[MemProf] Templatize CallStackRadixTreeBuilder (NFC) (#117014)
[llvm-project.git] / libcxx / src / memory_resource.cpp
blob0cd575e995c0ff22e6eb5a4d651cb00638807692
1 //===----------------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include <cstddef>
10 #include <memory>
11 #include <memory_resource>
13 #if _LIBCPP_HAS_ATOMIC_HEADER
14 # include <atomic>
15 #elif _LIBCPP_HAS_THREADS
16 # include <mutex>
17 # if defined(__ELF__) && defined(_LIBCPP_LINK_PTHREAD_LIB)
18 # pragma comment(lib, "pthread")
19 # endif
20 #endif
22 _LIBCPP_BEGIN_NAMESPACE_STD
24 namespace pmr {
26 // memory_resource
28 memory_resource::~memory_resource() = default;
30 // new_delete_resource()
32 #if !_LIBCPP_HAS_ALIGNED_ALLOCATION
33 static bool is_aligned_to(void* ptr, size_t align) {
34 void* p2 = ptr;
35 size_t space = 1;
36 void* result = std::align(align, 1, p2, space);
37 return (result == ptr);
39 #endif
41 class _LIBCPP_EXPORTED_FROM_ABI __new_delete_memory_resource_imp : public memory_resource {
42 void* do_allocate(size_t bytes, size_t align) override {
43 #if _LIBCPP_HAS_ALIGNED_ALLOCATION
44 return std::__libcpp_allocate(bytes, align);
45 #else
46 if (bytes == 0)
47 bytes = 1;
48 void* result = std::__libcpp_allocate(bytes, align);
49 if (!is_aligned_to(result, align)) {
50 std::__libcpp_deallocate(result, bytes, align);
51 __throw_bad_alloc();
53 return result;
54 #endif
57 void do_deallocate(void* p, size_t bytes, size_t align) override { std::__libcpp_deallocate(p, bytes, align); }
59 bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
62 // null_memory_resource()
64 class _LIBCPP_EXPORTED_FROM_ABI __null_memory_resource_imp : public memory_resource {
65 void* do_allocate(size_t, size_t) override { __throw_bad_alloc(); }
66 void do_deallocate(void*, size_t, size_t) override {}
67 bool do_is_equal(const memory_resource& other) const noexcept override { return &other == this; }
70 namespace {
72 union ResourceInitHelper {
73 struct {
74 __new_delete_memory_resource_imp new_delete_res;
75 __null_memory_resource_imp null_res;
76 } resources;
77 char dummy;
78 constexpr ResourceInitHelper() : resources() {}
79 ~ResourceInitHelper() {}
82 // Pretend we're inside a system header so the compiler doesn't flag the use of the init_priority
83 // attribute with a value that's reserved for the implementation (we're the implementation).
84 #include "memory_resource_init_helper.h"
86 } // namespace
88 memory_resource* new_delete_resource() noexcept { return &res_init.resources.new_delete_res; }
90 memory_resource* null_memory_resource() noexcept { return &res_init.resources.null_res; }
92 // default_memory_resource()
94 static memory_resource* __default_memory_resource(bool set = false, memory_resource* new_res = nullptr) noexcept {
95 #if _LIBCPP_HAS_ATOMIC_HEADER
96 static constinit atomic<memory_resource*> __res{&res_init.resources.new_delete_res};
97 if (set) {
98 new_res = new_res ? new_res : new_delete_resource();
99 // TODO: Can a weaker ordering be used?
