1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/ADT/StringExtras.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/MachineScheduler.h"
20 #include "llvm/CodeGen/PseudoSourceValue.h"
21 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetFrameLowering.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSchedule.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCInstrItineraries.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
39 static cl::opt
<bool> DisableHazardRecognizer(
40 "disable-sched-hazard", cl::Hidden
, cl::init(false),
41 cl::desc("Disable hazard detection during preRA scheduling"));
43 TargetInstrInfo::~TargetInstrInfo() {
46 const TargetRegisterClass
*
47 TargetInstrInfo::getRegClass(const MCInstrDesc
&MCID
, unsigned OpNum
,
48 const TargetRegisterInfo
*TRI
,
49 const MachineFunction
&MF
) const {
50 if (OpNum
>= MCID
.getNumOperands())
53 short RegClass
= MCID
.OpInfo
[OpNum
].RegClass
;
54 if (MCID
.OpInfo
[OpNum
].isLookupPtrRegClass())
55 return TRI
->getPointerRegClass(MF
, RegClass
);
57 // Instructions like INSERT_SUBREG do not have fixed register classes.
61 // Otherwise just look it up normally.
62 return TRI
->getRegClass(RegClass
);
65 /// insertNoop - Insert a noop into the instruction stream at the specified
67 void TargetInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
68 MachineBasicBlock::iterator MI
) const {
69 llvm_unreachable("Target didn't implement insertNoop!");
72 /// insertNoops - Insert noops into the instruction stream at the specified
74 void TargetInstrInfo::insertNoops(MachineBasicBlock
&MBB
,
75 MachineBasicBlock::iterator MI
,
76 unsigned Quantity
) const {
77 for (unsigned i
= 0; i
< Quantity
; ++i
)
81 static bool isAsmComment(const char *Str
, const MCAsmInfo
&MAI
) {
82 return strncmp(Str
, MAI
.getCommentString().data(),
83 MAI
.getCommentString().size()) == 0;
86 /// Measure the specified inline asm to determine an approximation of its
88 /// Comments (which run till the next SeparatorString or newline) do not
89 /// count as an instruction.
90 /// Any other non-whitespace text is considered an instruction, with
91 /// multiple instructions separated by SeparatorString or newlines.
92 /// Variable-length instructions are not handled here; this function
93 /// may be overloaded in the target code to do that.
94 /// We implement a special case of the .space directive which takes only a
95 /// single integer argument in base 10 that is the size in bytes. This is a
96 /// restricted form of the GAS directive in that we only interpret
97 /// simple--i.e. not a logical or arithmetic expression--size values without
98 /// the optional fill value. This is primarily used for creating arbitrary
99 /// sized inline asm blocks for testing purposes.
100 unsigned TargetInstrInfo::getInlineAsmLength(
102 const MCAsmInfo
&MAI
, const TargetSubtargetInfo
*STI
) const {
103 // Count the number of instructions in the asm.
104 bool AtInsnStart
= true;
106 const unsigned MaxInstLength
= MAI
.getMaxInstLength(STI
);
107 for (; *Str
; ++Str
) {
108 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
109 strlen(MAI
.getSeparatorString())) == 0) {
111 } else if (isAsmComment(Str
, MAI
)) {
112 // Stop counting as an instruction after a comment until the next
117 if (AtInsnStart
&& !isSpace(static_cast<unsigned char>(*Str
))) {
118 unsigned AddLength
= MaxInstLength
;
119 if (strncmp(Str
, ".space", 6) == 0) {
122 SpaceSize
= strtol(Str
+ 6, &EStr
, 10);
123 SpaceSize
= SpaceSize
< 0 ? 0 : SpaceSize
;
124 while (*EStr
!= '\n' && isSpace(static_cast<unsigned char>(*EStr
)))
126 if (*EStr
== '\0' || *EStr
== '\n' ||
127 isAsmComment(EStr
, MAI
)) // Successfully parsed .space argument
128 AddLength
= SpaceSize
;
138 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
139 /// after it, replacing it with an unconditional branch to NewDest.
141 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail
,
142 MachineBasicBlock
*NewDest
) const {
143 MachineBasicBlock
*MBB
= Tail
->getParent();
145 // Remove all the old successors of MBB from the CFG.
146 while (!MBB
->succ_empty())
147 MBB
->removeSuccessor(MBB
->succ_begin());
149 // Save off the debug loc before erasing the instruction.
150 DebugLoc DL
= Tail
->getDebugLoc();
152 // Update call site info and remove all the dead instructions
153 // from the end of MBB.
154 while (Tail
!= MBB
->end()) {
156 if (MI
->shouldUpdateCallSiteInfo())
157 MBB
->getParent()->eraseCallSiteInfo(&*MI
);
161 // If MBB isn't immediately before MBB, insert a branch to it.
162 if (++MachineFunction::iterator(MBB
) != MachineFunction::iterator(NewDest
))
163 insertBranch(*MBB
, NewDest
, nullptr, SmallVector
<MachineOperand
, 0>(), DL
);
164 MBB
->addSuccessor(NewDest
);
167 MachineInstr
*TargetInstrInfo::commuteInstructionImpl(MachineInstr
&MI
,
168 bool NewMI
, unsigned Idx1
,
169 unsigned Idx2
) const {
170 const MCInstrDesc
&MCID
= MI
.getDesc();
171 bool HasDef
= MCID
.getNumDefs();
172 if (HasDef
&& !MI
.getOperand(0).isReg())
173 // No idea how to commute this instruction. Target should implement its own.
176 unsigned CommutableOpIdx1
= Idx1
; (void)CommutableOpIdx1
;
177 unsigned CommutableOpIdx2
= Idx2
; (void)CommutableOpIdx2
;
178 assert(findCommutedOpIndices(MI
, CommutableOpIdx1
, CommutableOpIdx2
) &&
179 CommutableOpIdx1
== Idx1
&& CommutableOpIdx2
== Idx2
&&
180 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
181 assert(MI
.getOperand(Idx1
).isReg() && MI
.getOperand(Idx2
).isReg() &&
182 "This only knows how to commute register operands so far");
184 Register Reg0
= HasDef
? MI
.getOperand(0).getReg() : Register();
185 Register Reg1
= MI
.getOperand(Idx1
).getReg();
186 Register Reg2
= MI
.getOperand(Idx2
).getReg();
187 unsigned SubReg0
= HasDef
? MI
.getOperand(0).getSubReg() : 0;
188 unsigned SubReg1
= MI
.getOperand(Idx1
).getSubReg();
189 unsigned SubReg2
= MI
.getOperand(Idx2
).getSubReg();
190 bool Reg1IsKill
= MI
.getOperand(Idx1
).isKill();
191 bool Reg2IsKill
= MI
.getOperand(Idx2
).isKill();
192 bool Reg1IsUndef
= MI
.getOperand(Idx1
).isUndef();
193 bool Reg2IsUndef
= MI
.getOperand(Idx2
).isUndef();
194 bool Reg1IsInternal
= MI
.getOperand(Idx1
).isInternalRead();
195 bool Reg2IsInternal
= MI
.getOperand(Idx2
).isInternalRead();
196 // Avoid calling isRenamable for virtual registers since we assert that
197 // renamable property is only queried/set for physical registers.
