[LLD][COFF] Add support for /noimplib
[llvm-project.git] / clang / lib / Lex / LiteralSupport.cpp
blob6e6fd361ebf9455fa93d8a3a5abb4fa62ea6df20
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
12 //===----------------------------------------------------------------------===//
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <cstring>
35 #include <string>
37 using namespace clang;
39 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
40 switch (kind) {
41 default: llvm_unreachable("Unknown token type!");
42 case tok::char_constant:
43 case tok::string_literal:
44 case tok::utf8_char_constant:
45 case tok::utf8_string_literal:
46 return Target.getCharWidth();
47 case tok::wide_char_constant:
48 case tok::wide_string_literal:
49 return Target.getWCharWidth();
50 case tok::utf16_char_constant:
51 case tok::utf16_string_literal:
52 return Target.getChar16Width();
53 case tok::utf32_char_constant:
54 case tok::utf32_string_literal:
55 return Target.getChar32Width();
59 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
60 FullSourceLoc TokLoc,
61 const char *TokBegin,
62 const char *TokRangeBegin,
63 const char *TokRangeEnd) {
64 SourceLocation Begin =
65 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
66 TokLoc.getManager(), Features);
67 SourceLocation End =
68 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
69 TokLoc.getManager(), Features);
70 return CharSourceRange::getCharRange(Begin, End);
73 /// Produce a diagnostic highlighting some portion of a literal.
74 ///
75 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
76 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
77 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
78 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
79 const LangOptions &Features, FullSourceLoc TokLoc,
80 const char *TokBegin, const char *TokRangeBegin,
81 const char *TokRangeEnd, unsigned DiagID) {
82 SourceLocation Begin =
83 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
84 TokLoc.getManager(), Features);
85 return Diags->Report(Begin, DiagID) <<
86 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
89 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
90 /// either a character or a string literal.
91 static unsigned ProcessCharEscape(const char *ThisTokBegin,
92 const char *&ThisTokBuf,
93 const char *ThisTokEnd, bool &HadError,
94 FullSourceLoc Loc, unsigned CharWidth,
95 DiagnosticsEngine *Diags,
96 const LangOptions &Features) {
97 const char *EscapeBegin = ThisTokBuf;
98 bool Delimited = false;
99 bool EndDelimiterFound = false;
101 // Skip the '\' char.
102 ++ThisTokBuf;
104 // We know that this character can't be off the end of the buffer, because
105 // that would have been \", which would not have been the end of string.
106 unsigned ResultChar = *ThisTokBuf++;
107 switch (ResultChar) {
108 // These map to themselves.
109 case '\\': case '\'': case '"': case '?': break;
111 // These have fixed mappings.
112 case 'a':
113 // TODO: K&R: the meaning of '\\a' is different in traditional C
114 ResultChar = 7;
115 break;
116 case 'b':
117 ResultChar = 8;
118 break;
119 case 'e':
120 if (Diags)
121 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
122 diag::ext_nonstandard_escape) << "e";
123 ResultChar = 27;
124 break;
125 case 'E':
126 if (Diags)
127 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
128 diag::ext_nonstandard_escape) << "E";
129 ResultChar = 27;
130 break;
131 case 'f':
132 ResultChar = 12;
133 break;
134 case 'n':
135 ResultChar = 10;
136 break;
137 case 'r':
138 ResultChar = 13;
139 break;
140 case 't':
141 ResultChar = 9;
142 break;
143 case 'v':
144 ResultChar = 11;
145 break;
146 case 'x': { // Hex escape.
147 ResultChar = 0;
148 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
149 Delimited = true;
150 ThisTokBuf++;
151 if (*ThisTokBuf == '}') {
152 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
153 diag::err_delimited_escape_empty);
154 return ResultChar;
156 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
157 if (Diags)
158 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
159 diag::err_hex_escape_no_digits) << "x";
160 return ResultChar;
163 // Hex escapes are a maximal series of hex digits.
164 bool Overflow = false;
165 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
166 if (Delimited && *ThisTokBuf == '}') {
167 ThisTokBuf++;
168 EndDelimiterFound = true;
169 break;
171 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
172 if (CharVal == -1) {
173 // Non delimited hex escape sequences stop at the first non-hex digit.
174 if (!Delimited)
175 break;
176 HadError = true;
177 if (Diags)
178 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
179 diag::err_delimited_escape_invalid)
180 << StringRef(ThisTokBuf, 1);
181 continue;
183 // About to shift out a digit?
184 if (ResultChar & 0xF0000000)
185 Overflow = true;
186 ResultChar <<= 4;
187 ResultChar |= CharVal;
189 // See if any bits will be truncated when evaluated as a character.
190 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
191 Overflow = true;
192 ResultChar &= ~0U >> (32-CharWidth);
195 // Check for overflow.
196 if (!HadError && Overflow) { // Too many digits to fit in
197 HadError = true;
198 if (Diags)
199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
200 diag::err_escape_too_large)
201 << 0;
203 break;
205 case '0': case '1': case '2': case '3':
206 case '4': case '5': case '6': case '7': {
207 // Octal escapes.
208 --ThisTokBuf;
209 ResultChar = 0;
211 // Octal escapes are a series of octal digits with maximum length 3.
212 // "\0123" is a two digit sequence equal to "\012" "3".
213 unsigned NumDigits = 0;
214 do {
215 ResultChar <<= 3;
216 ResultChar |= *ThisTokBuf++ - '0';
217 ++NumDigits;
218 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
219 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
221 // Check for overflow. Reject '\777', but not L'\777'.
222 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
223 if (Diags)
224 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
225 diag::err_escape_too_large) << 1;
226 ResultChar &= ~0U >> (32-CharWidth);
228 break;
230 case 'o': {
231 bool Overflow = false;
232 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
233 HadError = true;
234 if (Diags)
235 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
236 diag::err_delimited_escape_missing_brace);
238 break;
240 ResultChar = 0;
241 Delimited = true;
242 ++ThisTokBuf;
243 if (*ThisTokBuf == '}') {
244 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
245 diag::err_delimited_escape_empty);
246 return ResultChar;
249 while (ThisTokBuf != ThisTokEnd) {
250 if (*ThisTokBuf == '}') {
251 EndDelimiterFound = true;
252 ThisTokBuf++;
253 break;
255 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
256 HadError = true;
257 if (Diags)
258 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
259 diag::err_delimited_escape_invalid)
260 << StringRef(ThisTokBuf, 1);
261 ThisTokBuf++;
262 continue;
264 if (ResultChar & 0x020000000)
265 Overflow = true;
267 ResultChar <<= 3;
268 ResultChar |= *ThisTokBuf++ - '0';
270 // Check for overflow. Reject '\777', but not L'\777'.
271 if (!HadError &&
272 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
273 HadError = true;
274 if (Diags)
275 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
276 diag::err_escape_too_large)
277 << 1;
278 ResultChar &= ~0U >> (32 - CharWidth);
280 break;
282 // Otherwise, these are not valid escapes.
283 case '(': case '{': case '[': case '%':
284 // GCC accepts these as extensions. We warn about them as such though.
