1 //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Methods common to all machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MachineInstr.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallBitVector.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/MemoryLocation.h"
21 #include "llvm/CodeGen/LiveRegUnits.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineInstrBundle.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/PseudoSourceValue.h"
32 #include "llvm/CodeGen/Register.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/CodeGen/TargetInstrInfo.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/CodeGenTypes/LowLevelType.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DebugInfoMetadata.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/ModuleSlotTracker.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/MC/MCInstrDesc.h"
50 #include "llvm/MC/MCRegisterInfo.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/FormattedStream.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
66 static const MachineFunction
*getMFIfAvailable(const MachineInstr
&MI
) {
67 if (const MachineBasicBlock
*MBB
= MI
.getParent())
68 if (const MachineFunction
*MF
= MBB
->getParent())
73 // Try to crawl up to the machine function and get TRI and IntrinsicInfo from
75 static void tryToGetTargetInfo(const MachineInstr
&MI
,
76 const TargetRegisterInfo
*&TRI
,
77 const MachineRegisterInfo
*&MRI
,
78 const TargetIntrinsicInfo
*&IntrinsicInfo
,
79 const TargetInstrInfo
*&TII
) {
81 if (const MachineFunction
*MF
= getMFIfAvailable(MI
)) {
82 TRI
= MF
->getSubtarget().getRegisterInfo();
83 MRI
= &MF
->getRegInfo();
84 IntrinsicInfo
= MF
->getTarget().getIntrinsicInfo();
85 TII
= MF
->getSubtarget().getInstrInfo();
89 void MachineInstr::addImplicitDefUseOperands(MachineFunction
&MF
) {
90 for (MCPhysReg ImpDef
: MCID
->implicit_defs())
91 addOperand(MF
, MachineOperand::CreateReg(ImpDef
, true, true));
92 for (MCPhysReg ImpUse
: MCID
->implicit_uses())
93 addOperand(MF
, MachineOperand::CreateReg(ImpUse
, false, true));
96 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
97 /// implicit operands. It reserves space for the number of operands specified by
99 MachineInstr::MachineInstr(MachineFunction
&MF
, const MCInstrDesc
&TID
,
100 DebugLoc DL
, bool NoImp
)
101 : MCID(&TID
), NumOperands(0), Flags(0), AsmPrinterFlags(0),
102 DbgLoc(std::move(DL
)), DebugInstrNum(0), Opcode(TID
.Opcode
) {
103 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
105 // Reserve space for the expected number of operands.
106 if (unsigned NumOps
= MCID
->getNumOperands() + MCID
->implicit_defs().size() +
107 MCID
->implicit_uses().size()) {
108 CapOperands
= OperandCapacity::get(NumOps
);
109 Operands
= MF
.allocateOperandArray(CapOperands
);
113 addImplicitDefUseOperands(MF
);
116 /// MachineInstr ctor - Copies MachineInstr arg exactly.
117 /// Does not copy the number from debug instruction numbering, to preserve
119 MachineInstr::MachineInstr(MachineFunction
&MF
, const MachineInstr
&MI
)
120 : MCID(&MI
.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0),
121 Info(MI
.Info
), DbgLoc(MI
.getDebugLoc()), DebugInstrNum(0),
122 Opcode(MI
.getOpcode()) {
123 assert(DbgLoc
.hasTrivialDestructor() && "Expected trivial destructor");
125 CapOperands
= OperandCapacity::get(MI
.getNumOperands());
126 Operands
= MF
.allocateOperandArray(CapOperands
);
129 for (const MachineOperand
&MO
: MI
.operands())
132 // Replicate ties between the operands, which addOperand was not
133 // able to do reliably.
134 for (unsigned i
= 0, e
= getNumOperands(); i
< e
; ++i
) {
135 MachineOperand
&NewMO
= getOperand(i
);
136 const MachineOperand
&OrigMO
= MI
.getOperand(i
);
137 NewMO
.TiedTo
= OrigMO
.TiedTo
;
140 // Copy all the sensible flags.
144 void MachineInstr::setDesc(const MCInstrDesc
&TID
) {
146 getMF()->handleChangeDesc(*this, TID
);
151 void MachineInstr::moveBefore(MachineInstr
*MovePos
) {
152 MovePos
->getParent()->splice(MovePos
, getParent(), getIterator());
155 /// getRegInfo - If this instruction is embedded into a MachineFunction,
156 /// return the MachineRegisterInfo object for the current function, otherwise
158 MachineRegisterInfo
*MachineInstr::getRegInfo() {
159 if (MachineBasicBlock
*MBB
= getParent())
160 return &MBB
->getParent()->getRegInfo();
164 const MachineRegisterInfo
*MachineInstr::getRegInfo() const {
165 if (const MachineBasicBlock
*MBB
= getParent())
166 return &MBB
->getParent()->getRegInfo();
170 void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo
&MRI
) {
171 for (MachineOperand
&MO
: operands())
173 MRI
.removeRegOperandFromUseList(&MO
);
176 void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo
&MRI
) {
177 for (MachineOperand
&MO
: operands())
179 MRI
.addRegOperandToUseList(&MO
);
182 void MachineInstr::addOperand(const MachineOperand
&Op
) {
183 MachineBasicBlock
*MBB
= getParent();
184 assert(MBB
&& "Use MachineInstrBuilder to add operands to dangling instrs");
185 MachineFunction
*MF
= MBB
->getParent();
186 assert(MF
&& "Use MachineInstrBuilder to add operands to dangling instrs");
190 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
191 /// ranges. If MRI is non-null also update use-def chains.
192 static void moveOperands(MachineOperand
*Dst
, MachineOperand
*Src
,
193 unsigned NumOps
, MachineRegisterInfo
*MRI
) {
195 return MRI
->moveOperands(Dst
, Src
, NumOps
);
196 // MachineOperand is a trivially copyable type so we can just use memmove.
197 assert(Dst
&& Src
&& "Unknown operands");
198 std::memmove(Dst
, Src
, NumOps
* sizeof(MachineOperand
));
201 /// addOperand - Add the specified operand to the instruction. If it is an
202 /// implicit operand, it is added to the end of the operand list. If it is
203 /// an explicit operand it is added at the end of the explicit operand list
204 /// (before the first implicit operand).
205 void MachineInstr::addOperand(MachineFunction
&MF
, const MachineOperand
&Op
) {
206 assert(isUInt
<LLVM_MI_NUMOPERANDS_BITS
>(NumOperands
+ 1) &&
207 "Cannot add more operands.");
208 assert(MCID
&& "Cannot add operands before providing an instr descriptor");
210 // Check if we're adding one of our existing operands.
211 if (&Op
>= Operands
&& &Op
< Operands
+ NumOperands
) {
212 // This is unusual: MI->addOperand(MI->getOperand(i)).
213 // If adding Op requires reallocating or moving existing operands around,
214 // the Op reference could go stale. Support it by copying Op.
215 MachineOperand
CopyOp(Op
);
216 return addOperand(MF
, CopyOp
);
219 // Find the insert location for the new operand. Implicit registers go at
220 // the end, everything else goes before the implicit regs.
222 // FIXME: Allow mixed explicit and implicit operands on inline asm.
