1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/CodeGenPrepare.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
37 #include "llvm/CodeGen/ISDOpcodes.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/TargetPassConfig.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/CodeGen/ValueTypes.h"
43 #include "llvm/CodeGenTypes/MachineValueType.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/Argument.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugInfo.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/GetElementPtrTypeIterator.h"
56 #include "llvm/IR/GlobalValue.h"
57 #include "llvm/IR/GlobalVariable.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/IntrinsicsAArch64.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/MDBuilder.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Operator.h"
70 #include "llvm/IR/PatternMatch.h"
71 #include "llvm/IR/ProfDataUtils.h"
72 #include "llvm/IR/Statepoint.h"
73 #include "llvm/IR/Type.h"
74 #include "llvm/IR/Use.h"
75 #include "llvm/IR/User.h"
76 #include "llvm/IR/Value.h"
77 #include "llvm/IR/ValueHandle.h"
78 #include "llvm/IR/ValueMap.h"
79 #include "llvm/InitializePasses.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/BlockFrequency.h"
82 #include "llvm/Support/BranchProbability.h"
83 #include "llvm/Support/Casting.h"
84 #include "llvm/Support/CommandLine.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/raw_ostream.h"
89 #include "llvm/Target/TargetMachine.h"
90 #include "llvm/Target/TargetOptions.h"
91 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
92 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
93 #include "llvm/Transforms/Utils/Local.h"
94 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
95 #include "llvm/Transforms/Utils/SizeOpts.h"
106 using namespace llvm
;
107 using namespace llvm::PatternMatch
;
109 #define DEBUG_TYPE "codegenprepare"
111 STATISTIC(NumBlocksElim
, "Number of blocks eliminated");
112 STATISTIC(NumPHIsElim
, "Number of trivial PHIs eliminated");
113 STATISTIC(NumGEPsElim
, "Number of GEPs converted to casts");
114 STATISTIC(NumCmpUses
, "Number of uses of Cmp expressions replaced with uses of "
116 STATISTIC(NumCastUses
, "Number of uses of Cast expressions replaced with uses "
118 STATISTIC(NumMemoryInsts
, "Number of memory instructions whose address "
119 "computations were sunk");
120 STATISTIC(NumMemoryInstsPhiCreated
,
121 "Number of phis created when address "
122 "computations were sunk to memory instructions");
123 STATISTIC(NumMemoryInstsSelectCreated
,
124 "Number of select created when address "
125 "computations were sunk to memory instructions");
126 STATISTIC(NumExtsMoved
, "Number of [s|z]ext instructions combined with loads");
127 STATISTIC(NumExtUses
, "Number of uses of [s|z]ext instructions optimized");
128 STATISTIC(NumAndsAdded
,
129 "Number of and mask instructions added to form ext loads");
130 STATISTIC(NumAndUses
, "Number of uses of and mask instructions optimized");
131 STATISTIC(NumRetsDup
, "Number of return instructions duplicated");
132 STATISTIC(NumDbgValueMoved
, "Number of debug value instructions moved");
133 STATISTIC(NumSelectsExpanded
, "Number of selects turned into branches");
134 STATISTIC(NumStoreExtractExposed
, "Number of store(extractelement) exposed");
136 static cl::opt
<bool> DisableBranchOpts(
137 "disable-cgp-branch-opts", cl::Hidden
, cl::init(false),
138 cl::desc("Disable branch optimizations in CodeGenPrepare"));
141 DisableGCOpts("disable-cgp-gc-opts", cl::Hidden
, cl::init(false),
142 cl::desc("Disable GC optimizations in CodeGenPrepare"));
145 DisableSelectToBranch("disable-cgp-select2branch", cl::Hidden
,
147 cl::desc("Disable select to branch conversion."));
150 AddrSinkUsingGEPs("addr-sink-using-gep", cl::Hidden
, cl::init(true),
151 cl::desc("Address sinking in CGP using GEPs."));
154 EnableAndCmpSinking("enable-andcmp-sinking", cl::Hidden
, cl::init(true),
155 cl::desc("Enable sinking and/cmp into branches."));
157 static cl::opt
<bool> DisableStoreExtract(
158 "disable-cgp-store-extract", cl::Hidden
, cl::init(false),
159 cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
161 static cl::opt
<bool> StressStoreExtract(
162 "stress-cgp-store-extract", cl::Hidden
, cl::init(false),
163 cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
165 static cl::opt
<bool> DisableExtLdPromotion(
166 "disable-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
167 cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
170 static cl::opt
<bool> StressExtLdPromotion(
171 "stress-cgp-ext-ld-promotion", cl::Hidden
, cl::init(false),
172 cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
173 "optimization in CodeGenPrepare"));
175 static cl::opt
<bool> DisablePreheaderProtect(
176 "disable-preheader-prot", cl::Hidden
, cl::init(false),
177 cl::desc("Disable protection against removing loop preheaders"));
179 static cl::opt
<bool> ProfileGuidedSectionPrefix(
180 "profile-guided-section-prefix", cl::Hidden
, cl::init(true),
181 cl::desc("Use profile info to add section prefix for hot/cold functions"));
183 static cl::opt
<bool> ProfileUnknownInSpecialSection(
184 "profile-unknown-in-special-section", cl::Hidden
,
185 cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
186 "profile, we cannot tell the function is cold for sure because "
187 "it may be a function newly added without ever being sampled. "
188 "With the flag enabled, compiler can put such profile unknown "
189 "functions into a special section, so runtime system can choose "
190 "to handle it in a different way than .text section, to save "
191 "RAM for example. "));
193 static cl::opt
<bool> BBSectionsGuidedSectionPrefix(
194 "bbsections-guided-section-prefix", cl::Hidden
, cl::init(true),
195 cl::desc("Use the basic-block-sections profile to determine the text "
196 "section prefix for hot functions. Functions with "
197 "basic-block-sections profile will be placed in `.text.hot` "
198 "regardless of their FDO profile info. Other functions won't be "
199 "impacted, i.e., their prefixes will be decided by FDO/sampleFDO "
202 static cl::opt
<uint64_t> FreqRatioToSkipMerge(
203 "cgp-freq-ratio-to-skip-merge", cl::Hidden
, cl::init(2),
204 cl::desc("Skip merging empty blocks if (frequency of empty block) / "
205 "(frequency of destination block) is greater than this ratio"));
207 static cl::opt
<bool> ForceSplitStore(
208 "force-split-store", cl::Hidden
, cl::init(false),
209 cl::desc("Force store splitting no matter what the target query says."));
211 static cl::opt
<bool> EnableTypePromotionMerge(
212 "cgp-type-promotion-merge", cl::Hidden
,
213 cl::desc("Enable merging of redundant sexts when one is dominating"
217 static cl::opt
<bool> DisableComplexAddrModes(
218 "disable-complex-addr-modes", cl::Hidden
, cl::init(false),
219 cl::desc("Disables combining addressing modes with different parts "
220 "in optimizeMemoryInst."));
223 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden
, cl::init(false),
224 cl::desc("Allow creation of Phis in Address sinking."));
226 static cl::opt
<bool> AddrSinkNewSelects(
227 "addr-sink-new-select", cl::Hidden
, cl::init(true),
228 cl::desc("Allow creation of selects in Address sinking."));
230 static cl::opt
<bool> AddrSinkCombineBaseReg(
231 "addr-sink-combine-base-reg", cl::Hidden
, cl::init(true),
232 cl::desc("Allow combining of BaseReg field in Address sinking."));
234 static cl::opt
<bool> AddrSinkCombineBaseGV(
235 "addr-sink-combine-base-gv", cl::Hidden
, cl::init(true),
236 cl::desc("Allow combining of BaseGV field in Address sinking."));
238 static cl::opt
<bool> AddrSinkCombineBaseOffs(
239 "addr-sink-combine-base-offs", cl::Hidden
, cl::init(true),
240 cl::desc("Allow combining of BaseOffs field in Address sinking."));
242 static cl::opt
<bool> AddrSinkCombineScaledReg(
243 "addr-sink-combine-scaled-reg", cl::Hidden
, cl::init(true),
244 cl::desc("Allow combining of ScaledReg field in Address sinking."));
247 EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden
,
249 cl::desc("Enable splitting large offset of GEP."));
251 static cl::opt
<bool> EnableICMP_EQToICMP_ST(
252 "cgp-icmp-eq2icmp-st", cl::Hidden
, cl::init(false),
253 cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
256 VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden
, cl::init(false),
257 cl::desc("Enable BFI update verification for "
261 OptimizePhiTypes("cgp-optimize-phi-types", cl::Hidden
, cl::init(true),
262 cl::desc("Enable converting phi types in CodeGenPrepare"));
264 static cl::opt
<unsigned>
265 HugeFuncThresholdInCGPP("cgpp-huge-func", cl::init(10000), cl::Hidden
,
266 cl::desc("Least BB number of huge function."));
268 static cl::opt
<unsigned>
269 MaxAddressUsersToScan("cgp-max-address-users-to-scan", cl::init(100),
271 cl::desc("Max number of address users to look at"));
274 DisableDeletePHIs("disable-cgp-delete-phis", cl::Hidden
, cl::init(false),
275 cl::desc("Disable elimination of dead PHI nodes."));
280 ZeroExtension
, // Zero extension has been seen.
281 SignExtension
, // Sign extension has been seen.
282 BothExtension
// This extension type is used if we saw sext after
283 // ZeroExtension had been set, or if we saw zext after
284 // SignExtension had been set. It makes the type
285 // information of a promoted instruction invalid.
289 NotModifyDT
, // Not Modify any DT.
290 ModifyBBDT
, // Modify the Basic Block Dominator Tree.
291 ModifyInstDT
// Modify the Instruction Dominator in a Basic Block,
292 // This usually means we move/delete/insert instruction
293 // in a Basic Block. So we should re-iterate instructions
294 // in such Basic Block.
297 using SetOfInstrs
= SmallPtrSet
<Instruction
*, 16>;
298 using TypeIsSExt
= PointerIntPair
<Type
*, 2, ExtType
>;
299 using InstrToOrigTy
= DenseMap
<Instruction
*, TypeIsSExt
>;
300 using SExts
= SmallVector
<Instruction
*, 16>;
301 using ValueToSExts
= MapVector
<Value
*, SExts
>;
303 class TypePromotionTransaction
;
305 class CodeGenPrepare
{
306 friend class CodeGenPrepareLegacyPass
;
307 const TargetMachine
*TM
= nullptr;
308 const TargetSubtargetInfo
*SubtargetInfo
= nullptr;
309 const TargetLowering
*TLI
= nullptr;
310 const TargetRegisterInfo
*TRI
= nullptr;
311 const TargetTransformInfo
*TTI
= nullptr;
312 const BasicBlockSectionsProfileReader
*BBSectionsProfileReader
= nullptr;
313 const TargetLibraryInfo
*TLInfo
= nullptr;
314 LoopInfo
*LI
= nullptr;
315 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
316 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
317 ProfileSummaryInfo
*PSI
= nullptr;
319 /// As we scan instructions optimizing them, this is the next instruction
320 /// to optimize. Transforms that can invalidate this should update it.
321 BasicBlock::iterator CurInstIterator
;
323 /// Keeps track of non-local addresses that have been sunk into a block.
324 /// This allows us to avoid inserting duplicate code for blocks with
325 /// multiple load/stores of the same address. The usage of WeakTrackingVH
326 /// enables SunkAddrs to be treated as a cache whose entries can be
327 /// invalidated if a sunken address computation has been erased.
328 ValueMap
<Value
*, WeakTrackingVH
> SunkAddrs
;
330 /// Keeps track of all instructions inserted for the current function.
331 SetOfInstrs InsertedInsts
;
333 /// Keeps track of the type of the related instruction before their
334 /// promotion for the current function.
335 InstrToOrigTy PromotedInsts
;
337 /// Keep track of instructions removed during promotion.
338 SetOfInstrs RemovedInsts
;
340 /// Keep track of sext chains based on their initial value.
341 DenseMap
<Value
*, Instruction
*> SeenChainsForSExt
;
343 /// Keep track of GEPs accessing the same data structures such as structs or
344 /// arrays that are candidates to be split later because of their large
346 MapVector
<AssertingVH
<Value
>,
347 SmallVector
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>, 32>>
350 /// Keep track of new GEP base after splitting the GEPs having large offset.
351 SmallSet
<AssertingVH
<Value
>, 2> NewGEPBases
;
353 /// Map serial numbers to Large offset GEPs.
354 DenseMap
<AssertingVH
<GetElementPtrInst
>, int> LargeOffsetGEPID
;
356 /// Keep track of SExt promoted.
357 ValueToSExts ValToSExtendedUses
;
359 /// True if the function has the OptSize attribute.
362 /// DataLayout for the Function being processed.
363 const DataLayout
*DL
= nullptr;
365 /// Building the dominator tree can be expensive, so we only build it
366 /// lazily and update it when required.
367 std::unique_ptr
<DominatorTree
> DT
;
371 CodeGenPrepare(const TargetMachine
*TM
) : TM(TM
){};
372 /// If encounter huge function, we need to limit the build time.
373 bool IsHugeFunc
= false;
375 /// FreshBBs is like worklist, it collected the updated BBs which need
376 /// to be optimized again.
377 /// Note: Consider building time in this pass, when a BB updated, we need
378 /// to insert such BB into FreshBBs for huge function.
379 SmallSet
<BasicBlock
*, 32> FreshBBs
;
381 void releaseMemory() {
382 // Clear per function information.
383 InsertedInsts
.clear();
384 PromotedInsts
.clear();
390 bool run(Function
&F
, FunctionAnalysisManager
&AM
);
393 template <typename F
>
394 void resetIteratorIfInvalidatedWhileCalling(BasicBlock
*BB
, F f
) {
395 // Substituting can cause recursive simplifications, which can invalidate
396 // our iterator. Use a WeakTrackingVH to hold onto it in case this
398 Value
*CurValue
= &*CurInstIterator
;
399 WeakTrackingVH
IterHandle(CurValue
);
403 // If the iterator instruction was recursively deleted, start over at the
404 // start of the block.
405 if (IterHandle
!= CurValue
) {
406 CurInstIterator
= BB
->begin();
411 // Get the DominatorTree, building if necessary.
412 DominatorTree
&getDT(Function
&F
) {
414 DT
= std::make_unique
<DominatorTree
>(F
);
418 void removeAllAssertingVHReferences(Value
*V
);
419 bool eliminateAssumptions(Function
&F
);
420 bool eliminateFallThrough(Function
&F
, DominatorTree
*DT
= nullptr);
421 bool eliminateMostlyEmptyBlocks(Function
&F
);
422 BasicBlock
*findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
);
423 bool canMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
424 void eliminateMostlyEmptyBlock(BasicBlock
*BB
);
425 bool isMergingEmptyBlockProfitable(BasicBlock
*BB
, BasicBlock
*DestBB
,
427 bool makeBitReverse(Instruction
&I
);
428 bool optimizeBlock(BasicBlock
&BB
, ModifyDT
&ModifiedDT
);
429 bool optimizeInst(Instruction
*I
, ModifyDT
&ModifiedDT
);
430 bool optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
, Type
*AccessTy
,
432 bool optimizeGatherScatterInst(Instruction
*MemoryInst
, Value
*Ptr
);
433 bool optimizeInlineAsmInst(CallInst
*CS
);
434 bool optimizeCallInst(CallInst
*CI
, ModifyDT
&ModifiedDT
);
435 bool optimizeExt(Instruction
*&I
);
436 bool optimizeExtUses(Instruction
*I
);
437 bool optimizeLoadExt(LoadInst
*Load
);
438 bool optimizeShiftInst(BinaryOperator
*BO
);
439 bool optimizeFunnelShift(IntrinsicInst
*Fsh
);
440 bool optimizeSelectInst(SelectInst
*SI
);
441 bool optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
);
442 bool optimizeSwitchType(SwitchInst
*SI
);
443 bool optimizeSwitchPhiConstants(SwitchInst
*SI
);
444 bool optimizeSwitchInst(SwitchInst
*SI
);
445 bool optimizeExtractElementInst(Instruction
*Inst
);
446 bool dupRetToEnableTailCallOpts(BasicBlock
*BB
, ModifyDT
&ModifiedDT
);
447 bool fixupDbgValue(Instruction
*I
);
448 bool fixupDbgVariableRecord(DbgVariableRecord
&I
);
449 bool fixupDbgVariableRecordsOnInst(Instruction
&I
);
450 bool placeDbgValues(Function
&F
);
451 bool placePseudoProbes(Function
&F
);
452 bool canFormExtLd(const SmallVectorImpl
<Instruction
*> &MovedExts
,
453 LoadInst
*&LI
, Instruction
*&Inst
, bool HasPromoted
);
454 bool tryToPromoteExts(TypePromotionTransaction
&TPT
,
455 const SmallVectorImpl
<Instruction
*> &Exts
,
456 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
457 unsigned CreatedInstsCost
= 0);
458 bool mergeSExts(Function
&F
);
459 bool splitLargeGEPOffsets();
460 bool optimizePhiType(PHINode
*Inst
, SmallPtrSetImpl
<PHINode
*> &Visited
,
461 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
);
462 bool optimizePhiTypes(Function
&F
);
463 bool performAddressTypePromotion(
464 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
465 bool HasPromoted
, TypePromotionTransaction
&TPT
,
466 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
);
467 bool splitBranchCondition(Function
&F
, ModifyDT
&ModifiedDT
);
468 bool simplifyOffsetableRelocate(GCStatepointInst
&I
);
470 bool tryToSinkFreeOperands(Instruction
*I
);
471 bool replaceMathCmpWithIntrinsic(BinaryOperator
*BO
, Value
*Arg0
, Value
*Arg1
,
472 CmpInst
*Cmp
, Intrinsic::ID IID
);
473 bool optimizeCmp(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
474 bool optimizeURem(Instruction
*Rem
);
475 bool combineToUSubWithOverflow(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
476 bool combineToUAddWithOverflow(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
);
477 void verifyBFIUpdates(Function
&F
);
478 bool _run(Function
&F
);
481 class CodeGenPrepareLegacyPass
: public FunctionPass
{
483 static char ID
; // Pass identification, replacement for typeid
485 CodeGenPrepareLegacyPass() : FunctionPass(ID
) {
486 initializeCodeGenPrepareLegacyPassPass(*PassRegistry::getPassRegistry());
489 bool runOnFunction(Function
&F
) override
;
491 StringRef
getPassName() const override
{ return "CodeGen Prepare"; }
493 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
494 // FIXME: When we can selectively preserve passes, preserve the domtree.
495 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
496 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
497 AU
.addRequired
<TargetPassConfig
>();
498 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
499 AU
.addRequired
<LoopInfoWrapperPass
>();
500 AU
.addUsedIfAvailable
<BasicBlockSectionsProfileReaderWrapperPass
>();
504 } // end anonymous namespace
506 char CodeGenPrepareLegacyPass::ID
= 0;
508 bool CodeGenPrepareLegacyPass::runOnFunction(Function
&F
) {
511 auto TM
= &getAnalysis
<TargetPassConfig
>().getTM
<TargetMachine
>();
512 CodeGenPrepare
CGP(TM
);
513 CGP
.DL
= &F
.getDataLayout();
514 CGP
.SubtargetInfo
= TM
->getSubtargetImpl(F
);
515 CGP
.TLI
= CGP
.SubtargetInfo
->getTargetLowering();
516 CGP
.TRI
= CGP
.SubtargetInfo
->getRegisterInfo();
517 CGP
.TLInfo
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
518 CGP
.TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
519 CGP
.LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
520 CGP
.BPI
.reset(new BranchProbabilityInfo(F
, *CGP
.LI
));
521 CGP
.BFI
.reset(new BlockFrequencyInfo(F
, *CGP
.BPI
, *CGP
.LI
));
522 CGP
.PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
524 getAnalysisIfAvailable
<BasicBlockSectionsProfileReaderWrapperPass
>();
525 CGP
.BBSectionsProfileReader
= BBSPRWP
? &BBSPRWP
->getBBSPR() : nullptr;
530 INITIALIZE_PASS_BEGIN(CodeGenPrepareLegacyPass
, DEBUG_TYPE
,
531 "Optimize for code generation", false, false)
532 INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass
)
533 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
534 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
535 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
536 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
537 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
538 INITIALIZE_PASS_END(CodeGenPrepareLegacyPass
, DEBUG_TYPE
,
539 "Optimize for code generation", false, false)
541 FunctionPass
*llvm::createCodeGenPrepareLegacyPass() {
542 return new CodeGenPrepareLegacyPass();
545 PreservedAnalyses
CodeGenPreparePass::run(Function
&F
,
546 FunctionAnalysisManager
&AM
) {
547 CodeGenPrepare
CGP(TM
);
549 bool Changed
= CGP
.run(F
, AM
);
551 return PreservedAnalyses::all();
553 PreservedAnalyses PA
;
554 PA
.preserve
<TargetLibraryAnalysis
>();
555 PA
.preserve
<TargetIRAnalysis
>();
556 PA
.preserve
<LoopAnalysis
>();
560 bool CodeGenPrepare::run(Function
&F
, FunctionAnalysisManager
&AM
) {
561 DL
= &F
.getDataLayout();
562 SubtargetInfo
= TM
->getSubtargetImpl(F
);
563 TLI
= SubtargetInfo
->getTargetLowering();
564 TRI
= SubtargetInfo
->getRegisterInfo();
565 TLInfo
= &AM
.getResult
<TargetLibraryAnalysis
>(F
);
566 TTI
= &AM
.getResult
<TargetIRAnalysis
>(F
);
567 LI
= &AM
.getResult
<LoopAnalysis
>(F
);
568 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
569 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
570 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
571 PSI
= MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
572 BBSectionsProfileReader
=
573 AM
.getCachedResult
<BasicBlockSectionsProfileReaderAnalysis
>(F
);
577 bool CodeGenPrepare::_run(Function
&F
) {
578 bool EverMadeChange
= false;
580 OptSize
= F
.hasOptSize();
581 // Use the basic-block-sections profile to promote hot functions to .text.hot
583 if (BBSectionsGuidedSectionPrefix
&& BBSectionsProfileReader
&&
584 BBSectionsProfileReader
->isFunctionHot(F
.getName())) {
585 F
.setSectionPrefix("hot");
586 } else if (ProfileGuidedSectionPrefix
) {
587 // The hot attribute overwrites profile count based hotness while profile
588 // counts based hotness overwrite the cold attribute.
589 // This is a conservative behabvior.
590 if (F
.hasFnAttribute(Attribute::Hot
) ||
591 PSI
->isFunctionHotInCallGraph(&F
, *BFI
))
592 F
.setSectionPrefix("hot");
593 // If PSI shows this function is not hot, we will placed the function
594 // into unlikely section if (1) PSI shows this is a cold function, or
595 // (2) the function has a attribute of cold.
596 else if (PSI
->isFunctionColdInCallGraph(&F
, *BFI
) ||
597 F
.hasFnAttribute(Attribute::Cold
))
598 F
.setSectionPrefix("unlikely");
599 else if (ProfileUnknownInSpecialSection
&& PSI
->hasPartialSampleProfile() &&
600 PSI
->isFunctionHotnessUnknown(F
))
601 F
.setSectionPrefix("unknown");
604 /// This optimization identifies DIV instructions that can be
605 /// profitably bypassed and carried out with a shorter, faster divide.
606 if (!OptSize
&& !PSI
->hasHugeWorkingSetSize() && TLI
->isSlowDivBypassed()) {
607 const DenseMap
<unsigned int, unsigned int> &BypassWidths
=
608 TLI
->getBypassSlowDivWidths();
609 BasicBlock
*BB
= &*F
.begin();
610 while (BB
!= nullptr) {
611 // bypassSlowDivision may create new BBs, but we don't want to reapply the
612 // optimization to those blocks.
613 BasicBlock
*Next
= BB
->getNextNode();
614 if (!llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
615 EverMadeChange
|= bypassSlowDivision(BB
, BypassWidths
);
620 // Get rid of @llvm.assume builtins before attempting to eliminate empty
621 // blocks, since there might be blocks that only contain @llvm.assume calls
622 // (plus arguments that we can get rid of).
623 EverMadeChange
|= eliminateAssumptions(F
);
625 // Eliminate blocks that contain only PHI nodes and an
626 // unconditional branch.
627 EverMadeChange
|= eliminateMostlyEmptyBlocks(F
);
629 ModifyDT ModifiedDT
= ModifyDT::NotModifyDT
;
630 if (!DisableBranchOpts
)
631 EverMadeChange
|= splitBranchCondition(F
, ModifiedDT
);
633 // Split some critical edges where one of the sources is an indirect branch,
634 // to help generate sane code for PHIs involving such edges.
636 SplitIndirectBrCriticalEdges(F
, /*IgnoreBlocksWithoutPHI=*/true);
638 // If we are optimzing huge function, we need to consider the build time.
639 // Because the basic algorithm's complex is near O(N!).
640 IsHugeFunc
= F
.size() > HugeFuncThresholdInCGPP
;
642 // Transformations above may invalidate dominator tree and/or loop info.
645 LI
->analyze(getDT(F
));
647 bool MadeChange
= true;
648 bool FuncIterated
= false;
652 for (BasicBlock
&BB
: llvm::make_early_inc_range(F
)) {
653 if (FuncIterated
&& !FreshBBs
.contains(&BB
))
656 ModifyDT ModifiedDTOnIteration
= ModifyDT::NotModifyDT
;
657 bool Changed
= optimizeBlock(BB
, ModifiedDTOnIteration
);
659 if (ModifiedDTOnIteration
== ModifyDT::ModifyBBDT
)
662 MadeChange
|= Changed
;
664 // If the BB is updated, it may still has chance to be optimized.
665 // This usually happen at sink optimization.
669 // %and = and i32 %a, 4
670 // %cmp = icmp eq i32 %and, 0
672 // If the %cmp sink to other BB, the %and will has chance to sink.
674 FreshBBs
.insert(&BB
);
675 else if (FuncIterated
)
678 // For small/normal functions, we restart BB iteration if the dominator
679 // tree of the Function was changed.
680 if (ModifiedDTOnIteration
!= ModifyDT::NotModifyDT
)
684 // We have iterated all the BB in the (only work for huge) function.
685 FuncIterated
= IsHugeFunc
;
687 if (EnableTypePromotionMerge
&& !ValToSExtendedUses
.empty())
688 MadeChange
|= mergeSExts(F
);
689 if (!LargeOffsetGEPMap
.empty())
690 MadeChange
|= splitLargeGEPOffsets();
691 MadeChange
|= optimizePhiTypes(F
);
694 eliminateFallThrough(F
, DT
.get());
697 if (MadeChange
&& VerifyLoopInfo
)
698 LI
->verify(getDT(F
));
701 // Really free removed instructions during promotion.
702 for (Instruction
*I
: RemovedInsts
)
705 EverMadeChange
|= MadeChange
;
706 SeenChainsForSExt
.clear();
707 ValToSExtendedUses
.clear();
708 RemovedInsts
.clear();
709 LargeOffsetGEPMap
.clear();
710 LargeOffsetGEPID
.clear();
716 if (!DisableBranchOpts
) {
718 // Use a set vector to get deterministic iteration order. The order the
719 // blocks are removed may affect whether or not PHI nodes in successors
721 SmallSetVector
<BasicBlock
*, 8> WorkList
;
722 for (BasicBlock
&BB
: F
) {
723 SmallVector
<BasicBlock
*, 2> Successors(successors(&BB
));
724 MadeChange
|= ConstantFoldTerminator(&BB
, true);
728 for (BasicBlock
*Succ
: Successors
)
729 if (pred_empty(Succ
))
730 WorkList
.insert(Succ
);
733 // Delete the dead blocks and any of their dead successors.
734 MadeChange
|= !WorkList
.empty();
735 while (!WorkList
.empty()) {
736 BasicBlock
*BB
= WorkList
.pop_back_val();
737 SmallVector
<BasicBlock
*, 2> Successors(successors(BB
));
741 for (BasicBlock
*Succ
: Successors
)
742 if (pred_empty(Succ
))
743 WorkList
.insert(Succ
);
746 // Merge pairs of basic blocks with unconditional branches, connected by
748 if (EverMadeChange
|| MadeChange
)
749 MadeChange
|= eliminateFallThrough(F
);
751 EverMadeChange
|= MadeChange
;
754 if (!DisableGCOpts
) {
755 SmallVector
<GCStatepointInst
*, 2> Statepoints
;
756 for (BasicBlock
&BB
: F
)
757 for (Instruction
&I
: BB
)
758 if (auto *SP
= dyn_cast
<GCStatepointInst
>(&I
))
759 Statepoints
.push_back(SP
);
760 for (auto &I
: Statepoints
)
761 EverMadeChange
|= simplifyOffsetableRelocate(*I
);
764 // Do this last to clean up use-before-def scenarios introduced by other
765 // preparatory transforms.
766 EverMadeChange
|= placeDbgValues(F
);
767 EverMadeChange
|= placePseudoProbes(F
);
770 if (VerifyBFIUpdates
)
774 return EverMadeChange
;
777 bool CodeGenPrepare::eliminateAssumptions(Function
&F
) {
778 bool MadeChange
= false;
779 for (BasicBlock
&BB
: F
) {
780 CurInstIterator
= BB
.begin();
781 while (CurInstIterator
!= BB
.end()) {
782 Instruction
*I
= &*(CurInstIterator
++);
783 if (auto *Assume
= dyn_cast
<AssumeInst
>(I
)) {
785 Value
*Operand
= Assume
->getOperand(0);
786 Assume
->eraseFromParent();
788 resetIteratorIfInvalidatedWhileCalling(&BB
, [&]() {
789 RecursivelyDeleteTriviallyDeadInstructions(Operand
, TLInfo
, nullptr);
797 /// An instruction is about to be deleted, so remove all references to it in our
798 /// GEP-tracking data strcutures.
799 void CodeGenPrepare::removeAllAssertingVHReferences(Value
*V
) {
800 LargeOffsetGEPMap
.erase(V
);
801 NewGEPBases
.erase(V
);
803 auto GEP
= dyn_cast
<GetElementPtrInst
>(V
);
807 LargeOffsetGEPID
.erase(GEP
);
809 auto VecI
= LargeOffsetGEPMap
.find(GEP
->getPointerOperand());
810 if (VecI
== LargeOffsetGEPMap
.end())
813 auto &GEPVector
= VecI
->second
;
814 llvm::erase_if(GEPVector
, [=](auto &Elt
) { return Elt
.first
== GEP
; });
816 if (GEPVector
.empty())
817 LargeOffsetGEPMap
.erase(VecI
);
820 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
821 void LLVM_ATTRIBUTE_UNUSED
CodeGenPrepare::verifyBFIUpdates(Function
&F
) {
822 DominatorTree
NewDT(F
);
823 LoopInfo
NewLI(NewDT
);
824 BranchProbabilityInfo
NewBPI(F
, NewLI
, TLInfo
);
825 BlockFrequencyInfo
NewBFI(F
, NewBPI
, NewLI
);
826 NewBFI
.verifyMatch(*BFI
);
829 /// Merge basic blocks which are connected by a single edge, where one of the
830 /// basic blocks has a single successor pointing to the other basic block,
831 /// which has a single predecessor.
832 bool CodeGenPrepare::eliminateFallThrough(Function
&F
, DominatorTree
*DT
) {
833 bool Changed
= false;
834 // Scan all of the blocks in the function, except for the entry block.
835 // Use a temporary array to avoid iterator being invalidated when
837 SmallVector
<WeakTrackingVH
, 16> Blocks
;
838 for (auto &Block
: llvm::drop_begin(F
))
839 Blocks
.push_back(&Block
);
841 SmallSet
<WeakTrackingVH
, 16> Preds
;
842 for (auto &Block
: Blocks
) {
843 auto *BB
= cast_or_null
<BasicBlock
>(Block
);
846 // If the destination block has a single pred, then this is a trivial
847 // edge, just collapse it.
848 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
850 // Don't merge if BB's address is taken.
851 if (!SinglePred
|| SinglePred
== BB
|| BB
->hasAddressTaken())
854 // Make an effort to skip unreachable blocks.
855 if (DT
&& !DT
->isReachableFromEntry(BB
))
858 BranchInst
*Term
= dyn_cast
<BranchInst
>(SinglePred
->getTerminator());
859 if (Term
&& !Term
->isConditional()) {
861 LLVM_DEBUG(dbgs() << "To merge:\n" << *BB
<< "\n\n\n");
863 // Merge BB into SinglePred and delete it.
864 MergeBlockIntoPredecessor(BB
, /* DTU */ nullptr, LI
, /* MSSAU */ nullptr,
865 /* MemDep */ nullptr,
866 /* PredecessorWithTwoSuccessors */ false, DT
);
867 Preds
.insert(SinglePred
);
870 // Update FreshBBs to optimize the merged BB.
871 FreshBBs
.insert(SinglePred
);
877 // (Repeatedly) merging blocks into their predecessors can create redundant
879 for (const auto &Pred
: Preds
)
880 if (auto *BB
= cast_or_null
<BasicBlock
>(Pred
))
881 RemoveRedundantDbgInstrs(BB
);
886 /// Find a destination block from BB if BB is mergeable empty block.
887 BasicBlock
*CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock
*BB
) {
888 // If this block doesn't end with an uncond branch, ignore it.
889 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
890 if (!BI
|| !BI
->isUnconditional())
893 // If the instruction before the branch (skipping debug info) isn't a phi
894 // node, then other stuff is happening here.
895 BasicBlock::iterator BBI
= BI
->getIterator();
896 if (BBI
!= BB
->begin()) {
898 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
899 if (BBI
== BB
->begin())
903 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
907 // Do not break infinite loops.
908 BasicBlock
*DestBB
= BI
->getSuccessor(0);
912 if (!canMergeBlocks(BB
, DestBB
))
918 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
919 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
920 /// edges in ways that are non-optimal for isel. Start by eliminating these
921 /// blocks so we can split them the way we want them.
922 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function
&F
) {
923 SmallPtrSet
<BasicBlock
*, 16> Preheaders
;
924 SmallVector
<Loop
*, 16> LoopList(LI
->begin(), LI
->end());
925 while (!LoopList
.empty()) {
926 Loop
*L
= LoopList
.pop_back_val();
927 llvm::append_range(LoopList
, *L
);
928 if (BasicBlock
*Preheader
= L
->getLoopPreheader())
929 Preheaders
.insert(Preheader
);
932 bool MadeChange
= false;
933 // Copy blocks into a temporary array to avoid iterator invalidation issues
934 // as we remove them.
935 // Note that this intentionally skips the entry block.
936 SmallVector
<WeakTrackingVH
, 16> Blocks
;
937 for (auto &Block
: llvm::drop_begin(F
)) {
938 // Delete phi nodes that could block deleting other empty blocks.
939 if (!DisableDeletePHIs
)
940 MadeChange
|= DeleteDeadPHIs(&Block
, TLInfo
);
941 Blocks
.push_back(&Block
);
944 for (auto &Block
: Blocks
) {
945 BasicBlock
*BB
= cast_or_null
<BasicBlock
>(Block
);
948 BasicBlock
*DestBB
= findDestBlockOfMergeableEmptyBlock(BB
);
950 !isMergingEmptyBlockProfitable(BB
, DestBB
, Preheaders
.count(BB
)))
953 eliminateMostlyEmptyBlock(BB
);
959 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock
*BB
,
962 // Do not delete loop preheaders if doing so would create a critical edge.
963 // Loop preheaders can be good locations to spill registers. If the
964 // preheader is deleted and we create a critical edge, registers may be
965 // spilled in the loop body instead.
966 if (!DisablePreheaderProtect
&& isPreheader
&&
967 !(BB
->getSinglePredecessor() &&
968 BB
->getSinglePredecessor()->getSingleSuccessor()))
971 // Skip merging if the block's successor is also a successor to any callbr
972 // that leads to this block.
973 // FIXME: Is this really needed? Is this a correctness issue?
974 for (BasicBlock
*Pred
: predecessors(BB
)) {
975 if (isa
<CallBrInst
>(Pred
->getTerminator()) &&
976 llvm::is_contained(successors(Pred
), DestBB
))
980 // Try to skip merging if the unique predecessor of BB is terminated by a
981 // switch or indirect branch instruction, and BB is used as an incoming block
982 // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
983 // add COPY instructions in the predecessor of BB instead of BB (if it is not
984 // merged). Note that the critical edge created by merging such blocks wont be
985 // split in MachineSink because the jump table is not analyzable. By keeping
986 // such empty block (BB), ISel will place COPY instructions in BB, not in the
987 // predecessor of BB.
988 BasicBlock
*Pred
= BB
->getUniquePredecessor();
989 if (!Pred
|| !(isa
<SwitchInst
>(Pred
->getTerminator()) ||
990 isa
<IndirectBrInst
>(Pred
->getTerminator())))
993 if (BB
->getTerminator() != &*BB
->getFirstNonPHIOrDbg())
996 // We use a simple cost heuristic which determine skipping merging is
997 // profitable if the cost of skipping merging is less than the cost of
998 // merging : Cost(skipping merging) < Cost(merging BB), where the
999 // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
1000 // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
1001 // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
1002 // Freq(Pred) / Freq(BB) > 2.
1003 // Note that if there are multiple empty blocks sharing the same incoming
1004 // value for the PHIs in the DestBB, we consider them together. In such
1005 // case, Cost(merging BB) will be the sum of their frequencies.
1007 if (!isa
<PHINode
>(DestBB
->begin()))
1010 SmallPtrSet
<BasicBlock
*, 16> SameIncomingValueBBs
;
1012 // Find all other incoming blocks from which incoming values of all PHIs in
1013 // DestBB are the same as the ones from BB.
1014 for (BasicBlock
*DestBBPred
: predecessors(DestBB
)) {
1015 if (DestBBPred
== BB
)
1018 if (llvm::all_of(DestBB
->phis(), [&](const PHINode
&DestPN
) {
1019 return DestPN
.getIncomingValueForBlock(BB
) ==
1020 DestPN
.getIncomingValueForBlock(DestBBPred
);
1022 SameIncomingValueBBs
.insert(DestBBPred
);
1025 // See if all BB's incoming values are same as the value from Pred. In this
1026 // case, no reason to skip merging because COPYs are expected to be place in
1028 if (SameIncomingValueBBs
.count(Pred
))
1031 BlockFrequency PredFreq
= BFI
->getBlockFreq(Pred
);
1032 BlockFrequency BBFreq
= BFI
->getBlockFreq(BB
);
1034 for (auto *SameValueBB
: SameIncomingValueBBs
)
1035 if (SameValueBB
->getUniquePredecessor() == Pred
&&
1036 DestBB
== findDestBlockOfMergeableEmptyBlock(SameValueBB
))
1037 BBFreq
+= BFI
->getBlockFreq(SameValueBB
);
1039 std::optional
<BlockFrequency
> Limit
= BBFreq
.mul(FreqRatioToSkipMerge
);
1040 return !Limit
|| PredFreq
<= *Limit
;
1043 /// Return true if we can merge BB into DestBB if there is a single
1044 /// unconditional branch between them, and BB contains no other non-phi
1046 bool CodeGenPrepare::canMergeBlocks(const BasicBlock
*BB
,
1047 const BasicBlock
*DestBB
) const {
1048 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
1049 // the successor. If there are more complex condition (e.g. preheaders),
1050 // don't mess around with them.
1051 for (const PHINode
&PN
: BB
->phis()) {
1052 for (const User
*U
: PN
.users()) {
1053 const Instruction
*UI
= cast
<Instruction
>(U
);
1054 if (UI
->getParent() != DestBB
|| !isa
<PHINode
>(UI
))
1056 // If User is inside DestBB block and it is a PHINode then check
1057 // incoming value. If incoming value is not from BB then this is
1058 // a complex condition (e.g. preheaders) we want to avoid here.
1059 if (UI
->getParent() == DestBB
) {
1060 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(UI
))
1061 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
1062 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
1063 if (Insn
&& Insn
->getParent() == BB
&&
1064 Insn
->getParent() != UPN
->getIncomingBlock(I
))
1071 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
1072 // and DestBB may have conflicting incoming values for the block. If so, we
1073 // can't merge the block.
1074 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
1076 return true; // no conflict.
1078 // Collect the preds of BB.
1079 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
1080 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
1081 // It is faster to get preds from a PHI than with pred_iterator.
1082 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
1083 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
1085 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
1088 // Walk the preds of DestBB.
1089 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
1090 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
1091 if (BBPreds
.count(Pred
)) { // Common predecessor?
1092 for (const PHINode
&PN
: DestBB
->phis()) {
1093 const Value
*V1
= PN
.getIncomingValueForBlock(Pred
);
1094 const Value
*V2
= PN
.getIncomingValueForBlock(BB
);
1096 // If V2 is a phi node in BB, look up what the mapped value will be.
1097 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
1098 if (V2PN
->getParent() == BB
)
1099 V2
= V2PN
->getIncomingValueForBlock(Pred
);
1101 // If there is a conflict, bail out.
1111 /// Replace all old uses with new ones, and push the updated BBs into FreshBBs.
1112 static void replaceAllUsesWith(Value
*Old
, Value
*New
,
1113 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
1115 auto *OldI
= dyn_cast
<Instruction
>(Old
);
1117 for (Value::user_iterator UI
= OldI
->user_begin(), E
= OldI
->user_end();
1119 Instruction
*User
= cast
<Instruction
>(*UI
);
1121 FreshBBs
.insert(User
->getParent());
1124 Old
->replaceAllUsesWith(New
);
1127 /// Eliminate a basic block that has only phi's and an unconditional branch in
1129 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock
*BB
) {
1130 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
1131 BasicBlock
*DestBB
= BI
->getSuccessor(0);
1133 LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
1136 // If the destination block has a single pred, then this is a trivial edge,
1137 // just collapse it.
1138 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
1139 if (SinglePred
!= DestBB
) {
1140 assert(SinglePred
== BB
&&
1141 "Single predecessor not the same as predecessor");
1142 // Merge DestBB into SinglePred/BB and delete it.
1143 MergeBlockIntoPredecessor(DestBB
);
1144 // Note: BB(=SinglePred) will not be deleted on this path.
1145 // DestBB(=its single successor) is the one that was deleted.
1146 LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred
<< "\n\n\n");
1149 // Update FreshBBs to optimize the merged BB.
1150 FreshBBs
.insert(SinglePred
);
1151 FreshBBs
.erase(DestBB
);
1157 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
1158 // to handle the new incoming edges it is about to have.
1159 for (PHINode
&PN
: DestBB
->phis()) {
1160 // Remove the incoming value for BB, and remember it.
1161 Value
*InVal
= PN
.removeIncomingValue(BB
, false);
1163 // Two options: either the InVal is a phi node defined in BB or it is some
1164 // value that dominates BB.
1165 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
1166 if (InValPhi
&& InValPhi
->getParent() == BB
) {
1167 // Add all of the input values of the input PHI as inputs of this phi.
1168 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
1169 PN
.addIncoming(InValPhi
->getIncomingValue(i
),
1170 InValPhi
->getIncomingBlock(i
));
1172 // Otherwise, add one instance of the dominating value for each edge that
1173 // we will be adding.
1174 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
1175 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
1176 PN
.addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
1178 for (BasicBlock
*Pred
: predecessors(BB
))
1179 PN
.addIncoming(InVal
, Pred
);
1184 // Preserve loop Metadata.
1185 if (BI
->hasMetadata(LLVMContext::MD_loop
)) {
1186 for (auto *Pred
: predecessors(BB
))
1187 Pred
->getTerminator()->copyMetadata(*BI
, LLVMContext::MD_loop
);
1190 // The PHIs are now updated, change everything that refers to BB to use
1191 // DestBB and remove BB.
1192 BB
->replaceAllUsesWith(DestBB
);
1193 BB
->eraseFromParent();
1196 LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB
<< "\n\n\n");
1199 // Computes a map of base pointer relocation instructions to corresponding
1200 // derived pointer relocation instructions given a vector of all relocate calls
1201 static void computeBaseDerivedRelocateMap(
1202 const SmallVectorImpl
<GCRelocateInst
*> &AllRelocateCalls
,
1203 MapVector
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 0>>
1205 // Collect information in two maps: one primarily for locating the base object
1206 // while filling the second map; the second map is the final structure holding
1207 // a mapping between Base and corresponding Derived relocate calls
1208 MapVector
<std::pair
<unsigned, unsigned>, GCRelocateInst
*> RelocateIdxMap
;
1209 for (auto *ThisRelocate
: AllRelocateCalls
) {
1210 auto K
= std::make_pair(ThisRelocate
->getBasePtrIndex(),
1211 ThisRelocate
->getDerivedPtrIndex());
1212 RelocateIdxMap
.insert(std::make_pair(K
, ThisRelocate
));
1214 for (auto &Item
: RelocateIdxMap
) {
1215 std::pair
<unsigned, unsigned> Key
= Item
.first
;
1216 if (Key
.first
== Key
.second
)
1217 // Base relocation: nothing to insert
1220 GCRelocateInst
*I
= Item
.second
;
1221 auto BaseKey
= std::make_pair(Key
.first
, Key
.first
);
1223 // We're iterating over RelocateIdxMap so we cannot modify it.