285 if (Diags)
286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
287 diag::ext_nonstandard_escape)
288 << std::string(1, ResultChar);
289 break;
290 default:
291 if (!Diags)
292 break;
294 if (isPrintable(ResultChar))
295 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
296 diag::ext_unknown_escape)
297 << std::string(1, ResultChar);
298 else
299 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
300 diag::ext_unknown_escape)
301 << "x" + llvm::utohexstr(ResultChar);
302 break;
305 if (Delimited && Diags) {
306 if (!EndDelimiterFound)
307 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
308 diag::err_expected)
309 << tok::r_brace;
310 else if (!HadError) {
311 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
312 diag::ext_delimited_escape_sequence);
316 return ResultChar;
319 static void appendCodePoint(unsigned Codepoint,
320 llvm::SmallVectorImpl<char> &Str) {
321 char ResultBuf[4];
322 char *ResultPtr = ResultBuf;
323 bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
324 (void)Res;
325 assert(Res && "Unexpected conversion failure");
326 Str.append(ResultBuf, ResultPtr);
329 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
330 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
331 if (*I != '\\') {
332 Buf.push_back(*I);
333 continue;
336 ++I;
337 char Kind = *I;
338 ++I;
340 assert(Kind == 'u' || Kind == 'U');
341 uint32_t CodePoint = 0;
343 if (Kind == 'u' && *I == '{') {
344 for (++I; *I != '}'; ++I) {
345 unsigned Value = llvm::hexDigitValue(*I);
346 assert(Value != -1U);
347 CodePoint <<= 4;
348 CodePoint += Value;
350 appendCodePoint(CodePoint, Buf);
351 continue;
354 unsigned NumHexDigits;
355 if (Kind == 'u')
356 NumHexDigits = 4;
357 else
358 NumHexDigits = 8;
360 assert(I + NumHexDigits <= E);
362 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
363 unsigned Value = llvm::hexDigitValue(*I);
364 assert(Value != -1U);
366 CodePoint <<= 4;
367 CodePoint += Value;
370 appendCodePoint(CodePoint, Buf);
371 --I;
375 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
376 /// return the UTF32.
377 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
378 const char *ThisTokEnd,
379 uint32_t &UcnVal, unsigned short &UcnLen,
380 FullSourceLoc Loc, DiagnosticsEngine *Diags,
381 const LangOptions &Features,
382 bool in_char_string_literal = false) {
383 const char *UcnBegin = ThisTokBuf;
385 // Skip the '\u' char's.
386 ThisTokBuf += 2;
388 bool Delimited = false;
389 bool EndDelimiterFound = false;
390 bool HasError = false;
392 if (UcnBegin[1] == 'u' && in_char_string_literal &&
393 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
394 Delimited = true;
395 ThisTokBuf++;
396 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
397 if (Diags)
398 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
399 diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
400 return false;
402 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
404 bool Overflow = false;
405 unsigned short Count = 0;
406 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
407 ++ThisTokBuf) {
408 if (Delimited && *ThisTokBuf == '}') {
409 ++ThisTokBuf;
410 EndDelimiterFound = true;
411 break;
413 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
414 if (CharVal == -1) {
415 HasError = true;
416 if (!Delimited)
417 break;
418 if (Diags) {
419 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
420 diag::err_delimited_escape_invalid)
421 << StringRef(ThisTokBuf, 1);
423 Count++;
424 continue;
426 if (UcnVal & 0xF0000000) {
427 Overflow = true;
428 continue;
430 UcnVal <<= 4;
431 UcnVal |= CharVal;
432 Count++;
435 if (Overflow) {
436 if (Diags)
437 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
438 diag::err_escape_too_large)
439 << 0;
440 return false;
443 if (Delimited && !EndDelimiterFound) {
444 if (Diags) {
445 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
446 diag::err_expected)
447 << tok::r_brace;
449 return false;
452 // If we didn't consume the proper number of digits, there is a problem.
453 if (Count == 0 || (!Delimited && Count != UcnLen)) {
454 if (Diags)
455 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
456 Delimited ? diag::err_delimited_escape_empty
457 : diag::err_ucn_escape_incomplete);
458 return false;
461 if (HasError)
462 return false;
464 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
465 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
466 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
467 if (Diags)
468 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
469 diag::err_ucn_escape_invalid);
470 return false;
473 // C++11 allows UCNs that refer to control characters and basic source
474 // characters inside character and string literals
475 if (UcnVal < 0xa0 &&
476 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
477 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
478 if (Diags) {
479 char BasicSCSChar = UcnVal;
480 if (UcnVal >= 0x20 && UcnVal < 0x7f)
481 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
482 IsError ? diag::err_ucn_escape_basic_scs :
483 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
484 << StringRef(&BasicSCSChar, 1);
485 else
486 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
487 IsError ? diag::err_ucn_control_character :
488 diag::warn_cxx98_compat_literal_ucn_control_character);
490 if (IsError)
491 return false;
494 if (!Features.CPlusPlus && !Features.C99 && Diags)
495 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
496 diag::warn_ucn_not_valid_in_c89_literal);
498 if (Delimited && Diags)
499 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
500 diag::ext_delimited_escape_sequence);
502 return true;
505 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
506 /// which this UCN will occupy.
507 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
508 const char *ThisTokEnd, unsigned CharByteWidth,
509 const LangOptions &Features, bool &HadError) {
510 // UTF-32: 4 bytes per escape.
511 if (CharByteWidth == 4)
512 return 4;
514 uint32_t UcnVal = 0;
515 unsigned short UcnLen = 0;
516 FullSourceLoc Loc;
518 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
519 UcnLen, Loc, nullptr, Features, true)) {
520 HadError = true;
521 return 0;
524 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
525 if (CharByteWidth == 2)
526 return UcnVal <= 0xFFFF ? 2 : 4;
528 // UTF-8.
529 if (UcnVal < 0x80)
530 return 1;
531 if (UcnVal < 0x800)
532 return 2;
533 if (UcnVal < 0x10000)
534 return 3;
535 return 4;
538 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
539 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
540 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
541 /// we will likely rework our support for UCN's.
542 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
543 const char *ThisTokEnd,
544 char *&ResultBuf, bool &HadError,
545 FullSourceLoc Loc, unsigned CharByteWidth,
546 DiagnosticsEngine *Diags,
547 const LangOptions &Features) {
548 typedef uint32_t UTF32;
549 UTF32 UcnVal = 0;
550 unsigned short UcnLen = 0;
551 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
552 Loc, Diags, Features, true)) {
553 HadError = true;
554 return;
557 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
558 "only character widths of 1, 2, or 4 bytes supported");
560 (void)UcnLen;
561 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
563 if (CharByteWidth == 4) {
564 // FIXME: Make the type of the result buffer correct instead of
565 // using reinterpret_cast.
566 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
567 *ResultPtr = UcnVal;
568 ResultBuf += 4;
569 return;
572 if (CharByteWidth == 2) {
573 // FIXME: Make the type of the result buffer correct instead of
574 // using reinterpret_cast.
575 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
577 if (UcnVal <= (UTF32)0xFFFF) {
578 *ResultPtr = UcnVal;
579 ResultBuf += 2;
580 return;
583 // Convert to UTF16.
584 UcnVal -= 0x10000;
585 *ResultPtr = 0xD800 + (UcnVal >> 10);
586 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
587 ResultBuf += 4;
588 return;
591 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
593 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
594 // The conversion below was inspired by:
595 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
596 // First, we determine how many bytes the result will require.
597 typedef uint8_t UTF8;
599 unsigned short bytesToWrite = 0;
600 if (UcnVal < (UTF32)0x80)
601 bytesToWrite = 1;
602 else if (UcnVal < (UTF32)0x800)
603 bytesToWrite = 2;
604 else if (UcnVal < (UTF32)0x10000)
605 bytesToWrite = 3;
606 else
607 bytesToWrite = 4;
609 const unsigned byteMask = 0xBF;
610 const unsigned byteMark = 0x80;
612 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
613 // into the first byte, depending on how many bytes follow.
614 static const UTF8 firstByteMark[5] = {
615 0x00, 0x00, 0xC0, 0xE0, 0xF0
617 // Finally, we write the bytes into ResultBuf.
618 ResultBuf += bytesToWrite;
619 switch (bytesToWrite) { // note: everything falls through.
620 case 4:
621 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
622 LLVM_FALLTHROUGH;
623 case 3:
624 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
625 LLVM_FALLTHROUGH;
626 case 2:
627 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
628 LLVM_FALLTHROUGH;
629 case 1:
630 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
632 // Update the buffer.