223 // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
224 // implicit-defs, but they must not be moved around. See the FIXME in
226 unsigned OpNo
= getNumOperands();
227 bool isImpReg
= Op
.isReg() && Op
.isImplicit();
228 if (!isImpReg
&& !isInlineAsm()) {
229 while (OpNo
&& Operands
[OpNo
-1].isReg() && Operands
[OpNo
-1].isImplicit()) {
231 assert(!Operands
[OpNo
].isTied() && "Cannot move tied operands");
235 // OpNo now points as the desired insertion point. Unless this is a variadic
236 // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
237 // RegMask operands go between the explicit and implicit operands.
238 MachineRegisterInfo
*MRI
= getRegInfo();
240 // Determine if the Operands array needs to be reallocated.
241 // Save the old capacity and operand array.
242 OperandCapacity OldCap
= CapOperands
;
243 MachineOperand
*OldOperands
= Operands
;
244 if (!OldOperands
|| OldCap
.getSize() == getNumOperands()) {
245 CapOperands
= OldOperands
? OldCap
.getNext() : OldCap
.get(1);
246 Operands
= MF
.allocateOperandArray(CapOperands
);
247 // Move the operands before the insertion point.
249 moveOperands(Operands
, OldOperands
, OpNo
, MRI
);
252 // Move the operands following the insertion point.
253 if (OpNo
!= NumOperands
)
254 moveOperands(Operands
+ OpNo
+ 1, OldOperands
+ OpNo
, NumOperands
- OpNo
,
258 // Deallocate the old operand array.
259 if (OldOperands
!= Operands
&& OldOperands
)
260 MF
.deallocateOperandArray(OldCap
, OldOperands
);
262 // Copy Op into place. It still needs to be inserted into the MRI use lists.
263 MachineOperand
*NewMO
= new (Operands
+ OpNo
) MachineOperand(Op
);
264 NewMO
->ParentMI
= this;
266 // When adding a register operand, tell MRI about it.
267 if (NewMO
->isReg()) {
268 // Ensure isOnRegUseList() returns false, regardless of Op's status.
269 NewMO
->Contents
.Reg
.Prev
= nullptr;
270 // Ignore existing ties. This is not a property that can be copied.
272 // Add the new operand to MRI, but only for instructions in an MBB.
274 MRI
->addRegOperandToUseList(NewMO
);
275 // The MCID operand information isn't accurate until we start adding
276 // explicit operands. The implicit operands are added first, then the
277 // explicits are inserted before them.
279 // Tie uses to defs as indicated in MCInstrDesc.
280 if (NewMO
->isUse()) {
281 int DefIdx
= MCID
->getOperandConstraint(OpNo
, MCOI::TIED_TO
);
283 tieOperands(DefIdx
, OpNo
);
285 // If the register operand is flagged as early, mark the operand as such.
286 if (MCID
->getOperandConstraint(OpNo
, MCOI::EARLY_CLOBBER
) != -1)
287 NewMO
->setIsEarlyClobber(true);
289 // Ensure debug instructions set debug flag on register uses.
290 if (NewMO
->isUse() && isDebugInstr())
295 void MachineInstr::removeOperand(unsigned OpNo
) {
296 assert(OpNo
< getNumOperands() && "Invalid operand number");
297 untieRegOperand(OpNo
);
300 // Moving tied operands would break the ties.
301 for (unsigned i
= OpNo
+ 1, e
= getNumOperands(); i
!= e
; ++i
)
302 if (Operands
[i
].isReg())
303 assert(!Operands
[i
].isTied() && "Cannot move tied operands");
306 MachineRegisterInfo
*MRI
= getRegInfo();
307 if (MRI
&& Operands
[OpNo
].isReg())
308 MRI
->removeRegOperandFromUseList(Operands
+ OpNo
);
310 // Don't call the MachineOperand destructor. A lot of this code depends on
311 // MachineOperand having a trivial destructor anyway, and adding a call here
312 // wouldn't make it 'destructor-correct'.
314 if (unsigned N
= NumOperands
- 1 - OpNo
)
315 moveOperands(Operands
+ OpNo
, Operands
+ OpNo
+ 1, N
, MRI
);
319 void MachineInstr::setExtraInfo(MachineFunction
&MF
,
320 ArrayRef
<MachineMemOperand
*> MMOs
,
321 MCSymbol
*PreInstrSymbol
,
322 MCSymbol
*PostInstrSymbol
,
323 MDNode
*HeapAllocMarker
, MDNode
*PCSections
,
324 uint32_t CFIType
, MDNode
*MMRAs
) {
325 bool HasPreInstrSymbol
= PreInstrSymbol
!= nullptr;
326 bool HasPostInstrSymbol
= PostInstrSymbol
!= nullptr;
327 bool HasHeapAllocMarker
= HeapAllocMarker
!= nullptr;
328 bool HasPCSections
= PCSections
!= nullptr;
329 bool HasCFIType
= CFIType
!= 0;
330 bool HasMMRAs
= MMRAs
!= nullptr;
331 int NumPointers
= MMOs
.size() + HasPreInstrSymbol
+ HasPostInstrSymbol
+
332 HasHeapAllocMarker
+ HasPCSections
+ HasCFIType
+ HasMMRAs
;
334 // Drop all extra info if there is none.
335 if (NumPointers
<= 0) {
340 // If more than one pointer, then store out of line. Store heap alloc markers
341 // out of line because PointerSumType cannot hold more than 4 tag types with
343 // FIXME: Maybe we should make the symbols in the extra info mutable?
344 else if (NumPointers
> 1 || HasMMRAs
|| HasHeapAllocMarker
|| HasPCSections
||
346 Info
.set
<EIIK_OutOfLine
>(
347 MF
.createMIExtraInfo(MMOs
, PreInstrSymbol
, PostInstrSymbol
,
348 HeapAllocMarker
, PCSections
, CFIType
, MMRAs
));
352 // Otherwise store the single pointer inline.
353 if (HasPreInstrSymbol
)
354 Info
.set
<EIIK_PreInstrSymbol
>(PreInstrSymbol
);
355 else if (HasPostInstrSymbol
)
356 Info
.set
<EIIK_PostInstrSymbol
>(PostInstrSymbol
);
358 Info
.set
<EIIK_MMO
>(MMOs
[0]);
361 void MachineInstr::dropMemRefs(MachineFunction
&MF
) {
362 if (memoperands_empty())
365 setExtraInfo(MF
, {}, getPreInstrSymbol(), getPostInstrSymbol(),
366 getHeapAllocMarker(), getPCSections(), getCFIType(),
370 void MachineInstr::setMemRefs(MachineFunction
&MF
,
371 ArrayRef
<MachineMemOperand
*> MMOs
) {
377 setExtraInfo(MF
, MMOs
, getPreInstrSymbol(), getPostInstrSymbol(),
378 getHeapAllocMarker(), getPCSections(), getCFIType(),
382 void MachineInstr::addMemOperand(MachineFunction
&MF
,
383 MachineMemOperand
*MO
) {
384 SmallVector
<MachineMemOperand
*, 2> MMOs
;
385 MMOs
.append(memoperands_begin(), memoperands_end());
387 setMemRefs(MF
, MMOs
);
390 void MachineInstr::cloneMemRefs(MachineFunction
&MF
, const MachineInstr
&MI
) {
392 // Nothing to do for a self-clone!