1224 auto MaybeBase
= RelocateIdxMap
.find(BaseKey
);
1225 if (MaybeBase
== RelocateIdxMap
.end())
1226 // TODO: We might want to insert a new base object relocate and gep off
1227 // that, if there are enough derived object relocates.
1230 RelocateInstMap
[MaybeBase
->second
].push_back(I
);
1234 // Accepts a GEP and extracts the operands into a vector provided they're all
1235 // small integer constants
1236 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst
*GEP
,
1237 SmallVectorImpl
<Value
*> &OffsetV
) {
1238 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++) {
1239 // Only accept small constant integer operands
1240 auto *Op
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
1241 if (!Op
|| Op
->getZExtValue() > 20)
1245 for (unsigned i
= 1; i
< GEP
->getNumOperands(); i
++)
1246 OffsetV
.push_back(GEP
->getOperand(i
));
1250 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1251 // replace, computes a replacement, and affects it.
1253 simplifyRelocatesOffABase(GCRelocateInst
*RelocatedBase
,
1254 const SmallVectorImpl
<GCRelocateInst
*> &Targets
) {
1255 bool MadeChange
= false;
1256 // We must ensure the relocation of derived pointer is defined after
1257 // relocation of base pointer. If we find a relocation corresponding to base
1258 // defined earlier than relocation of base then we move relocation of base
1259 // right before found relocation. We consider only relocation in the same
1260 // basic block as relocation of base. Relocations from other basic block will
1261 // be skipped by optimization and we do not care about them.
1262 for (auto R
= RelocatedBase
->getParent()->getFirstInsertionPt();
1263 &*R
!= RelocatedBase
; ++R
)
1264 if (auto *RI
= dyn_cast
<GCRelocateInst
>(R
))
1265 if (RI
->getStatepoint() == RelocatedBase
->getStatepoint())
1266 if (RI
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex()) {
1267 RelocatedBase
->moveBefore(RI
->getIterator());
1272 for (GCRelocateInst
*ToReplace
: Targets
) {
1273 assert(ToReplace
->getBasePtrIndex() == RelocatedBase
->getBasePtrIndex() &&
1274 "Not relocating a derived object of the original base object");
1275 if (ToReplace
->getBasePtrIndex() == ToReplace
->getDerivedPtrIndex()) {
1276 // A duplicate relocate call. TODO: coalesce duplicates.
1280 if (RelocatedBase
->getParent() != ToReplace
->getParent()) {
1281 // Base and derived relocates are in different basic blocks.
1282 // In this case transform is only valid when base dominates derived
1283 // relocate. However it would be too expensive to check dominance
1284 // for each such relocate, so we skip the whole transformation.
1288 Value
*Base
= ToReplace
->getBasePtr();
1289 auto *Derived
= dyn_cast
<GetElementPtrInst
>(ToReplace
->getDerivedPtr());
1290 if (!Derived
|| Derived
->getPointerOperand() != Base
)
1293 SmallVector
<Value
*, 2> OffsetV
;
1294 if (!getGEPSmallConstantIntOffsetV(Derived
, OffsetV
))
1297 // Create a Builder and replace the target callsite with a gep
1298 assert(RelocatedBase
->getNextNode() &&
1299 "Should always have one since it's not a terminator");
1301 // Insert after RelocatedBase
1302 IRBuilder
<> Builder(RelocatedBase
->getNextNode());
1303 Builder
.SetCurrentDebugLocation(ToReplace
->getDebugLoc());
1305 // If gc_relocate does not match the actual type, cast it to the right type.
1306 // In theory, there must be a bitcast after gc_relocate if the type does not
1307 // match, and we should reuse it to get the derived pointer. But it could be
1311 // %g1 = call coldcc i8 addrspace(1)*
1312 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1316 // %g2 = call coldcc i8 addrspace(1)*
1317 // @llvm.experimental.gc.relocate.p1i8(...) br label %merge
1320 // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1321 // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1323 // In this case, we can not find the bitcast any more. So we insert a new
1324 // bitcast no matter there is already one or not. In this way, we can handle
1325 // all cases, and the extra bitcast should be optimized away in later
1327 Value
*ActualRelocatedBase
= RelocatedBase
;
1328 if (RelocatedBase
->getType() != Base
->getType()) {
1329 ActualRelocatedBase
=
1330 Builder
.CreateBitCast(RelocatedBase
, Base
->getType());
1332 Value
*Replacement
=
1333 Builder
.CreateGEP(Derived
->getSourceElementType(), ActualRelocatedBase
,
1335 Replacement
->takeName(ToReplace
);
1336 // If the newly generated derived pointer's type does not match the original
1337 // derived pointer's type, cast the new derived pointer to match it. Same
1338 // reasoning as above.
1339 Value
*ActualReplacement
= Replacement
;
1340 if (Replacement
->getType() != ToReplace
->getType()) {
1342 Builder
.CreateBitCast(Replacement
, ToReplace
->getType());
1344 ToReplace
->replaceAllUsesWith(ActualReplacement
);
1345 ToReplace
->eraseFromParent();
1355 // %ptr = gep %base + 15
1356 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1357 // %base' = relocate(%tok, i32 4, i32 4)
1358 // %ptr' = relocate(%tok, i32 4, i32 5)
1359 // %val = load %ptr'
1364 // %ptr = gep %base + 15
1365 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1366 // %base' = gc.relocate(%tok, i32 4, i32 4)
1367 // %ptr' = gep %base' + 15
1368 // %val = load %ptr'
1369 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst
&I
) {
1370 bool MadeChange
= false;
1371 SmallVector
<GCRelocateInst
*, 2> AllRelocateCalls
;
1372 for (auto *U
: I
.users())
1373 if (GCRelocateInst
*Relocate
= dyn_cast
<GCRelocateInst
>(U
))
1374 // Collect all the relocate calls associated with a statepoint
1375 AllRelocateCalls
.push_back(Relocate
);
1377 // We need at least one base pointer relocation + one derived pointer
1378 // relocation to mangle
1379 if (AllRelocateCalls
.size() < 2)
1382 // RelocateInstMap is a mapping from the base relocate instruction to the
1383 // corresponding derived relocate instructions
1384 MapVector
<GCRelocateInst
*, SmallVector
<GCRelocateInst
*, 0>> RelocateInstMap
;
1385 computeBaseDerivedRelocateMap(AllRelocateCalls
, RelocateInstMap
);
1386 if (RelocateInstMap
.empty())
1389 for (auto &Item
: RelocateInstMap
)
1390 // Item.first is the RelocatedBase to offset against
1391 // Item.second is the vector of Targets to replace
1392 MadeChange
= simplifyRelocatesOffABase(Item
.first
, Item
.second
);
1396 /// Sink the specified cast instruction into its user blocks.
1397 static bool SinkCast(CastInst
*CI
) {
1398 BasicBlock
*DefBB
= CI
->getParent();
1400 /// InsertedCasts - Only insert a cast in each block once.
1401 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
1403 bool MadeChange
= false;
1404 for (Value::user_iterator UI
= CI
->user_begin(), E
= CI
->user_end();
1406 Use
&TheUse
= UI
.getUse();
1407 Instruction
*User
= cast
<Instruction
>(*UI
);
1409 // Figure out which BB this cast is used in. For PHI's this is the
1410 // appropriate predecessor block.
1411 BasicBlock
*UserBB
= User
->getParent();
1412 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
1413 UserBB
= PN
->getIncomingBlock(TheUse
);
1416 // Preincrement use iterator so we don't invalidate it.
1419 // The first insertion point of a block containing an EH pad is after the
1420 // pad. If the pad is the user, we cannot sink the cast past the pad.
1421 if (User
->isEHPad())
1424 // If the block selected to receive the cast is an EH pad that does not
1425 // allow non-PHI instructions before the terminator, we can't sink the
1427 if (UserBB
->getTerminator()->isEHPad())
1430 // If this user is in the same block as the cast, don't change the cast.
1431 if (UserBB
== DefBB
)
1434 // If we have already inserted a cast into this block, use it.
1435 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
1437 if (!InsertedCast
) {
1438 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1439 assert(InsertPt
!= UserBB
->end());
1440 InsertedCast
= cast
<CastInst
>(CI
->clone());
1441 InsertedCast
->insertBefore(*UserBB
, InsertPt
);
1444 // Replace a use of the cast with a use of the new cast.
1445 TheUse
= InsertedCast
;
1450 // If we removed all uses, nuke the cast.
1451 if (CI
->use_empty()) {
1452 salvageDebugInfo(*CI
);
1453 CI
->eraseFromParent();
1460 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1461 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1462 /// reduce the number of virtual registers that must be created and coalesced.
1464 /// Return true if any changes are made.
1465 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
,
1466 const DataLayout
&DL
) {
1467 // Sink only "cheap" (or nop) address-space casts. This is a weaker condition
1468 // than sinking only nop casts, but is helpful on some platforms.
1469 if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(CI
)) {
1470 if (!TLI
.isFreeAddrSpaceCast(ASC
->getSrcAddressSpace(),
1471 ASC
->getDestAddressSpace()))
1475 // If this is a noop copy,
1476 EVT SrcVT
= TLI
.getValueType(DL
, CI
->getOperand(0)->getType());
1477 EVT DstVT
= TLI
.getValueType(DL
, CI
->getType());
1479 // This is an fp<->int conversion?
1480 if (SrcVT
.isInteger() != DstVT
.isInteger())
1483 // If this is an extension, it will be a zero or sign extension, which
1485 if (SrcVT
.bitsLT(DstVT
))
1488 // If these values will be promoted, find out what they will be promoted
1489 // to. This helps us consider truncates on PPC as noop copies when they
1491 if (TLI
.getTypeAction(CI
->getContext(), SrcVT
) ==
1492 TargetLowering::TypePromoteInteger
)
1493 SrcVT
= TLI
.getTypeToTransformTo(CI
->getContext(), SrcVT
);
1494 if (TLI
.getTypeAction(CI
->getContext(), DstVT
) ==
1495 TargetLowering::TypePromoteInteger
)
1496 DstVT
= TLI
.getTypeToTransformTo(CI
->getContext(), DstVT
);
1498 // If, after promotion, these are the same types, this is a noop copy.
1502 return SinkCast(CI
);
1505 // Match a simple increment by constant operation. Note that if a sub is
1506 // matched, the step is negated (as if the step had been canonicalized to
1507 // an add, even though we leave the instruction alone.)
1508 static bool matchIncrement(const Instruction
*IVInc
, Instruction
*&LHS
,
1510 if (match(IVInc
, m_Add(m_Instruction(LHS
), m_Constant(Step
))) ||
1511 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::uadd_with_overflow
>(
1512 m_Instruction(LHS
), m_Constant(Step
)))))
1514 if (match(IVInc
, m_Sub(m_Instruction(LHS
), m_Constant(Step
))) ||
1515 match(IVInc
, m_ExtractValue
<0>(m_Intrinsic
<Intrinsic::usub_with_overflow
>(
1516 m_Instruction(LHS
), m_Constant(Step
))))) {
1517 Step
= ConstantExpr::getNeg(Step
);
1523 /// If given \p PN is an inductive variable with value IVInc coming from the
1524 /// backedge, and on each iteration it gets increased by Step, return pair
1525 /// <IVInc, Step>. Otherwise, return std::nullopt.
1526 static std::optional
<std::pair
<Instruction
*, Constant
*>>
1527 getIVIncrement(const PHINode
*PN
, const LoopInfo
*LI
) {
1528 const Loop
*L
= LI
->getLoopFor(PN
->getParent());
1529 if (!L
|| L
->getHeader() != PN
->getParent() || !L
->getLoopLatch())
1530 return std::nullopt
;
1532 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(L
->getLoopLatch()));
1533 if (!IVInc
|| LI
->getLoopFor(IVInc
->getParent()) != L
)
1534 return std::nullopt
;
1535 Instruction
*LHS
= nullptr;
1536 Constant
*Step
= nullptr;
1537 if (matchIncrement(IVInc
, LHS
, Step
) && LHS
== PN
)
1538 return std::make_pair(IVInc
, Step
);
1539 return std::nullopt
;
1542 static bool isIVIncrement(const Value
*V
, const LoopInfo
*LI
) {
1543 auto *I
= dyn_cast
<Instruction
>(V
);
1546 Instruction
*LHS
= nullptr;
1547 Constant
*Step
= nullptr;
1548 if (!matchIncrement(I
, LHS
, Step
))
1550 if (auto *PN
= dyn_cast
<PHINode
>(LHS
))
1551 if (auto IVInc
= getIVIncrement(PN
, LI
))
1552 return IVInc
->first
== I
;
1556 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator
*BO
,
1557 Value
*Arg0
, Value
*Arg1
,
1559 Intrinsic::ID IID
) {
1560 auto IsReplacableIVIncrement
= [this, &Cmp
](BinaryOperator
*BO
) {
1561 if (!isIVIncrement(BO
, LI
))
1563 const Loop
*L
= LI
->getLoopFor(BO
->getParent());
1564 assert(L
&& "L should not be null after isIVIncrement()");
1565 // Do not risk on moving increment into a child loop.
1566 if (LI
->getLoopFor(Cmp
->getParent()) != L
)
1569 // Finally, we need to ensure that the insert point will dominate all
1570 // existing uses of the increment.
1572 auto &DT
= getDT(*BO
->getParent()->getParent());
1573 if (DT
.dominates(Cmp
->getParent(), BO
->getParent()))
1574 // If we're moving up the dom tree, all uses are trivially dominated.
1575 // (This is the common case for code produced by LSR.)
1578 // Otherwise, special case the single use in the phi recurrence.
1579 return BO
->hasOneUse() && DT
.dominates(Cmp
->getParent(), L
->getLoopLatch());
1581 if (BO
->getParent() != Cmp
->getParent() && !IsReplacableIVIncrement(BO
)) {
1582 // We used to use a dominator tree here to allow multi-block optimization.
1583 // But that was problematic because:
1584 // 1. It could cause a perf regression by hoisting the math op into the
1586 // 2. It could cause a perf regression by creating a value that was live
1587 // across multiple blocks and increasing register pressure.
1588 // 3. Use of a dominator tree could cause large compile-time regression.
1589 // This is because we recompute the DT on every change in the main CGP
1590 // run-loop. The recomputing is probably unnecessary in many cases, so if
1591 // that was fixed, using a DT here would be ok.
1593 // There is one important particular case we still want to handle: if BO is
1594 // the IV increment. Important properties that make it profitable:
1595 // - We can speculate IV increment anywhere in the loop (as long as the
1596 // indvar Phi is its only user);
1597 // - Upon computing Cmp, we effectively compute something equivalent to the
1598 // IV increment (despite it loops differently in the IR). So moving it up
1599 // to the cmp point does not really increase register pressure.
1603 // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1604 if (BO
->getOpcode() == Instruction::Add
&&
1605 IID
== Intrinsic::usub_with_overflow
) {
1606 assert(isa
<Constant
>(Arg1
) && "Unexpected input for usubo");
1607 Arg1
= ConstantExpr::getNeg(cast
<Constant
>(Arg1
));
1610 // Insert at the first instruction of the pair.
1611 Instruction
*InsertPt
= nullptr;
1612 for (Instruction
&Iter
: *Cmp
->getParent()) {
1613 // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1614 // the overflow intrinsic are defined.
1615 if ((BO
->getOpcode() != Instruction::Xor
&& &Iter
== BO
) || &Iter
== Cmp
) {
1620 assert(InsertPt
!= nullptr && "Parent block did not contain cmp or binop");
1622 IRBuilder
<> Builder(InsertPt
);
1623 Value
*MathOV
= Builder
.CreateBinaryIntrinsic(IID
, Arg0
, Arg1
);
1624 if (BO
->getOpcode() != Instruction::Xor
) {
1625 Value
*Math
= Builder
.CreateExtractValue(MathOV
, 0, "math");
1626 replaceAllUsesWith(BO
, Math
, FreshBBs
, IsHugeFunc
);
1628 assert(BO
->hasOneUse() &&
1629 "Patterns with XOr should use the BO only in the compare");
1630 Value
*OV
= Builder
.CreateExtractValue(MathOV
, 1, "ov");
1631 replaceAllUsesWith(Cmp
, OV
, FreshBBs
, IsHugeFunc
);
1632 Cmp
->eraseFromParent();
1633 BO
->eraseFromParent();
1637 /// Match special-case patterns that check for unsigned add overflow.
1638 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst
*Cmp
,
1639 BinaryOperator
*&Add
) {
1640 // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1641 // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1642 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1644 // We are not expecting non-canonical/degenerate code. Just bail out.
1645 if (isa
<Constant
>(A
))
1648 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1649 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_AllOnes()))
1650 B
= ConstantInt::get(B
->getType(), 1);
1651 else if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt()))
1652 B
= Constant::getAllOnesValue(B
->getType());
1656 // Check the users of the variable operand of the compare looking for an add
1657 // with the adjusted constant.
1658 for (User
*U
: A
->users()) {
1659 if (match(U
, m_Add(m_Specific(A
), m_Specific(B
)))) {
1660 Add
= cast
<BinaryOperator
>(U
);
1667 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1668 /// intrinsic. Return true if any changes were made.
1669 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst
*Cmp
,
1670 ModifyDT
&ModifiedDT
) {
1671 bool EdgeCase
= false;
1673 BinaryOperator
*Add
;
1674 if (!match(Cmp
, m_UAddWithOverflow(m_Value(A
), m_Value(B
), m_BinOp(Add
)))) {
1675 if (!matchUAddWithOverflowConstantEdgeCases(Cmp
, Add
))
1677 // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1678 A
= Add
->getOperand(0);
1679 B
= Add
->getOperand(1);
1683 if (!TLI
->shouldFormOverflowOp(ISD::UADDO
,
1684 TLI
->getValueType(*DL
, Add
->getType()),
1685 Add
->hasNUsesOrMore(EdgeCase
? 1 : 2)))
1688 // We don't want to move around uses of condition values this late, so we
1689 // check if it is legal to create the call to the intrinsic in the basic
1690 // block containing the icmp.
1691 if (Add
->getParent() != Cmp
->getParent() && !Add
->hasOneUse())
1694 if (!replaceMathCmpWithIntrinsic(Add
, A
, B
, Cmp
,
1695 Intrinsic::uadd_with_overflow
))
1698 // Reset callers - do not crash by iterating over a dead instruction.
1699 ModifiedDT
= ModifyDT::ModifyInstDT
;
1703 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst
*Cmp
,
1704 ModifyDT
&ModifiedDT
) {
1705 // We are not expecting non-canonical/degenerate code. Just bail out.
1706 Value
*A
= Cmp
->getOperand(0), *B
= Cmp
->getOperand(1);
1707 if (isa
<Constant
>(A
) && isa
<Constant
>(B
))
1710 // Convert (A u> B) to (A u< B) to simplify pattern matching.
1711 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1712 if (Pred
== ICmpInst::ICMP_UGT
) {
1714 Pred
= ICmpInst::ICMP_ULT
;
1716 // Convert special-case: (A == 0) is the same as (A u< 1).
1717 if (Pred
== ICmpInst::ICMP_EQ
&& match(B
, m_ZeroInt())) {
1718 B
= ConstantInt::get(B
->getType(), 1);
1719 Pred
= ICmpInst::ICMP_ULT
;
1721 // Convert special-case: (A != 0) is the same as (0 u< A).
1722 if (Pred
== ICmpInst::ICMP_NE
&& match(B
, m_ZeroInt())) {
1724 Pred
= ICmpInst::ICMP_ULT
;
1726 if (Pred
!= ICmpInst::ICMP_ULT
)
1729 // Walk the users of a variable operand of a compare looking for a subtract or
1730 // add with that same operand. Also match the 2nd operand of the compare to
1731 // the add/sub, but that may be a negated constant operand of an add.
1732 Value
*CmpVariableOperand
= isa
<Constant
>(A
) ? B
: A
;
1733 BinaryOperator
*Sub
= nullptr;
1734 for (User
*U
: CmpVariableOperand
->users()) {
1735 // A - B, A u< B --> usubo(A, B)
1736 if (match(U
, m_Sub(m_Specific(A
), m_Specific(B
)))) {
1737 Sub
= cast
<BinaryOperator
>(U
);
1741 // A + (-C), A u< C (canonicalized form of (sub A, C))
1742 const APInt
*CmpC
, *AddC
;
1743 if (match(U
, m_Add(m_Specific(A
), m_APInt(AddC
))) &&
1744 match(B
, m_APInt(CmpC
)) && *AddC
== -(*CmpC
)) {
1745 Sub
= cast
<BinaryOperator
>(U
);
1752 if (!TLI
->shouldFormOverflowOp(ISD::USUBO
,
1753 TLI
->getValueType(*DL
, Sub
->getType()),
1754 Sub
->hasNUsesOrMore(1)))
1757 if (!replaceMathCmpWithIntrinsic(Sub
, Sub
->getOperand(0), Sub
->getOperand(1),
1758 Cmp
, Intrinsic::usub_with_overflow
))
1761 // Reset callers - do not crash by iterating over a dead instruction.
1762 ModifiedDT
= ModifyDT::ModifyInstDT
;
1766 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1767 /// registers that must be created and coalesced. This is a clear win except on
1768 /// targets with multiple condition code registers (PowerPC), where it might
1769 /// lose; some adjustment may be wanted there.
1771 /// Return true if any changes are made.
1772 static bool sinkCmpExpression(CmpInst
*Cmp
, const TargetLowering
&TLI
) {
1773 if (TLI
.hasMultipleConditionRegisters())
1776 // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1777 if (TLI
.useSoftFloat() && isa
<FCmpInst
>(Cmp
))
1780 // Only insert a cmp in each block once.
1781 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
1783 bool MadeChange
= false;
1784 for (Value::user_iterator UI
= Cmp
->user_begin(), E
= Cmp
->user_end();
1786 Use
&TheUse
= UI
.getUse();
1787 Instruction
*User
= cast
<Instruction
>(*UI
);
1789 // Preincrement use iterator so we don't invalidate it.
1792 // Don't bother for PHI nodes.
1793 if (isa
<PHINode
>(User
))
1796 // Figure out which BB this cmp is used in.
1797 BasicBlock
*UserBB
= User
->getParent();
1798 BasicBlock
*DefBB
= Cmp
->getParent();
1800 // If this user is in the same block as the cmp, don't change the cmp.
1801 if (UserBB
== DefBB
)
1804 // If we have already inserted a cmp into this block, use it.
1805 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
1808 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
1809 assert(InsertPt
!= UserBB
->end());
1810 InsertedCmp
= CmpInst::Create(Cmp
->getOpcode(), Cmp
->getPredicate(),
1811 Cmp
->getOperand(0), Cmp
->getOperand(1), "");
1812 InsertedCmp
->insertBefore(*UserBB
, InsertPt
);
1813 // Propagate the debug info.
1814 InsertedCmp
->setDebugLoc(Cmp
->getDebugLoc());
1817 // Replace a use of the cmp with a use of the new cmp.
1818 TheUse
= InsertedCmp
;
1823 // If we removed all uses, nuke the cmp.
1824 if (Cmp
->use_empty()) {
1825 Cmp
->eraseFromParent();
1832 /// For pattern like:
1834 /// DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1838 /// br DomCond, TrueBB, CmpBB
1839 /// CmpBB: (with DomBB being the single predecessor)
1841 /// Cmp = icmp eq CmpOp0, CmpOp1
1844 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1845 /// different from lowering of icmp eq (PowerPC). This function try to convert
1846 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1847 /// After that, DomCond and Cmp can use the same comparison so reduce one
1850 /// Return true if any changes are made.
1851 static bool foldICmpWithDominatingICmp(CmpInst
*Cmp
,
1852 const TargetLowering
&TLI
) {
1853 if (!EnableICMP_EQToICMP_ST
&& TLI
.isEqualityCmpFoldedWithSignedCmp())
1856 ICmpInst::Predicate Pred
= Cmp
->getPredicate();
1857 if (Pred
!= ICmpInst::ICMP_EQ
)
1860 // If icmp eq has users other than BranchInst and SelectInst, converting it to
1861 // icmp slt/sgt would introduce more redundant LLVM IR.
1862 for (User
*U
: Cmp
->users()) {
1863 if (isa
<BranchInst
>(U
))
1865 if (isa
<SelectInst
>(U
) && cast
<SelectInst
>(U
)->getCondition() == Cmp
)
1870 // This is a cheap/incomplete check for dominance - just match a single
1871 // predecessor with a conditional branch.
1872 BasicBlock
*CmpBB
= Cmp
->getParent();
1873 BasicBlock
*DomBB
= CmpBB
->getSinglePredecessor();
1877 // We want to ensure that the only way control gets to the comparison of
1878 // interest is that a less/greater than comparison on the same operands is
1881 BasicBlock
*TrueBB
, *FalseBB
;
1882 if (!match(DomBB
->getTerminator(), m_Br(m_Value(DomCond
), TrueBB
, FalseBB
)))
1884 if (CmpBB
!= FalseBB
)
1887 Value
*CmpOp0
= Cmp
->getOperand(0), *CmpOp1
= Cmp
->getOperand(1);
1888 CmpPredicate DomPred
;
1889 if (!match(DomCond
, m_ICmp(DomPred
, m_Specific(CmpOp0
), m_Specific(CmpOp1
))))
1891 if (DomPred
!= ICmpInst::ICMP_SGT
&& DomPred
!= ICmpInst::ICMP_SLT
)
1894 // Convert the equality comparison to the opposite of the dominating
1895 // comparison and swap the direction for all branch/select users.
1896 // We have conceptually converted:
1897 // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1899 // Res = (a < b) ? <LT_RES> : (a > b) ? <GT_RES> : <EQ_RES>;
1900 // And similarly for branches.
1901 for (User
*U
: Cmp
->users()) {
1902 if (auto *BI
= dyn_cast
<BranchInst
>(U
)) {
1903 assert(BI
->isConditional() && "Must be conditional");
1904 BI
->swapSuccessors();
1907 if (auto *SI
= dyn_cast
<SelectInst
>(U
)) {
1910 SI
->swapProfMetadata();
1913 llvm_unreachable("Must be a branch or a select");
1915 Cmp
->setPredicate(CmpInst::getSwappedPredicate(DomPred
));
1919 /// Many architectures use the same instruction for both subtract and cmp. Try
1920 /// to swap cmp operands to match subtract operations to allow for CSE.
1921 static bool swapICmpOperandsToExposeCSEOpportunities(CmpInst
*Cmp
) {
1922 Value
*Op0
= Cmp
->getOperand(0);
1923 Value
*Op1
= Cmp
->getOperand(1);
1924 if (!Op0
->getType()->isIntegerTy() || isa
<Constant
>(Op0
) ||
1925 isa
<Constant
>(Op1
) || Op0
== Op1
)
1928 // If a subtract already has the same operands as a compare, swapping would be
1929 // bad. If a subtract has the same operands as a compare but in reverse order,
1930 // then swapping is good.
1932 unsigned NumInspected
= 0;
1933 for (const User
*U
: Op0
->users()) {
1934 // Avoid walking many users.
1935 if (++NumInspected
> 128)
1937 if (match(U
, m_Sub(m_Specific(Op1
), m_Specific(Op0
))))
1939 else if (match(U
, m_Sub(m_Specific(Op0
), m_Specific(Op1
))))
1943 if (GoodToSwap
> 0) {
1944 Cmp
->swapOperands();
1950 static bool foldFCmpToFPClassTest(CmpInst
*Cmp
, const TargetLowering
&TLI
,
1951 const DataLayout
&DL
) {
1952 FCmpInst
*FCmp
= dyn_cast
<FCmpInst
>(Cmp
);
1956 // Don't fold if the target offers free fabs and the predicate is legal.
1957 EVT VT
= TLI
.getValueType(DL
, Cmp
->getOperand(0)->getType());
1958 if (TLI
.isFAbsFree(VT
) &&
1959 TLI
.isCondCodeLegal(getFCmpCondCode(FCmp
->getPredicate()),
1963 // Reverse the canonicalization if it is a FP class test
1964 auto ShouldReverseTransform
= [](FPClassTest ClassTest
) {
1965 return ClassTest
== fcInf
|| ClassTest
== (fcInf
| fcNan
);
1967 auto [ClassVal
, ClassTest
] =
1968 fcmpToClassTest(FCmp
->getPredicate(), *FCmp
->getParent()->getParent(),
1969 FCmp
->getOperand(0), FCmp
->getOperand(1));
1973 if (!ShouldReverseTransform(ClassTest
) && !ShouldReverseTransform(~ClassTest
))
1976 IRBuilder
<> Builder(Cmp
);
1977 Value
*IsFPClass
= Builder
.createIsFPClass(ClassVal
, ClassTest
);
1978 Cmp
->replaceAllUsesWith(IsFPClass
);
1979 RecursivelyDeleteTriviallyDeadInstructions(Cmp
);
1983 static bool isRemOfLoopIncrementWithLoopInvariant(
1984 Instruction
*Rem
, const LoopInfo
*LI
, Value
*&RemAmtOut
, Value
*&AddInstOut
,
1985 Value
*&AddOffsetOut
, PHINode
*&LoopIncrPNOut
) {
1986 Value
*Incr
, *RemAmt
;
1987 // NB: If RemAmt is a power of 2 it *should* have been transformed by now.
1988 if (!match(Rem
, m_URem(m_Value(Incr
), m_Value(RemAmt
))))
1991 Value
*AddInst
, *AddOffset
;
1992 // Find out loop increment PHI.
1993 auto *PN
= dyn_cast
<PHINode
>(Incr
);
1994 if (PN
!= nullptr) {
1996 AddOffset
= nullptr;
1998 // Search through a NUW add on top of the loop increment.
2000 if (!match(Incr
, m_NUWAdd(m_Value(V0
), m_Value(V1
))))
2004 PN
= dyn_cast
<PHINode
>(V0
);
2005 if (PN
!= nullptr) {
2008 PN
= dyn_cast
<PHINode
>(V1
);
2016 // This isn't strictly necessary, what we really need is one increment and any
2017 // amount of initial values all being the same.
2018 if (PN
->getNumIncomingValues() != 2)
2021 // Only trivially analyzable loops.
2022 Loop
*L
= LI
->getLoopFor(PN
->getParent());
2023 if (!L
|| !L
->getLoopPreheader() || !L
->getLoopLatch())
2026 // Req that the remainder is in the loop
2027 if (!L
->contains(Rem
))
2030 // Only works if the remainder amount is a loop invaraint
2031 if (!L
->isLoopInvariant(RemAmt
))
2034 // Is the PHI a loop increment?
2035 auto LoopIncrInfo
= getIVIncrement(PN
, LI
);
2039 // We need remainder_amount % increment_amount to be zero. Increment of one
2040 // satisfies that without any special logic and is overwhelmingly the common
2042 if (!match(LoopIncrInfo
->second
, m_One()))
2045 // Need the increment to not overflow.
2046 if (!match(LoopIncrInfo
->first
, m_c_NUWAdd(m_Specific(PN
), m_Value())))
2049 // Set output variables.
2052 AddInstOut
= AddInst
;
2053 AddOffsetOut
= AddOffset
;
2058 // Try to transform:
2060 // for(i = Start; i < End; ++i)
2061 // Rem = (i nuw+ IncrLoopInvariant) u% RemAmtLoopInvariant;
2065 // Rem = (Start nuw+ IncrLoopInvariant) % RemAmtLoopInvariant;
2066 // for(i = Start; i < End; ++i, ++rem)
2067 // Rem = rem == RemAmtLoopInvariant ? 0 : Rem;
2068 static bool foldURemOfLoopIncrement(Instruction
*Rem
, const DataLayout
*DL
,
2070 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
2072 Value
*AddOffset
, *RemAmt
, *AddInst
;
2073 PHINode
*LoopIncrPN
;
2074 if (!isRemOfLoopIncrementWithLoopInvariant(Rem
, LI
, RemAmt
, AddInst
,
2075 AddOffset
, LoopIncrPN
))
2078 // Only non-constant remainder as the extra IV is probably not profitable
2081 // Potential TODO(1): `urem` of a const ends up as `mul` + `shift` + `add`. If
2082 // we can rule out register pressure and ensure this `urem` is executed each
2083 // iteration, its probably profitable to handle the const case as well.
2085 // Potential TODO(2): Should we have a check for how "nested" this remainder
2086 // operation is? The new code runs every iteration so if the remainder is
2087 // guarded behind unlikely conditions this might not be worth it.
2088 if (match(RemAmt
, m_ImmConstant()))
2091 Loop
*L
= LI
->getLoopFor(LoopIncrPN
->getParent());
2092 Value
*Start
= LoopIncrPN
->getIncomingValueForBlock(L
->getLoopPreheader());
2093 // If we have add create initial value for remainder.
2094 // The logic here is:
2095 // (urem (add nuw Start, IncrLoopInvariant), RemAmtLoopInvariant
2097 // Only proceed if the expression simplifies (otherwise we can't fully
2098 // optimize out the urem).
2100 assert(AddOffset
&& "We found an add but missing values");
2101 // Without dom-condition/assumption cache we aren't likely to get much out
2102 // of a context instruction.
2103 Start
= simplifyAddInst(Start
, AddOffset
,
2104 match(AddInst
, m_NSWAdd(m_Value(), m_Value())),
2105 /*IsNUW=*/true, *DL
);
2110 // If we can't fully optimize out the `rem`, skip this transform.
2111 Start
= simplifyURemInst(Start
, RemAmt
, *DL
);
2115 // Create new remainder with induction variable.
2116 Type
*Ty
= Rem
->getType();
2117 IRBuilder
<> Builder(Rem
->getContext());
2119 Builder
.SetInsertPoint(LoopIncrPN
);
2120 PHINode
*NewRem
= Builder
.CreatePHI(Ty
, 2);
2122 Builder
.SetInsertPoint(cast
<Instruction
>(
2123 LoopIncrPN
->getIncomingValueForBlock(L
->getLoopLatch())));
2124 // `(add (urem x, y), 1)` is always nuw.
2125 Value
*RemAdd
= Builder
.CreateNUWAdd(NewRem
, ConstantInt::get(Ty
, 1));
2126 Value
*RemCmp
= Builder
.CreateICmp(ICmpInst::ICMP_EQ
, RemAdd
, RemAmt
);
2128 Builder
.CreateSelect(RemCmp
, Constant::getNullValue(Ty
), RemAdd
);
2130 NewRem
->addIncoming(Start
, L
->getLoopPreheader());
2131 NewRem
->addIncoming(RemSel
, L
->getLoopLatch());
2133 // Insert all touched BBs.
2134 FreshBBs
.insert(LoopIncrPN
->getParent());
2135 FreshBBs
.insert(L
->getLoopLatch());
2136 FreshBBs
.insert(Rem
->getParent());
2138 FreshBBs
.insert(cast
<Instruction
>(AddInst
)->getParent());
2139 replaceAllUsesWith(Rem
, NewRem
, FreshBBs
, IsHuge
);
2140 Rem
->eraseFromParent();
2141 if (AddInst
&& AddInst
->use_empty())
2142 cast
<Instruction
>(AddInst
)->eraseFromParent();
2146 bool CodeGenPrepare::optimizeURem(Instruction
*Rem
) {
2147 if (foldURemOfLoopIncrement(Rem
, DL
, LI
, FreshBBs
, IsHugeFunc
))
2152 /// Some targets have better codegen for `ctpop(X) u< 2` than `ctpop(X) == 1`.
2153 /// This function converts `ctpop(X) ==/!= 1` into `ctpop(X) u</u> 2/1` if the
2154 /// result cannot be zero.
2155 static bool adjustIsPower2Test(CmpInst
*Cmp
, const TargetLowering
&TLI
,
2156 const TargetTransformInfo
&TTI
,
2157 const DataLayout
&DL
) {
2159 if (!match(Cmp
, m_ICmp(Pred
, m_Intrinsic
<Intrinsic::ctpop
>(), m_One())))
2161 if (!ICmpInst::isEquality(Pred
))
2163 auto *II
= cast
<IntrinsicInst
>(Cmp
->getOperand(0));
2165 if (isKnownNonZero(II
, DL
)) {
2166 if (Pred
== ICmpInst::ICMP_EQ
) {
2167 Cmp
->setOperand(1, ConstantInt::get(II
->getType(), 2));
2168 Cmp
->setPredicate(ICmpInst::ICMP_ULT
);
2170 Cmp
->setPredicate(ICmpInst::ICMP_UGT
);
2177 bool CodeGenPrepare::optimizeCmp(CmpInst
*Cmp
, ModifyDT
&ModifiedDT
) {
2178 if (sinkCmpExpression(Cmp
, *TLI
))
2181 if (combineToUAddWithOverflow(Cmp
, ModifiedDT
))
2184 if (combineToUSubWithOverflow(Cmp
, ModifiedDT
))
2187 if (foldICmpWithDominatingICmp(Cmp
, *TLI
))
2190 if (swapICmpOperandsToExposeCSEOpportunities(Cmp
))
2193 if (foldFCmpToFPClassTest(Cmp
, *TLI
, *DL
))
2196 if (adjustIsPower2Test(Cmp
, *TLI
, *TTI
, *DL
))
2202 /// Duplicate and sink the given 'and' instruction into user blocks where it is
2203 /// used in a compare to allow isel to generate better code for targets where
2204 /// this operation can be combined.
2206 /// Return true if any changes are made.
2207 static bool sinkAndCmp0Expression(Instruction
*AndI
, const TargetLowering
&TLI
,
2208 SetOfInstrs
&InsertedInsts
) {
2209 // Double-check that we're not trying to optimize an instruction that was
2210 // already optimized by some other part of this pass.
2211 assert(!InsertedInsts
.count(AndI
) &&
2212 "Attempting to optimize already optimized and instruction");
2213 (void)InsertedInsts
;
2215 // Nothing to do for single use in same basic block.
2216 if (AndI
->hasOneUse() &&
2217 AndI
->getParent() == cast
<Instruction
>(*AndI
->user_begin())->getParent())
2220 // Try to avoid cases where sinking/duplicating is likely to increase register
2222 if (!isa
<ConstantInt
>(AndI
->getOperand(0)) &&
2223 !isa
<ConstantInt
>(AndI
->getOperand(1)) &&
2224 AndI
->getOperand(0)->hasOneUse() && AndI
->getOperand(1)->hasOneUse())
2227 for (auto *U
: AndI
->users()) {
2228 Instruction
*User
= cast
<Instruction
>(U
);
2230 // Only sink 'and' feeding icmp with 0.
2231 if (!isa
<ICmpInst
>(User
))
2234 auto *CmpC
= dyn_cast
<ConstantInt
>(User
->getOperand(1));
2235 if (!CmpC
|| !CmpC
->isZero())
2239 if (!TLI
.isMaskAndCmp0FoldingBeneficial(*AndI
))
2242 LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
2243 LLVM_DEBUG(AndI
->getParent()->dump());
2245 // Push the 'and' into the same block as the icmp 0. There should only be
2246 // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
2247 // others, so we don't need to keep track of which BBs we insert into.
2248 for (Value::user_iterator UI
= AndI
->user_begin(), E
= AndI
->user_end();
2250 Use
&TheUse
= UI
.getUse();
2251 Instruction
*User
= cast
<Instruction
>(*UI
);
2253 // Preincrement use iterator so we don't invalidate it.
2256 LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User
<< "\n");
2258 // Keep the 'and' in the same place if the use is already in the same block.
2259 Instruction
*InsertPt
=
2260 User
->getParent() == AndI
->getParent() ? AndI
: User
;
2261 Instruction
*InsertedAnd
= BinaryOperator::Create(
2262 Instruction::And
, AndI
->getOperand(0), AndI
->getOperand(1), "",
2263 InsertPt
->getIterator());
2264 // Propagate the debug info.
2265 InsertedAnd
->setDebugLoc(AndI
->getDebugLoc());
2267 // Replace a use of the 'and' with a use of the new 'and'.
2268 TheUse
= InsertedAnd
;
2270 LLVM_DEBUG(User
->getParent()->dump());
2273 // We removed all uses, nuke the and.
2274 AndI
->eraseFromParent();
2278 /// Check if the candidates could be combined with a shift instruction, which
2280 /// 1. Truncate instruction
2281 /// 2. And instruction and the imm is a mask of the low bits:
2282 /// imm & (imm+1) == 0
2283 static bool isExtractBitsCandidateUse(Instruction
*User
) {
2284 if (!isa
<TruncInst
>(User
)) {
2285 if (User
->getOpcode() != Instruction::And
||
2286 !isa
<ConstantInt
>(User
->getOperand(1)))
2289 const APInt
&Cimm
= cast
<ConstantInt
>(User
->getOperand(1))->getValue();
2291 if ((Cimm
& (Cimm
+ 1)).getBoolValue())
2297 /// Sink both shift and truncate instruction to the use of truncate's BB.
2299 SinkShiftAndTruncate(BinaryOperator
*ShiftI
, Instruction
*User
, ConstantInt
*CI
,
2300 DenseMap
<BasicBlock
*, BinaryOperator
*> &InsertedShifts
,
2301 const TargetLowering
&TLI
, const DataLayout
&DL
) {
2302 BasicBlock
*UserBB
= User
->getParent();
2303 DenseMap
<BasicBlock
*, CastInst
*> InsertedTruncs
;
2304 auto *TruncI
= cast
<TruncInst
>(User
);
2305 bool MadeChange
= false;
2307 for (Value::user_iterator TruncUI
= TruncI
->user_begin(),
2308 TruncE
= TruncI
->user_end();
2309 TruncUI
!= TruncE
;) {
2311 Use
&TruncTheUse
= TruncUI
.getUse();
2312 Instruction
*TruncUser
= cast
<Instruction
>(*TruncUI
);
2313 // Preincrement use iterator so we don't invalidate it.
2317 int ISDOpcode
= TLI
.InstructionOpcodeToISD(TruncUser
->getOpcode());
2321 // If the use is actually a legal node, there will not be an
2322 // implicit truncate.
2323 // FIXME: always querying the result type is just an
2324 // approximation; some nodes' legality is determined by the
2325 // operand or other means. There's no good way to find out though.
2326 if (TLI
.isOperationLegalOrCustom(
2327 ISDOpcode
, TLI
.getValueType(DL
, TruncUser
->getType(), true)))
2330 // Don't bother for PHI nodes.
2331 if (isa
<PHINode
>(TruncUser
))
2334 BasicBlock
*TruncUserBB
= TruncUser
->getParent();
2336 if (UserBB
== TruncUserBB
)
2339 BinaryOperator
*&InsertedShift
= InsertedShifts
[TruncUserBB
];
2340 CastInst
*&InsertedTrunc
= InsertedTruncs
[TruncUserBB
];
2342 if (!InsertedShift
&& !InsertedTrunc
) {
2343 BasicBlock::iterator InsertPt
= TruncUserBB
->getFirstInsertionPt();
2344 assert(InsertPt
!= TruncUserBB
->end());
2346 if (ShiftI
->getOpcode() == Instruction::AShr
)
2348 BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
, "");
2351 BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
, "");
2352 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
2353 InsertedShift
->insertBefore(*TruncUserBB
, InsertPt
);
2356 BasicBlock::iterator TruncInsertPt
= TruncUserBB
->getFirstInsertionPt();
2358 // It will go ahead of any debug-info.
2359 TruncInsertPt
.setHeadBit(true);
2360 assert(TruncInsertPt
!= TruncUserBB
->end());
2362 InsertedTrunc
= CastInst::Create(TruncI
->getOpcode(), InsertedShift
,
2363 TruncI
->getType(), "");
2364 InsertedTrunc
->insertBefore(*TruncUserBB
, TruncInsertPt
);
2365 InsertedTrunc
->setDebugLoc(TruncI
->getDebugLoc());
2369 TruncTheUse
= InsertedTrunc
;
2375 /// Sink the shift *right* instruction into user blocks if the uses could
2376 /// potentially be combined with this shift instruction and generate BitExtract
2377 /// instruction. It will only be applied if the architecture supports BitExtract
2378 /// instruction. Here is an example:
2380 /// %x.extract.shift = lshr i64 %arg1, 32
2382 /// %x.extract.trunc = trunc i64 %x.extract.shift to i16
2386 /// %x.extract.shift.1 = lshr i64 %arg1, 32
2387 /// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
2389 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
2391 /// Return true if any changes are made.
2392 static bool OptimizeExtractBits(BinaryOperator
*ShiftI
, ConstantInt
*CI
,
2393 const TargetLowering
&TLI
,
2394 const DataLayout
&DL
) {
2395 BasicBlock
*DefBB
= ShiftI
->getParent();
2397 /// Only insert instructions in each block once.
