[flang] Use object before converts in fir.dispatch (#68589)
[llvm-project.git] / clang / utils / TableGen / ClangAttrEmitter.cpp
blob45e2fa7b283e18dd179f6b601f3072b232058740
1 //===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These tablegen backends emit Clang attribute processing code
11 //===----------------------------------------------------------------------===//
13 #include "TableGenBackends.h"
14 #include "ASTTableGen.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSet.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TableGen/Error.h"
30 #include "llvm/TableGen/Record.h"
31 #include "llvm/TableGen/StringMatcher.h"
32 #include "llvm/TableGen/TableGenBackend.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cctype>
36 #include <cstddef>
37 #include <cstdint>
38 #include <map>
39 #include <memory>
40 #include <optional>
41 #include <set>
42 #include <sstream>
43 #include <string>
44 #include <utility>
45 #include <vector>
47 using namespace llvm;
49 namespace {
51 class FlattenedSpelling {
52 std::string V, N, NS;
53 bool K = false;
54 const Record &OriginalSpelling;
56 public:
57 FlattenedSpelling(const std::string &Variety, const std::string &Name,
58 const std::string &Namespace, bool KnownToGCC,
59 const Record &OriginalSpelling)
60 : V(Variety), N(Name), NS(Namespace), K(KnownToGCC),
61 OriginalSpelling(OriginalSpelling) {}
62 explicit FlattenedSpelling(const Record &Spelling)
63 : V(std::string(Spelling.getValueAsString("Variety"))),
64 N(std::string(Spelling.getValueAsString("Name"))),
65 OriginalSpelling(Spelling) {
66 assert(V != "GCC" && V != "Clang" &&
67 "Given a GCC spelling, which means this hasn't been flattened!");
68 if (V == "CXX11" || V == "C23" || V == "Pragma")
69 NS = std::string(Spelling.getValueAsString("Namespace"));
72 const std::string &variety() const { return V; }
73 const std::string &name() const { return N; }
74 const std::string &nameSpace() const { return NS; }
75 bool knownToGCC() const { return K; }
76 const Record &getSpellingRecord() const { return OriginalSpelling; }
79 } // end anonymous namespace
81 static std::vector<FlattenedSpelling>
82 GetFlattenedSpellings(const Record &Attr) {
83 std::vector<Record *> Spellings = Attr.getValueAsListOfDefs("Spellings");
84 std::vector<FlattenedSpelling> Ret;
86 for (const auto &Spelling : Spellings) {
87 StringRef Variety = Spelling->getValueAsString("Variety");
88 StringRef Name = Spelling->getValueAsString("Name");
89 if (Variety == "GCC") {
90 Ret.emplace_back("GNU", std::string(Name), "", true, *Spelling);
91 Ret.emplace_back("CXX11", std::string(Name), "gnu", true, *Spelling);
92 if (Spelling->getValueAsBit("AllowInC"))
93 Ret.emplace_back("C23", std::string(Name), "gnu", true, *Spelling);
94 } else if (Variety == "Clang") {
95 Ret.emplace_back("GNU", std::string(Name), "", false, *Spelling);
96 Ret.emplace_back("CXX11", std::string(Name), "clang", false, *Spelling);
97 if (Spelling->getValueAsBit("AllowInC"))
98 Ret.emplace_back("C23", std::string(Name), "clang", false, *Spelling);
99 } else
100 Ret.push_back(FlattenedSpelling(*Spelling));
103 return Ret;
106 static std::string ReadPCHRecord(StringRef type) {
107 return StringSwitch<std::string>(type)
108 .EndsWith("Decl *", "Record.GetLocalDeclAs<" +
109 std::string(type.data(), 0, type.size() - 1) +
110 ">(Record.readInt())")
111 .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()")
112 .Case("Expr *", "Record.readExpr()")
113 .Case("IdentifierInfo *", "Record.readIdentifier()")
114 .Case("StringRef", "Record.readString()")
115 .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())")
116 .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()")
117 .Default("Record.readInt()");
120 // Get a type that is suitable for storing an object of the specified type.
121 static StringRef getStorageType(StringRef type) {
122 return StringSwitch<StringRef>(type)
123 .Case("StringRef", "std::string")
124 .Default(type);
127 // Assumes that the way to get the value is SA->getname()
128 static std::string WritePCHRecord(StringRef type, StringRef name) {
129 return "Record." +
130 StringSwitch<std::string>(type)
131 .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n")
132 .Case("TypeSourceInfo *",
133 "AddTypeSourceInfo(" + std::string(name) + ");\n")
134 .Case("Expr *", "AddStmt(" + std::string(name) + ");\n")
135 .Case("IdentifierInfo *",
136 "AddIdentifierRef(" + std::string(name) + ");\n")
137 .Case("StringRef", "AddString(" + std::string(name) + ");\n")
138 .Case("ParamIdx",
139 "push_back(" + std::string(name) + ".serialize());\n")
140 .Case("OMPTraitInfo *",
141 "writeOMPTraitInfo(" + std::string(name) + ");\n")
142 .Default("push_back(" + std::string(name) + ");\n");
145 // Normalize attribute name by removing leading and trailing
146 // underscores. For example, __foo, foo__, __foo__ would
147 // become foo.
148 static StringRef NormalizeAttrName(StringRef AttrName) {
149 AttrName.consume_front("__");
150 AttrName.consume_back("__");
151 return AttrName;
154 // Normalize the name by removing any and all leading and trailing underscores.
155 // This is different from NormalizeAttrName in that it also handles names like
156 // _pascal and __pascal.
157 static StringRef NormalizeNameForSpellingComparison(StringRef Name) {
158 return Name.trim("_");
161 // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"),
162 // removing "__" if it appears at the beginning and end of the attribute's name.
163 static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) {
164 if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) {
165 AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4);
168 return AttrSpelling;
171 typedef std::vector<std::pair<std::string, const Record *>> ParsedAttrMap;
173 static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records,
174 ParsedAttrMap *Dupes = nullptr) {
175 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
176 std::set<std::string> Seen;
177 ParsedAttrMap R;
178 for (const auto *Attr : Attrs) {
179 if (Attr->getValueAsBit("SemaHandler")) {
180 std::string AN;
181 if (Attr->isSubClassOf("TargetSpecificAttr") &&
182 !Attr->isValueUnset("ParseKind")) {
183 AN = std::string(Attr->getValueAsString("ParseKind"));
185 // If this attribute has already been handled, it does not need to be
186 // handled again.
187 if (Seen.find(AN) != Seen.end()) {
188 if (Dupes)
189 Dupes->push_back(std::make_pair(AN, Attr));
190 continue;
192 Seen.insert(AN);
193 } else
194 AN = NormalizeAttrName(Attr->getName()).str();
196 R.push_back(std::make_pair(AN, Attr));
199 return R;
202 namespace {
204 class Argument {
205 std::string lowerName, upperName;
206 StringRef attrName;
207 bool isOpt;
208 bool Fake;
210 public:
211 Argument(StringRef Arg, StringRef Attr)
212 : lowerName(std::string(Arg)), upperName(lowerName), attrName(Attr),
213 isOpt(false), Fake(false) {
214 if (!lowerName.empty()) {
215 lowerName[0] = std::tolower(lowerName[0]);
216 upperName[0] = std::toupper(upperName[0]);
218 // Work around MinGW's macro definition of 'interface' to 'struct'. We
219 // have an attribute argument called 'Interface', so only the lower case
220 // name conflicts with the macro definition.
221 if (lowerName == "interface")
222 lowerName = "interface_";
224 Argument(const Record &Arg, StringRef Attr)
225 : Argument(Arg.getValueAsString("Name"), Attr) {}
226 virtual ~Argument() = default;
228 StringRef getLowerName() const { return lowerName; }
229 StringRef getUpperName() const { return upperName; }
230 StringRef getAttrName() const { return attrName; }
232 bool isOptional() const { return isOpt; }
233 void setOptional(bool set) { isOpt = set; }
235 bool isFake() const { return Fake; }
236 void setFake(bool fake) { Fake = fake; }
238 // These functions print the argument contents formatted in different ways.
239 virtual void writeAccessors(raw_ostream &OS) const = 0;
240 virtual void writeAccessorDefinitions(raw_ostream &OS) const {}
241 virtual void writeASTVisitorTraversal(raw_ostream &OS) const {}
242 virtual void writeCloneArgs(raw_ostream &OS) const = 0;
243 virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0;
244 virtual void writeTemplateInstantiation(raw_ostream &OS) const {}
245 virtual void writeCtorBody(raw_ostream &OS) const {}
246 virtual void writeCtorInitializers(raw_ostream &OS) const = 0;
247 virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0;
248 virtual void writeCtorParameters(raw_ostream &OS) const = 0;
249 virtual void writeDeclarations(raw_ostream &OS) const = 0;
250 virtual void writePCHReadArgs(raw_ostream &OS) const = 0;
251 virtual void writePCHReadDecls(raw_ostream &OS) const = 0;
252 virtual void writePCHWrite(raw_ostream &OS) const = 0;
253 virtual std::string getIsOmitted() const { return "false"; }
254 virtual void writeValue(raw_ostream &OS) const = 0;
255 virtual void writeDump(raw_ostream &OS) const = 0;
256 virtual void writeDumpChildren(raw_ostream &OS) const {}
257 virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; }
259 virtual bool isEnumArg() const { return false; }
260 virtual bool isVariadicEnumArg() const { return false; }
261 virtual bool isVariadic() const { return false; }
263 virtual void writeImplicitCtorArgs(raw_ostream &OS) const {
264 OS << getUpperName();
268 class SimpleArgument : public Argument {
269 std::string type;
271 public:
272 SimpleArgument(const Record &Arg, StringRef Attr, std::string T)
273 : Argument(Arg, Attr), type(std::move(T)) {}
275 std::string getType() const { return type; }
277 void writeAccessors(raw_ostream &OS) const override {
278 OS << " " << type << " get" << getUpperName() << "() const {\n";
279 OS << " return " << getLowerName() << ";\n";
280 OS << " }";
283 void writeCloneArgs(raw_ostream &OS) const override {
284 OS << getLowerName();
287 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
288 OS << "A->get" << getUpperName() << "()";
291 void writeCtorInitializers(raw_ostream &OS) const override {
292 OS << getLowerName() << "(" << getUpperName() << ")";
295 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
296 OS << getLowerName() << "()";
299 void writeCtorParameters(raw_ostream &OS) const override {
300 OS << type << " " << getUpperName();
303 void writeDeclarations(raw_ostream &OS) const override {
304 OS << type << " " << getLowerName() << ";";
307 void writePCHReadDecls(raw_ostream &OS) const override {
308 std::string read = ReadPCHRecord(type);
309 OS << " " << type << " " << getLowerName() << " = " << read << ";\n";
312 void writePCHReadArgs(raw_ostream &OS) const override {
313 OS << getLowerName();
316 void writePCHWrite(raw_ostream &OS) const override {
317 OS << " "
318 << WritePCHRecord(type,
319 "SA->get" + std::string(getUpperName()) + "()");
322 std::string getIsOmitted() const override {
323 auto IsOneOf = [](StringRef subject, auto... list) {
324 return ((subject == list) || ...);
327 if (IsOneOf(type, "IdentifierInfo *", "Expr *"))
328 return "!get" + getUpperName().str() + "()";
329 if (IsOneOf(type, "TypeSourceInfo *"))
330 return "!get" + getUpperName().str() + "Loc()";
331 if (IsOneOf(type, "ParamIdx"))
332 return "!get" + getUpperName().str() + "().isValid()";
334 assert(IsOneOf(type, "unsigned", "int", "bool", "FunctionDecl *",
335 "VarDecl *"));
336 return "false";
339 void writeValue(raw_ostream &OS) const override {
340 if (type == "FunctionDecl *")
341 OS << "\" << get" << getUpperName()
342 << "()->getNameInfo().getAsString() << \"";
343 else if (type == "IdentifierInfo *")
344 // Some non-optional (comma required) identifier arguments can be the
345 // empty string but are then recorded as a nullptr.
346 OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName()
347 << "()->getName() : \"\") << \"";
348 else if (type == "VarDecl *")
349 OS << "\" << get" << getUpperName() << "()->getName() << \"";
350 else if (type == "TypeSourceInfo *")
351 OS << "\" << get" << getUpperName() << "().getAsString() << \"";
352 else if (type == "ParamIdx")
353 OS << "\" << get" << getUpperName() << "().getSourceIndex() << \"";
354 else
355 OS << "\" << get" << getUpperName() << "() << \"";
358 void writeDump(raw_ostream &OS) const override {
359 if (StringRef(type).endswith("Decl *")) {
360 OS << " OS << \" \";\n";
361 OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n";
362 } else if (type == "IdentifierInfo *") {
363 // Some non-optional (comma required) identifier arguments can be the
364 // empty string but are then recorded as a nullptr.
365 OS << " if (SA->get" << getUpperName() << "())\n"
366 << " OS << \" \" << SA->get" << getUpperName()
367 << "()->getName();\n";
368 } else if (type == "TypeSourceInfo *") {
369 if (isOptional())
370 OS << " if (SA->get" << getUpperName() << "Loc())";
371 OS << " OS << \" \" << SA->get" << getUpperName()
372 << "().getAsString();\n";
373 } else if (type == "bool") {
374 OS << " if (SA->get" << getUpperName() << "()) OS << \" "
375 << getUpperName() << "\";\n";
376 } else if (type == "int" || type == "unsigned") {
377 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
378 } else if (type == "ParamIdx") {
379 if (isOptional())
380 OS << " if (SA->get" << getUpperName() << "().isValid())\n ";
381 OS << " OS << \" \" << SA->get" << getUpperName()
382 << "().getSourceIndex();\n";
383 } else if (type == "OMPTraitInfo *") {
384 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
385 } else {
386 llvm_unreachable("Unknown SimpleArgument type!");
391 class DefaultSimpleArgument : public SimpleArgument {
392 int64_t Default;
394 public:
395 DefaultSimpleArgument(const Record &Arg, StringRef Attr,
396 std::string T, int64_t Default)
397 : SimpleArgument(Arg, Attr, T), Default(Default) {}
399 void writeAccessors(raw_ostream &OS) const override {
400 SimpleArgument::writeAccessors(OS);
402 OS << "\n\n static const " << getType() << " Default" << getUpperName()
403 << " = ";
404 if (getType() == "bool")
405 OS << (Default != 0 ? "true" : "false");
406 else
407 OS << Default;
408 OS << ";";
412 class StringArgument : public Argument {
413 public:
414 StringArgument(const Record &Arg, StringRef Attr)
415 : Argument(Arg, Attr)
418 void writeAccessors(raw_ostream &OS) const override {
419 OS << " llvm::StringRef get" << getUpperName() << "() const {\n";
420 OS << " return llvm::StringRef(" << getLowerName() << ", "
421 << getLowerName() << "Length);\n";
422 OS << " }\n";
423 OS << " unsigned get" << getUpperName() << "Length() const {\n";
424 OS << " return " << getLowerName() << "Length;\n";
425 OS << " }\n";
426 OS << " void set" << getUpperName()
427 << "(ASTContext &C, llvm::StringRef S) {\n";
428 OS << " " << getLowerName() << "Length = S.size();\n";
429 OS << " this->" << getLowerName() << " = new (C, 1) char ["
430 << getLowerName() << "Length];\n";
431 OS << " if (!S.empty())\n";
432 OS << " std::memcpy(this->" << getLowerName() << ", S.data(), "
433 << getLowerName() << "Length);\n";
434 OS << " }";
437 void writeCloneArgs(raw_ostream &OS) const override {
438 OS << "get" << getUpperName() << "()";
441 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
442 OS << "A->get" << getUpperName() << "()";
445 void writeCtorBody(raw_ostream &OS) const override {
446 OS << " if (!" << getUpperName() << ".empty())\n";
447 OS << " std::memcpy(" << getLowerName() << ", " << getUpperName()
448 << ".data(), " << getLowerName() << "Length);\n";
451 void writeCtorInitializers(raw_ostream &OS) const override {
452 OS << getLowerName() << "Length(" << getUpperName() << ".size()),"
453 << getLowerName() << "(new (Ctx, 1) char[" << getLowerName()
454 << "Length])";
457 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
458 OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)";
461 void writeCtorParameters(raw_ostream &OS) const override {
462 OS << "llvm::StringRef " << getUpperName();
465 void writeDeclarations(raw_ostream &OS) const override {
466 OS << "unsigned " << getLowerName() << "Length;\n";
467 OS << "char *" << getLowerName() << ";";
470 void writePCHReadDecls(raw_ostream &OS) const override {
471 OS << " std::string " << getLowerName()
472 << "= Record.readString();\n";
475 void writePCHReadArgs(raw_ostream &OS) const override {
476 OS << getLowerName();
479 void writePCHWrite(raw_ostream &OS) const override {
480 OS << " Record.AddString(SA->get" << getUpperName() << "());\n";
483 void writeValue(raw_ostream &OS) const override {
484 OS << "\\\"\" << get" << getUpperName() << "() << \"\\\"";
487 void writeDump(raw_ostream &OS) const override {
488 OS << " OS << \" \\\"\" << SA->get" << getUpperName()
489 << "() << \"\\\"\";\n";
493 class AlignedArgument : public Argument {
494 public:
495 AlignedArgument(const Record &Arg, StringRef Attr)
496 : Argument(Arg, Attr)
499 void writeAccessors(raw_ostream &OS) const override {
500 OS << " bool is" << getUpperName() << "Dependent() const;\n";
501 OS << " bool is" << getUpperName() << "ErrorDependent() const;\n";
503 OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n";
505 OS << " bool is" << getUpperName() << "Expr() const {\n";
506 OS << " return is" << getLowerName() << "Expr;\n";
507 OS << " }\n";
509 OS << " Expr *get" << getUpperName() << "Expr() const {\n";
510 OS << " assert(is" << getLowerName() << "Expr);\n";
511 OS << " return " << getLowerName() << "Expr;\n";
512 OS << " }\n";
514 OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n";
515 OS << " assert(!is" << getLowerName() << "Expr);\n";
516 OS << " return " << getLowerName() << "Type;\n";
517 OS << " }";
519 OS << " std::optional<unsigned> getCached" << getUpperName()
520 << "Value() const {\n";
521 OS << " return " << getLowerName() << "Cache;\n";
522 OS << " }";
524 OS << " void setCached" << getUpperName()
525 << "Value(unsigned AlignVal) {\n";
526 OS << " " << getLowerName() << "Cache = AlignVal;\n";
527 OS << " }";
530 void writeAccessorDefinitions(raw_ostream &OS) const override {
531 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
532 << "Dependent() const {\n";
533 OS << " if (is" << getLowerName() << "Expr)\n";
534 OS << " return " << getLowerName() << "Expr && (" << getLowerName()
535 << "Expr->isValueDependent() || " << getLowerName()
536 << "Expr->isTypeDependent());\n";
537 OS << " else\n";
538 OS << " return " << getLowerName()
539 << "Type->getType()->isDependentType();\n";
540 OS << "}\n";
542 OS << "bool " << getAttrName() << "Attr::is" << getUpperName()
543 << "ErrorDependent() const {\n";
544 OS << " if (is" << getLowerName() << "Expr)\n";
545 OS << " return " << getLowerName() << "Expr && " << getLowerName()
546 << "Expr->containsErrors();\n";
547 OS << " return " << getLowerName()
548 << "Type->getType()->containsErrors();\n";
549 OS << "}\n";
552 void writeASTVisitorTraversal(raw_ostream &OS) const override {
553 StringRef Name = getUpperName();
554 OS << " if (A->is" << Name << "Expr()) {\n"
555 << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n"
556 << " return false;\n"
557 << " } else if (auto *TSI = A->get" << Name << "Type()) {\n"
558 << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"
559 << " return false;\n"
560 << " }\n";
563 void writeCloneArgs(raw_ostream &OS) const override {
564 OS << "is" << getLowerName() << "Expr, is" << getLowerName()
565 << "Expr ? static_cast<void*>(" << getLowerName()
566 << "Expr) : " << getLowerName()
567 << "Type";
570 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
571 // FIXME: move the definition in Sema::InstantiateAttrs to here.
572 // In the meantime, aligned attributes are cloned.
575 void writeCtorBody(raw_ostream &OS) const override {
576 OS << " if (is" << getLowerName() << "Expr)\n";
577 OS << " " << getLowerName() << "Expr = reinterpret_cast<Expr *>("
578 << getUpperName() << ");\n";
579 OS << " else\n";
580 OS << " " << getLowerName()
581 << "Type = reinterpret_cast<TypeSourceInfo *>(" << getUpperName()
582 << ");\n";
585 void writeCtorInitializers(raw_ostream &OS) const override {
586 OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)";
589 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
590 OS << "is" << getLowerName() << "Expr(false)";
593 void writeCtorParameters(raw_ostream &OS) const override {
594 OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName();
597 void writeImplicitCtorArgs(raw_ostream &OS) const override {
598 OS << "Is" << getUpperName() << "Expr, " << getUpperName();
601 void writeDeclarations(raw_ostream &OS) const override {
602 OS << "bool is" << getLowerName() << "Expr;\n";
603 OS << "union {\n";
604 OS << "Expr *" << getLowerName() << "Expr;\n";
605 OS << "TypeSourceInfo *" << getLowerName() << "Type;\n";
606 OS << "};\n";
607 OS << "std::optional<unsigned> " << getLowerName() << "Cache;\n";
610 void writePCHReadArgs(raw_ostream &OS) const override {
611 OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr";
614 void writePCHReadDecls(raw_ostream &OS) const override {
615 OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n";
616 OS << " void *" << getLowerName() << "Ptr;\n";
617 OS << " if (is" << getLowerName() << "Expr)\n";
618 OS << " " << getLowerName() << "Ptr = Record.readExpr();\n";
619 OS << " else\n";
620 OS << " " << getLowerName()
621 << "Ptr = Record.readTypeSourceInfo();\n";
624 void writePCHWrite(raw_ostream &OS) const override {
625 OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n";
626 OS << " if (SA->is" << getUpperName() << "Expr())\n";
627 OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n";
628 OS << " else\n";
629 OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName()
630 << "Type());\n";
633 std::string getIsOmitted() const override {
634 return "!((is" + getLowerName().str() + "Expr && " +
635 getLowerName().str() + "Expr) || (!is" + getLowerName().str() +
636 "Expr && " + getLowerName().str() + "Type))";
639 void writeValue(raw_ostream &OS) const override {
640 OS << "\";\n";
641 OS << " if (is" << getLowerName() << "Expr && " << getLowerName()
642 << "Expr)";
643 OS << " " << getLowerName()
644 << "Expr->printPretty(OS, nullptr, Policy);\n";
645 OS << " if (!is" << getLowerName() << "Expr && " << getLowerName()
646 << "Type)";
647 OS << " " << getLowerName()
648 << "Type->getType().print(OS, Policy);\n";
649 OS << " OS << \"";
652 void writeDump(raw_ostream &OS) const override {
653 OS << " if (!SA->is" << getUpperName() << "Expr())\n";
654 OS << " dumpType(SA->get" << getUpperName()
655 << "Type()->getType());\n";
658 void writeDumpChildren(raw_ostream &OS) const override {
659 OS << " if (SA->is" << getUpperName() << "Expr())\n";
660 OS << " Visit(SA->get" << getUpperName() << "Expr());\n";
663 void writeHasChildren(raw_ostream &OS) const override {
664 OS << "SA->is" << getUpperName() << "Expr()";
668 class VariadicArgument : public Argument {
669 std::string Type, ArgName, ArgSizeName, RangeName;
671 protected:
672 // Assumed to receive a parameter: raw_ostream OS.