633 ResultBuf += bytesToWrite;
636 /// integer-constant: [C99 6.4.4.1]
637 /// decimal-constant integer-suffix
638 /// octal-constant integer-suffix
639 /// hexadecimal-constant integer-suffix
640 /// binary-literal integer-suffix [GNU, C++1y]
641 /// user-defined-integer-literal: [C++11 lex.ext]
642 /// decimal-literal ud-suffix
643 /// octal-literal ud-suffix
644 /// hexadecimal-literal ud-suffix
645 /// binary-literal ud-suffix [GNU, C++1y]
646 /// decimal-constant:
647 /// nonzero-digit
648 /// decimal-constant digit
649 /// octal-constant:
650 /// 0
651 /// octal-constant octal-digit
652 /// hexadecimal-constant:
653 /// hexadecimal-prefix hexadecimal-digit
654 /// hexadecimal-constant hexadecimal-digit
655 /// hexadecimal-prefix: one of
656 /// 0x 0X
657 /// binary-literal:
658 /// 0b binary-digit
659 /// 0B binary-digit
660 /// binary-literal binary-digit
661 /// integer-suffix:
662 /// unsigned-suffix [long-suffix]
663 /// unsigned-suffix [long-long-suffix]
664 /// long-suffix [unsigned-suffix]
665 /// long-long-suffix [unsigned-sufix]
666 /// nonzero-digit:
667 /// 1 2 3 4 5 6 7 8 9
668 /// octal-digit:
669 /// 0 1 2 3 4 5 6 7
670 /// hexadecimal-digit:
671 /// 0 1 2 3 4 5 6 7 8 9
672 /// a b c d e f
673 /// A B C D E F
674 /// binary-digit:
675 /// 0
676 /// 1
677 /// unsigned-suffix: one of
678 /// u U
679 /// long-suffix: one of
680 /// l L
681 /// long-long-suffix: one of
682 /// ll LL
684 /// floating-constant: [C99 6.4.4.2]
685 /// TODO: add rules...
687 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
688 SourceLocation TokLoc,
689 const SourceManager &SM,
690 const LangOptions &LangOpts,
691 const TargetInfo &Target,
692 DiagnosticsEngine &Diags)
693 : SM(SM), LangOpts(LangOpts), Diags(Diags),
694 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
696 s = DigitsBegin = ThisTokBegin;
697 saw_exponent = false;
698 saw_period = false;
699 saw_ud_suffix = false;
700 saw_fixed_point_suffix = false;
701 isLong = false;
702 isUnsigned = false;
703 isLongLong = false;
704 isSizeT = false;
705 isHalf = false;
706 isFloat = false;
707 isImaginary = false;
708 isFloat16 = false;
709 isFloat128 = false;
710 MicrosoftInteger = 0;
711 isFract = false;
712 isAccum = false;
713 hadError = false;
714 isBitInt = false;
716 // This routine assumes that the range begin/end matches the regex for integer
717 // and FP constants (specifically, the 'pp-number' regex), and assumes that
718 // the byte at "*end" is both valid and not part of the regex. Because of
719 // this, it doesn't have to check for 'overscan' in various places.
720 if (isPreprocessingNumberBody(*ThisTokEnd)) {
721 Diags.Report(TokLoc, diag::err_lexing_numeric);
722 hadError = true;
723 return;
726 if (*s == '0') { // parse radix
727 ParseNumberStartingWithZero(TokLoc);
728 if (hadError)
729 return;
730 } else { // the first digit is non-zero
731 radix = 10;
732 s = SkipDigits(s);
733 if (s == ThisTokEnd) {
734 // Done.
735 } else {
736 ParseDecimalOrOctalCommon(TokLoc);
737 if (hadError)
738 return;
742 SuffixBegin = s;
743 checkSeparator(TokLoc, s, CSK_AfterDigits);
745 // Initial scan to lookahead for fixed point suffix.
746 if (LangOpts.FixedPoint) {
747 for (const char *c = s; c != ThisTokEnd; ++c) {
748 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
749 saw_fixed_point_suffix = true;
750 break;
755 // Parse the suffix. At this point we can classify whether we have an FP or
756 // integer constant.
757 bool isFixedPointConstant = isFixedPointLiteral();
758 bool isFPConstant = isFloatingLiteral();
759 bool HasSize = false;
761 // Loop over all of the characters of the suffix. If we see something bad,
762 // we break out of the loop.
763 for (; s != ThisTokEnd; ++s) {
764 switch (*s) {
765 case 'R':
766 case 'r':
767 if (!LangOpts.FixedPoint)
768 break;
769 if (isFract || isAccum) break;
770 if (!(saw_period || saw_exponent)) break;
771 isFract = true;
772 continue;
773 case 'K':
774 case 'k':
775 if (!LangOpts.FixedPoint)
776 break;
777 if (isFract || isAccum) break;
778 if (!(saw_period || saw_exponent)) break;
779 isAccum = true;
780 continue;
781 case 'h': // FP Suffix for "half".
782 case 'H':
783 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
784 if (!(LangOpts.Half || LangOpts.FixedPoint))
785 break;
786 if (isIntegerLiteral()) break; // Error for integer constant.
787 if (HasSize)
788 break;
789 HasSize = true;
790 isHalf = true;
791 continue; // Success.
792 case 'f': // FP Suffix for "float"
793 case 'F':
794 if (!isFPConstant) break; // Error for integer constant.
795 if (HasSize)
796 break;
797 HasSize = true;
799 // CUDA host and device may have different _Float16 support, therefore
800 // allows f16 literals to avoid false alarm.
801 // ToDo: more precise check for CUDA.
802 if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd &&
803 s[1] == '1' && s[2] == '6') {
804 s += 2; // success, eat up 2 characters.
805 isFloat16 = true;
806 continue;
809 isFloat = true;
810 continue; // Success.
811 case 'q': // FP Suffix for "__float128"
812 case 'Q':
813 if (!isFPConstant) break; // Error for integer constant.
814 if (HasSize)
815 break;
816 HasSize = true;
817 isFloat128 = true;
818 continue; // Success.
819 case 'u':
820 case 'U':
821 if (isFPConstant) break; // Error for floating constant.
822 if (isUnsigned) break; // Cannot be repeated.
823 isUnsigned = true;
824 continue; // Success.
825 case 'l':
826 case 'L':
827 if (HasSize)
828 break;
829 HasSize = true;
831 // Check for long long. The L's need to be adjacent and the same case.
832 if (s[1] == s[0]) {
833 assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
834 if (isFPConstant) break; // long long invalid for floats.
835 isLongLong = true;
836 ++s; // Eat both of them.
837 } else {
838 isLong = true;
840 continue; // Success.
841 case 'z':
842 case 'Z':
843 if (isFPConstant)
844 break; // Invalid for floats.
845 if (HasSize)
846 break;
847 HasSize = true;
848 isSizeT = true;
849 continue;
850 case 'i':
851 case 'I':
852 if (LangOpts.MicrosoftExt && !isFPConstant) {
853 // Allow i8, i16, i32, and i64. First, look ahead and check if
854 // suffixes are Microsoft integers and not the imaginary unit.
855 uint8_t Bits = 0;
856 size_t ToSkip = 0;
857 switch (s[1]) {
858 case '8': // i8 suffix
859 Bits = 8;
860 ToSkip = 2;
861 break;
862 case '1':
863 if (s[2] == '6') { // i16 suffix
864 Bits = 16;
865 ToSkip = 3;
867 break;
868 case '3':
869 if (s[2] == '2') { // i32 suffix
870 Bits = 32;
871 ToSkip = 3;
873 break;
874 case '6':
875 if (s[2] == '4') { // i64 suffix
876 Bits = 64;
877 ToSkip = 3;
879 break;
880 default:
881 break;
883 if (Bits) {
884 if (HasSize)
885 break;
886 HasSize = true;
887 MicrosoftInteger = Bits;
888 s += ToSkip;
889 assert(s <= ThisTokEnd && "didn't maximally munch?");
890 break;
893 LLVM_FALLTHROUGH;
894 case 'j':
895 case 'J':
896 if (isImaginary) break; // Cannot be repeated.