100 return std::atomic_exchange_explicit(&__res, new_res, memory_order_acq_rel);
101 } else {
102 return std::atomic_load_explicit(&__res, memory_order_acquire);
104 #elif _LIBCPP_HAS_THREADS
105 static constinit memory_resource* res = &res_init.resources.new_delete_res;
106 static mutex res_lock;
107 if (set) {
108 new_res = new_res ? new_res : new_delete_resource();
109 lock_guard<mutex> guard(res_lock);
110 memory_resource* old_res = res;
111 res = new_res;
112 return old_res;
113 } else {
114 lock_guard<mutex> guard(res_lock);
115 return res;
117 #else
118 static constinit memory_resource* res = &res_init.resources.new_delete_res;
119 if (set) {
120 new_res = new_res ? new_res : new_delete_resource();
121 memory_resource* old_res = res;
122 res = new_res;
123 return old_res;
124 } else {
125 return res;
127 #endif
130 memory_resource* get_default_resource() noexcept { return __default_memory_resource(); }
132 memory_resource* set_default_resource(memory_resource* __new_res) noexcept {
133 return __default_memory_resource(true, __new_res);
136 // 23.12.5, mem.res.pool
138 static size_t roundup(size_t count, size_t alignment) {
139 size_t mask = alignment - 1;
140 return (count + mask) & ~mask;
143 struct unsynchronized_pool_resource::__adhoc_pool::__chunk_footer {
144 __chunk_footer* __next_;
145 char* __start_;
146 size_t __align_;
147 size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
150 void unsynchronized_pool_resource::__adhoc_pool::__release_ptr(memory_resource* upstream) {
151 while (__first_ != nullptr) {
152 __chunk_footer* next = __first_->__next_;
153 upstream->deallocate(__first_->__start_, __first_->__allocation_size(), __first_->__align_);
154 __first_ = next;
158 void* unsynchronized_pool_resource::__adhoc_pool::__do_allocate(memory_resource* upstream, size_t bytes, size_t align) {
159 const size_t footer_size = sizeof(__chunk_footer);
160 const size_t footer_align = alignof(__chunk_footer);
162 if (align < footer_align)
163 align = footer_align;
165 size_t aligned_capacity = roundup(bytes, footer_align) + footer_size;
167 void* result = upstream->allocate(aligned_capacity, align);
169 __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
170 h->__next_ = __first_;
171 h->__start_ = (char*)result;
172 h->__align_ = align;
173 __first_ = h;
174 return result;
177 void unsynchronized_pool_resource::__adhoc_pool::__do_deallocate(
178 memory_resource* upstream, void* p, size_t bytes, size_t align) {
179 _LIBCPP_ASSERT_NON_NULL(__first_ != nullptr, "deallocating a block that was not allocated with this allocator");
180 if (__first_->__start_ == p) {
181 __chunk_footer* next = __first_->__next_;
182 upstream->deallocate(p, __first_->__allocation_size(), __first_->__align_);
183 __first_ = next;
184 } else {
185 for (__chunk_footer* h = __first_; h->__next_ != nullptr; h = h->__next_) {
186 if (h->__next_->__start_ == p) {
187 __chunk_footer* next = h->__next_->__next_;
188 upstream->deallocate(p, h->__next_->__allocation_size(), h->__next_->__align_);
189 h->__next_ = next;
190 return;
193 // The request to deallocate memory ends up being a no-op, likely resulting in a memory leak.