673 virtual void writeValueImpl(raw_ostream &OS) const {
674 OS << " OS << Val;\n";
676 // Assumed to receive a parameter: raw_ostream OS.
677 virtual void writeDumpImpl(raw_ostream &OS) const {
678 OS << " OS << \" \" << Val;\n";
681 public:
682 VariadicArgument(const Record &Arg, StringRef Attr, std::string T)
683 : Argument(Arg, Attr), Type(std::move(T)),
684 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
685 RangeName(std::string(getLowerName())) {}
687 VariadicArgument(StringRef Arg, StringRef Attr, std::string T)
688 : Argument(Arg, Attr), Type(std::move(T)),
689 ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"),
690 RangeName(std::string(getLowerName())) {}
692 const std::string &getType() const { return Type; }
693 const std::string &getArgName() const { return ArgName; }
694 const std::string &getArgSizeName() const { return ArgSizeName; }
695 bool isVariadic() const override { return true; }
697 void writeAccessors(raw_ostream &OS) const override {
698 std::string IteratorType = getLowerName().str() + "_iterator";
699 std::string BeginFn = getLowerName().str() + "_begin()";
700 std::string EndFn = getLowerName().str() + "_end()";
702 OS << " typedef " << Type << "* " << IteratorType << ";\n";
703 OS << " " << IteratorType << " " << BeginFn << " const {"
704 << " return " << ArgName << "; }\n";
705 OS << " " << IteratorType << " " << EndFn << " const {"
706 << " return " << ArgName << " + " << ArgSizeName << "; }\n";
707 OS << " unsigned " << getLowerName() << "_size() const {"
708 << " return " << ArgSizeName << "; }\n";
709 OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName
710 << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn
711 << "); }\n";
714 void writeSetter(raw_ostream &OS) const {
715 OS << " void set" << getUpperName() << "(ASTContext &Ctx, ";
716 writeCtorParameters(OS);
717 OS << ") {\n";
718 OS << " " << ArgSizeName << " = " << getUpperName() << "Size;\n";
719 OS << " " << ArgName << " = new (Ctx, 16) " << getType() << "["
720 << ArgSizeName << "];\n";
721 OS << " ";
722 writeCtorBody(OS);
723 OS << " }\n";
726 void writeCloneArgs(raw_ostream &OS) const override {
727 OS << ArgName << ", " << ArgSizeName;
730 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
731 // This isn't elegant, but we have to go through public methods...
732 OS << "A->" << getLowerName() << "_begin(), "
733 << "A->" << getLowerName() << "_size()";
736 void writeASTVisitorTraversal(raw_ostream &OS) const override {
737 // FIXME: Traverse the elements.
740 void writeCtorBody(raw_ostream &OS) const override {
741 OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + "
742 << ArgSizeName << ", " << ArgName << ");\n";
745 void writeCtorInitializers(raw_ostream &OS) const override {
746 OS << ArgSizeName << "(" << getUpperName() << "Size), "
747 << ArgName << "(new (Ctx, 16) " << getType() << "["
748 << ArgSizeName << "])";
751 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
752 OS << ArgSizeName << "(0), " << ArgName << "(nullptr)";
755 void writeCtorParameters(raw_ostream &OS) const override {
756 OS << getType() << " *" << getUpperName() << ", unsigned "
757 << getUpperName() << "Size";
760 void writeImplicitCtorArgs(raw_ostream &OS) const override {
761 OS << getUpperName() << ", " << getUpperName() << "Size";
764 void writeDeclarations(raw_ostream &OS) const override {
765 OS << " unsigned " << ArgSizeName << ";\n";
766 OS << " " << getType() << " *" << ArgName << ";";
769 void writePCHReadDecls(raw_ostream &OS) const override {
770 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
771 OS << " SmallVector<" << getType() << ", 4> "
772 << getLowerName() << ";\n";
773 OS << " " << getLowerName() << ".reserve(" << getLowerName()
774 << "Size);\n";
776 // If we can't store the values in the current type (if it's something
777 // like StringRef), store them in a different type and convert the
778 // container afterwards.
779 std::string StorageType = std::string(getStorageType(getType()));
780 std::string StorageName = std::string(getLowerName());
781 if (StorageType != getType()) {
782 StorageName += "Storage";
783 OS << " SmallVector<" << StorageType << ", 4> "
784 << StorageName << ";\n";
785 OS << " " << StorageName << ".reserve(" << getLowerName()
786 << "Size);\n";
789 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
790 std::string read = ReadPCHRecord(Type);
791 OS << " " << StorageName << ".push_back(" << read << ");\n";
793 if (StorageType != getType()) {
794 OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n";
795 OS << " " << getLowerName() << ".push_back("
796 << StorageName << "[i]);\n";
800 void writePCHReadArgs(raw_ostream &OS) const override {
801 OS << getLowerName() << ".data(), " << getLowerName() << "Size";
804 void writePCHWrite(raw_ostream &OS) const override {
805 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
806 OS << " for (auto &Val : SA->" << RangeName << "())\n";
807 OS << " " << WritePCHRecord(Type, "Val");
810 void writeValue(raw_ostream &OS) const override {
811 OS << "\";\n";
812 OS << " for (const auto &Val : " << RangeName << "()) {\n"
813 << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
814 writeValueImpl(OS);
815 OS << " }\n";
816 OS << " OS << \"";
819 void writeDump(raw_ostream &OS) const override {
820 OS << " for (const auto &Val : SA->" << RangeName << "())\n";
821 writeDumpImpl(OS);
825 class VariadicOMPInteropInfoArgument : public VariadicArgument {
826 public:
827 VariadicOMPInteropInfoArgument(const Record &Arg, StringRef Attr)
828 : VariadicArgument(Arg, Attr, "OMPInteropInfo") {}
830 void writeDump(raw_ostream &OS) const override {
831 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
832 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
833 << getLowerName() << "_end(); I != E; ++I) {\n";
834 OS << " if (I->IsTarget && I->IsTargetSync)\n";
835 OS << " OS << \" Target_TargetSync\";\n";
836 OS << " else if (I->IsTarget)\n";
837 OS << " OS << \" Target\";\n";
838 OS << " else\n";
839 OS << " OS << \" TargetSync\";\n";
840 OS << " }\n";
843 void writePCHReadDecls(raw_ostream &OS) const override {
844 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
845 OS << " SmallVector<OMPInteropInfo, 4> " << getLowerName() << ";\n";
846 OS << " " << getLowerName() << ".reserve(" << getLowerName()
847 << "Size);\n";
848 OS << " for (unsigned I = 0, E = " << getLowerName() << "Size; ";
849 OS << "I != E; ++I) {\n";
850 OS << " bool IsTarget = Record.readBool();\n";
851 OS << " bool IsTargetSync = Record.readBool();\n";
852 OS << " " << getLowerName()
853 << ".emplace_back(IsTarget, IsTargetSync);\n";
854 OS << " }\n";
857 void writePCHWrite(raw_ostream &OS) const override {
858 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
859 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
860 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
861 << getLowerName() << "_end(); I != E; ++I) {\n";
862 OS << " Record.writeBool(I->IsTarget);\n";
863 OS << " Record.writeBool(I->IsTargetSync);\n";
864 OS << " }\n";
868 class VariadicParamIdxArgument : public VariadicArgument {
869 public:
870 VariadicParamIdxArgument(const Record &Arg, StringRef Attr)
871 : VariadicArgument(Arg, Attr, "ParamIdx") {}
873 public:
874 void writeValueImpl(raw_ostream &OS) const override {
875 OS << " OS << Val.getSourceIndex();\n";
878 void writeDumpImpl(raw_ostream &OS) const override {
879 OS << " OS << \" \" << Val.getSourceIndex();\n";
883 struct VariadicParamOrParamIdxArgument : public VariadicArgument {
884 VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr)
885 : VariadicArgument(Arg, Attr, "int") {}
888 // Unique the enums, but maintain the original declaration ordering.
889 std::vector<StringRef>
890 uniqueEnumsInOrder(const std::vector<StringRef> &enums) {
891 std::vector<StringRef> uniques;
892 SmallDenseSet<StringRef, 8> unique_set;
893 for (const auto &i : enums) {
894 if (unique_set.insert(i).second)
895 uniques.push_back(i);
897 return uniques;
900 class EnumArgument : public Argument {
901 std::string type;
902 std::vector<StringRef> values, enums, uniques;
904 public:
905 EnumArgument(const Record &Arg, StringRef Attr)
906 : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))),
907 values(Arg.getValueAsListOfStrings("Values")),
908 enums(Arg.getValueAsListOfStrings("Enums")),
909 uniques(uniqueEnumsInOrder(enums)) {
910 // FIXME: Emit a proper error
911 assert(!uniques.empty());
914 bool isEnumArg() const override { return true; }
916 void writeAccessors(raw_ostream &OS) const override {
917 OS << " " << type << " get" << getUpperName() << "() const {\n";
918 OS << " return " << getLowerName() << ";\n";
919 OS << " }";
922 void writeCloneArgs(raw_ostream &OS) const override {
923 OS << getLowerName();
926 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
927 OS << "A->get" << getUpperName() << "()";
929 void writeCtorInitializers(raw_ostream &OS) const override {
930 OS << getLowerName() << "(" << getUpperName() << ")";
932 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
933 OS << getLowerName() << "(" << type << "(0))";
935 void writeCtorParameters(raw_ostream &OS) const override {
936 OS << type << " " << getUpperName();
938 void writeDeclarations(raw_ostream &OS) const override {
939 auto i = uniques.cbegin(), e = uniques.cend();
940 // The last one needs to not have a comma.
941 --e;
943 OS << "public:\n";
944 OS << " enum " << type << " {\n";
945 for (; i != e; ++i)
946 OS << " " << *i << ",\n";
947 OS << " " << *e << "\n";
948 OS << " };\n";
949 OS << "private:\n";
950 OS << " " << type << " " << getLowerName() << ";";
953 void writePCHReadDecls(raw_ostream &OS) const override {
954 OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName()
955 << "(static_cast<" << getAttrName() << "Attr::" << type
956 << ">(Record.readInt()));\n";
959 void writePCHReadArgs(raw_ostream &OS) const override {
960 OS << getLowerName();
963 void writePCHWrite(raw_ostream &OS) const override {
964 OS << "Record.push_back(SA->get" << getUpperName() << "());\n";
967 void writeValue(raw_ostream &OS) const override {
968 // FIXME: this isn't 100% correct -- some enum arguments require printing
969 // as a string literal, while others require printing as an identifier.
970 // Tablegen currently does not distinguish between the two forms.
971 OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get"
972 << getUpperName() << "()) << \"\\\"";
975 void writeDump(raw_ostream &OS) const override {
976 OS << " switch(SA->get" << getUpperName() << "()) {\n";
977 for (const auto &I : uniques) {
978 OS << " case " << getAttrName() << "Attr::" << I << ":\n";
979 OS << " OS << \" " << I << "\";\n";
980 OS << " break;\n";
982 OS << " }\n";
985 void writeConversion(raw_ostream &OS, bool Header) const {
986 if (Header) {
987 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type
988 << " &Out);\n";
989 OS << " static const char *Convert" << type << "ToStr(" << type
990 << " Val);\n";
991 return;
994 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
995 << "(StringRef Val, " << type << " &Out) {\n";
996 OS << " std::optional<" << type
997 << "> R = llvm::StringSwitch<std::optional<";
998 OS << type << ">>(Val)\n";
999 for (size_t I = 0; I < enums.size(); ++I) {
1000 OS << " .Case(\"" << values[I] << "\", ";
1001 OS << getAttrName() << "Attr::" << enums[I] << ")\n";
1003 OS << " .Default(std::optional<" << type << ">());\n";
1004 OS << " if (R) {\n";
1005 OS << " Out = *R;\n return true;\n }\n";
1006 OS << " return false;\n";
1007 OS << "}\n\n";
1009 // Mapping from enumeration values back to enumeration strings isn't
1010 // trivial because some enumeration values have multiple named
1011 // enumerators, such as type_visibility(internal) and
1012 // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden.
1013 OS << "const char *" << getAttrName() << "Attr::Convert" << type
1014 << "ToStr(" << type << " Val) {\n"
1015 << " switch(Val) {\n";
1016 SmallDenseSet<StringRef, 8> Uniques;
1017 for (size_t I = 0; I < enums.size(); ++I) {
1018 if (Uniques.insert(enums[I]).second)
1019 OS << " case " << getAttrName() << "Attr::" << enums[I]
1020 << ": return \"" << values[I] << "\";\n";
1022 OS << " }\n"
1023 << " llvm_unreachable(\"No enumerator with that value\");\n"
1024 << "}\n";
1028 class VariadicEnumArgument: public VariadicArgument {
1029 std::string type, QualifiedTypeName;
1030 std::vector<StringRef> values, enums, uniques;
1032 protected:
1033 void writeValueImpl(raw_ostream &OS) const override {
1034 // FIXME: this isn't 100% correct -- some enum arguments require printing
1035 // as a string literal, while others require printing as an identifier.
1036 // Tablegen currently does not distinguish between the two forms.
1037 OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type
1038 << "ToStr(Val)" << "<< \"\\\"\";\n";
1041 public:
1042 VariadicEnumArgument(const Record &Arg, StringRef Attr)
1043 : VariadicArgument(Arg, Attr,
1044 std::string(Arg.getValueAsString("Type"))),
1045 type(std::string(Arg.getValueAsString("Type"))),
1046 values(Arg.getValueAsListOfStrings("Values")),
1047 enums(Arg.getValueAsListOfStrings("Enums")),
1048 uniques(uniqueEnumsInOrder(enums)) {
1049 QualifiedTypeName = getAttrName().str() + "Attr::" + type;
1051 // FIXME: Emit a proper error
1052 assert(!uniques.empty());
1055 bool isVariadicEnumArg() const override { return true; }
1057 void writeDeclarations(raw_ostream &OS) const override {
1058 auto i = uniques.cbegin(), e = uniques.cend();
1059 // The last one needs to not have a comma.
1060 --e;
1062 OS << "public:\n";
1063 OS << " enum " << type << " {\n";
1064 for (; i != e; ++i)
1065 OS << " " << *i << ",\n";
1066 OS << " " << *e << "\n";
1067 OS << " };\n";
1068 OS << "private:\n";
1070 VariadicArgument::writeDeclarations(OS);
1073 void writeDump(raw_ostream &OS) const override {
1074 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1075 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1076 << getLowerName() << "_end(); I != E; ++I) {\n";
1077 OS << " switch(*I) {\n";
1078 for (const auto &UI : uniques) {
1079 OS << " case " << getAttrName() << "Attr::" << UI << ":\n";
1080 OS << " OS << \" " << UI << "\";\n";
1081 OS << " break;\n";
1083 OS << " }\n";
1084 OS << " }\n";
1087 void writePCHReadDecls(raw_ostream &OS) const override {
1088 OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n";
1089 OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName()
1090 << ";\n";
1091 OS << " " << getLowerName() << ".reserve(" << getLowerName()
1092 << "Size);\n";
1093 OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n";
1094 OS << " " << getLowerName() << ".push_back(" << "static_cast<"
1095 << QualifiedTypeName << ">(Record.readInt()));\n";
1098 void writePCHWrite(raw_ostream &OS) const override {
1099 OS << " Record.push_back(SA->" << getLowerName() << "_size());\n";
1100 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1101 << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->"
1102 << getLowerName() << "_end(); i != e; ++i)\n";
1103 OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)");
1106 void writeConversion(raw_ostream &OS, bool Header) const {
1107 if (Header) {
1108 OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type
1109 << " &Out);\n";
1110 OS << " static const char *Convert" << type << "ToStr(" << type
1111 << " Val);\n";
1112 return;
1115 OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type
1116 << "(StringRef Val, ";
1117 OS << type << " &Out) {\n";
1118 OS << " std::optional<" << type
1119 << "> R = llvm::StringSwitch<std::optional<";
1120 OS << type << ">>(Val)\n";
1121 for (size_t I = 0; I < enums.size(); ++I) {
1122 OS << " .Case(\"" << values[I] << "\", ";
1123 OS << getAttrName() << "Attr::" << enums[I] << ")\n";
1125 OS << " .Default(std::optional<" << type << ">());\n";
1126 OS << " if (R) {\n";
1127 OS << " Out = *R;\n return true;\n }\n";
1128 OS << " return false;\n";
1129 OS << "}\n\n";
1131 OS << "const char *" << getAttrName() << "Attr::Convert" << type
1132 << "ToStr(" << type << " Val) {\n"
1133 << " switch(Val) {\n";
1134 SmallDenseSet<StringRef, 8> Uniques;
1135 for (size_t I = 0; I < enums.size(); ++I) {
1136 if (Uniques.insert(enums[I]).second)
1137 OS << " case " << getAttrName() << "Attr::" << enums[I]
1138 << ": return \"" << values[I] << "\";\n";
1140 OS << " }\n"
1141 << " llvm_unreachable(\"No enumerator with that value\");\n"
1142 << "}\n";
1146 class VersionArgument : public Argument {
1147 public:
1148 VersionArgument(const Record &Arg, StringRef Attr)
1149 : Argument(Arg, Attr)
1152 void writeAccessors(raw_ostream &OS) const override {
1153 OS << " VersionTuple get" << getUpperName() << "() const {\n";
1154 OS << " return " << getLowerName() << ";\n";
1155 OS << " }\n";
1156 OS << " void set" << getUpperName()
1157 << "(ASTContext &C, VersionTuple V) {\n";
1158 OS << " " << getLowerName() << " = V;\n";
1159 OS << " }";
1162 void writeCloneArgs(raw_ostream &OS) const override {
1163 OS << "get" << getUpperName() << "()";
1166 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1167 OS << "A->get" << getUpperName() << "()";
1170 void writeCtorInitializers(raw_ostream &OS) const override {
1171 OS << getLowerName() << "(" << getUpperName() << ")";
1174 void writeCtorDefaultInitializers(raw_ostream &OS) const override {
1175 OS << getLowerName() << "()";
1178 void writeCtorParameters(raw_ostream &OS) const override {
1179 OS << "VersionTuple " << getUpperName();
1182 void writeDeclarations(raw_ostream &OS) const override {
1183 OS << "VersionTuple " << getLowerName() << ";\n";
1186 void writePCHReadDecls(raw_ostream &OS) const override {
1187 OS << " VersionTuple " << getLowerName()
1188 << "= Record.readVersionTuple();\n";
1191 void writePCHReadArgs(raw_ostream &OS) const override {
1192 OS << getLowerName();
1195 void writePCHWrite(raw_ostream &OS) const override {
1196 OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n";
1199 void writeValue(raw_ostream &OS) const override {
1200 OS << getLowerName() << "=\" << get" << getUpperName() << "() << \"";
1203 void writeDump(raw_ostream &OS) const override {
1204 OS << " OS << \" \" << SA->get" << getUpperName() << "();\n";
1208 class ExprArgument : public SimpleArgument {
1209 public:
1210 ExprArgument(const Record &Arg, StringRef Attr)
1211 : SimpleArgument(Arg, Attr, "Expr *")
1214 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1215 OS << " if (!"