395 assert(&MF
== MI
.getMF() &&
396 "Invalid machine functions when cloning memory refrences!");
397 // See if we can just steal the extra info already allocated for the
398 // instruction. We can do this whenever the pre- and post-instruction symbols
399 // are the same (including null).
400 if (getPreInstrSymbol() == MI
.getPreInstrSymbol() &&
401 getPostInstrSymbol() == MI
.getPostInstrSymbol() &&
402 getHeapAllocMarker() == MI
.getHeapAllocMarker() &&
403 getPCSections() == MI
.getPCSections() && getMMRAMetadata() &&
404 MI
.getMMRAMetadata()) {
409 // Otherwise, fall back on a copy-based clone.
410 setMemRefs(MF
, MI
.memoperands());
413 /// Check to see if the MMOs pointed to by the two MemRefs arrays are
415 static bool hasIdenticalMMOs(ArrayRef
<MachineMemOperand
*> LHS
,
416 ArrayRef
<MachineMemOperand
*> RHS
) {
417 if (LHS
.size() != RHS
.size())
420 auto LHSPointees
= make_pointee_range(LHS
);
421 auto RHSPointees
= make_pointee_range(RHS
);
422 return std::equal(LHSPointees
.begin(), LHSPointees
.end(),
423 RHSPointees
.begin());
426 void MachineInstr::cloneMergedMemRefs(MachineFunction
&MF
,
427 ArrayRef
<const MachineInstr
*> MIs
) {
428 // Try handling easy numbers of MIs with simpler mechanisms.
433 if (MIs
.size() == 1) {
434 cloneMemRefs(MF
, *MIs
[0]);
437 // Because an empty memoperands list provides *no* information and must be
438 // handled conservatively (assuming the instruction can do anything), the only
439 // way to merge with it is to drop all other memoperands.
440 if (MIs
[0]->memoperands_empty()) {
445 // Handle the general case.
446 SmallVector
<MachineMemOperand
*, 2> MergedMMOs
;
447 // Start with the first instruction.
448 assert(&MF
== MIs
[0]->getMF() &&
449 "Invalid machine functions when cloning memory references!");
450 MergedMMOs
.append(MIs
[0]->memoperands_begin(), MIs
[0]->memoperands_end());
451 // Now walk all the other instructions and accumulate any different MMOs.
452 for (const MachineInstr
&MI
: make_pointee_range(MIs
.slice(1))) {
453 assert(&MF
== MI
.getMF() &&
454 "Invalid machine functions when cloning memory references!");
456 // Skip MIs with identical operands to the first. This is a somewhat
457 // arbitrary hack but will catch common cases without being quadratic.
458 // TODO: We could fully implement merge semantics here if needed.
459 if (hasIdenticalMMOs(MIs
[0]->memoperands(), MI
.memoperands()))
462 // Because an empty memoperands list provides *no* information and must be
463 // handled conservatively (assuming the instruction can do anything), the
464 // only way to merge with it is to drop all other memoperands.
465 if (MI
.memoperands_empty()) {
470 // Otherwise accumulate these into our temporary buffer of the merged state.
471 MergedMMOs
.append(MI
.memoperands_begin(), MI
.memoperands_end());
474 setMemRefs(MF
, MergedMMOs
);
477 void MachineInstr::setPreInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
478 // Do nothing if old and new symbols are the same.
479 if (Symbol
== getPreInstrSymbol())
482 // If there was only one symbol and we're removing it, just clear info.
483 if (!Symbol
&& Info
.is
<EIIK_PreInstrSymbol
>()) {
488 setExtraInfo(MF
, memoperands(), Symbol
, getPostInstrSymbol(),
489 getHeapAllocMarker(), getPCSections(), getCFIType(),
493 void MachineInstr::setPostInstrSymbol(MachineFunction
&MF
, MCSymbol
*Symbol
) {
494 // Do nothing if old and new symbols are the same.
495 if (Symbol
== getPostInstrSymbol())
498 // If there was only one symbol and we're removing it, just clear info.
499 if (!Symbol
&& Info
.is
<EIIK_PostInstrSymbol
>()) {
504 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), Symbol
,
505 getHeapAllocMarker(), getPCSections(), getCFIType(),
509 void MachineInstr::setHeapAllocMarker(MachineFunction
&MF
, MDNode
*Marker
) {
510 // Do nothing if old and new symbols are the same.
511 if (Marker
== getHeapAllocMarker())
514 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
515 Marker
, getPCSections(), getCFIType(), getMMRAMetadata());
518 void MachineInstr::setPCSections(MachineFunction
&MF
, MDNode
*PCSections
) {
519 // Do nothing if old and new symbols are the same.
520 if (PCSections
== getPCSections())
523 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
524 getHeapAllocMarker(), PCSections
, getCFIType(),
528 void MachineInstr::setCFIType(MachineFunction
&MF
, uint32_t Type
) {
529 // Do nothing if old and new types are the same.
530 if (Type
== getCFIType())
533 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
534 getHeapAllocMarker(), getPCSections(), Type
, getMMRAMetadata());
537 void MachineInstr::setMMRAMetadata(MachineFunction
&MF
, MDNode
*MMRAs
) {
538 // Do nothing if old and new symbols are the same.
539 if (MMRAs
== getMMRAMetadata())
542 setExtraInfo(MF
, memoperands(), getPreInstrSymbol(), getPostInstrSymbol(),
543 getHeapAllocMarker(), getPCSections(), getCFIType(), MMRAs
);
546 void MachineInstr::cloneInstrSymbols(MachineFunction
&MF
,
547 const MachineInstr
&MI
) {
549 // Nothing to do for a self-clone!
552 assert(&MF
== MI
.getMF() &&
553 "Invalid machine functions when cloning instruction symbols!");
555 setPreInstrSymbol(MF
, MI
.getPreInstrSymbol());
556 setPostInstrSymbol(MF
, MI
.getPostInstrSymbol());
557 setHeapAllocMarker(MF
, MI
.getHeapAllocMarker());
558 setPCSections(MF
, MI
.getPCSections());
559 setMMRAMetadata(MF
, MI
.getMMRAMetadata());
562 uint32_t MachineInstr::mergeFlagsWith(const MachineInstr
&Other
) const {
563 // For now, the just return the union of the flags. If the flags get more
564 // complicated over time, we might need more logic here.
565 return getFlags() | Other
.getFlags();
568 uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction
&I
) {
569 uint32_t MIFlags
= 0;
570 // Copy the wrapping flags.
571 if (const OverflowingBinaryOperator
*OB
=
572 dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
573 if (OB
->hasNoSignedWrap())
574 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
575 if (OB
->hasNoUnsignedWrap())
576 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
577 } else if (const TruncInst
*TI
= dyn_cast
<TruncInst
>(&I
)) {
578 if (TI
->hasNoSignedWrap())
579 MIFlags
|= MachineInstr::MIFlag::NoSWrap
;
580 if (TI
->hasNoUnsignedWrap())
581 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
582 } else if (const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&I
)) {
583 if (GEP
->hasNoUnsignedSignedWrap())
584 MIFlags
|= MachineInstr::MIFlag::NoUSWrap
;
585 if (GEP
->hasNoUnsignedWrap())
586 MIFlags
|= MachineInstr::MIFlag::NoUWrap
;
589 // Copy the nonneg flag.