194 _LIBCPP_ASSERT_VALID_DEALLOCATION(false, "deallocating a block that was not allocated with this allocator");
198 class unsynchronized_pool_resource::__fixed_pool {
199 struct __chunk_footer {
200 __chunk_footer* __next_;
201 char* __start_;
202 size_t __align_;
203 size_t __allocation_size() { return (reinterpret_cast<char*>(this) - __start_) + sizeof(*this); }
206 struct __vacancy_header {
207 __vacancy_header* __next_vacancy_;
210 __chunk_footer* __first_chunk_ = nullptr;
211 __vacancy_header* __first_vacancy_ = nullptr;
213 public:
214 explicit __fixed_pool() = default;
216 void __release_ptr(memory_resource* upstream) {
217 __first_vacancy_ = nullptr;
218 while (__first_chunk_ != nullptr) {
219 __chunk_footer* next = __first_chunk_->__next_;
220 upstream->deallocate(__first_chunk_->__start_, __first_chunk_->__allocation_size(), __first_chunk_->__align_);
221 __first_chunk_ = next;
225 void* __try_allocate_from_vacancies() {
226 if (__first_vacancy_ != nullptr) {
227 void* result = __first_vacancy_;
228 __first_vacancy_ = __first_vacancy_->__next_vacancy_;
229 return result;
231 return nullptr;
234 void* __allocate_in_new_chunk(memory_resource* upstream, size_t block_size, size_t chunk_size) {
235 _LIBCPP_ASSERT_INTERNAL(chunk_size % block_size == 0, "");
236 static_assert(__default_alignment >= alignof(std::max_align_t), "");
237 static_assert(__default_alignment >= alignof(__chunk_footer), "");
238 static_assert(__default_alignment >= alignof(__vacancy_header), "");
240 const size_t footer_size = sizeof(__chunk_footer);
241 const size_t footer_align = alignof(__chunk_footer);
243 size_t aligned_capacity = roundup(chunk_size, footer_align) + footer_size;
245 void* result = upstream->allocate(aligned_capacity, __default_alignment);
247 __chunk_footer* h = (__chunk_footer*)((char*)result + aligned_capacity - footer_size);
248 h->__next_ = __first_chunk_;
249 h->__start_ = (char*)result;
250 h->__align_ = __default_alignment;
251 __first_chunk_ = h;
253 if (chunk_size > block_size) {
254 __vacancy_header* last_vh = this->__first_vacancy_;
255 for (size_t i = block_size; i != chunk_size; i += block_size) {
256 __vacancy_header* vh = (__vacancy_header*)((char*)result + i);
257 vh->__next_vacancy_ = last_vh;
258 last_vh = vh;
260 this->__first_vacancy_ = last_vh;
262 return result;
265 void __evacuate(void* p) {
266 __vacancy_header* vh = (__vacancy_header*)(p);
267 vh->__next_vacancy_ = __first_vacancy_;
268 __first_vacancy_ = vh;
271 size_t __previous_chunk_size_in_bytes() const { return __first_chunk_ ? __first_chunk_->__allocation_size() : 0; }
273 static const size_t __default_alignment = alignof(max_align_t);
276 size_t unsynchronized_pool_resource::__pool_block_size(int i) const { return size_t(1) << __log2_pool_block_size(i); }
278 int unsynchronized_pool_resource::__log2_pool_block_size(int i) const { return (i + __log2_smallest_block_size); }
280 int unsynchronized_pool_resource::__pool_index(size_t bytes, size_t align) const {
281 if (align > alignof(std::max_align_t) || bytes > (size_t(1) << __num_fixed_pools_))
282 return __num_fixed_pools_;
283 else {
284 int i = 0;
285 bytes = (bytes > align) ? bytes : align;
286 bytes -= 1;
287 bytes >>= __log2_smallest_block_size;
288 while (bytes != 0) {
289 bytes >>= 1;
290 i += 1;
292 return i;
296 unsynchronized_pool_resource::unsynchronized_pool_resource(const pool_options& opts, memory_resource* upstream)
297 : __res_(upstream), __fixed_pools_(nullptr) {
298 size_t largest_block_size;
299 if (opts.largest_required_pool_block == 0)
300 largest_block_size = __default_largest_block_size;
301 else if (opts.largest_required_pool_block < __smallest_block_size)
302 largest_block_size = __smallest_block_size;
303 else if (opts.largest_required_pool_block > __max_largest_block_size)
304 largest_block_size = __max_largest_block_size;
305 else
306 largest_block_size = opts.largest_required_pool_block;
308 if (opts.max_blocks_per_chunk == 0)
309 __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
310 else if (opts.max_blocks_per_chunk < __min_blocks_per_chunk)
311 __options_max_blocks_per_chunk_ = __min_blocks_per_chunk;
312 else if (opts.max_blocks_per_chunk > __max_blocks_per_chunk)
313 __options_max_blocks_per_chunk_ = __max_blocks_per_chunk;
314 else
315 __options_max_blocks_per_chunk_ = opts.max_blocks_per_chunk;
317 __num_fixed_pools_ = 1;
318 size_t capacity = __smallest_block_size;
319 while (capacity < largest_block_size) {
320 capacity <<= 1;
321 __num_fixed_pools_ += 1;
325 pool_options unsynchronized_pool_resource::options() const {
326 pool_options p;
327 p.max_blocks_per_chunk = __options_max_blocks_per_chunk_;
328 p.largest_required_pool_block = __pool_block_size(__num_fixed_pools_ - 1);
329 return p;
332 void unsynchronized_pool_resource::release() {
333 __adhoc_pool_.__release_ptr(__res_);
334 if (__fixed_pools_ != nullptr) {
335 const int n = __num_fixed_pools_;
336 for (int i = 0; i < n; ++i)
337 __fixed_pools_[i].__release_ptr(__res_);
338 __res_->deallocate(__fixed_pools_, __num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
339 __fixed_pools_ = nullptr;
343 void* unsynchronized_pool_resource::do_allocate(size_t bytes, size_t align) {
344 // A pointer to allocated storage (6.6.4.4.1) with a size of at least bytes.