1216 << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n";
1217 OS << " return false;\n";
1220 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1221 OS << "tempInst" << getUpperName();
1224 void writeTemplateInstantiation(raw_ostream &OS) const override {
1225 OS << " " << getType() << " tempInst" << getUpperName() << ";\n";
1226 OS << " {\n";
1227 OS << " EnterExpressionEvaluationContext "
1228 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1229 OS << " ExprResult " << "Result = S.SubstExpr("
1230 << "A->get" << getUpperName() << "(), TemplateArgs);\n";
1231 OS << " if (Result.isInvalid())\n";
1232 OS << " return nullptr;\n";
1233 OS << " tempInst" << getUpperName() << " = Result.get();\n";
1234 OS << " }\n";
1237 void writeValue(raw_ostream &OS) const override {
1238 OS << "\";\n";
1239 OS << " get" << getUpperName()
1240 << "()->printPretty(OS, nullptr, Policy);\n";
1241 OS << " OS << \"";
1244 void writeDump(raw_ostream &OS) const override {}
1246 void writeDumpChildren(raw_ostream &OS) const override {
1247 OS << " Visit(SA->get" << getUpperName() << "());\n";
1250 void writeHasChildren(raw_ostream &OS) const override { OS << "true"; }
1253 class VariadicExprArgument : public VariadicArgument {
1254 public:
1255 VariadicExprArgument(const Record &Arg, StringRef Attr)
1256 : VariadicArgument(Arg, Attr, "Expr *")
1259 VariadicExprArgument(StringRef ArgName, StringRef Attr)
1260 : VariadicArgument(ArgName, Attr, "Expr *") {}
1262 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1263 OS << " {\n";
1264 OS << " " << getType() << " *I = A->" << getLowerName()
1265 << "_begin();\n";
1266 OS << " " << getType() << " *E = A->" << getLowerName()
1267 << "_end();\n";
1268 OS << " for (; I != E; ++I) {\n";
1269 OS << " if (!getDerived().TraverseStmt(*I))\n";
1270 OS << " return false;\n";
1271 OS << " }\n";
1272 OS << " }\n";
1275 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1276 OS << "tempInst" << getUpperName() << ", "
1277 << "A->" << getLowerName() << "_size()";
1280 void writeTemplateInstantiation(raw_ostream &OS) const override {
1281 OS << " auto *tempInst" << getUpperName()
1282 << " = new (C, 16) " << getType()
1283 << "[A->" << getLowerName() << "_size()];\n";
1284 OS << " {\n";
1285 OS << " EnterExpressionEvaluationContext "
1286 << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n";
1287 OS << " " << getType() << " *TI = tempInst" << getUpperName()
1288 << ";\n";
1289 OS << " " << getType() << " *I = A->" << getLowerName()
1290 << "_begin();\n";
1291 OS << " " << getType() << " *E = A->" << getLowerName()
1292 << "_end();\n";
1293 OS << " for (; I != E; ++I, ++TI) {\n";
1294 OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n";
1295 OS << " if (Result.isInvalid())\n";
1296 OS << " return nullptr;\n";
1297 OS << " *TI = Result.get();\n";
1298 OS << " }\n";
1299 OS << " }\n";
1302 void writeDump(raw_ostream &OS) const override {}
1304 void writeDumpChildren(raw_ostream &OS) const override {
1305 OS << " for (" << getAttrName() << "Attr::" << getLowerName()
1306 << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->"
1307 << getLowerName() << "_end(); I != E; ++I)\n";
1308 OS << " Visit(*I);\n";
1311 void writeHasChildren(raw_ostream &OS) const override {
1312 OS << "SA->" << getLowerName() << "_begin() != "
1313 << "SA->" << getLowerName() << "_end()";
1317 class VariadicIdentifierArgument : public VariadicArgument {
1318 public:
1319 VariadicIdentifierArgument(const Record &Arg, StringRef Attr)
1320 : VariadicArgument(Arg, Attr, "IdentifierInfo *")
1324 class VariadicStringArgument : public VariadicArgument {
1325 public:
1326 VariadicStringArgument(const Record &Arg, StringRef Attr)
1327 : VariadicArgument(Arg, Attr, "StringRef")
1330 void writeCtorBody(raw_ostream &OS) const override {
1331 OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n"
1332 " ++I) {\n"
1333 " StringRef Ref = " << getUpperName() << "[I];\n"
1334 " if (!Ref.empty()) {\n"
1335 " char *Mem = new (Ctx, 1) char[Ref.size()];\n"
1336 " std::memcpy(Mem, Ref.data(), Ref.size());\n"
1337 " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n"
1338 " }\n"
1339 " }\n";
1342 void writeValueImpl(raw_ostream &OS) const override {
1343 OS << " OS << \"\\\"\" << Val << \"\\\"\";\n";
1347 class TypeArgument : public SimpleArgument {
1348 public:
1349 TypeArgument(const Record &Arg, StringRef Attr)
1350 : SimpleArgument(Arg, Attr, "TypeSourceInfo *")
1353 void writeAccessors(raw_ostream &OS) const override {
1354 OS << " QualType get" << getUpperName() << "() const {\n";
1355 OS << " return " << getLowerName() << "->getType();\n";
1356 OS << " }";
1357 OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n";
1358 OS << " return " << getLowerName() << ";\n";
1359 OS << " }";
1362 void writeASTVisitorTraversal(raw_ostream &OS) const override {
1363 OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n";
1364 OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n";
1365 OS << " return false;\n";
1368 void writeTemplateInstantiation(raw_ostream &OS) const override {
1369 OS << " " << getType() << " tempInst" << getUpperName() << " =\n";
1370 OS << " S.SubstType(A->get" << getUpperName() << "Loc(), "
1371 << "TemplateArgs, A->getLoc(), A->getAttrName());\n";
1372 OS << " if (!tempInst" << getUpperName() << ")\n";
1373 OS << " return nullptr;\n";
1376 void writeTemplateInstantiationArgs(raw_ostream &OS) const override {
1377 OS << "tempInst" << getUpperName();
1380 void writePCHWrite(raw_ostream &OS) const override {
1381 OS << " "
1382 << WritePCHRecord(getType(),
1383 "SA->get" + std::string(getUpperName()) + "Loc()");
1387 } // end anonymous namespace
1389 static std::unique_ptr<Argument>
1390 createArgument(const Record &Arg, StringRef Attr,
1391 const Record *Search = nullptr) {
1392 if (!Search)
1393 Search = &Arg;
1395 std::unique_ptr<Argument> Ptr;
1396 llvm::StringRef ArgName = Search->getName();
1398 if (ArgName == "AlignedArgument")
1399 Ptr = std::make_unique<AlignedArgument>(Arg, Attr);
1400 else if (ArgName == "EnumArgument")
1401 Ptr = std::make_unique<EnumArgument>(Arg, Attr);
1402 else if (ArgName == "ExprArgument")
1403 Ptr = std::make_unique<ExprArgument>(Arg, Attr);
1404 else if (ArgName == "DeclArgument")
1405 Ptr = std::make_unique<SimpleArgument>(
1406 Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str());
1407 else if (ArgName == "IdentifierArgument")
1408 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "IdentifierInfo *");
1409 else if (ArgName == "DefaultBoolArgument")
1410 Ptr = std::make_unique<DefaultSimpleArgument>(
1411 Arg, Attr, "bool", Arg.getValueAsBit("Default"));
1412 else if (ArgName == "BoolArgument")
1413 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "bool");
1414 else if (ArgName == "DefaultIntArgument")
1415 Ptr = std::make_unique<DefaultSimpleArgument>(
1416 Arg, Attr, "int", Arg.getValueAsInt("Default"));
1417 else if (ArgName == "IntArgument")
1418 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "int");
1419 else if (ArgName == "StringArgument")
1420 Ptr = std::make_unique<StringArgument>(Arg, Attr);
1421 else if (ArgName == "TypeArgument")
1422 Ptr = std::make_unique<TypeArgument>(Arg, Attr);
1423 else if (ArgName == "UnsignedArgument")
1424 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "unsigned");
1425 else if (ArgName == "VariadicUnsignedArgument")
1426 Ptr = std::make_unique<VariadicArgument>(Arg, Attr, "unsigned");
1427 else if (ArgName == "VariadicStringArgument")
1428 Ptr = std::make_unique<VariadicStringArgument>(Arg, Attr);
1429 else if (ArgName == "VariadicEnumArgument")
1430 Ptr = std::make_unique<VariadicEnumArgument>(Arg, Attr);
1431 else if (ArgName == "VariadicExprArgument")
1432 Ptr = std::make_unique<VariadicExprArgument>(Arg, Attr);
1433 else if (ArgName == "VariadicParamIdxArgument")
1434 Ptr = std::make_unique<VariadicParamIdxArgument>(Arg, Attr);
1435 else if (ArgName == "VariadicParamOrParamIdxArgument")
1436 Ptr = std::make_unique<VariadicParamOrParamIdxArgument>(Arg, Attr);
1437 else if (ArgName == "ParamIdxArgument")
1438 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "ParamIdx");
1439 else if (ArgName == "VariadicIdentifierArgument")
1440 Ptr = std::make_unique<VariadicIdentifierArgument>(Arg, Attr);
1441 else if (ArgName == "VersionArgument")
1442 Ptr = std::make_unique<VersionArgument>(Arg, Attr);
1443 else if (ArgName == "OMPTraitInfoArgument")
1444 Ptr = std::make_unique<SimpleArgument>(Arg, Attr, "OMPTraitInfo *");
1445 else if (ArgName == "VariadicOMPInteropInfoArgument")
1446 Ptr = std::make_unique<VariadicOMPInteropInfoArgument>(Arg, Attr);
1448 if (!Ptr) {
1449 // Search in reverse order so that the most-derived type is handled first.
1450 ArrayRef<std::pair<Record*, SMRange>> Bases = Search->getSuperClasses();
1451 for (const auto &Base : llvm::reverse(Bases)) {
1452 if ((Ptr = createArgument(Arg, Attr, Base.first)))
1453 break;
1457 if (Ptr && Arg.getValueAsBit("Optional"))
1458 Ptr->setOptional(true);
1460 if (Ptr && Arg.getValueAsBit("Fake"))
1461 Ptr->setFake(true);
1463 return Ptr;
1466 static void writeAvailabilityValue(raw_ostream &OS) {
1467 OS << "\" << getPlatform()->getName();\n"
1468 << " if (getStrict()) OS << \", strict\";\n"
1469 << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n"
1470 << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n"
1471 << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n"
1472 << " if (getUnavailable()) OS << \", unavailable\";\n"
1473 << " OS << \"";
1476 static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) {
1477 OS << "\\\"\" << getMessage() << \"\\\"\";\n";
1478 // Only GNU deprecated has an optional fixit argument at the second position.
1479 if (Variety == "GNU")
1480 OS << " if (!getReplacement().empty()) OS << \", \\\"\""
1481 " << getReplacement() << \"\\\"\";\n";
1482 OS << " OS << \"";
1485 static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) {
1486 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1488 OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n";
1489 if (Spellings.empty()) {
1490 OS << " return \"(No spelling)\";\n}\n\n";
1491 return;
1494 OS << " switch (getAttributeSpellingListIndex()) {\n"
1495 " default:\n"
1496 " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1497 " return \"(No spelling)\";\n";
1499 for (unsigned I = 0; I < Spellings.size(); ++I)
1500 OS << " case " << I << ":\n"
1501 " return \"" << Spellings[I].name() << "\";\n";
1502 // End of the switch statement.
1503 OS << " }\n";
1504 // End of the getSpelling function.
1505 OS << "}\n\n";
1508 static void
1509 writePrettyPrintFunction(const Record &R,
1510 const std::vector<std::unique_ptr<Argument>> &Args,
1511 raw_ostream &OS) {
1512 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
1514 OS << "void " << R.getName() << "Attr::printPretty("
1515 << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n";
1517 if (Spellings.empty()) {
1518 OS << "}\n\n";
1519 return;
1522 OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n"
1523 << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n"
1524 << " switch (getAttributeSpellingListIndex()) {\n"
1525 << " default:\n"
1526 << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
1527 << " break;\n";
1529 for (unsigned I = 0; I < Spellings.size(); ++ I) {
1530 llvm::SmallString<16> Prefix;
1531 llvm::SmallString<8> Suffix;
1532 // The actual spelling of the name and namespace (if applicable)
1533 // of an attribute without considering prefix and suffix.
1534 llvm::SmallString<64> Spelling;
1535 std::string Name = Spellings[I].name();
1536 std::string Variety = Spellings[I].variety();
1538 if (Variety == "GNU") {
1539 Prefix = " __attribute__((";
1540 Suffix = "))";
1541 } else if (Variety == "CXX11" || Variety == "C23") {
1542 Prefix = " [[";
1543 Suffix = "]]";
1544 std::string Namespace = Spellings[I].nameSpace();
1545 if (!Namespace.empty()) {
1546 Spelling += Namespace;
1547 Spelling += "::";
1549 } else if (Variety == "Declspec") {
1550 Prefix = " __declspec(";
1551 Suffix = ")";
1552 } else if (Variety == "Microsoft") {
1553 Prefix = "[";
1554 Suffix = "]";
1555 } else if (Variety == "Keyword") {
1556 Prefix = " ";
1557 Suffix = "";
1558 } else if (Variety == "Pragma") {
1559 Prefix = "#pragma ";
1560 Suffix = "\n";
1561 std::string Namespace = Spellings[I].nameSpace();
1562 if (!Namespace.empty()) {
1563 Spelling += Namespace;
1564 Spelling += " ";
1566 } else if (Variety == "HLSLSemantic") {
1567 Prefix = ":";
1568 Suffix = "";
1569 } else {
1570 llvm_unreachable("Unknown attribute syntax variety!");
1573 Spelling += Name;
1575 OS << " case " << I << " : {\n"
1576 << " OS << \"" << Prefix << Spelling << "\";\n";
1578 if (Variety == "Pragma") {
1579 OS << " printPrettyPragma(OS, Policy);\n";
1580 OS << " OS << \"\\n\";";
1581 OS << " break;\n";
1582 OS << " }\n";
1583 continue;
1586 if (Spelling == "availability") {
1587 OS << " OS << \"(";
1588 writeAvailabilityValue(OS);
1589 OS << ")\";\n";
1590 } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") {
1591 OS << " OS << \"(";
1592 writeDeprecatedAttrValue(OS, Variety);
1593 OS << ")\";\n";
1594 } else {
1595 // To avoid printing parentheses around an empty argument list or
1596 // printing spurious commas at the end of an argument list, we need to
1597 // determine where the last provided non-fake argument is.
1598 bool FoundNonOptArg = false;
1599 for (const auto &arg : llvm::reverse(Args)) {
1600 if (arg->isFake())
1601 continue;
1602 if (FoundNonOptArg)
1603 continue;
1604 // FIXME: arg->getIsOmitted() == "false" means we haven't implemented
1605 // any way to detect whether the argument was omitted.
1606 if (!arg->isOptional() || arg->getIsOmitted() == "false") {
1607 FoundNonOptArg = true;
1608 continue;
1610 OS << " if (" << arg->getIsOmitted() << ")\n"
1611 << " ++TrailingOmittedArgs;\n";
1613 unsigned ArgIndex = 0;
1614 for (const auto &arg : Args) {
1615 if (arg->isFake())
1616 continue;
1617 std::string IsOmitted = arg->getIsOmitted();
1618 if (arg->isOptional() && IsOmitted != "false")
1619 OS << " if (!(" << IsOmitted << ")) {\n";
1620 // Variadic arguments print their own leading comma.
1621 if (!arg->isVariadic())
1622 OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n";
1623 OS << " OS << \"";
1624 arg->writeValue(OS);
1625 OS << "\";\n";
1626 if (arg->isOptional() && IsOmitted != "false")
1627 OS << " }\n";
1628 ++ArgIndex;
1630 if (ArgIndex != 0)
1631 OS << " if (!IsFirstArgument)\n"
1632 << " OS << \")\";\n";
1634 OS << " OS << \"" << Suffix << "\";\n"
1635 << " break;\n"
1636 << " }\n";
1639 // End of the switch statement.
1640 OS << "}\n";
1641 // End of the print function.
1642 OS << "}\n\n";
1645 /// Return the index of a spelling in a spelling list.
1646 static unsigned
1647 getSpellingListIndex(const std::vector<FlattenedSpelling> &SpellingList,
1648 const FlattenedSpelling &Spelling) {
1649 assert(!SpellingList.empty() && "Spelling list is empty!");
1651 for (unsigned Index = 0; Index < SpellingList.size(); ++Index) {
1652 const FlattenedSpelling &S = SpellingList[Index];
1653 if (S.variety() != Spelling.variety())
1654 continue;
1655 if (S.nameSpace() != Spelling.nameSpace())
1656 continue;
1657 if (S.name() != Spelling.name())
1658 continue;
1660 return Index;
1663 llvm_unreachable("Unknown spelling!");
1666 static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) {
1667 std::vector<Record*> Accessors = R.getValueAsListOfDefs("Accessors");
1668 if (Accessors.empty())
1669 return;
1671 const std::vector<FlattenedSpelling> SpellingList = GetFlattenedSpellings(R);
1672 assert(!SpellingList.empty() &&
1673 "Attribute with empty spelling list can't have accessors!");
1674 for (const auto *Accessor : Accessors) {
1675 const StringRef Name = Accessor->getValueAsString("Name");
1676 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Accessor);
1678 OS << " bool " << Name
1679 << "() const { return getAttributeSpellingListIndex() == ";
1680 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
1681 OS << getSpellingListIndex(SpellingList, Spellings[Index]);
1682 if (Index != Spellings.size() - 1)
1683 OS << " ||\n getAttributeSpellingListIndex() == ";
1684 else
1685 OS << "; }\n";
1690 static bool
1691 SpellingNamesAreCommon(const std::vector<FlattenedSpelling>& Spellings) {
1692 assert(!Spellings.empty() && "An empty list of spellings was provided");
1693 std::string FirstName =
1694 std::string(NormalizeNameForSpellingComparison(Spellings.front().name()));
1695 for (const auto &Spelling :
1696 llvm::make_range(std::next(Spellings.begin()), Spellings.end())) {
1697 std::string Name =
1698 std::string(NormalizeNameForSpellingComparison(Spelling.name()));
1699 if (Name != FirstName)
1700 return false;
1702 return true;
1705 typedef std::map<unsigned, std::string> SemanticSpellingMap;
1706 static std::string
1707 CreateSemanticSpellings(const std::vector<FlattenedSpelling> &Spellings,
1708 SemanticSpellingMap &Map) {
1709 // The enumerants are automatically generated based on the variety,
1710 // namespace (if present) and name for each attribute spelling. However,
1711 // care is taken to avoid trampling on the reserved namespace due to
1712 // underscores.
1713 std::string Ret(" enum Spelling {\n");
1714 std::set<std::string> Uniques;
1715 unsigned Idx = 0;
1717 // If we have a need to have this many spellings we likely need to add an
1718 // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the
1719 // value of SpellingNotCalculated there and here.
1720 assert(Spellings.size() < 15 &&
1721 "Too many spellings, would step on SpellingNotCalculated in "
1722 "AttributeCommonInfo");
1723 for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) {
1724 const FlattenedSpelling &S = *I;
1725 const std::string &Variety = S.variety();
1726 const std::string &Spelling = S.name();
1727 const std::string &Namespace = S.nameSpace();
1728 std::string EnumName;
1730 EnumName += (Variety + "_");
1731 if (!Namespace.empty())
1732 EnumName += (NormalizeNameForSpellingComparison(Namespace).str() +
1733 "_");
1734 EnumName += NormalizeNameForSpellingComparison(Spelling);
1736 // Even if the name is not unique, this spelling index corresponds to a
1737 // particular enumerant name that we've calculated.
1738 Map[Idx] = EnumName;
1740 // Since we have been stripping underscores to avoid trampling on the
1741 // reserved namespace, we may have inadvertently created duplicate
1742 // enumerant names. These duplicates are not considered part of the
1743 // semantic spelling, and can be elided.
1744 if (Uniques.find(EnumName) != Uniques.end())
1745 continue;
1747 Uniques.insert(EnumName);
1748 if (I != Spellings.begin())
1749 Ret += ",\n";
1750 // Duplicate spellings are not considered part of the semantic spelling
1751 // enumeration, but the spelling index and semantic spelling values are
1752 // meant to be equivalent, so we must specify a concrete value for each
1753 // enumerator.
1754 Ret += " " + EnumName + " = " + llvm::utostr(Idx);
1756 Ret += ",\n SpellingNotCalculated = 15\n";
1757 Ret += "\n };\n\n";
1758 return Ret;
1761 void WriteSemanticSpellingSwitch(const std::string &VarName,
1762 const SemanticSpellingMap &Map,
1763 raw_ostream &OS) {
1764 OS << " switch (" << VarName << ") {\n default: "
1765 << "llvm_unreachable(\"Unknown spelling list index\");\n";
1766 for (const auto &I : Map)
1767 OS << " case " << I.first << ": return " << I.second << ";\n";
1768 OS << " }\n";
1771 // Emits the LateParsed property for attributes.
1772 static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) {
1773 OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n";
1774 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
1776 for (const auto *Attr : Attrs) {
1777 bool LateParsed = Attr->getValueAsBit("LateParsed");
1779 if (LateParsed) {
1780 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*Attr);
1782 // FIXME: Handle non-GNU attributes
1783 for (const auto &I : Spellings) {
1784 if (I.variety() != "GNU")
1785 continue;
1786 OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n";
1790 OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n";
1793 static bool hasGNUorCXX11Spelling(const Record &Attribute) {
1794 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
1795 for (const auto &I : Spellings) {
1796 if (I.variety() == "GNU" || I.variety() == "CXX11")
1797 return true;
1799 return false;
1802 namespace {
1804 struct AttributeSubjectMatchRule {
1805 const Record *MetaSubject;
1806 const Record *Constraint;
1808 AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint)
1809 : MetaSubject(MetaSubject), Constraint(Constraint) {
1810 assert(MetaSubject && "Missing subject");
1813 bool isSubRule() const { return Constraint != nullptr; }
1815 std::vector<Record *> getSubjects() const {
1816 return (Constraint ? Constraint : MetaSubject)
1817 ->getValueAsListOfDefs("Subjects");
1820 std::vector<Record *> getLangOpts() const {
1821 if (Constraint) {
1822 // Lookup the options in the sub-rule first, in case the sub-rule
1823 // overrides the rules options.
1824 std::vector<Record *> Opts = Constraint->getValueAsListOfDefs("LangOpts");
1825 if (!Opts.empty())
1826 return Opts;
1828 return MetaSubject->getValueAsListOfDefs("LangOpts");
1831 // Abstract rules are used only for sub-rules
1832 bool isAbstractRule() const { return getSubjects().empty(); }
1834 StringRef getName() const {
1835 return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name");
1838 bool isNegatedSubRule() const {
1839 assert(isSubRule() && "Not a sub-rule");
1840 return Constraint->getValueAsBit("Negated");
1843 std::string getSpelling() const {
1844 std::string Result = std::string(MetaSubject->getValueAsString("Name"));
1845 if (isSubRule()) {
1846 Result += '(';
1847 if (isNegatedSubRule())
1848 Result += "unless(";
1849 Result += getName();
1850 if (isNegatedSubRule())
1851 Result += ')';
1852 Result += ')';
1854 return Result;
1857 std::string getEnumValueName() const {
1858 SmallString<128> Result;
1859 Result += "SubjectMatchRule_";
1860 Result += MetaSubject->getValueAsString("Name");
1861 if (isSubRule()) {
1862 Result += "_";
1863 if (isNegatedSubRule())
1864 Result += "not_";
1865 Result += Constraint->getValueAsString("Name");
1867 if (isAbstractRule())
1868 Result += "_abstract";
1869 return std::string(Result.str());
1872 std::string getEnumValue() const { return "attr::" + getEnumValueName(); }
1874 static const char *EnumName;
1877 const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule";
1879 struct PragmaClangAttributeSupport {
1880 std::vector<AttributeSubjectMatchRule> Rules;
1882 class RuleOrAggregateRuleSet {
1883 std::vector<AttributeSubjectMatchRule> Rules;
1884 bool IsRule;
1885 RuleOrAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules,
1886 bool IsRule)
1887 : Rules(Rules), IsRule(IsRule) {}
1889 public:
1890 bool isRule() const { return IsRule; }
1892 const AttributeSubjectMatchRule &getRule() const {
1893 assert(IsRule && "not a rule!");
1894 return Rules[0];
1897 ArrayRef<AttributeSubjectMatchRule> getAggregateRuleSet() const {
1898 return Rules;
1901 static RuleOrAggregateRuleSet
1902 getRule(const AttributeSubjectMatchRule &Rule) {
1903 return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true);
1905 static RuleOrAggregateRuleSet
1906 getAggregateRuleSet(ArrayRef<AttributeSubjectMatchRule> Rules) {
1907 return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false);
1910 llvm::DenseMap<const Record *, RuleOrAggregateRuleSet> SubjectsToRules;
1912 PragmaClangAttributeSupport(RecordKeeper &Records);
1914 bool isAttributedSupported(const Record &Attribute);
1916 void emitMatchRuleList(raw_ostream &OS);
1918 void generateStrictConformsTo(const Record &Attr, raw_ostream &OS);
1920 void generateParsingHelpers(raw_ostream &OS);
1923 } // end anonymous namespace
1925 static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) {
1926 // FIXME: #pragma clang attribute does not currently support statement
1927 // attributes, so test whether the subject is one that appertains to a
1928 // declaration node. However, it may be reasonable for support for statement
1929 // attributes to be added.