198 bool Reg1IsRenamable
= Register::isPhysicalRegister(Reg1
)
199 ? MI
.getOperand(Idx1
).isRenamable()
201 bool Reg2IsRenamable
= Register::isPhysicalRegister(Reg2
)
202 ? MI
.getOperand(Idx2
).isRenamable()
204 // If destination is tied to either of the commuted source register, then
205 // it must be updated.
206 if (HasDef
&& Reg0
== Reg1
&&
207 MI
.getDesc().getOperandConstraint(Idx1
, MCOI::TIED_TO
) == 0) {
211 } else if (HasDef
&& Reg0
== Reg2
&&
212 MI
.getDesc().getOperandConstraint(Idx2
, MCOI::TIED_TO
) == 0) {
218 MachineInstr
*CommutedMI
= nullptr;
220 // Create a new instruction.
221 MachineFunction
&MF
= *MI
.getMF();
222 CommutedMI
= MF
.CloneMachineInstr(&MI
);
228 CommutedMI
->getOperand(0).setReg(Reg0
);
229 CommutedMI
->getOperand(0).setSubReg(SubReg0
);
231 CommutedMI
->getOperand(Idx2
).setReg(Reg1
);
232 CommutedMI
->getOperand(Idx1
).setReg(Reg2
);
233 CommutedMI
->getOperand(Idx2
).setSubReg(SubReg1
);
234 CommutedMI
->getOperand(Idx1
).setSubReg(SubReg2
);
235 CommutedMI
->getOperand(Idx2
).setIsKill(Reg1IsKill
);
236 CommutedMI
->getOperand(Idx1
).setIsKill(Reg2IsKill
);
237 CommutedMI
->getOperand(Idx2
).setIsUndef(Reg1IsUndef
);
238 CommutedMI
->getOperand(Idx1
).setIsUndef(Reg2IsUndef
);
239 CommutedMI
->getOperand(Idx2
).setIsInternalRead(Reg1IsInternal
);
240 CommutedMI
->getOperand(Idx1
).setIsInternalRead(Reg2IsInternal
);
241 // Avoid calling setIsRenamable for virtual registers since we assert that
242 // renamable property is only queried/set for physical registers.
243 if (Register::isPhysicalRegister(Reg1
))
244 CommutedMI
->getOperand(Idx2
).setIsRenamable(Reg1IsRenamable
);
245 if (Register::isPhysicalRegister(Reg2
))
246 CommutedMI
->getOperand(Idx1
).setIsRenamable(Reg2IsRenamable
);
250 MachineInstr
*TargetInstrInfo::commuteInstruction(MachineInstr
&MI
, bool NewMI
,
252 unsigned OpIdx2
) const {
253 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
254 // any commutable operand, which is done in findCommutedOpIndices() method
256 if ((OpIdx1
== CommuteAnyOperandIndex
|| OpIdx2
== CommuteAnyOperandIndex
) &&
257 !findCommutedOpIndices(MI
, OpIdx1
, OpIdx2
)) {
258 assert(MI
.isCommutable() &&
259 "Precondition violation: MI must be commutable.");
262 return commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
265 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1
,
266 unsigned &ResultIdx2
,
267 unsigned CommutableOpIdx1
,
268 unsigned CommutableOpIdx2
) {
269 if (ResultIdx1
== CommuteAnyOperandIndex
&&
270 ResultIdx2
== CommuteAnyOperandIndex
) {
271 ResultIdx1
= CommutableOpIdx1
;
272 ResultIdx2
= CommutableOpIdx2
;
273 } else if (ResultIdx1
== CommuteAnyOperandIndex
) {
274 if (ResultIdx2
== CommutableOpIdx1
)
275 ResultIdx1
= CommutableOpIdx2
;
276 else if (ResultIdx2
== CommutableOpIdx2
)
277 ResultIdx1
= CommutableOpIdx1
;
280 } else if (ResultIdx2
== CommuteAnyOperandIndex
) {
281 if (ResultIdx1
== CommutableOpIdx1
)
282 ResultIdx2
= CommutableOpIdx2
;
283 else if (ResultIdx1
== CommutableOpIdx2
)
284 ResultIdx2
= CommutableOpIdx1
;
288 // Check that the result operand indices match the given commutable
290 return (ResultIdx1
== CommutableOpIdx1
&& ResultIdx2
== CommutableOpIdx2
) ||
291 (ResultIdx1
== CommutableOpIdx2
&& ResultIdx2
== CommutableOpIdx1
);
296 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr
&MI
,
298 unsigned &SrcOpIdx2
) const {
299 assert(!MI
.isBundle() &&
300 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
302 const MCInstrDesc
&MCID
= MI
.getDesc();
303 if (!MCID
.isCommutable())
306 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
307 // is not true, then the target must implement this.
308 unsigned CommutableOpIdx1
= MCID
.getNumDefs();
309 unsigned CommutableOpIdx2
= CommutableOpIdx1
+ 1;
310 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
311 CommutableOpIdx1
, CommutableOpIdx2
))
314 if (!MI
.getOperand(SrcOpIdx1
).isReg() || !MI
.getOperand(SrcOpIdx2
).isReg())
320 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
321 if (!MI
.isTerminator()) return false;
323 // Conditional branch is a special case.