2398 DenseMap
<BasicBlock
*, BinaryOperator
*> InsertedShifts
;
2400 bool shiftIsLegal
= TLI
.isTypeLegal(TLI
.getValueType(DL
, ShiftI
->getType()));
2402 bool MadeChange
= false;
2403 for (Value::user_iterator UI
= ShiftI
->user_begin(), E
= ShiftI
->user_end();
2405 Use
&TheUse
= UI
.getUse();
2406 Instruction
*User
= cast
<Instruction
>(*UI
);
2407 // Preincrement use iterator so we don't invalidate it.
2410 // Don't bother for PHI nodes.
2411 if (isa
<PHINode
>(User
))
2414 if (!isExtractBitsCandidateUse(User
))
2417 BasicBlock
*UserBB
= User
->getParent();
2419 if (UserBB
== DefBB
) {
2420 // If the shift and truncate instruction are in the same BB. The use of
2421 // the truncate(TruncUse) may still introduce another truncate if not
2422 // legal. In this case, we would like to sink both shift and truncate
2423 // instruction to the BB of TruncUse.
2426 // i64 shift.result = lshr i64 opnd, imm
2427 // trunc.result = trunc shift.result to i16
2430 // ----> We will have an implicit truncate here if the architecture does
2431 // not have i16 compare.
2432 // cmp i16 trunc.result, opnd2
2434 if (isa
<TruncInst
>(User
) &&
2436 // If the type of the truncate is legal, no truncate will be
2437 // introduced in other basic blocks.
2438 && (!TLI
.isTypeLegal(TLI
.getValueType(DL
, User
->getType()))))
2440 SinkShiftAndTruncate(ShiftI
, User
, CI
, InsertedShifts
, TLI
, DL
);
2444 // If we have already inserted a shift into this block, use it.
2445 BinaryOperator
*&InsertedShift
= InsertedShifts
[UserBB
];
2447 if (!InsertedShift
) {
2448 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
2449 assert(InsertPt
!= UserBB
->end());
2451 if (ShiftI
->getOpcode() == Instruction::AShr
)
2453 BinaryOperator::CreateAShr(ShiftI
->getOperand(0), CI
, "");
2456 BinaryOperator::CreateLShr(ShiftI
->getOperand(0), CI
, "");
2457 InsertedShift
->insertBefore(*UserBB
, InsertPt
);
2458 InsertedShift
->setDebugLoc(ShiftI
->getDebugLoc());
2463 // Replace a use of the shift with a use of the new shift.
2464 TheUse
= InsertedShift
;
2467 // If we removed all uses, or there are none, nuke the shift.
2468 if (ShiftI
->use_empty()) {
2469 salvageDebugInfo(*ShiftI
);
2470 ShiftI
->eraseFromParent();
2477 /// If counting leading or trailing zeros is an expensive operation and a zero
2478 /// input is defined, add a check for zero to avoid calling the intrinsic.
2480 /// We want to transform:
2481 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2485 /// %cmpz = icmp eq i64 %A, 0
2486 /// br i1 %cmpz, label %cond.end, label %cond.false
2488 /// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2489 /// br label %cond.end
2491 /// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2493 /// If the transform is performed, return true and set ModifiedDT to true.
2494 static bool despeculateCountZeros(IntrinsicInst
*CountZeros
,
2496 const TargetLowering
*TLI
,
2497 const DataLayout
*DL
, ModifyDT
&ModifiedDT
,
2498 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
2500 // If a zero input is undefined, it doesn't make sense to despeculate that.
2501 if (match(CountZeros
->getOperand(1), m_One()))
2504 // If it's cheap to speculate, there's nothing to do.
2505 Type
*Ty
= CountZeros
->getType();
2506 auto IntrinsicID
= CountZeros
->getIntrinsicID();
2507 if ((IntrinsicID
== Intrinsic::cttz
&& TLI
->isCheapToSpeculateCttz(Ty
)) ||
2508 (IntrinsicID
== Intrinsic::ctlz
&& TLI
->isCheapToSpeculateCtlz(Ty
)))
2511 // Only handle legal scalar cases. Anything else requires too much work.
2512 unsigned SizeInBits
= Ty
->getScalarSizeInBits();
2513 if (Ty
->isVectorTy() || SizeInBits
> DL
->getLargestLegalIntTypeSizeInBits())
2516 // Bail if the value is never zero.
2517 Use
&Op
= CountZeros
->getOperandUse(0);
2518 if (isKnownNonZero(Op
, *DL
))
2521 // The intrinsic will be sunk behind a compare against zero and branch.
2522 BasicBlock
*StartBlock
= CountZeros
->getParent();
2523 BasicBlock
*CallBlock
= StartBlock
->splitBasicBlock(CountZeros
, "cond.false");
2525 FreshBBs
.insert(CallBlock
);
2527 // Create another block after the count zero intrinsic. A PHI will be added
2528 // in this block to select the result of the intrinsic or the bit-width
2529 // constant if the input to the intrinsic is zero.
2530 BasicBlock::iterator SplitPt
= std::next(BasicBlock::iterator(CountZeros
));
2531 // Any debug-info after CountZeros should not be included.
2532 SplitPt
.setHeadBit(true);
2533 BasicBlock
*EndBlock
= CallBlock
->splitBasicBlock(SplitPt
, "cond.end");
2535 FreshBBs
.insert(EndBlock
);
2537 // Update the LoopInfo. The new blocks are in the same loop as the start
2539 if (Loop
*L
= LI
.getLoopFor(StartBlock
)) {
2540 L
->addBasicBlockToLoop(CallBlock
, LI
);
2541 L
->addBasicBlockToLoop(EndBlock
, LI
);
2544 // Set up a builder to create a compare, conditional branch, and PHI.
2545 IRBuilder
<> Builder(CountZeros
->getContext());
2546 Builder
.SetInsertPoint(StartBlock
->getTerminator());
2547 Builder
.SetCurrentDebugLocation(CountZeros
->getDebugLoc());
2549 // Replace the unconditional branch that was created by the first split with
2550 // a compare against zero and a conditional branch.
2551 Value
*Zero
= Constant::getNullValue(Ty
);
2552 // Avoid introducing branch on poison. This also replaces the ctz operand.
2553 if (!isGuaranteedNotToBeUndefOrPoison(Op
))
2554 Op
= Builder
.CreateFreeze(Op
, Op
->getName() + ".fr");
2555 Value
*Cmp
= Builder
.CreateICmpEQ(Op
, Zero
, "cmpz");
2556 Builder
.CreateCondBr(Cmp
, EndBlock
, CallBlock
);
2557 StartBlock
->getTerminator()->eraseFromParent();
2559 // Create a PHI in the end block to select either the output of the intrinsic
2560 // or the bit width of the operand.
2561 Builder
.SetInsertPoint(EndBlock
, EndBlock
->begin());
2562 PHINode
*PN
= Builder
.CreatePHI(Ty
, 2, "ctz");
2563 replaceAllUsesWith(CountZeros
, PN
, FreshBBs
, IsHugeFunc
);
2564 Value
*BitWidth
= Builder
.getInt(APInt(SizeInBits
, SizeInBits
));
2565 PN
->addIncoming(BitWidth
, StartBlock
);
2566 PN
->addIncoming(CountZeros
, CallBlock
);
2568 // We are explicitly handling the zero case, so we can set the intrinsic's
2569 // undefined zero argument to 'true'. This will also prevent reprocessing the
2570 // intrinsic; we only despeculate when a zero input is defined.
2571 CountZeros
->setArgOperand(1, Builder
.getTrue());
2572 ModifiedDT
= ModifyDT::ModifyBBDT
;
2576 bool CodeGenPrepare::optimizeCallInst(CallInst
*CI
, ModifyDT
&ModifiedDT
) {
2577 BasicBlock
*BB
= CI
->getParent();
2579 // Lower inline assembly if we can.
2580 // If we found an inline asm expession, and if the target knows how to
2581 // lower it to normal LLVM code, do so now.
2582 if (CI
->isInlineAsm()) {
2583 if (TLI
->ExpandInlineAsm(CI
)) {
2584 // Avoid invalidating the iterator.
2585 CurInstIterator
= BB
->begin();
2586 // Avoid processing instructions out of order, which could cause
2587 // reuse before a value is defined.
2591 // Sink address computing for memory operands into the block.
2592 if (optimizeInlineAsmInst(CI
))
2596 // Align the pointer arguments to this call if the target thinks it's a good
2600 if (TLI
->shouldAlignPointerArgs(CI
, MinSize
, PrefAlign
)) {
2601 for (auto &Arg
: CI
->args()) {
2602 // We want to align both objects whose address is used directly and
2603 // objects whose address is used in casts and GEPs, though it only makes
2604 // sense for GEPs if the offset is a multiple of the desired alignment and
2605 // if size - offset meets the size threshold.
2606 if (!Arg
->getType()->isPointerTy())
2608 APInt
Offset(DL
->getIndexSizeInBits(
2609 cast
<PointerType
>(Arg
->getType())->getAddressSpace()),
2611 Value
*Val
= Arg
->stripAndAccumulateInBoundsConstantOffsets(*DL
, Offset
);
2612 uint64_t Offset2
= Offset
.getLimitedValue();
2613 if (!isAligned(PrefAlign
, Offset2
))
2616 if ((AI
= dyn_cast
<AllocaInst
>(Val
)) && AI
->getAlign() < PrefAlign
&&
2617 DL
->getTypeAllocSize(AI
->getAllocatedType()) >= MinSize
+ Offset2
)
2618 AI
->setAlignment(PrefAlign
);
2619 // Global variables can only be aligned if they are defined in this
2620 // object (i.e. they are uniquely initialized in this object), and
2621 // over-aligning global variables that have an explicit section is
2624 if ((GV
= dyn_cast
<GlobalVariable
>(Val
)) && GV
->canIncreaseAlignment() &&
2625 GV
->getPointerAlignment(*DL
) < PrefAlign
&&
2626 DL
->getTypeAllocSize(GV
->getValueType()) >= MinSize
+ Offset2
)
2627 GV
->setAlignment(PrefAlign
);
2630 // If this is a memcpy (or similar) then we may be able to improve the
2632 if (MemIntrinsic
*MI
= dyn_cast
<MemIntrinsic
>(CI
)) {
2633 Align DestAlign
= getKnownAlignment(MI
->getDest(), *DL
);
2634 MaybeAlign MIDestAlign
= MI
->getDestAlign();
2635 if (!MIDestAlign
|| DestAlign
> *MIDestAlign
)
2636 MI
->setDestAlignment(DestAlign
);
2637 if (MemTransferInst
*MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
2638 MaybeAlign MTISrcAlign
= MTI
->getSourceAlign();
2639 Align SrcAlign
= getKnownAlignment(MTI
->getSource(), *DL
);
2640 if (!MTISrcAlign
|| SrcAlign
> *MTISrcAlign
)
2641 MTI
->setSourceAlignment(SrcAlign
);
2645 // If we have a cold call site, try to sink addressing computation into the
2646 // cold block. This interacts with our handling for loads and stores to
2647 // ensure that we can fold all uses of a potential addressing computation
2648 // into their uses. TODO: generalize this to work over profiling data
2649 if (CI
->hasFnAttr(Attribute::Cold
) &&
2650 !llvm::shouldOptimizeForSize(BB
, PSI
, BFI
.get()))
2651 for (auto &Arg
: CI
->args()) {
2652 if (!Arg
->getType()->isPointerTy())
2654 unsigned AS
= Arg
->getType()->getPointerAddressSpace();
2655 if (optimizeMemoryInst(CI
, Arg
, Arg
->getType(), AS
))
2659 IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(CI
);
2661 switch (II
->getIntrinsicID()) {
2664 case Intrinsic::assume
:
2665 llvm_unreachable("llvm.assume should have been removed already");
2666 case Intrinsic::allow_runtime_check
:
2667 case Intrinsic::allow_ubsan_check
:
2668 case Intrinsic::experimental_widenable_condition
: {
2669 // Give up on future widening opportunities so that we can fold away dead
2670 // paths and merge blocks before going into block-local instruction
2672 if (II
->use_empty()) {
2673 II
->eraseFromParent();
2676 Constant
*RetVal
= ConstantInt::getTrue(II
->getContext());
2677 resetIteratorIfInvalidatedWhileCalling(BB
, [&]() {
2678 replaceAndRecursivelySimplify(CI
, RetVal
, TLInfo
, nullptr);
2682 case Intrinsic::objectsize
:
2683 llvm_unreachable("llvm.objectsize.* should have been lowered already");
2684 case Intrinsic::is_constant
:
2685 llvm_unreachable("llvm.is.constant.* should have been lowered already");
2686 case Intrinsic::aarch64_stlxr
:
2687 case Intrinsic::aarch64_stxr
: {
2688 ZExtInst
*ExtVal
= dyn_cast
<ZExtInst
>(CI
->getArgOperand(0));
2689 if (!ExtVal
|| !ExtVal
->hasOneUse() ||
2690 ExtVal
->getParent() == CI
->getParent())
2692 // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2693 ExtVal
->moveBefore(CI
->getIterator());
2694 // Mark this instruction as "inserted by CGP", so that other
2695 // optimizations don't touch it.
2696 InsertedInsts
.insert(ExtVal
);
2700 case Intrinsic::launder_invariant_group
:
2701 case Intrinsic::strip_invariant_group
: {
2702 Value
*ArgVal
= II
->getArgOperand(0);
2703 auto it
= LargeOffsetGEPMap
.find(II
);
2704 if (it
!= LargeOffsetGEPMap
.end()) {
2705 // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2706 // Make sure not to have to deal with iterator invalidation
2707 // after possibly adding ArgVal to LargeOffsetGEPMap.
2708 auto GEPs
= std::move(it
->second
);
2709 LargeOffsetGEPMap
[ArgVal
].append(GEPs
.begin(), GEPs
.end());
2710 LargeOffsetGEPMap
.erase(II
);
2713 replaceAllUsesWith(II
, ArgVal
, FreshBBs
, IsHugeFunc
);
2714 II
->eraseFromParent();
2717 case Intrinsic::cttz
:
2718 case Intrinsic::ctlz
:
2719 // If counting zeros is expensive, try to avoid it.
2720 return despeculateCountZeros(II
, *LI
, TLI
, DL
, ModifiedDT
, FreshBBs
,
2722 case Intrinsic::fshl
:
2723 case Intrinsic::fshr
:
2724 return optimizeFunnelShift(II
);
2725 case Intrinsic::dbg_assign
:
2726 case Intrinsic::dbg_value
:
2727 return fixupDbgValue(II
);
2728 case Intrinsic::masked_gather
:
2729 return optimizeGatherScatterInst(II
, II
->getArgOperand(0));
2730 case Intrinsic::masked_scatter
:
2731 return optimizeGatherScatterInst(II
, II
->getArgOperand(1));
2734 SmallVector
<Value
*, 2> PtrOps
;
2736 if (TLI
->getAddrModeArguments(II
, PtrOps
, AccessTy
))
2737 while (!PtrOps
.empty()) {
2738 Value
*PtrVal
= PtrOps
.pop_back_val();
2739 unsigned AS
= PtrVal
->getType()->getPointerAddressSpace();
2740 if (optimizeMemoryInst(II
, PtrVal
, AccessTy
, AS
))
2745 // From here on out we're working with named functions.
2746 auto *Callee
= CI
->getCalledFunction();
2750 // Lower all default uses of _chk calls. This is very similar
2751 // to what InstCombineCalls does, but here we are only lowering calls
2752 // to fortified library functions (e.g. __memcpy_chk) that have the default
2753 // "don't know" as the objectsize. Anything else should be left alone.
2754 FortifiedLibCallSimplifier
Simplifier(TLInfo
, true);
2755 IRBuilder
<> Builder(CI
);
2756 if (Value
*V
= Simplifier
.optimizeCall(CI
, Builder
)) {
2757 replaceAllUsesWith(CI
, V
, FreshBBs
, IsHugeFunc
);
2758 CI
->eraseFromParent();
2762 // SCCP may have propagated, among other things, C++ static variables across
2763 // calls. If this happens to be the case, we may want to undo it in order to
2764 // avoid redundant pointer computation of the constant, as the function method
2765 // returning the constant needs to be executed anyways.
2766 auto GetUniformReturnValue
= [](const Function
*F
) -> GlobalVariable
* {
2767 if (!F
->getReturnType()->isPointerTy())
2770 GlobalVariable
*UniformValue
= nullptr;
2771 for (auto &BB
: *F
) {
2772 if (auto *RI
= dyn_cast
<ReturnInst
>(BB
.getTerminator())) {
2773 if (auto *V
= dyn_cast
<GlobalVariable
>(RI
->getReturnValue())) {
2776 else if (V
!= UniformValue
)
2784 return UniformValue
;
2787 if (Callee
->hasExactDefinition()) {
2788 if (GlobalVariable
*RV
= GetUniformReturnValue(Callee
)) {
2789 bool MadeChange
= false;
2790 for (Use
&U
: make_early_inc_range(RV
->uses())) {
2791 auto *I
= dyn_cast
<Instruction
>(U
.getUser());
2792 if (!I
|| I
->getParent() != CI
->getParent()) {
2793 // Limit to the same basic block to avoid extending the call-site live
2794 // range, which otherwise could increase register pressure.
2797 if (CI
->comesBefore(I
)) {
2810 static bool isIntrinsicOrLFToBeTailCalled(const TargetLibraryInfo
*TLInfo
,
2811 const CallInst
*CI
) {
2812 assert(CI
&& CI
->use_empty());
2814 if (const auto *II
= dyn_cast
<IntrinsicInst
>(CI
))
2815 switch (II
->getIntrinsicID()) {
2816 case Intrinsic::memset
:
2817 case Intrinsic::memcpy
:
2818 case Intrinsic::memmove
:
2825 Function
*Callee
= CI
->getCalledFunction();
2826 if (Callee
&& TLInfo
&& TLInfo
->getLibFunc(*Callee
, LF
))
2828 case LibFunc_strcpy
:
2829 case LibFunc_strncpy
:
2830 case LibFunc_strcat
:
2831 case LibFunc_strncat
:
2840 /// Look for opportunities to duplicate return instructions to the predecessor
2841 /// to enable tail call optimizations. The case it is currently looking for is
2842 /// the following one. Known intrinsics or library function that may be tail
2843 /// called are taken into account as well.
2846 /// %tmp0 = tail call i32 @f0()
2847 /// br label %return
2849 /// %tmp1 = tail call i32 @f1()
2850 /// br label %return
2852 /// %tmp2 = tail call i32 @f2()
2853 /// br label %return
2855 /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2863 /// %tmp0 = tail call i32 @f0()
2866 /// %tmp1 = tail call i32 @f1()
2869 /// %tmp2 = tail call i32 @f2()
2872 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock
*BB
,
2873 ModifyDT
&ModifiedDT
) {
2874 if (!BB
->getTerminator())
2877 ReturnInst
*RetI
= dyn_cast
<ReturnInst
>(BB
->getTerminator());
2881 assert(LI
->getLoopFor(BB
) == nullptr && "A return block cannot be in a loop");
2883 PHINode
*PN
= nullptr;
2884 ExtractValueInst
*EVI
= nullptr;
2885 BitCastInst
*BCI
= nullptr;
2886 Value
*V
= RetI
->getReturnValue();
2888 BCI
= dyn_cast
<BitCastInst
>(V
);
2890 V
= BCI
->getOperand(0);
2892 EVI
= dyn_cast
<ExtractValueInst
>(V
);
2894 V
= EVI
->getOperand(0);
2895 if (!llvm::all_of(EVI
->indices(), [](unsigned idx
) { return idx
== 0; }))
2899 PN
= dyn_cast
<PHINode
>(V
);
2902 if (PN
&& PN
->getParent() != BB
)
2905 auto isLifetimeEndOrBitCastFor
= [](const Instruction
*Inst
) {
2906 const BitCastInst
*BC
= dyn_cast
<BitCastInst
>(Inst
);
2907 if (BC
&& BC
->hasOneUse())
2908 Inst
= BC
->user_back();
2910 if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
))
2911 return II
->getIntrinsicID() == Intrinsic::lifetime_end
;
2915 SmallVector
<const IntrinsicInst
*, 4> FakeUses
;
2917 auto isFakeUse
= [&FakeUses
](const Instruction
*Inst
) {
2918 if (auto *II
= dyn_cast
<IntrinsicInst
>(Inst
);
2919 II
&& II
->getIntrinsicID() == Intrinsic::fake_use
) {
2920 // Record the instruction so it can be preserved when the exit block is
2921 // removed. Do not preserve the fake use that uses the result of the
2923 // Do not copy fake uses that use the result of a PHI node.
2924 // FIXME: If we do want to copy the fake use into the return blocks, we
2925 // have to figure out which of the PHI node operands to use for each
2927 if (!isa
<PHINode
>(II
->getOperand(0))) {
2928 FakeUses
.push_back(II
);
2936 // Make sure there are no instructions between the first instruction
2938 BasicBlock::const_iterator BI
= BB
->getFirstNonPHIIt();
2939 // Skip over debug and the bitcast.
2940 while (isa
<DbgInfoIntrinsic
>(BI
) || &*BI
== BCI
|| &*BI
== EVI
||
2941 isa
<PseudoProbeInst
>(BI
) || isLifetimeEndOrBitCastFor(&*BI
) ||
2947 /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2949 const Function
*F
= BB
->getParent();
2950 SmallVector
<BasicBlock
*, 4> TailCallBBs
;
2951 // Record the call instructions so we can insert any fake uses
2952 // that need to be preserved before them.
2953 SmallVector
<CallInst
*, 4> CallInsts
;
2955 for (unsigned I
= 0, E
= PN
->getNumIncomingValues(); I
!= E
; ++I
) {
2956 // Look through bitcasts.
2957 Value
*IncomingVal
= PN
->getIncomingValue(I
)->stripPointerCasts();
2958 CallInst
*CI
= dyn_cast
<CallInst
>(IncomingVal
);
2959 BasicBlock
*PredBB
= PN
->getIncomingBlock(I
);
2960 // Make sure the phi value is indeed produced by the tail call.
2961 if (CI
&& CI
->hasOneUse() && CI
->getParent() == PredBB
&&
2962 TLI
->mayBeEmittedAsTailCall(CI
) &&
2963 attributesPermitTailCall(F
, CI
, RetI
, *TLI
)) {
2964 TailCallBBs
.push_back(PredBB
);
2965 CallInsts
.push_back(CI
);
2967 // Consider the cases in which the phi value is indirectly produced by
2968 // the tail call, for example when encountering memset(), memmove(),
2969 // strcpy(), whose return value may have been optimized out. In such
2970 // cases, the value needs to be the first function argument.
2973 // tail call void @llvm.memset.p0.i64(ptr %0, i8 0, i64 %1)
2976 // %phi = phi ptr [ %0, %bb0 ], [ %2, %entry ]
2977 if (PredBB
&& PredBB
->getSingleSuccessor() == BB
)
2978 CI
= dyn_cast_or_null
<CallInst
>(
2979 PredBB
->getTerminator()->getPrevNonDebugInstruction(true));
2981 if (CI
&& CI
->use_empty() &&
2982 isIntrinsicOrLFToBeTailCalled(TLInfo
, CI
) &&
2983 IncomingVal
== CI
->getArgOperand(0) &&
2984 TLI
->mayBeEmittedAsTailCall(CI
) &&
2985 attributesPermitTailCall(F
, CI
, RetI
, *TLI
)) {
2986 TailCallBBs
.push_back(PredBB
);
2987 CallInsts
.push_back(CI
);
2992 SmallPtrSet
<BasicBlock
*, 4> VisitedBBs
;
2993 for (BasicBlock
*Pred
: predecessors(BB
)) {
2994 if (!VisitedBBs
.insert(Pred
).second
)
2996 if (Instruction
*I
= Pred
->rbegin()->getPrevNonDebugInstruction(true)) {
2997 CallInst
*CI
= dyn_cast
<CallInst
>(I
);
2998 if (CI
&& CI
->use_empty() && TLI
->mayBeEmittedAsTailCall(CI
) &&
2999 attributesPermitTailCall(F
, CI
, RetI
, *TLI
)) {
3000 // Either we return void or the return value must be the first
3001 // argument of a known intrinsic or library function.
3002 if (!V
|| isa
<UndefValue
>(V
) ||
3003 (isIntrinsicOrLFToBeTailCalled(TLInfo
, CI
) &&
3004 V
== CI
->getArgOperand(0))) {
3005 TailCallBBs
.push_back(Pred
);
3006 CallInsts
.push_back(CI
);
3013 bool Changed
= false;
3014 for (auto const &TailCallBB
: TailCallBBs
) {
3015 // Make sure the call instruction is followed by an unconditional branch to
3016 // the return block.
3017 BranchInst
*BI
= dyn_cast
<BranchInst
>(TailCallBB
->getTerminator());
3018 if (!BI
|| !BI
->isUnconditional() || BI
->getSuccessor(0) != BB
)
3021 // Duplicate the return into TailCallBB.
3022 (void)FoldReturnIntoUncondBranch(RetI
, BB
, TailCallBB
);
3023 assert(!VerifyBFIUpdates
||
3024 BFI
->getBlockFreq(BB
) >= BFI
->getBlockFreq(TailCallBB
));
3025 BFI
->setBlockFreq(BB
,
3026 (BFI
->getBlockFreq(BB
) - BFI
->getBlockFreq(TailCallBB
)));
3027 ModifiedDT
= ModifyDT::ModifyBBDT
;
3032 // If we eliminated all predecessors of the block, delete the block now.
3033 if (Changed
&& !BB
->hasAddressTaken() && pred_empty(BB
)) {
3034 // Copy the fake uses found in the original return block to all blocks
3035 // that contain tail calls.
3036 for (auto *CI
: CallInsts
) {
3037 for (auto const *FakeUse
: FakeUses
) {
3038 auto *ClonedInst
= FakeUse
->clone();
3039 ClonedInst
->insertBefore(CI
->getIterator());
3042 BB
->eraseFromParent();
3048 //===----------------------------------------------------------------------===//
3049 // Memory Optimization
3050 //===----------------------------------------------------------------------===//
3054 /// This is an extended version of TargetLowering::AddrMode
3055 /// which holds actual Value*'s for register values.
3056 struct ExtAddrMode
: public TargetLowering::AddrMode
{
3057 Value
*BaseReg
= nullptr;
3058 Value
*ScaledReg
= nullptr;
3059 Value
*OriginalValue
= nullptr;
3060 bool InBounds
= true;
3064 BaseRegField
= 0x01,
3066 BaseOffsField
= 0x04,
3067 ScaledRegField
= 0x08,
3069 MultipleFields
= 0xff
3072 ExtAddrMode() = default;
3074 void print(raw_ostream
&OS
) const;
3077 // Replace From in ExtAddrMode with To.
3078 // E.g., SExt insts may be promoted and deleted. We should replace them with
3079 // the promoted values.
3080 void replaceWith(Value
*From
, Value
*To
) {
3081 if (ScaledReg
== From
)
3085 FieldName
compare(const ExtAddrMode
&other
) {
3086 // First check that the types are the same on each field, as differing types
3087 // is something we can't cope with later on.
3088 if (BaseReg
&& other
.BaseReg
&&
3089 BaseReg
->getType() != other
.BaseReg
->getType())
3090 return MultipleFields
;
3091 if (BaseGV
&& other
.BaseGV
&& BaseGV
->getType() != other
.BaseGV
->getType())
3092 return MultipleFields
;
3093 if (ScaledReg
&& other
.ScaledReg
&&
3094 ScaledReg
->getType() != other
.ScaledReg
->getType())
3095 return MultipleFields
;
3097 // Conservatively reject 'inbounds' mismatches.
3098 if (InBounds
!= other
.InBounds
)
3099 return MultipleFields
;
3101 // Check each field to see if it differs.
3102 unsigned Result
= NoField
;
3103 if (BaseReg
!= other
.BaseReg
)
3104 Result
|= BaseRegField
;
3105 if (BaseGV
!= other
.BaseGV
)
3106 Result
|= BaseGVField
;
3107 if (BaseOffs
!= other
.BaseOffs
)
3108 Result
|= BaseOffsField
;
3109 if (ScaledReg
!= other
.ScaledReg
)
3110 Result
|= ScaledRegField
;
3111 // Don't count 0 as being a different scale, because that actually means
3112 // unscaled (which will already be counted by having no ScaledReg).
3113 if (Scale
&& other
.Scale
&& Scale
!= other
.Scale
)
3114 Result
|= ScaleField
;
3116 if (llvm::popcount(Result
) > 1)
3117 return MultipleFields
;
3119 return static_cast<FieldName
>(Result
);
3122 // An AddrMode is trivial if it involves no calculation i.e. it is just a base
3125 // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
3126 // trivial if at most one of these terms is nonzero, except that BaseGV and
3127 // BaseReg both being zero actually means a null pointer value, which we
3128 // consider to be 'non-zero' here.
3129 return !BaseOffs
&& !Scale
&& !(BaseGV
&& BaseReg
);
3132 Value
*GetFieldAsValue(FieldName Field
, Type
*IntPtrTy
) {
3140 case ScaledRegField
:
3143 return ConstantInt::get(IntPtrTy
, BaseOffs
);
3147 void SetCombinedField(FieldName Field
, Value
*V
,
3148 const SmallVectorImpl
<ExtAddrMode
> &AddrModes
) {
3151 llvm_unreachable("Unhandled fields are expected to be rejected earlier");
3153 case ExtAddrMode::BaseRegField
:
3156 case ExtAddrMode::BaseGVField
:
3157 // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
3158 // in the BaseReg field.
3159 assert(BaseReg
== nullptr);
3163 case ExtAddrMode::ScaledRegField
:
3165 // If we have a mix of scaled and unscaled addrmodes then we want scale
3166 // to be the scale and not zero.
3168 for (const ExtAddrMode
&AM
: AddrModes
)
3174 case ExtAddrMode::BaseOffsField
:
3175 // The offset is no longer a constant, so it goes in ScaledReg with a
3177 assert(ScaledReg
== nullptr);
3187 static inline raw_ostream
&operator<<(raw_ostream
&OS
, const ExtAddrMode
&AM
) {
3193 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3194 void ExtAddrMode::print(raw_ostream
&OS
) const {
3195 bool NeedPlus
= false;
3201 BaseGV
->printAsOperand(OS
, /*PrintType=*/false);
3206 OS
<< (NeedPlus
? " + " : "") << BaseOffs
;
3211 OS
<< (NeedPlus
? " + " : "") << "Base:";
3212 BaseReg
->printAsOperand(OS
, /*PrintType=*/false);
3216 OS
<< (NeedPlus
? " + " : "") << Scale
<< "*";
3217 ScaledReg
->printAsOperand(OS
, /*PrintType=*/false);
3223 LLVM_DUMP_METHOD
void ExtAddrMode::dump() const {
3229 } // end anonymous namespace
3233 /// This class provides transaction based operation on the IR.
3234 /// Every change made through this class is recorded in the internal state and
3235 /// can be undone (rollback) until commit is called.
3236 /// CGP does not check if instructions could be speculatively executed when
3237 /// moved. Preserving the original location would pessimize the debugging
3238 /// experience, as well as negatively impact the quality of sample PGO.
3239 class TypePromotionTransaction
{
3240 /// This represents the common interface of the individual transaction.
3241 /// Each class implements the logic for doing one specific modification on
3242 /// the IR via the TypePromotionTransaction.
3243 class TypePromotionAction
{
3245 /// The Instruction modified.
3249 /// Constructor of the action.
3250 /// The constructor performs the related action on the IR.
3251 TypePromotionAction(Instruction
*Inst
) : Inst(Inst
) {}
3253 virtual ~TypePromotionAction() = default;
3255 /// Undo the modification done by this action.
3256 /// When this method is called, the IR must be in the same state as it was
3257 /// before this action was applied.
3258 /// \pre Undoing the action works if and only if the IR is in the exact same
3259 /// state as it was directly after this action was applied.
3260 virtual void undo() = 0;
3262 /// Advocate every change made by this action.
3263 /// When the results on the IR of the action are to be kept, it is important
3264 /// to call this function, otherwise hidden information may be kept forever.
3265 virtual void commit() {
3266 // Nothing to be done, this action is not doing anything.
3270 /// Utility to remember the position of an instruction.
3271 class InsertionHandler
{
3272 /// Position of an instruction.
3273 /// Either an instruction:
3274 /// - Is the first in a basic block: BB is used.
3275 /// - Has a previous instruction: PrevInst is used.
3277 BasicBlock::iterator PrevInst
;
3280 std::optional
<DbgRecord::self_iterator
> BeforeDbgRecord
= std::nullopt
;
3282 /// Remember whether or not the instruction had a previous instruction.
3283 bool HasPrevInstruction
;
3286 /// Record the position of \p Inst.
3287 InsertionHandler(Instruction
*Inst
) {
3288 HasPrevInstruction
= (Inst
!= &*(Inst
->getParent()->begin()));
3289 BasicBlock
*BB
= Inst
->getParent();
3291 // Record where we would have to re-insert the instruction in the sequence
3292 // of DbgRecords, if we ended up reinserting.
3293 if (BB
->IsNewDbgInfoFormat
)
3294 BeforeDbgRecord
= Inst
->getDbgReinsertionPosition();
3296 if (HasPrevInstruction
) {
3297 Point
.PrevInst
= std::prev(Inst
->getIterator());
3303 /// Insert \p Inst at the recorded position.
3304 void insert(Instruction
*Inst
) {
3305 if (HasPrevInstruction
) {
3306 if (Inst
->getParent())
3307 Inst
->removeFromParent();
3308 Inst
->insertAfter(Point
.PrevInst
);
3310 BasicBlock::iterator Position
= Point
.BB
->getFirstInsertionPt();
3311 if (Inst
->getParent())
3312 Inst
->moveBefore(*Point
.BB
, Position
);
3314 Inst
->insertBefore(*Point
.BB
, Position
);
3317 Inst
->getParent()->reinsertInstInDbgRecords(Inst
, BeforeDbgRecord
);
3321 /// Move an instruction before another.
3322 class InstructionMoveBefore
: public TypePromotionAction
{
3323 /// Original position of the instruction.
3324 InsertionHandler Position
;
3327 /// Move \p Inst before \p Before.
3328 InstructionMoveBefore(Instruction
*Inst
, BasicBlock::iterator Before
)
3329 : TypePromotionAction(Inst
), Position(Inst
) {
3330 LLVM_DEBUG(dbgs() << "Do: move: " << *Inst
<< "\nbefore: " << *Before
3332 Inst
->moveBefore(Before
);
3335 /// Move the instruction back to its original position.
3336 void undo() override
{
3337 LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst
<< "\n");
3338 Position
.insert(Inst
);
3342 /// Set the operand of an instruction with a new value.
3343 class OperandSetter
: public TypePromotionAction
{
3344 /// Original operand of the instruction.
3347 /// Index of the modified instruction.
3351 /// Set \p Idx operand of \p Inst with \p NewVal.
3352 OperandSetter(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
)
3353 : TypePromotionAction(Inst
), Idx(Idx
) {
3354 LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx
<< "\n"
3355 << "for:" << *Inst
<< "\n"
3356 << "with:" << *NewVal
<< "\n");
3357 Origin
= Inst
->getOperand(Idx
);
3358 Inst
->setOperand(Idx
, NewVal
);
3361 /// Restore the original value of the instruction.
3362 void undo() override
{
3363 LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx
<< "\n"
3364 << "for: " << *Inst
<< "\n"
3365 << "with: " << *Origin
<< "\n");
3366 Inst
->setOperand(Idx
, Origin
);
3370 /// Hide the operands of an instruction.
3371 /// Do as if this instruction was not using any of its operands.
3372 class OperandsHider
: public TypePromotionAction
{
3373 /// The list of original operands.
3374 SmallVector
<Value
*, 4> OriginalValues
;
3377 /// Remove \p Inst from the uses of the operands of \p Inst.
3378 OperandsHider(Instruction
*Inst
) : TypePromotionAction(Inst
) {
3379 LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst
<< "\n");
3380 unsigned NumOpnds
= Inst
->getNumOperands();
3381 OriginalValues
.reserve(NumOpnds
);
3382 for (unsigned It
= 0; It
< NumOpnds
; ++It
) {
3383 // Save the current operand.
3384 Value
*Val
= Inst
->getOperand(It
);
3385 OriginalValues
.push_back(Val
);
3387 // We could use OperandSetter here, but that would imply an overhead
3388 // that we are not willing to pay.
3389 Inst
->setOperand(It
, PoisonValue::get(Val
->getType()));
3393 /// Restore the original list of uses.
3394 void undo() override
{
3395 LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst
<< "\n");
3396 for (unsigned It
= 0, EndIt
= OriginalValues
.size(); It
!= EndIt
; ++It
)
3397 Inst
->setOperand(It
, OriginalValues
[It
]);
3401 /// Build a truncate instruction.
3402 class TruncBuilder
: public TypePromotionAction
{
3406 /// Build a truncate instruction of \p Opnd producing a \p Ty
3408 /// trunc Opnd to Ty.
3409 TruncBuilder(Instruction
*Opnd
, Type
*Ty
) : TypePromotionAction(Opnd
) {
3410 IRBuilder
<> Builder(Opnd
);
3411 Builder
.SetCurrentDebugLocation(DebugLoc());
3412 Val
= Builder
.CreateTrunc(Opnd
, Ty
, "promoted");
3413 LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val
<< "\n");
3416 /// Get the built value.
3417 Value
*getBuiltValue() { return Val
; }
3419 /// Remove the built instruction.
3420 void undo() override
{
3421 LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val
<< "\n");
3422 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
3423 IVal
->eraseFromParent();
3427 /// Build a sign extension instruction.
3428 class SExtBuilder
: public TypePromotionAction
{
3432 /// Build a sign extension instruction of \p Opnd producing a \p Ty
3434 /// sext Opnd to Ty.
3435 SExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
3436 : TypePromotionAction(InsertPt
) {
3437 IRBuilder
<> Builder(InsertPt
);
3438 Val
= Builder
.CreateSExt(Opnd
, Ty
, "promoted");
3439 LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val
<< "\n");
3442 /// Get the built value.
3443 Value
*getBuiltValue() { return Val
; }
3445 /// Remove the built instruction.
3446 void undo() override
{
3447 LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val
<< "\n");
3448 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
3449 IVal
->eraseFromParent();
3453 /// Build a zero extension instruction.
3454 class ZExtBuilder
: public TypePromotionAction
{
3458 /// Build a zero extension instruction of \p Opnd producing a \p Ty
3460 /// zext Opnd to Ty.
3461 ZExtBuilder(Instruction
*InsertPt
, Value
*Opnd
, Type
*Ty
)
3462 : TypePromotionAction(InsertPt
) {
3463 IRBuilder
<> Builder(InsertPt
);
3464 Builder
.SetCurrentDebugLocation(DebugLoc());
3465 Val
= Builder
.CreateZExt(Opnd
, Ty
, "promoted");
3466 LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val
<< "\n");
3469 /// Get the built value.
3470 Value
*getBuiltValue() { return Val
; }
3472 /// Remove the built instruction.
3473 void undo() override
{
3474 LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val
<< "\n");
3475 if (Instruction
*IVal
= dyn_cast
<Instruction
>(Val
))
3476 IVal
->eraseFromParent();
3480 /// Mutate an instruction to another type.
3481 class TypeMutator
: public TypePromotionAction
{
3482 /// Record the original type.
3486 /// Mutate the type of \p Inst into \p NewTy.
3487 TypeMutator(Instruction
*Inst
, Type
*NewTy
)
3488 : TypePromotionAction(Inst
), OrigTy(Inst
->getType()) {
3489 LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst
<< " with " << *NewTy
3491 Inst
->mutateType(NewTy
);
3494 /// Mutate the instruction back to its original type.
3495 void undo() override
{
3496 LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst
<< " with " << *OrigTy
3498 Inst
->mutateType(OrigTy
);
3502 /// Replace the uses of an instruction by another instruction.
3503 class UsesReplacer
: public TypePromotionAction
{
3504 /// Helper structure to keep track of the replaced uses.
3505 struct InstructionAndIdx
{
3506 /// The instruction using the instruction.
3509 /// The index where this instruction is used for Inst.
3512 InstructionAndIdx(Instruction
*Inst
, unsigned Idx
)
3513 : Inst(Inst
), Idx(Idx
) {}
3516 /// Keep track of the original uses (pair Instruction, Index).
3517 SmallVector
<InstructionAndIdx
, 4> OriginalUses
;
3518 /// Keep track of the debug users.
3519 SmallVector
<DbgValueInst
*, 1> DbgValues
;
3520 /// And non-instruction debug-users too.
3521 SmallVector
<DbgVariableRecord
*, 1> DbgVariableRecords
;
3523 /// Keep track of the new value so that we can undo it by replacing
3524 /// instances of the new value with the original value.
3527 using use_iterator
= SmallVectorImpl
<InstructionAndIdx
>::iterator
;
3530 /// Replace all the use of \p Inst by \p New.
3531 UsesReplacer(Instruction
*Inst
, Value
*New
)
3532 : TypePromotionAction(Inst
), New(New
) {
3533 LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst
<< " with " << *New
3535 // Record the original uses.
3536 for (Use
&U
: Inst
->uses()) {
3537 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
3538 OriginalUses
.push_back(InstructionAndIdx(UserI
, U
.getOperandNo()));
3540 // Record the debug uses separately. They are not in the instruction's
3541 // use list, but they are replaced by RAUW.
3542 findDbgValues(DbgValues
, Inst
, &DbgVariableRecords
);
3544 // Now, we can replace the uses.
3545 Inst
->replaceAllUsesWith(New
);
3548 /// Reassign the original uses of Inst to Inst.
3549 void undo() override
{
3550 LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst
<< "\n");
3551 for (InstructionAndIdx
&Use
: OriginalUses
)
3552 Use
.Inst
->setOperand(Use
.Idx
, Inst
);
3553 // RAUW has replaced all original uses with references to the new value,
3554 // including the debug uses. Since we are undoing the replacements,
3555 // the original debug uses must also be reinstated to maintain the
3556 // correctness and utility of debug value instructions.
3557 for (auto *DVI
: DbgValues
)
3558 DVI
->replaceVariableLocationOp(New
, Inst
);
3559 // Similar story with DbgVariableRecords, the non-instruction
3560 // representation of dbg.values.
3561 for (DbgVariableRecord
*DVR
: DbgVariableRecords
)
3562 DVR
->replaceVariableLocationOp(New
, Inst
);
3566 /// Remove an instruction from the IR.
3567 class InstructionRemover
: public TypePromotionAction
{
3568 /// Original position of the instruction.
3569 InsertionHandler Inserter
;
3571 /// Helper structure to hide all the link to the instruction. In other
3572 /// words, this helps to do as if the instruction was removed.
3573 OperandsHider Hider
;
3575 /// Keep track of the uses replaced, if any.
3576 UsesReplacer
*Replacer
= nullptr;
3578 /// Keep track of instructions removed.
3579 SetOfInstrs
&RemovedInsts
;
3582 /// Remove all reference of \p Inst and optionally replace all its
3584 /// \p RemovedInsts Keep track of the instructions removed by this Action.
3585 /// \pre If !Inst->use_empty(), then New != nullptr
3586 InstructionRemover(Instruction
*Inst
, SetOfInstrs
&RemovedInsts
,
3587 Value
*New
= nullptr)
3588 : TypePromotionAction(Inst
), Inserter(Inst
), Hider(Inst
),
3589 RemovedInsts(RemovedInsts
) {
3591 Replacer
= new UsesReplacer(Inst
, New
);
3592 LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst
<< "\n");
3593 RemovedInsts
.insert(Inst
);
3594 /// The instructions removed here will be freed after completing
3595 /// optimizeBlock() for all blocks as we need to keep track of the
3596 /// removed instructions during promotion.
3597 Inst
->removeFromParent();
3600 ~InstructionRemover() override
{ delete Replacer
; }
3602 InstructionRemover
&operator=(const InstructionRemover
&other
) = delete;
3603 InstructionRemover(const InstructionRemover
&other
) = delete;
3605 /// Resurrect the instruction and reassign it to the proper uses if
3606 /// new value was provided when build this action.
3607 void undo() override
{
3608 LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst
<< "\n");
3609 Inserter
.insert(Inst
);
3613 RemovedInsts
.erase(Inst
);
3618 /// Restoration point.
3619 /// The restoration point is a pointer to an action instead of an iterator
3620 /// because the iterator may be invalidated but not the pointer.
3621 using ConstRestorationPt
= const TypePromotionAction
*;
3623 TypePromotionTransaction(SetOfInstrs
&RemovedInsts
)
3624 : RemovedInsts(RemovedInsts
) {}
3626 /// Advocate every changes made in that transaction. Return true if any change
3630 /// Undo all the changes made after the given point.
3631 void rollback(ConstRestorationPt Point
);
3633 /// Get the current restoration point.
3634 ConstRestorationPt
getRestorationPoint() const;
3636 /// \name API for IR modification with state keeping to support rollback.
3638 /// Same as Instruction::setOperand.
3639 void setOperand(Instruction
*Inst
, unsigned Idx
, Value
*NewVal
);
3641 /// Same as Instruction::eraseFromParent.
3642 void eraseInstruction(Instruction
*Inst
, Value
*NewVal
= nullptr);
3644 /// Same as Value::replaceAllUsesWith.
3645 void replaceAllUsesWith(Instruction
*Inst
, Value
*New
);
3647 /// Same as Value::mutateType.
3648 void mutateType(Instruction
*Inst
, Type
*NewTy
);
3650 /// Same as IRBuilder::createTrunc.
3651 Value
*createTrunc(Instruction
*Opnd
, Type
*Ty
);
3653 /// Same as IRBuilder::createSExt.
3654 Value
*createSExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3656 /// Same as IRBuilder::createZExt.
3657 Value
*createZExt(Instruction
*Inst
, Value
*Opnd
, Type
*Ty
);
3660 /// The ordered list of actions made so far.
3661 SmallVector
<std::unique_ptr
<TypePromotionAction
>, 16> Actions
;
3664 SmallVectorImpl
<std::unique_ptr
<TypePromotionAction
>>::iterator
;
3666 SetOfInstrs
&RemovedInsts
;
3669 } // end anonymous namespace
3671 void TypePromotionTransaction::setOperand(Instruction
*Inst
, unsigned Idx
,
3673 Actions
.push_back(std::make_unique
<TypePromotionTransaction::OperandSetter
>(
3674 Inst
, Idx
, NewVal
));
3677 void TypePromotionTransaction::eraseInstruction(Instruction
*Inst
,
3680 std::make_unique
<TypePromotionTransaction::InstructionRemover
>(
3681 Inst
, RemovedInsts
, NewVal
));
3684 void TypePromotionTransaction::replaceAllUsesWith(Instruction
*Inst
,
3687 std::make_unique
<TypePromotionTransaction::UsesReplacer
>(Inst
, New
));
3690 void TypePromotionTransaction::mutateType(Instruction
*Inst
, Type
*NewTy
) {
3692 std::make_unique
<TypePromotionTransaction::TypeMutator
>(Inst
, NewTy
));
3695 Value
*TypePromotionTransaction::createTrunc(Instruction
*Opnd
, Type
*Ty
) {
3696 std::unique_ptr
<TruncBuilder
> Ptr(new TruncBuilder(Opnd
, Ty
));
3697 Value
*Val
= Ptr
->getBuiltValue();
3698 Actions
.push_back(std::move(Ptr
));
3702 Value
*TypePromotionTransaction::createSExt(Instruction
*Inst
, Value
*Opnd
,
3704 std::unique_ptr
<SExtBuilder
> Ptr(new SExtBuilder(Inst
, Opnd
, Ty
));
3705 Value
*Val
= Ptr
->getBuiltValue();
3706 Actions
.push_back(std::move(Ptr
));
3710 Value
*TypePromotionTransaction::createZExt(Instruction
*Inst
, Value
*Opnd
,
3712 std::unique_ptr
<ZExtBuilder
> Ptr(new ZExtBuilder(Inst
, Opnd
, Ty
));
3713 Value
*Val
= Ptr
->getBuiltValue();
3714 Actions
.push_back(std::move(Ptr
));
3718 TypePromotionTransaction::ConstRestorationPt
3719 TypePromotionTransaction::getRestorationPoint() const {
3720 return !Actions
.empty() ? Actions
.back().get() : nullptr;
3723 bool TypePromotionTransaction::commit() {
3724 for (std::unique_ptr
<TypePromotionAction
> &Action
: Actions
)
3726 bool Modified
= !Actions
.empty();
3731 void TypePromotionTransaction::rollback(
3732 TypePromotionTransaction::ConstRestorationPt Point
) {
3733 while (!Actions
.empty() && Point
!= Actions
.back().get()) {
3734 std::unique_ptr
<TypePromotionAction
> Curr
= Actions
.pop_back_val();
3741 /// A helper class for matching addressing modes.
3743 /// This encapsulates the logic for matching the target-legal addressing modes.
3744 class AddressingModeMatcher
{
3745 SmallVectorImpl
<Instruction
*> &AddrModeInsts
;
3746 const TargetLowering
&TLI
;
3747 const TargetRegisterInfo
&TRI
;
3748 const DataLayout
&DL
;
3750 const std::function
<const DominatorTree
&()> getDTFn
;
3752 /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3753 /// the memory instruction that we're computing this address for.
3756 Instruction
*MemoryInst
;
3758 /// This is the addressing mode that we're building up. This is
3759 /// part of the return value of this addressing mode matching stuff.
3760 ExtAddrMode
&AddrMode
;
3762 /// The instructions inserted by other CodeGenPrepare optimizations.
3763 const SetOfInstrs
&InsertedInsts
;
3765 /// A map from the instructions to their type before promotion.
3766 InstrToOrigTy
&PromotedInsts
;
3768 /// The ongoing transaction where every action should be registered.
3769 TypePromotionTransaction
&TPT
;
3771 // A GEP which has too large offset to be folded into the addressing mode.
3772 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
;
3774 /// This is set to true when we should not do profitability checks.
3775 /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3776 bool IgnoreProfitability
;
3778 /// True if we are optimizing for size.
3779 bool OptSize
= false;
3781 ProfileSummaryInfo
*PSI
;
3782 BlockFrequencyInfo
*BFI
;
3784 AddressingModeMatcher(
3785 SmallVectorImpl
<Instruction
*> &AMI
, const TargetLowering
&TLI
,
3786 const TargetRegisterInfo
&TRI
, const LoopInfo
&LI
,
3787 const std::function
<const DominatorTree
&()> getDTFn
, Type
*AT
,
3788 unsigned AS
, Instruction
*MI
, ExtAddrMode
&AM
,
3789 const SetOfInstrs
&InsertedInsts
, InstrToOrigTy
&PromotedInsts
,
3790 TypePromotionTransaction
&TPT
,
3791 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3792 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
)
3793 : AddrModeInsts(AMI
), TLI(TLI
), TRI(TRI
),
3794 DL(MI
->getDataLayout()), LI(LI
), getDTFn(getDTFn
),
3795 AccessTy(AT
), AddrSpace(AS
), MemoryInst(MI
), AddrMode(AM
),
3796 InsertedInsts(InsertedInsts
), PromotedInsts(PromotedInsts
), TPT(TPT
),
3797 LargeOffsetGEP(LargeOffsetGEP
), OptSize(OptSize
), PSI(PSI
), BFI(BFI
) {
3798 IgnoreProfitability
= false;
3802 /// Find the maximal addressing mode that a load/store of V can fold,
3803 /// give an access type of AccessTy. This returns a list of involved
3804 /// instructions in AddrModeInsts.
3805 /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3807 /// \p PromotedInsts maps the instructions to their type before promotion.
3808 /// \p The ongoing transaction where every action should be registered.
3810 Match(Value
*V
, Type
*AccessTy
, unsigned AS
, Instruction
*MemoryInst
,
3811 SmallVectorImpl
<Instruction
*> &AddrModeInsts
,
3812 const TargetLowering
&TLI
, const LoopInfo
&LI
,
3813 const std::function
<const DominatorTree
&()> getDTFn
,
3814 const TargetRegisterInfo
&TRI
, const SetOfInstrs
&InsertedInsts
,
3815 InstrToOrigTy
&PromotedInsts
, TypePromotionTransaction
&TPT
,
3816 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> &LargeOffsetGEP
,
3817 bool OptSize
, ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
) {
3820 bool Success
= AddressingModeMatcher(AddrModeInsts
, TLI
, TRI
, LI
, getDTFn
,
3821 AccessTy
, AS
, MemoryInst
, Result
,
3822 InsertedInsts
, PromotedInsts
, TPT
,
3823 LargeOffsetGEP
, OptSize
, PSI
, BFI
)
3826 assert(Success
&& "Couldn't select *anything*?");
3831 bool matchScaledValue(Value
*ScaleReg
, int64_t Scale
, unsigned Depth
);
3832 bool matchAddr(Value
*Addr
, unsigned Depth
);
3833 bool matchOperationAddr(User
*AddrInst
, unsigned Opcode
, unsigned Depth
,
3834 bool *MovedAway
= nullptr);
3835 bool isProfitableToFoldIntoAddressingMode(Instruction
*I
,
3836 ExtAddrMode
&AMBefore
,
3837 ExtAddrMode
&AMAfter
);
3838 bool valueAlreadyLiveAtInst(Value
*Val
, Value
*KnownLive1
, Value
*KnownLive2
);
3839 bool isPromotionProfitable(unsigned NewCost
, unsigned OldCost
,
3840 Value
*PromotedOperand
) const;
3845 /// An iterator for PhiNodeSet.
3846 class PhiNodeSetIterator
{
3847 PhiNodeSet
*const Set
;
3848 size_t CurrentIndex
= 0;
3851 /// The constructor. Start should point to either a valid element, or be equal
3852 /// to the size of the underlying SmallVector of the PhiNodeSet.
3853 PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
);
3854 PHINode
*operator*() const;
3855 PhiNodeSetIterator
&operator++();
3856 bool operator==(const PhiNodeSetIterator
&RHS
) const;
3857 bool operator!=(const PhiNodeSetIterator
&RHS
) const;
3860 /// Keeps a set of PHINodes.
3862 /// This is a minimal set implementation for a specific use case:
3863 /// It is very fast when there are very few elements, but also provides good
3864 /// performance when there are many. It is similar to SmallPtrSet, but also
3865 /// provides iteration by insertion order, which is deterministic and stable
3866 /// across runs. It is also similar to SmallSetVector, but provides removing
3867 /// elements in O(1) time. This is achieved by not actually removing the element
3868 /// from the underlying vector, so comes at the cost of using more memory, but
3869 /// that is fine, since PhiNodeSets are used as short lived objects.
3871 friend class PhiNodeSetIterator
;
3873 using MapType
= SmallDenseMap
<PHINode
*, size_t, 32>;
3874 using iterator
= PhiNodeSetIterator
;
3876 /// Keeps the elements in the order of their insertion in the underlying
3877 /// vector. To achieve constant time removal, it never deletes any element.
3878 SmallVector
<PHINode
*, 32> NodeList
;
3880 /// Keeps the elements in the underlying set implementation. This (and not the
3881 /// NodeList defined above) is the source of truth on whether an element
3882 /// is actually in the collection.
3885 /// Points to the first valid (not deleted) element when the set is not empty
3886 /// and the value is not zero. Equals to the size of the underlying vector
3887 /// when the set is empty. When the value is 0, as in the beginning, the
3888 /// first element may or may not be valid.
3889 size_t FirstValidElement
= 0;
3892 /// Inserts a new element to the collection.
3893 /// \returns true if the element is actually added, i.e. was not in the
3894 /// collection before the operation.
3895 bool insert(PHINode
*Ptr
) {
3896 if (NodeMap
.insert(std::make_pair(Ptr
, NodeList
.size())).second
) {
3897 NodeList
.push_back(Ptr
);
3903 /// Removes the element from the collection.
3904 /// \returns whether the element is actually removed, i.e. was in the
3905 /// collection before the operation.
3906 bool erase(PHINode
*Ptr
) {
3907 if (NodeMap
.erase(Ptr
)) {
3908 SkipRemovedElements(FirstValidElement
);
3914 /// Removes all elements and clears the collection.
3918 FirstValidElement
= 0;
3921 /// \returns an iterator that will iterate the elements in the order of
3924 if (FirstValidElement
== 0)
3925 SkipRemovedElements(FirstValidElement
);
3926 return PhiNodeSetIterator(this, FirstValidElement
);
3929 /// \returns an iterator that points to the end of the collection.
3930 iterator
end() { return PhiNodeSetIterator(this, NodeList
.size()); }
3932 /// Returns the number of elements in the collection.
3933 size_t size() const { return NodeMap
.size(); }
3935 /// \returns 1 if the given element is in the collection, and 0 if otherwise.
3936 size_t count(PHINode
*Ptr
) const { return NodeMap
.count(Ptr
); }
3939 /// Updates the CurrentIndex so that it will point to a valid element.
3941 /// If the element of NodeList at CurrentIndex is valid, it does not
3942 /// change it. If there are no more valid elements, it updates CurrentIndex
3943 /// to point to the end of the NodeList.
3944 void SkipRemovedElements(size_t &CurrentIndex
) {
3945 while (CurrentIndex
< NodeList
.size()) {
3946 auto it
= NodeMap
.find(NodeList
[CurrentIndex
]);
3947 // If the element has been deleted and added again later, NodeMap will
3948 // point to a different index, so CurrentIndex will still be invalid.
3949 if (it
!= NodeMap
.end() && it
->second
== CurrentIndex
)
3956 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet
*const Set
, size_t Start
)
3957 : Set(Set
), CurrentIndex(Start
) {}
3959 PHINode
*PhiNodeSetIterator::operator*() const {
3960 assert(CurrentIndex
< Set
->NodeList
.size() &&
3961 "PhiNodeSet access out of range");
3962 return Set
->NodeList
[CurrentIndex
];
3965 PhiNodeSetIterator
&PhiNodeSetIterator::operator++() {
3966 assert(CurrentIndex
< Set
->NodeList
.size() &&
3967 "PhiNodeSet access out of range");
3969 Set
->SkipRemovedElements(CurrentIndex
);
3973 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator
&RHS
) const {
3974 return CurrentIndex
== RHS
.CurrentIndex
;
3977 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator
&RHS
) const {
3978 return !((*this) == RHS
);
3981 /// Keep track of simplification of Phi nodes.
3982 /// Accept the set of all phi nodes and erase phi node from this set
3983 /// if it is simplified.
3984 class SimplificationTracker
{
3985 DenseMap
<Value
*, Value
*> Storage
;
3986 const SimplifyQuery
&SQ
;
3987 // Tracks newly created Phi nodes. The elements are iterated by insertion
3989 PhiNodeSet AllPhiNodes
;
3990 // Tracks newly created Select nodes.
3991 SmallPtrSet
<SelectInst
*, 32> AllSelectNodes
;
3994 SimplificationTracker(const SimplifyQuery
&sq
) : SQ(sq
) {}
3996 Value
*Get(Value
*V
) {
3998 auto SV
= Storage
.find(V
);
3999 if (SV
== Storage
.end())
4005 Value
*Simplify(Value
*Val
) {
4006 SmallVector
<Value
*, 32> WorkList
;
4007 SmallPtrSet
<Value
*, 32> Visited
;
4008 WorkList
.push_back(Val
);
4009 while (!WorkList
.empty()) {
4010 auto *P
= WorkList
.pop_back_val();
4011 if (!Visited
.insert(P
).second
)
4013 if (auto *PI
= dyn_cast
<Instruction
>(P
))
4014 if (Value
*V
= simplifyInstruction(cast
<Instruction
>(PI
), SQ
)) {
4015 for (auto *U
: PI
->users())
4016 WorkList
.push_back(cast
<Value
>(U
));
4018 PI
->replaceAllUsesWith(V
);
4019 if (auto *PHI
= dyn_cast
<PHINode
>(PI
))
4020 AllPhiNodes
.erase(PHI
);
4021 if (auto *Select
= dyn_cast
<SelectInst
>(PI
))
4022 AllSelectNodes
.erase(Select
);
4023 PI
->eraseFromParent();
4029 void Put(Value
*From
, Value
*To
) { Storage
.insert({From
, To
}); }
4031 void ReplacePhi(PHINode
*From
, PHINode
*To
) {
4032 Value
*OldReplacement
= Get(From
);
4033 while (OldReplacement
!= From
) {
4035 To
= dyn_cast
<PHINode
>(OldReplacement
);
4036 OldReplacement
= Get(From
);
4038 assert(To
&& Get(To
) == To
&& "Replacement PHI node is already replaced.");
4040 From
->replaceAllUsesWith(To
);
4041 AllPhiNodes
.erase(From
);
4042 From
->eraseFromParent();
4045 PhiNodeSet
&newPhiNodes() { return AllPhiNodes
; }
4047 void insertNewPhi(PHINode
*PN
) { AllPhiNodes
.insert(PN
); }
4049 void insertNewSelect(SelectInst
*SI
) { AllSelectNodes
.insert(SI
); }
4051 unsigned countNewPhiNodes() const { return AllPhiNodes
.size(); }
4053 unsigned countNewSelectNodes() const { return AllSelectNodes
.size(); }
4055 void destroyNewNodes(Type
*CommonType
) {
4056 // For safe erasing, replace the uses with dummy value first.
4057 auto *Dummy
= PoisonValue::get(CommonType
);
4058 for (auto *I
: AllPhiNodes
) {
4059 I
->replaceAllUsesWith(Dummy
);
4060 I
->eraseFromParent();
4062 AllPhiNodes
.clear();
4063 for (auto *I
: AllSelectNodes
) {
4064 I
->replaceAllUsesWith(Dummy
);
4065 I
->eraseFromParent();
4067 AllSelectNodes
.clear();
4071 /// A helper class for combining addressing modes.
4072 class AddressingModeCombiner
{
4073 typedef DenseMap
<Value
*, Value
*> FoldAddrToValueMapping
;
4074 typedef std::pair
<PHINode
*, PHINode
*> PHIPair
;
4077 /// The addressing modes we've collected.
4078 SmallVector
<ExtAddrMode
, 16> AddrModes
;
4080 /// The field in which the AddrModes differ, when we have more than one.
4081 ExtAddrMode::FieldName DifferentField
= ExtAddrMode::NoField
;
4083 /// Are the AddrModes that we have all just equal to their original values?
4084 bool AllAddrModesTrivial
= true;
4086 /// Common Type for all different fields in addressing modes.
4087 Type
*CommonType
= nullptr;
4089 /// SimplifyQuery for simplifyInstruction utility.
4090 const SimplifyQuery
&SQ
;
4092 /// Original Address.
4095 /// Common value among addresses
4096 Value
*CommonValue
= nullptr;
4099 AddressingModeCombiner(const SimplifyQuery
&_SQ
, Value
*OriginalValue
)
4100 : SQ(_SQ
), Original(OriginalValue
) {}
4102 ~AddressingModeCombiner() { eraseCommonValueIfDead(); }
4104 /// Get the combined AddrMode
4105 const ExtAddrMode
&getAddrMode() const { return AddrModes
[0]; }
4107 /// Add a new AddrMode if it's compatible with the AddrModes we already
4109 /// \return True iff we succeeded in doing so.
4110 bool addNewAddrMode(ExtAddrMode
&NewAddrMode
) {
4111 // Take note of if we have any non-trivial AddrModes, as we need to detect
4112 // when all AddrModes are trivial as then we would introduce a phi or select
4113 // which just duplicates what's already there.
4114 AllAddrModesTrivial
= AllAddrModesTrivial
&& NewAddrMode
.isTrivial();
4116 // If this is the first addrmode then everything is fine.
4117 if (AddrModes
.empty()) {
4118 AddrModes
.emplace_back(NewAddrMode
);
4122 // Figure out how different this is from the other address modes, which we
4123 // can do just by comparing against the first one given that we only care
4124 // about the cumulative difference.
4125 ExtAddrMode::FieldName ThisDifferentField
=
4126 AddrModes
[0].compare(NewAddrMode
);
4127 if (DifferentField
== ExtAddrMode::NoField
)
4128 DifferentField
= ThisDifferentField
;
4129 else if (DifferentField
!= ThisDifferentField
)
4130 DifferentField
= ExtAddrMode::MultipleFields
;
4132 // If NewAddrMode differs in more than one dimension we cannot handle it.
4133 bool CanHandle
= DifferentField
!= ExtAddrMode::MultipleFields
;
4135 // If Scale Field is different then we reject.
4136 CanHandle
= CanHandle
&& DifferentField
!= ExtAddrMode::ScaleField
;
4138 // We also must reject the case when base offset is different and
4139 // scale reg is not null, we cannot handle this case due to merge of
4140 // different offsets will be used as ScaleReg.
4141 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseOffsField
||
4142 !NewAddrMode
.ScaledReg
);
4144 // We also must reject the case when GV is different and BaseReg installed
4145 // due to we want to use base reg as a merge of GV values.
4146 CanHandle
= CanHandle
&& (DifferentField
!= ExtAddrMode::BaseGVField
||
4147 !NewAddrMode
.HasBaseReg
);
4149 // Even if NewAddMode is the same we still need to collect it due to
4150 // original value is different. And later we will need all original values
4151 // as anchors during finding the common Phi node.
4153 AddrModes
.emplace_back(NewAddrMode
);
4160 /// Combine the addressing modes we've collected into a single
4161 /// addressing mode.
4162 /// \return True iff we successfully combined them or we only had one so
4163 /// didn't need to combine them anyway.
4164 bool combineAddrModes() {
4165 // If we have no AddrModes then they can't be combined.
4166 if (AddrModes
.size() == 0)
4169 // A single AddrMode can trivially be combined.
4170 if (AddrModes
.size() == 1 || DifferentField
== ExtAddrMode::NoField
)
4173 // If the AddrModes we collected are all just equal to the value they are
4174 // derived from then combining them wouldn't do anything useful.
4175 if (AllAddrModesTrivial
)
4178 if (!addrModeCombiningAllowed())
4181 // Build a map between <original value, basic block where we saw it> to
4182 // value of base register.
4183 // Bail out if there is no common type.
4184 FoldAddrToValueMapping Map
;
4185 if (!initializeMap(Map
))
4188 CommonValue
= findCommon(Map
);
4190 AddrModes
[0].SetCombinedField(DifferentField
, CommonValue
, AddrModes
);
4191 return CommonValue
!= nullptr;
4195 /// `CommonValue` may be a placeholder inserted by us.
4196 /// If the placeholder is not used, we should remove this dead instruction.
4197 void eraseCommonValueIfDead() {
4198 if (CommonValue
&& CommonValue
->getNumUses() == 0)
4199 if (Instruction
*CommonInst
= dyn_cast
<Instruction
>(CommonValue
))
4200 CommonInst
->eraseFromParent();
4203 /// Initialize Map with anchor values. For address seen
4204 /// we set the value of different field saw in this address.
4205 /// At the same time we find a common type for different field we will
4206 /// use to create new Phi/Select nodes. Keep it in CommonType field.
4207 /// Return false if there is no common type found.
4208 bool initializeMap(FoldAddrToValueMapping
&Map
) {
4209 // Keep track of keys where the value is null. We will need to replace it
4210 // with constant null when we know the common type.
4211 SmallVector
<Value
*, 2> NullValue
;
4212 Type
*IntPtrTy
= SQ
.DL
.getIntPtrType(AddrModes
[0].OriginalValue
->getType());
4213 for (auto &AM
: AddrModes
) {
4214 Value
*DV
= AM
.GetFieldAsValue(DifferentField
, IntPtrTy
);
4216 auto *Type
= DV
->getType();
4217 if (CommonType
&& CommonType
!= Type
)
4220 Map
[AM
.OriginalValue
] = DV
;
4222 NullValue
.push_back(AM
.OriginalValue
);
4225 assert(CommonType
&& "At least one non-null value must be!");
4226 for (auto *V
: NullValue
)
4227 Map
[V
] = Constant::getNullValue(CommonType
);
4231 /// We have mapping between value A and other value B where B was a field in
4232 /// addressing mode represented by A. Also we have an original value C
4233 /// representing an address we start with. Traversing from C through phi and
4234 /// selects we ended up with A's in a map. This utility function tries to find
4235 /// a value V which is a field in addressing mode C and traversing through phi
4236 /// nodes and selects we will end up in corresponded values B in a map.
4237 /// The utility will create a new Phi/Selects if needed.
4238 // The simple example looks as follows:
4246 // p = phi [p1, BB1], [p2, BB2]
4253 // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
4254 Value
*findCommon(FoldAddrToValueMapping
&Map
) {
4255 // Tracks the simplification of newly created phi nodes. The reason we use
4256 // this mapping is because we will add new created Phi nodes in AddrToBase.
4257 // Simplification of Phi nodes is recursive, so some Phi node may
4258 // be simplified after we added it to AddrToBase. In reality this
4259 // simplification is possible only if original phi/selects were not
4261 // Using this mapping we can find the current value in AddrToBase.
4262 SimplificationTracker
ST(SQ
);
4264 // First step, DFS to create PHI nodes for all intermediate blocks.
4265 // Also fill traverse order for the second step.
4266 SmallVector
<Value
*, 32> TraverseOrder
;
4267 InsertPlaceholders(Map
, TraverseOrder
, ST
);
4269 // Second Step, fill new nodes by merged values and simplify if possible.
4270 FillPlaceholders(Map
, TraverseOrder
, ST
);
4272 if (!AddrSinkNewSelects
&& ST
.countNewSelectNodes() > 0) {
4273 ST
.destroyNewNodes(CommonType
);
4277 // Now we'd like to match New Phi nodes to existed ones.
4278 unsigned PhiNotMatchedCount
= 0;
4279 if (!MatchPhiSet(ST
, AddrSinkNewPhis
, PhiNotMatchedCount
)) {
4280 ST
.destroyNewNodes(CommonType
);
4284 auto *Result
= ST
.Get(Map
.find(Original
)->second
);
4286 NumMemoryInstsPhiCreated
+= ST
.countNewPhiNodes() + PhiNotMatchedCount
;
4287 NumMemoryInstsSelectCreated
+= ST
.countNewSelectNodes();
4292 /// Try to match PHI node to Candidate.
4293 /// Matcher tracks the matched Phi nodes.
4294 bool MatchPhiNode(PHINode
*PHI
, PHINode
*Candidate
,
4295 SmallSetVector
<PHIPair
, 8> &Matcher
,
4296 PhiNodeSet
&PhiNodesToMatch
) {
4297 SmallVector
<PHIPair
, 8> WorkList
;
4298 Matcher
.insert({PHI
, Candidate
});
4299 SmallSet
<PHINode
*, 8> MatchedPHIs
;
4300 MatchedPHIs
.insert(PHI
);
4301 WorkList
.push_back({PHI
, Candidate
});
4302 SmallSet
<PHIPair
, 8> Visited
;
4303 while (!WorkList
.empty()) {
4304 auto Item
= WorkList
.pop_back_val();
4305 if (!Visited
.insert(Item
).second
)
4307 // We iterate over all incoming values to Phi to compare them.
4308 // If values are different and both of them Phi and the first one is a
4309 // Phi we added (subject to match) and both of them is in the same basic
4310 // block then we can match our pair if values match. So we state that
4311 // these values match and add it to work list to verify that.
4312 for (auto *B
: Item
.first
->blocks()) {
4313 Value
*FirstValue
= Item
.first
->getIncomingValueForBlock(B
);
4314 Value
*SecondValue
= Item
.second
->getIncomingValueForBlock(B
);
4315 if (FirstValue
== SecondValue
)
4318 PHINode
*FirstPhi
= dyn_cast
<PHINode
>(FirstValue
);
4319 PHINode
*SecondPhi
= dyn_cast
<PHINode
>(SecondValue
);
4321 // One of them is not Phi or
4322 // The first one is not Phi node from the set we'd like to match or
4323 // Phi nodes from different basic blocks then
4324 // we will not be able to match.
4325 if (!FirstPhi
|| !SecondPhi
|| !PhiNodesToMatch
.count(FirstPhi
) ||
4326 FirstPhi
->getParent() != SecondPhi
->getParent())
4329 // If we already matched them then continue.
4330 if (Matcher
.count({FirstPhi
, SecondPhi
}))
4332 // So the values are different and does not match. So we need them to
4333 // match. (But we register no more than one match per PHI node, so that
4334 // we won't later try to replace them twice.)
4335 if (MatchedPHIs
.insert(FirstPhi
).second
)
4336 Matcher
.insert({FirstPhi
, SecondPhi
});
4337 // But me must check it.
4338 WorkList
.push_back({FirstPhi
, SecondPhi
});
4344 /// For the given set of PHI nodes (in the SimplificationTracker) try
4345 /// to find their equivalents.
4346 /// Returns false if this matching fails and creation of new Phi is disabled.
4347 bool MatchPhiSet(SimplificationTracker
&ST
, bool AllowNewPhiNodes
,
4348 unsigned &PhiNotMatchedCount
) {
4349 // Matched and PhiNodesToMatch iterate their elements in a deterministic
4350 // order, so the replacements (ReplacePhi) are also done in a deterministic
4352 SmallSetVector
<PHIPair
, 8> Matched
;
4353 SmallPtrSet
<PHINode
*, 8> WillNotMatch
;
4354 PhiNodeSet
&PhiNodesToMatch
= ST
.newPhiNodes();
4355 while (PhiNodesToMatch
.size()) {
4356 PHINode
*PHI
= *PhiNodesToMatch
.begin();
4358 // Add us, if no Phi nodes in the basic block we do not match.
4359 WillNotMatch
.clear();
4360 WillNotMatch
.insert(PHI
);
4362 // Traverse all Phis until we found equivalent or fail to do that.
4363 bool IsMatched
= false;
4364 for (auto &P
: PHI
->getParent()->phis()) {
4365 // Skip new Phi nodes.
4366 if (PhiNodesToMatch
.count(&P
))
4368 if ((IsMatched
= MatchPhiNode(PHI
, &P
, Matched
, PhiNodesToMatch
)))
4370 // If it does not match, collect all Phi nodes from matcher.
4371 // if we end up with no match, them all these Phi nodes will not match
4373 for (auto M
: Matched
)
4374 WillNotMatch
.insert(M
.first
);
4378 // Replace all matched values and erase them.
4379 for (auto MV
: Matched
)
4380 ST
.ReplacePhi(MV
.first
, MV
.second
);
4384 // If we are not allowed to create new nodes then bail out.
4385 if (!AllowNewPhiNodes
)
4387 // Just remove all seen values in matcher. They will not match anything.
4388 PhiNotMatchedCount
+= WillNotMatch
.size();
4389 for (auto *P
: WillNotMatch
)
4390 PhiNodesToMatch
.erase(P
);
4394 /// Fill the placeholders with values from predecessors and simplify them.
4395 void FillPlaceholders(FoldAddrToValueMapping
&Map
,
4396 SmallVectorImpl
<Value
*> &TraverseOrder
,
4397 SimplificationTracker
&ST
) {
4398 while (!TraverseOrder
.empty()) {
4399 Value
*Current
= TraverseOrder
.pop_back_val();
4400 assert(Map
.contains(Current
) && "No node to fill!!!");
4401 Value
*V
= Map
[Current
];
4403 if (SelectInst
*Select
= dyn_cast
<SelectInst
>(V
)) {
4404 // CurrentValue also must be Select.
4405 auto *CurrentSelect
= cast
<SelectInst
>(Current
);
4406 auto *TrueValue
= CurrentSelect
->getTrueValue();
4407 assert(Map
.contains(TrueValue
) && "No True Value!");
4408 Select
->setTrueValue(ST
.Get(Map
[TrueValue
]));
4409 auto *FalseValue
= CurrentSelect
->getFalseValue();
4410 assert(Map
.contains(FalseValue
) && "No False Value!");
4411 Select
->setFalseValue(ST
.Get(Map
[FalseValue
]));
4413 // Must be a Phi node then.
4414 auto *PHI
= cast
<PHINode
>(V
);
4415 // Fill the Phi node with values from predecessors.
4416 for (auto *B
: predecessors(PHI
->getParent())) {
4417 Value
*PV
= cast
<PHINode
>(Current
)->getIncomingValueForBlock(B
);
4418 assert(Map
.contains(PV
) && "No predecessor Value!");
4419 PHI
->addIncoming(ST
.Get(Map
[PV
]), B
);
4422 Map
[Current
] = ST
.Simplify(V
);
4426 /// Starting from original value recursively iterates over def-use chain up to
4427 /// known ending values represented in a map. For each traversed phi/select
4428 /// inserts a placeholder Phi or Select.
4429 /// Reports all new created Phi/Select nodes by adding them to set.
4430 /// Also reports and order in what values have been traversed.
4431 void InsertPlaceholders(FoldAddrToValueMapping
&Map
,
4432 SmallVectorImpl
<Value
*> &TraverseOrder
,
4433 SimplificationTracker
&ST
) {
4434 SmallVector
<Value
*, 32> Worklist
;
4435 assert((isa
<PHINode
>(Original
) || isa
<SelectInst
>(Original
)) &&
4436 "Address must be a Phi or Select node");
4437 auto *Dummy
= PoisonValue::get(CommonType
);
4438 Worklist
.push_back(Original
);
4439 while (!Worklist
.empty()) {
4440 Value
*Current
= Worklist
.pop_back_val();
4441 // if it is already visited or it is an ending value then skip it.
4442 if (Map
.contains(Current
))
4444 TraverseOrder
.push_back(Current
);
4446 // CurrentValue must be a Phi node or select. All others must be covered
4448 if (SelectInst
*CurrentSelect
= dyn_cast
<SelectInst
>(Current
)) {
4449 // Is it OK to get metadata from OrigSelect?!
4450 // Create a Select placeholder with dummy value.
4451 SelectInst
*Select
=
4452 SelectInst::Create(CurrentSelect
->getCondition(), Dummy
, Dummy
,
4453 CurrentSelect
->getName(),
4454 CurrentSelect
->getIterator(), CurrentSelect
);
4455 Map
[Current
] = Select
;
4456 ST
.insertNewSelect(Select
);
4457 // We are interested in True and False values.
4458 Worklist
.push_back(CurrentSelect
->getTrueValue());
4459 Worklist
.push_back(CurrentSelect
->getFalseValue());
4461 // It must be a Phi node then.
4462 PHINode
*CurrentPhi
= cast
<PHINode
>(Current
);
4463 unsigned PredCount
= CurrentPhi
->getNumIncomingValues();
4465 PHINode::Create(CommonType
, PredCount
, "sunk_phi", CurrentPhi
->getIterator());
4467 ST
.insertNewPhi(PHI
);
4468 append_range(Worklist
, CurrentPhi
->incoming_values());
4473 bool addrModeCombiningAllowed() {
4474 if (DisableComplexAddrModes
)
4476 switch (DifferentField
) {
4479 case ExtAddrMode::BaseRegField
:
4480 return AddrSinkCombineBaseReg
;
4481 case ExtAddrMode::BaseGVField
:
4482 return AddrSinkCombineBaseGV
;
4483 case ExtAddrMode::BaseOffsField
:
4484 return AddrSinkCombineBaseOffs
;
4485 case ExtAddrMode::ScaledRegField
:
4486 return AddrSinkCombineScaledReg
;
4490 } // end anonymous namespace
4492 /// Try adding ScaleReg*Scale to the current addressing mode.
4493 /// Return true and update AddrMode if this addr mode is legal for the target,
4495 bool AddressingModeMatcher::matchScaledValue(Value
*ScaleReg
, int64_t Scale
,
4497 // If Scale is 1, then this is the same as adding ScaleReg to the addressing
4498 // mode. Just process that directly.
4500 return matchAddr(ScaleReg
, Depth
);
4502 // If the scale is 0, it takes nothing to add this.
4506 // If we already have a scale of this value, we can add to it, otherwise, we
4507 // need an available scale field.
4508 if (AddrMode
.Scale
!= 0 && AddrMode
.ScaledReg
!= ScaleReg
)
4511 ExtAddrMode TestAddrMode
= AddrMode
;
4513 // Add scale to turn X*4+X*3 -> X*7. This could also do things like
4514 // [A+B + A*7] -> [B+A*8].
4515 TestAddrMode
.Scale
+= Scale
;
4516 TestAddrMode
.ScaledReg
= ScaleReg
;
4518 // If the new address isn't legal, bail out.
4519 if (!TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
))
4522 // It was legal, so commit it.
4523 AddrMode
= TestAddrMode
;
4525 // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now
4526 // to see if ScaleReg is actually X+C. If so, we can turn this into adding
4527 // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
4528 // go any further: we can reuse it and cannot eliminate it.
4529 ConstantInt
*CI
= nullptr;
4530 Value
*AddLHS
= nullptr;
4531 if (isa
<Instruction
>(ScaleReg
) && // not a constant expr.
4532 match(ScaleReg
, m_Add(m_Value(AddLHS
), m_ConstantInt(CI
))) &&
4533 !isIVIncrement(ScaleReg
, &LI
) && CI
->getValue().isSignedIntN(64)) {
4534 TestAddrMode
.InBounds
= false;
4535 TestAddrMode
.ScaledReg
= AddLHS
;
4536 TestAddrMode
.BaseOffs
+= CI
->getSExtValue() * TestAddrMode
.Scale
;
4538 // If this addressing mode is legal, commit it and remember that we folded
4539 // this instruction.
4540 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
)) {
4541 AddrModeInsts
.push_back(cast
<Instruction
>(ScaleReg
));
4542 AddrMode
= TestAddrMode
;
4545 // Restore status quo.
4546 TestAddrMode
= AddrMode
;
4549 // If this is an add recurrence with a constant step, return the increment
4550 // instruction and the canonicalized step.
4551 auto GetConstantStep
=
4552 [this](const Value
*V
) -> std::optional
<std::pair
<Instruction
*, APInt
>> {
4553 auto *PN
= dyn_cast
<PHINode
>(V
);
4555 return std::nullopt
;
4556 auto IVInc
= getIVIncrement(PN
, &LI
);
4558 return std::nullopt
;
4559 // TODO: The result of the intrinsics above is two-complement. However when
4560 // IV inc is expressed as add or sub, iv.next is potentially a poison value.
4561 // If it has nuw or nsw flags, we need to make sure that these flags are
4562 // inferrable at the point of memory instruction. Otherwise we are replacing
4563 // well-defined two-complement computation with poison. Currently, to avoid
4564 // potentially complex analysis needed to prove this, we reject such cases.
4565 if (auto *OIVInc
= dyn_cast
<OverflowingBinaryOperator
>(IVInc
->first
))
4566 if (OIVInc
->hasNoSignedWrap() || OIVInc
->hasNoUnsignedWrap())
4567 return std::nullopt
;
4568 if (auto *ConstantStep
= dyn_cast
<ConstantInt
>(IVInc
->second
))
4569 return std::make_pair(IVInc
->first
, ConstantStep
->getValue());
4570 return std::nullopt
;
4573 // Try to account for the following special case:
4574 // 1. ScaleReg is an inductive variable;
4575 // 2. We use it with non-zero offset;
4576 // 3. IV's increment is available at the point of memory instruction.
4578 // In this case, we may reuse the IV increment instead of the IV Phi to
4579 // achieve the following advantages:
4580 // 1. If IV step matches the offset, we will have no need in the offset;
4581 // 2. Even if they don't match, we will reduce the overlap of living IV
4582 // and IV increment, that will potentially lead to better register
4584 if (AddrMode
.BaseOffs
) {
4585 if (auto IVStep
= GetConstantStep(ScaleReg
)) {
4586 Instruction
*IVInc
= IVStep
->first
;
4587 // The following assert is important to ensure a lack of infinite loops.
4588 // This transforms is (intentionally) the inverse of the one just above.
4589 // If they don't agree on the definition of an increment, we'd alternate
4590 // back and forth indefinitely.
4591 assert(isIVIncrement(IVInc
, &LI
) && "implied by GetConstantStep");
4592 APInt Step
= IVStep
->second
;
4593 APInt Offset
= Step
* AddrMode
.Scale
;
4594 if (Offset
.isSignedIntN(64)) {
4595 TestAddrMode
.InBounds
= false;
4596 TestAddrMode
.ScaledReg
= IVInc
;
4597 TestAddrMode
.BaseOffs
-= Offset
.getLimitedValue();
4598 // If this addressing mode is legal, commit it..
4599 // (Note that we defer the (expensive) domtree base legality check
4600 // to the very last possible point.)
4601 if (TLI
.isLegalAddressingMode(DL
, TestAddrMode
, AccessTy
, AddrSpace
) &&
4602 getDTFn().dominates(IVInc
, MemoryInst
)) {
4603 AddrModeInsts
.push_back(cast
<Instruction
>(IVInc
));
4604 AddrMode
= TestAddrMode
;
4607 // Restore status quo.
4608 TestAddrMode
= AddrMode
;
4613 // Otherwise, just return what we have.
4617 /// This is a little filter, which returns true if an addressing computation
4618 /// involving I might be folded into a load/store accessing it.
4619 /// This doesn't need to be perfect, but needs to accept at least
4620 /// the set of instructions that MatchOperationAddr can.
4621 static bool MightBeFoldableInst(Instruction
*I
) {
4622 switch (I
->getOpcode()) {
4623 case Instruction::BitCast
:
4624 case Instruction::AddrSpaceCast
:
4625 // Don't touch identity bitcasts.
4626 if (I
->getType() == I
->getOperand(0)->getType())
4628 return I
->getType()->isIntOrPtrTy();
4629 case Instruction::PtrToInt
:
4630 // PtrToInt is always a noop, as we know that the int type is pointer sized.
4632 case Instruction::IntToPtr
:
4633 // We know the input is intptr_t, so this is foldable.
4635 case Instruction::Add
:
4637 case Instruction::Mul
:
4638 case Instruction::Shl
:
4639 // Can only handle X*C and X << C.
4640 return isa
<ConstantInt
>(I
->getOperand(1));
4641 case Instruction::GetElementPtr
:
4648 /// Check whether or not \p Val is a legal instruction for \p TLI.
4649 /// \note \p Val is assumed to be the product of some type promotion.
4650 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4651 /// to be legal, as the non-promoted value would have had the same state.
4652 static bool isPromotedInstructionLegal(const TargetLowering
&TLI
,
4653 const DataLayout
&DL
, Value
*Val
) {
4654 Instruction
*PromotedInst
= dyn_cast
<Instruction
>(Val
);
4657 int ISDOpcode
= TLI
.InstructionOpcodeToISD(PromotedInst
->getOpcode());
4658 // If the ISDOpcode is undefined, it was undefined before the promotion.
4661 // Otherwise, check if the promoted instruction is legal or not.
4662 return TLI
.isOperationLegalOrCustom(
4663 ISDOpcode
, TLI
.getValueType(DL
, PromotedInst
->getType()));
4668 /// Hepler class to perform type promotion.
4669 class TypePromotionHelper
{
4670 /// Utility function to add a promoted instruction \p ExtOpnd to
4671 /// \p PromotedInsts and record the type of extension we have seen.
4672 static void addPromotedInst(InstrToOrigTy
&PromotedInsts
,
4673 Instruction
*ExtOpnd
, bool IsSExt
) {
4674 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4675 InstrToOrigTy::iterator It
= PromotedInsts
.find(ExtOpnd
);
4676 if (It
!= PromotedInsts
.end()) {
4677 // If the new extension is same as original, the information in
4678 // PromotedInsts[ExtOpnd] is still correct.
4679 if (It
->second
.getInt() == ExtTy
)
4682 // Now the new extension is different from old extension, we make
4683 // the type information invalid by setting extension type to
4685 ExtTy
= BothExtension
;
4687 PromotedInsts
[ExtOpnd
] = TypeIsSExt(ExtOpnd
->getType(), ExtTy
);
4690 /// Utility function to query the original type of instruction \p Opnd
4691 /// with a matched extension type. If the extension doesn't match, we
4692 /// cannot use the information we had on the original type.
4693 /// BothExtension doesn't match any extension type.
4694 static const Type
*getOrigType(const InstrToOrigTy
&PromotedInsts
,
4695 Instruction
*Opnd
, bool IsSExt
) {
4696 ExtType ExtTy
= IsSExt
? SignExtension
: ZeroExtension
;
4697 InstrToOrigTy::const_iterator It
= PromotedInsts
.find(Opnd
);
4698 if (It
!= PromotedInsts
.end() && It
->second
.getInt() == ExtTy
)
4699 return It
->second
.getPointer();
4703 /// Utility function to check whether or not a sign or zero extension
4704 /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4705 /// either using the operands of \p Inst or promoting \p Inst.
4706 /// The type of the extension is defined by \p IsSExt.
4707 /// In other words, check if:
4708 /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4709 /// #1 Promotion applies:
4710 /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4711 /// #2 Operand reuses:
4712 /// ext opnd1 to ConsideredExtType.
4713 /// \p PromotedInsts maps the instructions to their type before promotion.
4714 static bool canGetThrough(const Instruction
*Inst
, Type
*ConsideredExtType
,
4715 const InstrToOrigTy
&PromotedInsts
, bool IsSExt
);
4717 /// Utility function to determine if \p OpIdx should be promoted when
4718 /// promoting \p Inst.
4719 static bool shouldExtOperand(const Instruction
*Inst
, int OpIdx
) {
4720 return !(isa
<SelectInst
>(Inst
) && OpIdx
== 0);
4723 /// Utility function to promote the operand of \p Ext when this
4724 /// operand is a promotable trunc or sext or zext.
4725 /// \p PromotedInsts maps the instructions to their type before promotion.
4726 /// \p CreatedInstsCost[out] contains the cost of all instructions
4727 /// created to promote the operand of Ext.
4728 /// Newly added extensions are inserted in \p Exts.
4729 /// Newly added truncates are inserted in \p Truncs.
4730 /// Should never be called directly.
4731 /// \return The promoted value which is used instead of Ext.
4732 static Value
*promoteOperandForTruncAndAnyExt(
4733 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4734 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4735 SmallVectorImpl
<Instruction
*> *Exts
,
4736 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
);
4738 /// Utility function to promote the operand of \p Ext when this
4739 /// operand is promotable and is not a supported trunc or sext.
4740 /// \p PromotedInsts maps the instructions to their type before promotion.
4741 /// \p CreatedInstsCost[out] contains the cost of all the instructions
4742 /// created to promote the operand of Ext.
4743 /// Newly added extensions are inserted in \p Exts.
4744 /// Newly added truncates are inserted in \p Truncs.
4745 /// Should never be called directly.
4746 /// \return The promoted value which is used instead of Ext.
4747 static Value
*promoteOperandForOther(Instruction
*Ext
,
4748 TypePromotionTransaction
&TPT
,
4749 InstrToOrigTy
&PromotedInsts
,
4750 unsigned &CreatedInstsCost
,
4751 SmallVectorImpl
<Instruction
*> *Exts
,
4752 SmallVectorImpl
<Instruction
*> *Truncs
,
4753 const TargetLowering
&TLI
, bool IsSExt
);
4755 /// \see promoteOperandForOther.
4756 static Value
*signExtendOperandForOther(
4757 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4758 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4759 SmallVectorImpl
<Instruction
*> *Exts
,
4760 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4761 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4762 Exts
, Truncs
, TLI
, true);
4765 /// \see promoteOperandForOther.
4766 static Value
*zeroExtendOperandForOther(
4767 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4768 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4769 SmallVectorImpl
<Instruction
*> *Exts
,
4770 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4771 return promoteOperandForOther(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
,
4772 Exts
, Truncs
, TLI
, false);
4776 /// Type for the utility function that promotes the operand of Ext.
4777 using Action
= Value
*(*)(Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4778 InstrToOrigTy
&PromotedInsts
,
4779 unsigned &CreatedInstsCost
,
4780 SmallVectorImpl
<Instruction
*> *Exts
,
4781 SmallVectorImpl
<Instruction
*> *Truncs
,
4782 const TargetLowering
&TLI
);
4784 /// Given a sign/zero extend instruction \p Ext, return the appropriate
4785 /// action to promote the operand of \p Ext instead of using Ext.
4786 /// \return NULL if no promotable action is possible with the current
4788 /// \p InsertedInsts keeps track of all the instructions inserted by the
4789 /// other CodeGenPrepare optimizations. This information is important
4790 /// because we do not want to promote these instructions as CodeGenPrepare
4791 /// will reinsert them later. Thus creating an infinite loop: create/remove.
4792 /// \p PromotedInsts maps the instructions to their type before promotion.
4793 static Action
getAction(Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4794 const TargetLowering
&TLI
,
4795 const InstrToOrigTy
&PromotedInsts
);
4798 } // end anonymous namespace
4800 bool TypePromotionHelper::canGetThrough(const Instruction
*Inst
,
4801 Type
*ConsideredExtType
,
4802 const InstrToOrigTy
&PromotedInsts
,
4804 // The promotion helper does not know how to deal with vector types yet.
4805 // To be able to fix that, we would need to fix the places where we
4806 // statically extend, e.g., constants and such.
4807 if (Inst
->getType()->isVectorTy())
4810 // We can always get through zext.
4811 if (isa
<ZExtInst
>(Inst
))
4814 // sext(sext) is ok too.
4815 if (IsSExt
&& isa
<SExtInst
>(Inst
))
4818 // We can get through binary operator, if it is legal. In other words, the
4819 // binary operator must have a nuw or nsw flag.
4820 if (const auto *BinOp
= dyn_cast
<BinaryOperator
>(Inst
))
4821 if (isa
<OverflowingBinaryOperator
>(BinOp
) &&
4822 ((!IsSExt
&& BinOp
->hasNoUnsignedWrap()) ||
4823 (IsSExt
&& BinOp
->hasNoSignedWrap())))
4826 // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4827 if ((Inst
->getOpcode() == Instruction::And
||
4828 Inst
->getOpcode() == Instruction::Or
))
4831 // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4832 if (Inst
->getOpcode() == Instruction::Xor
) {
4833 // Make sure it is not a NOT.
4834 if (const auto *Cst
= dyn_cast
<ConstantInt
>(Inst
->getOperand(1)))
4835 if (!Cst
->getValue().isAllOnes())
4839 // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4840 // It may change a poisoned value into a regular value, like
4841 // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12
4842 // poisoned value regular value
4843 // It should be OK since undef covers valid value.
4844 if (Inst
->getOpcode() == Instruction::LShr
&& !IsSExt
)
4847 // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4848 // It may change a poisoned value into a regular value, like
4849 // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12
4850 // poisoned value regular value
4851 // It should be OK since undef covers valid value.
4852 if (Inst
->getOpcode() == Instruction::Shl
&& Inst
->hasOneUse()) {
4853 const auto *ExtInst
= cast
<const Instruction
>(*Inst
->user_begin());
4854 if (ExtInst
->hasOneUse()) {
4855 const auto *AndInst
= dyn_cast
<const Instruction
>(*ExtInst
->user_begin());
4856 if (AndInst
&& AndInst
->getOpcode() == Instruction::And
) {
4857 const auto *Cst
= dyn_cast
<ConstantInt
>(AndInst
->getOperand(1));
4859 Cst
->getValue().isIntN(Inst
->getType()->getIntegerBitWidth()))
4865 // Check if we can do the following simplification.
4866 // ext(trunc(opnd)) --> ext(opnd)
4867 if (!isa
<TruncInst
>(Inst
))
4870 Value
*OpndVal
= Inst
->getOperand(0);
4871 // Check if we can use this operand in the extension.
4872 // If the type is larger than the result type of the extension, we cannot.
4873 if (!OpndVal
->getType()->isIntegerTy() ||
4874 OpndVal
->getType()->getIntegerBitWidth() >
4875 ConsideredExtType
->getIntegerBitWidth())
4878 // If the operand of the truncate is not an instruction, we will not have
4879 // any information on the dropped bits.
4880 // (Actually we could for constant but it is not worth the extra logic).
4881 Instruction
*Opnd
= dyn_cast
<Instruction
>(OpndVal
);
4885 // Check if the source of the type is narrow enough.
4886 // I.e., check that trunc just drops extended bits of the same kind of
4888 // #1 get the type of the operand and check the kind of the extended bits.
4889 const Type
*OpndType
= getOrigType(PromotedInsts
, Opnd
, IsSExt
);
4892 else if ((IsSExt
&& isa
<SExtInst
>(Opnd
)) || (!IsSExt
&& isa
<ZExtInst
>(Opnd
)))
4893 OpndType
= Opnd
->getOperand(0)->getType();
4897 // #2 check that the truncate just drops extended bits.
4898 return Inst
->getType()->getIntegerBitWidth() >=
4899 OpndType
->getIntegerBitWidth();
4902 TypePromotionHelper::Action
TypePromotionHelper::getAction(
4903 Instruction
*Ext
, const SetOfInstrs
&InsertedInsts
,
4904 const TargetLowering
&TLI
, const InstrToOrigTy
&PromotedInsts
) {
4905 assert((isa
<SExtInst
>(Ext
) || isa
<ZExtInst
>(Ext
)) &&
4906 "Unexpected instruction type");
4907 Instruction
*ExtOpnd
= dyn_cast
<Instruction
>(Ext
->getOperand(0));
4908 Type
*ExtTy
= Ext
->getType();
4909 bool IsSExt
= isa
<SExtInst
>(Ext
);
4910 // If the operand of the extension is not an instruction, we cannot
4912 // If it, check we can get through.
4913 if (!ExtOpnd
|| !canGetThrough(ExtOpnd
, ExtTy
, PromotedInsts
, IsSExt
))
4916 // Do not promote if the operand has been added by codegenprepare.
4917 // Otherwise, it means we are undoing an optimization that is likely to be
4918 // redone, thus causing potential infinite loop.
4919 if (isa
<TruncInst
>(ExtOpnd
) && InsertedInsts
.count(ExtOpnd
))
4922 // SExt or Trunc instructions.
4923 // Return the related handler.
4924 if (isa
<SExtInst
>(ExtOpnd
) || isa
<TruncInst
>(ExtOpnd
) ||
4925 isa
<ZExtInst
>(ExtOpnd
))
4926 return promoteOperandForTruncAndAnyExt
;
4928 // Regular instruction.
4929 // Abort early if we will have to insert non-free instructions.
4930 if (!ExtOpnd
->hasOneUse() && !TLI
.isTruncateFree(ExtTy
, ExtOpnd
->getType()))
4932 return IsSExt
? signExtendOperandForOther
: zeroExtendOperandForOther
;
4935 Value
*TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4936 Instruction
*SExt
, TypePromotionTransaction
&TPT
,
4937 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4938 SmallVectorImpl
<Instruction
*> *Exts
,
4939 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
) {
4940 // By construction, the operand of SExt is an instruction. Otherwise we cannot
4941 // get through it and this method should not be called.
4942 Instruction
*SExtOpnd
= cast
<Instruction
>(SExt
->getOperand(0));
4943 Value
*ExtVal
= SExt
;
4944 bool HasMergedNonFreeExt
= false;
4945 if (isa
<ZExtInst
>(SExtOpnd
)) {
4946 // Replace s|zext(zext(opnd))
4948 HasMergedNonFreeExt
= !TLI
.isExtFree(SExtOpnd
);
4950 TPT
.createZExt(SExt
, SExtOpnd
->getOperand(0), SExt
->getType());
4951 TPT
.replaceAllUsesWith(SExt
, ZExt
);
4952 TPT
.eraseInstruction(SExt
);
4955 // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4957 TPT
.setOperand(SExt
, 0, SExtOpnd
->getOperand(0));
4959 CreatedInstsCost
= 0;
4961 // Remove dead code.
4962 if (SExtOpnd
->use_empty())
4963 TPT
.eraseInstruction(SExtOpnd
);
4965 // Check if the extension is still needed.
4966 Instruction
*ExtInst
= dyn_cast
<Instruction
>(ExtVal
);
4967 if (!ExtInst
|| ExtInst
->getType() != ExtInst
->getOperand(0)->getType()) {
4970 Exts
->push_back(ExtInst
);
4971 CreatedInstsCost
= !TLI
.isExtFree(ExtInst
) && !HasMergedNonFreeExt
;
4976 // At this point we have: ext ty opnd to ty.
4977 // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4978 Value
*NextVal
= ExtInst
->getOperand(0);
4979 TPT
.eraseInstruction(ExtInst
, NextVal
);
4983 Value
*TypePromotionHelper::promoteOperandForOther(
4984 Instruction
*Ext
, TypePromotionTransaction
&TPT
,
4985 InstrToOrigTy
&PromotedInsts
, unsigned &CreatedInstsCost
,
4986 SmallVectorImpl
<Instruction
*> *Exts
,
4987 SmallVectorImpl
<Instruction
*> *Truncs
, const TargetLowering
&TLI
,
4989 // By construction, the operand of Ext is an instruction. Otherwise we cannot
4990 // get through it and this method should not be called.
4991 Instruction
*ExtOpnd
= cast
<Instruction
>(Ext
->getOperand(0));
4992 CreatedInstsCost
= 0;
4993 if (!ExtOpnd
->hasOneUse()) {
4994 // ExtOpnd will be promoted.
4995 // All its uses, but Ext, will need to use a truncated value of the
4996 // promoted version.
4997 // Create the truncate now.
4998 Value
*Trunc
= TPT
.createTrunc(Ext
, ExtOpnd
->getType());
4999 if (Instruction
*ITrunc
= dyn_cast
<Instruction
>(Trunc
)) {
5000 // Insert it just after the definition.
5001 ITrunc
->moveAfter(ExtOpnd
);
5003 Truncs
->push_back(ITrunc
);
5006 TPT
.replaceAllUsesWith(ExtOpnd
, Trunc
);
5007 // Restore the operand of Ext (which has been replaced by the previous call
5008 // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
5009 TPT
.setOperand(Ext
, 0, ExtOpnd
);
5012 // Get through the Instruction:
5013 // 1. Update its type.
5014 // 2. Replace the uses of Ext by Inst.
5015 // 3. Extend each operand that needs to be extended.
5017 // Remember the original type of the instruction before promotion.
5018 // This is useful to know that the high bits are sign extended bits.
5019 addPromotedInst(PromotedInsts
, ExtOpnd
, IsSExt
);
5021 TPT
.mutateType(ExtOpnd
, Ext
->getType());
5023 TPT
.replaceAllUsesWith(Ext
, ExtOpnd
);
5025 LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
5026 for (int OpIdx
= 0, EndOpIdx
= ExtOpnd
->getNumOperands(); OpIdx
!= EndOpIdx
;
5028 LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd
->getOperand(OpIdx
)) << '\n');
5029 if (ExtOpnd
->getOperand(OpIdx
)->getType() == Ext
->getType() ||
5030 !shouldExtOperand(ExtOpnd
, OpIdx
)) {
5031 LLVM_DEBUG(dbgs() << "No need to propagate\n");
5034 // Check if we can statically extend the operand.
5035 Value
*Opnd
= ExtOpnd
->getOperand(OpIdx
);
5036 if (const ConstantInt
*Cst
= dyn_cast
<ConstantInt
>(Opnd
)) {
5037 LLVM_DEBUG(dbgs() << "Statically extend\n");
5038 unsigned BitWidth
= Ext
->getType()->getIntegerBitWidth();
5039 APInt CstVal
= IsSExt
? Cst
->getValue().sext(BitWidth
)
5040 : Cst
->getValue().zext(BitWidth
);
5041 TPT
.setOperand(ExtOpnd
, OpIdx
, ConstantInt::get(Ext
->getType(), CstVal
));
5044 // UndefValue are typed, so we have to statically sign extend them.
5045 if (isa
<UndefValue
>(Opnd
)) {
5046 LLVM_DEBUG(dbgs() << "Statically extend\n");
5047 TPT
.setOperand(ExtOpnd
, OpIdx
, UndefValue::get(Ext
->getType()));
5051 // Otherwise we have to explicitly sign extend the operand.
5052 Value
*ValForExtOpnd
= IsSExt
5053 ? TPT
.createSExt(ExtOpnd
, Opnd
, Ext
->getType())
5054 : TPT
.createZExt(ExtOpnd
, Opnd
, Ext
->getType());
5055 TPT
.setOperand(ExtOpnd
, OpIdx
, ValForExtOpnd
);
5056 Instruction
*InstForExtOpnd
= dyn_cast
<Instruction
>(ValForExtOpnd
);
5057 if (!InstForExtOpnd
)
5061 Exts
->push_back(InstForExtOpnd
);
5063 CreatedInstsCost
+= !TLI
.isExtFree(InstForExtOpnd
);
5065 LLVM_DEBUG(dbgs() << "Extension is useless now\n");
5066 TPT
.eraseInstruction(Ext
);
5070 /// Check whether or not promoting an instruction to a wider type is profitable.
5071 /// \p NewCost gives the cost of extension instructions created by the
5073 /// \p OldCost gives the cost of extension instructions before the promotion
5074 /// plus the number of instructions that have been
5075 /// matched in the addressing mode the promotion.
5076 /// \p PromotedOperand is the value that has been promoted.
5077 /// \return True if the promotion is profitable, false otherwise.
5078 bool AddressingModeMatcher::isPromotionProfitable(
5079 unsigned NewCost
, unsigned OldCost
, Value
*PromotedOperand
) const {
5080 LLVM_DEBUG(dbgs() << "OldCost: " << OldCost
<< "\tNewCost: " << NewCost
5082 // The cost of the new extensions is greater than the cost of the
5083 // old extension plus what we folded.
5084 // This is not profitable.
5085 if (NewCost
> OldCost
)
5087 if (NewCost
< OldCost
)
5089 // The promotion is neutral but it may help folding the sign extension in
5090 // loads for instance.
5091 // Check that we did not create an illegal instruction.
5092 return isPromotedInstructionLegal(TLI
, DL
, PromotedOperand
);
5095 /// Given an instruction or constant expr, see if we can fold the operation
5096 /// into the addressing mode. If so, update the addressing mode and return
5097 /// true, otherwise return false without modifying AddrMode.
5098 /// If \p MovedAway is not NULL, it contains the information of whether or
5099 /// not AddrInst has to be folded into the addressing mode on success.
5100 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
5101 /// because it has been moved away.
5102 /// Thus AddrInst must not be added in the matched instructions.
5103 /// This state can happen when AddrInst is a sext, since it may be moved away.
5104 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
5105 /// not be referenced anymore.
5106 bool AddressingModeMatcher::matchOperationAddr(User
*AddrInst
, unsigned Opcode
,
5109 // Avoid exponential behavior on extremely deep expression trees.
5113 // By default, all matched instructions stay in place.
5118 case Instruction::PtrToInt
:
5119 // PtrToInt is always a noop, as we know that the int type is pointer sized.
5120 return matchAddr(AddrInst
->getOperand(0), Depth
);
5121 case Instruction::IntToPtr
: {
5122 auto AS
= AddrInst
->getType()->getPointerAddressSpace();
5123 auto PtrTy
= MVT::getIntegerVT(DL
.getPointerSizeInBits(AS
));
5124 // This inttoptr is a no-op if the integer type is pointer sized.
5125 if (TLI
.getValueType(DL
, AddrInst
->getOperand(0)->getType()) == PtrTy
)
5126 return matchAddr(AddrInst
->getOperand(0), Depth
);
5129 case Instruction::BitCast
:
5130 // BitCast is always a noop, and we can handle it as long as it is
5131 // int->int or pointer->pointer (we don't want int<->fp or something).
5132 if (AddrInst
->getOperand(0)->getType()->isIntOrPtrTy() &&
5133 // Don't touch identity bitcasts. These were probably put here by LSR,
5134 // and we don't want to mess around with them. Assume it knows what it
5136 AddrInst
->getOperand(0)->getType() != AddrInst
->getType())
5137 return matchAddr(AddrInst
->getOperand(0), Depth
);
5139 case Instruction::AddrSpaceCast
: {
5141 AddrInst
->getOperand(0)->getType()->getPointerAddressSpace();
5142 unsigned DestAS
= AddrInst
->getType()->getPointerAddressSpace();
5143 if (TLI
.getTargetMachine().isNoopAddrSpaceCast(SrcAS
, DestAS
))
5144 return matchAddr(AddrInst
->getOperand(0), Depth
);
5147 case Instruction::Add
: {
5148 // Check to see if we can merge in one operand, then the other. If so, we
5150 ExtAddrMode BackupAddrMode
= AddrMode
;
5151 unsigned OldSize
= AddrModeInsts
.size();
5152 // Start a transaction at this point.
5153 // The LHS may match but not the RHS.
5154 // Therefore, we need a higher level restoration point to undo partially
5155 // matched operation.
5156 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5157 TPT
.getRestorationPoint();
5159 // Try to match an integer constant second to increase its chance of ending
5160 // up in `BaseOffs`, resp. decrease its chance of ending up in `BaseReg`.
5161 int First
= 0, Second
= 1;
5162 if (isa
<ConstantInt
>(AddrInst
->getOperand(First
))
5163 && !isa
<ConstantInt
>(AddrInst
->getOperand(Second
)))
5164 std::swap(First
, Second
);
5165 AddrMode
.InBounds
= false;
5166 if (matchAddr(AddrInst
->getOperand(First
), Depth
+ 1) &&
5167 matchAddr(AddrInst
->getOperand(Second
), Depth
+ 1))
5170 // Restore the old addr mode info.
5171 AddrMode
= BackupAddrMode
;
5172 AddrModeInsts
.resize(OldSize
);
5173 TPT
.rollback(LastKnownGood
);
5175 // Otherwise this was over-aggressive. Try merging operands in the opposite
5177 if (matchAddr(AddrInst
->getOperand(Second
), Depth
+ 1) &&
5178 matchAddr(AddrInst
->getOperand(First
), Depth
+ 1))
5181 // Otherwise we definitely can't merge the ADD in.
5182 AddrMode
= BackupAddrMode
;
5183 AddrModeInsts
.resize(OldSize
);
5184 TPT
.rollback(LastKnownGood
);
5187 // case Instruction::Or:
5188 // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
5190 case Instruction::Mul
:
5191 case Instruction::Shl
: {
5192 // Can only handle X*C and X << C.
5193 AddrMode
.InBounds
= false;
5194 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(AddrInst
->getOperand(1));
5195 if (!RHS
|| RHS
->getBitWidth() > 64)
5197 int64_t Scale
= Opcode
== Instruction::Shl
5198 ? 1LL << RHS
->getLimitedValue(RHS
->getBitWidth() - 1)
5199 : RHS
->getSExtValue();
5201 return matchScaledValue(AddrInst
->getOperand(0), Scale
, Depth
);
5203 case Instruction::GetElementPtr
: {
5204 // Scan the GEP. We check it if it contains constant offsets and at most
5205 // one variable offset.
5206 int VariableOperand
= -1;
5207 unsigned VariableScale
= 0;
5209 int64_t ConstantOffset
= 0;
5210 gep_type_iterator GTI
= gep_type_begin(AddrInst
);
5211 for (unsigned i
= 1, e
= AddrInst
->getNumOperands(); i
!= e
; ++i
, ++GTI
) {
5212 if (StructType
*STy
= GTI
.getStructTypeOrNull()) {
5213 const StructLayout
*SL
= DL
.getStructLayout(STy
);
5215 cast
<ConstantInt
>(AddrInst
->getOperand(i
))->getZExtValue();
5216 ConstantOffset
+= SL
->getElementOffset(Idx
);
5218 TypeSize TS
= GTI
.getSequentialElementStride(DL
);
5219 if (TS
.isNonZero()) {
5220 // The optimisations below currently only work for fixed offsets.
5221 if (TS
.isScalable())
5223 int64_t TypeSize
= TS
.getFixedValue();
5224 if (ConstantInt
*CI
=
5225 dyn_cast
<ConstantInt
>(AddrInst
->getOperand(i
))) {
5226 const APInt
&CVal
= CI
->getValue();
5227 if (CVal
.getSignificantBits() <= 64) {
5228 ConstantOffset
+= CVal
.getSExtValue() * TypeSize
;
5232 // We only allow one variable index at the moment.
5233 if (VariableOperand
!= -1)
5236 // Remember the variable index.
5237 VariableOperand
= i
;
5238 VariableScale
= TypeSize
;
5243 // A common case is for the GEP to only do a constant offset. In this case,
5244 // just add it to the disp field and check validity.
5245 if (VariableOperand
== -1) {
5246 AddrMode
.BaseOffs
+= ConstantOffset
;
5247 if (matchAddr(AddrInst
->getOperand(0), Depth
+ 1)) {
5248 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
5249 AddrMode
.InBounds
= false;
5252 AddrMode
.BaseOffs
-= ConstantOffset
;
5254 if (EnableGEPOffsetSplit
&& isa
<GetElementPtrInst
>(AddrInst
) &&
5255 TLI
.shouldConsiderGEPOffsetSplit() && Depth
== 0 &&
5256 ConstantOffset
> 0) {
5257 // Record GEPs with non-zero offsets as candidates for splitting in
5258 // the event that the offset cannot fit into the r+i addressing mode.
5259 // Simple and common case that only one GEP is used in calculating the
5260 // address for the memory access.
5261 Value
*Base
= AddrInst
->getOperand(0);
5262 auto *BaseI
= dyn_cast
<Instruction
>(Base
);
5263 auto *GEP
= cast
<GetElementPtrInst
>(AddrInst
);
5264 if (isa
<Argument
>(Base
) || isa
<GlobalValue
>(Base
) ||
5265 (BaseI
&& !isa
<CastInst
>(BaseI
) &&
5266 !isa
<GetElementPtrInst
>(BaseI
))) {
5267 // Make sure the parent block allows inserting non-PHI instructions
5268 // before the terminator.
5269 BasicBlock
*Parent
= BaseI
? BaseI
->getParent()
5270 : &GEP
->getFunction()->getEntryBlock();
5271 if (!Parent
->getTerminator()->isEHPad())
5272 LargeOffsetGEP
= std::make_pair(GEP
, ConstantOffset
);
5279 // Save the valid addressing mode in case we can't match.
5280 ExtAddrMode BackupAddrMode
= AddrMode
;
5281 unsigned OldSize
= AddrModeInsts
.size();
5283 // See if the scale and offset amount is valid for this target.
5284 AddrMode
.BaseOffs
+= ConstantOffset
;
5285 if (!cast
<GEPOperator
>(AddrInst
)->isInBounds())
5286 AddrMode
.InBounds
= false;
5288 // Match the base operand of the GEP.
5289 if (!matchAddr(AddrInst
->getOperand(0), Depth
+ 1)) {
5290 // If it couldn't be matched, just stuff the value in a register.
5291 if (AddrMode
.HasBaseReg
) {
5292 AddrMode
= BackupAddrMode
;
5293 AddrModeInsts
.resize(OldSize
);
5296 AddrMode
.HasBaseReg
= true;
5297 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
5300 // Match the remaining variable portion of the GEP.
5301 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
), VariableScale
,
5303 // If it couldn't be matched, try stuffing the base into a register
5304 // instead of matching it, and retrying the match of the scale.
5305 AddrMode
= BackupAddrMode
;
5306 AddrModeInsts
.resize(OldSize
);
5307 if (AddrMode
.HasBaseReg
)
5309 AddrMode
.HasBaseReg
= true;
5310 AddrMode
.BaseReg
= AddrInst
->getOperand(0);
5311 AddrMode
.BaseOffs
+= ConstantOffset
;
5312 if (!matchScaledValue(AddrInst
->getOperand(VariableOperand
),
5313 VariableScale
, Depth
)) {
5314 // If even that didn't work, bail.
5315 AddrMode
= BackupAddrMode
;
5316 AddrModeInsts
.resize(OldSize
);
5323 case Instruction::SExt
:
5324 case Instruction::ZExt
: {
5325 Instruction
*Ext
= dyn_cast
<Instruction
>(AddrInst
);
5329 // Try to move this ext out of the way of the addressing mode.
5330 // Ask for a method for doing so.
5331 TypePromotionHelper::Action TPH
=
5332 TypePromotionHelper::getAction(Ext
, InsertedInsts
, TLI
, PromotedInsts
);
5336 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5337 TPT
.getRestorationPoint();
5338 unsigned CreatedInstsCost
= 0;
5339 unsigned ExtCost
= !TLI
.isExtFree(Ext
);
5340 Value
*PromotedOperand
=
5341 TPH(Ext
, TPT
, PromotedInsts
, CreatedInstsCost
, nullptr, nullptr, TLI
);
5342 // SExt has been moved away.
5343 // Thus either it will be rematched later in the recursive calls or it is
5344 // gone. Anyway, we must not fold it into the addressing mode at this point.
5348 // addr = gep base, idx
5350 // promotedOpnd = ext opnd <- no match here
5351 // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls)
5352 // addr = gep base, op <- match
5356 assert(PromotedOperand
&&
5357 "TypePromotionHelper should have filtered out those cases");
5359 ExtAddrMode BackupAddrMode
= AddrMode
;
5360 unsigned OldSize
= AddrModeInsts
.size();
5362 if (!matchAddr(PromotedOperand
, Depth
) ||
5363 // The total of the new cost is equal to the cost of the created
5365 // The total of the old cost is equal to the cost of the extension plus
5366 // what we have saved in the addressing mode.
5367 !isPromotionProfitable(CreatedInstsCost
,
5368 ExtCost
+ (AddrModeInsts
.size() - OldSize
),
5370 AddrMode
= BackupAddrMode
;
5371 AddrModeInsts
.resize(OldSize
);
5372 LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
5373 TPT
.rollback(LastKnownGood
);
5377 // SExt has been deleted. Make sure it is not referenced by the AddrMode.
5378 AddrMode
.replaceWith(Ext
, PromotedOperand
);
5381 case Instruction::Call
:
5382 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(AddrInst
)) {
5383 if (II
->getIntrinsicID() == Intrinsic::threadlocal_address
) {
5384 GlobalValue
&GV
= cast
<GlobalValue
>(*II
->getArgOperand(0));
5385 if (TLI
.addressingModeSupportsTLS(GV
))
5386 return matchAddr(AddrInst
->getOperand(0), Depth
);
5394 /// If we can, try to add the value of 'Addr' into the current addressing mode.
5395 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
5396 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
5399 bool AddressingModeMatcher::matchAddr(Value
*Addr
, unsigned Depth
) {
5400 // Start a transaction at this point that we will rollback if the matching
5402 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5403 TPT
.getRestorationPoint();
5404 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Addr
)) {
5405 if (CI
->getValue().isSignedIntN(64)) {
5406 // Fold in immediates if legal for the target.
5407 AddrMode
.BaseOffs
+= CI
->getSExtValue();
5408 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5410 AddrMode
.BaseOffs
-= CI
->getSExtValue();
5412 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Addr
)) {
5413 // If this is a global variable, try to fold it into the addressing mode.
5414 if (!AddrMode
.BaseGV
) {
5415 AddrMode
.BaseGV
= GV
;
5416 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5418 AddrMode
.BaseGV
= nullptr;
5420 } else if (Instruction
*I
= dyn_cast
<Instruction
>(Addr
)) {
5421 ExtAddrMode BackupAddrMode
= AddrMode
;
5422 unsigned OldSize
= AddrModeInsts
.size();
5424 // Check to see if it is possible to fold this operation.
5425 bool MovedAway
= false;
5426 if (matchOperationAddr(I
, I
->getOpcode(), Depth
, &MovedAway
)) {
5427 // This instruction may have been moved away. If so, there is nothing
5431 // Okay, it's possible to fold this. Check to see if it is actually
5432 // *profitable* to do so. We use a simple cost model to avoid increasing
5433 // register pressure too much.
5434 if (I
->hasOneUse() ||
5435 isProfitableToFoldIntoAddressingMode(I
, BackupAddrMode
, AddrMode
)) {
5436 AddrModeInsts
.push_back(I
);
5440 // It isn't profitable to do this, roll back.
5441 AddrMode
= BackupAddrMode
;
5442 AddrModeInsts
.resize(OldSize
);
5443 TPT
.rollback(LastKnownGood
);
5445 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Addr
)) {
5446 if (matchOperationAddr(CE
, CE
->getOpcode(), Depth
))
5448 TPT
.rollback(LastKnownGood
);
5449 } else if (isa
<ConstantPointerNull
>(Addr
)) {
5450 // Null pointer gets folded without affecting the addressing mode.
5454 // Worse case, the target should support [reg] addressing modes. :)
5455 if (!AddrMode
.HasBaseReg
) {
5456 AddrMode
.HasBaseReg
= true;
5457 AddrMode
.BaseReg
= Addr
;
5458 // Still check for legality in case the target supports [imm] but not [i+r].
5459 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5461 AddrMode
.HasBaseReg
= false;
5462 AddrMode
.BaseReg
= nullptr;
5465 // If the base register is already taken, see if we can do [r+r].
5466 if (AddrMode
.Scale
== 0) {
5468 AddrMode
.ScaledReg
= Addr
;
5469 if (TLI
.isLegalAddressingMode(DL
, AddrMode
, AccessTy
, AddrSpace
))
5472 AddrMode
.ScaledReg
= nullptr;
5475 TPT
.rollback(LastKnownGood
);
5479 /// Check to see if all uses of OpVal by the specified inline asm call are due
5480 /// to memory operands. If so, return true, otherwise return false.
5481 static bool IsOperandAMemoryOperand(CallInst
*CI
, InlineAsm
*IA
, Value
*OpVal
,
5482 const TargetLowering
&TLI
,
5483 const TargetRegisterInfo
&TRI
) {
5484 const Function
*F
= CI
->getFunction();
5485 TargetLowering::AsmOperandInfoVector TargetConstraints
=
5486 TLI
.ParseConstraints(F
->getDataLayout(), &TRI
, *CI
);
5488 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
5489 // Compute the constraint code and ConstraintType to use.
5490 TLI
.ComputeConstraintToUse(OpInfo
, SDValue());
5492 // If this asm operand is our Value*, and if it isn't an indirect memory
5493 // operand, we can't fold it! TODO: Also handle C_Address?
5494 if (OpInfo
.CallOperandVal
== OpVal
&&
5495 (OpInfo
.ConstraintType
!= TargetLowering::C_Memory
||
5496 !OpInfo
.isIndirect
))
5503 /// Recursively walk all the uses of I until we find a memory use.
5504 /// If we find an obviously non-foldable instruction, return true.
5505 /// Add accessed addresses and types to MemoryUses.
5506 static bool FindAllMemoryUses(
5507 Instruction
*I
, SmallVectorImpl
<std::pair
<Use
*, Type
*>> &MemoryUses
,
5508 SmallPtrSetImpl
<Instruction
*> &ConsideredInsts
, const TargetLowering
&TLI
,
5509 const TargetRegisterInfo
&TRI
, bool OptSize
, ProfileSummaryInfo
*PSI
,
5510 BlockFrequencyInfo
*BFI
, unsigned &SeenInsts
) {
5511 // If we already considered this instruction, we're done.
5512 if (!ConsideredInsts
.insert(I
).second
)
5515 // If this is an obviously unfoldable instruction, bail out.
5516 if (!MightBeFoldableInst(I
))
5519 // Loop over all the uses, recursively processing them.
5520 for (Use
&U
: I
->uses()) {
5521 // Conservatively return true if we're seeing a large number or a deep chain
5522 // of users. This avoids excessive compilation times in pathological cases.
5523 if (SeenInsts
++ >= MaxAddressUsersToScan
)
5526 Instruction
*UserI
= cast
<Instruction
>(U
.getUser());
5527 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(UserI
)) {
5528 MemoryUses
.push_back({&U
, LI
->getType()});
5532 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(UserI
)) {
5533 if (U
.getOperandNo() != StoreInst::getPointerOperandIndex())
5534 return true; // Storing addr, not into addr.
5535 MemoryUses
.push_back({&U
, SI
->getValueOperand()->getType()});
5539 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(UserI
)) {
5540 if (U
.getOperandNo() != AtomicRMWInst::getPointerOperandIndex())
5541 return true; // Storing addr, not into addr.
5542 MemoryUses
.push_back({&U
, RMW
->getValOperand()->getType()});
5546 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(UserI
)) {
5547 if (U
.getOperandNo() != AtomicCmpXchgInst::getPointerOperandIndex())
5548 return true; // Storing addr, not into addr.
5549 MemoryUses
.push_back({&U
, CmpX
->getCompareOperand()->getType()});
5553 if (CallInst
*CI
= dyn_cast
<CallInst
>(UserI
)) {
5554 if (CI
->hasFnAttr(Attribute::Cold
)) {
5555 // If this is a cold call, we can sink the addressing calculation into
5556 // the cold path. See optimizeCallInst
5557 if (!llvm::shouldOptimizeForSize(CI
->getParent(), PSI
, BFI
))
5561 InlineAsm
*IA
= dyn_cast
<InlineAsm
>(CI
->getCalledOperand());
5565 // If this is a memory operand, we're cool, otherwise bail out.
5566 if (!IsOperandAMemoryOperand(CI
, IA
, I
, TLI
, TRI
))
5571 if (FindAllMemoryUses(UserI
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
5572 PSI
, BFI
, SeenInsts
))
5579 static bool FindAllMemoryUses(
5580 Instruction
*I
, SmallVectorImpl
<std::pair
<Use
*, Type
*>> &MemoryUses
,
5581 const TargetLowering
&TLI
, const TargetRegisterInfo
&TRI
, bool OptSize
,
5582 ProfileSummaryInfo
*PSI
, BlockFrequencyInfo
*BFI
) {
5583 unsigned SeenInsts
= 0;
5584 SmallPtrSet
<Instruction
*, 16> ConsideredInsts
;
5585 return FindAllMemoryUses(I
, MemoryUses
, ConsideredInsts
, TLI
, TRI
, OptSize
,
5586 PSI
, BFI
, SeenInsts
);
5590 /// Return true if Val is already known to be live at the use site that we're
5591 /// folding it into. If so, there is no cost to include it in the addressing
5592 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
5593 /// instruction already.
5594 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value
*Val
,
5596 Value
*KnownLive2
) {
5597 // If Val is either of the known-live values, we know it is live!
5598 if (Val
== nullptr || Val
== KnownLive1
|| Val
== KnownLive2
)
5601 // All values other than instructions and arguments (e.g. constants) are live.
5602 if (!isa
<Instruction
>(Val
) && !isa
<Argument
>(Val
))
5605 // If Val is a constant sized alloca in the entry block, it is live, this is
5606 // true because it is just a reference to the stack/frame pointer, which is
5607 // live for the whole function.
5608 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(Val
))
5609 if (AI
->isStaticAlloca())
5612 // Check to see if this value is already used in the memory instruction's
5613 // block. If so, it's already live into the block at the very least, so we
5614 // can reasonably fold it.
5615 return Val
->isUsedInBasicBlock(MemoryInst
->getParent());
5618 /// It is possible for the addressing mode of the machine to fold the specified
5619 /// instruction into a load or store that ultimately uses it.
5620 /// However, the specified instruction has multiple uses.
5621 /// Given this, it may actually increase register pressure to fold it
5622 /// into the load. For example, consider this code:
5626 /// use(Y) -> nonload/store
5630 /// In this case, Y has multiple uses, and can be folded into the load of Z
5631 /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to
5632 /// be live at the use(Y) line. If we don't fold Y into load Z, we use one
5633 /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the
5634 /// number of computations either.
5636 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If
5637 /// X was live across 'load Z' for other reasons, we actually *would* want to
5638 /// fold the addressing mode in the Z case. This would make Y die earlier.
5639 bool AddressingModeMatcher::isProfitableToFoldIntoAddressingMode(
5640 Instruction
*I
, ExtAddrMode
&AMBefore
, ExtAddrMode
&AMAfter
) {
5641 if (IgnoreProfitability
)
5644 // AMBefore is the addressing mode before this instruction was folded into it,
5645 // and AMAfter is the addressing mode after the instruction was folded. Get
5646 // the set of registers referenced by AMAfter and subtract out those
5647 // referenced by AMBefore: this is the set of values which folding in this
5648 // address extends the lifetime of.
5650 // Note that there are only two potential values being referenced here,
5651 // BaseReg and ScaleReg (global addresses are always available, as are any
5652 // folded immediates).
5653 Value
*BaseReg
= AMAfter
.BaseReg
, *ScaledReg
= AMAfter
.ScaledReg
;
5655 // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5656 // lifetime wasn't extended by adding this instruction.
5657 if (valueAlreadyLiveAtInst(BaseReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
5659 if (valueAlreadyLiveAtInst(ScaledReg
, AMBefore
.BaseReg
, AMBefore
.ScaledReg
))
5660 ScaledReg
= nullptr;
5662 // If folding this instruction (and it's subexprs) didn't extend any live
5663 // ranges, we're ok with it.
5664 if (!BaseReg
&& !ScaledReg
)
5667 // If all uses of this instruction can have the address mode sunk into them,
5668 // we can remove the addressing mode and effectively trade one live register
5669 // for another (at worst.) In this context, folding an addressing mode into
5670 // the use is just a particularly nice way of sinking it.
5671 SmallVector
<std::pair
<Use
*, Type
*>, 16> MemoryUses
;
5672 if (FindAllMemoryUses(I
, MemoryUses
, TLI
, TRI
, OptSize
, PSI
, BFI
))
5673 return false; // Has a non-memory, non-foldable use!
5675 // Now that we know that all uses of this instruction are part of a chain of
5676 // computation involving only operations that could theoretically be folded
5677 // into a memory use, loop over each of these memory operation uses and see
5678 // if they could *actually* fold the instruction. The assumption is that
5679 // addressing modes are cheap and that duplicating the computation involved
5680 // many times is worthwhile, even on a fastpath. For sinking candidates
5681 // (i.e. cold call sites), this serves as a way to prevent excessive code
5682 // growth since most architectures have some reasonable small and fast way to
5683 // compute an effective address. (i.e LEA on x86)
5684 SmallVector
<Instruction
*, 32> MatchedAddrModeInsts
;
5685 for (const std::pair
<Use
*, Type
*> &Pair
: MemoryUses
) {
5686 Value
*Address
= Pair
.first
->get();
5687 Instruction
*UserI
= cast
<Instruction
>(Pair
.first
->getUser());
5688 Type
*AddressAccessTy
= Pair
.second
;
5689 unsigned AS
= Address
->getType()->getPointerAddressSpace();
5691 // Do a match against the root of this address, ignoring profitability. This
5692 // will tell us if the addressing mode for the memory operation will
5693 // *actually* cover the shared instruction.
5695 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5697 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5698 TPT
.getRestorationPoint();
5699 AddressingModeMatcher
Matcher(MatchedAddrModeInsts
, TLI
, TRI
, LI
, getDTFn
,
5700 AddressAccessTy
, AS
, UserI
, Result
,
5701 InsertedInsts
, PromotedInsts
, TPT
,
5702 LargeOffsetGEP
, OptSize
, PSI
, BFI
);
5703 Matcher
.IgnoreProfitability
= true;
5704 bool Success
= Matcher
.matchAddr(Address
, 0);
5706 assert(Success
&& "Couldn't select *anything*?");
5708 // The match was to check the profitability, the changes made are not
5709 // part of the original matcher. Therefore, they should be dropped
5710 // otherwise the original matcher will not present the right state.
5711 TPT
.rollback(LastKnownGood
);
5713 // If the match didn't cover I, then it won't be shared by it.
5714 if (!is_contained(MatchedAddrModeInsts
, I
))
5717 MatchedAddrModeInsts
.clear();
5723 /// Return true if the specified values are defined in a
5724 /// different basic block than BB.
5725 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
5726 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
5727 return I
->getParent() != BB
;
5731 /// Sink addressing mode computation immediate before MemoryInst if doing so
5732 /// can be done without increasing register pressure. The need for the
5733 /// register pressure constraint means this can end up being an all or nothing
5734 /// decision for all uses of the same addressing computation.
5736 /// Load and Store Instructions often have addressing modes that can do
5737 /// significant amounts of computation. As such, instruction selection will try
5738 /// to get the load or store to do as much computation as possible for the
5739 /// program. The problem is that isel can only see within a single block. As
5740 /// such, we sink as much legal addressing mode work into the block as possible.
5742 /// This method is used to optimize both load/store and inline asms with memory
5743 /// operands. It's also used to sink addressing computations feeding into cold
5744 /// call sites into their (cold) basic block.
5746 /// The motivation for handling sinking into cold blocks is that doing so can
5747 /// both enable other address mode sinking (by satisfying the register pressure
5748 /// constraint above), and reduce register pressure globally (by removing the
5749 /// addressing mode computation from the fast path entirely.).
5750 bool CodeGenPrepare::optimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
5751 Type
*AccessTy
, unsigned AddrSpace
) {
5754 // Try to collapse single-value PHI nodes. This is necessary to undo
5755 // unprofitable PRE transformations.
5756 SmallVector
<Value
*, 8> worklist
;
5757 SmallPtrSet
<Value
*, 16> Visited
;
5758 worklist
.push_back(Addr
);
5760 // Use a worklist to iteratively look through PHI and select nodes, and
5761 // ensure that the addressing mode obtained from the non-PHI/select roots of
5762 // the graph are compatible.
5763 bool PhiOrSelectSeen
= false;
5764 SmallVector
<Instruction
*, 16> AddrModeInsts
;
5765 const SimplifyQuery
SQ(*DL
, TLInfo
);
5766 AddressingModeCombiner
AddrModes(SQ
, Addr
);
5767 TypePromotionTransaction
TPT(RemovedInsts
);
5768 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
5769 TPT
.getRestorationPoint();
5770 while (!worklist
.empty()) {
5771 Value
*V
= worklist
.pop_back_val();
5773 // We allow traversing cyclic Phi nodes.
5774 // In case of success after this loop we ensure that traversing through
5775 // Phi nodes ends up with all cases to compute address of the form
5776 // BaseGV + Base + Scale * Index + Offset
5777 // where Scale and Offset are constans and BaseGV, Base and Index
5778 // are exactly the same Values in all cases.
5779 // It means that BaseGV, Scale and Offset dominate our memory instruction
5780 // and have the same value as they had in address computation represented
5781 // as Phi. So we can safely sink address computation to memory instruction.
5782 if (!Visited
.insert(V
).second
)
5785 // For a PHI node, push all of its incoming values.
5786 if (PHINode
*P
= dyn_cast
<PHINode
>(V
)) {
5787 append_range(worklist
, P
->incoming_values());
5788 PhiOrSelectSeen
= true;
5791 // Similar for select.
5792 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(V
)) {
5793 worklist
.push_back(SI
->getFalseValue());
5794 worklist
.push_back(SI
->getTrueValue());
5795 PhiOrSelectSeen
= true;
5799 // For non-PHIs, determine the addressing mode being computed. Note that
5800 // the result may differ depending on what other uses our candidate
5801 // addressing instructions might have.