1930 if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") ||
1931 Subject.getName() == "DeclBase")
1932 return true;
1934 if (Subject.isSubClassOf("SubsetSubject"))
1935 return isSupportedPragmaClangAttributeSubject(
1936 *Subject.getValueAsDef("Base"));
1938 return false;
1941 static bool doesDeclDeriveFrom(const Record *D, const Record *Base) {
1942 const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName);
1943 if (!CurrentBase)
1944 return false;
1945 if (CurrentBase == Base)
1946 return true;
1947 return doesDeclDeriveFrom(CurrentBase, Base);
1950 PragmaClangAttributeSupport::PragmaClangAttributeSupport(
1951 RecordKeeper &Records) {
1952 std::vector<Record *> MetaSubjects =
1953 Records.getAllDerivedDefinitions("AttrSubjectMatcherRule");
1954 auto MapFromSubjectsToRules = [this](const Record *SubjectContainer,
1955 const Record *MetaSubject,
1956 const Record *Constraint) {
1957 Rules.emplace_back(MetaSubject, Constraint);
1958 std::vector<Record *> ApplicableSubjects =
1959 SubjectContainer->getValueAsListOfDefs("Subjects");
1960 for (const auto *Subject : ApplicableSubjects) {
1961 bool Inserted =
1962 SubjectsToRules
1963 .try_emplace(Subject, RuleOrAggregateRuleSet::getRule(
1964 AttributeSubjectMatchRule(MetaSubject,
1965 Constraint)))
1966 .second;
1967 if (!Inserted) {
1968 PrintFatalError("Attribute subject match rules should not represent"
1969 "same attribute subjects.");
1973 for (const auto *MetaSubject : MetaSubjects) {
1974 MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr);
1975 std::vector<Record *> Constraints =
1976 MetaSubject->getValueAsListOfDefs("Constraints");
1977 for (const auto *Constraint : Constraints)
1978 MapFromSubjectsToRules(Constraint, MetaSubject, Constraint);
1981 std::vector<Record *> Aggregates =
1982 Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule");
1983 std::vector<Record *> DeclNodes =
1984 Records.getAllDerivedDefinitions(DeclNodeClassName);
1985 for (const auto *Aggregate : Aggregates) {
1986 Record *SubjectDecl = Aggregate->getValueAsDef("Subject");
1988 // Gather sub-classes of the aggregate subject that act as attribute
1989 // subject rules.
1990 std::vector<AttributeSubjectMatchRule> Rules;
1991 for (const auto *D : DeclNodes) {
1992 if (doesDeclDeriveFrom(D, SubjectDecl)) {
1993 auto It = SubjectsToRules.find(D);
1994 if (It == SubjectsToRules.end())
1995 continue;
1996 if (!It->second.isRule() || It->second.getRule().isSubRule())
1997 continue; // Assume that the rule will be included as well.
1998 Rules.push_back(It->second.getRule());
2002 bool Inserted =
2003 SubjectsToRules
2004 .try_emplace(SubjectDecl,
2005 RuleOrAggregateRuleSet::getAggregateRuleSet(Rules))
2006 .second;
2007 if (!Inserted) {
2008 PrintFatalError("Attribute subject match rules should not represent"
2009 "same attribute subjects.");
2014 static PragmaClangAttributeSupport &
2015 getPragmaAttributeSupport(RecordKeeper &Records) {
2016 static PragmaClangAttributeSupport Instance(Records);
2017 return Instance;
2020 void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) {
2021 OS << "#ifndef ATTR_MATCH_SUB_RULE\n";
2022 OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, "
2023 "IsNegated) "
2024 << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n";
2025 OS << "#endif\n";
2026 for (const auto &Rule : Rules) {
2027 OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '(';
2028 OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", "
2029 << Rule.isAbstractRule();
2030 if (Rule.isSubRule())
2031 OS << ", "
2032 << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue()
2033 << ", " << Rule.isNegatedSubRule();
2034 OS << ")\n";
2036 OS << "#undef ATTR_MATCH_SUB_RULE\n";
2039 bool PragmaClangAttributeSupport::isAttributedSupported(
2040 const Record &Attribute) {
2041 // If the attribute explicitly specified whether to support #pragma clang
2042 // attribute, use that setting.
2043 bool Unset;
2044 bool SpecifiedResult =
2045 Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset);
2046 if (!Unset)
2047 return SpecifiedResult;
2049 // Opt-out rules:
2050 // An attribute requires delayed parsing (LateParsed is on)
2051 if (Attribute.getValueAsBit("LateParsed"))
2052 return false;
2053 // An attribute has no GNU/CXX11 spelling
2054 if (!hasGNUorCXX11Spelling(Attribute))
2055 return false;
2056 // An attribute subject list has a subject that isn't covered by one of the
2057 // subject match rules or has no subjects at all.
2058 if (Attribute.isValueUnset("Subjects"))
2059 return false;
2060 const Record *SubjectObj = Attribute.getValueAsDef("Subjects");
2061 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2062 bool HasAtLeastOneValidSubject = false;
2063 for (const auto *Subject : Subjects) {
2064 if (!isSupportedPragmaClangAttributeSubject(*Subject))
2065 continue;
2066 if (!SubjectsToRules.contains(Subject))
2067 return false;
2068 HasAtLeastOneValidSubject = true;
2070 return HasAtLeastOneValidSubject;
2073 static std::string GenerateTestExpression(ArrayRef<Record *> LangOpts) {
2074 std::string Test;
2076 for (auto *E : LangOpts) {
2077 if (!Test.empty())
2078 Test += " || ";
2080 const StringRef Code = E->getValueAsString("CustomCode");
2081 if (!Code.empty()) {
2082 Test += "(";
2083 Test += Code;
2084 Test += ")";
2085 if (!E->getValueAsString("Name").empty()) {
2086 PrintWarning(
2087 E->getLoc(),
2088 "non-empty 'Name' field ignored because 'CustomCode' was supplied");
2090 } else {
2091 Test += "LangOpts.";
2092 Test += E->getValueAsString("Name");
2096 if (Test.empty())
2097 return "true";
2099 return Test;
2102 void
2103 PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr,
2104 raw_ostream &OS) {
2105 if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects"))
2106 return;
2107 // Generate a function that constructs a set of matching rules that describe
2108 // to which declarations the attribute should apply to.
2109 OS << "void getPragmaAttributeMatchRules("
2110 << "llvm::SmallVectorImpl<std::pair<"
2111 << AttributeSubjectMatchRule::EnumName
2112 << ", bool>> &MatchRules, const LangOptions &LangOpts) const override {\n";
2113 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
2114 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
2115 for (const auto *Subject : Subjects) {
2116 if (!isSupportedPragmaClangAttributeSubject(*Subject))
2117 continue;
2118 auto It = SubjectsToRules.find(Subject);
2119 assert(It != SubjectsToRules.end() &&
2120 "This attribute is unsupported by #pragma clang attribute");
2121 for (const auto &Rule : It->getSecond().getAggregateRuleSet()) {
2122 // The rule might be language specific, so only subtract it from the given
2123 // rules if the specific language options are specified.
2124 std::vector<Record *> LangOpts = Rule.getLangOpts();
2125 OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue()
2126 << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts)
2127 << "));\n";
2130 OS << "}\n\n";
2133 void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) {
2134 // Generate routines that check the names of sub-rules.
2135 OS << "std::optional<attr::SubjectMatchRule> "
2136 "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n";
2137 OS << " return std::nullopt;\n";
2138 OS << "}\n\n";
2140 llvm::MapVector<const Record *, std::vector<AttributeSubjectMatchRule>>
2141 SubMatchRules;
2142 for (const auto &Rule : Rules) {
2143 if (!Rule.isSubRule())
2144 continue;
2145 SubMatchRules[Rule.MetaSubject].push_back(Rule);
2148 for (const auto &SubMatchRule : SubMatchRules) {
2149 OS << "std::optional<attr::SubjectMatchRule> "
2150 "isAttributeSubjectMatchSubRuleFor_"
2151 << SubMatchRule.first->getValueAsString("Name")
2152 << "(StringRef Name, bool IsUnless) {\n";
2153 OS << " if (IsUnless)\n";
2154 OS << " return "
2155 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2156 for (const auto &Rule : SubMatchRule.second) {
2157 if (Rule.isNegatedSubRule())
2158 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2159 << ").\n";
2161 OS << " Default(std::nullopt);\n";
2162 OS << " return "
2163 "llvm::StringSwitch<std::optional<attr::SubjectMatchRule>>(Name).\n";
2164 for (const auto &Rule : SubMatchRule.second) {
2165 if (!Rule.isNegatedSubRule())
2166 OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue()
2167 << ").\n";
2169 OS << " Default(std::nullopt);\n";
2170 OS << "}\n\n";
2173 // Generate the function that checks for the top-level rules.
2174 OS << "std::pair<std::optional<attr::SubjectMatchRule>, "
2175 "std::optional<attr::SubjectMatchRule> (*)(StringRef, "
2176 "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n";
2177 OS << " return "
2178 "llvm::StringSwitch<std::pair<std::optional<attr::SubjectMatchRule>, "
2179 "std::optional<attr::SubjectMatchRule> (*) (StringRef, "
2180 "bool)>>(Name).\n";
2181 for (const auto &Rule : Rules) {
2182 if (Rule.isSubRule())
2183 continue;
2184 std::string SubRuleFunction;
2185 if (SubMatchRules.count(Rule.MetaSubject))
2186 SubRuleFunction =
2187 ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str();
2188 else
2189 SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor";
2190 OS << " Case(\"" << Rule.getName() << "\", std::make_pair("
2191 << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n";
2193 OS << " Default(std::make_pair(std::nullopt, "
2194 "defaultIsAttributeSubjectMatchSubRuleFor));\n";
2195 OS << "}\n\n";
2197 // Generate the function that checks for the submatch rules.
2198 OS << "const char *validAttributeSubjectMatchSubRules("
2199 << AttributeSubjectMatchRule::EnumName << " Rule) {\n";
2200 OS << " switch (Rule) {\n";
2201 for (const auto &SubMatchRule : SubMatchRules) {
2202 OS << " case "
2203 << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue()
2204 << ":\n";
2205 OS << " return \"'";
2206 bool IsFirst = true;
2207 for (const auto &Rule : SubMatchRule.second) {
2208 if (!IsFirst)
2209 OS << ", '";
2210 IsFirst = false;
2211 if (Rule.isNegatedSubRule())
2212 OS << "unless(";
2213 OS << Rule.getName();
2214 if (Rule.isNegatedSubRule())
2215 OS << ')';
2216 OS << "'";
2218 OS << "\";\n";
2220 OS << " default: return nullptr;\n";
2221 OS << " }\n";
2222 OS << "}\n\n";
2225 template <typename Fn>
2226 static void forEachUniqueSpelling(const Record &Attr, Fn &&F) {
2227 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
2228 SmallDenseSet<StringRef, 8> Seen;
2229 for (const FlattenedSpelling &S : Spellings) {
2230 if (Seen.insert(S.name()).second)
2231 F(S);
2235 static bool isTypeArgument(const Record *Arg) {
2236 return !Arg->getSuperClasses().empty() &&
2237 Arg->getSuperClasses().back().first->getName() == "TypeArgument";
2240 /// Emits the first-argument-is-type property for attributes.
2241 static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) {
2242 OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n";
2243 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2245 for (const auto *Attr : Attrs) {
2246 // Determine whether the first argument is a type.
2247 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2248 if (Args.empty())
2249 continue;
2251 if (!isTypeArgument(Args[0]))
2252 continue;
2254 // All these spellings take a single type argument.
2255 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2256 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2259 OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n";
2262 /// Emits the parse-arguments-in-unevaluated-context property for
2263 /// attributes.
2264 static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) {
2265 OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n";
2266 ParsedAttrMap Attrs = getParsedAttrList(Records);
2267 for (const auto &I : Attrs) {
2268 const Record &Attr = *I.second;
2270 if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated"))
2271 continue;
2273 // All these spellings take are parsed unevaluated.
2274 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2275 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2278 OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n";
2281 static bool isIdentifierArgument(const Record *Arg) {
2282 return !Arg->getSuperClasses().empty() &&
2283 llvm::StringSwitch<bool>(Arg->getSuperClasses().back().first->getName())
2284 .Case("IdentifierArgument", true)
2285 .Case("EnumArgument", true)
2286 .Case("VariadicEnumArgument", true)
2287 .Default(false);
2290 static bool isVariadicIdentifierArgument(const Record *Arg) {
2291 return !Arg->getSuperClasses().empty() &&
2292 llvm::StringSwitch<bool>(
2293 Arg->getSuperClasses().back().first->getName())
2294 .Case("VariadicIdentifierArgument", true)
2295 .Case("VariadicParamOrParamIdxArgument", true)
2296 .Default(false);
2299 static bool isVariadicExprArgument(const Record *Arg) {
2300 return !Arg->getSuperClasses().empty() &&
2301 llvm::StringSwitch<bool>(
2302 Arg->getSuperClasses().back().first->getName())
2303 .Case("VariadicExprArgument", true)
2304 .Default(false);
2307 static bool isStringLiteralArgument(const Record *Arg) {
2308 return !Arg->getSuperClasses().empty() &&
2309 llvm::StringSwitch<bool>(
2310 Arg->getSuperClasses().back().first->getName())
2311 .Case("StringArgument", true)
2312 .Default(false);
2315 static bool isVariadicStringLiteralArgument(const Record *Arg) {
2316 return !Arg->getSuperClasses().empty() &&
2317 llvm::StringSwitch<bool>(
2318 Arg->getSuperClasses().back().first->getName())
2319 .Case("VariadicStringArgument", true)
2320 .Default(false);
2323 static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records,
2324 raw_ostream &OS) {
2325 OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n";
2326 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2327 for (const auto *A : Attrs) {
2328 // Determine whether the first argument is a variadic identifier.
2329 std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2330 if (Args.empty() || !isVariadicIdentifierArgument(Args[0]))
2331 continue;
2333 // All these spellings take an identifier argument.
2334 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2335 OS << ".Case(\"" << S.name() << "\", "
2336 << "true"
2337 << ")\n";
2340 OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n";
2343 // Emits the list of arguments that should be parsed as unevaluated string
2344 // literals for each attribute.
2345 static void emitClangAttrUnevaluatedStringLiteralList(RecordKeeper &Records,
2346 raw_ostream &OS) {
2347 OS << "#if defined(CLANG_ATTR_STRING_LITERAL_ARG_LIST)\n";
2348 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2349 for (const auto *Attr : Attrs) {
2350 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2351 uint32_t Bits = 0;
2352 assert(Args.size() <= 32 && "unsupported number of arguments in attribute");
2353 for (uint32_t N = 0; N < Args.size(); ++N) {
2354 Bits |= (isStringLiteralArgument(Args[N]) << N);
2355 // If we have a variadic string argument, set all the remaining bits to 1
2356 if (isVariadicStringLiteralArgument(Args[N])) {
2357 Bits |= maskTrailingZeros<decltype(Bits)>(N);
2358 break;
2361 if (!Bits)
2362 continue;
2363 // All these spellings have at least one string literal has argument.
2364 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2365 OS << ".Case(\"" << S.name() << "\", " << Bits << ")\n";
2368 OS << "#endif // CLANG_ATTR_STRING_LITERAL_ARG_LIST\n\n";
2371 // Emits the first-argument-is-identifier property for attributes.
2372 static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) {
2373 OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n";
2374 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2376 for (const auto *Attr : Attrs) {
2377 // Determine whether the first argument is an identifier.
2378 std::vector<Record *> Args = Attr->getValueAsListOfDefs("Args");
2379 if (Args.empty() || !isIdentifierArgument(Args[0]))
2380 continue;
2382 // All these spellings take an identifier argument.
2383 forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) {
2384 OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n";
2387 OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n";
2390 static bool keywordThisIsaIdentifierInArgument(const Record *Arg) {
2391 return !Arg->getSuperClasses().empty() &&
2392 llvm::StringSwitch<bool>(
2393 Arg->getSuperClasses().back().first->getName())
2394 .Case("VariadicParamOrParamIdxArgument", true)
2395 .Default(false);
2398 static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records,
2399 raw_ostream &OS) {
2400 OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n";
2401 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2402 for (const auto *A : Attrs) {
2403 // Determine whether the first argument is a variadic identifier.
2404 std::vector<Record *> Args = A->getValueAsListOfDefs("Args");
2405 if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0]))
2406 continue;
2408 // All these spellings take an identifier argument.
2409 forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) {
2410 OS << ".Case(\"" << S.name() << "\", "
2411 << "true"
2412 << ")\n";
2415 OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n";
2418 static void emitClangAttrAcceptsExprPack(RecordKeeper &Records,
2419 raw_ostream &OS) {
2420 OS << "#if defined(CLANG_ATTR_ACCEPTS_EXPR_PACK)\n";
2421 ParsedAttrMap Attrs = getParsedAttrList(Records);
2422 for (const auto &I : Attrs) {
2423 const Record &Attr = *I.second;
2425 if (!Attr.getValueAsBit("AcceptsExprPack"))
2426 continue;
2428 forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) {
2429 OS << ".Case(\"" << S.name() << "\", true)\n";
2432 OS << "#endif // CLANG_ATTR_ACCEPTS_EXPR_PACK\n\n";
2435 static bool isRegularKeywordAttribute(const FlattenedSpelling &S) {
2436 return (S.variety() == "Keyword" &&
2437 !S.getSpellingRecord().getValueAsBit("HasOwnParseRules"));
2440 static void emitFormInitializer(raw_ostream &OS,
2441 const FlattenedSpelling &Spelling,
2442 StringRef SpellingIndex) {
2443 bool IsAlignas =
2444 (Spelling.variety() == "Keyword" && Spelling.name() == "alignas");
2445 OS << "{AttributeCommonInfo::AS_" << Spelling.variety() << ", "
2446 << SpellingIndex << ", " << (IsAlignas ? "true" : "false")
2447 << " /*IsAlignas*/, "
2448 << (isRegularKeywordAttribute(Spelling) ? "true" : "false")
2449 << " /*IsRegularKeywordAttribute*/}";
2452 static void emitAttributes(RecordKeeper &Records, raw_ostream &OS,
2453 bool Header) {
2454 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
2455 ParsedAttrMap AttrMap = getParsedAttrList(Records);
2457 // Helper to print the starting character of an attribute argument. If there
2458 // hasn't been an argument yet, it prints an opening parenthese; otherwise it
2459 // prints a comma.
2460 OS << "static inline void DelimitAttributeArgument("
2461 << "raw_ostream& OS, bool& IsFirst) {\n"
2462 << " if (IsFirst) {\n"
2463 << " IsFirst = false;\n"
2464 << " OS << \"(\";\n"
2465 << " } else\n"
2466 << " OS << \", \";\n"
2467 << "}\n";
2469 for (const auto *Attr : Attrs) {
2470 const Record &R = *Attr;
2472 // FIXME: Currently, documentation is generated as-needed due to the fact
2473 // that there is no way to allow a generated project "reach into" the docs
2474 // directory (for instance, it may be an out-of-tree build). However, we want
2475 // to ensure that every attribute has a Documentation field, and produce an
2476 // error if it has been neglected. Otherwise, the on-demand generation which
2477 // happens server-side will fail. This code is ensuring that functionality,
2478 // even though this Emitter doesn't technically need the documentation.
2479 // When attribute documentation can be generated as part of the build
2480 // itself, this code can be removed.
2481 (void)R.getValueAsListOfDefs("Documentation");
2483 if (!R.getValueAsBit("ASTNode"))
2484 continue;
2486 ArrayRef<std::pair<Record *, SMRange>> Supers = R.getSuperClasses();
2487 assert(!Supers.empty() && "Forgot to specify a superclass for the attr");
2488 std::string SuperName;
2489 bool Inheritable = false;
2490 for (const auto &Super : llvm::reverse(Supers)) {
2491 const Record *R = Super.first;
2492 if (R->getName() != "TargetSpecificAttr" &&
2493 R->getName() != "DeclOrTypeAttr" && SuperName.empty())
2494 SuperName = std::string(R->getName());
2495 if (R->getName() == "InheritableAttr")
2496 Inheritable = true;
2499 if (Header)
2500 OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n";
2501 else
2502 OS << "\n// " << R.getName() << "Attr implementation\n\n";
2504 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
2505 std::vector<std::unique_ptr<Argument>> Args;
2506 Args.reserve(ArgRecords.size());
2508 bool AttrAcceptsExprPack = Attr->getValueAsBit("AcceptsExprPack");
2509 if (AttrAcceptsExprPack) {
2510 for (size_t I = 0; I < ArgRecords.size(); ++I) {
2511 const Record *ArgR = ArgRecords[I];
2512 if (isIdentifierArgument(ArgR) || isVariadicIdentifierArgument(ArgR) ||
2513 isTypeArgument(ArgR))
2514 PrintFatalError(Attr->getLoc(),
2515 "Attributes accepting packs cannot also "
2516 "have identifier or type arguments.");
2517 // When trying to determine if value-dependent expressions can populate
2518 // the attribute without prior instantiation, the decision is made based
2519 // on the assumption that only the last argument is ever variadic.
2520 if (I < (ArgRecords.size() - 1) && isVariadicExprArgument(ArgR))
2521 PrintFatalError(Attr->getLoc(),
2522 "Attributes accepting packs can only have the last "
2523 "argument be variadic.");
2527 bool HasOptArg = false;
2528 bool HasFakeArg = false;
2529 for (const auto *ArgRecord : ArgRecords) {
2530 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
2531 if (Header) {
2532 Args.back()->writeDeclarations(OS);
2533 OS << "\n\n";
2536 // For these purposes, fake takes priority over optional.
2537 if (Args.back()->isFake()) {
2538 HasFakeArg = true;
2539 } else if (Args.back()->isOptional()) {
2540 HasOptArg = true;
2544 std::unique_ptr<VariadicExprArgument> DelayedArgs = nullptr;
2545 if (AttrAcceptsExprPack) {
2546 DelayedArgs =
2547 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
2548 if (Header) {
2549 DelayedArgs->writeDeclarations(OS);
2550 OS << "\n\n";
2554 if (Header)
2555 OS << "public:\n";
2557 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
2559 // If there are zero or one spellings, all spelling-related functionality
2560 // can be elided. If all of the spellings share the same name, the spelling
2561 // functionality can also be elided.
2562 bool ElideSpelling = (Spellings.size() <= 1) ||
2563 SpellingNamesAreCommon(Spellings);
2565 // This maps spelling index values to semantic Spelling enumerants.
2566 SemanticSpellingMap SemanticToSyntacticMap;
2568 std::string SpellingEnum;
2569 if (Spellings.size() > 1)
2570 SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
2571 if (Header)
2572 OS << SpellingEnum;
2574 const auto &ParsedAttrSpellingItr = llvm::find_if(
2575 AttrMap, [R](const std::pair<std::string, const Record *> &P) {
2576 return &R == P.second;
2579 // Emit CreateImplicit factory methods.