324 if (MI
.isBranch() && !MI
.isBarrier())
326 if (!MI
.isPredicable())
328 return !isPredicated(MI
);
331 bool TargetInstrInfo::PredicateInstruction(
332 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Pred
) const {
333 bool MadeChange
= false;
335 assert(!MI
.isBundle() &&
336 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
338 const MCInstrDesc
&MCID
= MI
.getDesc();
339 if (!MI
.isPredicable())
342 for (unsigned j
= 0, i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
343 if (MCID
.OpInfo
[i
].isPredicate()) {
344 MachineOperand
&MO
= MI
.getOperand(i
);
346 MO
.setReg(Pred
[j
].getReg());
348 } else if (MO
.isImm()) {
349 MO
.setImm(Pred
[j
].getImm());
351 } else if (MO
.isMBB()) {
352 MO
.setMBB(Pred
[j
].getMBB());
361 bool TargetInstrInfo::hasLoadFromStackSlot(
362 const MachineInstr
&MI
,
363 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
364 size_t StartSize
= Accesses
.size();
365 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
366 oe
= MI
.memoperands_end();
368 if ((*o
)->isLoad() &&
369 dyn_cast_or_null
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
370 Accesses
.push_back(*o
);
372 return Accesses
.size() != StartSize
;
375 bool TargetInstrInfo::hasStoreToStackSlot(
376 const MachineInstr
&MI
,
377 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
378 size_t StartSize
= Accesses
.size();
379 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
380 oe
= MI
.memoperands_end();
382 if ((*o
)->isStore() &&
383 dyn_cast_or_null
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
384 Accesses
.push_back(*o
);
386 return Accesses
.size() != StartSize
;
389 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass
*RC
,
390 unsigned SubIdx
, unsigned &Size
,
392 const MachineFunction
&MF
) const {
393 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
395 Size
= TRI
->getSpillSize(*RC
);
399 unsigned BitSize
= TRI
->getSubRegIdxSize(SubIdx
);
400 // Convert bit size to byte size.
404 int BitOffset
= TRI
->getSubRegIdxOffset(SubIdx
);
405 if (BitOffset
< 0 || BitOffset
% 8)
409 Offset
= (unsigned)BitOffset
/ 8;
411 assert(TRI
->getSpillSize(*RC
) >= (Offset
+ Size
) && "bad subregister range");
413 if (!MF
.getDataLayout().isLittleEndian()) {
414 Offset
= TRI
->getSpillSize(*RC
) - (Offset
+ Size
);
419 void TargetInstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
420 MachineBasicBlock::iterator I
,
421 Register DestReg
, unsigned SubIdx
,
422 const MachineInstr
&Orig
,
423 const TargetRegisterInfo
&TRI
) const {
424 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
425 MI
->substituteRegister(MI
->getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
429 bool TargetInstrInfo::produceSameValue(const MachineInstr
&MI0
,
430 const MachineInstr
&MI1
,
431 const MachineRegisterInfo
*MRI
) const {
432 return MI0
.isIdenticalTo(MI1
, MachineInstr::IgnoreVRegDefs
);
435 MachineInstr
&TargetInstrInfo::duplicate(MachineBasicBlock
&MBB
,
436 MachineBasicBlock::iterator InsertBefore
, const MachineInstr
&Orig
) const {
437 assert(!Orig
.isNotDuplicable() && "Instruction cannot be duplicated");
438 MachineFunction
&MF
= *MBB
.getParent();
439 return MF
.CloneMachineInstrBundle(MBB
, InsertBefore
, Orig
);
442 // If the COPY instruction in MI can be folded to a stack operation, return
443 // the register class to use.
444 static const TargetRegisterClass
*canFoldCopy(const MachineInstr
&MI
,
446 assert(MI
.isCopy() && "MI must be a COPY instruction");
447 if (MI
.getNumOperands() != 2)
449 assert(FoldIdx
<2 && "FoldIdx refers no nonexistent operand");
451 const MachineOperand
&FoldOp
= MI
.getOperand(FoldIdx
);
452 const MachineOperand
&LiveOp
= MI
.getOperand(1 - FoldIdx
);
454 if (FoldOp
.getSubReg() || LiveOp
.getSubReg())
457 Register FoldReg
= FoldOp
.getReg();
458 Register LiveReg
= LiveOp
.getReg();
460 assert(Register::isVirtualRegister(FoldReg
) && "Cannot fold physregs");
462 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
463 const TargetRegisterClass
*RC
= MRI
.getRegClass(FoldReg
);
465 if (Register::isPhysicalRegister(LiveOp
.getReg()))
466 return RC
->contains(LiveOp
.getReg()) ? RC
: nullptr;
468 if (RC
->hasSubClassEq(MRI
.getRegClass(LiveReg
)))
471 // FIXME: Allow folding when register classes are memory compatible.
475 MCInst
TargetInstrInfo::getNop() const { llvm_unreachable("Not implemented"); }
477 std::pair
<unsigned, unsigned>
478 TargetInstrInfo::getPatchpointUnfoldableRange(const MachineInstr
&MI
) const {
479 switch (MI
.getOpcode()) {
480 case TargetOpcode::STACKMAP
:
481 // StackMapLiveValues are foldable
482 return std::make_pair(0, StackMapOpers(&MI
).getVarIdx());
483 case TargetOpcode::PATCHPOINT
:
484 // For PatchPoint, the call args are not foldable (even if reported in the
485 // stackmap e.g. via anyregcc).
486 return std::make_pair(0, PatchPointOpers(&MI
).getVarIdx());
487 case TargetOpcode::STATEPOINT
:
488 // For statepoints, fold deopt and gc arguments, but not call arguments.
489 return std::make_pair(MI
.getNumDefs(), StatepointOpers(&MI
).getVarIdx());
491 llvm_unreachable("unexpected stackmap opcode");
495 static MachineInstr
*foldPatchpoint(MachineFunction
&MF
, MachineInstr
&MI
,
496 ArrayRef
<unsigned> Ops
, int FrameIndex
,
497 const TargetInstrInfo
&TII
) {
498 unsigned StartIdx
= 0;
499 unsigned NumDefs
= 0;
500 // getPatchpointUnfoldableRange throws guarantee if MI is not a patchpoint.
501 std::tie(NumDefs
, StartIdx
) = TII
.getPatchpointUnfoldableRange(MI
);
503 unsigned DefToFoldIdx
= MI
.getNumOperands();
505 // Return false if any operands requested for folding are not foldable (not
506 // part of the stackmap's live values).
507 for (unsigned Op
: Ops
) {
509 assert(DefToFoldIdx
== MI
.getNumOperands() && "Folding multiple defs");
511 } else if (Op
< StartIdx
) {
514 if (MI
.getOperand(Op
).isTied())
518 MachineInstr
*NewMI
=
519 MF
.CreateMachineInstr(TII
.get(MI
.getOpcode()), MI
.getDebugLoc(), true);
520 MachineInstrBuilder
MIB(MF
, NewMI
);
522 // No need to fold return, the meta data, and function arguments
523 for (unsigned i
= 0; i
< StartIdx
; ++i
)
524 if (i
!= DefToFoldIdx
)
525 MIB
.add(MI
.getOperand(i
));
527 for (unsigned i
= StartIdx
, e
= MI
.getNumOperands(); i
< e
; ++i
) {
528 MachineOperand
&MO
= MI
.getOperand(i
);
530 (void)MI
.isRegTiedToDefOperand(i
, &TiedTo
);
532 if (is_contained(Ops
, i
)) {
533 assert(TiedTo
== e
&& "Cannot fold tied operands");
535 unsigned SpillOffset
;
536 // Compute the spill slot size and offset.