5802 AddrModeInsts
.clear();
5803 std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t> LargeOffsetGEP(nullptr,
5805 // Defer the query (and possible computation of) the dom tree to point of
5806 // actual use. It's expected that most address matches don't actually need
5808 auto getDTFn
= [MemoryInst
, this]() -> const DominatorTree
& {
5809 Function
*F
= MemoryInst
->getParent()->getParent();
5810 return this->getDT(*F
);
5812 ExtAddrMode NewAddrMode
= AddressingModeMatcher::Match(
5813 V
, AccessTy
, AddrSpace
, MemoryInst
, AddrModeInsts
, *TLI
, *LI
, getDTFn
,
5814 *TRI
, InsertedInsts
, PromotedInsts
, TPT
, LargeOffsetGEP
, OptSize
, PSI
,
5817 GetElementPtrInst
*GEP
= LargeOffsetGEP
.first
;
5818 if (GEP
&& !NewGEPBases
.count(GEP
)) {
5819 // If splitting the underlying data structure can reduce the offset of a
5820 // GEP, collect the GEP. Skip the GEPs that are the new bases of
5821 // previously split data structures.
5822 LargeOffsetGEPMap
[GEP
->getPointerOperand()].push_back(LargeOffsetGEP
);
5823 LargeOffsetGEPID
.insert(std::make_pair(GEP
, LargeOffsetGEPID
.size()));
5826 NewAddrMode
.OriginalValue
= V
;
5827 if (!AddrModes
.addNewAddrMode(NewAddrMode
))
5831 // Try to combine the AddrModes we've collected. If we couldn't collect any,
5832 // or we have multiple but either couldn't combine them or combining them
5833 // wouldn't do anything useful, bail out now.
5834 if (!AddrModes
.combineAddrModes()) {
5835 TPT
.rollback(LastKnownGood
);
5838 bool Modified
= TPT
.commit();
5840 // Get the combined AddrMode (or the only AddrMode, if we only had one).
5841 ExtAddrMode AddrMode
= AddrModes
.getAddrMode();
5843 // If all the instructions matched are already in this BB, don't do anything.
5844 // If we saw a Phi node then it is not local definitely, and if we saw a
5845 // select then we want to push the address calculation past it even if it's
5846 // already in this BB.
5847 if (!PhiOrSelectSeen
&& none_of(AddrModeInsts
, [&](Value
*V
) {
5848 return IsNonLocalValue(V
, MemoryInst
->getParent());
5850 LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode
5855 // Insert this computation right after this user. Since our caller is
5856 // scanning from the top of the BB to the bottom, reuse of the expr are
5857 // guaranteed to happen later.
5858 IRBuilder
<> Builder(MemoryInst
);
5860 // Now that we determined the addressing expression we want to use and know
5861 // that we have to sink it into this block. Check to see if we have already
5862 // done this for some other load/store instr in this block. If so, reuse
5863 // the computation. Before attempting reuse, check if the address is valid
5864 // as it may have been erased.
5866 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Addr
];
5868 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
5869 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
5871 LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5872 << " for " << *MemoryInst
<< "\n");
5873 if (SunkAddr
->getType() != Addr
->getType()) {
5874 if (SunkAddr
->getType()->getPointerAddressSpace() !=
5875 Addr
->getType()->getPointerAddressSpace() &&
5876 !DL
->isNonIntegralPointerType(Addr
->getType())) {
5877 // There are two reasons the address spaces might not match: a no-op
5878 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
5879 // ptrtoint/inttoptr pair to ensure we match the original semantics.
5880 // TODO: allow bitcast between different address space pointers with the
5882 SunkAddr
= Builder
.CreatePtrToInt(SunkAddr
, IntPtrTy
, "sunkaddr");
5884 Builder
.CreateIntToPtr(SunkAddr
, Addr
->getType(), "sunkaddr");
5886 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
5888 } else if (AddrSinkUsingGEPs
|| (!AddrSinkUsingGEPs
.getNumOccurrences() &&
5889 SubtargetInfo
->addrSinkUsingGEPs())) {
5890 // By default, we use the GEP-based method when AA is used later. This
5891 // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5892 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5893 << " for " << *MemoryInst
<< "\n");
5894 Value
*ResultPtr
= nullptr, *ResultIndex
= nullptr;
5896 // First, find the pointer.
5897 if (AddrMode
.BaseReg
&& AddrMode
.BaseReg
->getType()->isPointerTy()) {
5898 ResultPtr
= AddrMode
.BaseReg
;
5899 AddrMode
.BaseReg
= nullptr;
5902 if (AddrMode
.Scale
&& AddrMode
.ScaledReg
->getType()->isPointerTy()) {
5903 // We can't add more than one pointer together, nor can we scale a
5904 // pointer (both of which seem meaningless).
5905 if (ResultPtr
|| AddrMode
.Scale
!= 1)
5908 ResultPtr
= AddrMode
.ScaledReg
;
5912 // It is only safe to sign extend the BaseReg if we know that the math
5913 // required to create it did not overflow before we extend it. Since
5914 // the original IR value was tossed in favor of a constant back when
5915 // the AddrMode was created we need to bail out gracefully if widths
5916 // do not match instead of extending it.
5918 // (See below for code to add the scale.)
5919 if (AddrMode
.Scale
) {
5920 Type
*ScaledRegTy
= AddrMode
.ScaledReg
->getType();
5921 if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() >
5922 cast
<IntegerType
>(ScaledRegTy
)->getBitWidth())
5926 GlobalValue
*BaseGV
= AddrMode
.BaseGV
;
5927 if (BaseGV
!= nullptr) {
5931 if (BaseGV
->isThreadLocal()) {
5932 ResultPtr
= Builder
.CreateThreadLocalAddress(BaseGV
);
5938 // If the real base value actually came from an inttoptr, then the matcher
5939 // will look through it and provide only the integer value. In that case,
5941 if (!DL
->isNonIntegralPointerType(Addr
->getType())) {
5942 if (!ResultPtr
&& AddrMode
.BaseReg
) {
5943 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.BaseReg
, Addr
->getType(),
5945 AddrMode
.BaseReg
= nullptr;
5946 } else if (!ResultPtr
&& AddrMode
.Scale
== 1) {
5947 ResultPtr
= Builder
.CreateIntToPtr(AddrMode
.ScaledReg
, Addr
->getType(),
5953 if (!ResultPtr
&& !AddrMode
.BaseReg
&& !AddrMode
.Scale
&&
5954 !AddrMode
.BaseOffs
) {
5955 SunkAddr
= Constant::getNullValue(Addr
->getType());
5956 } else if (!ResultPtr
) {
5960 Builder
.getPtrTy(Addr
->getType()->getPointerAddressSpace());
5962 // Start with the base register. Do this first so that subsequent address
5963 // matching finds it last, which will prevent it from trying to match it
5964 // as the scaled value in case it happens to be a mul. That would be
5965 // problematic if we've sunk a different mul for the scale, because then
5966 // we'd end up sinking both muls.
5967 if (AddrMode
.BaseReg
) {
5968 Value
*V
= AddrMode
.BaseReg
;
5969 if (V
->getType() != IntPtrTy
)
5970 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
5975 // Add the scale value.
5976 if (AddrMode
.Scale
) {
5977 Value
*V
= AddrMode
.ScaledReg
;
5978 if (V
->getType() == IntPtrTy
) {
5981 assert(cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
5982 cast
<IntegerType
>(V
->getType())->getBitWidth() &&
5983 "We can't transform if ScaledReg is too narrow");
5984 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
5987 if (AddrMode
.Scale
!= 1)
5988 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
5991 ResultIndex
= Builder
.CreateAdd(ResultIndex
, V
, "sunkaddr");
5996 // Add in the Base Offset if present.
5997 if (AddrMode
.BaseOffs
) {
5998 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
6000 // We need to add this separately from the scale above to help with
6001 // SDAG consecutive load/store merging.
6002 if (ResultPtr
->getType() != I8PtrTy
)
6003 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
6004 ResultPtr
= Builder
.CreatePtrAdd(ResultPtr
, ResultIndex
, "sunkaddr",
6012 SunkAddr
= ResultPtr
;
6014 if (ResultPtr
->getType() != I8PtrTy
)
6015 ResultPtr
= Builder
.CreatePointerCast(ResultPtr
, I8PtrTy
);
6016 SunkAddr
= Builder
.CreatePtrAdd(ResultPtr
, ResultIndex
, "sunkaddr",
6020 if (SunkAddr
->getType() != Addr
->getType()) {
6021 if (SunkAddr
->getType()->getPointerAddressSpace() !=
6022 Addr
->getType()->getPointerAddressSpace() &&
6023 !DL
->isNonIntegralPointerType(Addr
->getType())) {
6024 // There are two reasons the address spaces might not match: a no-op
6025 // addrspacecast, or a ptrtoint/inttoptr pair. Either way, we emit a
6026 // ptrtoint/inttoptr pair to ensure we match the original semantics.
6027 // TODO: allow bitcast between different address space pointers with
6029 SunkAddr
= Builder
.CreatePtrToInt(SunkAddr
, IntPtrTy
, "sunkaddr");
6031 Builder
.CreateIntToPtr(SunkAddr
, Addr
->getType(), "sunkaddr");
6033 SunkAddr
= Builder
.CreatePointerCast(SunkAddr
, Addr
->getType());
6037 // We'd require a ptrtoint/inttoptr down the line, which we can't do for
6038 // non-integral pointers, so in that case bail out now.
6039 Type
*BaseTy
= AddrMode
.BaseReg
? AddrMode
.BaseReg
->getType() : nullptr;
6040 Type
*ScaleTy
= AddrMode
.Scale
? AddrMode
.ScaledReg
->getType() : nullptr;
6041 PointerType
*BasePtrTy
= dyn_cast_or_null
<PointerType
>(BaseTy
);
6042 PointerType
*ScalePtrTy
= dyn_cast_or_null
<PointerType
>(ScaleTy
);
6043 if (DL
->isNonIntegralPointerType(Addr
->getType()) ||
6044 (BasePtrTy
&& DL
->isNonIntegralPointerType(BasePtrTy
)) ||
6045 (ScalePtrTy
&& DL
->isNonIntegralPointerType(ScalePtrTy
)) ||
6047 DL
->isNonIntegralPointerType(AddrMode
.BaseGV
->getType())))
6050 LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
6051 << " for " << *MemoryInst
<< "\n");
6052 Type
*IntPtrTy
= DL
->getIntPtrType(Addr
->getType());
6053 Value
*Result
= nullptr;
6055 // Start with the base register. Do this first so that subsequent address
6056 // matching finds it last, which will prevent it from trying to match it
6057 // as the scaled value in case it happens to be a mul. That would be
6058 // problematic if we've sunk a different mul for the scale, because then
6059 // we'd end up sinking both muls.
6060 if (AddrMode
.BaseReg
) {
6061 Value
*V
= AddrMode
.BaseReg
;
6062 if (V
->getType()->isPointerTy())
6063 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
6064 if (V
->getType() != IntPtrTy
)
6065 V
= Builder
.CreateIntCast(V
, IntPtrTy
, /*isSigned=*/true, "sunkaddr");
6069 // Add the scale value.
6070 if (AddrMode
.Scale
) {
6071 Value
*V
= AddrMode
.ScaledReg
;
6072 if (V
->getType() == IntPtrTy
) {
6074 } else if (V
->getType()->isPointerTy()) {
6075 V
= Builder
.CreatePtrToInt(V
, IntPtrTy
, "sunkaddr");
6076 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
6077 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
6078 V
= Builder
.CreateTrunc(V
, IntPtrTy
, "sunkaddr");
6080 // It is only safe to sign extend the BaseReg if we know that the math
6081 // required to create it did not overflow before we extend it. Since
6082 // the original IR value was tossed in favor of a constant back when
6083 // the AddrMode was created we need to bail out gracefully if widths
6084 // do not match instead of extending it.
6085 Instruction
*I
= dyn_cast_or_null
<Instruction
>(Result
);
6086 if (I
&& (Result
!= AddrMode
.BaseReg
))
6087 I
->eraseFromParent();
6090 if (AddrMode
.Scale
!= 1)
6091 V
= Builder
.CreateMul(V
, ConstantInt::get(IntPtrTy
, AddrMode
.Scale
),
6094 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
6099 // Add in the BaseGV if present.
6100 GlobalValue
*BaseGV
= AddrMode
.BaseGV
;
6101 if (BaseGV
!= nullptr) {
6103 if (BaseGV
->isThreadLocal()) {
6104 BaseGVPtr
= Builder
.CreateThreadLocalAddress(BaseGV
);
6108 Value
*V
= Builder
.CreatePtrToInt(BaseGVPtr
, IntPtrTy
, "sunkaddr");
6110 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
6115 // Add in the Base Offset if present.
6116 if (AddrMode
.BaseOffs
) {
6117 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
6119 Result
= Builder
.CreateAdd(Result
, V
, "sunkaddr");
6125 SunkAddr
= Constant::getNullValue(Addr
->getType());
6127 SunkAddr
= Builder
.CreateIntToPtr(Result
, Addr
->getType(), "sunkaddr");
6130 MemoryInst
->replaceUsesOfWith(Repl
, SunkAddr
);
6131 // Store the newly computed address into the cache. In the case we reused a
6132 // value, this should be idempotent.
6133 SunkAddrs
[Addr
] = WeakTrackingVH(SunkAddr
);
6135 // If we have no uses, recursively delete the value and all dead instructions
6137 if (Repl
->use_empty()) {
6138 resetIteratorIfInvalidatedWhileCalling(CurInstIterator
->getParent(), [&]() {
6139 RecursivelyDeleteTriviallyDeadInstructions(
6140 Repl
, TLInfo
, nullptr,
6141 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
6148 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
6149 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
6150 /// only handle a 2 operand GEP in the same basic block or a splat constant
6151 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
6154 /// If the existing GEP has a vector base pointer that is splat, we can look
6155 /// through the splat to find the scalar pointer. If we can't find a scalar
6156 /// pointer there's nothing we can do.
6158 /// If we have a GEP with more than 2 indices where the middle indices are all
6159 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
6161 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
6162 /// followed by a GEP with an all zeroes vector index. This will enable
6163 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
6165 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction
*MemoryInst
,
6169 if (const auto *GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
6170 // Don't optimize GEPs that don't have indices.
6171 if (!GEP
->hasIndices())
6174 // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
6175 // FIXME: We should support this by sinking the GEP.
6176 if (MemoryInst
->getParent() != GEP
->getParent())
6179 SmallVector
<Value
*, 2> Ops(GEP
->operands());
6181 bool RewriteGEP
= false;
6183 if (Ops
[0]->getType()->isVectorTy()) {
6184 Ops
[0] = getSplatValue(Ops
[0]);
6190 unsigned FinalIndex
= Ops
.size() - 1;
6192 // Ensure all but the last index is 0.
6193 // FIXME: This isn't strictly required. All that's required is that they are
6194 // all scalars or splats.
6195 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
6196 auto *C
= dyn_cast
<Constant
>(Ops
[i
]);
6199 if (isa
<VectorType
>(C
->getType()))
6200 C
= C
->getSplatValue();
6201 auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
6202 if (!CI
|| !CI
->isZero())
6204 // Scalarize the index if needed.
6208 // Try to scalarize the final index.
6209 if (Ops
[FinalIndex
]->getType()->isVectorTy()) {
6210 if (Value
*V
= getSplatValue(Ops
[FinalIndex
])) {
6211 auto *C
= dyn_cast
<ConstantInt
>(V
);
6212 // Don't scalarize all zeros vector.
6213 if (!C
|| !C
->isZero()) {
6214 Ops
[FinalIndex
] = V
;
6220 // If we made any changes or the we have extra operands, we need to generate
6221 // new instructions.
6222 if (!RewriteGEP
&& Ops
.size() == 2)
6225 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
6227 IRBuilder
<> Builder(MemoryInst
);
6229 Type
*SourceTy
= GEP
->getSourceElementType();
6230 Type
*ScalarIndexTy
= DL
->getIndexType(Ops
[0]->getType()->getScalarType());
6232 // If the final index isn't a vector, emit a scalar GEP containing all ops
6233 // and a vector GEP with all zeroes final index.
6234 if (!Ops
[FinalIndex
]->getType()->isVectorTy()) {
6235 NewAddr
= Builder
.CreateGEP(SourceTy
, Ops
[0], ArrayRef(Ops
).drop_front());
6236 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
6237 auto *SecondTy
= GetElementPtrInst::getIndexedType(
6238 SourceTy
, ArrayRef(Ops
).drop_front());
6240 Builder
.CreateGEP(SecondTy
, NewAddr
, Constant::getNullValue(IndexTy
));
6242 Value
*Base
= Ops
[0];
6243 Value
*Index
= Ops
[FinalIndex
];
6245 // Create a scalar GEP if there are more than 2 operands.
6246 if (Ops
.size() != 2) {
6247 // Replace the last index with 0.
6249 Constant::getNullValue(Ops
[FinalIndex
]->getType()->getScalarType());
6250 Base
= Builder
.CreateGEP(SourceTy
, Base
, ArrayRef(Ops
).drop_front());
6251 SourceTy
= GetElementPtrInst::getIndexedType(
6252 SourceTy
, ArrayRef(Ops
).drop_front());
6255 // Now create the GEP with scalar pointer and vector index.
6256 NewAddr
= Builder
.CreateGEP(SourceTy
, Base
, Index
);
6258 } else if (!isa
<Constant
>(Ptr
)) {
6259 // Not a GEP, maybe its a splat and we can create a GEP to enable
6260 // SelectionDAGBuilder to use it as a uniform base.
6261 Value
*V
= getSplatValue(Ptr
);
6265 auto NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
6267 IRBuilder
<> Builder(MemoryInst
);
6269 // Emit a vector GEP with a scalar pointer and all 0s vector index.
6270 Type
*ScalarIndexTy
= DL
->getIndexType(V
->getType()->getScalarType());
6271 auto *IndexTy
= VectorType::get(ScalarIndexTy
, NumElts
);
6273 if (cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
6274 Intrinsic::masked_gather
) {
6275 ScalarTy
= MemoryInst
->getType()->getScalarType();
6277 assert(cast
<IntrinsicInst
>(MemoryInst
)->getIntrinsicID() ==
6278 Intrinsic::masked_scatter
);
6279 ScalarTy
= MemoryInst
->getOperand(0)->getType()->getScalarType();
6281 NewAddr
= Builder
.CreateGEP(ScalarTy
, V
, Constant::getNullValue(IndexTy
));
6283 // Constant, SelectionDAGBuilder knows to check if its a splat.
6287 MemoryInst
->replaceUsesOfWith(Ptr
, NewAddr
);
6289 // If we have no uses, recursively delete the value and all dead instructions
6291 if (Ptr
->use_empty())
6292 RecursivelyDeleteTriviallyDeadInstructions(
6293 Ptr
, TLInfo
, nullptr,
6294 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
6299 /// If there are any memory operands, use OptimizeMemoryInst to sink their
6300 /// address computing into the block when possible / profitable.
6301 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst
*CS
) {
6302 bool MadeChange
= false;
6304 const TargetRegisterInfo
*TRI
=
6305 TM
->getSubtargetImpl(*CS
->getFunction())->getRegisterInfo();
6306 TargetLowering::AsmOperandInfoVector TargetConstraints
=
6307 TLI
->ParseConstraints(*DL
, TRI
, *CS
);
6309 for (TargetLowering::AsmOperandInfo
&OpInfo
: TargetConstraints
) {
6310 // Compute the constraint code and ConstraintType to use.
6311 TLI
->ComputeConstraintToUse(OpInfo
, SDValue());
6313 // TODO: Also handle C_Address?
6314 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
6315 OpInfo
.isIndirect
) {
6316 Value
*OpVal
= CS
->getArgOperand(ArgNo
++);
6317 MadeChange
|= optimizeMemoryInst(CS
, OpVal
, OpVal
->getType(), ~0u);
6318 } else if (OpInfo
.Type
== InlineAsm::isInput
)
6325 /// Check if all the uses of \p Val are equivalent (or free) zero or
6326 /// sign extensions.
6327 static bool hasSameExtUse(Value
*Val
, const TargetLowering
&TLI
) {
6328 assert(!Val
->use_empty() && "Input must have at least one use");
6329 const Instruction
*FirstUser
= cast
<Instruction
>(*Val
->user_begin());
6330 bool IsSExt
= isa
<SExtInst
>(FirstUser
);
6331 Type
*ExtTy
= FirstUser
->getType();
6332 for (const User
*U
: Val
->users()) {
6333 const Instruction
*UI
= cast
<Instruction
>(U
);
6334 if ((IsSExt
&& !isa
<SExtInst
>(UI
)) || (!IsSExt
&& !isa
<ZExtInst
>(UI
)))
6336 Type
*CurTy
= UI
->getType();
6337 // Same input and output types: Same instruction after CSE.
6341 // If IsSExt is true, we are in this situation:
6343 // b = sext ty1 a to ty2
6344 // c = sext ty1 a to ty3
6345 // Assuming ty2 is shorter than ty3, this could be turned into:
6347 // b = sext ty1 a to ty2
6348 // c = sext ty2 b to ty3
6349 // However, the last sext is not free.
6353 // This is a ZExt, maybe this is free to extend from one type to another.
6354 // In that case, we would not account for a different use.
6357 if (ExtTy
->getScalarType()->getIntegerBitWidth() >
6358 CurTy
->getScalarType()->getIntegerBitWidth()) {
6366 if (!TLI
.isZExtFree(NarrowTy
, LargeTy
))
6369 // All uses are the same or can be derived from one another for free.
6373 /// Try to speculatively promote extensions in \p Exts and continue
6374 /// promoting through newly promoted operands recursively as far as doing so is
6375 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
6376 /// When some promotion happened, \p TPT contains the proper state to revert
6379 /// \return true if some promotion happened, false otherwise.
6380 bool CodeGenPrepare::tryToPromoteExts(
6381 TypePromotionTransaction
&TPT
, const SmallVectorImpl
<Instruction
*> &Exts
,
6382 SmallVectorImpl
<Instruction
*> &ProfitablyMovedExts
,
6383 unsigned CreatedInstsCost
) {
6384 bool Promoted
= false;
6386 // Iterate over all the extensions to try to promote them.
6387 for (auto *I
: Exts
) {
6388 // Early check if we directly have ext(load).
6389 if (isa
<LoadInst
>(I
->getOperand(0))) {
6390 ProfitablyMovedExts
.push_back(I
);
6394 // Check whether or not we want to do any promotion. The reason we have
6395 // this check inside the for loop is to catch the case where an extension
6396 // is directly fed by a load because in such case the extension can be moved
6397 // up without any promotion on its operands.
6398 if (!TLI
->enableExtLdPromotion() || DisableExtLdPromotion
)
6401 // Get the action to perform the promotion.
6402 TypePromotionHelper::Action TPH
=
6403 TypePromotionHelper::getAction(I
, InsertedInsts
, *TLI
, PromotedInsts
);
6404 // Check if we can promote.
6406 // Save the current extension as we cannot move up through its operand.
6407 ProfitablyMovedExts
.push_back(I
);
6411 // Save the current state.
6412 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
6413 TPT
.getRestorationPoint();
6414 SmallVector
<Instruction
*, 4> NewExts
;
6415 unsigned NewCreatedInstsCost
= 0;
6416 unsigned ExtCost
= !TLI
->isExtFree(I
);
6418 Value
*PromotedVal
= TPH(I
, TPT
, PromotedInsts
, NewCreatedInstsCost
,
6419 &NewExts
, nullptr, *TLI
);
6420 assert(PromotedVal
&&
6421 "TypePromotionHelper should have filtered out those cases");
6423 // We would be able to merge only one extension in a load.
6424 // Therefore, if we have more than 1 new extension we heuristically
6425 // cut this search path, because it means we degrade the code quality.
6426 // With exactly 2, the transformation is neutral, because we will merge
6427 // one extension but leave one. However, we optimistically keep going,
6428 // because the new extension may be removed too. Also avoid replacing a
6429 // single free extension with multiple extensions, as this increases the
6430 // number of IR instructions while not providing any savings.
6431 long long TotalCreatedInstsCost
= CreatedInstsCost
+ NewCreatedInstsCost
;
6432 // FIXME: It would be possible to propagate a negative value instead of
6433 // conservatively ceiling it to 0.
6434 TotalCreatedInstsCost
=
6435 std::max((long long)0, (TotalCreatedInstsCost
- ExtCost
));
6436 if (!StressExtLdPromotion
&&
6437 (TotalCreatedInstsCost
> 1 ||
6438 !isPromotedInstructionLegal(*TLI
, *DL
, PromotedVal
) ||
6439 (ExtCost
== 0 && NewExts
.size() > 1))) {
6440 // This promotion is not profitable, rollback to the previous state, and
6441 // save the current extension in ProfitablyMovedExts as the latest
6442 // speculative promotion turned out to be unprofitable.
6443 TPT
.rollback(LastKnownGood
);
6444 ProfitablyMovedExts
.push_back(I
);
6447 // Continue promoting NewExts as far as doing so is profitable.
6448 SmallVector
<Instruction
*, 2> NewlyMovedExts
;
6449 (void)tryToPromoteExts(TPT
, NewExts
, NewlyMovedExts
, TotalCreatedInstsCost
);
6450 bool NewPromoted
= false;
6451 for (auto *ExtInst
: NewlyMovedExts
) {
6452 Instruction
*MovedExt
= cast
<Instruction
>(ExtInst
);
6453 Value
*ExtOperand
= MovedExt
->getOperand(0);
6454 // If we have reached to a load, we need this extra profitability check
6455 // as it could potentially be merged into an ext(load).
6456 if (isa
<LoadInst
>(ExtOperand
) &&
6457 !(StressExtLdPromotion
|| NewCreatedInstsCost
<= ExtCost
||
6458 (ExtOperand
->hasOneUse() || hasSameExtUse(ExtOperand
, *TLI
))))
6461 ProfitablyMovedExts
.push_back(MovedExt
);
6465 // If none of speculative promotions for NewExts is profitable, rollback
6466 // and save the current extension (I) as the last profitable extension.
6468 TPT
.rollback(LastKnownGood
);
6469 ProfitablyMovedExts
.push_back(I
);
6472 // The promotion is profitable.
6478 /// Merging redundant sexts when one is dominating the other.
6479 bool CodeGenPrepare::mergeSExts(Function
&F
) {
6480 bool Changed
= false;
6481 for (auto &Entry
: ValToSExtendedUses
) {
6482 SExts
&Insts
= Entry
.second
;
6484 for (Instruction
*Inst
: Insts
) {
6485 if (RemovedInsts
.count(Inst
) || !isa
<SExtInst
>(Inst
) ||
6486 Inst
->getOperand(0) != Entry
.first
)
6488 bool inserted
= false;
6489 for (auto &Pt
: CurPts
) {
6490 if (getDT(F
).dominates(Inst
, Pt
)) {
6491 replaceAllUsesWith(Pt
, Inst
, FreshBBs
, IsHugeFunc
);
6492 RemovedInsts
.insert(Pt
);
6493 Pt
->removeFromParent();
6499 if (!getDT(F
).dominates(Pt
, Inst
))
6500 // Give up if we need to merge in a common dominator as the
6501 // experiments show it is not profitable.
6503 replaceAllUsesWith(Inst
, Pt
, FreshBBs
, IsHugeFunc
);
6504 RemovedInsts
.insert(Inst
);
6505 Inst
->removeFromParent();
6511 CurPts
.push_back(Inst
);
6517 // Splitting large data structures so that the GEPs accessing them can have
6518 // smaller offsets so that they can be sunk to the same blocks as their users.
6519 // For example, a large struct starting from %base is split into two parts
6520 // where the second part starts from %new_base.
6527 // %gep0 = gep %base, off0
6528 // %gep1 = gep %base, off1
6529 // %gep2 = gep %base, off2
6532 // %load1 = load %gep0
6533 // %load2 = load %gep1
6534 // %load3 = load %gep2
6539 // %new_base = gep %base, off0
6542 // %new_gep0 = %new_base
6543 // %new_gep1 = gep %new_base, off1 - off0
6544 // %new_gep2 = gep %new_base, off2 - off0
6547 // %load1 = load i32, i32* %new_gep0
6548 // %load2 = load i32, i32* %new_gep1
6549 // %load3 = load i32, i32* %new_gep2
6551 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
6552 // their offsets are smaller enough to fit into the addressing mode.
6553 bool CodeGenPrepare::splitLargeGEPOffsets() {
6554 bool Changed
= false;
6555 for (auto &Entry
: LargeOffsetGEPMap
) {
6556 Value
*OldBase
= Entry
.first
;
6557 SmallVectorImpl
<std::pair
<AssertingVH
<GetElementPtrInst
>, int64_t>>
6558 &LargeOffsetGEPs
= Entry
.second
;
6559 auto compareGEPOffset
=
6560 [&](const std::pair
<GetElementPtrInst
*, int64_t> &LHS
,
6561 const std::pair
<GetElementPtrInst
*, int64_t> &RHS
) {
6562 if (LHS
.first
== RHS
.first
)
6564 if (LHS
.second
!= RHS
.second
)
6565 return LHS
.second
< RHS
.second
;
6566 return LargeOffsetGEPID
[LHS
.first
] < LargeOffsetGEPID
[RHS
.first
];
6568 // Sorting all the GEPs of the same data structures based on the offsets.
6569 llvm::sort(LargeOffsetGEPs
, compareGEPOffset
);
6570 LargeOffsetGEPs
.erase(llvm::unique(LargeOffsetGEPs
), LargeOffsetGEPs
.end());
6571 // Skip if all the GEPs have the same offsets.
6572 if (LargeOffsetGEPs
.front().second
== LargeOffsetGEPs
.back().second
)
6574 GetElementPtrInst
*BaseGEP
= LargeOffsetGEPs
.begin()->first
;
6575 int64_t BaseOffset
= LargeOffsetGEPs
.begin()->second
;
6576 Value
*NewBaseGEP
= nullptr;
6578 auto createNewBase
= [&](int64_t BaseOffset
, Value
*OldBase
,
6579 GetElementPtrInst
*GEP
) {
6580 LLVMContext
&Ctx
= GEP
->getContext();
6581 Type
*PtrIdxTy
= DL
->getIndexType(GEP
->getType());
6583 PointerType::get(Ctx
, GEP
->getType()->getPointerAddressSpace());
6585 BasicBlock::iterator NewBaseInsertPt
;
6586 BasicBlock
*NewBaseInsertBB
;
6587 if (auto *BaseI
= dyn_cast
<Instruction
>(OldBase
)) {
6588 // If the base of the struct is an instruction, the new base will be
6589 // inserted close to it.
6590 NewBaseInsertBB
= BaseI
->getParent();
6591 if (isa
<PHINode
>(BaseI
))
6592 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6593 else if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(BaseI
)) {
6595 SplitEdge(NewBaseInsertBB
, Invoke
->getNormalDest(), DT
.get(), LI
);
6596 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6598 NewBaseInsertPt
= std::next(BaseI
->getIterator());
6600 // If the current base is an argument or global value, the new base
6601 // will be inserted to the entry block.
6602 NewBaseInsertBB
= &BaseGEP
->getFunction()->getEntryBlock();
6603 NewBaseInsertPt
= NewBaseInsertBB
->getFirstInsertionPt();
6605 IRBuilder
<> NewBaseBuilder(NewBaseInsertBB
, NewBaseInsertPt
);
6606 // Create a new base.
6607 Value
*BaseIndex
= ConstantInt::get(PtrIdxTy
, BaseOffset
);
6608 NewBaseGEP
= OldBase
;
6609 if (NewBaseGEP
->getType() != I8PtrTy
)
6610 NewBaseGEP
= NewBaseBuilder
.CreatePointerCast(NewBaseGEP
, I8PtrTy
);
6612 NewBaseBuilder
.CreatePtrAdd(NewBaseGEP
, BaseIndex
, "splitgep");
6613 NewGEPBases
.insert(NewBaseGEP
);
6617 // Check whether all the offsets can be encoded with prefered common base.
6618 if (int64_t PreferBase
= TLI
->getPreferredLargeGEPBaseOffset(
6619 LargeOffsetGEPs
.front().second
, LargeOffsetGEPs
.back().second
)) {
6620 BaseOffset
= PreferBase
;
6621 // Create a new base if the offset of the BaseGEP can be decoded with one
6623 createNewBase(BaseOffset
, OldBase
, BaseGEP
);
6626 auto *LargeOffsetGEP
= LargeOffsetGEPs
.begin();
6627 while (LargeOffsetGEP
!= LargeOffsetGEPs
.end()) {
6628 GetElementPtrInst
*GEP
= LargeOffsetGEP
->first
;
6629 int64_t Offset
= LargeOffsetGEP
->second
;
6630 if (Offset
!= BaseOffset
) {
6631 TargetLowering::AddrMode AddrMode
;
6632 AddrMode
.HasBaseReg
= true;
6633 AddrMode
.BaseOffs
= Offset
- BaseOffset
;
6634 // The result type of the GEP might not be the type of the memory
6636 if (!TLI
->isLegalAddressingMode(*DL
, AddrMode
,
6637 GEP
->getResultElementType(),
6638 GEP
->getAddressSpace())) {
6639 // We need to create a new base if the offset to the current base is
6640 // too large to fit into the addressing mode. So, a very large struct
6641 // may be split into several parts.
6643 BaseOffset
= Offset
;
6644 NewBaseGEP
= nullptr;
6648 // Generate a new GEP to replace the current one.
6649 Type
*PtrIdxTy
= DL
->getIndexType(GEP
->getType());
6652 // Create a new base if we don't have one yet. Find the insertion
6653 // pointer for the new base first.
6654 createNewBase(BaseOffset
, OldBase
, GEP
);
6657 IRBuilder
<> Builder(GEP
);
6658 Value
*NewGEP
= NewBaseGEP
;
6659 if (Offset
!= BaseOffset
) {
6660 // Calculate the new offset for the new GEP.
6661 Value
*Index
= ConstantInt::get(PtrIdxTy
, Offset
- BaseOffset
);
6662 NewGEP
= Builder
.CreatePtrAdd(NewBaseGEP
, Index
);
6664 replaceAllUsesWith(GEP
, NewGEP
, FreshBBs
, IsHugeFunc
);
6665 LargeOffsetGEPID
.erase(GEP
);
6666 LargeOffsetGEP
= LargeOffsetGEPs
.erase(LargeOffsetGEP
);
6667 GEP
->eraseFromParent();
6674 bool CodeGenPrepare::optimizePhiType(
6675 PHINode
*I
, SmallPtrSetImpl
<PHINode
*> &Visited
,
6676 SmallPtrSetImpl
<Instruction
*> &DeletedInstrs
) {
6677 // We are looking for a collection on interconnected phi nodes that together
6678 // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
6679 // are of the same type. Convert the whole set of nodes to the type of the
6681 Type
*PhiTy
= I
->getType();
6682 Type
*ConvertTy
= nullptr;
6683 if (Visited
.count(I
) ||
6684 (!I
->getType()->isIntegerTy() && !I
->getType()->isFloatingPointTy()))
6687 SmallVector
<Instruction
*, 4> Worklist
;
6688 Worklist
.push_back(cast
<Instruction
>(I
));
6689 SmallPtrSet
<PHINode
*, 4> PhiNodes
;
6690 SmallPtrSet
<ConstantData
*, 4> Constants
;
6693 SmallPtrSet
<Instruction
*, 4> Defs
;
6694 SmallPtrSet
<Instruction
*, 4> Uses
;
6695 // This works by adding extra bitcasts between load/stores and removing
6696 // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
6697 // we can get in the situation where we remove a bitcast in one iteration
6698 // just to add it again in the next. We need to ensure that at least one
6699 // bitcast we remove are anchored to something that will not change back.
6700 bool AnyAnchored
= false;
6702 while (!Worklist
.empty()) {
6703 Instruction
*II
= Worklist
.pop_back_val();
6705 if (auto *Phi
= dyn_cast
<PHINode
>(II
)) {
6706 // Handle Defs, which might also be PHI's
6707 for (Value
*V
: Phi
->incoming_values()) {
6708 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6709 if (!PhiNodes
.count(OpPhi
)) {
6710 if (!Visited
.insert(OpPhi
).second
)
6712 PhiNodes
.insert(OpPhi
);
6713 Worklist
.push_back(OpPhi
);
6715 } else if (auto *OpLoad
= dyn_cast
<LoadInst
>(V
)) {
6716 if (!OpLoad
->isSimple())
6718 if (Defs
.insert(OpLoad
).second
)
6719 Worklist
.push_back(OpLoad
);
6720 } else if (auto *OpEx
= dyn_cast
<ExtractElementInst
>(V
)) {
6721 if (Defs
.insert(OpEx
).second
)
6722 Worklist
.push_back(OpEx
);
6723 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6725 ConvertTy
= OpBC
->getOperand(0)->getType();
6726 if (OpBC
->getOperand(0)->getType() != ConvertTy
)
6728 if (Defs
.insert(OpBC
).second
) {
6729 Worklist
.push_back(OpBC
);
6730 AnyAnchored
|= !isa
<LoadInst
>(OpBC
->getOperand(0)) &&
6731 !isa
<ExtractElementInst
>(OpBC
->getOperand(0));
6733 } else if (auto *OpC
= dyn_cast
<ConstantData
>(V
))
6734 Constants
.insert(OpC
);
6740 // Handle uses which might also be phi's
6741 for (User
*V
: II
->users()) {
6742 if (auto *OpPhi
= dyn_cast
<PHINode
>(V
)) {
6743 if (!PhiNodes
.count(OpPhi
)) {
6744 if (Visited
.count(OpPhi
))
6746 PhiNodes
.insert(OpPhi
);
6747 Visited
.insert(OpPhi
);
6748 Worklist
.push_back(OpPhi
);
6750 } else if (auto *OpStore
= dyn_cast
<StoreInst
>(V
)) {
6751 if (!OpStore
->isSimple() || OpStore
->getOperand(0) != II
)
6753 Uses
.insert(OpStore
);
6754 } else if (auto *OpBC
= dyn_cast
<BitCastInst
>(V
)) {
6756 ConvertTy
= OpBC
->getType();
6757 if (OpBC
->getType() != ConvertTy
)
6761 any_of(OpBC
->users(), [](User
*U
) { return !isa
<StoreInst
>(U
); });
6768 if (!ConvertTy
|| !AnyAnchored
||
6769 !TLI
->shouldConvertPhiType(PhiTy
, ConvertTy
))
6772 LLVM_DEBUG(dbgs() << "Converting " << *I
<< "\n and connected nodes to "
6773 << *ConvertTy
<< "\n");
6775 // Create all the new phi nodes of the new type, and bitcast any loads to the
6777 ValueToValueMap ValMap
;
6778 for (ConstantData
*C
: Constants
)
6779 ValMap
[C
] = ConstantExpr::getBitCast(C
, ConvertTy
);
6780 for (Instruction
*D
: Defs
) {
6781 if (isa
<BitCastInst
>(D
)) {
6782 ValMap
[D
] = D
->getOperand(0);
6783 DeletedInstrs
.insert(D
);
6785 BasicBlock::iterator insertPt
= std::next(D
->getIterator());
6786 ValMap
[D
] = new BitCastInst(D
, ConvertTy
, D
->getName() + ".bc", insertPt
);
6789 for (PHINode
*Phi
: PhiNodes
)
6790 ValMap
[Phi
] = PHINode::Create(ConvertTy
, Phi
->getNumIncomingValues(),
6791 Phi
->getName() + ".tc", Phi
->getIterator());
6792 // Pipe together all the PhiNodes.
6793 for (PHINode
*Phi
: PhiNodes
) {
6794 PHINode
*NewPhi
= cast
<PHINode
>(ValMap
[Phi
]);
6795 for (int i
= 0, e
= Phi
->getNumIncomingValues(); i
< e
; i
++)
6796 NewPhi
->addIncoming(ValMap
[Phi
->getIncomingValue(i
)],
6797 Phi
->getIncomingBlock(i
));
6798 Visited
.insert(NewPhi
);
6800 // And finally pipe up the stores and bitcasts
6801 for (Instruction
*U
: Uses
) {
6802 if (isa
<BitCastInst
>(U
)) {
6803 DeletedInstrs
.insert(U
);
6804 replaceAllUsesWith(U
, ValMap
[U
->getOperand(0)], FreshBBs
, IsHugeFunc
);
6806 U
->setOperand(0, new BitCastInst(ValMap
[U
->getOperand(0)], PhiTy
, "bc",
6811 // Save the removed phis to be deleted later.
6812 for (PHINode
*Phi
: PhiNodes
)
6813 DeletedInstrs
.insert(Phi
);
6817 bool CodeGenPrepare::optimizePhiTypes(Function
&F
) {
6818 if (!OptimizePhiTypes
)
6821 bool Changed
= false;
6822 SmallPtrSet
<PHINode
*, 4> Visited
;
6823 SmallPtrSet
<Instruction
*, 4> DeletedInstrs
;
6825 // Attempt to optimize all the phis in the functions to the correct type.
6827 for (auto &Phi
: BB
.phis())
6828 Changed
|= optimizePhiType(&Phi
, Visited
, DeletedInstrs
);
6830 // Remove any old phi's that have been converted.
6831 for (auto *I
: DeletedInstrs
) {
6832 replaceAllUsesWith(I
, PoisonValue::get(I
->getType()), FreshBBs
, IsHugeFunc
);
6833 I
->eraseFromParent();
6839 /// Return true, if an ext(load) can be formed from an extension in
6841 bool CodeGenPrepare::canFormExtLd(
6842 const SmallVectorImpl
<Instruction
*> &MovedExts
, LoadInst
*&LI
,
6843 Instruction
*&Inst
, bool HasPromoted
) {
6844 for (auto *MovedExtInst
: MovedExts
) {
6845 if (isa
<LoadInst
>(MovedExtInst
->getOperand(0))) {
6846 LI
= cast
<LoadInst
>(MovedExtInst
->getOperand(0));
6847 Inst
= MovedExtInst
;
6854 // If they're already in the same block, there's nothing to do.
6855 // Make the cheap checks first if we did not promote.
6856 // If we promoted, we need to check if it is indeed profitable.
6857 if (!HasPromoted
&& LI
->getParent() == Inst
->getParent())
6860 return TLI
->isExtLoad(LI
, Inst
, *DL
);
6863 /// Move a zext or sext fed by a load into the same basic block as the load,
6864 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6865 /// extend into the load.
6869 /// %ld = load i32* %addr
6870 /// %add = add nuw i32 %ld, 4
6871 /// %zext = zext i32 %add to i64
6875 /// %ld = load i32* %addr
6876 /// %zext = zext i32 %ld to i64
6877 /// %add = add nuw i64 %zext, 4
6879 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6880 /// allow us to match zext(load i32*) to i64.
6882 /// Also, try to promote the computations used to obtain a sign extended
6883 /// value used into memory accesses.
6886 /// a = add nsw i32 b, 3
6887 /// d = sext i32 a to i64
6888 /// e = getelementptr ..., i64 d
6892 /// f = sext i32 b to i64
6893 /// a = add nsw i64 f, 3
6894 /// e = getelementptr ..., i64 a
6897 /// \p Inst[in/out] the extension may be modified during the process if some
6898 /// promotions apply.
6899 bool CodeGenPrepare::optimizeExt(Instruction
*&Inst
) {
6900 bool AllowPromotionWithoutCommonHeader
= false;
6901 /// See if it is an interesting sext operations for the address type
6902 /// promotion before trying to promote it, e.g., the ones with the right
6903 /// type and used in memory accesses.
6904 bool ATPConsiderable
= TTI
->shouldConsiderAddressTypePromotion(
6905 *Inst
, AllowPromotionWithoutCommonHeader
);
6906 TypePromotionTransaction
TPT(RemovedInsts
);
6907 TypePromotionTransaction::ConstRestorationPt LastKnownGood
=
6908 TPT
.getRestorationPoint();
6909 SmallVector
<Instruction
*, 1> Exts
;
6910 SmallVector
<Instruction
*, 2> SpeculativelyMovedExts
;
6911 Exts
.push_back(Inst
);
6913 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, SpeculativelyMovedExts
);
6915 // Look for a load being extended.
6916 LoadInst
*LI
= nullptr;
6917 Instruction
*ExtFedByLoad
;
6919 // Try to promote a chain of computation if it allows to form an extended
6921 if (canFormExtLd(SpeculativelyMovedExts
, LI
, ExtFedByLoad
, HasPromoted
)) {
6922 assert(LI
&& ExtFedByLoad
&& "Expect a valid load and extension");
6924 // Move the extend into the same block as the load.
6925 ExtFedByLoad
->moveAfter(LI
);
6927 Inst
= ExtFedByLoad
;
6931 // Continue promoting SExts if known as considerable depending on targets.
6932 if (ATPConsiderable
&&
6933 performAddressTypePromotion(Inst
, AllowPromotionWithoutCommonHeader
,
6934 HasPromoted
, TPT
, SpeculativelyMovedExts
))
6937 TPT
.rollback(LastKnownGood
);
6941 // Perform address type promotion if doing so is profitable.
6942 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6943 // instructions that sign extended the same initial value. However, if
6944 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6945 // extension is just profitable.
6946 bool CodeGenPrepare::performAddressTypePromotion(
6947 Instruction
*&Inst
, bool AllowPromotionWithoutCommonHeader
,
6948 bool HasPromoted
, TypePromotionTransaction
&TPT
,
6949 SmallVectorImpl
<Instruction
*> &SpeculativelyMovedExts
) {
6950 bool Promoted
= false;
6951 SmallPtrSet
<Instruction
*, 1> UnhandledExts
;
6952 bool AllSeenFirst
= true;
6953 for (auto *I
: SpeculativelyMovedExts
) {
6954 Value
*HeadOfChain
= I
->getOperand(0);
6955 DenseMap
<Value
*, Instruction
*>::iterator AlreadySeen
=
6956 SeenChainsForSExt
.find(HeadOfChain
);
6957 // If there is an unhandled SExt which has the same header, try to promote
6959 if (AlreadySeen
!= SeenChainsForSExt
.end()) {
6960 if (AlreadySeen
->second
!= nullptr)
6961 UnhandledExts
.insert(AlreadySeen
->second
);
6962 AllSeenFirst
= false;
6966 if (!AllSeenFirst
|| (AllowPromotionWithoutCommonHeader
&&
6967 SpeculativelyMovedExts
.size() == 1)) {
6971 for (auto *I
: SpeculativelyMovedExts
) {
6972 Value
*HeadOfChain
= I
->getOperand(0);
6973 SeenChainsForSExt
[HeadOfChain
] = nullptr;
6974 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
6976 // Update Inst as promotion happen.
6977 Inst
= SpeculativelyMovedExts
.pop_back_val();
6979 // This is the first chain visited from the header, keep the current chain
6980 // as unhandled. Defer to promote this until we encounter another SExt
6981 // chain derived from the same header.
6982 for (auto *I
: SpeculativelyMovedExts
) {
6983 Value
*HeadOfChain
= I
->getOperand(0);
6984 SeenChainsForSExt
[HeadOfChain
] = Inst
;
6989 if (!AllSeenFirst
&& !UnhandledExts
.empty())
6990 for (auto *VisitedSExt
: UnhandledExts
) {
6991 if (RemovedInsts
.count(VisitedSExt
))
6993 TypePromotionTransaction
TPT(RemovedInsts
);
6994 SmallVector
<Instruction
*, 1> Exts
;
6995 SmallVector
<Instruction
*, 2> Chains
;
6996 Exts
.push_back(VisitedSExt
);
6997 bool HasPromoted
= tryToPromoteExts(TPT
, Exts
, Chains
);
7001 for (auto *I
: Chains
) {
7002 Value
*HeadOfChain
= I
->getOperand(0);
7003 // Mark this as handled.
7004 SeenChainsForSExt
[HeadOfChain
] = nullptr;
7005 ValToSExtendedUses
[HeadOfChain
].push_back(I
);
7011 bool CodeGenPrepare::optimizeExtUses(Instruction
*I
) {
7012 BasicBlock
*DefBB
= I
->getParent();
7014 // If the result of a {s|z}ext and its source are both live out, rewrite all
7015 // other uses of the source with result of extension.
7016 Value
*Src
= I
->getOperand(0);
7017 if (Src
->hasOneUse())
7020 // Only do this xform if truncating is free.
7021 if (!TLI
->isTruncateFree(I
->getType(), Src
->getType()))
7024 // Only safe to perform the optimization if the source is also defined in
7026 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
7029 bool DefIsLiveOut
= false;
7030 for (User
*U
: I
->users()) {
7031 Instruction
*UI
= cast
<Instruction
>(U
);
7033 // Figure out which BB this ext is used in.
7034 BasicBlock
*UserBB
= UI
->getParent();
7035 if (UserBB
== DefBB
)
7037 DefIsLiveOut
= true;
7043 // Make sure none of the uses are PHI nodes.
7044 for (User
*U
: Src
->users()) {
7045 Instruction
*UI
= cast
<Instruction
>(U
);
7046 BasicBlock
*UserBB
= UI
->getParent();
7047 if (UserBB
== DefBB
)
7049 // Be conservative. We don't want this xform to end up introducing
7050 // reloads just before load / store instructions.
7051 if (isa
<PHINode
>(UI
) || isa
<LoadInst
>(UI
) || isa
<StoreInst
>(UI
))
7055 // InsertedTruncs - Only insert one trunc in each block once.
7056 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
7058 bool MadeChange
= false;
7059 for (Use
&U
: Src
->uses()) {
7060 Instruction
*User
= cast
<Instruction
>(U
.getUser());
7062 // Figure out which BB this ext is used in.
7063 BasicBlock
*UserBB
= User
->getParent();
7064 if (UserBB
== DefBB
)
7067 // Both src and def are live in this block. Rewrite the use.
7068 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
7070 if (!InsertedTrunc
) {
7071 BasicBlock::iterator InsertPt
= UserBB
->getFirstInsertionPt();
7072 assert(InsertPt
!= UserBB
->end());
7073 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "");
7074 InsertedTrunc
->insertBefore(*UserBB
, InsertPt
);
7075 InsertedInsts
.insert(InsertedTrunc
);
7078 // Replace a use of the {s|z}ext source with a use of the result.
7087 // Find loads whose uses only use some of the loaded value's bits. Add an "and"
7088 // just after the load if the target can fold this into one extload instruction,
7089 // with the hope of eliminating some of the other later "and" instructions using
7090 // the loaded value. "and"s that are made trivially redundant by the insertion
7091 // of the new "and" are removed by this function, while others (e.g. those whose
7092 // path from the load goes through a phi) are left for isel to potentially
7125 // becomes (after a call to optimizeLoadExt for each load):
7129 // x1' = and x1, 0xff
7133 // x2' = and x2, 0xff
7138 bool CodeGenPrepare::optimizeLoadExt(LoadInst
*Load
) {
7139 if (!Load
->isSimple() || !Load
->getType()->isIntOrPtrTy())
7142 // Skip loads we've already transformed.
7143 if (Load
->hasOneUse() &&
7144 InsertedInsts
.count(cast
<Instruction
>(*Load
->user_begin())))
7147 // Look at all uses of Load, looking through phis, to determine how many bits
7148 // of the loaded value are needed.
7149 SmallVector
<Instruction
*, 8> WorkList
;
7150 SmallPtrSet
<Instruction
*, 16> Visited
;
7151 SmallVector
<Instruction
*, 8> AndsToMaybeRemove
;
7152 SmallVector
<Instruction
*, 8> DropFlags
;
7153 for (auto *U
: Load
->users())
7154 WorkList
.push_back(cast
<Instruction
>(U
));
7156 EVT LoadResultVT
= TLI
->getValueType(*DL
, Load
->getType());
7157 unsigned BitWidth
= LoadResultVT
.getSizeInBits();
7158 // If the BitWidth is 0, do not try to optimize the type
7162 APInt
DemandBits(BitWidth
, 0);
7163 APInt
WidestAndBits(BitWidth
, 0);
7165 while (!WorkList
.empty()) {
7166 Instruction
*I
= WorkList
.pop_back_val();
7168 // Break use-def graph loops.
7169 if (!Visited
.insert(I
).second
)
7172 // For a PHI node, push all of its users.
7173 if (auto *Phi
= dyn_cast
<PHINode
>(I
)) {
7174 for (auto *U
: Phi
->users())
7175 WorkList
.push_back(cast
<Instruction
>(U
));
7179 switch (I
->getOpcode()) {
7180 case Instruction::And
: {
7181 auto *AndC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
7184 APInt AndBits
= AndC
->getValue();
7185 DemandBits
|= AndBits
;
7186 // Keep track of the widest and mask we see.
7187 if (AndBits
.ugt(WidestAndBits
))
7188 WidestAndBits
= AndBits
;
7189 if (AndBits
== WidestAndBits
&& I
->getOperand(0) == Load
)
7190 AndsToMaybeRemove
.push_back(I
);
7194 case Instruction::Shl
: {
7195 auto *ShlC
= dyn_cast
<ConstantInt
>(I
->getOperand(1));
7198 uint64_t ShiftAmt
= ShlC
->getLimitedValue(BitWidth
- 1);
7199 DemandBits
.setLowBits(BitWidth
- ShiftAmt
);
7200 DropFlags
.push_back(I
);
7204 case Instruction::Trunc
: {
7205 EVT TruncVT
= TLI
->getValueType(*DL
, I
->getType());
7206 unsigned TruncBitWidth
= TruncVT
.getSizeInBits();
7207 DemandBits
.setLowBits(TruncBitWidth
);
7208 DropFlags
.push_back(I
);
7217 uint32_t ActiveBits
= DemandBits
.getActiveBits();
7218 // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
7219 // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example,
7220 // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
7221 // (and (load x) 1) is not matched as a single instruction, rather as a LDR
7222 // followed by an AND.
7223 // TODO: Look into removing this restriction by fixing backends to either
7224 // return false for isLoadExtLegal for i1 or have them select this pattern to
7225 // a single instruction.
7227 // Also avoid hoisting if we didn't see any ands with the exact DemandBits
7228 // mask, since these are the only ands that will be removed by isel.
7229 if (ActiveBits
<= 1 || !DemandBits
.isMask(ActiveBits
) ||
7230 WidestAndBits
!= DemandBits
)
7233 LLVMContext
&Ctx
= Load
->getType()->getContext();
7234 Type
*TruncTy
= Type::getIntNTy(Ctx
, ActiveBits
);
7235 EVT TruncVT
= TLI
->getValueType(*DL
, TruncTy
);
7237 // Reject cases that won't be matched as extloads.
7238 if (!LoadResultVT
.bitsGT(TruncVT
) || !TruncVT
.isRound() ||
7239 !TLI
->isLoadExtLegal(ISD::ZEXTLOAD
, LoadResultVT
, TruncVT
))
7242 IRBuilder
<> Builder(Load
->getNextNonDebugInstruction());
7243 auto *NewAnd
= cast
<Instruction
>(
7244 Builder
.CreateAnd(Load
, ConstantInt::get(Ctx
, DemandBits
)));
7245 // Mark this instruction as "inserted by CGP", so that other
7246 // optimizations don't touch it.
7247 InsertedInsts
.insert(NewAnd
);
7249 // Replace all uses of load with new and (except for the use of load in the
7251 replaceAllUsesWith(Load
, NewAnd
, FreshBBs
, IsHugeFunc
);
7252 NewAnd
->setOperand(0, Load
);
7254 // Remove any and instructions that are now redundant.
7255 for (auto *And
: AndsToMaybeRemove
)
7256 // Check that the and mask is the same as the one we decided to put on the
7258 if (cast
<ConstantInt
>(And
->getOperand(1))->getValue() == DemandBits
) {
7259 replaceAllUsesWith(And
, NewAnd
, FreshBBs
, IsHugeFunc
);
7260 if (&*CurInstIterator
== And
)
7261 CurInstIterator
= std::next(And
->getIterator());
7262 And
->eraseFromParent();
7266 // NSW flags may not longer hold.
7267 for (auto *Inst
: DropFlags
)
7268 Inst
->setHasNoSignedWrap(false);
7274 /// Check if V (an operand of a select instruction) is an expensive instruction
7275 /// that is only used once.
7276 static bool sinkSelectOperand(const TargetTransformInfo
*TTI
, Value
*V
) {
7277 auto *I
= dyn_cast
<Instruction
>(V
);
7278 // If it's safe to speculatively execute, then it should not have side
7279 // effects; therefore, it's safe to sink and possibly *not* execute.
7280 return I
&& I
->hasOneUse() && isSafeToSpeculativelyExecute(I
) &&
7281 TTI
->isExpensiveToSpeculativelyExecute(I
);
7284 /// Returns true if a SelectInst should be turned into an explicit branch.
7285 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo
*TTI
,
7286 const TargetLowering
*TLI
,
7288 // If even a predictable select is cheap, then a branch can't be cheaper.
7289 if (!TLI
->isPredictableSelectExpensive())
7292 // FIXME: This should use the same heuristics as IfConversion to determine
7293 // whether a select is better represented as a branch.
7295 // If metadata tells us that the select condition is obviously predictable,
7296 // then we want to replace the select with a branch.
7297 uint64_t TrueWeight
, FalseWeight
;
7298 if (extractBranchWeights(*SI
, TrueWeight
, FalseWeight
)) {
7299 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
7300 uint64_t Sum
= TrueWeight
+ FalseWeight
;
7302 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
7303 if (Probability
> TTI
->getPredictableBranchThreshold())
7308 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
7310 // If a branch is predictable, an out-of-order CPU can avoid blocking on its
7311 // comparison condition. If the compare has more than one use, there's
7312 // probably another cmov or setcc around, so it's not worth emitting a branch.
7313 if (!Cmp
|| !Cmp
->hasOneUse())
7316 // If either operand of the select is expensive and only needed on one side
7317 // of the select, we should form a branch.
7318 if (sinkSelectOperand(TTI
, SI
->getTrueValue()) ||
7319 sinkSelectOperand(TTI
, SI
->getFalseValue()))
7325 /// If \p isTrue is true, return the true value of \p SI, otherwise return
7326 /// false value of \p SI. If the true/false value of \p SI is defined by any
7327 /// select instructions in \p Selects, look through the defining select
7328 /// instruction until the true/false value is not defined in \p Selects.
7330 getTrueOrFalseValue(SelectInst
*SI
, bool isTrue
,
7331 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
7334 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
7335 DefSI
= dyn_cast
<SelectInst
>(V
)) {
7336 assert(DefSI
->getCondition() == SI
->getCondition() &&
7337 "The condition of DefSI does not match with SI");
7338 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
7341 assert(V
&& "Failed to get select true/false value");
7345 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator
*Shift
) {
7346 assert(Shift
->isShift() && "Expected a shift");
7348 // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
7349 // general vector shifts, and (3) the shift amount is a select-of-splatted
7350 // values, hoist the shifts before the select:
7351 // shift Op0, (select Cond, TVal, FVal) -->
7352 // select Cond, (shift Op0, TVal), (shift Op0, FVal)
7354 // This is inverting a generic IR transform when we know that the cost of a
7355 // general vector shift is more than the cost of 2 shift-by-scalars.
7356 // We can't do this effectively in SDAG because we may not be able to
7357 // determine if the select operands are splats from within a basic block.
7358 Type
*Ty
= Shift
->getType();
7359 if (!Ty
->isVectorTy() || !TTI
->isVectorShiftByScalarCheap(Ty
))
7361 Value
*Cond
, *TVal
, *FVal
;
7362 if (!match(Shift
->getOperand(1),
7363 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
7365 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
7368 IRBuilder
<> Builder(Shift
);
7369 BinaryOperator::BinaryOps Opcode
= Shift
->getOpcode();
7370 Value
*NewTVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), TVal
);
7371 Value
*NewFVal
= Builder
.CreateBinOp(Opcode
, Shift
->getOperand(0), FVal
);
7372 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
7373 replaceAllUsesWith(Shift
, NewSel
, FreshBBs
, IsHugeFunc
);
7374 Shift
->eraseFromParent();
7378 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst
*Fsh
) {
7379 Intrinsic::ID Opcode
= Fsh
->getIntrinsicID();
7380 assert((Opcode
== Intrinsic::fshl
|| Opcode
== Intrinsic::fshr
) &&
7381 "Expected a funnel shift");
7383 // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
7384 // than general vector shifts, and (3) the shift amount is select-of-splatted
7385 // values, hoist the funnel shifts before the select:
7386 // fsh Op0, Op1, (select Cond, TVal, FVal) -->
7387 // select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
7389 // This is inverting a generic IR transform when we know that the cost of a
7390 // general vector shift is more than the cost of 2 shift-by-scalars.
7391 // We can't do this effectively in SDAG because we may not be able to
7392 // determine if the select operands are splats from within a basic block.
7393 Type
*Ty
= Fsh
->getType();
7394 if (!Ty
->isVectorTy() || !TTI
->isVectorShiftByScalarCheap(Ty
))
7396 Value
*Cond
, *TVal
, *FVal
;
7397 if (!match(Fsh
->getOperand(2),
7398 m_OneUse(m_Select(m_Value(Cond
), m_Value(TVal
), m_Value(FVal
)))))
7400 if (!isSplatValue(TVal
) || !isSplatValue(FVal
))
7403 IRBuilder
<> Builder(Fsh
);
7404 Value
*X
= Fsh
->getOperand(0), *Y
= Fsh
->getOperand(1);
7405 Value
*NewTVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, {X
, Y
, TVal
});
7406 Value
*NewFVal
= Builder
.CreateIntrinsic(Opcode
, Ty
, {X
, Y
, FVal
});
7407 Value
*NewSel
= Builder
.CreateSelect(Cond
, NewTVal
, NewFVal
);
7408 replaceAllUsesWith(Fsh
, NewSel
, FreshBBs
, IsHugeFunc
);
7409 Fsh
->eraseFromParent();
7413 /// If we have a SelectInst that will likely profit from branch prediction,
7414 /// turn it into a branch.
7415 bool CodeGenPrepare::optimizeSelectInst(SelectInst
*SI
) {
7416 if (DisableSelectToBranch
)
7419 // If the SelectOptimize pass is enabled, selects have already been optimized.
7420 if (!getCGPassBuilderOption().DisableSelectOptimize
)
7423 // Find all consecutive select instructions that share the same condition.
7424 SmallVector
<SelectInst
*, 2> ASI
;
7426 for (BasicBlock::iterator It
= ++BasicBlock::iterator(SI
);
7427 It
!= SI
->getParent()->end(); ++It
) {
7428 SelectInst
*I
= dyn_cast
<SelectInst
>(&*It
);
7429 if (I
&& SI
->getCondition() == I
->getCondition()) {
7436 SelectInst
*LastSI
= ASI
.back();
7437 // Increment the current iterator to skip all the rest of select instructions
7438 // because they will be either "not lowered" or "all lowered" to branch.
7439 CurInstIterator
= std::next(LastSI
->getIterator());
7440 // Examine debug-info attached to the consecutive select instructions. They
7441 // won't be individually optimised by optimizeInst, so we need to perform
7442 // DbgVariableRecord maintenence here instead.
7443 for (SelectInst
*SI
: ArrayRef(ASI
).drop_front())
7444 fixupDbgVariableRecordsOnInst(*SI
);
7446 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
7448 // Can we convert the 'select' to CF ?
7449 if (VectorCond
|| SI
->getMetadata(LLVMContext::MD_unpredictable
))
7452 TargetLowering::SelectSupportKind SelectKind
;
7453 if (SI
->getType()->isVectorTy())
7454 SelectKind
= TargetLowering::ScalarCondVectorVal
;
7456 SelectKind
= TargetLowering::ScalarValSelect
;
7458 if (TLI
->isSelectSupported(SelectKind
) &&
7459 (!isFormingBranchFromSelectProfitable(TTI
, TLI
, SI
) ||
7460 llvm::shouldOptimizeForSize(SI
->getParent(), PSI
, BFI
.get())))
7463 // The DominatorTree needs to be rebuilt by any consumers after this
7464 // transformation. We simply reset here rather than setting the ModifiedDT
7465 // flag to avoid restarting the function walk in runOnFunction for each
7466 // select optimized.
7469 // Transform a sequence like this:
7471 // %cmp = cmp uge i32 %a, %b
7472 // %sel = select i1 %cmp, i32 %c, i32 %d
7476 // %cmp = cmp uge i32 %a, %b
7477 // %cmp.frozen = freeze %cmp
7478 // br i1 %cmp.frozen, label %select.true, label %select.false
7480 // br label %select.end
7482 // br label %select.end
7484 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
7486 // %cmp should be frozen, otherwise it may introduce undefined behavior.
7487 // In addition, we may sink instructions that produce %c or %d from
7488 // the entry block into the destination(s) of the new branch.
7489 // If the true or false blocks do not contain a sunken instruction, that
7490 // block and its branch may be optimized away. In that case, one side of the
7491 // first branch will point directly to select.end, and the corresponding PHI
7492 // predecessor block will be the start block.
7494 // Collect values that go on the true side and the values that go on the false
7496 SmallVector
<Instruction
*> TrueInstrs
, FalseInstrs
;
7497 for (SelectInst
*SI
: ASI
) {
7498 if (Value
*V
= SI
->getTrueValue(); sinkSelectOperand(TTI
, V
))
7499 TrueInstrs
.push_back(cast
<Instruction
>(V
));
7500 if (Value
*V
= SI
->getFalseValue(); sinkSelectOperand(TTI
, V
))
7501 FalseInstrs
.push_back(cast
<Instruction
>(V
));
7504 // Split the select block, according to how many (if any) values go on each
7506 BasicBlock
*StartBlock
= SI
->getParent();
7507 BasicBlock::iterator SplitPt
= std::next(BasicBlock::iterator(LastSI
));
7508 // We should split before any debug-info.
7509 SplitPt
.setHeadBit(true);
7512 auto *CondFr
= IB
.CreateFreeze(SI
->getCondition(), SI
->getName() + ".frozen");
7514 BasicBlock
*TrueBlock
= nullptr;
7515 BasicBlock
*FalseBlock
= nullptr;
7516 BasicBlock
*EndBlock
= nullptr;
7517 BranchInst
*TrueBranch
= nullptr;
7518 BranchInst
*FalseBranch
= nullptr;
7519 if (TrueInstrs
.size() == 0) {
7520 FalseBranch
= cast
<BranchInst
>(SplitBlockAndInsertIfElse(
7521 CondFr
, SplitPt
, false, nullptr, nullptr, LI
));
7522 FalseBlock
= FalseBranch
->getParent();
7523 EndBlock
= cast
<BasicBlock
>(FalseBranch
->getOperand(0));
7524 } else if (FalseInstrs
.size() == 0) {
7525 TrueBranch
= cast
<BranchInst
>(SplitBlockAndInsertIfThen(
7526 CondFr
, SplitPt
, false, nullptr, nullptr, LI
));
7527 TrueBlock
= TrueBranch
->getParent();
7528 EndBlock
= cast
<BasicBlock
>(TrueBranch
->getOperand(0));
7530 Instruction
*ThenTerm
= nullptr;
7531 Instruction
*ElseTerm
= nullptr;
7532 SplitBlockAndInsertIfThenElse(CondFr
, SplitPt
, &ThenTerm
, &ElseTerm
,
7533 nullptr, nullptr, LI
);
7534 TrueBranch
= cast
<BranchInst
>(ThenTerm
);
7535 FalseBranch
= cast
<BranchInst
>(ElseTerm
);
7536 TrueBlock
= TrueBranch
->getParent();
7537 FalseBlock
= FalseBranch
->getParent();
7538 EndBlock
= cast
<BasicBlock
>(TrueBranch
->getOperand(0));
7541 EndBlock
->setName("select.end");
7543 TrueBlock
->setName("select.true.sink");
7545 FalseBlock
->setName(FalseInstrs
.size() == 0 ? "select.false"
7546 : "select.false.sink");
7550 FreshBBs
.insert(TrueBlock
);
7552 FreshBBs
.insert(FalseBlock
);
7553 FreshBBs
.insert(EndBlock
);
7556 BFI
->setBlockFreq(EndBlock
, BFI
->getBlockFreq(StartBlock
));
7558 static const unsigned MD
[] = {
7559 LLVMContext::MD_prof
, LLVMContext::MD_unpredictable
,
7560 LLVMContext::MD_make_implicit
, LLVMContext::MD_dbg
};
7561 StartBlock
->getTerminator()->copyMetadata(*SI
, MD
);
7563 // Sink expensive instructions into the conditional blocks to avoid executing
7564 // them speculatively.
7565 for (Instruction
*I
: TrueInstrs
)
7566 I
->moveBefore(TrueBranch
->getIterator());
7567 for (Instruction
*I
: FalseInstrs
)
7568 I
->moveBefore(FalseBranch
->getIterator());
7570 // If we did not create a new block for one of the 'true' or 'false' paths
7571 // of the condition, it means that side of the branch goes to the end block
7572 // directly and the path originates from the start block from the point of
7573 // view of the new PHI.
7574 if (TrueBlock
== nullptr)
7575 TrueBlock
= StartBlock
;
7576 else if (FalseBlock
== nullptr)
7577 FalseBlock
= StartBlock
;
7579 SmallPtrSet
<const Instruction
*, 2> INS
;
7580 INS
.insert(ASI
.begin(), ASI
.end());
7581 // Use reverse iterator because later select may use the value of the
7582 // earlier select, and we need to propagate value through earlier select
7583 // to get the PHI operand.
7584 for (SelectInst
*SI
: llvm::reverse(ASI
)) {
7585 // The select itself is replaced with a PHI Node.
7586 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "");
7587 PN
->insertBefore(EndBlock
->begin());
7589 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
7590 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
7591 PN
->setDebugLoc(SI
->getDebugLoc());
7593 replaceAllUsesWith(SI
, PN
, FreshBBs
, IsHugeFunc
);
7594 SI
->eraseFromParent();
7596 ++NumSelectsExpanded
;
7599 // Instruct OptimizeBlock to skip to the next block.
7600 CurInstIterator
= StartBlock
->end();
7604 /// Some targets only accept certain types for splat inputs. For example a VDUP
7605 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
7606 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
7607 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst
*SVI
) {
7608 // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
7609 if (!match(SVI
, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
7610 m_Undef(), m_ZeroMask())))
7612 Type
*NewType
= TLI
->shouldConvertSplatType(SVI
);
7616 auto *SVIVecType
= cast
<FixedVectorType
>(SVI
->getType());
7617 assert(!NewType
->isVectorTy() && "Expected a scalar type!");
7618 assert(NewType
->getScalarSizeInBits() == SVIVecType
->getScalarSizeInBits() &&
7619 "Expected a type of the same size!");
7621 FixedVectorType::get(NewType
, SVIVecType
->getNumElements());
7623 // Create a bitcast (shuffle (insert (bitcast(..))))
7624 IRBuilder
<> Builder(SVI
->getContext());
7625 Builder
.SetInsertPoint(SVI
);
7626 Value
*BC1
= Builder
.CreateBitCast(
7627 cast
<Instruction
>(SVI
->getOperand(0))->getOperand(1), NewType
);
7628 Value
*Shuffle
= Builder
.CreateVectorSplat(NewVecType
->getNumElements(), BC1
);
7629 Value
*BC2
= Builder
.CreateBitCast(Shuffle
, SVIVecType
);
7631 replaceAllUsesWith(SVI
, BC2
, FreshBBs
, IsHugeFunc
);
7632 RecursivelyDeleteTriviallyDeadInstructions(
7633 SVI
, TLInfo
, nullptr,
7634 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
7636 // Also hoist the bitcast up to its operand if it they are not in the same
7638 if (auto *BCI
= dyn_cast
<Instruction
>(BC1
))
7639 if (auto *Op
= dyn_cast
<Instruction
>(BCI
->getOperand(0)))
7640 if (BCI
->getParent() != Op
->getParent() && !isa
<PHINode
>(Op
) &&
7641 !Op
->isTerminator() && !Op
->isEHPad())
7647 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction
*I
) {
7648 // If the operands of I can be folded into a target instruction together with
7649 // I, duplicate and sink them.
7650 SmallVector
<Use
*, 4> OpsToSink
;
7651 if (!TTI
->isProfitableToSinkOperands(I
, OpsToSink
))
7654 // OpsToSink can contain multiple uses in a use chain (e.g.
7655 // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
7656 // uses must come first, so we process the ops in reverse order so as to not
7657 // create invalid IR.
7658 BasicBlock
*TargetBB
= I
->getParent();
7659 bool Changed
= false;
7660 SmallVector
<Use
*, 4> ToReplace
;
7661 Instruction
*InsertPoint
= I
;
7662 DenseMap
<const Instruction
*, unsigned long> InstOrdering
;
7663 unsigned long InstNumber
= 0;
7664 for (const auto &I
: *TargetBB
)
7665 InstOrdering
[&I
] = InstNumber
++;
7667 for (Use
*U
: reverse(OpsToSink
)) {
7668 auto *UI
= cast
<Instruction
>(U
->get());
7669 if (isa
<PHINode
>(UI
))
7671 if (UI
->getParent() == TargetBB
) {
7672 if (InstOrdering
[UI
] < InstOrdering
[InsertPoint
])
7676 ToReplace
.push_back(U
);
7679 SetVector
<Instruction
*> MaybeDead
;
7680 DenseMap
<Instruction
*, Instruction
*> NewInstructions
;
7681 for (Use
*U
: ToReplace
) {
7682 auto *UI
= cast
<Instruction
>(U
->get());
7683 Instruction
*NI
= UI
->clone();
7686 // Now we clone an instruction, its operands' defs may sink to this BB
7687 // now. So we put the operands defs' BBs into FreshBBs to do optimization.
7688 for (Value
*Op
: NI
->operands())
7689 if (auto *OpDef
= dyn_cast
<Instruction
>(Op
))
7690 FreshBBs
.insert(OpDef
->getParent());
7693 NewInstructions
[UI
] = NI
;
7694 MaybeDead
.insert(UI
);
7695 LLVM_DEBUG(dbgs() << "Sinking " << *UI
<< " to user " << *I
<< "\n");
7696 NI
->insertBefore(InsertPoint
->getIterator());
7698 InsertedInsts
.insert(NI
);
7700 // Update the use for the new instruction, making sure that we update the
7701 // sunk instruction uses, if it is part of a chain that has already been
7703 Instruction
*OldI
= cast
<Instruction
>(U
->getUser());
7704 if (auto It
= NewInstructions
.find(OldI
); It
!= NewInstructions
.end())
7705 It
->second
->setOperand(U
->getOperandNo(), NI
);
7711 // Remove instructions that are dead after sinking.
7712 for (auto *I
: MaybeDead
) {
7713 if (!I
->hasNUsesOrMore(1)) {
7714 LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I
<< "\n");
7715 I
->eraseFromParent();
7722 bool CodeGenPrepare::optimizeSwitchType(SwitchInst
*SI
) {
7723 Value
*Cond
= SI
->getCondition();
7724 Type
*OldType
= Cond
->getType();
7725 LLVMContext
&Context
= Cond
->getContext();
7726 EVT OldVT
= TLI
->getValueType(*DL
, OldType
);
7727 MVT RegType
= TLI
->getPreferredSwitchConditionType(Context
, OldVT
);
7728 unsigned RegWidth
= RegType
.getSizeInBits();
7730 if (RegWidth
<= cast
<IntegerType
>(OldType
)->getBitWidth())
7733 // If the register width is greater than the type width, expand the condition
7734 // of the switch instruction and each case constant to the width of the
7735 // register. By widening the type of the switch condition, subsequent
7736 // comparisons (for case comparisons) will not need to be extended to the
7737 // preferred register width, so we will potentially eliminate N-1 extends,
7738 // where N is the number of cases in the switch.
7739 auto *NewType
= Type::getIntNTy(Context
, RegWidth
);
7741 // Extend the switch condition and case constants using the target preferred
7742 // extend unless the switch condition is a function argument with an extend
7743 // attribute. In that case, we can avoid an unnecessary mask/extension by
7744 // matching the argument extension instead.
7745 Instruction::CastOps ExtType
= Instruction::ZExt
;
7746 // Some targets prefer SExt over ZExt.
7747 if (TLI
->isSExtCheaperThanZExt(OldVT
, RegType
))
7748 ExtType
= Instruction::SExt
;
7750 if (auto *Arg
= dyn_cast
<Argument
>(Cond
)) {
7751 if (Arg
->hasSExtAttr())
7752 ExtType
= Instruction::SExt
;
7753 if (Arg
->hasZExtAttr())
7754 ExtType
= Instruction::ZExt
;
7757 auto *ExtInst
= CastInst::Create(ExtType
, Cond
, NewType
);
7758 ExtInst
->insertBefore(SI
->getIterator());
7759 ExtInst
->setDebugLoc(SI
->getDebugLoc());
7760 SI
->setCondition(ExtInst
);
7761 for (auto Case
: SI
->cases()) {
7762 const APInt
&NarrowConst
= Case
.getCaseValue()->getValue();
7763 APInt WideConst
= (ExtType
== Instruction::ZExt
)
7764 ? NarrowConst
.zext(RegWidth
)
7765 : NarrowConst
.sext(RegWidth
);
7766 Case
.setValue(ConstantInt::get(Context
, WideConst
));
7772 bool CodeGenPrepare::optimizeSwitchPhiConstants(SwitchInst
*SI
) {
7773 // The SCCP optimization tends to produce code like this:
7774 // switch(x) { case 42: phi(42, ...) }
7775 // Materializing the constant for the phi-argument needs instructions; So we
7776 // change the code to:
7777 // switch(x) { case 42: phi(x, ...) }
7779 Value
*Condition
= SI
->getCondition();
7780 // Avoid endless loop in degenerate case.
7781 if (isa
<ConstantInt
>(*Condition
))
7784 bool Changed
= false;
7785 BasicBlock
*SwitchBB
= SI
->getParent();
7786 Type
*ConditionType
= Condition
->getType();
7788 for (const SwitchInst::CaseHandle
&Case
: SI
->cases()) {
7789 ConstantInt
*CaseValue
= Case
.getCaseValue();
7790 BasicBlock
*CaseBB
= Case
.getCaseSuccessor();
7791 // Set to true if we previously checked that `CaseBB` is only reached by
7792 // a single case from this switch.
7793 bool CheckedForSinglePred
= false;
7794 for (PHINode
&PHI
: CaseBB
->phis()) {
7795 Type
*PHIType
= PHI
.getType();
7796 // If ZExt is free then we can also catch patterns like this:
7797 // switch((i32)x) { case 42: phi((i64)42, ...); }
7798 // and replace `(i64)42` with `zext i32 %x to i64`.
7800 PHIType
->isIntegerTy() &&
7801 PHIType
->getIntegerBitWidth() > ConditionType
->getIntegerBitWidth() &&
7802 TLI
->isZExtFree(ConditionType
, PHIType
);
7803 if (PHIType
== ConditionType
|| TryZExt
) {
7804 // Set to true to skip this case because of multiple preds.
7805 bool SkipCase
= false;
7806 Value
*Replacement
= nullptr;
7807 for (unsigned I
= 0, E
= PHI
.getNumIncomingValues(); I
!= E
; I
++) {
7808 Value
*PHIValue
= PHI
.getIncomingValue(I
);
7809 if (PHIValue
!= CaseValue
) {
7812 ConstantInt
*PHIValueInt
= dyn_cast
<ConstantInt
>(PHIValue
);
7814 PHIValueInt
->getValue() !=
7815 CaseValue
->getValue().zext(PHIType
->getIntegerBitWidth()))
7818 if (PHI
.getIncomingBlock(I
) != SwitchBB
)
7820 // We cannot optimize if there are multiple case labels jumping to
7821 // this block. This check may get expensive when there are many
7822 // case labels so we test for it last.
7823 if (!CheckedForSinglePred
) {
7824 CheckedForSinglePred
= true;
7825 if (SI
->findCaseDest(CaseBB
) == nullptr) {
7831 if (Replacement
== nullptr) {
7832 if (PHIValue
== CaseValue
) {
7833 Replacement
= Condition
;
7835 IRBuilder
<> Builder(SI
);
7836 Replacement
= Builder
.CreateZExt(Condition
, PHIType
);
7839 PHI
.setIncomingValue(I
, Replacement
);
7850 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst
*SI
) {
7851 bool Changed
= optimizeSwitchType(SI
);
7852 Changed
|= optimizeSwitchPhiConstants(SI
);
7858 /// Helper class to promote a scalar operation to a vector one.
7859 /// This class is used to move downward extractelement transition.
7861 /// a = vector_op <2 x i32>
7862 /// b = extractelement <2 x i32> a, i32 0
7867 /// a = vector_op <2 x i32>
7868 /// c = vector_op a (equivalent to scalar_op on the related lane)
7869 /// * d = extractelement <2 x i32> c, i32 0
7871 /// Assuming both extractelement and store can be combine, we get rid of the
7873 class VectorPromoteHelper
{
7874 /// DataLayout associated with the current module.
7875 const DataLayout
&DL
;
7877 /// Used to perform some checks on the legality of vector operations.
7878 const TargetLowering
&TLI
;
7880 /// Used to estimated the cost of the promoted chain.
7881 const TargetTransformInfo
&TTI
;
7883 /// The transition being moved downwards.
7884 Instruction
*Transition
;
7886 /// The sequence of instructions to be promoted.
7887 SmallVector
<Instruction
*, 4> InstsToBePromoted
;
7889 /// Cost of combining a store and an extract.
7890 unsigned StoreExtractCombineCost
;
7892 /// Instruction that will be combined with the transition.
7893 Instruction
*CombineInst
= nullptr;
7895 /// The instruction that represents the current end of the transition.
7896 /// Since we are faking the promotion until we reach the end of the chain
7897 /// of computation, we need a way to get the current end of the transition.
7898 Instruction
*getEndOfTransition() const {
7899 if (InstsToBePromoted
.empty())
7901 return InstsToBePromoted
.back();
7904 /// Return the index of the original value in the transition.
7905 /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7906 /// c, is at index 0.
7907 unsigned getTransitionOriginalValueIdx() const {
7908 assert(isa
<ExtractElementInst
>(Transition
) &&
7909 "Other kind of transitions are not supported yet");
7913 /// Return the index of the index in the transition.
7914 /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7916 unsigned getTransitionIdx() const {
7917 assert(isa
<ExtractElementInst
>(Transition
) &&
7918 "Other kind of transitions are not supported yet");
7922 /// Get the type of the transition.
7923 /// This is the type of the original value.
7924 /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7925 /// transition is <2 x i32>.
7926 Type
*getTransitionType() const {
7927 return Transition
->getOperand(getTransitionOriginalValueIdx())->getType();
7930 /// Promote \p ToBePromoted by moving \p Def downward through.
7931 /// I.e., we have the following sequence:
7932 /// Def = Transition <ty1> a to <ty2>
7933 /// b = ToBePromoted <ty2> Def, ...
7935 /// b = ToBePromoted <ty1> a, ...
7936 /// Def = Transition <ty1> ToBePromoted to <ty2>
7937 void promoteImpl(Instruction
*ToBePromoted
);
7939 /// Check whether or not it is profitable to promote all the
7940 /// instructions enqueued to be promoted.
7941 bool isProfitableToPromote() {
7942 Value
*ValIdx
= Transition
->getOperand(getTransitionOriginalValueIdx());
7943 unsigned Index
= isa
<ConstantInt
>(ValIdx
)
7944 ? cast
<ConstantInt
>(ValIdx
)->getZExtValue()
7946 Type
*PromotedType
= getTransitionType();
7948 StoreInst
*ST
= cast
<StoreInst
>(CombineInst
);
7949 unsigned AS
= ST
->getPointerAddressSpace();
7950 // Check if this store is supported.
7951 if (!TLI
.allowsMisalignedMemoryAccesses(
7952 TLI
.getValueType(DL
, ST
->getValueOperand()->getType()), AS
,
7954 // If this is not supported, there is no way we can combine
7955 // the extract with the store.
7959 // The scalar chain of computation has to pay for the transition
7960 // scalar to vector.
7961 // The vector chain has to account for the combining cost.
7962 enum TargetTransformInfo::TargetCostKind CostKind
=
7963 TargetTransformInfo::TCK_RecipThroughput
;
7964 InstructionCost ScalarCost
=
7965 TTI
.getVectorInstrCost(*Transition
, PromotedType
, CostKind
, Index
);
7966 InstructionCost VectorCost
= StoreExtractCombineCost
;
7967 for (const auto &Inst
: InstsToBePromoted
) {
7968 // Compute the cost.
7969 // By construction, all instructions being promoted are arithmetic ones.
7970 // Moreover, one argument is a constant that can be viewed as a splat
7972 Value
*Arg0
= Inst
->getOperand(0);
7973 bool IsArg0Constant
= isa
<UndefValue
>(Arg0
) || isa
<ConstantInt
>(Arg0
) ||
7974 isa
<ConstantFP
>(Arg0
);
7975 TargetTransformInfo::OperandValueInfo Arg0Info
, Arg1Info
;
7977 Arg0Info
.Kind
= TargetTransformInfo::OK_UniformConstantValue
;
7979 Arg1Info
.Kind
= TargetTransformInfo::OK_UniformConstantValue
;
7981 ScalarCost
+= TTI
.getArithmeticInstrCost(
7982 Inst
->getOpcode(), Inst
->getType(), CostKind
, Arg0Info
, Arg1Info
);
7983 VectorCost
+= TTI
.getArithmeticInstrCost(Inst
->getOpcode(), PromotedType
,
7984 CostKind
, Arg0Info
, Arg1Info
);
7987 dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7988 << ScalarCost
<< "\nVector: " << VectorCost
<< '\n');
7989 return ScalarCost
> VectorCost
;
7992 /// Generate a constant vector with \p Val with the same
7993 /// number of elements as the transition.
7994 /// \p UseSplat defines whether or not \p Val should be replicated
7995 /// across the whole vector.
7996 /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7997 /// otherwise we generate a vector with as many poison as possible:
7998 /// <poison, ..., poison, Val, poison, ..., poison> where \p Val is only
7999 /// used at the index of the extract.
8000 Value
*getConstantVector(Constant
*Val
, bool UseSplat
) const {
8001 unsigned ExtractIdx
= std::numeric_limits
<unsigned>::max();
8003 // If we cannot determine where the constant must be, we have to
8004 // use a splat constant.
8005 Value
*ValExtractIdx
= Transition
->getOperand(getTransitionIdx());
8006 if (ConstantInt
*CstVal
= dyn_cast
<ConstantInt
>(ValExtractIdx
))
8007 ExtractIdx
= CstVal
->getSExtValue();
8012 ElementCount EC
= cast
<VectorType
>(getTransitionType())->getElementCount();
8014 return ConstantVector::getSplat(EC
, Val
);
8016 if (!EC
.isScalable()) {
8017 SmallVector
<Constant
*, 4> ConstVec
;
8018 PoisonValue
*PoisonVal
= PoisonValue::get(Val
->getType());
8019 for (unsigned Idx
= 0; Idx
!= EC
.getKnownMinValue(); ++Idx
) {
8020 if (Idx
== ExtractIdx
)
8021 ConstVec
.push_back(Val
);
8023 ConstVec
.push_back(PoisonVal
);
8025 return ConstantVector::get(ConstVec
);
8028 "Generate scalable vector for non-splat is unimplemented");
8031 /// Check if promoting to a vector type an operand at \p OperandIdx
8032 /// in \p Use can trigger undefined behavior.
8033 static bool canCauseUndefinedBehavior(const Instruction
*Use
,
8034 unsigned OperandIdx
) {
8035 // This is not safe to introduce undef when the operand is on
8036 // the right hand side of a division-like instruction.
8037 if (OperandIdx
!= 1)
8039 switch (Use
->getOpcode()) {
8042 case Instruction::SDiv
:
8043 case Instruction::UDiv
:
8044 case Instruction::SRem
:
8045 case Instruction::URem
:
8047 case Instruction::FDiv
:
8048 case Instruction::FRem
:
8049 return !Use
->hasNoNaNs();
8051 llvm_unreachable(nullptr);
8055 VectorPromoteHelper(const DataLayout
&DL
, const TargetLowering
&TLI
,
8056 const TargetTransformInfo
&TTI
, Instruction
*Transition
,
8057 unsigned CombineCost
)
8058 : DL(DL
), TLI(TLI
), TTI(TTI
), Transition(Transition
),
8059 StoreExtractCombineCost(CombineCost
) {
8060 assert(Transition
&& "Do not know how to promote null");
8063 /// Check if we can promote \p ToBePromoted to \p Type.
8064 bool canPromote(const Instruction
*ToBePromoted
) const {
8065 // We could support CastInst too.
8066 return isa
<BinaryOperator
>(ToBePromoted
);
8069 /// Check if it is profitable to promote \p ToBePromoted
8070 /// by moving downward the transition through.
8071 bool shouldPromote(const Instruction
*ToBePromoted
) const {
8072 // Promote only if all the operands can be statically expanded.
8073 // Indeed, we do not want to introduce any new kind of transitions.
8074 for (const Use
&U
: ToBePromoted
->operands()) {
8075 const Value
*Val
= U
.get();
8076 if (Val
== getEndOfTransition()) {
8077 // If the use is a division and the transition is on the rhs,
8078 // we cannot promote the operation, otherwise we may create a
8079 // division by zero.
8080 if (canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()))
8084 if (!isa
<ConstantInt
>(Val
) && !isa
<UndefValue
>(Val
) &&
8085 !isa
<ConstantFP
>(Val
))
8088 // Check that the resulting operation is legal.
8089 int ISDOpcode
= TLI
.InstructionOpcodeToISD(ToBePromoted
->getOpcode());
8092 return StressStoreExtract
||
8093 TLI
.isOperationLegalOrCustom(
8094 ISDOpcode
, TLI
.getValueType(DL
, getTransitionType(), true));
8097 /// Check whether or not \p Use can be combined
8098 /// with the transition.