2580 auto emitCreate = [&](bool Implicit, bool DelayedArgsOnly, bool emitFake) {
2581 if (Header)
2582 OS << " static ";
2583 OS << R.getName() << "Attr *";
2584 if (!Header)
2585 OS << R.getName() << "Attr::";
2586 OS << "Create";
2587 if (Implicit)
2588 OS << "Implicit";
2589 if (DelayedArgsOnly)
2590 OS << "WithDelayedArgs";
2591 OS << "(";
2592 OS << "ASTContext &Ctx";
2593 if (!DelayedArgsOnly) {
2594 for (auto const &ai : Args) {
2595 if (ai->isFake() && !emitFake)
2596 continue;
2597 OS << ", ";
2598 ai->writeCtorParameters(OS);
2600 } else {
2601 OS << ", ";
2602 DelayedArgs->writeCtorParameters(OS);
2604 OS << ", const AttributeCommonInfo &CommonInfo";
2605 OS << ")";
2606 if (Header) {
2607 OS << ";\n";
2608 return;
2611 OS << " {\n";
2612 OS << " auto *A = new (Ctx) " << R.getName();
2613 OS << "Attr(Ctx, CommonInfo";
2615 if (!DelayedArgsOnly) {
2616 for (auto const &ai : Args) {
2617 if (ai->isFake() && !emitFake)
2618 continue;
2619 OS << ", ";
2620 ai->writeImplicitCtorArgs(OS);
2623 OS << ");\n";
2624 if (Implicit) {
2625 OS << " A->setImplicit(true);\n";
2627 if (Implicit || ElideSpelling) {
2628 OS << " if (!A->isAttributeSpellingListCalculated() && "
2629 "!A->getAttrName())\n";
2630 OS << " A->setAttributeSpellingListIndex(0);\n";
2632 if (DelayedArgsOnly) {
2633 OS << " A->setDelayedArgs(Ctx, ";
2634 DelayedArgs->writeImplicitCtorArgs(OS);
2635 OS << ");\n";
2637 OS << " return A;\n}\n\n";
2640 auto emitCreateNoCI = [&](bool Implicit, bool DelayedArgsOnly,
2641 bool emitFake) {
2642 if (Header)
2643 OS << " static ";
2644 OS << R.getName() << "Attr *";
2645 if (!Header)
2646 OS << R.getName() << "Attr::";
2647 OS << "Create";
2648 if (Implicit)
2649 OS << "Implicit";
2650 if (DelayedArgsOnly)
2651 OS << "WithDelayedArgs";
2652 OS << "(";
2653 OS << "ASTContext &Ctx";
2654 if (!DelayedArgsOnly) {
2655 for (auto const &ai : Args) {
2656 if (ai->isFake() && !emitFake)
2657 continue;
2658 OS << ", ";
2659 ai->writeCtorParameters(OS);
2661 } else {
2662 OS << ", ";
2663 DelayedArgs->writeCtorParameters(OS);
2665 OS << ", SourceRange Range";
2666 if (Header)
2667 OS << " = {}";
2668 if (Spellings.size() > 1) {
2669 OS << ", Spelling S";
2670 if (Header)
2671 OS << " = " << SemanticToSyntacticMap[0];
2673 OS << ")";
2674 if (Header) {
2675 OS << ";\n";
2676 return;
2679 OS << " {\n";
2680 OS << " AttributeCommonInfo I(Range, ";
2682 if (ParsedAttrSpellingItr != std::end(AttrMap))
2683 OS << "AT_" << ParsedAttrSpellingItr->first;
2684 else
2685 OS << "NoSemaHandlerAttribute";
2687 if (Spellings.size() == 0) {
2688 OS << ", AttributeCommonInfo::Form::Implicit()";
2689 } else if (Spellings.size() == 1) {
2690 OS << ", ";
2691 emitFormInitializer(OS, Spellings[0], "0");
2692 } else {
2693 OS << ", [&]() {\n";
2694 OS << " switch (S) {\n";
2695 std::set<std::string> Uniques;
2696 unsigned Idx = 0;
2697 for (auto I = Spellings.begin(), E = Spellings.end(); I != E;
2698 ++I, ++Idx) {
2699 const FlattenedSpelling &S = *I;
2700 const auto &Name = SemanticToSyntacticMap[Idx];
2701 if (Uniques.insert(Name).second) {
2702 OS << " case " << Name << ":\n";
2703 OS << " return AttributeCommonInfo::Form";
2704 emitFormInitializer(OS, S, Name);
2705 OS << ";\n";
2708 OS << " default:\n";
2709 OS << " llvm_unreachable(\"Unknown attribute spelling!\");\n"
2710 << " return AttributeCommonInfo::Form";
2711 emitFormInitializer(OS, Spellings[0], "0");
2712 OS << ";\n"
2713 << " }\n"
2714 << " }()";
2717 OS << ");\n";
2718 OS << " return Create";
2719 if (Implicit)
2720 OS << "Implicit";
2721 if (DelayedArgsOnly)
2722 OS << "WithDelayedArgs";
2723 OS << "(Ctx";
2724 if (!DelayedArgsOnly) {
2725 for (auto const &ai : Args) {
2726 if (ai->isFake() && !emitFake)
2727 continue;
2728 OS << ", ";
2729 ai->writeImplicitCtorArgs(OS);
2731 } else {
2732 OS << ", ";
2733 DelayedArgs->writeImplicitCtorArgs(OS);
2735 OS << ", I);\n";
2736 OS << "}\n\n";
2739 auto emitCreates = [&](bool DelayedArgsOnly, bool emitFake) {
2740 emitCreate(true, DelayedArgsOnly, emitFake);
2741 emitCreate(false, DelayedArgsOnly, emitFake);
2742 emitCreateNoCI(true, DelayedArgsOnly, emitFake);
2743 emitCreateNoCI(false, DelayedArgsOnly, emitFake);
2746 if (Header)
2747 OS << " // Factory methods\n";
2749 // Emit a CreateImplicit that takes all the arguments.
2750 emitCreates(false, true);
2752 // Emit a CreateImplicit that takes all the non-fake arguments.
2753 if (HasFakeArg)
2754 emitCreates(false, false);
2756 // Emit a CreateWithDelayedArgs that takes only the dependent argument
2757 // expressions.
2758 if (DelayedArgs)
2759 emitCreates(true, false);
2761 // Emit constructors.
2762 auto emitCtor = [&](bool emitOpt, bool emitFake, bool emitNoArgs) {
2763 auto shouldEmitArg = [=](const std::unique_ptr<Argument> &arg) {
2764 if (emitNoArgs)
2765 return false;
2766 if (arg->isFake())
2767 return emitFake;
2768 if (arg->isOptional())
2769 return emitOpt;
2770 return true;
2772 if (Header)
2773 OS << " ";
2774 else
2775 OS << R.getName() << "Attr::";
2776 OS << R.getName()
2777 << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo";
2778 OS << '\n';
2779 for (auto const &ai : Args) {
2780 if (!shouldEmitArg(ai))
2781 continue;
2782 OS << " , ";
2783 ai->writeCtorParameters(OS);
2784 OS << "\n";
2787 OS << " )";
2788 if (Header) {
2789 OS << ";\n";
2790 return;
2792 OS << "\n : " << SuperName << "(Ctx, CommonInfo, ";
2793 OS << "attr::" << R.getName() << ", "
2794 << (R.getValueAsBit("LateParsed") ? "true" : "false");
2795 if (Inheritable) {
2796 OS << ", "
2797 << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true"
2798 : "false");
2800 OS << ")\n";
2802 for (auto const &ai : Args) {
2803 OS << " , ";
2804 if (!shouldEmitArg(ai)) {
2805 ai->writeCtorDefaultInitializers(OS);
2806 } else {
2807 ai->writeCtorInitializers(OS);
2809 OS << "\n";
2811 if (DelayedArgs) {
2812 OS << " , ";
2813 DelayedArgs->writeCtorDefaultInitializers(OS);
2814 OS << "\n";
2817 OS << " {\n";
2819 for (auto const &ai : Args) {
2820 if (!shouldEmitArg(ai))
2821 continue;
2822 ai->writeCtorBody(OS);
2824 OS << "}\n\n";
2827 if (Header)
2828 OS << "\n // Constructors\n";
2830 // Emit a constructor that includes all the arguments.
2831 // This is necessary for cloning.
2832 emitCtor(true, true, false);
2834 // Emit a constructor that takes all the non-fake arguments.
2835 if (HasFakeArg)
2836 emitCtor(true, false, false);
2838 // Emit a constructor that takes all the non-fake, non-optional arguments.
2839 if (HasOptArg)
2840 emitCtor(false, false, false);
2842 // Emit constructors that takes no arguments if none already exists.
2843 // This is used for delaying arguments.
2844 bool HasRequiredArgs =
2845 llvm::count_if(Args, [=](const std::unique_ptr<Argument> &arg) {
2846 return !arg->isFake() && !arg->isOptional();
2848 if (DelayedArgs && HasRequiredArgs)
2849 emitCtor(false, false, true);
2851 if (Header) {
2852 OS << '\n';
2853 OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n";
2854 OS << " void printPretty(raw_ostream &OS,\n"
2855 << " const PrintingPolicy &Policy) const;\n";
2856 OS << " const char *getSpelling() const;\n";
2859 if (!ElideSpelling) {
2860 assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list");
2861 if (Header)
2862 OS << " Spelling getSemanticSpelling() const;\n";
2863 else {
2864 OS << R.getName() << "Attr::Spelling " << R.getName()
2865 << "Attr::getSemanticSpelling() const {\n";
2866 WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()",
2867 SemanticToSyntacticMap, OS);
2868 OS << "}\n";
2872 if (Header)
2873 writeAttrAccessorDefinition(R, OS);
2875 for (auto const &ai : Args) {
2876 if (Header) {
2877 ai->writeAccessors(OS);
2878 } else {
2879 ai->writeAccessorDefinitions(OS);
2881 OS << "\n\n";
2883 // Don't write conversion routines for fake arguments.
2884 if (ai->isFake()) continue;
2886 if (ai->isEnumArg())
2887 static_cast<const EnumArgument *>(ai.get())->writeConversion(OS,
2888 Header);
2889 else if (ai->isVariadicEnumArg())
2890 static_cast<const VariadicEnumArgument *>(ai.get())->writeConversion(
2891 OS, Header);
2894 if (Header) {
2895 if (DelayedArgs) {
2896 DelayedArgs->writeAccessors(OS);
2897 DelayedArgs->writeSetter(OS);
2900 OS << R.getValueAsString("AdditionalMembers");
2901 OS << "\n\n";
2903 OS << " static bool classof(const Attr *A) { return A->getKind() == "
2904 << "attr::" << R.getName() << "; }\n";
2906 OS << "};\n\n";
2907 } else {
2908 if (DelayedArgs)
2909 DelayedArgs->writeAccessorDefinitions(OS);
2911 OS << R.getName() << "Attr *" << R.getName()
2912 << "Attr::clone(ASTContext &C) const {\n";
2913 OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this";
2914 for (auto const &ai : Args) {
2915 OS << ", ";
2916 ai->writeCloneArgs(OS);
2918 OS << ");\n";
2919 OS << " A->Inherited = Inherited;\n";
2920 OS << " A->IsPackExpansion = IsPackExpansion;\n";
2921 OS << " A->setImplicit(Implicit);\n";
2922 if (DelayedArgs) {
2923 OS << " A->setDelayedArgs(C, ";
2924 DelayedArgs->writeCloneArgs(OS);
2925 OS << ");\n";
2927 OS << " return A;\n}\n\n";
2929 writePrettyPrintFunction(R, Args, OS);
2930 writeGetSpellingFunction(R, OS);
2934 // Emits the class definitions for attributes.
2935 void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) {
2936 emitSourceFileHeader("Attribute classes' definitions", OS, Records);
2938 OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n";
2939 OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n";
2941 emitAttributes(Records, OS, true);
2943 OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n";
2946 // Emits the class method definitions for attributes.
2947 void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
2948 emitSourceFileHeader("Attribute classes' member function definitions", OS,
2949 Records);
2951 emitAttributes(Records, OS, false);
2953 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
2955 // Instead of relying on virtual dispatch we just create a huge dispatch
2956 // switch. This is both smaller and faster than virtual functions.
2957 auto EmitFunc = [&](const char *Method) {
2958 OS << " switch (getKind()) {\n";
2959 for (const auto *Attr : Attrs) {
2960 const Record &R = *Attr;
2961 if (!R.getValueAsBit("ASTNode"))
2962 continue;
2964 OS << " case attr::" << R.getName() << ":\n";
2965 OS << " return cast<" << R.getName() << "Attr>(this)->" << Method
2966 << ";\n";
2968 OS << " }\n";
2969 OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n";
2970 OS << "}\n\n";
2973 OS << "const char *Attr::getSpelling() const {\n";
2974 EmitFunc("getSpelling()");
2976 OS << "Attr *Attr::clone(ASTContext &C) const {\n";
2977 EmitFunc("clone(C)");
2979 OS << "void Attr::printPretty(raw_ostream &OS, "
2980 "const PrintingPolicy &Policy) const {\n";
2981 EmitFunc("printPretty(OS, Policy)");
2984 static void emitAttrList(raw_ostream &OS, StringRef Class,
2985 const std::vector<Record*> &AttrList) {
2986 for (auto Cur : AttrList) {
2987 OS << Class << "(" << Cur->getName() << ")\n";
2991 // Determines if an attribute has a Pragma spelling.
2992 static bool AttrHasPragmaSpelling(const Record *R) {
2993 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
2994 return llvm::any_of(Spellings, [](const FlattenedSpelling &S) {
2995 return S.variety() == "Pragma";
2999 namespace {
3001 struct AttrClassDescriptor {
3002 const char * const MacroName;
3003 const char * const TableGenName;
3006 } // end anonymous namespace
3008 static const AttrClassDescriptor AttrClassDescriptors[] = {
3009 { "ATTR", "Attr" },
3010 { "TYPE_ATTR", "TypeAttr" },
3011 { "STMT_ATTR", "StmtAttr" },
3012 { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" },
3013 { "INHERITABLE_ATTR", "InheritableAttr" },
3014 { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" },
3015 { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" },
3016 { "PARAMETER_ABI_ATTR", "ParameterABIAttr" },
3017 { "HLSL_ANNOTATION_ATTR", "HLSLAnnotationAttr"}
3020 static void emitDefaultDefine(raw_ostream &OS, StringRef name,
3021 const char *superName) {
3022 OS << "#ifndef " << name << "\n";
3023 OS << "#define " << name << "(NAME) ";
3024 if (superName) OS << superName << "(NAME)";
3025 OS << "\n#endif\n\n";
3028 namespace {
3030 /// A class of attributes.
3031 struct AttrClass {
3032 const AttrClassDescriptor &Descriptor;
3033 Record *TheRecord;
3034 AttrClass *SuperClass = nullptr;
3035 std::vector<AttrClass*> SubClasses;
3036 std::vector<Record*> Attrs;
3038 AttrClass(const AttrClassDescriptor &Descriptor, Record *R)
3039 : Descriptor(Descriptor), TheRecord(R) {}
3041 void emitDefaultDefines(raw_ostream &OS) const {
3042 // Default the macro unless this is a root class (i.e. Attr).
3043 if (SuperClass) {
3044 emitDefaultDefine(OS, Descriptor.MacroName,
3045 SuperClass->Descriptor.MacroName);
3049 void emitUndefs(raw_ostream &OS) const {
3050 OS << "#undef " << Descriptor.MacroName << "\n";
3053 void emitAttrList(raw_ostream &OS) const {
3054 for (auto SubClass : SubClasses) {
3055 SubClass->emitAttrList(OS);
3058 ::emitAttrList(OS, Descriptor.MacroName, Attrs);
3061 void classifyAttrOnRoot(Record *Attr) {
3062 bool result = classifyAttr(Attr);
3063 assert(result && "failed to classify on root"); (void) result;
3066 void emitAttrRange(raw_ostream &OS) const {
3067 OS << "ATTR_RANGE(" << Descriptor.TableGenName
3068 << ", " << getFirstAttr()->getName()
3069 << ", " << getLastAttr()->getName() << ")\n";
3072 private:
3073 bool classifyAttr(Record *Attr) {
3074 // Check all the subclasses.
3075 for (auto SubClass : SubClasses) {
3076 if (SubClass->classifyAttr(Attr))
3077 return true;
3080 // It's not more specific than this class, but it might still belong here.
3081 if (Attr->isSubClassOf(TheRecord)) {
3082 Attrs.push_back(Attr);
3083 return true;
3086 return false;
3089 Record *getFirstAttr() const {
3090 if (!SubClasses.empty())
3091 return SubClasses.front()->getFirstAttr();
3092 return Attrs.front();
3095 Record *getLastAttr() const {
3096 if (!Attrs.empty())
3097 return Attrs.back();
3098 return SubClasses.back()->getLastAttr();
3102 /// The entire hierarchy of attribute classes.
3103 class AttrClassHierarchy {
3104 std::vector<std::unique_ptr<AttrClass>> Classes;
3106 public:
3107 AttrClassHierarchy(RecordKeeper &Records) {
3108 // Find records for all the classes.
3109 for (auto &Descriptor : AttrClassDescriptors) {
3110 Record *ClassRecord = Records.getClass(Descriptor.TableGenName);
3111 AttrClass *Class = new AttrClass(Descriptor, ClassRecord);
3112 Classes.emplace_back(Class);
3115 // Link up the hierarchy.
3116 for (auto &Class : Classes) {
3117 if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) {
3118 Class->SuperClass = SuperClass;
3119 SuperClass->SubClasses.push_back(Class.get());
3123 #ifndef NDEBUG
3124 for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) {
3125 assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) &&
3126 "only the first class should be a root class!");
3128 #endif
3131 void emitDefaultDefines(raw_ostream &OS) const {
3132 for (auto &Class : Classes) {
3133 Class->emitDefaultDefines(OS);
3137 void emitUndefs(raw_ostream &OS) const {
3138 for (auto &Class : Classes) {
3139 Class->emitUndefs(OS);
3143 void emitAttrLists(raw_ostream &OS) const {
3144 // Just start from the root class.
3145 Classes[0]->emitAttrList(OS);
3148 void emitAttrRanges(raw_ostream &OS) const {
3149 for (auto &Class : Classes)
3150 Class->emitAttrRange(OS);
3153 void classifyAttr(Record *Attr) {
3154 // Add the attribute to the root class.
3155 Classes[0]->classifyAttrOnRoot(Attr);
3158 private:
3159 AttrClass *findClassByRecord(Record *R) const {
3160 for (auto &Class : Classes) {
3161 if (Class->TheRecord == R)
3162 return Class.get();
3164 return nullptr;
3167 AttrClass *findSuperClass(Record *R) const {
3168 // TableGen flattens the superclass list, so we just need to walk it
3169 // in reverse.
3170 auto SuperClasses = R->getSuperClasses();
3171 for (signed i = 0, e = SuperClasses.size(); i != e; ++i) {
3172 auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first);
3173 if (SuperClass) return SuperClass;
3175 return nullptr;
3179 } // end anonymous namespace
3181 namespace clang {
3183 // Emits the enumeration list for attributes.
3184 void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) {
3185 emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
3186 Records);
3188 AttrClassHierarchy Hierarchy(Records);
3190 // Add defaulting macro definitions.
3191 Hierarchy.emitDefaultDefines(OS);
3192 emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr);
3194 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3195 std::vector<Record *> PragmaAttrs;
3196 for (auto *Attr : Attrs) {
3197 if (!Attr->getValueAsBit("ASTNode"))
3198 continue;
3200 // Add the attribute to the ad-hoc groups.
3201 if (AttrHasPragmaSpelling(Attr))
3202 PragmaAttrs.push_back(Attr);
3204 // Place it in the hierarchy.
3205 Hierarchy.classifyAttr(Attr);
3208 // Emit the main attribute list.
3209 Hierarchy.emitAttrLists(OS);
3211 // Emit the ad hoc groups.
3212 emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs);
3214 // Emit the attribute ranges.
3215 OS << "#ifdef ATTR_RANGE\n";
3216 Hierarchy.emitAttrRanges(OS);
3217 OS << "#undef ATTR_RANGE\n";
3218 OS << "#endif\n";
3220 Hierarchy.emitUndefs(OS);
3221 OS << "#undef PRAGMA_SPELLING_ATTR\n";
3224 // Emits the enumeration list for attributes.
3225 void EmitClangAttrPrintList(const std::string &FieldName, RecordKeeper &Records,
3226 raw_ostream &OS) {
3227 emitSourceFileHeader(
3228 "List of attributes that can be print on the left side of a decl", OS,
3229 Records);
3231 AttrClassHierarchy Hierarchy(Records);
3233 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3234 std::vector<Record *> PragmaAttrs;
3235 bool first = false;
3237 for (auto *Attr : Attrs) {
3238 if (!Attr->getValueAsBit("ASTNode"))
3239 continue;
3241 if (!Attr->getValueAsBit(FieldName))
3242 continue;
3244 if (!first) {
3245 first = true;
3246 OS << "#define CLANG_ATTR_LIST_" << FieldName;
3249 OS << " \\\n case attr::" << Attr->getName() << ":";
3252 OS << '\n';
3255 // Emits the enumeration list for attributes.
3256 void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) {
3257 emitSourceFileHeader(
3258 "List of all attribute subject matching rules that Clang recognizes", OS,
3259 Records);
3260 PragmaClangAttributeSupport &PragmaAttributeSupport =
3261 getPragmaAttributeSupport(Records);
3262 emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr);
3263 PragmaAttributeSupport.emitMatchRuleList(OS);
3264 OS << "#undef ATTR_MATCH_RULE\n";
3267 // Emits the code to read an attribute from a precompiled header.
3268 void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) {
3269 emitSourceFileHeader("Attribute deserialization code", OS, Records);
3271 Record *InhClass = Records.getClass("InheritableAttr");
3272 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"),
3273 ArgRecords;
3274 std::vector<std::unique_ptr<Argument>> Args;
3275 std::unique_ptr<VariadicExprArgument> DelayedArgs;
3277 OS << " switch (Kind) {\n";
3278 for (const auto *Attr : Attrs) {
3279 const Record &R = *Attr;
3280 if (!R.getValueAsBit("ASTNode"))
3281 continue;
3283 OS << " case attr::" << R.getName() << ": {\n";
3284 if (R.isSubClassOf(InhClass))
3285 OS << " bool isInherited = Record.readInt();\n";
3286 OS << " bool isImplicit = Record.readInt();\n";
3287 OS << " bool isPackExpansion = Record.readInt();\n";
3288 DelayedArgs = nullptr;
3289 if (Attr->getValueAsBit("AcceptsExprPack")) {
3290 DelayedArgs =
3291 std::make_unique<VariadicExprArgument>("DelayedArgs", R.getName());
3292 DelayedArgs->writePCHReadDecls(OS);
3294 ArgRecords = R.getValueAsListOfDefs("Args");
3295 Args.clear();
3296 for (const auto *Arg : ArgRecords) {
3297 Args.emplace_back(createArgument(*Arg, R.getName()));
3298 Args.back()->writePCHReadDecls(OS);
3300 OS << " New = new (Context) " << R.getName() << "Attr(Context, Info";
3301 for (auto const &ri : Args) {
3302 OS << ", ";
3303 ri->writePCHReadArgs(OS);
3305 OS << ");\n";
3306 if (R.isSubClassOf(InhClass))
3307 OS << " cast<InheritableAttr>(New)->setInherited(isInherited);\n";
3308 OS << " New->setImplicit(isImplicit);\n";
3309 OS << " New->setPackExpansion(isPackExpansion);\n";
3310 if (DelayedArgs) {
3311 OS << " cast<" << R.getName()
3312 << "Attr>(New)->setDelayedArgs(Context, ";
3313 DelayedArgs->writePCHReadArgs(OS);
3314 OS << ");\n";
3316 OS << " break;\n";
3317 OS << " }\n";
3319 OS << " }\n";
3322 // Emits the code to write an attribute to a precompiled header.