537 const TargetRegisterClass
*RC
=
538 MF
.getRegInfo().getRegClass(MO
.getReg());
540 TII
.getStackSlotRange(RC
, MO
.getSubReg(), SpillSize
, SpillOffset
, MF
);
542 report_fatal_error("cannot spill patchpoint subregister operand");
543 MIB
.addImm(StackMaps::IndirectMemRefOp
);
544 MIB
.addImm(SpillSize
);
545 MIB
.addFrameIndex(FrameIndex
);
546 MIB
.addImm(SpillOffset
);
550 assert(TiedTo
< NumDefs
&& "Bad tied operand");
551 if (TiedTo
> DefToFoldIdx
)
553 NewMI
->tieOperands(TiedTo
, NewMI
->getNumOperands() - 1);
560 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
561 ArrayRef
<unsigned> Ops
, int FI
,
563 VirtRegMap
*VRM
) const {
564 auto Flags
= MachineMemOperand::MONone
;
565 for (unsigned OpIdx
: Ops
)
566 Flags
|= MI
.getOperand(OpIdx
).isDef() ? MachineMemOperand::MOStore
567 : MachineMemOperand::MOLoad
;
569 MachineBasicBlock
*MBB
= MI
.getParent();
570 assert(MBB
&& "foldMemoryOperand needs an inserted instruction");
571 MachineFunction
&MF
= *MBB
->getParent();
573 // If we're not folding a load into a subreg, the size of the load is the
574 // size of the spill slot. But if we are, we need to figure out what the
575 // actual load size is.
577 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
578 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
580 if (Flags
& MachineMemOperand::MOStore
) {
581 MemSize
= MFI
.getObjectSize(FI
);
583 for (unsigned OpIdx
: Ops
) {
584 int64_t OpSize
= MFI
.getObjectSize(FI
);
586 if (auto SubReg
= MI
.getOperand(OpIdx
).getSubReg()) {
587 unsigned SubRegSize
= TRI
->getSubRegIdxSize(SubReg
);
588 if (SubRegSize
> 0 && !(SubRegSize
% 8))
589 OpSize
= SubRegSize
/ 8;
592 MemSize
= std::max(MemSize
, OpSize
);
596 assert(MemSize
&& "Did not expect a zero-sized stack slot");
598 MachineInstr
*NewMI
= nullptr;
600 if (MI
.getOpcode() == TargetOpcode::STACKMAP
||
601 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
602 MI
.getOpcode() == TargetOpcode::STATEPOINT
) {
603 // Fold stackmap/patchpoint.
604 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FI
, *this);
606 MBB
->insert(MI
, NewMI
);
608 // Ask the target to do the actual folding.
609 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, FI
, LIS
, VRM
);
613 NewMI
->setMemRefs(MF
, MI
.memoperands());
614 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
615 assert((!(Flags
& MachineMemOperand::MOStore
) ||
616 NewMI
->mayStore()) &&
617 "Folded a def to a non-store!");
618 assert((!(Flags
& MachineMemOperand::MOLoad
) ||
620 "Folded a use to a non-load!");
621 assert(MFI
.getObjectOffset(FI
) != -1);
622 MachineMemOperand
*MMO
=
623 MF
.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF
, FI
),
624 Flags
, MemSize
, MFI
.getObjectAlign(FI
));
625 NewMI
->addMemOperand(MF
, MMO
);
627 // The pass "x86 speculative load hardening" always attaches symbols to
628 // call instructions. We need copy it form old instruction.
629 NewMI
->cloneInstrSymbols(MF
, MI
);
634 // Straight COPY may fold as load/store.
635 if (!MI
.isCopy() || Ops
.size() != 1)
638 const TargetRegisterClass
*RC
= canFoldCopy(MI
, Ops
[0]);
642 const MachineOperand
&MO
= MI
.getOperand(1 - Ops
[0]);
643 MachineBasicBlock::iterator Pos
= MI
;
645 if (Flags
== MachineMemOperand::MOStore
)
646 storeRegToStackSlot(*MBB
, Pos
, MO
.getReg(), MO
.isKill(), FI
, RC
, TRI
);
648 loadRegFromStackSlot(*MBB
, Pos
, MO
.getReg(), FI
, RC
, TRI
);
652 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
653 ArrayRef
<unsigned> Ops
,
654 MachineInstr
&LoadMI
,
655 LiveIntervals
*LIS
) const {
656 assert(LoadMI
.canFoldAsLoad() && "LoadMI isn't foldable!");
658 for (unsigned OpIdx
: Ops
)
659 assert(MI
.getOperand(OpIdx
).isUse() && "Folding load into def!");
662 MachineBasicBlock
&MBB
= *MI
.getParent();
663 MachineFunction
&MF
= *MBB
.getParent();
665 // Ask the target to do the actual folding.
666 MachineInstr
*NewMI
= nullptr;
669 if ((MI
.getOpcode() == TargetOpcode::STACKMAP
||
670 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
671 MI
.getOpcode() == TargetOpcode::STATEPOINT
) &&
672 isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
673 // Fold stackmap/patchpoint.
674 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FrameIndex
, *this);
676 NewMI
= &*MBB
.insert(MI
, NewMI
);
678 // Ask the target to do the actual folding.
679 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, LoadMI
, LIS
);
685 // Copy the memoperands from the load to the folded instruction.
686 if (MI
.memoperands_empty()) {
687 NewMI
->setMemRefs(MF
, LoadMI
.memoperands());
689 // Handle the rare case of folding multiple loads.
690 NewMI
->setMemRefs(MF
, MI
.memoperands());
691 for (MachineInstr::mmo_iterator I
= LoadMI
.memoperands_begin(),
692 E
= LoadMI
.memoperands_end();
694 NewMI
->addMemOperand(MF
, *I
);
700 bool TargetInstrInfo::hasReassociableOperands(
701 const MachineInstr
&Inst
, const MachineBasicBlock
*MBB
) const {
702 const MachineOperand
&Op1
= Inst
.getOperand(1);
703 const MachineOperand
&Op2
= Inst
.getOperand(2);
704 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
706 // We need virtual register definitions for the operands that we will
708 MachineInstr
*MI1
= nullptr;
709 MachineInstr
*MI2
= nullptr;
710 if (Op1
.isReg() && Register::isVirtualRegister(Op1
.getReg()))
711 MI1
= MRI
.getUniqueVRegDef(Op1
.getReg());
712 if (Op2
.isReg() && Register::isVirtualRegister(Op2
.getReg()))
713 MI2
= MRI
.getUniqueVRegDef(Op2
.getReg());
715 // And they need to be in the trace (otherwise, they won't have a depth).