590 if (const PossiblyNonNegInst
*PNI
= dyn_cast
<PossiblyNonNegInst
>(&I
)) {
591 if (PNI
->hasNonNeg())
592 MIFlags
|= MachineInstr::MIFlag::NonNeg
;
593 // Copy the disjoint flag.
594 } else if (const PossiblyDisjointInst
*PD
=
595 dyn_cast
<PossiblyDisjointInst
>(&I
)) {
596 if (PD
->isDisjoint())
597 MIFlags
|= MachineInstr::MIFlag::Disjoint
;
600 // Copy the samesign flag.
601 if (const ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(&I
))
602 if (ICmp
->hasSameSign())
603 MIFlags
|= MachineInstr::MIFlag::SameSign
;
605 // Copy the exact flag.
606 if (const PossiblyExactOperator
*PE
= dyn_cast
<PossiblyExactOperator
>(&I
))
608 MIFlags
|= MachineInstr::MIFlag::IsExact
;
610 // Copy the fast-math flags.
611 if (const FPMathOperator
*FP
= dyn_cast
<FPMathOperator
>(&I
)) {
612 const FastMathFlags Flags
= FP
->getFastMathFlags();
614 MIFlags
|= MachineInstr::MIFlag::FmNoNans
;
616 MIFlags
|= MachineInstr::MIFlag::FmNoInfs
;
617 if (Flags
.noSignedZeros())
618 MIFlags
|= MachineInstr::MIFlag::FmNsz
;
619 if (Flags
.allowReciprocal())
620 MIFlags
|= MachineInstr::MIFlag::FmArcp
;
621 if (Flags
.allowContract())
622 MIFlags
|= MachineInstr::MIFlag::FmContract
;
623 if (Flags
.approxFunc())
624 MIFlags
|= MachineInstr::MIFlag::FmAfn
;
625 if (Flags
.allowReassoc())
626 MIFlags
|= MachineInstr::MIFlag::FmReassoc
;
629 if (I
.getMetadata(LLVMContext::MD_unpredictable
))
630 MIFlags
|= MachineInstr::MIFlag::Unpredictable
;
635 void MachineInstr::copyIRFlags(const Instruction
&I
) {
636 Flags
= copyFlagsFromInstruction(I
);
639 bool MachineInstr::hasPropertyInBundle(uint64_t Mask
, QueryType Type
) const {
640 assert(!isBundledWithPred() && "Must be called on bundle header");
641 for (MachineBasicBlock::const_instr_iterator MII
= getIterator();; ++MII
) {
642 if (MII
->getDesc().getFlags() & Mask
) {
643 if (Type
== AnyInBundle
)
646 if (Type
== AllInBundle
&& !MII
->isBundle())
649 // This was the last instruction in the bundle.
650 if (!MII
->isBundledWithSucc())
651 return Type
== AllInBundle
;
655 bool MachineInstr::isIdenticalTo(const MachineInstr
&Other
,
656 MICheckType Check
) const {
657 // If opcodes or number of operands are not the same then the two
658 // instructions are obviously not identical.
659 if (Other
.getOpcode() != getOpcode() ||
660 Other
.getNumOperands() != getNumOperands())
664 // We have passed the test above that both instructions have the same
665 // opcode, so we know that both instructions are bundles here. Let's compare
666 // MIs inside the bundle.
667 assert(Other
.isBundle() && "Expected that both instructions are bundles.");
668 MachineBasicBlock::const_instr_iterator I1
= getIterator();
669 MachineBasicBlock::const_instr_iterator I2
= Other
.getIterator();
670 // Loop until we analysed the last intruction inside at least one of the
672 while (I1
->isBundledWithSucc() && I2
->isBundledWithSucc()) {
675 if (!I1
->isIdenticalTo(*I2
, Check
))
678 // If we've reached the end of just one of the two bundles, but not both,
679 // the instructions are not identical.
680 if (I1
->isBundledWithSucc() || I2
->isBundledWithSucc())
684 // Check operands to make sure they match.
685 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
686 const MachineOperand
&MO
= getOperand(i
);
687 const MachineOperand
&OMO
= Other
.getOperand(i
);
689 if (!MO
.isIdenticalTo(OMO
))
694 // Clients may or may not want to ignore defs when testing for equality.
695 // For example, machine CSE pass only cares about finding common
696 // subexpressions, so it's safe to ignore virtual register defs.
698 if (Check
== IgnoreDefs
)
700 else if (Check
== IgnoreVRegDefs
) {
701 if (!MO
.getReg().isVirtual() || !OMO
.getReg().isVirtual())
702 if (!MO
.isIdenticalTo(OMO
))
705 if (!MO
.isIdenticalTo(OMO
))
707 if (Check
== CheckKillDead
&& MO
.isDead() != OMO
.isDead())
711 if (!MO
.isIdenticalTo(OMO
))
713 if (Check
== CheckKillDead
&& MO
.isKill() != OMO
.isKill())
717 // If DebugLoc does not match then two debug instructions are not identical.
719 if (getDebugLoc() && Other
.getDebugLoc() &&
720 getDebugLoc() != Other
.getDebugLoc())
722 // If pre- or post-instruction symbols do not match then the two instructions
723 // are not identical.
724 if (getPreInstrSymbol() != Other
.getPreInstrSymbol() ||
725 getPostInstrSymbol() != Other
.getPostInstrSymbol())
727 // Call instructions with different CFI types are not identical.