3323 void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) {
3324 emitSourceFileHeader("Attribute serialization code", OS, Records);
3326 Record *InhClass = Records.getClass("InheritableAttr");
3327 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
3329 OS << " switch (A->getKind()) {\n";
3330 for (const auto *Attr : Attrs) {
3331 const Record &R = *Attr;
3332 if (!R.getValueAsBit("ASTNode"))
3333 continue;
3334 OS << " case attr::" << R.getName() << ": {\n";
3335 Args = R.getValueAsListOfDefs("Args");
3336 if (R.isSubClassOf(InhClass) || !Args.empty())
3337 OS << " const auto *SA = cast<" << R.getName()
3338 << "Attr>(A);\n";
3339 if (R.isSubClassOf(InhClass))
3340 OS << " Record.push_back(SA->isInherited());\n";
3341 OS << " Record.push_back(A->isImplicit());\n";
3342 OS << " Record.push_back(A->isPackExpansion());\n";
3343 if (Attr->getValueAsBit("AcceptsExprPack"))
3344 VariadicExprArgument("DelayedArgs", R.getName()).writePCHWrite(OS);
3346 for (const auto *Arg : Args)
3347 createArgument(*Arg, R.getName())->writePCHWrite(OS);
3348 OS << " break;\n";
3349 OS << " }\n";
3351 OS << " }\n";
3354 // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test'
3355 // parameter with only a single check type, if applicable.
3356 static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test,
3357 std::string *FnName,
3358 StringRef ListName,
3359 StringRef CheckAgainst,
3360 StringRef Scope) {
3361 if (!R->isValueUnset(ListName)) {
3362 Test += " && (";
3363 std::vector<StringRef> Items = R->getValueAsListOfStrings(ListName);
3364 for (auto I = Items.begin(), E = Items.end(); I != E; ++I) {
3365 StringRef Part = *I;
3366 Test += CheckAgainst;
3367 Test += " == ";
3368 Test += Scope;
3369 Test += Part;
3370 if (I + 1 != E)
3371 Test += " || ";
3372 if (FnName)
3373 *FnName += Part;
3375 Test += ")";
3376 return true;
3378 return false;
3381 // Generate a conditional expression to check if the current target satisfies
3382 // the conditions for a TargetSpecificAttr record, and append the code for
3383 // those checks to the Test string. If the FnName string pointer is non-null,
3384 // append a unique suffix to distinguish this set of target checks from other
3385 // TargetSpecificAttr records.
3386 static bool GenerateTargetSpecificAttrChecks(const Record *R,
3387 std::vector<StringRef> &Arches,
3388 std::string &Test,
3389 std::string *FnName) {
3390 bool AnyTargetChecks = false;
3392 // It is assumed that there will be an llvm::Triple object
3393 // named "T" and a TargetInfo object named "Target" within
3394 // scope that can be used to determine whether the attribute exists in
3395 // a given target.
3396 Test += "true";
3397 // If one or more architectures is specified, check those. Arches are handled
3398 // differently because GenerateTargetRequirements needs to combine the list
3399 // with ParseKind.
3400 if (!Arches.empty()) {
3401 AnyTargetChecks = true;
3402 Test += " && (";
3403 for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) {
3404 StringRef Part = *I;
3405 Test += "T.getArch() == llvm::Triple::";
3406 Test += Part;
3407 if (I + 1 != E)
3408 Test += " || ";
3409 if (FnName)
3410 *FnName += Part;
3412 Test += ")";
3415 // If the attribute is specific to particular OSes, check those.
3416 AnyTargetChecks |= GenerateTargetSpecificAttrCheck(
3417 R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::");
3419 // If one or more object formats is specified, check those.
3420 AnyTargetChecks |=
3421 GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats",
3422 "T.getObjectFormat()", "llvm::Triple::");
3424 // If custom code is specified, emit it.
3425 StringRef Code = R->getValueAsString("CustomCode");
3426 if (!Code.empty()) {
3427 AnyTargetChecks = true;
3428 Test += " && (";
3429 Test += Code;
3430 Test += ")";
3433 return AnyTargetChecks;
3436 static void GenerateHasAttrSpellingStringSwitch(
3437 const std::vector<std::pair<const Record *, FlattenedSpelling>> &Attrs,
3438 raw_ostream &OS, const std::string &Variety,
3439 const std::string &Scope = "") {
3440 for (const auto &[Attr, Spelling] : Attrs) {
3441 // C++11-style attributes have specific version information associated with
3442 // them. If the attribute has no scope, the version information must not
3443 // have the default value (1), as that's incorrect. Instead, the unscoped
3444 // attribute version information should be taken from the SD-6 standing
3445 // document, which can be found at:
3446 // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
3448 // C23-style attributes have the same kind of version information
3449 // associated with them. The unscoped attribute version information should
3450 // be taken from the specification of the attribute in the C Standard.
3452 // Clang-specific attributes have the same kind of version information
3453 // associated with them. This version is typically the default value (1).
3454 // These version values are clang-specific and should typically be
3455 // incremented once the attribute changes its syntax and/or semantics in a
3456 // a way that is impactful to the end user.
3457 int Version = 1;
3459 assert(Spelling.variety() == Variety);
3460 std::string Name = "";
3461 if (Spelling.nameSpace().empty() || Scope == Spelling.nameSpace()) {
3462 Name = Spelling.name();
3463 Version = static_cast<int>(
3464 Spelling.getSpellingRecord().getValueAsInt("Version"));
3465 // Verify that explicitly specified CXX11 and C23 spellings (i.e.
3466 // not inferred from Clang/GCC spellings) have a version that's
3467 // different from the default (1).
3468 bool RequiresValidVersion =
3469 (Variety == "CXX11" || Variety == "C23") &&
3470 Spelling.getSpellingRecord().getValueAsString("Variety") == Variety;
3471 if (RequiresValidVersion && Scope.empty() && Version == 1)
3472 PrintError(Spelling.getSpellingRecord().getLoc(),
3473 "Standard attributes must have "
3474 "valid version information.");
3477 std::string Test;
3478 if (Attr->isSubClassOf("TargetSpecificAttr")) {
3479 const Record *R = Attr->getValueAsDef("Target");
3480 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
3481 GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr);
3483 // If this is the C++11 variety, also add in the LangOpts test.
3484 if (Variety == "CXX11")
3485 Test += " && LangOpts.CPlusPlus11";
3486 } else if (!Attr->getValueAsListOfDefs("TargetSpecificSpellings").empty()) {
3487 // Add target checks if this spelling is target-specific.
3488 const std::vector<Record *> TargetSpellings =
3489 Attr->getValueAsListOfDefs("TargetSpecificSpellings");
3490 for (const auto &TargetSpelling : TargetSpellings) {
3491 // Find spelling that matches current scope and name.
3492 for (const auto &Spelling : GetFlattenedSpellings(*TargetSpelling)) {
3493 if (Scope == Spelling.nameSpace() && Name == Spelling.name()) {
3494 const Record *Target = TargetSpelling->getValueAsDef("Target");
3495 std::vector<StringRef> Arches =
3496 Target->getValueAsListOfStrings("Arches");
3497 GenerateTargetSpecificAttrChecks(Target, Arches, Test,
3498 /*FnName=*/nullptr);
3499 break;
3504 if (Variety == "CXX11")
3505 Test += " && LangOpts.CPlusPlus11";
3506 } else if (Variety == "CXX11")
3507 // C++11 mode should be checked against LangOpts, which is presumed to be
3508 // present in the caller.
3509 Test = "LangOpts.CPlusPlus11";
3511 std::string TestStr = !Test.empty()
3512 ? Test + " ? " + llvm::itostr(Version) + " : 0"
3513 : llvm::itostr(Version);
3514 if (Scope.empty() || Scope == Spelling.nameSpace())
3515 OS << " .Case(\"" << Spelling.name() << "\", " << TestStr << ")\n";
3517 OS << " .Default(0);\n";
3520 // Emits the list of tokens for regular keyword attributes.
3521 void EmitClangAttrTokenKinds(RecordKeeper &Records, raw_ostream &OS) {
3522 emitSourceFileHeader("A list of tokens generated from the attribute"
3523 " definitions",
3524 OS);
3525 // Assume for now that the same token is not used in multiple regular
3526 // keyword attributes.
3527 for (auto *R : Records.getAllDerivedDefinitions("Attr"))
3528 for (const auto &S : GetFlattenedSpellings(*R))
3529 if (isRegularKeywordAttribute(S)) {
3530 if (!R->getValueAsListOfDefs("Args").empty())
3531 PrintError(R->getLoc(),
3532 "RegularKeyword attributes with arguments are not "
3533 "yet supported");
3534 OS << "KEYWORD_ATTRIBUTE("
3535 << S.getSpellingRecord().getValueAsString("Name") << ")\n";
3537 OS << "#undef KEYWORD_ATTRIBUTE\n";
3540 // Emits the list of spellings for attributes.
3541 void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
3542 emitSourceFileHeader("Code to implement the __has_attribute logic", OS,
3543 Records);
3545 // Separate all of the attributes out into four group: generic, C++11, GNU,
3546 // and declspecs. Then generate a big switch statement for each of them.
3547 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
3548 std::vector<std::pair<const Record *, FlattenedSpelling>> Declspec, Microsoft,
3549 GNU, Pragma, HLSLSemantic;
3550 std::map<std::string,
3551 std::vector<std::pair<const Record *, FlattenedSpelling>>>
3552 CXX, C23;
3554 // Walk over the list of all attributes, and split them out based on the
3555 // spelling variety.
3556 for (auto *R : Attrs) {
3557 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(*R);
3558 for (const auto &SI : Spellings) {
3559 const std::string &Variety = SI.variety();
3560 if (Variety == "GNU")
3561 GNU.emplace_back(R, SI);
3562 else if (Variety == "Declspec")
3563 Declspec.emplace_back(R, SI);
3564 else if (Variety == "Microsoft")
3565 Microsoft.emplace_back(R, SI);
3566 else if (Variety == "CXX11")
3567 CXX[SI.nameSpace()].emplace_back(R, SI);
3568 else if (Variety == "C23")
3569 C23[SI.nameSpace()].emplace_back(R, SI);
3570 else if (Variety == "Pragma")
3571 Pragma.emplace_back(R, SI);
3572 else if (Variety == "HLSLSemantic")
3573 HLSLSemantic.emplace_back(R, SI);
3577 OS << "const llvm::Triple &T = Target.getTriple();\n";
3578 OS << "switch (Syntax) {\n";
3579 OS << "case AttributeCommonInfo::Syntax::AS_GNU:\n";
3580 OS << " return llvm::StringSwitch<int>(Name)\n";
3581 GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU");
3582 OS << "case AttributeCommonInfo::Syntax::AS_Declspec:\n";
3583 OS << " return llvm::StringSwitch<int>(Name)\n";
3584 GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec");
3585 OS << "case AttributeCommonInfo::Syntax::AS_Microsoft:\n";
3586 OS << " return llvm::StringSwitch<int>(Name)\n";
3587 GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft");
3588 OS << "case AttributeCommonInfo::Syntax::AS_Pragma:\n";
3589 OS << " return llvm::StringSwitch<int>(Name)\n";
3590 GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma");
3591 OS << "case AttributeCommonInfo::Syntax::AS_HLSLSemantic:\n";
3592 OS << " return llvm::StringSwitch<int>(Name)\n";
3593 GenerateHasAttrSpellingStringSwitch(HLSLSemantic, OS, "HLSLSemantic");
3594 auto fn = [&OS](const char *Spelling,
3595 const std::map<
3596 std::string,
3597 std::vector<std::pair<const Record *, FlattenedSpelling>>>
3598 &List) {
3599 OS << "case AttributeCommonInfo::Syntax::AS_" << Spelling << ": {\n";
3600 // C++11-style attributes are further split out based on the Scope.
3601 for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) {
3602 if (I != List.cbegin())
3603 OS << " else ";
3604 if (I->first.empty())
3605 OS << "if (ScopeName == \"\") {\n";
3606 else
3607 OS << "if (ScopeName == \"" << I->first << "\") {\n";
3608 OS << " return llvm::StringSwitch<int>(Name)\n";
3609 GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first);
3610 OS << "}";
3612 OS << "\n} break;\n";
3614 fn("CXX11", CXX);
3615 fn("C23", C23);
3616 OS << "case AttributeCommonInfo::Syntax::AS_Keyword:\n";
3617 OS << "case AttributeCommonInfo::Syntax::AS_ContextSensitiveKeyword:\n";
3618 OS << " llvm_unreachable(\"hasAttribute not supported for keyword\");\n";
3619 OS << " return 0;\n";
3620 OS << "case AttributeCommonInfo::Syntax::AS_Implicit:\n";
3621 OS << " llvm_unreachable (\"hasAttribute not supported for "
3622 "AS_Implicit\");\n";
3623 OS << " return 0;\n";
3625 OS << "}\n";
3628 void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) {
3629 emitSourceFileHeader("Code to translate different attribute spellings into "
3630 "internal identifiers",
3631 OS, Records);
3633 OS << " switch (getParsedKind()) {\n";
3634 OS << " case IgnoredAttribute:\n";
3635 OS << " case UnknownAttribute:\n";
3636 OS << " case NoSemaHandlerAttribute:\n";
3637 OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n";
3639 ParsedAttrMap Attrs = getParsedAttrList(Records);
3640 for (const auto &I : Attrs) {
3641 const Record &R = *I.second;
3642 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
3643 OS << " case AT_" << I.first << ": {\n";
3644 for (unsigned I = 0; I < Spellings.size(); ++ I) {
3645 OS << " if (Name == \"" << Spellings[I].name() << "\" && "
3646 << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety()
3647 << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n"
3648 << " return " << I << ";\n";
3651 OS << " break;\n";
3652 OS << " }\n";
3655 OS << " }\n";
3656 OS << " return 0;\n";
3659 // Emits code used by RecursiveASTVisitor to visit attributes
3660 void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) {
3661 emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS,
3662 Records);
3664 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3666 // Write method declarations for Traverse* methods.
3667 // We emit this here because we only generate methods for attributes that
3668 // are declared as ASTNodes.
3669 OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n";
3670 for (const auto *Attr : Attrs) {
3671 const Record &R = *Attr;
3672 if (!R.getValueAsBit("ASTNode"))
3673 continue;
3674 OS << " bool Traverse"
3675 << R.getName() << "Attr(" << R.getName() << "Attr *A);\n";
3676 OS << " bool Visit"
3677 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3678 << " return true; \n"
3679 << " }\n";
3681 OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n";
3683 // Write individual Traverse* methods for each attribute class.
3684 for (const auto *Attr : Attrs) {
3685 const Record &R = *Attr;
3686 if (!R.getValueAsBit("ASTNode"))
3687 continue;
3689 OS << "template <typename Derived>\n"
3690 << "bool VISITORCLASS<Derived>::Traverse"
3691 << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n"
3692 << " if (!getDerived().VisitAttr(A))\n"
3693 << " return false;\n"
3694 << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n"
3695 << " return false;\n";
3697 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3698 for (const auto *Arg : ArgRecords)
3699 createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS);
3701 if (Attr->getValueAsBit("AcceptsExprPack"))
3702 VariadicExprArgument("DelayedArgs", R.getName())
3703 .writeASTVisitorTraversal(OS);
3705 OS << " return true;\n";
3706 OS << "}\n\n";
3709 // Write generic Traverse routine
3710 OS << "template <typename Derived>\n"
3711 << "bool VISITORCLASS<Derived>::TraverseAttr(Attr *A) {\n"
3712 << " if (!A)\n"
3713 << " return true;\n"
3714 << "\n"
3715 << " switch (A->getKind()) {\n";
3717 for (const auto *Attr : Attrs) {
3718 const Record &R = *Attr;
3719 if (!R.getValueAsBit("ASTNode"))
3720 continue;
3722 OS << " case attr::" << R.getName() << ":\n"
3723 << " return getDerived().Traverse" << R.getName() << "Attr("
3724 << "cast<" << R.getName() << "Attr>(A));\n";
3726 OS << " }\n"; // end switch
3727 OS << " llvm_unreachable(\"bad attribute kind\");\n";
3728 OS << "}\n"; // end function
3729 OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n";
3732 void EmitClangAttrTemplateInstantiateHelper(const std::vector<Record *> &Attrs,
3733 raw_ostream &OS,
3734 bool AppliesToDecl) {
3736 OS << " switch (At->getKind()) {\n";
3737 for (const auto *Attr : Attrs) {
3738 const Record &R = *Attr;
3739 if (!R.getValueAsBit("ASTNode"))
3740 continue;
3741 OS << " case attr::" << R.getName() << ": {\n";
3742 bool ShouldClone = R.getValueAsBit("Clone") &&
3743 (!AppliesToDecl ||
3744 R.getValueAsBit("MeaningfulToClassTemplateDefinition"));
3746 if (!ShouldClone) {
3747 OS << " return nullptr;\n";
3748 OS << " }\n";
3749 continue;
3752 OS << " const auto *A = cast<"
3753 << R.getName() << "Attr>(At);\n";
3754 bool TDependent = R.getValueAsBit("TemplateDependent");
3756 if (!TDependent) {
3757 OS << " return A->clone(C);\n";
3758 OS << " }\n";
3759 continue;
3762 std::vector<Record*> ArgRecords = R.getValueAsListOfDefs("Args");
3763 std::vector<std::unique_ptr<Argument>> Args;
3764 Args.reserve(ArgRecords.size());
3766 for (const auto *ArgRecord : ArgRecords)
3767 Args.emplace_back(createArgument(*ArgRecord, R.getName()));
3769 for (auto const &ai : Args)
3770 ai->writeTemplateInstantiation(OS);
3772 OS << " return new (C) " << R.getName() << "Attr(C, *A";
3773 for (auto const &ai : Args) {
3774 OS << ", ";
3775 ai->writeTemplateInstantiationArgs(OS);
3777 OS << ");\n"
3778 << " }\n";
3780 OS << " } // end switch\n"
3781 << " llvm_unreachable(\"Unknown attribute!\");\n"
3782 << " return nullptr;\n";
3785 // Emits code to instantiate dependent attributes on templates.
3786 void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) {
3787 emitSourceFileHeader("Template instantiation code for attributes", OS,
3788 Records);
3790 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr");
3792 OS << "namespace clang {\n"
3793 << "namespace sema {\n\n"
3794 << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, "
3795 << "Sema &S,\n"
3796 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3797 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false);
3798 OS << "}\n\n"
3799 << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n"
3800 << " ASTContext &C, Sema &S,\n"
3801 << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n";
3802 EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true);
3803 OS << "}\n\n"
3804 << "} // end namespace sema\n"
3805 << "} // end namespace clang\n";
3808 // Emits the list of parsed attributes.
3809 void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) {
3810 emitSourceFileHeader("List of all attributes that Clang recognizes", OS,
3811 Records);
3813 OS << "#ifndef PARSED_ATTR\n";
3814 OS << "#define PARSED_ATTR(NAME) NAME\n";
3815 OS << "#endif\n\n";
3817 ParsedAttrMap Names = getParsedAttrList(Records);
3818 for (const auto &I : Names) {
3819 OS << "PARSED_ATTR(" << I.first << ")\n";
3823 static bool isArgVariadic(const Record &R, StringRef AttrName) {
3824 return createArgument(R, AttrName)->isVariadic();
3827 static void emitArgInfo(const Record &R, raw_ostream &OS) {
3828 // This function will count the number of arguments specified for the
3829 // attribute and emit the number of required arguments followed by the
3830 // number of optional arguments.
3831 std::vector<Record *> Args = R.getValueAsListOfDefs("Args");
3832 unsigned ArgCount = 0, OptCount = 0, ArgMemberCount = 0;
3833 bool HasVariadic = false;
3834 for (const auto *Arg : Args) {
3835 // If the arg is fake, it's the user's job to supply it: general parsing
3836 // logic shouldn't need to know anything about it.
3837 if (Arg->getValueAsBit("Fake"))
3838 continue;
3839 Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount;
3840 ++ArgMemberCount;
3841 if (!HasVariadic && isArgVariadic(*Arg, R.getName()))
3842 HasVariadic = true;
3845 // If there is a variadic argument, we will set the optional argument count
3846 // to its largest value. Since it's currently a 4-bit number, we set it to 15.
3847 OS << " /*NumArgs=*/" << ArgCount << ",\n";
3848 OS << " /*OptArgs=*/" << (HasVariadic ? 15 : OptCount) << ",\n";
3849 OS << " /*NumArgMembers=*/" << ArgMemberCount << ",\n";
3852 static std::string GetDiagnosticSpelling(const Record &R) {
3853 std::string Ret = std::string(R.getValueAsString("DiagSpelling"));
3854 if (!Ret.empty())
3855 return Ret;
3857 // If we couldn't find the DiagSpelling in this object, we can check to see
3858 // if the object is one that has a base, and if it is, loop up to the Base
3859 // member recursively.
3860 if (auto Base = R.getValueAsOptionalDef(BaseFieldName))
3861 return GetDiagnosticSpelling(*Base);
3863 return "";
3866 static std::string CalculateDiagnostic(const Record &S) {
3867 // If the SubjectList object has a custom diagnostic associated with it,
3868 // return that directly.
3869 const StringRef CustomDiag = S.getValueAsString("CustomDiag");
3870 if (!CustomDiag.empty())
3871 return ("\"" + Twine(CustomDiag) + "\"").str();
3873 std::vector<std::string> DiagList;
3874 std::vector<Record *> Subjects = S.getValueAsListOfDefs("Subjects");
3875 for (const auto *Subject : Subjects) {
3876 const Record &R = *Subject;
3877 // Get the diagnostic text from the Decl or Stmt node given.
3878 std::string V = GetDiagnosticSpelling(R);
3879 if (V.empty()) {
3880 PrintError(R.getLoc(),
3881 "Could not determine diagnostic spelling for the node: " +
3882 R.getName() + "; please add one to DeclNodes.td");
3883 } else {
3884 // The node may contain a list of elements itself, so split the elements
3885 // by a comma, and trim any whitespace.
3886 SmallVector<StringRef, 2> Frags;
3887 llvm::SplitString(V, Frags, ",");
3888 for (auto Str : Frags) {
3889 DiagList.push_back(std::string(Str.trim()));
3894 if (DiagList.empty()) {
3895 PrintFatalError(S.getLoc(),
3896 "Could not deduce diagnostic argument for Attr subjects");
3897 return "";
3900 // FIXME: this is not particularly good for localization purposes and ideally
3901 // should be part of the diagnostics engine itself with some sort of list
3902 // specifier.
3904 // A single member of the list can be returned directly.
3905 if (DiagList.size() == 1)
3906 return '"' + DiagList.front() + '"';
3908 if (DiagList.size() == 2)
3909 return '"' + DiagList[0] + " and " + DiagList[1] + '"';
3911 // If there are more than two in the list, we serialize the first N - 1
3912 // elements with a comma. This leaves the string in the state: foo, bar,
3913 // baz (but misses quux). We can then add ", and " for the last element
3914 // manually.