897 isImaginary = true;
898 continue; // Success.
899 case 'w':
900 case 'W':
901 if (isFPConstant)
902 break; // Invalid for floats.
903 if (HasSize)
904 break; // Invalid if we already have a size for the literal.
906 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
907 // explicitly do not support the suffix in C++ as an extension because a
908 // library-based UDL that resolves to a library type may be more
909 // appropriate there.
910 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') ||
911 (s[0] == 'W' && s[1] == 'B'))) {
912 isBitInt = true;
913 HasSize = true;
914 ++s; // Skip both characters (2nd char skipped on continue).
915 continue; // Success.
918 // If we reached here, there was an error or a ud-suffix.
919 break;
922 // "i", "if", and "il" are user-defined suffixes in C++1y.
923 if (s != ThisTokEnd || isImaginary) {
924 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
925 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
926 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
927 if (!isImaginary) {
928 // Any suffix pieces we might have parsed are actually part of the
929 // ud-suffix.
930 isLong = false;
931 isUnsigned = false;
932 isLongLong = false;
933 isSizeT = false;
934 isFloat = false;
935 isFloat16 = false;
936 isHalf = false;
937 isImaginary = false;
938 isBitInt = false;
939 MicrosoftInteger = 0;
940 saw_fixed_point_suffix = false;
941 isFract = false;
942 isAccum = false;
945 saw_ud_suffix = true;
946 return;
949 if (s != ThisTokEnd) {
950 // Report an error if there are any.
951 Diags.Report(Lexer::AdvanceToTokenCharacter(
952 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
953 diag::err_invalid_suffix_constant)
954 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
955 << (isFixedPointConstant ? 2 : isFPConstant);
956 hadError = true;
960 if (!hadError && saw_fixed_point_suffix) {
961 assert(isFract || isAccum);
965 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
966 /// numbers. It issues an error for illegal digits, and handles floating point
967 /// parsing. If it detects a floating point number, the radix is set to 10.
968 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
969 assert((radix == 8 || radix == 10) && "Unexpected radix");
971 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
972 // the code is using an incorrect base.
973 if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
974 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
975 Diags.Report(
976 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
977 diag::err_invalid_digit)
978 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
979 hadError = true;
980 return;
983 if (*s == '.') {
984 checkSeparator(TokLoc, s, CSK_AfterDigits);
985 s++;
986 radix = 10;
987 saw_period = true;
988 checkSeparator(TokLoc, s, CSK_BeforeDigits);
989 s = SkipDigits(s); // Skip suffix.
991 if (*s == 'e' || *s == 'E') { // exponent
992 checkSeparator(TokLoc, s, CSK_AfterDigits);
993 const char *Exponent = s;
994 s++;
995 radix = 10;
996 saw_exponent = true;
997 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
998 const char *first_non_digit = SkipDigits(s);
999 if (containsDigits(s, first_non_digit)) {
1000 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1001 s = first_non_digit;
1002 } else {
1003 if (!hadError) {
1004 Diags.Report(Lexer::AdvanceToTokenCharacter(
1005 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1006 diag::err_exponent_has_no_digits);
1007 hadError = true;
1009 return;
1014 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1015 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
1016 /// treat it as an invalid suffix.
1017 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1018 StringRef Suffix) {
1019 if (!LangOpts.CPlusPlus11 || Suffix.empty())
1020 return false;
1022 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1023 if (Suffix[0] == '_')
1024 return true;
1026 // In C++11, there are no library suffixes.
1027 if (!LangOpts.CPlusPlus14)
1028 return false;
1030 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1031 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1032 // In C++2a "d" and "y" are used in the library.
1033 return llvm::StringSwitch<bool>(Suffix)
1034 .Cases("h", "min", "s", true)
1035 .Cases("ms", "us", "ns", true)
1036 .Cases("il", "i", "if", true)
1037 .Cases("d", "y", LangOpts.CPlusPlus20)
1038 .Default(false);
1041 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1042 const char *Pos,
1043 CheckSeparatorKind IsAfterDigits) {
1044 if (IsAfterDigits == CSK_AfterDigits) {
1045 if (Pos == ThisTokBegin)
1046 return;
1047 --Pos;
1048 } else if (Pos == ThisTokEnd)
1049 return;
1051 if (isDigitSeparator(*Pos)) {
1052 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1053 LangOpts),
1054 diag::err_digit_separator_not_between_digits)
1055 << IsAfterDigits;
1056 hadError = true;
1060 /// ParseNumberStartingWithZero - This method is called when the first character
1061 /// of the number is found to be a zero. This means it is either an octal
1062 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1063 /// a floating point number (01239.123e4). Eat the prefix, determining the
1064 /// radix etc.
1065 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1066 assert(s[0] == '0' && "Invalid method call");
1067 s++;
1069 int c1 = s[0];
1071 // Handle a hex number like 0x1234.
1072 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1073 s++;
1074 assert(s < ThisTokEnd && "didn't maximally munch?");
1075 radix = 16;
1076 DigitsBegin = s;
1077 s = SkipHexDigits(s);
1078 bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1079 if (s == ThisTokEnd) {
1080 // Done.
1081 } else if (*s == '.') {
1082 s++;
1083 saw_period = true;
1084 const char *floatDigitsBegin = s;
1085 s = SkipHexDigits(s);
1086 if (containsDigits(floatDigitsBegin, s))
1087 HasSignificandDigits = true;
1088 if (HasSignificandDigits)
1089 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1092 if (!HasSignificandDigits) {
1093 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1094 LangOpts),
1095 diag::err_hex_constant_requires)
1096 << LangOpts.CPlusPlus << 1;
1097 hadError = true;
1098 return;
1101 // A binary exponent can appear with or with a '.'. If dotted, the
1102 // binary exponent is required.
1103 if (*s == 'p' || *s == 'P') {
1104 checkSeparator(TokLoc, s, CSK_AfterDigits);
1105 const char *Exponent = s;
1106 s++;
1107 saw_exponent = true;
1108 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1109 const char *first_non_digit = SkipDigits(s);
1110 if (!containsDigits(s, first_non_digit)) {
1111 if (!hadError) {
1112 Diags.Report(Lexer::AdvanceToTokenCharacter(
1113 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1114 diag::err_exponent_has_no_digits);
1115 hadError = true;
1117 return;
1119 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1120 s = first_non_digit;
1122 if (!LangOpts.HexFloats)
1123 Diags.Report(TokLoc, LangOpts.CPlusPlus
1124 ? diag::ext_hex_literal_invalid
1125 : diag::ext_hex_constant_invalid);
1126 else if (LangOpts.CPlusPlus17)
1127 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1128 } else if (saw_period) {
1129 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1130 LangOpts),
1131 diag::err_hex_constant_requires)
1132 << LangOpts.CPlusPlus << 0;
1133 hadError = true;
1135 return;
1138 // Handle simple binary numbers 0b01010
1139 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1140 // 0b101010 is a C++1y / GCC extension.
1141 Diags.Report(TokLoc, LangOpts.CPlusPlus14
1142 ? diag::warn_cxx11_compat_binary_literal
1143 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14
1144 : diag::ext_binary_literal);
1145 ++s;
1146 assert(s < ThisTokEnd && "didn't maximally munch?");
1147 radix = 2;
1148 DigitsBegin = s;
1149 s = SkipBinaryDigits(s);
1150 if (s == ThisTokEnd) {
1151 // Done.