716 return MI1
&& MI2
&& MI1
->getParent() == MBB
&& MI2
->getParent() == MBB
;
719 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr
&Inst
,
720 bool &Commuted
) const {
721 const MachineBasicBlock
*MBB
= Inst
.getParent();
722 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
723 MachineInstr
*MI1
= MRI
.getUniqueVRegDef(Inst
.getOperand(1).getReg());
724 MachineInstr
*MI2
= MRI
.getUniqueVRegDef(Inst
.getOperand(2).getReg());
725 unsigned AssocOpcode
= Inst
.getOpcode();
727 // If only one operand has the same opcode and it's the second source operand,
728 // the operands must be commuted.
729 Commuted
= MI1
->getOpcode() != AssocOpcode
&& MI2
->getOpcode() == AssocOpcode
;
733 // 1. The previous instruction must be the same type as Inst.
734 // 2. The previous instruction must also be associative/commutative (this can
735 // be different even for instructions with the same opcode if traits like
736 // fast-math-flags are included).
737 // 3. The previous instruction must have virtual register definitions for its
738 // operands in the same basic block as Inst.
739 // 4. The previous instruction's result must only be used by Inst.
740 return MI1
->getOpcode() == AssocOpcode
&& isAssociativeAndCommutative(*MI1
) &&
741 hasReassociableOperands(*MI1
, MBB
) &&
742 MRI
.hasOneNonDBGUse(MI1
->getOperand(0).getReg());
745 // 1. The operation must be associative and commutative.
746 // 2. The instruction must have virtual register definitions for its
747 // operands in the same basic block.
748 // 3. The instruction must have a reassociable sibling.
749 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr
&Inst
,
750 bool &Commuted
) const {
751 return isAssociativeAndCommutative(Inst
) &&
752 hasReassociableOperands(Inst
, Inst
.getParent()) &&
753 hasReassociableSibling(Inst
, Commuted
);
756 // The concept of the reassociation pass is that these operations can benefit
757 // from this kind of transformation:
767 // breaking the dependency between A and B, allowing them to be executed in
768 // parallel (or back-to-back in a pipeline) instead of depending on each other.
770 // FIXME: This has the potential to be expensive (compile time) while not
771 // improving the code at all. Some ways to limit the overhead:
772 // 1. Track successful transforms; bail out if hit rate gets too low.
773 // 2. Only enable at -O3 or some other non-default optimization level.
774 // 3. Pre-screen pattern candidates here: if an operand of the previous
775 // instruction is known to not increase the critical path, then don't match
777 bool TargetInstrInfo::getMachineCombinerPatterns(
778 MachineInstr
&Root
, SmallVectorImpl
<MachineCombinerPattern
> &Patterns
,
779 bool DoRegPressureReduce
) const {
781 if (isReassociationCandidate(Root
, Commute
)) {
782 // We found a sequence of instructions that may be suitable for a
783 // reassociation of operands to increase ILP. Specify each commutation
784 // possibility for the Prev instruction in the sequence and let the
785 // machine combiner decide if changing the operands is worthwhile.
787 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_YB
);
788 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_YB
);
790 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_BY
);
791 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_BY
);
799 /// Return true when a code sequence can improve loop throughput.
801 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern
) const {
805 /// Attempt the reassociation transformation to reduce critical path length.
806 /// See the above comments before getMachineCombinerPatterns().
807 void TargetInstrInfo::reassociateOps(
808 MachineInstr
&Root
, MachineInstr
&Prev
,
809 MachineCombinerPattern Pattern
,
810 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
811 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
812 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
813 MachineFunction
*MF
= Root
.getMF();
814 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
815 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
816 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
817 const TargetRegisterClass
*RC
= Root
.getRegClassConstraint(0, TII
, TRI
);
819 // This array encodes the operand index for each parameter because the
820 // operands may be commuted. Each row corresponds to a pattern value,
821 // and each column specifies the index of A, B, X, Y.
822 unsigned OpIdx
[4][4] = {
831 case MachineCombinerPattern::REASSOC_AX_BY
: Row
= 0; break;
832 case MachineCombinerPattern::REASSOC_AX_YB
: Row
= 1; break;
833 case MachineCombinerPattern::REASSOC_XA_BY
: Row
= 2; break;
834 case MachineCombinerPattern::REASSOC_XA_YB
: Row
= 3; break;
835 default: llvm_unreachable("unexpected MachineCombinerPattern");
838 MachineOperand
&OpA
= Prev
.getOperand(OpIdx
[Row
][0]);
839 MachineOperand
&OpB
= Root
.getOperand(OpIdx
[Row
][1]);
840 MachineOperand
&OpX
= Prev
.getOperand(OpIdx
[Row
][2]);
841 MachineOperand
&OpY
= Root
.getOperand(OpIdx
[Row
][3]);
842 MachineOperand
&OpC
= Root
.getOperand(0);
844 Register RegA
= OpA
.getReg();
845 Register RegB
= OpB
.getReg();
846 Register RegX
= OpX
.getReg();
847 Register RegY
= OpY
.getReg();
848 Register RegC
= OpC
.getReg();
850 if (Register::isVirtualRegister(RegA
))
851 MRI
.constrainRegClass(RegA
, RC
);
852 if (Register::isVirtualRegister(RegB
))
853 MRI
.constrainRegClass(RegB
, RC
);
854 if (Register::isVirtualRegister(RegX
))
855 MRI
.constrainRegClass(RegX
, RC
);
856 if (Register::isVirtualRegister(RegY
))
857 MRI
.constrainRegClass(RegY
, RC
);
858 if (Register::isVirtualRegister(RegC
))
859 MRI
.constrainRegClass(RegC
, RC
);
861 // Create a new virtual register for the result of (X op Y) instead of
862 // recycling RegB because the MachineCombiner's computation of the critical
863 // path requires a new register definition rather than an existing one.
864 Register NewVR
= MRI
.createVirtualRegister(RC
);
865 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
867 unsigned Opcode
= Root
.getOpcode();
868 bool KillA
= OpA
.isKill();
869 bool KillX
= OpX
.isKill();
870 bool KillY
= OpY
.isKill();
872 // Create new instructions for insertion.