3915 std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", ");
3916 return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"';
3919 static std::string GetSubjectWithSuffix(const Record *R) {
3920 const std::string &B = std::string(R->getName());
3921 if (B == "DeclBase")
3922 return "Decl";
3923 return B + "Decl";
3926 static std::string functionNameForCustomAppertainsTo(const Record &Subject) {
3927 return "is" + Subject.getName().str();
3930 static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) {
3931 std::string FnName = functionNameForCustomAppertainsTo(Subject);
3933 // If this code has already been generated, we don't need to do anything.
3934 static std::set<std::string> CustomSubjectSet;
3935 auto I = CustomSubjectSet.find(FnName);
3936 if (I != CustomSubjectSet.end())
3937 return;
3939 // This only works with non-root Decls.
3940 Record *Base = Subject.getValueAsDef(BaseFieldName);
3942 // Not currently support custom subjects within custom subjects.
3943 if (Base->isSubClassOf("SubsetSubject")) {
3944 PrintFatalError(Subject.getLoc(),
3945 "SubsetSubjects within SubsetSubjects is not supported");
3946 return;
3949 OS << "static bool " << FnName << "(const Decl *D) {\n";
3950 OS << " if (const auto *S = dyn_cast<";
3951 OS << GetSubjectWithSuffix(Base);
3952 OS << ">(D))\n";
3953 OS << " return " << Subject.getValueAsString("CheckCode") << ";\n";
3954 OS << " return false;\n";
3955 OS << "}\n\n";
3957 CustomSubjectSet.insert(FnName);
3960 static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) {
3961 // If the attribute does not contain a Subjects definition, then use the
3962 // default appertainsTo logic.
3963 if (Attr.isValueUnset("Subjects"))
3964 return;
3966 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
3967 std::vector<Record *> Subjects = SubjectObj->getValueAsListOfDefs("Subjects");
3969 // If the list of subjects is empty, it is assumed that the attribute
3970 // appertains to everything.
3971 if (Subjects.empty())
3972 return;
3974 bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn");
3976 // Split the subjects into declaration subjects and statement subjects.
3977 // FIXME: subset subjects are added to the declaration list until there are
3978 // enough statement attributes with custom subject needs to warrant
3979 // the implementation effort.
3980 std::vector<Record *> DeclSubjects, StmtSubjects;
3981 llvm::copy_if(
3982 Subjects, std::back_inserter(DeclSubjects), [](const Record *R) {
3983 return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode");
3985 llvm::copy_if(Subjects, std::back_inserter(StmtSubjects),
3986 [](const Record *R) { return R->isSubClassOf("StmtNode"); });
3988 // We should have sorted all of the subjects into two lists.
3989 // FIXME: this assertion will be wrong if we ever add type attribute subjects.
3990 assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size());
3992 if (DeclSubjects.empty()) {
3993 // If there are no decl subjects but there are stmt subjects, diagnose
3994 // trying to apply a statement attribute to a declaration.
3995 if (!StmtSubjects.empty()) {
3996 OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, ";
3997 OS << "const Decl *D) const override {\n";
3998 OS << " S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl)\n";
3999 OS << " << AL << AL.isRegularKeywordAttribute() << "
4000 "D->getLocation();\n";
4001 OS << " return false;\n";
4002 OS << "}\n\n";
4004 } else {
4005 // Otherwise, generate an appertainsTo check specific to this attribute
4006 // which checks all of the given subjects against the Decl passed in.
4007 OS << "bool diagAppertainsToDecl(Sema &S, ";
4008 OS << "const ParsedAttr &Attr, const Decl *D) const override {\n";
4009 OS << " if (";
4010 for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) {
4011 // If the subject has custom code associated with it, use the generated
4012 // function for it. The function cannot be inlined into this check (yet)
4013 // because it requires the subject to be of a specific type, and were that
4014 // information inlined here, it would not support an attribute with
4015 // multiple custom subjects.
4016 if ((*I)->isSubClassOf("SubsetSubject"))
4017 OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)";
4018 else
4019 OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)";
4021 if (I + 1 != E)
4022 OS << " && ";
4024 OS << ") {\n";
4025 OS << " S.Diag(Attr.getLoc(), diag::";
4026 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4027 : "err_attribute_wrong_decl_type_str");
4028 OS << ")\n";
4029 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4030 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
4031 OS << " return false;\n";
4032 OS << " }\n";
4033 OS << " return true;\n";
4034 OS << "}\n\n";
4037 if (StmtSubjects.empty()) {
4038 // If there are no stmt subjects but there are decl subjects, diagnose
4039 // trying to apply a declaration attribute to a statement.
4040 if (!DeclSubjects.empty()) {
4041 OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, ";
4042 OS << "const Stmt *St) const override {\n";
4043 OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n";
4044 OS << " << AL << AL.isRegularKeywordAttribute() << "
4045 "St->getBeginLoc();\n";
4046 OS << " return false;\n";
4047 OS << "}\n\n";
4049 } else {
4050 // Now, do the same for statements.
4051 OS << "bool diagAppertainsToStmt(Sema &S, ";
4052 OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n";
4053 OS << " if (";
4054 for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) {
4055 OS << "!isa<" << (*I)->getName() << ">(St)";
4056 if (I + 1 != E)
4057 OS << " && ";
4059 OS << ") {\n";
4060 OS << " S.Diag(Attr.getLoc(), diag::";
4061 OS << (Warn ? "warn_attribute_wrong_decl_type_str"
4062 : "err_attribute_wrong_decl_type_str");
4063 OS << ")\n";
4064 OS << " << Attr << Attr.isRegularKeywordAttribute() << ";
4065 OS << CalculateDiagnostic(*SubjectObj) << ";\n";
4066 OS << " return false;\n";
4067 OS << " }\n";
4068 OS << " return true;\n";
4069 OS << "}\n\n";
4073 // Generates the mutual exclusion checks. The checks for parsed attributes are
4074 // written into OS and the checks for merging declaration attributes are
4075 // written into MergeOS.
4076 static void GenerateMutualExclusionsChecks(const Record &Attr,
4077 const RecordKeeper &Records,
4078 raw_ostream &OS,
4079 raw_ostream &MergeDeclOS,
4080 raw_ostream &MergeStmtOS) {
4081 // Find all of the definitions that inherit from MutualExclusions and include
4082 // the given attribute in the list of exclusions to generate the
4083 // diagMutualExclusion() check.
4084 std::vector<Record *> ExclusionsList =
4085 Records.getAllDerivedDefinitions("MutualExclusions");
4087 // We don't do any of this magic for type attributes yet.
4088 if (Attr.isSubClassOf("TypeAttr"))
4089 return;
4091 // This means the attribute is either a statement attribute, a decl
4092 // attribute, or both; find out which.
4093 bool CurAttrIsStmtAttr =
4094 Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr");
4095 bool CurAttrIsDeclAttr =
4096 !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr");
4098 std::vector<std::string> DeclAttrs, StmtAttrs;
4100 for (const Record *Exclusion : ExclusionsList) {
4101 std::vector<Record *> MutuallyExclusiveAttrs =
4102 Exclusion->getValueAsListOfDefs("Exclusions");
4103 auto IsCurAttr = [Attr](const Record *R) {
4104 return R->getName() == Attr.getName();
4106 if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) {
4107 // This list of exclusions includes the attribute we're looking for, so
4108 // add the exclusive attributes to the proper list for checking.
4109 for (const Record *AttrToExclude : MutuallyExclusiveAttrs) {
4110 if (IsCurAttr(AttrToExclude))
4111 continue;
4113 if (CurAttrIsStmtAttr)
4114 StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str());
4115 if (CurAttrIsDeclAttr)
4116 DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str());
4121 // If there are any decl or stmt attributes, silence -Woverloaded-virtual
4122 // warnings for them both.
4123 if (!DeclAttrs.empty() || !StmtAttrs.empty())
4124 OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n";
4126 // If we discovered any decl or stmt attributes to test for, generate the
4127 // predicates for them now.
4128 if (!DeclAttrs.empty()) {
4129 // Generate the ParsedAttrInfo subclass logic for declarations.
4130 OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, "
4131 << "const Decl *D) const override {\n";
4132 for (const std::string &A : DeclAttrs) {
4133 OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n";
4134 OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)"
4135 << " << AL << A << (AL.isRegularKeywordAttribute() ||"
4136 << " A->isRegularKeywordAttribute());\n";
4137 OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);";
4138 OS << " \nreturn false;\n";
4139 OS << " }\n";
4141 OS << " return true;\n";
4142 OS << " }\n\n";
4144 // Also generate the declaration attribute merging logic if the current
4145 // attribute is one that can be inheritted on a declaration. It is assumed
4146 // this code will be executed in the context of a function with parameters:
4147 // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic,
4148 // true on success).
4149 if (Attr.isSubClassOf("InheritableAttr")) {
4150 MergeDeclOS << " if (const auto *Second = dyn_cast<"
4151 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4152 for (const std::string &A : DeclAttrs) {
4153 MergeDeclOS << " if (const auto *First = D->getAttr<" << A
4154 << ">()) {\n";
4155 MergeDeclOS << " S.Diag(First->getLocation(), "
4156 << "diag::err_attributes_are_not_compatible) << First << "
4157 << "Second << (First->isRegularKeywordAttribute() || "
4158 << "Second->isRegularKeywordAttribute());\n";
4159 MergeDeclOS << " S.Diag(Second->getLocation(), "
4160 << "diag::note_conflicting_attribute);\n";
4161 MergeDeclOS << " return false;\n";
4162 MergeDeclOS << " }\n";
4164 MergeDeclOS << " return true;\n";
4165 MergeDeclOS << " }\n";
4169 // Statement attributes are a bit different from declarations. With
4170 // declarations, each attribute is added to the declaration as it is
4171 // processed, and so you can look on the Decl * itself to see if there is a
4172 // conflicting attribute. Statement attributes are processed as a group
4173 // because AttributedStmt needs to tail-allocate all of the attribute nodes
4174 // at once. This means we cannot check whether the statement already contains
4175 // an attribute to check for the conflict. Instead, we need to check whether
4176 // the given list of semantic attributes contain any conflicts. It is assumed
4177 // this code will be executed in the context of a function with parameters:
4178 // Sema &S, const SmallVectorImpl<const Attr *> &C. The code will be within a
4179 // loop which loops over the container C with a loop variable named A to
4180 // represent the current attribute to check for conflicts.
4182 // FIXME: it would be nice not to walk over the list of potential attributes
4183 // to apply to the statement more than once, but statements typically don't
4184 // have long lists of attributes on them, so re-walking the list should not
4185 // be an expensive operation.
4186 if (!StmtAttrs.empty()) {
4187 MergeStmtOS << " if (const auto *Second = dyn_cast<"
4188 << (Attr.getName() + "Attr").str() << ">(A)) {\n";
4189 MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) "
4190 << "{ return isa<";
4191 interleave(
4192 StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; },
4193 [&] { MergeStmtOS << ", "; });
4194 MergeStmtOS << ">(Check); });\n";
4195 MergeStmtOS << " if (Iter != C.end()) {\n";
4196 MergeStmtOS << " S.Diag((*Iter)->getLocation(), "
4197 << "diag::err_attributes_are_not_compatible) << *Iter << "
4198 << "Second << ((*Iter)->isRegularKeywordAttribute() || "
4199 << "Second->isRegularKeywordAttribute());\n";
4200 MergeStmtOS << " S.Diag(Second->getLocation(), "
4201 << "diag::note_conflicting_attribute);\n";
4202 MergeStmtOS << " return false;\n";
4203 MergeStmtOS << " }\n";
4204 MergeStmtOS << " }\n";
4208 static void
4209 emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport,
4210 raw_ostream &OS) {
4211 OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, "
4212 << AttributeSubjectMatchRule::EnumName << " rule) {\n";
4213 OS << " switch (rule) {\n";
4214 for (const auto &Rule : PragmaAttributeSupport.Rules) {
4215 if (Rule.isAbstractRule()) {
4216 OS << " case " << Rule.getEnumValue() << ":\n";
4217 OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n";
4218 OS << " return false;\n";
4219 continue;
4221 std::vector<Record *> Subjects = Rule.getSubjects();
4222 assert(!Subjects.empty() && "Missing subjects");
4223 OS << " case " << Rule.getEnumValue() << ":\n";
4224 OS << " return ";
4225 for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) {
4226 // If the subject has custom code associated with it, use the function
4227 // that was generated for GenerateAppertainsTo to check if the declaration
4228 // is valid.
4229 if ((*I)->isSubClassOf("SubsetSubject"))
4230 OS << functionNameForCustomAppertainsTo(**I) << "(D)";
4231 else
4232 OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)";
4234 if (I + 1 != E)
4235 OS << " || ";
4237 OS << ";\n";
4239 OS << " }\n";
4240 OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n";
4241 OS << "}\n\n";
4244 static void GenerateLangOptRequirements(const Record &R,
4245 raw_ostream &OS) {
4246 // If the attribute has an empty or unset list of language requirements,
4247 // use the default handler.
4248 std::vector<Record *> LangOpts = R.getValueAsListOfDefs("LangOpts");
4249 if (LangOpts.empty())
4250 return;
4252 OS << "bool acceptsLangOpts(const LangOptions &LangOpts) const override {\n";
4253 OS << " return " << GenerateTestExpression(LangOpts) << ";\n";
4254 OS << "}\n\n";
4257 static void GenerateTargetRequirements(const Record &Attr,
4258 const ParsedAttrMap &Dupes,
4259 raw_ostream &OS) {
4260 // If the attribute is not a target specific attribute, use the default
4261 // target handler.
4262 if (!Attr.isSubClassOf("TargetSpecificAttr"))
4263 return;
4265 // Get the list of architectures to be tested for.
4266 const Record *R = Attr.getValueAsDef("Target");
4267 std::vector<StringRef> Arches = R->getValueAsListOfStrings("Arches");
4269 // If there are other attributes which share the same parsed attribute kind,
4270 // such as target-specific attributes with a shared spelling, collapse the
4271 // duplicate architectures. This is required because a shared target-specific
4272 // attribute has only one ParsedAttr::Kind enumeration value, but it
4273 // applies to multiple target architectures. In order for the attribute to be
4274 // considered valid, all of its architectures need to be included.
4275 if (!Attr.isValueUnset("ParseKind")) {
4276 const StringRef APK = Attr.getValueAsString("ParseKind");
4277 for (const auto &I : Dupes) {
4278 if (I.first == APK) {
4279 std::vector<StringRef> DA =
4280 I.second->getValueAsDef("Target")->getValueAsListOfStrings(
4281 "Arches");
4282 Arches.insert(Arches.end(), DA.begin(), DA.end());
4287 std::string FnName = "isTarget";
4288 std::string Test;
4289 bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName);
4291 OS << "bool existsInTarget(const TargetInfo &Target) const override {\n";
4292 if (UsesT)
4293 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4294 OS << " return " << Test << ";\n";
4295 OS << "}\n\n";
4298 static void
4299 GenerateSpellingTargetRequirements(const Record &Attr,
4300 const std::vector<Record *> &TargetSpellings,
4301 raw_ostream &OS) {
4302 // If there are no target specific spellings, use the default target handler.
4303 if (TargetSpellings.empty())
4304 return;
4306 std::string Test;
4307 bool UsesT = false;
4308 const std::vector<FlattenedSpelling> SpellingList =
4309 GetFlattenedSpellings(Attr);
4310 for (unsigned TargetIndex = 0; TargetIndex < TargetSpellings.size();
4311 ++TargetIndex) {
4312 const auto &TargetSpelling = TargetSpellings[TargetIndex];
4313 std::vector<FlattenedSpelling> Spellings =
4314 GetFlattenedSpellings(*TargetSpelling);
4316 Test += "((SpellingListIndex == ";
4317 for (unsigned Index = 0; Index < Spellings.size(); ++Index) {
4318 Test +=
4319 llvm::itostr(getSpellingListIndex(SpellingList, Spellings[Index]));
4320 if (Index != Spellings.size() - 1)
4321 Test += " ||\n SpellingListIndex == ";
4322 else
4323 Test += ") && ";
4326 const Record *Target = TargetSpelling->getValueAsDef("Target");
4327 std::vector<StringRef> Arches = Target->getValueAsListOfStrings("Arches");
4328 std::string FnName = "isTargetSpelling";
4329 UsesT |= GenerateTargetSpecificAttrChecks(Target, Arches, Test, &FnName);
4330 Test += ")";
4331 if (TargetIndex != TargetSpellings.size() - 1)
4332 Test += " || ";
4335 OS << "bool spellingExistsInTarget(const TargetInfo &Target,\n";
4336 OS << " const unsigned SpellingListIndex) const "
4337 "override {\n";
4338 if (UsesT)
4339 OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n";
4340 OS << " return " << Test << ";\n", OS << "}\n\n";
4343 static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr,
4344 raw_ostream &OS) {
4345 // If the attribute does not have a semantic form, we can bail out early.
4346 if (!Attr.getValueAsBit("ASTNode"))
4347 return;
4349 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4351 // If there are zero or one spellings, or all of the spellings share the same
4352 // name, we can also bail out early.
4353 if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings))
4354 return;
4356 // Generate the enumeration we will use for the mapping.
4357 SemanticSpellingMap SemanticToSyntacticMap;
4358 std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap);
4359 std::string Name = Attr.getName().str() + "AttrSpellingMap";
4361 OS << "unsigned spellingIndexToSemanticSpelling(";
4362 OS << "const ParsedAttr &Attr) const override {\n";
4363 OS << Enum;
4364 OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n";
4365 WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS);
4366 OS << "}\n\n";
4369 static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) {
4370 // Only generate if Attr can be handled simply.
4371 if (!Attr.getValueAsBit("SimpleHandler"))
4372 return;
4374 // Generate a function which just converts from ParsedAttr to the Attr type.
4375 OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,";
4376 OS << "const ParsedAttr &Attr) const override {\n";
4377 OS << " D->addAttr(::new (S.Context) " << Attr.getName();
4378 OS << "Attr(S.Context, Attr));\n";
4379 OS << " return AttributeApplied;\n";
4380 OS << "}\n\n";
4383 static bool isParamExpr(const Record *Arg) {
4384 return !Arg->getSuperClasses().empty() &&
4385 llvm::StringSwitch<bool>(
4386 Arg->getSuperClasses().back().first->getName())
4387 .Case("ExprArgument", true)
4388 .Case("VariadicExprArgument", true)
4389 .Default(false);
4392 void GenerateIsParamExpr(const Record &Attr, raw_ostream &OS) {
4393 OS << "bool isParamExpr(size_t N) const override {\n";
4394 OS << " return ";
4395 auto Args = Attr.getValueAsListOfDefs("Args");
4396 for (size_t I = 0; I < Args.size(); ++I)
4397 if (isParamExpr(Args[I]))
4398 OS << "(N == " << I << ") || ";
4399 OS << "false;\n";
4400 OS << "}\n\n";
4403 void GenerateHandleAttrWithDelayedArgs(RecordKeeper &Records, raw_ostream &OS) {
4404 OS << "static void handleAttrWithDelayedArgs(Sema &S, Decl *D, ";
4405 OS << "const ParsedAttr &Attr) {\n";
4406 OS << " SmallVector<Expr *, 4> ArgExprs;\n";
4407 OS << " ArgExprs.reserve(Attr.getNumArgs());\n";
4408 OS << " for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {\n";
4409 OS << " assert(!Attr.isArgIdent(I));\n";
4410 OS << " ArgExprs.push_back(Attr.getArgAsExpr(I));\n";
4411 OS << " }\n";
4412 OS << " clang::Attr *CreatedAttr = nullptr;\n";
4413 OS << " switch (Attr.getKind()) {\n";
4414 OS << " default:\n";
4415 OS << " llvm_unreachable(\"Attribute cannot hold delayed arguments.\");\n";
4416 ParsedAttrMap Attrs = getParsedAttrList(Records);
4417 for (const auto &I : Attrs) {
4418 const Record &R = *I.second;
4419 if (!R.getValueAsBit("AcceptsExprPack"))
4420 continue;
4421 OS << " case ParsedAttr::AT_" << I.first << ": {\n";
4422 OS << " CreatedAttr = " << R.getName() << "Attr::CreateWithDelayedArgs";
4423 OS << "(S.Context, ArgExprs.data(), ArgExprs.size(), Attr);\n";
4424 OS << " break;\n";
4425 OS << " }\n";
4427 OS << " }\n";
4428 OS << " D->addAttr(CreatedAttr);\n";
4429 OS << "}\n\n";
4432 static bool IsKnownToGCC(const Record &Attr) {
4433 // Look at the spellings for this subject; if there are any spellings which
4434 // claim to be known to GCC, the attribute is known to GCC.
4435 return llvm::any_of(
4436 GetFlattenedSpellings(Attr),
4437 [](const FlattenedSpelling &S) { return S.knownToGCC(); });
4440 /// Emits the parsed attribute helpers
4441 void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) {
4442 emitSourceFileHeader("Parsed attribute helpers", OS, Records);
4444 OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && "
4445 << "!defined(WANT_STMT_MERGE_LOGIC)\n";
4446 PragmaClangAttributeSupport &PragmaAttributeSupport =
4447 getPragmaAttributeSupport(Records);
4449 // Get the list of parsed attributes, and accept the optional list of
4450 // duplicates due to the ParseKind.
4451 ParsedAttrMap Dupes;
4452 ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes);
4454 // Generate all of the custom appertainsTo functions that the attributes
4455 // will be using.
4456 for (const auto &I : Attrs) {
4457 const Record &Attr = *I.second;
4458 if (Attr.isValueUnset("Subjects"))
4459 continue;
4460 const Record *SubjectObj = Attr.getValueAsDef("Subjects");
4461 for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects"))
4462 if (Subject->isSubClassOf("SubsetSubject"))
4463 GenerateCustomAppertainsTo(*Subject, OS);
4466 // This stream is used to collect all of the declaration attribute merging
4467 // logic for performing mutual exclusion checks. This gets emitted at the
4468 // end of the file in a helper function of its own.
4469 std::string DeclMergeChecks, StmtMergeChecks;
4470 raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks);
4472 // Generate a ParsedAttrInfo struct for each of the attributes.
4473 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4474 // TODO: If the attribute's kind appears in the list of duplicates, that is
4475 // because it is a target-specific attribute that appears multiple times.
4476 // It would be beneficial to test whether the duplicates are "similar
4477 // enough" to each other to not cause problems. For instance, check that
4478 // the spellings are identical, and custom parsing rules match, etc.
4480 // We need to generate struct instances based off ParsedAttrInfo from
4481 // ParsedAttr.cpp.