728 if (isCall() && getCFIType() != Other
.getCFIType())
734 bool MachineInstr::isEquivalentDbgInstr(const MachineInstr
&Other
) const {
735 if (!isDebugValueLike() || !Other
.isDebugValueLike())
737 if (getDebugLoc() != Other
.getDebugLoc())
739 if (getDebugVariable() != Other
.getDebugVariable())
741 if (getNumDebugOperands() != Other
.getNumDebugOperands())
743 for (unsigned OpIdx
= 0; OpIdx
< getNumDebugOperands(); ++OpIdx
)
744 if (!getDebugOperand(OpIdx
).isIdenticalTo(Other
.getDebugOperand(OpIdx
)))
746 if (!DIExpression::isEqualExpression(
747 getDebugExpression(), isIndirectDebugValue(),
748 Other
.getDebugExpression(), Other
.isIndirectDebugValue()))
753 const MachineFunction
*MachineInstr::getMF() const {
754 return getParent()->getParent();
757 MachineInstr
*MachineInstr::removeFromParent() {
758 assert(getParent() && "Not embedded in a basic block!");
759 return getParent()->remove(this);
762 MachineInstr
*MachineInstr::removeFromBundle() {
763 assert(getParent() && "Not embedded in a basic block!");
764 return getParent()->remove_instr(this);
767 void MachineInstr::eraseFromParent() {
768 assert(getParent() && "Not embedded in a basic block!");
769 getParent()->erase(this);
772 void MachineInstr::eraseFromBundle() {
773 assert(getParent() && "Not embedded in a basic block!");
774 getParent()->erase_instr(this);
777 bool MachineInstr::isCandidateForAdditionalCallInfo(QueryType Type
) const {
780 switch (getOpcode()) {
781 case TargetOpcode::PATCHPOINT
:
782 case TargetOpcode::STACKMAP
:
783 case TargetOpcode::STATEPOINT
:
784 case TargetOpcode::FENTRY_CALL
:
790 bool MachineInstr::shouldUpdateAdditionalCallInfo() const {
792 return isCandidateForAdditionalCallInfo(MachineInstr::AnyInBundle
);
793 return isCandidateForAdditionalCallInfo();
796 unsigned MachineInstr::getNumExplicitOperands() const {
797 unsigned NumOperands
= MCID
->getNumOperands();
798 if (!MCID
->isVariadic())
801 for (unsigned I
= NumOperands
, E
= getNumOperands(); I
!= E
; ++I
) {
802 const MachineOperand
&MO
= getOperand(I
);
803 // The operands must always be in the following order:
804 // - explicit reg defs,
805 // - other explicit operands (reg uses, immediates, etc.),
806 // - implicit reg defs
807 // - implicit reg uses
808 if (MO
.isReg() && MO
.isImplicit())
815 unsigned MachineInstr::getNumExplicitDefs() const {
816 unsigned NumDefs
= MCID
->getNumDefs();
817 if (!MCID
->isVariadic())
820 for (unsigned I
= NumDefs
, E
= getNumOperands(); I
!= E
; ++I
) {
821 const MachineOperand
&MO
= getOperand(I
);
822 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
829 void MachineInstr::bundleWithPred() {
830 assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
831 setFlag(BundledPred
);
832 MachineBasicBlock::instr_iterator Pred
= getIterator();
834 assert(!Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
835 Pred
->setFlag(BundledSucc
);
838 void MachineInstr::bundleWithSucc() {
839 assert(!isBundledWithSucc() && "MI is already bundled with its successor");
840 setFlag(BundledSucc
);
841 MachineBasicBlock::instr_iterator Succ
= getIterator();
843 assert(!Succ
->isBundledWithPred() && "Inconsistent bundle flags");
844 Succ
->setFlag(BundledPred
);
847 void MachineInstr::unbundleFromPred() {
848 assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
849 clearFlag(BundledPred
);
850 MachineBasicBlock::instr_iterator Pred
= getIterator();
852 assert(Pred
->isBundledWithSucc() && "Inconsistent bundle flags");
853 Pred
->clearFlag(BundledSucc
);
856 void MachineInstr::unbundleFromSucc() {
857 assert(isBundledWithSucc() && "MI isn't bundled with its successor");
858 clearFlag(BundledSucc
);
859 MachineBasicBlock::instr_iterator Succ
= getIterator();
861 assert(Succ
->isBundledWithPred() && "Inconsistent bundle flags");
862 Succ
->clearFlag(BundledPred
);
865 bool MachineInstr::isStackAligningInlineAsm() const {
867 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
868 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
874 InlineAsm::AsmDialect
MachineInstr::getInlineAsmDialect() const {
875 assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
876 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
877 return InlineAsm::AsmDialect((ExtraInfo
& InlineAsm::Extra_AsmDialect
) != 0);
880 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx
,
881 unsigned *GroupNo
) const {
882 assert(isInlineAsm() && "Expected an inline asm instruction");
883 assert(OpIdx
< getNumOperands() && "OpIdx out of range");
885 // Ignore queries about the initial operands.
886 if (OpIdx
< InlineAsm::MIOp_FirstOperand
)
891 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
893 const MachineOperand
&FlagMO
= getOperand(i
);
894 // If we reach the implicit register operands, stop looking.
897 const InlineAsm::Flag
F(FlagMO
.getImm());
898 NumOps
= 1 + F
.getNumOperandRegisters();
899 if (i
+ NumOps
> OpIdx
) {
909 const DILabel
*MachineInstr::getDebugLabel() const {
910 assert(isDebugLabel() && "not a DBG_LABEL");
911 return cast
<DILabel
>(getOperand(0).getMetadata());
914 const MachineOperand
&MachineInstr::getDebugVariableOp() const {
915 assert((isDebugValueLike()) && "not a DBG_VALUE*");
916 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
917 return getOperand(VariableOp
);
920 MachineOperand
&MachineInstr::getDebugVariableOp() {
921 assert((isDebugValueLike()) && "not a DBG_VALUE*");
922 unsigned VariableOp
= isNonListDebugValue() ? 2 : 0;
923 return getOperand(VariableOp
);
926 const DILocalVariable
*MachineInstr::getDebugVariable() const {
927 return cast
<DILocalVariable
>(getDebugVariableOp().getMetadata());
930 const MachineOperand
&MachineInstr::getDebugExpressionOp() const {
931 assert((isDebugValueLike()) && "not a DBG_VALUE*");
932 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
933 return getOperand(ExpressionOp
);
936 MachineOperand
&MachineInstr::getDebugExpressionOp() {
937 assert((isDebugValueLike()) && "not a DBG_VALUE*");
938 unsigned ExpressionOp
= isNonListDebugValue() ? 3 : 1;
939 return getOperand(ExpressionOp
);
942 const DIExpression
*MachineInstr::getDebugExpression() const {
943 return cast
<DIExpression
>(getDebugExpressionOp().getMetadata());
946 bool MachineInstr::isDebugEntryValue() const {
947 return isDebugValue() && getDebugExpression()->isEntryValue();
950 const TargetRegisterClass
*
951 MachineInstr::getRegClassConstraint(unsigned OpIdx
,
952 const TargetInstrInfo
*TII
,
953 const TargetRegisterInfo
*TRI
) const {
954 assert(getParent() && "Can't have an MBB reference here!");
955 assert(getMF() && "Can't have an MF reference here!");
956 const MachineFunction
&MF
= *getMF();
958 // Most opcodes have fixed constraints in their MCInstrDesc.
960 return TII
->getRegClass(getDesc(), OpIdx
, TRI
, MF
);
962 if (!getOperand(OpIdx
).isReg())
965 // For tied uses on inline asm, get the constraint from the def.
967 if (getOperand(OpIdx
).isUse() && isRegTiedToDefOperand(OpIdx
, &DefIdx
))
970 // Inline asm stores register class constraints in the flag word.
971 int FlagIdx
= findInlineAsmFlagIdx(OpIdx
);
975 const InlineAsm::Flag
F(getOperand(FlagIdx
).getImm());
977 if ((F
.isRegUseKind() || F
.isRegDefKind() || F
.isRegDefEarlyClobberKind()) &&
978 F
.hasRegClassConstraint(RCID
))
979 return TRI
->getRegClass(RCID
);
981 // Assume that all registers in a memory operand are pointers.
983 return TRI
->getPointerRegClass(MF
);
988 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVReg(
989 Register Reg
, const TargetRegisterClass
*CurRC
, const TargetInstrInfo
*TII
,
990 const TargetRegisterInfo
*TRI
, bool ExploreBundle
) const {
991 // Check every operands inside the bundle if we have
994 for (ConstMIBundleOperands
OpndIt(*this); OpndIt
.isValid() && CurRC
;
996 CurRC
= OpndIt
->getParent()->getRegClassConstraintEffectForVRegImpl(
997 OpndIt
.getOperandNo(), Reg
, CurRC
, TII
, TRI
);
999 // Otherwise, just check the current operands.