873 MachineInstrBuilder MIB1
=
874 BuildMI(*MF
, Prev
.getDebugLoc(), TII
->get(Opcode
), NewVR
)
875 .addReg(RegX
, getKillRegState(KillX
))
876 .addReg(RegY
, getKillRegState(KillY
));
877 MachineInstrBuilder MIB2
=
878 BuildMI(*MF
, Root
.getDebugLoc(), TII
->get(Opcode
), RegC
)
879 .addReg(RegA
, getKillRegState(KillA
))
880 .addReg(NewVR
, getKillRegState(true));
882 setSpecialOperandAttr(Root
, Prev
, *MIB1
, *MIB2
);
884 // Record new instructions for insertion and old instructions for deletion.
885 InsInstrs
.push_back(MIB1
);
886 InsInstrs
.push_back(MIB2
);
887 DelInstrs
.push_back(&Prev
);
888 DelInstrs
.push_back(&Root
);
891 void TargetInstrInfo::genAlternativeCodeSequence(
892 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
893 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
894 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
895 DenseMap
<unsigned, unsigned> &InstIdxForVirtReg
) const {
896 MachineRegisterInfo
&MRI
= Root
.getMF()->getRegInfo();
898 // Select the previous instruction in the sequence based on the input pattern.
899 MachineInstr
*Prev
= nullptr;
901 case MachineCombinerPattern::REASSOC_AX_BY
:
902 case MachineCombinerPattern::REASSOC_XA_BY
:
903 Prev
= MRI
.getUniqueVRegDef(Root
.getOperand(1).getReg());
905 case MachineCombinerPattern::REASSOC_AX_YB
:
906 case MachineCombinerPattern::REASSOC_XA_YB
:
907 Prev
= MRI
.getUniqueVRegDef(Root
.getOperand(2).getReg());
913 assert(Prev
&& "Unknown pattern for machine combiner");
915 reassociateOps(Root
, *Prev
, Pattern
, InsInstrs
, DelInstrs
, InstIdxForVirtReg
);
918 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
919 const MachineInstr
&MI
, AAResults
*AA
) const {
920 const MachineFunction
&MF
= *MI
.getMF();
921 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
923 // Remat clients assume operand 0 is the defined register.
924 if (!MI
.getNumOperands() || !MI
.getOperand(0).isReg())
926 Register DefReg
= MI
.getOperand(0).getReg();
928 // A sub-register definition can only be rematerialized if the instruction
929 // doesn't read the other parts of the register. Otherwise it is really a
930 // read-modify-write operation on the full virtual register which cannot be
932 if (Register::isVirtualRegister(DefReg
) && MI
.getOperand(0).getSubReg() &&
933 MI
.readsVirtualRegister(DefReg
))
936 // A load from a fixed stack slot can be rematerialized. This may be
937 // redundant with subsequent checks, but it's target-independent,
938 // simple, and a common case.
940 if (isLoadFromStackSlot(MI
, FrameIdx
) &&
941 MF
.getFrameInfo().isImmutableObjectIndex(FrameIdx
))
944 // Avoid instructions obviously unsafe for remat.
945 if (MI
.isNotDuplicable() || MI
.mayStore() || MI
.mayRaiseFPException() ||
946 MI
.hasUnmodeledSideEffects())
949 // Don't remat inline asm. We have no idea how expensive it is
950 // even if it's side effect free.
951 if (MI
.isInlineAsm())
954 // Avoid instructions which load from potentially varying memory.
955 if (MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad(AA
))
958 // If any of the registers accessed are non-constant, conservatively assume
959 // the instruction is not rematerializable.
960 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
961 const MachineOperand
&MO
= MI
.getOperand(i
);
962 if (!MO
.isReg()) continue;
963 Register Reg
= MO
.getReg();
967 // Check for a well-behaved physical register.
968 if (Register::isPhysicalRegister(Reg
)) {
970 // If the physreg has no defs anywhere, it's just an ambient register
971 // and we can freely move its uses. Alternatively, if it's allocatable,
972 // it could get allocated to something with a def during allocation.
973 if (!MRI
.isConstantPhysReg(Reg
))
976 // A physreg def. We can't remat it.
982 // Only allow one virtual-register def. There may be multiple defs of the
983 // same virtual register, though.
984 if (MO
.isDef() && Reg
!= DefReg
)
987 // Don't allow any virtual-register uses. Rematting an instruction with
988 // virtual register uses would length the live ranges of the uses, which
989 // is not necessarily a good idea, certainly not "trivial".
994 // Everything checked out.
998 int TargetInstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
999 const MachineFunction
*MF
= MI
.getMF();
1000 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
1001 bool StackGrowsDown
=
1002 TFI
->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown
;
1004 unsigned FrameSetupOpcode
= getCallFrameSetupOpcode();
1005 unsigned FrameDestroyOpcode
= getCallFrameDestroyOpcode();
1007 if (!isFrameInstr(MI
))
1010 int SPAdj
= TFI
->alignSPAdjust(getFrameSize(MI
));
1012 if ((!StackGrowsDown
&& MI
.getOpcode() == FrameSetupOpcode
) ||
1013 (StackGrowsDown
&& MI
.getOpcode() == FrameDestroyOpcode
))
1019 /// isSchedulingBoundary - Test if the given instruction should be
1020 /// considered a scheduling boundary. This primarily includes labels
1021 /// and terminators.
1022 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
1023 const MachineBasicBlock
*MBB
,
1024 const MachineFunction
&MF
) const {
1025 // Terminators and labels can't be scheduled around.
1026 if (MI
.isTerminator() || MI
.isPosition())
1029 // INLINEASM_BR can jump to another block
1030 if (MI
.getOpcode() == TargetOpcode::INLINEASM_BR
)
1033 // Don't attempt to schedule around any instruction that defines
1034 // a stack-oriented pointer, as it's unlikely to be profitable. This
1035 // saves compile time, because it doesn't require every single
1036 // stack slot reference to depend on the instruction that does the
1038 const TargetLowering
&TLI
= *MF
.getSubtarget().getTargetLowering();
1039 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1040 return MI
.modifiesRegister(TLI
.getStackPointerRegisterToSaveRestore(), TRI
);
1043 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1044 // may choose to honor.
1045 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1046 return !DisableHazardRecognizer
;
1049 // Default implementation of CreateTargetRAHazardRecognizer.
1050 ScheduleHazardRecognizer
*TargetInstrInfo::
1051 CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
1052 const ScheduleDAG
*DAG
) const {
1053 // Dummy hazard recognizer allows all instructions to issue.
1054 return new ScheduleHazardRecognizer();
1057 // Default implementation of CreateTargetMIHazardRecognizer.