1152 } else if (isHexDigit(*s) &&
1153 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1154 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1155 LangOpts),
1156 diag::err_invalid_digit)
1157 << StringRef(s, 1) << 2;
1158 hadError = true;
1160 // Other suffixes will be diagnosed by the caller.
1161 return;
1164 // For now, the radix is set to 8. If we discover that we have a
1165 // floating point constant, the radix will change to 10. Octal floating
1166 // point constants are not permitted (only decimal and hexadecimal).
1167 radix = 8;
1168 const char *PossibleNewDigitStart = s;
1169 s = SkipOctalDigits(s);
1170 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1171 // as the start of the digits. So if skipping octal digits does not skip
1172 // anything, we leave the digit start where it was.
1173 if (s != PossibleNewDigitStart)
1174 DigitsBegin = PossibleNewDigitStart;
1176 if (s == ThisTokEnd)
1177 return; // Done, simple octal number like 01234
1179 // If we have some other non-octal digit that *is* a decimal digit, see if
1180 // this is part of a floating point number like 094.123 or 09e1.
1181 if (isDigit(*s)) {
1182 const char *EndDecimal = SkipDigits(s);
1183 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1184 s = EndDecimal;
1185 radix = 10;
1189 ParseDecimalOrOctalCommon(TokLoc);
1192 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1193 switch (Radix) {
1194 case 2:
1195 return NumDigits <= 64;
1196 case 8:
1197 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1198 case 10:
1199 return NumDigits <= 19; // floor(log10(2^64))
1200 case 16:
1201 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1202 default:
1203 llvm_unreachable("impossible Radix");
1207 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1208 /// matches Val's input width. If there is an overflow, set Val to the low bits
1209 /// of the result and return true. Otherwise, return false.
1210 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1211 // Fast path: Compute a conservative bound on the maximum number of
1212 // bits per digit in this radix. If we can't possibly overflow a
1213 // uint64 based on that bound then do the simple conversion to
1214 // integer. This avoids the expensive overflow checking below, and
1215 // handles the common cases that matter (small decimal integers and
1216 // hex/octal values which don't overflow).
1217 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1218 if (alwaysFitsInto64Bits(radix, NumDigits)) {
1219 uint64_t N = 0;
1220 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1221 if (!isDigitSeparator(*Ptr))
1222 N = N * radix + llvm::hexDigitValue(*Ptr);
1224 // This will truncate the value to Val's input width. Simply check
1225 // for overflow by comparing.
1226 Val = N;
1227 return Val.getZExtValue() != N;
1230 Val = 0;
1231 const char *Ptr = DigitsBegin;
1233 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1234 llvm::APInt CharVal(Val.getBitWidth(), 0);
1235 llvm::APInt OldVal = Val;
1237 bool OverflowOccurred = false;
1238 while (Ptr < SuffixBegin) {
1239 if (isDigitSeparator(*Ptr)) {
1240 ++Ptr;
1241 continue;
1244 unsigned C = llvm::hexDigitValue(*Ptr++);
1246 // If this letter is out of bound for this radix, reject it.
1247 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1249 CharVal = C;
1251 // Add the digit to the value in the appropriate radix. If adding in digits
1252 // made the value smaller, then this overflowed.
1253 OldVal = Val;
1255 // Multiply by radix, did overflow occur on the multiply?
1256 Val *= RadixVal;
1257 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1259 // Add value, did overflow occur on the value?
1260 // (a + b) ult b <=> overflow
1261 Val += CharVal;
1262 OverflowOccurred |= Val.ult(CharVal);
1264 return OverflowOccurred;
1267 llvm::APFloat::opStatus
1268 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
1269 using llvm::APFloat;
1271 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1273 llvm::SmallString<16> Buffer;
1274 StringRef Str(ThisTokBegin, n);
1275 if (Str.contains('\'')) {
1276 Buffer.reserve(n);
1277 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1278 &isDigitSeparator);
1279 Str = Buffer;
1282 auto StatusOrErr =
1283 Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1284 assert(StatusOrErr && "Invalid floating point representation");
1285 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1286 : APFloat::opInvalidOp;
1289 static inline bool IsExponentPart(char c) {
1290 return c == 'p' || c == 'P' || c == 'e' || c == 'E';
1293 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1294 assert(radix == 16 || radix == 10);
1296 // Find how many digits are needed to store the whole literal.
1297 unsigned NumDigits = SuffixBegin - DigitsBegin;
1298 if (saw_period) --NumDigits;
1300 // Initial scan of the exponent if it exists
1301 bool ExpOverflowOccurred = false;
1302 bool NegativeExponent = false;
1303 const char *ExponentBegin;
1304 uint64_t Exponent = 0;
1305 int64_t BaseShift = 0;
1306 if (saw_exponent) {
1307 const char *Ptr = DigitsBegin;
1309 while (!IsExponentPart(*Ptr)) ++Ptr;
1310 ExponentBegin = Ptr;
1311 ++Ptr;
1312 NegativeExponent = *Ptr == '-';
1313 if (NegativeExponent) ++Ptr;
1315 unsigned NumExpDigits = SuffixBegin - Ptr;
1316 if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1317 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1318 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1319 Exponent = ExpInt.getZExtValue();
1320 } else {
1321 ExpOverflowOccurred = true;
1324 if (NegativeExponent) BaseShift -= Exponent;
1325 else BaseShift += Exponent;
1328 // Number of bits needed for decimal literal is
1329 // ceil(NumDigits * log2(10)) Integral part
1330 // + Scale Fractional part
1331 // + ceil(Exponent * log2(10)) Exponent
1332 // --------------------------------------------------
1333 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1335 // But for simplicity in handling integers, we can round up log2(10) to 4,
1336 // making:
1337 // 4 * (NumDigits + Exponent) + Scale
1339 // Number of digits needed for hexadecimal literal is
1340 // 4 * NumDigits Integral part
1341 // + Scale Fractional part
1342 // + Exponent Exponent
1343 // --------------------------------------------------
1344 // (4 * NumDigits) + Scale + Exponent
1345 uint64_t NumBitsNeeded;
1346 if (radix == 10)
1347 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1348 else
1349 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1351 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1352 ExpOverflowOccurred = true;
1353 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1355 bool FoundDecimal = false;
1357 int64_t FractBaseShift = 0;
1358 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1359 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1360 if (*Ptr == '.') {
1361 FoundDecimal = true;
1362 continue;
1365 // Normal reading of an integer
1366 unsigned C = llvm::hexDigitValue(*Ptr);
1367 assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1369 Val *= radix;
1370 Val += C;
1372 if (FoundDecimal)
1373 // Keep track of how much we will need to adjust this value by from the
1374 // number of digits past the radix point.
1375 --FractBaseShift;
1378 // For a radix of 16, we will be multiplying by 2 instead of 16.
1379 if (radix == 16) FractBaseShift *= 4;
1380 BaseShift += FractBaseShift;
1382 Val <<= Scale;
1384 uint64_t Base = (radix == 16) ? 2 : 10;
1385 if (BaseShift > 0) {
1386 for (int64_t i = 0; i < BaseShift; ++i) {
1387 Val *= Base;
1389 } else if (BaseShift < 0) {
1390 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1391 Val = Val.udiv(Base);
1394 bool IntOverflowOccurred = false;
1395 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1396 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1397 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1398 StoreVal = Val.trunc(StoreVal.getBitWidth());
1399 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1400 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1401 StoreVal = Val.zext(StoreVal.getBitWidth());
1402 } else {
1403 StoreVal = Val;
1406 return IntOverflowOccurred || ExpOverflowOccurred;
1409 /// \verbatim
1410 /// user-defined-character-literal: [C++11 lex.ext]
1411 /// character-literal ud-suffix
1412 /// ud-suffix:
1413 /// identifier
1414 /// character-literal: [C++11 lex.ccon]
1415 /// ' c-char-sequence '
1416 /// u' c-char-sequence '
1417 /// U' c-char-sequence '
1418 /// L' c-char-sequence '
1419 /// u8' c-char-sequence ' [C++1z lex.ccon]
1420 /// c-char-sequence:
1421 /// c-char
1422 /// c-char-sequence c-char
1423 /// c-char:
1424 /// any member of the source character set except the single-quote ',
1425 /// backslash \, or new-line character
1426 /// escape-sequence
1427 /// universal-character-name
1428 /// escape-sequence:
1429 /// simple-escape-sequence
1430 /// octal-escape-sequence
1431 /// hexadecimal-escape-sequence
1432 /// simple-escape-sequence:
1433 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1434 /// octal-escape-sequence:
1435 /// \ octal-digit
1436 /// \ octal-digit octal-digit
1437 /// \ octal-digit octal-digit octal-digit
1438 /// hexadecimal-escape-sequence:
1439 /// \x hexadecimal-digit
1440 /// hexadecimal-escape-sequence hexadecimal-digit
1441 /// universal-character-name: [C++11 lex.charset]
1442 /// \u hex-quad
1443 /// \U hex-quad hex-quad
1444 /// hex-quad:
1445 /// hex-digit hex-digit hex-digit hex-digit
1446 /// \endverbatim
1448 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1449 SourceLocation Loc, Preprocessor &PP,
1450 tok::TokenKind kind) {
1451 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1452 HadError = false;
1454 Kind = kind;
1456 const char *TokBegin = begin;
1458 // Skip over wide character determinant.
1459 if (Kind != tok::char_constant)
1460 ++begin;
1461 if (Kind == tok::utf8_char_constant)
1462 ++begin;
1464 // Skip over the entry quote.
1465 if (begin[0] != '\'') {
1466 PP.Diag(Loc, diag::err_lexing_char);
1467 HadError = true;
1468 return;
1471 ++begin;
1473 // Remove an optional ud-suffix.
1474 if (end[-1] != '\'') {
1475 const char *UDSuffixEnd = end;
1476 do {
1477 --end;
1478 } while (end[-1] != '\'');
1479 // FIXME: Don't bother with this if !tok.hasUCN().
1480 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1481 UDSuffixOffset = end - TokBegin;
1484 // Trim the ending quote.
1485 assert(end != begin && "Invalid token lexed");
1486 --end;
1488 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1489 // up to 64-bits.
1490 // FIXME: This extensively assumes that 'char' is 8-bits.
1491 assert(PP.getTargetInfo().getCharWidth() == 8 &&
1492 "Assumes char is 8 bits");
1493 assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1494 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1495 "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1496 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1497 "Assumes sizeof(wchar) on target is <= 64");
1499 SmallVector<uint32_t, 4> codepoint_buffer;
1500 codepoint_buffer.resize(end - begin);
1501 uint32_t *buffer_begin = &codepoint_buffer.front();
1502 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1504 // Unicode escapes representing characters that cannot be correctly
1505 // represented in a single code unit are disallowed in character literals
1506 // by this implementation.
1507 uint32_t largest_character_for_kind;
1508 if (tok::wide_char_constant == Kind) {
1509 largest_character_for_kind =
1510 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1511 } else if (tok::utf8_char_constant == Kind) {
1512 largest_character_for_kind = 0x7F;
1513 } else if (tok::utf16_char_constant == Kind) {
1514 largest_character_for_kind = 0xFFFF;
1515 } else if (tok::utf32_char_constant == Kind) {
1516 largest_character_for_kind = 0x10FFFF;
1517 } else {
1518 largest_character_for_kind = 0x7Fu;
1521 while (begin != end) {
1522 // Is this a span of non-escape characters?
1523 if (begin[0] != '\\') {
1524 char const *start = begin;
1525 do {
1526 ++begin;
1527 } while (begin != end && *begin != '\\');
1529 char const *tmp_in_start = start;
1530 uint32_t *tmp_out_start = buffer_begin;
1531 llvm::ConversionResult res =
1532 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1533 reinterpret_cast<llvm::UTF8 const *>(begin),
1534 &buffer_begin, buffer_end, llvm::strictConversion);
1535 if (res != llvm::conversionOK) {
1536 // If we see bad encoding for unprefixed character literals, warn and
1537 // simply copy the byte values, for compatibility with gcc and
1538 // older versions of clang.
1539 bool NoErrorOnBadEncoding = isAscii();
1540 unsigned Msg = diag::err_bad_character_encoding;
1541 if (NoErrorOnBadEncoding)
1542 Msg = diag::warn_bad_character_encoding;
1543 PP.Diag(Loc, Msg);
1544 if (NoErrorOnBadEncoding) {
1545 start = tmp_in_start;
1546 buffer_begin = tmp_out_start;
1547 for (; start != begin; ++start, ++buffer_begin)
1548 *buffer_begin = static_cast<uint8_t>(*start);
1549 } else {
1550 HadError = true;
1552 } else {
1553 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1554 if (*tmp_out_start > largest_character_for_kind) {
1555 HadError = true;
1556 PP.Diag(Loc, diag::err_character_too_large);
1561 continue;
1563 // Is this a Universal Character Name escape?
1564 if (begin[1] == 'u' || begin[1] == 'U') {
1565 unsigned short UcnLen = 0;
1566 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1567 FullSourceLoc(Loc, PP.getSourceManager()),
1568 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1569 HadError = true;
1570 } else if (*buffer_begin > largest_character_for_kind) {
1571 HadError = true;
1572 PP.Diag(Loc, diag::err_character_too_large);
1575 ++buffer_begin;
1576 continue;
1578 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1579 uint64_t result =
1580 ProcessCharEscape(TokBegin, begin, end, HadError,
1581 FullSourceLoc(Loc,PP.getSourceManager()),
1582 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1583 *buffer_begin++ = result;
1586 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1588 if (NumCharsSoFar > 1) {
1589 if (isAscii() && NumCharsSoFar == 4)
1590 PP.Diag(Loc, diag::warn_four_char_character_literal);
1591 else if (isAscii())
1592 PP.Diag(Loc, diag::warn_multichar_character_literal);
1593 else {
1594 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1595 HadError = true;
1597 IsMultiChar = true;
1598 } else {
1599 IsMultiChar = false;
1602 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1604 // Narrow character literals act as though their value is concatenated
1605 // in this implementation, but warn on overflow.
1606 bool multi_char_too_long = false;
1607 if (isAscii() && isMultiChar()) {
1608 LitVal = 0;
1609 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1610 // check for enough leading zeros to shift into
1611 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1612 LitVal <<= 8;
1613 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1615 } else if (NumCharsSoFar > 0) {
1616 // otherwise just take the last character
1617 LitVal = buffer_begin[-1];
1620 if (!HadError && multi_char_too_long) {
1621 PP.Diag(Loc, diag::warn_char_constant_too_large);
1624 // Transfer the value from APInt to uint64_t
1625 Value = LitVal.getZExtValue();
1627 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1628 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1629 // character constants are not sign extended in the this implementation:
1630 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1631 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1632 PP.getLangOpts().CharIsSigned)
1633 Value = (signed char)Value;
1636 /// \verbatim
1637 /// string-literal: [C++0x lex.string]
1638 /// encoding-prefix " [s-char-sequence] "
1639 /// encoding-prefix R raw-string
1640 /// encoding-prefix:
1641 /// u8
1642 /// u
1643 /// U
1644 /// L
1645 /// s-char-sequence:
1646 /// s-char
1647 /// s-char-sequence s-char
1648 /// s-char:
1649 /// any member of the source character set except the double-quote ",
1650 /// backslash \, or new-line character
1651 /// escape-sequence
1652 /// universal-character-name
1653 /// raw-string:
1654 /// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1655 /// r-char-sequence:
1656 /// r-char
1657 /// r-char-sequence r-char
1658 /// r-char:
1659 /// any member of the source character set, except a right parenthesis )
1660 /// followed by the initial d-char-sequence (which may be empty)
1661 /// followed by a double quote ".
1662 /// d-char-sequence:
1663 /// d-char
1664 /// d-char-sequence d-char
1665 /// d-char:
1666 /// any member of the basic source character set except:
1667 /// space, the left parenthesis (, the right parenthesis ),
1668 /// the backslash \, and the control characters representing horizontal
1669 /// tab, vertical tab, form feed, and newline.
1670 /// escape-sequence: [C++0x lex.ccon]
1671 /// simple-escape-sequence
1672 /// octal-escape-sequence
1673 /// hexadecimal-escape-sequence
1674 /// simple-escape-sequence:
1675 /// one of \' \" \? \\ \a \b \f \n \r \t \v
1676 /// octal-escape-sequence:
1677 /// \ octal-digit
1678 /// \ octal-digit octal-digit
1679 /// \ octal-digit octal-digit octal-digit
1680 /// hexadecimal-escape-sequence:
1681 /// \x hexadecimal-digit
1682 /// hexadecimal-escape-sequence hexadecimal-digit
1683 /// universal-character-name:
1684 /// \u hex-quad
1685 /// \U hex-quad hex-quad
1686 /// hex-quad:
1687 /// hex-digit hex-digit hex-digit hex-digit
1688 /// \endverbatim
1690 StringLiteralParser::
1691 StringLiteralParser(ArrayRef<Token> StringToks,
1692 Preprocessor &PP)
1693 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1694 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1695 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1696 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1697 init(StringToks);
1700 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1701 // The literal token may have come from an invalid source location (e.g. due
1702 // to a PCH error), in which case the token length will be 0.
1703 if (StringToks.empty() || StringToks[0].getLength() < 2)
1704 return DiagnoseLexingError(SourceLocation());
1706 // Scan all of the string portions, remember the max individual token length,
1707 // computing a bound on the concatenated string length, and see whether any
1708 // piece is a wide-string. If any of the string portions is a wide-string
1709 // literal, the result is a wide-string literal [C99 6.4.5p4].
1710 assert(!StringToks.empty() && "expected at least one token");
1711 MaxTokenLength = StringToks[0].getLength();
1712 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1713 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1714 Kind = StringToks[0].getKind();
1716 hadError = false;
1718 // Implement Translation Phase #6: concatenation of string literals
1719 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1720 for (unsigned i = 1; i != StringToks.size(); ++i) {
1721 if (StringToks[i].getLength() < 2)
1722 return DiagnoseLexingError(StringToks[i].getLocation());
1724 // The string could be shorter than this if it needs cleaning, but this is a
1725 // reasonable bound, which is all we need.
1726 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1727 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1729 // Remember maximum string piece length.
1730 if (StringToks[i].getLength() > MaxTokenLength)
1731 MaxTokenLength = StringToks[i].getLength();
1733 // Remember if we see any wide or utf-8/16/32 strings.
1734 // Also check for illegal concatenations.
1735 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1736 if (isAscii()) {
1737 Kind = StringToks[i].getKind();
1738 } else {
1739 if (Diags)
1740 Diags->Report(StringToks[i].getLocation(),
1741 diag::err_unsupported_string_concat);
1742 hadError = true;
1747 // Include space for the null terminator.
1748 ++SizeBound;
1750 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1752 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1753 CharByteWidth = getCharWidth(Kind, Target);
1754 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1755 CharByteWidth /= 8;
1757 // The output buffer size needs to be large enough to hold wide characters.
1758 // This is a worst-case assumption which basically corresponds to L"" "long".
1759 SizeBound *= CharByteWidth;
1761 // Size the temporary buffer to hold the result string data.
1762 ResultBuf.resize(SizeBound);
1764 // Likewise, but for each string piece.
1765 SmallString<512> TokenBuf;
1766 TokenBuf.resize(MaxTokenLength);
1768 // Loop over all the strings, getting their spelling, and expanding them to
1769 // wide strings as appropriate.
1770 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1772 Pascal = false;
1774 SourceLocation UDSuffixTokLoc;
1776 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1777 const char *ThisTokBuf = &TokenBuf[0];
1778 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1779 // that ThisTokBuf points to a buffer that is big enough for the whole token
1780 // and 'spelled' tokens can only shrink.
1781 bool StringInvalid = false;
1782 unsigned ThisTokLen =
1783 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1784 &StringInvalid);
1785 if (StringInvalid)
1786 return DiagnoseLexingError(StringToks[i].getLocation());
1788 const char *ThisTokBegin = ThisTokBuf;
1789 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1791 // Remove an optional ud-suffix.
1792 if (ThisTokEnd[-1] != '"') {
1793 const char *UDSuffixEnd = ThisTokEnd;
1794 do {
1795 --ThisTokEnd;
1796 } while (ThisTokEnd[-1] != '"');
1798 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1800 if (UDSuffixBuf.empty()) {
1801 if (StringToks[i].hasUCN())
1802 expandUCNs(UDSuffixBuf, UDSuffix);
1803 else
1804 UDSuffixBuf.assign(UDSuffix);
1805 UDSuffixToken = i;
1806 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1807 UDSuffixTokLoc = StringToks[i].getLocation();
1808 } else {
1809 SmallString<32> ExpandedUDSuffix;
1810 if (StringToks[i].hasUCN()) {
1811 expandUCNs(ExpandedUDSuffix, UDSuffix);
1812 UDSuffix = ExpandedUDSuffix;
1815 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1816 // result of a concatenation involving at least one user-defined-string-
1817 // literal, all the participating user-defined-string-literals shall
1818 // have the same ud-suffix.
1819 if (UDSuffixBuf != UDSuffix) {
1820 if (Diags) {
1821 SourceLocation TokLoc = StringToks[i].getLocation();
1822 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1823 << UDSuffixBuf << UDSuffix
1824 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1825 << SourceRange(TokLoc, TokLoc);
1827 hadError = true;
1832 // Strip the end quote.
1833 --ThisTokEnd;
1835 // TODO: Input character set mapping support.
1837 // Skip marker for wide or unicode strings.
1838 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1839 ++ThisTokBuf;
1840 // Skip 8 of u8 marker for utf8 strings.
1841 if (ThisTokBuf[0] == '8')
1842 ++ThisTokBuf;
1845 // Check for raw string
1846 if (ThisTokBuf[0] == 'R') {
1847 if (ThisTokBuf[1] != '"') {
1848 // The file may have come from PCH and then changed after loading the
1849 // PCH; Fail gracefully.
1850 return DiagnoseLexingError(StringToks[i].getLocation());
1852 ThisTokBuf += 2; // skip R"
1854 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
1855 // characters.
1856 constexpr unsigned MaxRawStrDelimLen = 16;
1858 const char *Prefix = ThisTokBuf;
1859 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
1860 ThisTokBuf[0] != '(')
1861 ++ThisTokBuf;
1862 if (ThisTokBuf[0] != '(')
1863 return DiagnoseLexingError(StringToks[i].getLocation());
1864 ++ThisTokBuf; // skip '('
1866 // Remove same number of characters from the end
1867 ThisTokEnd -= ThisTokBuf - Prefix;
1868 if (ThisTokEnd < ThisTokBuf)
1869 return DiagnoseLexingError(StringToks[i].getLocation());
1871 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
1872 // results in a new-line in the resulting execution string-literal.
1873 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
1874 while (!RemainingTokenSpan.empty()) {
1875 // Split the string literal on \r\n boundaries.
1876 size_t CRLFPos = RemainingTokenSpan.find("\r\n");
1877 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
1878 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
1880 // Copy everything before the \r\n sequence into the string literal.