1000 for (unsigned i
= 0, e
= NumOperands
; i
< e
&& CurRC
; ++i
)
1001 CurRC
= getRegClassConstraintEffectForVRegImpl(i
, Reg
, CurRC
, TII
, TRI
);
1005 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffectForVRegImpl(
1006 unsigned OpIdx
, Register Reg
, const TargetRegisterClass
*CurRC
,
1007 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
1008 assert(CurRC
&& "Invalid initial register class");
1009 // Check if Reg is constrained by some of its use/def from MI.
1010 const MachineOperand
&MO
= getOperand(OpIdx
);
1011 if (!MO
.isReg() || MO
.getReg() != Reg
)
1013 // If yes, accumulate the constraints through the operand.
1014 return getRegClassConstraintEffect(OpIdx
, CurRC
, TII
, TRI
);
1017 const TargetRegisterClass
*MachineInstr::getRegClassConstraintEffect(
1018 unsigned OpIdx
, const TargetRegisterClass
*CurRC
,
1019 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
) const {
1020 const TargetRegisterClass
*OpRC
= getRegClassConstraint(OpIdx
, TII
, TRI
);
1021 const MachineOperand
&MO
= getOperand(OpIdx
);
1022 assert(MO
.isReg() &&
1023 "Cannot get register constraints for non-register operand");
1024 assert(CurRC
&& "Invalid initial register class");
1025 if (unsigned SubIdx
= MO
.getSubReg()) {
1027 CurRC
= TRI
->getMatchingSuperRegClass(CurRC
, OpRC
, SubIdx
);
1029 CurRC
= TRI
->getSubClassWithSubReg(CurRC
, SubIdx
);
1031 CurRC
= TRI
->getCommonSubClass(CurRC
, OpRC
);
1035 /// Return the number of instructions inside the MI bundle, not counting the
1036 /// header instruction.
1037 unsigned MachineInstr::getBundleSize() const {
1038 MachineBasicBlock::const_instr_iterator I
= getIterator();
1040 while (I
->isBundledWithSucc()) {
1047 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1048 /// the given register (not considering sub/super-registers).
1049 bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg
) const {
1050 for (const MachineOperand
&MO
: implicit_operands()) {
1051 if (MO
.isReg() && MO
.isUse() && MO
.getReg() == Reg
)
1057 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1058 /// the specific register or -1 if it is not found. It further tightens
1059 /// the search criteria to a use that kills the register if isKill is true.
1060 int MachineInstr::findRegisterUseOperandIdx(Register Reg
,
1061 const TargetRegisterInfo
*TRI
,
1062 bool isKill
) const {
1063 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1064 const MachineOperand
&MO
= getOperand(i
);
1065 if (!MO
.isReg() || !MO
.isUse())
1067 Register MOReg
= MO
.getReg();
1070 if (MOReg
== Reg
|| (TRI
&& Reg
&& MOReg
&& TRI
->regsOverlap(MOReg
, Reg
)))
1071 if (!isKill
|| MO
.isKill())
1077 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1078 /// indicating if this instruction reads or writes Reg. This also considers
1079 /// partial defines.
1080 std::pair
<bool,bool>
1081 MachineInstr::readsWritesVirtualRegister(Register Reg
,
1082 SmallVectorImpl
<unsigned> *Ops
) const {
1083 bool PartDef
= false; // Partial redefine.
1084 bool FullDef
= false; // Full define.
1087 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1088 const MachineOperand
&MO
= getOperand(i
);
1089 if (!MO
.isReg() || MO
.getReg() != Reg
)
1094 Use
|= !MO
.isUndef();
1095 else if (MO
.getSubReg() && !MO
.isUndef())
1096 // A partial def undef doesn't count as reading the register.
1101 // A partial redefine uses Reg unless there is also a full define.
1102 return std::make_pair(Use
|| (PartDef
&& !FullDef
), PartDef
|| FullDef
);
1105 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1106 /// the specified register or -1 if it is not found. If isDead is true, defs
1107 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1108 /// also checks if there is a def of a super-register.
1109 int MachineInstr::findRegisterDefOperandIdx(Register Reg
,
1110 const TargetRegisterInfo
*TRI
,
1111 bool isDead
, bool Overlap
) const {
1112 bool isPhys
= Reg
.isPhysical();
1113 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
1114 const MachineOperand
&MO
= getOperand(i
);
1115 // Accept regmask operands when Overlap is set.
1116 // Ignore them when looking for a specific def operand (Overlap == false).
1117 if (isPhys
&& Overlap
&& MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
1119 if (!MO
.isReg() || !MO
.isDef())
1121 Register MOReg
= MO
.getReg();
1122 bool Found
= (MOReg
== Reg
);
1123 if (!Found
&& TRI
&& isPhys
&& MOReg
.isPhysical()) {
1125 Found
= TRI
->regsOverlap(MOReg
, Reg
);
1127 Found
= TRI
->isSubRegister(MOReg
, Reg
);
1129 if (Found
&& (!isDead
|| MO
.isDead()))
1135 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1136 /// operand list that is used to represent the predicate. It returns -1 if
1138 int MachineInstr::findFirstPredOperandIdx() const {
1139 // Don't call MCID.findFirstPredOperandIdx() because this variant
1140 // is sometimes called on an instruction that's not yet complete, and
1141 // so the number of operands is less than the MCID indicates. In
1142 // particular, the PTX target does this.
1143 const MCInstrDesc
&MCID
= getDesc();
1144 if (MCID
.isPredicable()) {
1145 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1146 if (MCID
.operands()[i
].isPredicate())
1153 // MachineOperand::TiedTo is 4 bits wide.
1154 const unsigned TiedMax
= 15;
1156 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1158 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1159 /// field. TiedTo can have these values:
1161 /// 0: Operand is not tied to anything.
1162 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1163 /// TiedMax: Tied to an operand >= TiedMax-1.
1165 /// The tied def must be one of the first TiedMax operands on a normal
1166 /// instruction. INLINEASM instructions allow more tied defs.
1168 void MachineInstr::tieOperands(unsigned DefIdx
, unsigned UseIdx
) {
1169 MachineOperand
&DefMO
= getOperand(DefIdx
);
1170 MachineOperand
&UseMO
= getOperand(UseIdx
);
1171 assert(DefMO
.isDef() && "DefIdx must be a def operand");
1172 assert(UseMO
.isUse() && "UseIdx must be a use operand");
1173 assert(!DefMO
.isTied() && "Def is already tied to another use");
1174 assert(!UseMO
.isTied() && "Use is already tied to another def");
1176 if (DefIdx
< TiedMax
)
1177 UseMO
.TiedTo
= DefIdx
+ 1;
1179 // Inline asm can use the group descriptors to find tied operands,
1180 // statepoint tied operands are trivial to match (1-1 reg def with reg use),
1181 // but on normal instruction, the tied def must be within the first TiedMax
1183 assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT
) &&
1184 "DefIdx out of range");
1185 UseMO
.TiedTo
= TiedMax
;
1188 // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1189 DefMO
.TiedTo
= std::min(UseIdx
+ 1, TiedMax
);
1192 /// Given the index of a tied register operand, find the operand it is tied to.