1058 ScheduleHazardRecognizer
*TargetInstrInfo::CreateTargetMIHazardRecognizer(
1059 const InstrItineraryData
*II
, const ScheduleDAGMI
*DAG
) const {
1060 return new ScoreboardHazardRecognizer(II
, DAG
, "machine-scheduler");
1063 // Default implementation of CreateTargetPostRAHazardRecognizer.
1064 ScheduleHazardRecognizer
*TargetInstrInfo::
1065 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
1066 const ScheduleDAG
*DAG
) const {
1067 return new ScoreboardHazardRecognizer(II
, DAG
, "post-RA-sched");
1070 // Default implementation of getMemOperandWithOffset.
1071 bool TargetInstrInfo::getMemOperandWithOffset(
1072 const MachineInstr
&MI
, const MachineOperand
*&BaseOp
, int64_t &Offset
,
1073 bool &OffsetIsScalable
, const TargetRegisterInfo
*TRI
) const {
1074 SmallVector
<const MachineOperand
*, 4> BaseOps
;
1076 if (!getMemOperandsWithOffsetWidth(MI
, BaseOps
, Offset
, OffsetIsScalable
,
1078 BaseOps
.size() != 1)
1080 BaseOp
= BaseOps
.front();
1084 //===----------------------------------------------------------------------===//
1085 // SelectionDAG latency interface.
1086 //===----------------------------------------------------------------------===//
1089 TargetInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
1090 SDNode
*DefNode
, unsigned DefIdx
,
1091 SDNode
*UseNode
, unsigned UseIdx
) const {
1092 if (!ItinData
|| ItinData
->isEmpty())
1095 if (!DefNode
->isMachineOpcode())
1098 unsigned DefClass
= get(DefNode
->getMachineOpcode()).getSchedClass();
1099 if (!UseNode
->isMachineOpcode())
1100 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
1101 unsigned UseClass
= get(UseNode
->getMachineOpcode()).getSchedClass();
1102 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1105 int TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1107 if (!ItinData
|| ItinData
->isEmpty())
1110 if (!N
->isMachineOpcode())
1113 return ItinData
->getStageLatency(get(N
->getMachineOpcode()).getSchedClass());
1116 //===----------------------------------------------------------------------===//
1117 // MachineInstr latency interface.
1118 //===----------------------------------------------------------------------===//
1120 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData
*ItinData
,
1121 const MachineInstr
&MI
) const {
1122 if (!ItinData
|| ItinData
->isEmpty())
1125 unsigned Class
= MI
.getDesc().getSchedClass();
1126 int UOps
= ItinData
->Itineraries
[Class
].NumMicroOps
;
1130 // The # of u-ops is dynamically determined. The specific target should
1131 // override this function to return the right number.
1135 /// Return the default expected latency for a def based on it's opcode.
1136 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel
&SchedModel
,
1137 const MachineInstr
&DefMI
) const {
1138 if (DefMI
.isTransient())
1140 if (DefMI
.mayLoad())
1141 return SchedModel
.LoadLatency
;
1142 if (isHighLatencyDef(DefMI
.getOpcode()))
1143 return SchedModel
.HighLatency
;
1147 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr
&) const {
1151 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1152 const MachineInstr
&MI
,
1153 unsigned *PredCost
) const {
1154 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1155 // still have a MinLatency property, which getStageLatency checks.
1157 return MI
.mayLoad() ? 2 : 1;
1159 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
1162 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel
&SchedModel
,
1163 const MachineInstr
&DefMI
,
1164 unsigned DefIdx
) const {
1165 const InstrItineraryData
*ItinData
= SchedModel
.getInstrItineraries();
1166 if (!ItinData
|| ItinData
->isEmpty())
1169 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1170 int DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
1171 return (DefCycle
!= -1 && DefCycle
<= 1);
1174 Optional
<ParamLoadedValue
>
1175 TargetInstrInfo::describeLoadedValue(const MachineInstr
&MI
,
1176 Register Reg
) const {
1177 const MachineFunction
*MF
= MI
.getMF();
1178 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
1179 DIExpression
*Expr
= DIExpression::get(MF
->getFunction().getContext(), {});
1181 bool OffsetIsScalable
;
1183 // To simplify the sub-register handling, verify that we only need to
1184 // consider physical registers.
1185 assert(MF
->getProperties().hasProperty(
1186 MachineFunctionProperties::Property::NoVRegs
));
1188 if (auto DestSrc
= isCopyInstr(MI
)) {
1189 Register DestReg
= DestSrc
->Destination
->getReg();
1191 // If the copy destination is the forwarding reg, describe the forwarding
1192 // reg using the copy source as the backup location. Example:
1195 // call callee(x0) ; x0 described as x7
1197 return ParamLoadedValue(*DestSrc
->Source
, Expr
);
1199 // Cases where super- or sub-registers needs to be described should
1200 // be handled by the target's hook implementation.
1201 assert(!TRI
->isSuperOrSubRegisterEq(Reg
, DestReg
) &&
1202 "TargetInstrInfo::describeLoadedValue can't describe super- or "
1203 "sub-regs for copy instructions");
1205 } else if (auto RegImm
= isAddImmediate(MI
, Reg
)) {
1206 Register SrcReg
= RegImm
->Reg
;
1207 Offset
= RegImm
->Imm
;
1208 Expr
= DIExpression::prepend(Expr
, DIExpression::ApplyOffset
, Offset
);
1209 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg
, false), Expr
);
1210 } else if (MI
.hasOneMemOperand()) {
1211 // Only describe memory which provably does not escape the function. As
1212 // described in llvm.org/PR43343, escaped memory may be clobbered by the
1213 // callee (or by another thread).
1214 const auto &TII
= MF
->getSubtarget().getInstrInfo();
1215 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1216 const MachineMemOperand
*MMO
= MI
.memoperands()[0];
1217 const PseudoSourceValue
*PSV
= MMO
->getPseudoValue();
1219 // If the address points to "special" memory (e.g. a spill slot), it's
1220 // sufficient to check that it isn't aliased by any high-level IR value.
1221 if (!PSV
|| PSV
->mayAlias(&MFI
))
1224 const MachineOperand
*BaseOp
;
1225 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, OffsetIsScalable
,
1229 // FIXME: Scalable offsets are not yet handled in the offset code below.
1230 if (OffsetIsScalable
)
1233 // TODO: Can currently only handle mem instructions with a single define.
1234 // An example from the x86 target:
1236 // DIV64m $rsp, 1, $noreg, 24, $noreg, implicit-def dead $rax, implicit-def $rdx
1239 if (MI
.getNumExplicitDefs() != 1)
1242 // TODO: In what way do we need to take Reg into consideration here?