1881 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
1882 hadError = true;
1884 // Point into the \n inside the \r\n sequence and operate on the
1885 // remaining portion of the literal.
1886 RemainingTokenSpan = AfterCRLF.substr(1);
1888 } else {
1889 if (ThisTokBuf[0] != '"') {
1890 // The file may have come from PCH and then changed after loading the
1891 // PCH; Fail gracefully.
1892 return DiagnoseLexingError(StringToks[i].getLocation());
1894 ++ThisTokBuf; // skip "
1896 // Check if this is a pascal string
1897 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1898 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1900 // If the \p sequence is found in the first token, we have a pascal string
1901 // Otherwise, if we already have a pascal string, ignore the first \p
1902 if (i == 0) {
1903 ++ThisTokBuf;
1904 Pascal = true;
1905 } else if (Pascal)
1906 ThisTokBuf += 2;
1909 while (ThisTokBuf != ThisTokEnd) {
1910 // Is this a span of non-escape characters?
1911 if (ThisTokBuf[0] != '\\') {
1912 const char *InStart = ThisTokBuf;
1913 do {
1914 ++ThisTokBuf;
1915 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1917 // Copy the character span over.
1918 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1919 StringRef(InStart, ThisTokBuf - InStart)))
1920 hadError = true;
1921 continue;
1923 // Is this a Universal Character Name escape?
1924 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1925 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1926 ResultPtr, hadError,
1927 FullSourceLoc(StringToks[i].getLocation(), SM),
1928 CharByteWidth, Diags, Features);
1929 continue;
1931 // Otherwise, this is a non-UCN escape character. Process it.
1932 unsigned ResultChar =
1933 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1934 FullSourceLoc(StringToks[i].getLocation(), SM),
1935 CharByteWidth*8, Diags, Features);
1937 if (CharByteWidth == 4) {
1938 // FIXME: Make the type of the result buffer correct instead of
1939 // using reinterpret_cast.
1940 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
1941 *ResultWidePtr = ResultChar;
1942 ResultPtr += 4;
1943 } else if (CharByteWidth == 2) {
1944 // FIXME: Make the type of the result buffer correct instead of
1945 // using reinterpret_cast.
1946 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
1947 *ResultWidePtr = ResultChar & 0xFFFF;
1948 ResultPtr += 2;
1949 } else {
1950 assert(CharByteWidth == 1 && "Unexpected char width");
1951 *ResultPtr++ = ResultChar & 0xFF;
1957 if (Pascal) {
1958 if (CharByteWidth == 4) {
1959 // FIXME: Make the type of the result buffer correct instead of
1960 // using reinterpret_cast.
1961 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
1962 ResultWidePtr[0] = GetNumStringChars() - 1;
1963 } else if (CharByteWidth == 2) {
1964 // FIXME: Make the type of the result buffer correct instead of
1965 // using reinterpret_cast.
1966 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
1967 ResultWidePtr[0] = GetNumStringChars() - 1;
1968 } else {
1969 assert(CharByteWidth == 1 && "Unexpected char width");
1970 ResultBuf[0] = GetNumStringChars() - 1;
1973 // Verify that pascal strings aren't too large.
1974 if (GetStringLength() > 256) {
1975 if (Diags)
1976 Diags->Report(StringToks.front().getLocation(),
1977 diag::err_pascal_string_too_long)
1978 << SourceRange(StringToks.front().getLocation(),
1979 StringToks.back().getLocation());
1980 hadError = true;
1981 return;
1983 } else if (Diags) {
1984 // Complain if this string literal has too many characters.
1985 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1987 if (GetNumStringChars() > MaxChars)
1988 Diags->Report(StringToks.front().getLocation(),
1989 diag::ext_string_too_long)
1990 << GetNumStringChars() << MaxChars
1991 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1992 << SourceRange(StringToks.front().getLocation(),
1993 StringToks.back().getLocation());
1997 static const char *resyncUTF8(const char *Err, const char *End) {
1998 if (Err == End)
1999 return End;
2000 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2001 while (++Err != End && (*Err & 0xC0) == 0x80)
2003 return Err;
2006 /// This function copies from Fragment, which is a sequence of bytes
2007 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
2008 /// Performs widening for multi-byte characters.
2009 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2010 const char *TokBegin,
2011 StringRef Fragment) {
2012 const llvm::UTF8 *ErrorPtrTmp;
2013 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2014 return false;
2016 // If we see bad encoding for unprefixed string literals, warn and
2017 // simply copy the byte values, for compatibility with gcc and older
2018 // versions of clang.
2019 bool NoErrorOnBadEncoding = isAscii();
2020 if (NoErrorOnBadEncoding) {
2021 memcpy(ResultPtr, Fragment.data(), Fragment.size());
2022 ResultPtr += Fragment.size();
2025 if (Diags) {
2026 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2028 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2029 const DiagnosticBuilder &Builder =
2030 Diag(Diags, Features, SourceLoc, TokBegin,
2031 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2032 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2033 : diag::err_bad_string_encoding);
2035 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2036 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2038 // Decode into a dummy buffer.
2039 SmallString<512> Dummy;
2040 Dummy.reserve(Fragment.size() * CharByteWidth);
2041 char *Ptr = Dummy.data();
2043 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2044 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2045 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2046 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2047 ErrorPtr, NextStart);
2048 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2051 return !NoErrorOnBadEncoding;
2054 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2055 hadError = true;
2056 if (Diags)
2057 Diags->Report(Loc, diag::err_lexing_string);
2060 /// getOffsetOfStringByte - This function returns the offset of the
2061 /// specified byte of the string data represented by Token. This handles
2062 /// advancing over escape sequences in the string.
2063 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2064 unsigned ByteNo) const {
2065 // Get the spelling of the token.
2066 SmallString<32> SpellingBuffer;
2067 SpellingBuffer.resize(Tok.getLength());
2069 bool StringInvalid = false;
2070 const char *SpellingPtr = &SpellingBuffer[0];
2071 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2072 &StringInvalid);
2073 if (StringInvalid)
2074 return 0;
2076 const char *SpellingStart = SpellingPtr;
2077 const char *SpellingEnd = SpellingPtr+TokLen;
2079 // Handle UTF-8 strings just like narrow strings.
2080 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2081 SpellingPtr += 2;
2083 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2084 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2086 // For raw string literals, this is easy.
2087 if (SpellingPtr[0] == 'R') {
2088 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2089 // Skip 'R"'.
2090 SpellingPtr += 2;
2091 while (*SpellingPtr != '(') {
2092 ++SpellingPtr;
2093 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2095 // Skip '('.
2096 ++SpellingPtr;
2097 return SpellingPtr - SpellingStart + ByteNo;
2100 // Skip over the leading quote
2101 assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2102 ++SpellingPtr;
2104 // Skip over bytes until we find the offset we're looking for.
2105 while (ByteNo) {
2106 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2108 // Step over non-escapes simply.
2109 if (*SpellingPtr != '\\') {
2110 ++SpellingPtr;
2111 --ByteNo;
2112 continue;
2115 // Otherwise, this is an escape character. Advance over it.
2116 bool HadError = false;
2117 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
2118 const char *EscapePtr = SpellingPtr;
2119 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2120 1, Features, HadError);
2121 if (Len > ByteNo) {
2122 // ByteNo is somewhere within the escape sequence.
2123 SpellingPtr = EscapePtr;
2124 break;
2126 ByteNo -= Len;
2127 } else {
2128 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2129 FullSourceLoc(Tok.getLocation(), SM),
2130 CharByteWidth*8, Diags, Features);
2131 --ByteNo;
2133 assert(!HadError && "This method isn't valid on erroneous strings");
2136 return SpellingPtr-SpellingStart;
2139 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2140 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2141 /// treat it as an invalid suffix.
2142 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2143 StringRef Suffix) {
2144 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2145 Suffix == "sv";