1193 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1194 /// which must exist.
1195 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx
) const {
1196 const MachineOperand
&MO
= getOperand(OpIdx
);
1197 assert(MO
.isTied() && "Operand isn't tied");
1199 // Normally TiedTo is in range.
1200 if (MO
.TiedTo
< TiedMax
)
1201 return MO
.TiedTo
- 1;
1203 // Uses on normal instructions can be out of range.
1204 if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT
) {
1205 // Normal tied defs must be in the 0..TiedMax-1 range.
1208 // MO is a def. Search for the tied use.
1209 for (unsigned i
= TiedMax
- 1, e
= getNumOperands(); i
!= e
; ++i
) {
1210 const MachineOperand
&UseMO
= getOperand(i
);
1211 if (UseMO
.isReg() && UseMO
.isUse() && UseMO
.TiedTo
== OpIdx
+ 1)
1214 llvm_unreachable("Can't find tied use");
1217 if (getOpcode() == TargetOpcode::STATEPOINT
) {
1218 // In STATEPOINT defs correspond 1-1 to GC pointer operands passed
1220 StatepointOpers
SO(this);
1221 unsigned CurUseIdx
= SO
.getFirstGCPtrIdx();
1222 assert(CurUseIdx
!= -1U && "only gc pointer statepoint operands can be tied");
1223 unsigned NumDefs
= getNumDefs();
1224 for (unsigned CurDefIdx
= 0; CurDefIdx
< NumDefs
; ++CurDefIdx
) {
1225 while (!getOperand(CurUseIdx
).isReg())
1226 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1227 if (OpIdx
== CurDefIdx
)
1229 if (OpIdx
== CurUseIdx
)
1231 CurUseIdx
= StackMaps::getNextMetaArgIdx(this, CurUseIdx
);
1233 llvm_unreachable("Can't find tied use");
1236 // Now deal with inline asm by parsing the operand group descriptor flags.
1237 // Find the beginning of each operand group.
1238 SmallVector
<unsigned, 8> GroupIdx
;
1239 unsigned OpIdxGroup
= ~0u;
1241 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= getNumOperands(); i
< e
;
1243 const MachineOperand
&FlagMO
= getOperand(i
);
1244 assert(FlagMO
.isImm() && "Invalid tied operand on inline asm");
1245 unsigned CurGroup
= GroupIdx
.size();
1246 GroupIdx
.push_back(i
);
1247 const InlineAsm::Flag
F(FlagMO
.getImm());
1248 NumOps
= 1 + F
.getNumOperandRegisters();
1249 // OpIdx belongs to this operand group.
1250 if (OpIdx
> i
&& OpIdx
< i
+ NumOps
)
1251 OpIdxGroup
= CurGroup
;
1253 if (!F
.isUseOperandTiedToDef(TiedGroup
))
1255 // Operands in this group are tied to operands in TiedGroup which must be
1256 // earlier. Find the number of operands between the two groups.
1257 unsigned Delta
= i
- GroupIdx
[TiedGroup
];
1259 // OpIdx is a use tied to TiedGroup.
1260 if (OpIdxGroup
== CurGroup
)
1261 return OpIdx
- Delta
;
1263 // OpIdx is a def tied to this use group.
1264 if (OpIdxGroup
== TiedGroup
)
1265 return OpIdx
+ Delta
;
1267 llvm_unreachable("Invalid tied operand on inline asm");
1270 /// clearKillInfo - Clears kill flags on all operands.
1272 void MachineInstr::clearKillInfo() {
1273 for (MachineOperand
&MO
: operands()) {
1274 if (MO
.isReg() && MO
.isUse())
1275 MO
.setIsKill(false);
1279 void MachineInstr::substituteRegister(Register FromReg
, Register ToReg
,
1281 const TargetRegisterInfo
&RegInfo
) {
1282 if (ToReg
.isPhysical()) {
1284 ToReg
= RegInfo
.getSubReg(ToReg
, SubIdx
);
1285 for (MachineOperand
&MO
: operands()) {
1286 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1288 MO
.substPhysReg(ToReg
, RegInfo
);
1291 for (MachineOperand
&MO
: operands()) {
1292 if (!MO
.isReg() || MO
.getReg() != FromReg
)
1294 MO
.substVirtReg(ToReg
, SubIdx
, RegInfo
);
1299 /// isSafeToMove - Return true if it is safe to move this instruction. If
1300 /// SawStore is set to true, it means that there is a store (or call) between
1301 /// the instruction's location and its intended destination.
1302 bool MachineInstr::isSafeToMove(bool &SawStore
) const {
1303 // Ignore stuff that we obviously can't move.
1305 // Treat volatile loads as stores. This is not strictly necessary for
1306 // volatiles, but it is required for atomic loads. It is not allowed to move
1307 // a load across an atomic load with Ordering > Monotonic.
1308 if (mayStore() || isCall() || isPHI() ||
1309 (mayLoad() && hasOrderedMemoryRef())) {
1314 if (isPosition() || isDebugInstr() || isTerminator() ||
1315 mayRaiseFPException() || hasUnmodeledSideEffects() ||
1316 isJumpTableDebugInfo())
1319 // See if this instruction does a load. If so, we have to guarantee that the
1320 // loaded value doesn't change between the load and the its intended
1321 // destination. The check for isInvariantLoad gives the target the chance to
1322 // classify the load as always returning a constant, e.g. a constant pool
1324 if (mayLoad() && !isDereferenceableInvariantLoad())
1325 // Otherwise, this is a real load. If there is a store between the load and
1326 // end of block, we can't move it.
1332 bool MachineInstr::wouldBeTriviallyDead() const {
1333 // Don't delete frame allocation labels.
1334 // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel?
1335 if (getOpcode() == TargetOpcode::LOCAL_ESCAPE
)
1338 // Don't delete FAKE_USE.
1339 // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition?
1343 // LIFETIME markers should be preserved.
1344 // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition?
1345 if (isLifetimeMarker())
1348 // If we can move an instruction, we can remove it. Otherwise, it has
1349 // a side-effect of some sort.
1350 bool SawStore
= false;
1351 return isPHI() || isSafeToMove(SawStore
);
1354 bool MachineInstr::isDead(const MachineRegisterInfo
&MRI
,
1355 LiveRegUnits
*LivePhysRegs
) const {
1356 // Instructions without side-effects are dead iff they only define dead regs.
1357 // This function is hot and this loop returns early in the common case,
1358 // so only perform additional checks before this if absolutely necessary.
1359 for (const MachineOperand
&MO
: all_defs()) {
1360 Register Reg
= MO
.getReg();
1361 if (Reg
.isPhysical()) {
1362 // Don't delete live physreg defs, or any reserved register defs.
1363 if (!LivePhysRegs
|| !LivePhysRegs
->available(Reg
) || MRI
.isReserved(Reg
))
1368 for (const MachineInstr
&Use
: MRI
.use_nodbg_instructions(Reg
)) {
1370 // This def has a non-debug use. Don't delete the instruction!