8099 /// I.e., is it possible to do Use(Transition) => AnotherUse?
8100 bool canCombine(const Instruction
*Use
) { return isa
<StoreInst
>(Use
); }
8102 /// Record \p ToBePromoted as part of the chain to be promoted.
8103 void enqueueForPromotion(Instruction
*ToBePromoted
) {
8104 InstsToBePromoted
.push_back(ToBePromoted
);
8107 /// Set the instruction that will be combined with the transition.
8108 void recordCombineInstruction(Instruction
*ToBeCombined
) {
8109 assert(canCombine(ToBeCombined
) && "Unsupported instruction to combine");
8110 CombineInst
= ToBeCombined
;
8113 /// Promote all the instructions enqueued for promotion if it is
8115 /// \return True if the promotion happened, false otherwise.
8117 // Check if there is something to promote.
8118 // Right now, if we do not have anything to combine with,
8119 // we assume the promotion is not profitable.
8120 if (InstsToBePromoted
.empty() || !CombineInst
)
8124 if (!StressStoreExtract
&& !isProfitableToPromote())
8128 for (auto &ToBePromoted
: InstsToBePromoted
)
8129 promoteImpl(ToBePromoted
);
8130 InstsToBePromoted
.clear();
8135 } // end anonymous namespace
8137 void VectorPromoteHelper::promoteImpl(Instruction
*ToBePromoted
) {
8138 // At this point, we know that all the operands of ToBePromoted but Def
8139 // can be statically promoted.
8140 // For Def, we need to use its parameter in ToBePromoted:
8141 // b = ToBePromoted ty1 a
8142 // Def = Transition ty1 b to ty2
8143 // Move the transition down.
8144 // 1. Replace all uses of the promoted operation by the transition.
8145 // = ... b => = ... Def.
8146 assert(ToBePromoted
->getType() == Transition
->getType() &&
8147 "The type of the result of the transition does not match "
8149 ToBePromoted
->replaceAllUsesWith(Transition
);
8150 // 2. Update the type of the uses.
8151 // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
8152 Type
*TransitionTy
= getTransitionType();
8153 ToBePromoted
->mutateType(TransitionTy
);
8154 // 3. Update all the operands of the promoted operation with promoted
8156 // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
8157 for (Use
&U
: ToBePromoted
->operands()) {
8158 Value
*Val
= U
.get();
8159 Value
*NewVal
= nullptr;
8160 if (Val
== Transition
)
8161 NewVal
= Transition
->getOperand(getTransitionOriginalValueIdx());
8162 else if (isa
<UndefValue
>(Val
) || isa
<ConstantInt
>(Val
) ||
8163 isa
<ConstantFP
>(Val
)) {
8164 // Use a splat constant if it is not safe to use undef.
8165 NewVal
= getConstantVector(
8166 cast
<Constant
>(Val
),
8167 isa
<UndefValue
>(Val
) ||
8168 canCauseUndefinedBehavior(ToBePromoted
, U
.getOperandNo()));
8170 llvm_unreachable("Did you modified shouldPromote and forgot to update "
8172 ToBePromoted
->setOperand(U
.getOperandNo(), NewVal
);
8174 Transition
->moveAfter(ToBePromoted
);
8175 Transition
->setOperand(getTransitionOriginalValueIdx(), ToBePromoted
);
8178 /// Some targets can do store(extractelement) with one instruction.
8179 /// Try to push the extractelement towards the stores when the target
8180 /// has this feature and this is profitable.
8181 bool CodeGenPrepare::optimizeExtractElementInst(Instruction
*Inst
) {
8182 unsigned CombineCost
= std::numeric_limits
<unsigned>::max();
8183 if (DisableStoreExtract
||
8184 (!StressStoreExtract
&&
8185 !TLI
->canCombineStoreAndExtract(Inst
->getOperand(0)->getType(),
8186 Inst
->getOperand(1), CombineCost
)))
8189 // At this point we know that Inst is a vector to scalar transition.
8190 // Try to move it down the def-use chain, until:
8191 // - We can combine the transition with its single use
8192 // => we got rid of the transition.
8193 // - We escape the current basic block
8194 // => we would need to check that we are moving it at a cheaper place and
8195 // we do not do that for now.
8196 BasicBlock
*Parent
= Inst
->getParent();
8197 LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst
<< '\n');
8198 VectorPromoteHelper
VPH(*DL
, *TLI
, *TTI
, Inst
, CombineCost
);
8199 // If the transition has more than one use, assume this is not going to be
8201 while (Inst
->hasOneUse()) {
8202 Instruction
*ToBePromoted
= cast
<Instruction
>(*Inst
->user_begin());
8203 LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted
<< '\n');
8205 if (ToBePromoted
->getParent() != Parent
) {
8206 LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
8207 << ToBePromoted
->getParent()->getName()
8208 << ") than the transition (" << Parent
->getName()
8213 if (VPH
.canCombine(ToBePromoted
)) {
8214 LLVM_DEBUG(dbgs() << "Assume " << *Inst
<< '\n'
8215 << "will be combined with: " << *ToBePromoted
<< '\n');
8216 VPH
.recordCombineInstruction(ToBePromoted
);
8217 bool Changed
= VPH
.promote();
8218 NumStoreExtractExposed
+= Changed
;
8222 LLVM_DEBUG(dbgs() << "Try promoting.\n");
8223 if (!VPH
.canPromote(ToBePromoted
) || !VPH
.shouldPromote(ToBePromoted
))
8226 LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
8228 VPH
.enqueueForPromotion(ToBePromoted
);
8229 Inst
= ToBePromoted
;
8234 /// For the instruction sequence of store below, F and I values
8235 /// are bundled together as an i64 value before being stored into memory.
8236 /// Sometimes it is more efficient to generate separate stores for F and I,
8237 /// which can remove the bitwise instructions or sink them to colder places.
8239 /// (store (or (zext (bitcast F to i32) to i64),
8240 /// (shl (zext I to i64), 32)), addr) -->
8241 /// (store F, addr) and (store I, addr+4)
8243 /// Similarly, splitting for other merged store can also be beneficial, like:
8244 /// For pair of {i32, i32}, i64 store --> two i32 stores.
8245 /// For pair of {i32, i16}, i64 store --> two i32 stores.
8246 /// For pair of {i16, i16}, i32 store --> two i16 stores.
8247 /// For pair of {i16, i8}, i32 store --> two i16 stores.
8248 /// For pair of {i8, i8}, i16 store --> two i8 stores.
8250 /// We allow each target to determine specifically which kind of splitting is
8253 /// The store patterns are commonly seen from the simple code snippet below
8254 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
8255 /// void goo(const std::pair<int, float> &);
8258 /// goo(std::make_pair(tmp, ftmp));
8262 /// Although we already have similar splitting in DAG Combine, we duplicate
8263 /// it in CodeGenPrepare to catch the case in which pattern is across
8264 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
8265 /// during code expansion.
8266 static bool splitMergedValStore(StoreInst
&SI
, const DataLayout
&DL
,
8267 const TargetLowering
&TLI
) {
8268 // Handle simple but common cases only.
8269 Type
*StoreType
= SI
.getValueOperand()->getType();
8271 // The code below assumes shifting a value by <number of bits>,
8272 // whereas scalable vectors would have to be shifted by
8273 // <2log(vscale) + number of bits> in order to store the
8274 // low/high parts. Bailing out for now.
8275 if (StoreType
->isScalableTy())
8278 if (!DL
.typeSizeEqualsStoreSize(StoreType
) ||
8279 DL
.getTypeSizeInBits(StoreType
) == 0)
8282 unsigned HalfValBitSize
= DL
.getTypeSizeInBits(StoreType
) / 2;
8283 Type
*SplitStoreType
= Type::getIntNTy(SI
.getContext(), HalfValBitSize
);
8284 if (!DL
.typeSizeEqualsStoreSize(SplitStoreType
))
8287 // Don't split the store if it is volatile.
8288 if (SI
.isVolatile())
8291 // Match the following patterns:
8292 // (store (or (zext LValue to i64),
8293 // (shl (zext HValue to i64), 32)), HalfValBitSize)
8295 // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
8296 // (zext LValue to i64),
8297 // Expect both operands of OR and the first operand of SHL have only
8299 Value
*LValue
, *HValue
;
8300 if (!match(SI
.getValueOperand(),
8301 m_c_Or(m_OneUse(m_ZExt(m_Value(LValue
))),
8302 m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue
))),
8303 m_SpecificInt(HalfValBitSize
))))))
8306 // Check LValue and HValue are int with size less or equal than 32.
8307 if (!LValue
->getType()->isIntegerTy() ||
8308 DL
.getTypeSizeInBits(LValue
->getType()) > HalfValBitSize
||
8309 !HValue
->getType()->isIntegerTy() ||
8310 DL
.getTypeSizeInBits(HValue
->getType()) > HalfValBitSize
)
8313 // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
8314 // as the input of target query.
8315 auto *LBC
= dyn_cast
<BitCastInst
>(LValue
);
8316 auto *HBC
= dyn_cast
<BitCastInst
>(HValue
);
8317 EVT LowTy
= LBC
? EVT::getEVT(LBC
->getOperand(0)->getType())
8318 : EVT::getEVT(LValue
->getType());
8319 EVT HighTy
= HBC
? EVT::getEVT(HBC
->getOperand(0)->getType())
8320 : EVT::getEVT(HValue
->getType());
8321 if (!ForceSplitStore
&& !TLI
.isMultiStoresCheaperThanBitsMerge(LowTy
, HighTy
))
8324 // Start to split store.
8325 IRBuilder
<> Builder(SI
.getContext());
8326 Builder
.SetInsertPoint(&SI
);
8328 // If LValue/HValue is a bitcast in another BB, create a new one in current
8329 // BB so it may be merged with the splitted stores by dag combiner.
8330 if (LBC
&& LBC
->getParent() != SI
.getParent())
8331 LValue
= Builder
.CreateBitCast(LBC
->getOperand(0), LBC
->getType());
8332 if (HBC
&& HBC
->getParent() != SI
.getParent())
8333 HValue
= Builder
.CreateBitCast(HBC
->getOperand(0), HBC
->getType());
8335 bool IsLE
= SI
.getDataLayout().isLittleEndian();
8336 auto CreateSplitStore
= [&](Value
*V
, bool Upper
) {
8337 V
= Builder
.CreateZExtOrBitCast(V
, SplitStoreType
);
8338 Value
*Addr
= SI
.getPointerOperand();
8339 Align Alignment
= SI
.getAlign();
8340 const bool IsOffsetStore
= (IsLE
&& Upper
) || (!IsLE
&& !Upper
);
8341 if (IsOffsetStore
) {
8342 Addr
= Builder
.CreateGEP(
8343 SplitStoreType
, Addr
,
8344 ConstantInt::get(Type::getInt32Ty(SI
.getContext()), 1));
8346 // When splitting the store in half, naturally one half will retain the
8347 // alignment of the original wider store, regardless of whether it was
8348 // over-aligned or not, while the other will require adjustment.
8349 Alignment
= commonAlignment(Alignment
, HalfValBitSize
/ 8);
8351 Builder
.CreateAlignedStore(V
, Addr
, Alignment
);
8354 CreateSplitStore(LValue
, false);
8355 CreateSplitStore(HValue
, true);
8357 // Delete the old store.
8358 SI
.eraseFromParent();
8362 // Return true if the GEP has two operands, the first operand is of a sequential
8363 // type, and the second operand is a constant.
8364 static bool GEPSequentialConstIndexed(GetElementPtrInst
*GEP
) {
8365 gep_type_iterator I
= gep_type_begin(*GEP
);
8366 return GEP
->getNumOperands() == 2 && I
.isSequential() &&
8367 isa
<ConstantInt
>(GEP
->getOperand(1));
8370 // Try unmerging GEPs to reduce liveness interference (register pressure) across
8371 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
8372 // reducing liveness interference across those edges benefits global register
8373 // allocation. Currently handles only certain cases.
8375 // For example, unmerge %GEPI and %UGEPI as below.
8377 // ---------- BEFORE ----------
8382 // %GEPI = gep %GEPIOp, Idx
8384 // indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
8385 // (* %GEPI is alive on the indirectbr edges due to other uses ahead)
8386 // (* %GEPIOp is alive on the indirectbr edges only because of it's used by
8389 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
8390 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
8395 // %UGEPI = gep %GEPIOp, UIdx
8397 // ---------------------------
8399 // ---------- AFTER ----------
8401 // ... (same as above)
8402 // (* %GEPI is still alive on the indirectbr edges)
8403 // (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
8409 // %UGEPI = gep %GEPI, (UIdx-Idx)
8411 // ---------------------------
8413 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
8414 // no longer alive on them.
8416 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
8417 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
8418 // not to disable further simplications and optimizations as a result of GEP
8421 // Note this unmerging may increase the length of the data flow critical path
8422 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
8423 // between the register pressure and the length of data-flow critical
8424 // path. Restricting this to the uncommon IndirectBr case would minimize the
8425 // impact of potentially longer critical path, if any, and the impact on compile
8427 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst
*GEPI
,
8428 const TargetTransformInfo
*TTI
) {
8429 BasicBlock
*SrcBlock
= GEPI
->getParent();
8430 // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
8431 // (non-IndirectBr) cases exit early here.
8432 if (!isa
<IndirectBrInst
>(SrcBlock
->getTerminator()))
8434 // Check that GEPI is a simple gep with a single constant index.
8435 if (!GEPSequentialConstIndexed(GEPI
))
8437 ConstantInt
*GEPIIdx
= cast
<ConstantInt
>(GEPI
->getOperand(1));
8438 // Check that GEPI is a cheap one.
8439 if (TTI
->getIntImmCost(GEPIIdx
->getValue(), GEPIIdx
->getType(),
8440 TargetTransformInfo::TCK_SizeAndLatency
) >
8441 TargetTransformInfo::TCC_Basic
)
8443 Value
*GEPIOp
= GEPI
->getOperand(0);
8444 // Check that GEPIOp is an instruction that's also defined in SrcBlock.
8445 if (!isa
<Instruction
>(GEPIOp
))
8447 auto *GEPIOpI
= cast
<Instruction
>(GEPIOp
);
8448 if (GEPIOpI
->getParent() != SrcBlock
)
8450 // Check that GEP is used outside the block, meaning it's alive on the
8451 // IndirectBr edge(s).
8452 if (llvm::none_of(GEPI
->users(), [&](User
*Usr
) {
8453 if (auto *I
= dyn_cast
<Instruction
>(Usr
)) {
8454 if (I
->getParent() != SrcBlock
) {
8461 // The second elements of the GEP chains to be unmerged.
8462 std::vector
<GetElementPtrInst
*> UGEPIs
;
8463 // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
8464 // on IndirectBr edges.
8465 for (User
*Usr
: GEPIOp
->users()) {
8468 // Check if Usr is an Instruction. If not, give up.
8469 if (!isa
<Instruction
>(Usr
))
8471 auto *UI
= cast
<Instruction
>(Usr
);
8472 // Check if Usr in the same block as GEPIOp, which is fine, skip.
8473 if (UI
->getParent() == SrcBlock
)
8475 // Check if Usr is a GEP. If not, give up.
8476 if (!isa
<GetElementPtrInst
>(Usr
))
8478 auto *UGEPI
= cast
<GetElementPtrInst
>(Usr
);
8479 // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
8480 // the pointer operand to it. If so, record it in the vector. If not, give
8482 if (!GEPSequentialConstIndexed(UGEPI
))
8484 if (UGEPI
->getOperand(0) != GEPIOp
)
8486 if (UGEPI
->getSourceElementType() != GEPI
->getSourceElementType())
8488 if (GEPIIdx
->getType() !=
8489 cast
<ConstantInt
>(UGEPI
->getOperand(1))->getType())
8491 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8492 if (TTI
->getIntImmCost(UGEPIIdx
->getValue(), UGEPIIdx
->getType(),
8493 TargetTransformInfo::TCK_SizeAndLatency
) >
8494 TargetTransformInfo::TCC_Basic
)
8496 UGEPIs
.push_back(UGEPI
);
8498 if (UGEPIs
.size() == 0)
8500 // Check the materializing cost of (Uidx-Idx).
8501 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
8502 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8503 APInt NewIdx
= UGEPIIdx
->getValue() - GEPIIdx
->getValue();
8504 InstructionCost ImmCost
= TTI
->getIntImmCost(
8505 NewIdx
, GEPIIdx
->getType(), TargetTransformInfo::TCK_SizeAndLatency
);
8506 if (ImmCost
> TargetTransformInfo::TCC_Basic
)
8509 // Now unmerge between GEPI and UGEPIs.
8510 for (GetElementPtrInst
*UGEPI
: UGEPIs
) {
8511 UGEPI
->setOperand(0, GEPI
);
8512 ConstantInt
*UGEPIIdx
= cast
<ConstantInt
>(UGEPI
->getOperand(1));
8513 Constant
*NewUGEPIIdx
= ConstantInt::get(
8514 GEPIIdx
->getType(), UGEPIIdx
->getValue() - GEPIIdx
->getValue());
8515 UGEPI
->setOperand(1, NewUGEPIIdx
);
8516 // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
8517 // inbounds to avoid UB.
8518 if (!GEPI
->isInBounds()) {
8519 UGEPI
->setIsInBounds(false);
8522 // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
8523 // alive on IndirectBr edges).
8524 assert(llvm::none_of(GEPIOp
->users(),
8526 return cast
<Instruction
>(Usr
)->getParent() != SrcBlock
;
8528 "GEPIOp is used outside SrcBlock");
8532 static bool optimizeBranch(BranchInst
*Branch
, const TargetLowering
&TLI
,
8533 SmallSet
<BasicBlock
*, 32> &FreshBBs
,
8536 // %c = icmp ult %x, 8
8541 // %c = icmp eq %tc, 0
8543 // Creating the cmp to zero can be better for the backend, especially if the
8544 // lshr produces flags that can be used automatically.
8545 if (!TLI
.preferZeroCompareBranch() || !Branch
->isConditional())
8548 ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(Branch
->getCondition());
8549 if (!Cmp
|| !isa
<ConstantInt
>(Cmp
->getOperand(1)) || !Cmp
->hasOneUse())
8552 Value
*X
= Cmp
->getOperand(0);
8553 APInt CmpC
= cast
<ConstantInt
>(Cmp
->getOperand(1))->getValue();
8555 for (auto *U
: X
->users()) {
8556 Instruction
*UI
= dyn_cast
<Instruction
>(U
);
8557 // A quick dominance check
8559 (UI
->getParent() != Branch
->getParent() &&
8560 UI
->getParent() != Branch
->getSuccessor(0) &&
8561 UI
->getParent() != Branch
->getSuccessor(1)) ||
8562 (UI
->getParent() != Branch
->getParent() &&
8563 !UI
->getParent()->getSinglePredecessor()))
8566 if (CmpC
.isPowerOf2() && Cmp
->getPredicate() == ICmpInst::ICMP_ULT
&&
8567 match(UI
, m_Shr(m_Specific(X
), m_SpecificInt(CmpC
.logBase2())))) {
8568 IRBuilder
<> Builder(Branch
);
8569 if (UI
->getParent() != Branch
->getParent())
8570 UI
->moveBefore(Branch
->getIterator());
8571 UI
->dropPoisonGeneratingFlags();
8572 Value
*NewCmp
= Builder
.CreateCmp(ICmpInst::ICMP_EQ
, UI
,
8573 ConstantInt::get(UI
->getType(), 0));
8574 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
8575 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
8576 replaceAllUsesWith(Cmp
, NewCmp
, FreshBBs
, IsHugeFunc
);
8579 if (Cmp
->isEquality() &&
8580 (match(UI
, m_Add(m_Specific(X
), m_SpecificInt(-CmpC
))) ||
8581 match(UI
, m_Sub(m_Specific(X
), m_SpecificInt(CmpC
))))) {
8582 IRBuilder
<> Builder(Branch
);
8583 if (UI
->getParent() != Branch
->getParent())
8584 UI
->moveBefore(Branch
->getIterator());
8585 UI
->dropPoisonGeneratingFlags();
8586 Value
*NewCmp
= Builder
.CreateCmp(Cmp
->getPredicate(), UI
,
8587 ConstantInt::get(UI
->getType(), 0));
8588 LLVM_DEBUG(dbgs() << "Converting " << *Cmp
<< "\n");
8589 LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp
<< "\n");
8590 replaceAllUsesWith(Cmp
, NewCmp
, FreshBBs
, IsHugeFunc
);
8597 bool CodeGenPrepare::optimizeInst(Instruction
*I
, ModifyDT
&ModifiedDT
) {
8598 bool AnyChange
= false;
8599 AnyChange
= fixupDbgVariableRecordsOnInst(*I
);
8601 // Bail out if we inserted the instruction to prevent optimizations from
8602 // stepping on each other's toes.
8603 if (InsertedInsts
.count(I
))
8606 // TODO: Move into the switch on opcode below here.
8607 if (PHINode
*P
= dyn_cast
<PHINode
>(I
)) {
8608 // It is possible for very late stage optimizations (such as SimplifyCFG)
8609 // to introduce PHI nodes too late to be cleaned up. If we detect such a
8610 // trivial PHI, go ahead and zap it here.
8611 if (Value
*V
= simplifyInstruction(P
, {*DL
, TLInfo
})) {
8612 LargeOffsetGEPMap
.erase(P
);
8613 replaceAllUsesWith(P
, V
, FreshBBs
, IsHugeFunc
);
8614 P
->eraseFromParent();
8621 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
8622 // If the source of the cast is a constant, then this should have
8623 // already been constant folded. The only reason NOT to constant fold
8624 // it is if something (e.g. LSR) was careful to place the constant
8625 // evaluation in a block other than then one that uses it (e.g. to hoist
8626 // the address of globals out of a loop). If this is the case, we don't
8627 // want to forward-subst the cast.
8628 if (isa
<Constant
>(CI
->getOperand(0)))
8631 if (OptimizeNoopCopyExpression(CI
, *TLI
, *DL
))
8634 if ((isa
<UIToFPInst
>(I
) || isa
<SIToFPInst
>(I
) || isa
<FPToUIInst
>(I
) ||
8635 isa
<TruncInst
>(I
)) &&
8636 TLI
->optimizeExtendOrTruncateConversion(
8637 I
, LI
->getLoopFor(I
->getParent()), *TTI
))
8640 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)) {
8641 /// Sink a zext or sext into its user blocks if the target type doesn't
8642 /// fit in one register
8643 if (TLI
->getTypeAction(CI
->getContext(),
8644 TLI
->getValueType(*DL
, CI
->getType())) ==
8645 TargetLowering::TypeExpandInteger
) {
8646 return SinkCast(CI
);
8648 if (TLI
->optimizeExtendOrTruncateConversion(
8649 I
, LI
->getLoopFor(I
->getParent()), *TTI
))
8652 bool MadeChange
= optimizeExt(I
);
8653 return MadeChange
| optimizeExtUses(I
);
8659 if (auto *Cmp
= dyn_cast
<CmpInst
>(I
))
8660 if (optimizeCmp(Cmp
, ModifiedDT
))
8663 if (match(I
, m_URem(m_Value(), m_Value())))
8664 if (optimizeURem(I
))
8667 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
8668 LI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
8669 bool Modified
= optimizeLoadExt(LI
);
8670 unsigned AS
= LI
->getPointerAddressSpace();
8671 Modified
|= optimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(), AS
);
8675 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
8676 if (splitMergedValStore(*SI
, *DL
, *TLI
))
8678 SI
->setMetadata(LLVMContext::MD_invariant_group
, nullptr);
8679 unsigned AS
= SI
->getPointerAddressSpace();
8680 return optimizeMemoryInst(I
, SI
->getOperand(1),
8681 SI
->getOperand(0)->getType(), AS
);
8684 if (AtomicRMWInst
*RMW
= dyn_cast
<AtomicRMWInst
>(I
)) {
8685 unsigned AS
= RMW
->getPointerAddressSpace();
8686 return optimizeMemoryInst(I
, RMW
->getPointerOperand(), RMW
->getType(), AS
);
8689 if (AtomicCmpXchgInst
*CmpX
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
8690 unsigned AS
= CmpX
->getPointerAddressSpace();
8691 return optimizeMemoryInst(I
, CmpX
->getPointerOperand(),
8692 CmpX
->getCompareOperand()->getType(), AS
);
8695 BinaryOperator
*BinOp
= dyn_cast
<BinaryOperator
>(I
);
8697 if (BinOp
&& BinOp
->getOpcode() == Instruction::And
&& EnableAndCmpSinking
&&
8698 sinkAndCmp0Expression(BinOp
, *TLI
, InsertedInsts
))
8701 // TODO: Move this into the switch on opcode - it handles shifts already.
8702 if (BinOp
&& (BinOp
->getOpcode() == Instruction::AShr
||
8703 BinOp
->getOpcode() == Instruction::LShr
)) {
8704 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BinOp
->getOperand(1));
8705 if (CI
&& TLI
->hasExtractBitsInsn())
8706 if (OptimizeExtractBits(BinOp
, CI
, *TLI
, *DL
))
8710 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
8711 if (GEPI
->hasAllZeroIndices()) {
8712 /// The GEP operand must be a pointer, so must its result -> BitCast
8713 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
8714 GEPI
->getName(), GEPI
->getIterator());
8715 NC
->setDebugLoc(GEPI
->getDebugLoc());
8716 replaceAllUsesWith(GEPI
, NC
, FreshBBs
, IsHugeFunc
);
8717 RecursivelyDeleteTriviallyDeadInstructions(
8718 GEPI
, TLInfo
, nullptr,
8719 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
8721 optimizeInst(NC
, ModifiedDT
);
8724 if (tryUnmergingGEPsAcrossIndirectBr(GEPI
, TTI
)) {
8729 if (FreezeInst
*FI
= dyn_cast
<FreezeInst
>(I
)) {
8730 // freeze(icmp a, const)) -> icmp (freeze a), const
8731 // This helps generate efficient conditional jumps.
8732 Instruction
*CmpI
= nullptr;
8733 if (ICmpInst
*II
= dyn_cast
<ICmpInst
>(FI
->getOperand(0)))
8735 else if (FCmpInst
*F
= dyn_cast
<FCmpInst
>(FI
->getOperand(0)))
8736 CmpI
= F
->getFastMathFlags().none() ? F
: nullptr;
8738 if (CmpI
&& CmpI
->hasOneUse()) {
8739 auto Op0
= CmpI
->getOperand(0), Op1
= CmpI
->getOperand(1);
8740 bool Const0
= isa
<ConstantInt
>(Op0
) || isa
<ConstantFP
>(Op0
) ||
8741 isa
<ConstantPointerNull
>(Op0
);
8742 bool Const1
= isa
<ConstantInt
>(Op1
) || isa
<ConstantFP
>(Op1
) ||
8743 isa
<ConstantPointerNull
>(Op1
);
8744 if (Const0
|| Const1
) {
8745 if (!Const0
|| !Const1
) {
8746 auto *F
= new FreezeInst(Const0
? Op1
: Op0
, "", CmpI
->getIterator());
8748 CmpI
->setOperand(Const0
? 1 : 0, F
);
8750 replaceAllUsesWith(FI
, CmpI
, FreshBBs
, IsHugeFunc
);
8751 FI
->eraseFromParent();
8758 if (tryToSinkFreeOperands(I
))
8761 switch (I
->getOpcode()) {
8762 case Instruction::Shl
:
8763 case Instruction::LShr
:
8764 case Instruction::AShr
:
8765 return optimizeShiftInst(cast
<BinaryOperator
>(I
));
8766 case Instruction::Call
:
8767 return optimizeCallInst(cast
<CallInst
>(I
), ModifiedDT
);
8768 case Instruction::Select
:
8769 return optimizeSelectInst(cast
<SelectInst
>(I
));
8770 case Instruction::ShuffleVector
:
8771 return optimizeShuffleVectorInst(cast
<ShuffleVectorInst
>(I
));
8772 case Instruction::Switch
:
8773 return optimizeSwitchInst(cast
<SwitchInst
>(I
));
8774 case Instruction::ExtractElement
:
8775 return optimizeExtractElementInst(cast
<ExtractElementInst
>(I
));
8776 case Instruction::Br
:
8777 return optimizeBranch(cast
<BranchInst
>(I
), *TLI
, FreshBBs
, IsHugeFunc
);
8783 /// Given an OR instruction, check to see if this is a bitreverse
8784 /// idiom. If so, insert the new intrinsic and return true.
8785 bool CodeGenPrepare::makeBitReverse(Instruction
&I
) {
8786 if (!I
.getType()->isIntegerTy() ||
8787 !TLI
->isOperationLegalOrCustom(ISD::BITREVERSE
,
8788 TLI
->getValueType(*DL
, I
.getType(), true)))
8791 SmallVector
<Instruction
*, 4> Insts
;
8792 if (!recognizeBSwapOrBitReverseIdiom(&I
, false, true, Insts
))
8794 Instruction
*LastInst
= Insts
.back();
8795 replaceAllUsesWith(&I
, LastInst
, FreshBBs
, IsHugeFunc
);
8796 RecursivelyDeleteTriviallyDeadInstructions(
8797 &I
, TLInfo
, nullptr,
8798 [&](Value
*V
) { removeAllAssertingVHReferences(V
); });
8802 // In this pass we look for GEP and cast instructions that are used
8803 // across basic blocks and rewrite them to improve basic-block-at-a-time
8805 bool CodeGenPrepare::optimizeBlock(BasicBlock
&BB
, ModifyDT
&ModifiedDT
) {
8807 bool MadeChange
= false;
8810 CurInstIterator
= BB
.begin();
8811 ModifiedDT
= ModifyDT::NotModifyDT
;
8812 while (CurInstIterator
!= BB
.end()) {
8813 MadeChange
|= optimizeInst(&*CurInstIterator
++, ModifiedDT
);
8814 if (ModifiedDT
!= ModifyDT::NotModifyDT
) {
8815 // For huge function we tend to quickly go though the inner optmization
8816 // opportunities in the BB. So we go back to the BB head to re-optimize
8817 // each instruction instead of go back to the function head.
8820 getDT(*BB
.getParent());
8827 } while (ModifiedDT
== ModifyDT::ModifyInstDT
);
8829 bool MadeBitReverse
= true;
8830 while (MadeBitReverse
) {
8831 MadeBitReverse
= false;
8832 for (auto &I
: reverse(BB
)) {
8833 if (makeBitReverse(I
)) {
8834 MadeBitReverse
= MadeChange
= true;
8839 MadeChange
|= dupRetToEnableTailCallOpts(&BB
, ModifiedDT
);
8844 // Some CGP optimizations may move or alter what's computed in a block. Check
8845 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
8846 bool CodeGenPrepare::fixupDbgValue(Instruction
*I
) {
8847 assert(isa
<DbgValueInst
>(I
));
8848 DbgValueInst
&DVI
= *cast
<DbgValueInst
>(I
);
8850 // Does this dbg.value refer to a sunk address calculation?
8851 bool AnyChange
= false;
8852 SmallDenseSet
<Value
*> LocationOps(DVI
.location_ops().begin(),
8853 DVI
.location_ops().end());
8854 for (Value
*Location
: LocationOps
) {
8855 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Location
];
8856 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
8858 // Point dbg.value at locally computed address, which should give the best
8859 // opportunity to be accurately lowered. This update may change the type
8860 // of pointer being referred to; however this makes no difference to
8861 // debugging information, and we can't generate bitcasts that may affect
8863 DVI
.replaceVariableLocationOp(Location
, SunkAddr
);
8870 bool CodeGenPrepare::fixupDbgVariableRecordsOnInst(Instruction
&I
) {
8871 bool AnyChange
= false;
8872 for (DbgVariableRecord
&DVR
: filterDbgVars(I
.getDbgRecordRange()))
8873 AnyChange
|= fixupDbgVariableRecord(DVR
);
8877 // FIXME: should updating debug-info really cause the "changed" flag to fire,
8878 // which can cause a function to be reprocessed?
8879 bool CodeGenPrepare::fixupDbgVariableRecord(DbgVariableRecord
&DVR
) {
8880 if (DVR
.Type
!= DbgVariableRecord::LocationType::Value
&&
8881 DVR
.Type
!= DbgVariableRecord::LocationType::Assign
)
8884 // Does this DbgVariableRecord refer to a sunk address calculation?
8885 bool AnyChange
= false;
8886 SmallDenseSet
<Value
*> LocationOps(DVR
.location_ops().begin(),
8887 DVR
.location_ops().end());
8888 for (Value
*Location
: LocationOps
) {
8889 WeakTrackingVH SunkAddrVH
= SunkAddrs
[Location
];
8890 Value
*SunkAddr
= SunkAddrVH
.pointsToAliveValue() ? SunkAddrVH
: nullptr;
8892 // Point dbg.value at locally computed address, which should give the best
8893 // opportunity to be accurately lowered. This update may change the type
8894 // of pointer being referred to; however this makes no difference to
8895 // debugging information, and we can't generate bitcasts that may affect
8897 DVR
.replaceVariableLocationOp(Location
, SunkAddr
);
8904 static void DbgInserterHelper(DbgValueInst
*DVI
, BasicBlock::iterator VI
) {
8905 DVI
->removeFromParent();
8906 if (isa
<PHINode
>(VI
))
8907 DVI
->insertBefore(VI
->getParent()->getFirstInsertionPt());
8909 DVI
->insertAfter(VI
);
8912 static void DbgInserterHelper(DbgVariableRecord
*DVR
, BasicBlock::iterator VI
) {
8913 DVR
->removeFromParent();
8914 BasicBlock
*VIBB
= VI
->getParent();
8915 if (isa
<PHINode
>(VI
))
8916 VIBB
->insertDbgRecordBefore(DVR
, VIBB
->getFirstInsertionPt());
8918 VIBB
->insertDbgRecordAfter(DVR
, &*VI
);
8921 // A llvm.dbg.value may be using a value before its definition, due to
8922 // optimizations in this pass and others. Scan for such dbg.values, and rescue
8923 // them by moving the dbg.value to immediately after the value definition.
8924 // FIXME: Ideally this should never be necessary, and this has the potential
8925 // to re-order dbg.value intrinsics.
8926 bool CodeGenPrepare::placeDbgValues(Function
&F
) {
8927 bool MadeChange
= false;
8928 DominatorTree
DT(F
);
8930 auto DbgProcessor
= [&](auto *DbgItem
, Instruction
*Position
) {
8931 SmallVector
<Instruction
*, 4> VIs
;
8932 for (Value
*V
: DbgItem
->location_ops())
8933 if (Instruction
*VI
= dyn_cast_or_null
<Instruction
>(V
))
8936 // This item may depend on multiple instructions, complicating any
8937 // potential sink. This block takes the defensive approach, opting to
8938 // "undef" the item if it has more than one instruction and any of them do
8939 // not dominate iem.
8940 for (Instruction
*VI
: VIs
) {
8941 if (VI
->isTerminator())
8944 // If VI is a phi in a block with an EHPad terminator, we can't insert
8946 if (isa
<PHINode
>(VI
) && VI
->getParent()->getTerminator()->isEHPad())
8949 // If the defining instruction dominates the dbg.value, we do not need
8950 // to move the dbg.value.
8951 if (DT
.dominates(VI
, Position
))
8954 // If we depend on multiple instructions and any of them doesn't
8955 // dominate this DVI, we probably can't salvage it: moving it to
8956 // after any of the instructions could cause us to lose the others.
8957 if (VIs
.size() > 1) {
8960 << "Unable to find valid location for Debug Value, undefing:\n"
8962 DbgItem
->setKillLocation();
8966 LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8967 << *DbgItem
<< ' ' << *VI
);
8968 DbgInserterHelper(DbgItem
, VI
->getIterator());
8974 for (BasicBlock
&BB
: F
) {
8975 for (Instruction
&Insn
: llvm::make_early_inc_range(BB
)) {
8976 // Process dbg.value intrinsics.
8977 DbgValueInst
*DVI
= dyn_cast
<DbgValueInst
>(&Insn
);
8979 DbgProcessor(DVI
, DVI
);
8983 // If this isn't a dbg.value, process any attached DbgVariableRecord
8984 // records attached to this instruction.
8985 for (DbgVariableRecord
&DVR
: llvm::make_early_inc_range(
8986 filterDbgVars(Insn
.getDbgRecordRange()))) {
8987 if (DVR
.Type
!= DbgVariableRecord::LocationType::Value
)
8989 DbgProcessor(&DVR
, &Insn
);
8997 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8998 // probes can be chained dependencies of other regular DAG nodes and block DAG
8999 // combine optimizations.
9000 bool CodeGenPrepare::placePseudoProbes(Function
&F
) {
9001 bool MadeChange
= false;
9002 for (auto &Block
: F
) {
9003 // Move the rest probes to the beginning of the block.
9004 auto FirstInst
= Block
.getFirstInsertionPt();
9005 while (FirstInst
!= Block
.end() && FirstInst
->isDebugOrPseudoInst())
9007 BasicBlock::iterator
I(FirstInst
);
9009 while (I
!= Block
.end()) {
9010 if (auto *II
= dyn_cast
<PseudoProbeInst
>(I
++)) {
9011 II
->moveBefore(FirstInst
);
9019 /// Scale down both weights to fit into uint32_t.
9020 static void scaleWeights(uint64_t &NewTrue
, uint64_t &NewFalse
) {
9021 uint64_t NewMax
= (NewTrue
> NewFalse
) ? NewTrue
: NewFalse
;
9022 uint32_t Scale
= (NewMax
/ std::numeric_limits
<uint32_t>::max()) + 1;
9023 NewTrue
= NewTrue
/ Scale
;
9024 NewFalse
= NewFalse
/ Scale
;
9027 /// Some targets prefer to split a conditional branch like:
9029 /// %0 = icmp ne i32 %a, 0
9030 /// %1 = icmp ne i32 %b, 0
9031 /// %or.cond = or i1 %0, %1
9032 /// br i1 %or.cond, label %TrueBB, label %FalseBB
9034 /// into multiple branch instructions like:
9037 /// %0 = icmp ne i32 %a, 0
9038 /// br i1 %0, label %TrueBB, label %bb2
9040 /// %1 = icmp ne i32 %b, 0
9041 /// br i1 %1, label %TrueBB, label %FalseBB
9043 /// This usually allows instruction selection to do even further optimizations
9044 /// and combine the compare with the branch instruction. Currently this is
9045 /// applied for targets which have "cheap" jump instructions.
9047 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
9049 bool CodeGenPrepare::splitBranchCondition(Function
&F
, ModifyDT
&ModifiedDT
) {
9050 if (!TM
->Options
.EnableFastISel
|| TLI
->isJumpExpensive())
9053 bool MadeChange
= false;
9054 for (auto &BB
: F
) {
9055 // Does this BB end with the following?
9056 // %cond1 = icmp|fcmp|binary instruction ...
9057 // %cond2 = icmp|fcmp|binary instruction ...
9058 // %cond.or = or|and i1 %cond1, cond2
9059 // br i1 %cond.or label %dest1, label %dest2"
9060 Instruction
*LogicOp
;
9061 BasicBlock
*TBB
, *FBB
;
9062 if (!match(BB
.getTerminator(),
9063 m_Br(m_OneUse(m_Instruction(LogicOp
)), TBB
, FBB
)))
9066 auto *Br1
= cast
<BranchInst
>(BB
.getTerminator());
9067 if (Br1
->getMetadata(LLVMContext::MD_unpredictable
))
9070 // The merging of mostly empty BB can cause a degenerate branch.
9075 Value
*Cond1
, *Cond2
;
9077 m_LogicalAnd(m_OneUse(m_Value(Cond1
)), m_OneUse(m_Value(Cond2
)))))
9078 Opc
= Instruction::And
;
9079 else if (match(LogicOp
, m_LogicalOr(m_OneUse(m_Value(Cond1
)),
9080 m_OneUse(m_Value(Cond2
)))))
9081 Opc
= Instruction::Or
;
9085 auto IsGoodCond
= [](Value
*Cond
) {
9088 m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
9089 m_LogicalOr(m_Value(), m_Value()))));
9091 if (!IsGoodCond(Cond1
) || !IsGoodCond(Cond2
))
9094 LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB
.dump());
9098 BasicBlock::Create(BB
.getContext(), BB
.getName() + ".cond.split",
9099 BB
.getParent(), BB
.getNextNode());
9101 FreshBBs
.insert(TmpBB
);
9103 // Update original basic block by using the first condition directly by the
9104 // branch instruction and removing the no longer needed and/or instruction.
9105 Br1
->setCondition(Cond1
);
9106 LogicOp
->eraseFromParent();
9108 // Depending on the condition we have to either replace the true or the
9109 // false successor of the original branch instruction.
9110 if (Opc
== Instruction::And
)
9111 Br1
->setSuccessor(0, TmpBB
);
9113 Br1
->setSuccessor(1, TmpBB
);
9115 // Fill in the new basic block.
9116 auto *Br2
= IRBuilder
<>(TmpBB
).CreateCondBr(Cond2
, TBB
, FBB
);
9117 if (auto *I
= dyn_cast
<Instruction
>(Cond2
)) {
9118 I
->removeFromParent();
9119 I
->insertBefore(Br2
->getIterator());
9122 // Update PHI nodes in both successors. The original BB needs to be
9123 // replaced in one successor's PHI nodes, because the branch comes now from
9124 // the newly generated BB (NewBB). In the other successor we need to add one
9125 // incoming edge to the PHI nodes, because both branch instructions target
9126 // now the same successor. Depending on the original branch condition
9127 // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
9128 // we perform the correct update for the PHI nodes.
9129 // This doesn't change the successor order of the just created branch
9130 // instruction (or any other instruction).
9131 if (Opc
== Instruction::Or
)
9132 std::swap(TBB
, FBB
);
9134 // Replace the old BB with the new BB.
9135 TBB
->replacePhiUsesWith(&BB
, TmpBB
);
9137 // Add another incoming edge from the new BB.
9138 for (PHINode
&PN
: FBB
->phis()) {
9139 auto *Val
= PN
.getIncomingValueForBlock(&BB
);
9140 PN
.addIncoming(Val
, TmpBB
);
9143 // Update the branch weights (from SelectionDAGBuilder::
9144 // FindMergedConditions).
9145 if (Opc
== Instruction::Or
) {
9146 // Codegen X | Y as:
9155 // We have flexibility in setting Prob for BB1 and Prob for NewBB.
9156 // The requirement is that
9157 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
9158 // = TrueProb for original BB.
9159 // Assuming the original weights are A and B, one choice is to set BB1's
9160 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
9162 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
9163 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
9164 // TmpBB, but the math is more complicated.
9165 uint64_t TrueWeight
, FalseWeight
;
9166 if (extractBranchWeights(*Br1
, TrueWeight
, FalseWeight
)) {
9167 uint64_t NewTrueWeight
= TrueWeight
;
9168 uint64_t NewFalseWeight
= TrueWeight
+ 2 * FalseWeight
;
9169 scaleWeights(NewTrueWeight
, NewFalseWeight
);
9170 Br1
->setMetadata(LLVMContext::MD_prof
,
9171 MDBuilder(Br1
->getContext())
9172 .createBranchWeights(TrueWeight
, FalseWeight
,
9173 hasBranchWeightOrigin(*Br1
)));
9175 NewTrueWeight
= TrueWeight
;
9176 NewFalseWeight
= 2 * FalseWeight
;
9177 scaleWeights(NewTrueWeight
, NewFalseWeight
);
9178 Br2
->setMetadata(LLVMContext::MD_prof
,
9179 MDBuilder(Br2
->getContext())
9180 .createBranchWeights(TrueWeight
, FalseWeight
));
9183 // Codegen X & Y as:
9191 // This requires creation of TmpBB after CurBB.
9193 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
9194 // The requirement is that
9195 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
9196 // = FalseProb for original BB.
9197 // Assuming the original weights are A and B, one choice is to set BB1's
9198 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
9200 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
9201 uint64_t TrueWeight
, FalseWeight
;
9202 if (extractBranchWeights(*Br1
, TrueWeight
, FalseWeight
)) {
9203 uint64_t NewTrueWeight
= 2 * TrueWeight
+ FalseWeight
;
9204 uint64_t NewFalseWeight
= FalseWeight
;
9205 scaleWeights(NewTrueWeight
, NewFalseWeight
);
9206 Br1
->setMetadata(LLVMContext::MD_prof
,
9207 MDBuilder(Br1
->getContext())
9208 .createBranchWeights(TrueWeight
, FalseWeight
));
9210 NewTrueWeight
= 2 * TrueWeight
;
9211 NewFalseWeight
= FalseWeight
;
9212 scaleWeights(NewTrueWeight
, NewFalseWeight
);
9213 Br2
->setMetadata(LLVMContext::MD_prof
,
9214 MDBuilder(Br2
->getContext())
9215 .createBranchWeights(TrueWeight
, FalseWeight
));
9219 ModifiedDT
= ModifyDT::ModifyBBDT
;
9222 LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB
.dump();