345 // The size and alignment of the allocated memory shall meet the requirements for
346 // a class derived from memory_resource (23.12).
347 // If the pool selected for a block of size bytes is unable to satisfy the memory request
348 // from its own internal data structures, it will call upstream_resource()->allocate()
349 // to obtain more memory. If bytes is larger than that which the largest pool can handle,
350 // then memory will be allocated using upstream_resource()->allocate().
352 int i = __pool_index(bytes, align);
353 if (i == __num_fixed_pools_)
354 return __adhoc_pool_.__do_allocate(__res_, bytes, align);
355 else {
356 if (__fixed_pools_ == nullptr) {
357 __fixed_pools_ =
358 (__fixed_pool*)__res_->allocate(__num_fixed_pools_ * sizeof(__fixed_pool), alignof(__fixed_pool));
359 __fixed_pool* first = __fixed_pools_;
360 __fixed_pool* last = __fixed_pools_ + __num_fixed_pools_;
361 for (__fixed_pool* pool = first; pool != last; ++pool)
362 ::new ((void*)pool) __fixed_pool;
364 void* result = __fixed_pools_[i].__try_allocate_from_vacancies();
365 if (result == nullptr) {
366 auto min = [](size_t a, size_t b) { return a < b ? a : b; };
367 auto max = [](size_t a, size_t b) { return a < b ? b : a; };
369 size_t prev_chunk_size_in_bytes = __fixed_pools_[i].__previous_chunk_size_in_bytes();
370 size_t prev_chunk_size_in_blocks = prev_chunk_size_in_bytes >> __log2_pool_block_size(i);
372 size_t chunk_size_in_blocks;
374 if (prev_chunk_size_in_blocks == 0) {
375 size_t min_blocks_per_chunk = max(__min_bytes_per_chunk >> __log2_pool_block_size(i), __min_blocks_per_chunk);
376 chunk_size_in_blocks = min_blocks_per_chunk;
377 } else {
378 static_assert(__max_bytes_per_chunk <= SIZE_MAX - (__max_bytes_per_chunk / 4), "unsigned overflow is possible");
379 chunk_size_in_blocks = prev_chunk_size_in_blocks + (prev_chunk_size_in_blocks / 4);
382 size_t max_blocks_per_chunk =
383 min((__max_bytes_per_chunk >> __log2_pool_block_size(i)),
384 min(__max_blocks_per_chunk, __options_max_blocks_per_chunk_));
385 if (chunk_size_in_blocks > max_blocks_per_chunk)
386 chunk_size_in_blocks = max_blocks_per_chunk;
388 size_t block_size = __pool_block_size(i);
390 size_t chunk_size_in_bytes = (chunk_size_in_blocks << __log2_pool_block_size(i));
391 result = __fixed_pools_[i].__allocate_in_new_chunk(__res_, block_size, chunk_size_in_bytes);
393 return result;
397 void unsynchronized_pool_resource::do_deallocate(void* p, size_t bytes, size_t align) {
398 // Returns the memory at p to the pool. It is unspecified if,
399 // or under what circumstances, this operation will result in
400 // a call to upstream_resource()->deallocate().
402 int i = __pool_index(bytes, align);
403 if (i == __num_fixed_pools_)
404 return __adhoc_pool_.__do_deallocate(__res_, p, bytes, align);
405 else {
406 _LIBCPP_ASSERT_NON_NULL(
407 __fixed_pools_ != nullptr, "deallocating a block that was not allocated with this allocator");
408 __fixed_pools_[i].__evacuate(p);
412 bool synchronized_pool_resource::do_is_equal(const memory_resource& other) const noexcept { return &other == this; }
414 // 23.12.6, mem.res.monotonic.buffer
416 static void* align_down(size_t align, size_t size, void*& ptr, size_t& space) {
417 if (size > space)
418 return nullptr;
420 char* p1 = static_cast<char*>(ptr);
421 char* new_ptr = reinterpret_cast<char*>(reinterpret_cast<uintptr_t>(p1 - size) & ~(align - 1));
423 if (new_ptr < (p1 - space))
424 return nullptr;
426 ptr = new_ptr;
427 space -= p1 - new_ptr;
429 return ptr;
432 void* monotonic_buffer_resource::__initial_descriptor::__try_allocate_from_chunk(size_t bytes, size_t align) {
433 if (!__cur_)
434 return nullptr;
435 void* new_ptr = static_cast<void*>(__cur_);
436 size_t new_capacity = (__cur_ - __start_);
437 void* aligned_ptr = align_down(align, bytes, new_ptr, new_capacity);
438 if (aligned_ptr != nullptr)
439 __cur_ = static_cast<char*>(new_ptr);
440 return aligned_ptr;
443 void* monotonic_buffer_resource::__chunk_footer::__try_allocate_from_chunk(size_t bytes, size_t align) {
444 void* new_ptr = static_cast<void*>(__cur_);
445 size_t new_capacity = (__cur_ - __start_);
446 void* aligned_ptr = align_down(align, bytes, new_ptr, new_capacity);
447 if (aligned_ptr != nullptr)
448 __cur_ = static_cast<char*>(new_ptr);
449 return aligned_ptr;
452 void* monotonic_buffer_resource::do_allocate(size_t bytes, size_t align) {
453 const size_t footer_size = sizeof(__chunk_footer);
454 const size_t footer_align = alignof(__chunk_footer);
456 auto previous_allocation_size = [&]() {
457 if (__chunks_ != nullptr)
458 return __chunks_->__allocation_size();
460 size_t newsize = (__initial_.__start_ != nullptr) ? (__initial_.__end_ - __initial_.__start_) : __initial_.__size_;
462 return roundup(newsize, footer_align) + footer_size;
465 if (void* result = __initial_.__try_allocate_from_chunk(bytes, align))
466 return result;
467 if (__chunks_ != nullptr) {
468 if (void* result = __chunks_->__try_allocate_from_chunk(bytes, align))
469 return result;
472 // Allocate a brand-new chunk.
474 if (align < footer_align)
475 align = footer_align;
477 size_t aligned_capacity = roundup(bytes, footer_align) + footer_size;
478 size_t previous_capacity = previous_allocation_size();
480 if (aligned_capacity <= previous_capacity) {
481 size_t newsize = 2 * (previous_capacity - footer_size);
482 aligned_capacity = roundup(newsize, footer_align) + footer_size;
485 char* start = (char*)__res_->allocate(aligned_capacity, align);
486 auto end = start + aligned_capacity - footer_size;
487 __chunk_footer* footer = (__chunk_footer*)(end);
488 footer->__next_ = __chunks_;
489 footer->__start_ = start;
490 footer->__cur_ = end;
491 footer->__align_ = align;
492 __chunks_ = footer;
494 return __chunks_->__try_allocate_from_chunk(bytes, align);
497 } // namespace pmr
499 _LIBCPP_END_NAMESPACE_STD