1244 SmallVector
<uint64_t, 8> Ops
;
1245 DIExpression::appendOffset(Ops
, Offset
);
1246 Ops
.push_back(dwarf::DW_OP_deref_size
);
1247 Ops
.push_back(MMO
->getSize());
1248 Expr
= DIExpression::prependOpcodes(Expr
, Ops
);
1249 return ParamLoadedValue(*BaseOp
, Expr
);
1255 /// Both DefMI and UseMI must be valid. By default, call directly to the
1256 /// itinerary. This may be overriden by the target.
1257 int TargetInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
1258 const MachineInstr
&DefMI
,
1260 const MachineInstr
&UseMI
,
1261 unsigned UseIdx
) const {
1262 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1263 unsigned UseClass
= UseMI
.getDesc().getSchedClass();
1264 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1267 bool TargetInstrInfo::getRegSequenceInputs(
1268 const MachineInstr
&MI
, unsigned DefIdx
,
1269 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
1270 assert((MI
.isRegSequence() ||
1271 MI
.isRegSequenceLike()) && "Instruction do not have the proper type");
1273 if (!MI
.isRegSequence())
1274 return getRegSequenceLikeInputs(MI
, DefIdx
, InputRegs
);
1276 // We are looking at:
1277 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1278 assert(DefIdx
== 0 && "REG_SEQUENCE only has one def");
1279 for (unsigned OpIdx
= 1, EndOpIdx
= MI
.getNumOperands(); OpIdx
!= EndOpIdx
;
1281 const MachineOperand
&MOReg
= MI
.getOperand(OpIdx
);
1282 if (MOReg
.isUndef())
1284 const MachineOperand
&MOSubIdx
= MI
.getOperand(OpIdx
+ 1);
1285 assert(MOSubIdx
.isImm() &&
1286 "One of the subindex of the reg_sequence is not an immediate");
1287 // Record Reg:SubReg, SubIdx.
1288 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
.getReg(), MOReg
.getSubReg(),
1289 (unsigned)MOSubIdx
.getImm()));
1294 bool TargetInstrInfo::getExtractSubregInputs(
1295 const MachineInstr
&MI
, unsigned DefIdx
,
1296 RegSubRegPairAndIdx
&InputReg
) const {
1297 assert((MI
.isExtractSubreg() ||
1298 MI
.isExtractSubregLike()) && "Instruction do not have the proper type");
1300 if (!MI
.isExtractSubreg())
1301 return getExtractSubregLikeInputs(MI
, DefIdx
, InputReg
);
1303 // We are looking at:
1304 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1305 assert(DefIdx
== 0 && "EXTRACT_SUBREG only has one def");
1306 const MachineOperand
&MOReg
= MI
.getOperand(1);
1307 if (MOReg
.isUndef())
1309 const MachineOperand
&MOSubIdx
= MI
.getOperand(2);
1310 assert(MOSubIdx
.isImm() &&
1311 "The subindex of the extract_subreg is not an immediate");
1313 InputReg
.Reg
= MOReg
.getReg();
1314 InputReg
.SubReg
= MOReg
.getSubReg();
1315 InputReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();
1319 bool TargetInstrInfo::getInsertSubregInputs(
1320 const MachineInstr
&MI
, unsigned DefIdx
,
1321 RegSubRegPair
&BaseReg
, RegSubRegPairAndIdx
&InsertedReg
) const {
1322 assert((MI
.isInsertSubreg() ||
1323 MI
.isInsertSubregLike()) && "Instruction do not have the proper type");
1325 if (!MI
.isInsertSubreg())
1326 return getInsertSubregLikeInputs(MI
, DefIdx
, BaseReg
, InsertedReg
);
1328 // We are looking at:
1329 // Def = INSERT_SEQUENCE v0, v1, sub0.
1330 assert(DefIdx
== 0 && "INSERT_SUBREG only has one def");
1331 const MachineOperand
&MOBaseReg
= MI
.getOperand(1);
1332 const MachineOperand
&MOInsertedReg
= MI
.getOperand(2);
1333 if (MOInsertedReg
.isUndef())
1335 const MachineOperand
&MOSubIdx
= MI
.getOperand(3);
1336 assert(MOSubIdx
.isImm() &&
1337 "One of the subindex of the reg_sequence is not an immediate");
1338 BaseReg
.Reg
= MOBaseReg
.getReg();
1339 BaseReg
.SubReg
= MOBaseReg
.getSubReg();
1341 InsertedReg
.Reg
= MOInsertedReg
.getReg();
1342 InsertedReg
.SubReg
= MOInsertedReg
.getSubReg();
1343 InsertedReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();
1347 // Returns a MIRPrinter comment for this machine operand.
1348 std::string
TargetInstrInfo::createMIROperandComment(
1349 const MachineInstr
&MI
, const MachineOperand
&Op
, unsigned OpIdx
,
1350 const TargetRegisterInfo
*TRI
) const {
1352 if (!MI
.isInlineAsm())
1356 raw_string_ostream
OS(Flags
);
1358 if (OpIdx
== InlineAsm::MIOp_ExtraInfo
) {
1359 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1360 unsigned ExtraInfo
= Op
.getImm();
1362 for (StringRef Info
: InlineAsm::getExtraInfoNames(ExtraInfo
)) {
1372 int FlagIdx
= MI
.findInlineAsmFlagIdx(OpIdx
);
1373 if (FlagIdx
< 0 || (unsigned)FlagIdx
!= OpIdx
)
1376 assert(Op
.isImm() && "Expected flag operand to be an immediate");
1377 // Pretty print the inline asm operand descriptor.
1378 unsigned Flag
= Op
.getImm();
1379 unsigned Kind
= InlineAsm::getKind(Flag
);
1380 OS
<< InlineAsm::getKindName(Kind
);
1383 if (!InlineAsm::isImmKind(Flag
) && !InlineAsm::isMemKind(Flag
) &&
1384 InlineAsm::hasRegClassConstraint(Flag
, RCID
)) {
1386 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1388 OS
<< ":RC" << RCID
;
1391 if (InlineAsm::isMemKind(Flag
)) {
1392 unsigned MCID
= InlineAsm::getMemoryConstraintID(Flag
);
1393 OS
<< ":" << InlineAsm::getMemConstraintName(MCID
);
1396 unsigned TiedTo
= 0;
1397 if (InlineAsm::isUseOperandTiedToDef(Flag
, TiedTo
))
1398 OS
<< " tiedto:$" << TiedTo
;
1403 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {}