {
7052 DictScope
D(W
, "Entry");
7056 const Elf_Sym
&Sym
= *Parser
.getGotSym(&E
);
7057 W
.printHex("Value", Sym
.st_value
);
7058 W
.printEnum("Type", Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
7060 const unsigned SymIndex
= &Sym
- this->dumper().dynamic_symbols().begin();
7061 printSymbolSection(Sym
, SymIndex
);
7063 std::string SymName
= this->dumper().getFullSymbolName(
7064 Sym
, SymIndex
, this->dumper().getDynamicStringTable(), true);
7065 W
.printNumber("Name", SymName
, Sym
.st_name
);
7069 W
.printNumber("Number of TLS and multi-GOT entries",
7070 uint64_t(Parser
.getOtherEntries().size()));
7073 template <class ELFT
>
7074 void LLVMStyle
<ELFT
>::printMipsPLT(const MipsGOTParser
<ELFT
> &Parser
) {
7075 auto PrintEntry
= [&](const Elf_Addr
*E
) {
7076 W
.printHex("Address", Parser
.getPltAddress(E
));
7077 W
.printHex("Initial", *E
);
7080 DictScope
GS(W
, "PLT GOT");
7083 ListScope
RS(W
, "Reserved entries");
7085 DictScope
D(W
, "Entry");
7086 PrintEntry(Parser
.getPltLazyResolver());
7087 W
.printString("Purpose", StringRef("PLT lazy resolver"));
7090 if (auto E
= Parser
.getPltModulePointer()) {
7091 DictScope
D(W
, "Entry");
7093 W
.printString("Purpose", StringRef("Module pointer"));
7097 ListScope
LS(W
, "Entries");
7098 for (auto &E
: Parser
.getPltEntries()) {
7099 DictScope
D(W
, "Entry");
7102 const Elf_Sym
&Sym
= *Parser
.getPltSym(&E
);
7103 W
.printHex("Value", Sym
.st_value
);
7104 W
.printEnum("Type", Sym
.getType(), makeArrayRef(ElfSymbolTypes
));
7105 printSymbolSection(Sym
, &Sym
- this->dumper().dynamic_symbols().begin());
7107 const Elf_Sym
*FirstSym
=
7108 cantFail(this->Obj
.template getEntry
<const Elf_Sym
>(
7109 *Parser
.getPltSymTable(), 0));
7110 std::string SymName
= this->dumper().getFullSymbolName(
7111 Sym
, &Sym
- FirstSym
, Parser
.getPltStrTable(), true);
7112 W
.printNumber("Name", SymName
, Sym
.st_name
);
7117 template <class ELFT
> void LLVMStyle
<ELFT
>::printMipsABIFlags() {
7118 const Elf_Mips_ABIFlags
<ELFT
> *Flags
;
7119 if (Expected
<const Elf_Mips_ABIFlags
<ELFT
> *> SecOrErr
=
7120 getMipsAbiFlagsSection(this->dumper())) {
7123 W
.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7127 this->reportUniqueWarning(SecOrErr
.takeError());
7131 raw_ostream
&OS
= W
.getOStream();
7132 DictScope
GS(W
, "MIPS ABI Flags");
7134 W
.printNumber("Version", Flags
->version
);
7135 W
.startLine() << "ISA: ";
7136 if (Flags
->isa_rev
<= 1)
7137 OS
<< format("MIPS%u", Flags
->isa_level
);
7139 OS
<< format("MIPS%ur%u", Flags
->isa_level
, Flags
->isa_rev
);
7141 W
.printEnum("ISA Extension", Flags
->isa_ext
, makeArrayRef(ElfMipsISAExtType
));
7142 W
.printFlags("ASEs", Flags
->ases
, makeArrayRef(ElfMipsASEFlags
));
7143 W
.printEnum("FP ABI", Flags
->fp_abi
, makeArrayRef(ElfMipsFpABIType
));
7144 W
.printNumber("GPR size", getMipsRegisterSize(Flags
->gpr_size
));
7145 W
.printNumber("CPR1 size", getMipsRegisterSize(Flags
->cpr1_size
));
7146 W
.printNumber("CPR2 size", getMipsRegisterSize(Flags
->cpr2_size
));
7147 W
.printFlags("Flags 1", Flags
->flags1
, makeArrayRef(ElfMipsFlags1
));
7148 W
.printHex("Flags 2", Flags
->flags2
);