4482 const std::string &AttrName = I->first;
4483 const Record &Attr = *I->second;
4484 auto Spellings = GetFlattenedSpellings(Attr);
4485 if (!Spellings.empty()) {
4486 OS << "static constexpr ParsedAttrInfo::Spelling " << I->first
4487 << "Spellings[] = {\n";
4488 for (const auto &S : Spellings) {
4489 const std::string &RawSpelling = S.name();
4490 std::string Spelling;
4491 if (!S.nameSpace().empty())
4492 Spelling += S.nameSpace() + "::";
4493 if (S.variety() == "GNU")
4494 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4495 else
4496 Spelling += RawSpelling;
4497 OS << " {AttributeCommonInfo::AS_" << S.variety();
4498 OS << ", \"" << Spelling << "\"},\n";
4500 OS << "};\n";
4503 std::vector<std::string> ArgNames;
4504 for (const auto &Arg : Attr.getValueAsListOfDefs("Args")) {
4505 bool UnusedUnset;
4506 if (Arg->getValueAsBitOrUnset("Fake", UnusedUnset))
4507 continue;
4508 ArgNames.push_back(Arg->getValueAsString("Name").str());
4509 for (const auto &Class : Arg->getSuperClasses()) {
4510 if (Class.first->getName().startswith("Variadic")) {
4511 ArgNames.back().append("...");
4512 break;
4516 if (!ArgNames.empty()) {
4517 OS << "static constexpr const char *" << I->first << "ArgNames[] = {\n";
4518 for (const auto &N : ArgNames)
4519 OS << '"' << N << "\",";
4520 OS << "};\n";
4523 OS << "struct ParsedAttrInfo" << I->first
4524 << " final : public ParsedAttrInfo {\n";
4525 OS << " constexpr ParsedAttrInfo" << I->first << "() : ParsedAttrInfo(\n";
4526 OS << " /*AttrKind=*/ParsedAttr::AT_" << AttrName << ",\n";
4527 emitArgInfo(Attr, OS);
4528 OS << " /*HasCustomParsing=*/";
4529 OS << Attr.getValueAsBit("HasCustomParsing") << ",\n";
4530 OS << " /*AcceptsExprPack=*/";
4531 OS << Attr.getValueAsBit("AcceptsExprPack") << ",\n";
4532 OS << " /*IsTargetSpecific=*/";
4533 OS << Attr.isSubClassOf("TargetSpecificAttr") << ",\n";
4534 OS << " /*IsType=*/";
4535 OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr"))
4536 << ",\n";
4537 OS << " /*IsStmt=*/";
4538 OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"))
4539 << ",\n";
4540 OS << " /*IsKnownToGCC=*/";
4541 OS << IsKnownToGCC(Attr) << ",\n";
4542 OS << " /*IsSupportedByPragmaAttribute=*/";
4543 OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ",\n";
4544 if (!Spellings.empty())
4545 OS << " /*Spellings=*/" << I->first << "Spellings,\n";
4546 else
4547 OS << " /*Spellings=*/{},\n";
4548 if (!ArgNames.empty())
4549 OS << " /*ArgNames=*/" << I->first << "ArgNames";
4550 else
4551 OS << " /*ArgNames=*/{}";
4552 OS << ") {}\n";
4553 GenerateAppertainsTo(Attr, OS);
4554 GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS);
4555 GenerateLangOptRequirements(Attr, OS);
4556 GenerateTargetRequirements(Attr, Dupes, OS);
4557 GenerateSpellingTargetRequirements(
4558 Attr, Attr.getValueAsListOfDefs("TargetSpecificSpellings"), OS);
4559 GenerateSpellingIndexToSemanticSpelling(Attr, OS);
4560 PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS);
4561 GenerateHandleDeclAttribute(Attr, OS);
4562 GenerateIsParamExpr(Attr, OS);
4563 OS << "static const ParsedAttrInfo" << I->first << " Instance;\n";
4564 OS << "};\n";
4565 OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first
4566 << "::Instance;\n";
4569 OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n";
4570 for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) {
4571 OS << "&ParsedAttrInfo" << I->first << "::Instance,\n";
4573 OS << "};\n\n";
4575 // Generate function for handling attributes with delayed arguments
4576 GenerateHandleAttrWithDelayedArgs(Records, OS);
4578 // Generate the attribute match rules.
4579 emitAttributeMatchRules(PragmaAttributeSupport, OS);
4581 OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n";
4583 // Write out the declaration merging check logic.
4584 OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, "
4585 << "const Attr *A) {\n";
4586 OS << MergeDeclOS.str();
4587 OS << " return true;\n";
4588 OS << "}\n\n";
4590 OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n";
4592 // Write out the statement merging check logic.
4593 OS << "static bool DiagnoseMutualExclusions(Sema &S, "
4594 << "const SmallVectorImpl<const Attr *> &C) {\n";
4595 OS << " for (const Attr *A : C) {\n";
4596 OS << MergeStmtOS.str();
4597 OS << " }\n";
4598 OS << " return true;\n";
4599 OS << "}\n\n";
4601 OS << "#endif\n";
4604 // Emits the kind list of parsed attributes
4605 void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) {
4606 emitSourceFileHeader("Attribute name matcher", OS, Records);
4608 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4609 std::vector<StringMatcher::StringPair> GNU, Declspec, Microsoft, CXX11,
4610 Keywords, Pragma, C23, HLSLSemantic;
4611 std::set<std::string> Seen;
4612 for (const auto *A : Attrs) {
4613 const Record &Attr = *A;
4615 bool SemaHandler = Attr.getValueAsBit("SemaHandler");
4616 bool Ignored = Attr.getValueAsBit("Ignored");
4617 if (SemaHandler || Ignored) {
4618 // Attribute spellings can be shared between target-specific attributes,
4619 // and can be shared between syntaxes for the same attribute. For
4620 // instance, an attribute can be spelled GNU<"interrupt"> for an ARM-
4621 // specific attribute, or MSP430-specific attribute. Additionally, an
4622 // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport">
4623 // for the same semantic attribute. Ultimately, we need to map each of
4624 // these to a single AttributeCommonInfo::Kind value, but the
4625 // StringMatcher class cannot handle duplicate match strings. So we
4626 // generate a list of string to match based on the syntax, and emit
4627 // multiple string matchers depending on the syntax used.
4628 std::string AttrName;
4629 if (Attr.isSubClassOf("TargetSpecificAttr") &&
4630 !Attr.isValueUnset("ParseKind")) {
4631 AttrName = std::string(Attr.getValueAsString("ParseKind"));
4632 if (!Seen.insert(AttrName).second)
4633 continue;
4634 } else
4635 AttrName = NormalizeAttrName(StringRef(Attr.getName())).str();
4637 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attr);
4638 for (const auto &S : Spellings) {
4639 const std::string &RawSpelling = S.name();
4640 std::vector<StringMatcher::StringPair> *Matches = nullptr;
4641 std::string Spelling;
4642 const std::string &Variety = S.variety();
4643 if (Variety == "CXX11") {
4644 Matches = &CXX11;
4645 if (!S.nameSpace().empty())
4646 Spelling += S.nameSpace() + "::";
4647 } else if (Variety == "C23") {
4648 Matches = &C23;
4649 if (!S.nameSpace().empty())
4650 Spelling += S.nameSpace() + "::";
4651 } else if (Variety == "GNU")
4652 Matches = &GNU;
4653 else if (Variety == "Declspec")
4654 Matches = &Declspec;
4655 else if (Variety == "Microsoft")
4656 Matches = &Microsoft;
4657 else if (Variety == "Keyword")
4658 Matches = &Keywords;
4659 else if (Variety == "Pragma")
4660 Matches = &Pragma;
4661 else if (Variety == "HLSLSemantic")
4662 Matches = &HLSLSemantic;
4664 assert(Matches && "Unsupported spelling variety found");
4666 if (Variety == "GNU")
4667 Spelling += NormalizeGNUAttrSpelling(RawSpelling);
4668 else
4669 Spelling += RawSpelling;
4671 if (SemaHandler)
4672 Matches->push_back(StringMatcher::StringPair(
4673 Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";"));
4674 else
4675 Matches->push_back(StringMatcher::StringPair(
4676 Spelling, "return AttributeCommonInfo::IgnoredAttribute;"));
4681 OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, ";
4682 OS << "AttributeCommonInfo::Syntax Syntax) {\n";
4683 OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n";
4684 StringMatcher("Name", GNU, OS).Emit();
4685 OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n";
4686 StringMatcher("Name", Declspec, OS).Emit();
4687 OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n";
4688 StringMatcher("Name", Microsoft, OS).Emit();
4689 OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n";
4690 StringMatcher("Name", CXX11, OS).Emit();
4691 OS << " } else if (AttributeCommonInfo::AS_C23 == Syntax) {\n";
4692 StringMatcher("Name", C23, OS).Emit();
4693 OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || ";
4694 OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n";
4695 StringMatcher("Name", Keywords, OS).Emit();
4696 OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n";
4697 StringMatcher("Name", Pragma, OS).Emit();
4698 OS << " } else if (AttributeCommonInfo::AS_HLSLSemantic == Syntax) {\n";
4699 StringMatcher("Name", HLSLSemantic, OS).Emit();
4700 OS << " }\n";
4701 OS << " return AttributeCommonInfo::UnknownAttribute;\n"
4702 << "}\n";
4705 // Emits the code to dump an attribute.
4706 void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) {
4707 emitSourceFileHeader("Attribute text node dumper", OS, Records);
4709 std::vector<Record*> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4710 for (const auto *Attr : Attrs) {
4711 const Record &R = *Attr;
4712 if (!R.getValueAsBit("ASTNode"))
4713 continue;
4715 // If the attribute has a semantically-meaningful name (which is determined
4716 // by whether there is a Spelling enumeration for it), then write out the
4717 // spelling used for the attribute.
4719 std::string FunctionContent;
4720 llvm::raw_string_ostream SS(FunctionContent);
4722 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(R);
4723 if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings))
4724 SS << " OS << \" \" << A->getSpelling();\n";
4726 Args = R.getValueAsListOfDefs("Args");
4727 for (const auto *Arg : Args)
4728 createArgument(*Arg, R.getName())->writeDump(SS);
4730 if (Attr->getValueAsBit("AcceptsExprPack"))
4731 VariadicExprArgument("DelayedArgs", R.getName()).writeDump(OS);
4733 if (SS.tell()) {
4734 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4735 << "Attr *A) {\n";
4736 if (!Args.empty())
4737 OS << " const auto *SA = cast<" << R.getName()
4738 << "Attr>(A); (void)SA;\n";
4739 OS << SS.str();
4740 OS << " }\n";
4745 void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) {
4746 emitSourceFileHeader("Attribute text node traverser", OS, Records);
4748 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr"), Args;
4749 for (const auto *Attr : Attrs) {
4750 const Record &R = *Attr;
4751 if (!R.getValueAsBit("ASTNode"))
4752 continue;
4754 std::string FunctionContent;
4755 llvm::raw_string_ostream SS(FunctionContent);
4757 Args = R.getValueAsListOfDefs("Args");
4758 for (const auto *Arg : Args)
4759 createArgument(*Arg, R.getName())->writeDumpChildren(SS);
4760 if (Attr->getValueAsBit("AcceptsExprPack"))
4761 VariadicExprArgument("DelayedArgs", R.getName()).writeDumpChildren(SS);
4762 if (SS.tell()) {
4763 OS << " void Visit" << R.getName() << "Attr(const " << R.getName()
4764 << "Attr *A) {\n";
4765 if (!Args.empty())
4766 OS << " const auto *SA = cast<" << R.getName()
4767 << "Attr>(A); (void)SA;\n";
4768 OS << SS.str();
4769 OS << " }\n";
4774 void EmitClangAttrParserStringSwitches(RecordKeeper &Records, raw_ostream &OS) {
4775 emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS, Records);
4776 emitClangAttrArgContextList(Records, OS);
4777 emitClangAttrIdentifierArgList(Records, OS);
4778 emitClangAttrUnevaluatedStringLiteralList(Records, OS);
4779 emitClangAttrVariadicIdentifierArgList(Records, OS);
4780 emitClangAttrThisIsaIdentifierArgList(Records, OS);
4781 emitClangAttrAcceptsExprPack(Records, OS);
4782 emitClangAttrTypeArgList(Records, OS);
4783 emitClangAttrLateParsedList(Records, OS);
4786 void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records,
4787 raw_ostream &OS) {
4788 getPragmaAttributeSupport(Records).generateParsingHelpers(OS);
4791 void EmitClangAttrDocTable(RecordKeeper &Records, raw_ostream &OS) {
4792 emitSourceFileHeader("Clang attribute documentation", OS, Records);
4794 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
4795 for (const auto *A : Attrs) {
4796 if (!A->getValueAsBit("ASTNode"))
4797 continue;
4798 std::vector<Record *> Docs = A->getValueAsListOfDefs("Documentation");
4799 assert(!Docs.empty());
4800 // Only look at the first documentation if there are several.
4801 // (Currently there's only one such attr, revisit if this becomes common).
4802 StringRef Text =
4803 Docs.front()->getValueAsOptionalString("Content").value_or("");
4804 OS << "\nstatic const char AttrDoc_" << A->getName() << "[] = "
4805 << "R\"reST(" << Text.trim() << ")reST\";\n";
4809 enum class SpellingKind : size_t {
4810 GNU,
4811 CXX11,
4812 C23,
4813 Declspec,
4814 Microsoft,
4815 Keyword,
4816 Pragma,
4817 HLSLSemantic,
4818 NumSpellingKinds
4820 static const size_t NumSpellingKinds = (size_t)SpellingKind::NumSpellingKinds;
4822 class SpellingList {
4823 std::vector<std::string> Spellings[NumSpellingKinds];
4825 public:
4826 ArrayRef<std::string> operator[](SpellingKind K) const {
4827 return Spellings[(size_t)K];
4830 void add(const Record &Attr, FlattenedSpelling Spelling) {
4831 SpellingKind Kind = StringSwitch<SpellingKind>(Spelling.variety())
4832 .Case("GNU", SpellingKind::GNU)
4833 .Case("CXX11", SpellingKind::CXX11)
4834 .Case("C23", SpellingKind::C23)
4835 .Case("Declspec", SpellingKind::Declspec)
4836 .Case("Microsoft", SpellingKind::Microsoft)
4837 .Case("Keyword", SpellingKind::Keyword)
4838 .Case("Pragma", SpellingKind::Pragma)
4839 .Case("HLSLSemantic", SpellingKind::HLSLSemantic);
4840 std::string Name;
4841 if (!Spelling.nameSpace().empty()) {
4842 switch (Kind) {
4843 case SpellingKind::CXX11:
4844 case SpellingKind::C23:
4845 Name = Spelling.nameSpace() + "::";
4846 break;
4847 case SpellingKind::Pragma:
4848 Name = Spelling.nameSpace() + " ";
4849 break;
4850 default:
4851 PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling");
4854 Name += Spelling.name();
4856 Spellings[(size_t)Kind].push_back(Name);
4860 class DocumentationData {
4861 public:
4862 const Record *Documentation;
4863 const Record *Attribute;
4864 std::string Heading;
4865 SpellingList SupportedSpellings;
4867 DocumentationData(const Record &Documentation, const Record &Attribute,
4868 std::pair<std::string, SpellingList> HeadingAndSpellings)
4869 : Documentation(&Documentation), Attribute(&Attribute),
4870 Heading(std::move(HeadingAndSpellings.first)),
4871 SupportedSpellings(std::move(HeadingAndSpellings.second)) {}
4874 static void WriteCategoryHeader(const Record *DocCategory,
4875 raw_ostream &OS) {
4876 const StringRef Name = DocCategory->getValueAsString("Name");
4877 OS << Name << "\n" << std::string(Name.size(), '=') << "\n";
4879 // If there is content, print that as well.
4880 const StringRef ContentStr = DocCategory->getValueAsString("Content");
4881 // Trim leading and trailing newlines and spaces.
4882 OS << ContentStr.trim();
4884 OS << "\n\n";
4887 static std::pair<std::string, SpellingList>
4888 GetAttributeHeadingAndSpellings(const Record &Documentation,
4889 const Record &Attribute,
4890 StringRef Cat) {
4891 // FIXME: there is no way to have a per-spelling category for the attribute
4892 // documentation. This may not be a limiting factor since the spellings
4893 // should generally be consistently applied across the category.
4895 std::vector<FlattenedSpelling> Spellings = GetFlattenedSpellings(Attribute);
4896 if (Spellings.empty())
4897 PrintFatalError(Attribute.getLoc(),
4898 "Attribute has no supported spellings; cannot be "
4899 "documented");
4901 // Determine the heading to be used for this attribute.
4902 std::string Heading = std::string(Documentation.getValueAsString("Heading"));
4903 if (Heading.empty()) {
4904 // If there's only one spelling, we can simply use that.
4905 if (Spellings.size() == 1)
4906 Heading = Spellings.begin()->name();
4907 else {
4908 std::set<std::string> Uniques;
4909 for (auto I = Spellings.begin(), E = Spellings.end();
4910 I != E; ++I) {
4911 std::string Spelling =
4912 std::string(NormalizeNameForSpellingComparison(I->name()));
4913 Uniques.insert(Spelling);
4915 // If the semantic map has only one spelling, that is sufficient for our
4916 // needs.
4917 if (Uniques.size() == 1)
4918 Heading = *Uniques.begin();
4919 // If it's in the undocumented category, just construct a header by
4920 // concatenating all the spellings. Might not be great, but better than
4921 // nothing.
4922 else if (Cat == "Undocumented")
4923 Heading = llvm::join(Uniques.begin(), Uniques.end(), ", ");
4927 // If the heading is still empty, it is an error.
4928 if (Heading.empty())
4929 PrintFatalError(Attribute.getLoc(),
4930 "This attribute requires a heading to be specified");
4932 SpellingList SupportedSpellings;
4933 for (const auto &I : Spellings)
4934 SupportedSpellings.add(Attribute, I);
4936 return std::make_pair(std::move(Heading), std::move(SupportedSpellings));
4939 static void WriteDocumentation(RecordKeeper &Records,
4940 const DocumentationData &Doc, raw_ostream &OS) {
4941 OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n";
4943 // List what spelling syntaxes the attribute supports.
4944 // Note: "#pragma clang attribute" is handled outside the spelling kinds loop
4945 // so it must be last.
4946 OS << ".. csv-table:: Supported Syntaxes\n";
4947 OS << " :header: \"GNU\", \"C++11\", \"C23\", \"``__declspec``\",";
4948 OS << " \"Keyword\", \"``#pragma``\", \"HLSL Semantic\", \"``#pragma clang ";
4949 OS << "attribute``\"\n\n \"";
4950 for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) {
4951 SpellingKind K = (SpellingKind)Kind;
4952 // TODO: List Microsoft (IDL-style attribute) spellings once we fully
4953 // support them.
4954 if (K == SpellingKind::Microsoft)
4955 continue;
4957 bool PrintedAny = false;
4958 for (StringRef Spelling : Doc.SupportedSpellings[K]) {
4959 if (PrintedAny)
4960 OS << " |br| ";
4961 OS << "``" << Spelling << "``";
4962 PrintedAny = true;
4965 OS << "\",\"";
4968 if (getPragmaAttributeSupport(Records).isAttributedSupported(
4969 *Doc.Attribute))
4970 OS << "Yes";
4971 OS << "\"\n\n";
4973 // If the attribute is deprecated, print a message about it, and possibly
4974 // provide a replacement attribute.
4975 if (!Doc.Documentation->isValueUnset("Deprecated")) {
4976 OS << "This attribute has been deprecated, and may be removed in a future "
4977 << "version of Clang.";
4978 const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated");
4979 const StringRef Replacement = Deprecated.getValueAsString("Replacement");
4980 if (!Replacement.empty())
4981 OS << " This attribute has been superseded by ``" << Replacement
4982 << "``.";
4983 OS << "\n\n";
4986 const StringRef ContentStr = Doc.Documentation->getValueAsString("Content");
4987 // Trim leading and trailing newlines and spaces.
4988 OS << ContentStr.trim();
4990 OS << "\n\n\n";
4993 void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) {
4994 // Get the documentation introduction paragraph.
4995 const Record *Documentation = Records.getDef("GlobalDocumentation");
4996 if (!Documentation) {
4997 PrintFatalError("The Documentation top-level definition is missing, "
4998 "no documentation will be generated.");
4999 return;
5002 OS << Documentation->getValueAsString("Intro") << "\n";
5004 // Gather the Documentation lists from each of the attributes, based on the
5005 // category provided.
5006 std::vector<Record *> Attrs = Records.getAllDerivedDefinitions("Attr");
5007 struct CategoryLess {
5008 bool operator()(const Record *L, const Record *R) const {
5009 return L->getValueAsString("Name") < R->getValueAsString("Name");
5012 std::map<const Record *, std::vector<DocumentationData>, CategoryLess>
5013 SplitDocs;
5014 for (const auto *A : Attrs) {
5015 const Record &Attr = *A;
5016 std::vector<Record *> Docs = Attr.getValueAsListOfDefs("Documentation");
5017 for (const auto *D : Docs) {
5018 const Record &Doc = *D;
5019 const Record *Category = Doc.getValueAsDef("Category");
5020 // If the category is "InternalOnly", then there cannot be any other
5021 // documentation categories (otherwise, the attribute would be
5022 // emitted into the docs).
5023 const StringRef Cat = Category->getValueAsString("Name");
5024 bool InternalOnly = Cat == "InternalOnly";
5025 if (InternalOnly && Docs.size() > 1)
5026 PrintFatalError(Doc.getLoc(),
5027 "Attribute is \"InternalOnly\", but has multiple "
5028 "documentation categories");
5030 if (!InternalOnly)
5031 SplitDocs[Category].push_back(DocumentationData(
5032 Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr, Cat)));
5036 // Having split the attributes out based on what documentation goes where,
5037 // we can begin to generate sections of documentation.
5038 for (auto &I : SplitDocs) {
5039 WriteCategoryHeader(I.first, OS);
5041 llvm::sort(I.second,
5042 [](const DocumentationData &D1, const DocumentationData &D2) {
5043 return D1.Heading < D2.Heading;
5046 // Walk over each of the attributes in the category and write out their
5047 // documentation.
5048 for (const auto &Doc : I.second)
5049 WriteDocumentation(Records, Doc, OS);
5053 void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records,
5054 raw_ostream &OS) {
5055 PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records);
5056 ParsedAttrMap Attrs = getParsedAttrList(Records);
5057 OS << "#pragma clang attribute supports the following attributes:\n";
5058 for (const auto &I : Attrs) {
5059 if (!Support.isAttributedSupported(*I.second))
5060 continue;
5061 OS << I.first;
5062 if (I.second->isValueUnset("Subjects")) {
5063 OS << " ()\n";
5064 continue;
5066 const Record *SubjectObj = I.second->getValueAsDef("Subjects");
5067 std::vector<Record *> Subjects =
5068 SubjectObj->getValueAsListOfDefs("Subjects");
5069 OS << " (";
5070 bool PrintComma = false;
5071 for (const auto &Subject : llvm::enumerate(Subjects)) {
5072 if (!isSupportedPragmaClangAttributeSubject(*Subject.value()))
5073 continue;
5074 if (PrintComma)
5075 OS << ", ";
5076 PrintComma = true;
5077 PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet =
5078 Support.SubjectsToRules.find(Subject.value())->getSecond();
5079 if (RuleSet.isRule()) {
5080 OS << RuleSet.getRule().getEnumValueName();
5081 continue;
5083 OS << "(";
5084 for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) {
5085 if (Rule.index())
5086 OS << ", ";
5087 OS << Rule.value().getEnumValueName();
5089 OS << ")";
5091 OS << ")\n";
5093 OS << "End of supported attributes.\n";
5096 } // end namespace clang