1376 // Technically speaking inline asm without side effects and no defs can still
1377 // be deleted. But there is so much bad inline asm code out there, we should
1382 // FIXME: See issue #105950 for why LIFETIME markers are considered dead here.
1383 if (isLifetimeMarker())
1386 // If there are no defs with uses, then we call the instruction dead so long
1387 // as we do not suspect it may have sideeffects.
1388 return wouldBeTriviallyDead();
1391 static bool MemOperandsHaveAlias(const MachineFrameInfo
&MFI
,
1392 BatchAAResults
*AA
, bool UseTBAA
,
1393 const MachineMemOperand
*MMOa
,
1394 const MachineMemOperand
*MMOb
) {
1395 // The following interface to AA is fashioned after DAGCombiner::isAlias and
1396 // operates with MachineMemOperand offset with some important assumptions:
1397 // - LLVM fundamentally assumes flat address spaces.
1398 // - MachineOperand offset can *only* result from legalization and cannot
1399 // affect queries other than the trivial case of overlap checking.
1400 // - These offsets never wrap and never step outside of allocated objects.
1401 // - There should never be any negative offsets here.
1403 // FIXME: Modify API to hide this math from "user"
1404 // Even before we go to AA we can reason locally about some memory objects. It
1405 // can save compile time, and possibly catch some corner cases not currently
1408 int64_t OffsetA
= MMOa
->getOffset();
1409 int64_t OffsetB
= MMOb
->getOffset();
1410 int64_t MinOffset
= std::min(OffsetA
, OffsetB
);
1412 LocationSize WidthA
= MMOa
->getSize();
1413 LocationSize WidthB
= MMOb
->getSize();
1414 bool KnownWidthA
= WidthA
.hasValue();
1415 bool KnownWidthB
= WidthB
.hasValue();
1416 bool BothMMONonScalable
= !WidthA
.isScalable() && !WidthB
.isScalable();
1418 const Value
*ValA
= MMOa
->getValue();
1419 const Value
*ValB
= MMOb
->getValue();
1420 bool SameVal
= (ValA
&& ValB
&& (ValA
== ValB
));
1422 const PseudoSourceValue
*PSVa
= MMOa
->getPseudoValue();
1423 const PseudoSourceValue
*PSVb
= MMOb
->getPseudoValue();
1424 if (PSVa
&& ValB
&& !PSVa
->mayAlias(&MFI
))
1426 if (PSVb
&& ValA
&& !PSVb
->mayAlias(&MFI
))
1428 if (PSVa
&& PSVb
&& (PSVa
== PSVb
))
1432 if (SameVal
&& BothMMONonScalable
) {
1433 if (!KnownWidthA
|| !KnownWidthB
)
1435 int64_t MaxOffset
= std::max(OffsetA
, OffsetB
);
1436 int64_t LowWidth
= (MinOffset
== OffsetA
)
1437 ? WidthA
.getValue().getKnownMinValue()
1438 : WidthB
.getValue().getKnownMinValue();
1439 return (MinOffset
+ LowWidth
> MaxOffset
);
1448 assert((OffsetA
>= 0) && "Negative MachineMemOperand offset");
1449 assert((OffsetB
>= 0) && "Negative MachineMemOperand offset");
1451 // If Scalable Location Size has non-zero offset, Width + Offset does not work
1453 if ((WidthA
.isScalable() && OffsetA
> 0) ||
1454 (WidthB
.isScalable() && OffsetB
> 0))
1458 KnownWidthA
? WidthA
.getValue().getKnownMinValue() + OffsetA
- MinOffset
1459 : MemoryLocation::UnknownSize
;
1461 KnownWidthB
? WidthB
.getValue().getKnownMinValue() + OffsetB
- MinOffset
1462 : MemoryLocation::UnknownSize
;
1464 LocationSize LocA
= (WidthA
.isScalable() || !KnownWidthA
)
1466 : LocationSize::precise(OverlapA
);
1467 LocationSize LocB
= (WidthB
.isScalable() || !KnownWidthB
)
1469 : LocationSize::precise(OverlapB
);
1471 return !AA
->isNoAlias(
1472 MemoryLocation(ValA
, LocA
, UseTBAA
? MMOa
->getAAInfo() : AAMDNodes()),
1473 MemoryLocation(ValB
, LocB
, UseTBAA
? MMOb
->getAAInfo() : AAMDNodes()));
1476 bool MachineInstr::mayAlias(BatchAAResults
*AA
, const MachineInstr
&Other
,
1477 bool UseTBAA
) const {
1478 const MachineFunction
*MF
= getMF();
1479 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
1480 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
1482 // Exclude call instruction which may alter the memory but can not be handled
1483 // by this function.
1484 if (isCall() || Other
.isCall())
1487 // If neither instruction stores to memory, they can't alias in any
1488 // meaningful way, even if they read from the same address.
1489 if (!mayStore() && !Other
.mayStore())
1492 // Both instructions must be memory operations to be able to alias.
1493 if (!mayLoadOrStore() || !Other
.mayLoadOrStore())
1496 // Let the target decide if memory accesses cannot possibly overlap.
1497 if (TII
->areMemAccessesTriviallyDisjoint(*this, Other
))
1500 // Memory operations without memory operands may access anything. Be
1501 // conservative and assume `MayAlias`.
1502 if (memoperands_empty() || Other
.memoperands_empty())
1505 // Skip if there are too many memory operands.
1506 auto NumChecks
= getNumMemOperands() * Other
.getNumMemOperands();
1507 if (NumChecks
> TII
->getMemOperandAACheckLimit())
1510 // Check each pair of memory operands from both instructions, which can't
1511 // alias only if all pairs won't alias.
1512 for (auto *MMOa
: memoperands())
1513 for (auto *MMOb
: Other
.memoperands())
1514 if (MemOperandsHaveAlias(MFI
, AA
, UseTBAA
, MMOa
, MMOb
))
1520 bool MachineInstr::mayAlias(AAResults
*AA
, const MachineInstr
&Other
,
1521 bool UseTBAA
) const {
1523 BatchAAResults
BAA(*AA
);
1524 return mayAlias(&BAA
, Other
, UseTBAA
);
1526 return mayAlias(static_cast<BatchAAResults
*>(nullptr), Other
, UseTBAA
);
1529 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1530 /// or volatile memory reference, or if the information describing the memory
1531 /// reference is not available. Return false if it is known to have no ordered
1532 /// memory references.
1533 bool MachineInstr::hasOrderedMemoryRef() const {
1534 // An instruction known never to access memory won't have a volatile access.
1538 !hasUnmodeledSideEffects())
1541 // Otherwise, if the instruction has no memory reference information,
1542 // conservatively assume it wasn't preserved.
1543 if (memoperands_empty())
1546 // Check if any of our memory operands are ordered.
1547 return llvm::any_of(memoperands(), [](const MachineMemOperand
*MMO
) {
1548 return !MMO
->isUnordered();
1552 /// isDereferenceableInvariantLoad - Return true if this instruction will never
1553 /// trap and is loading from a location whose value is invariant across a run of
1555 bool MachineInstr::isDereferenceableInvariantLoad() const {
1556 // If the instruction doesn't load at all, it isn't an invariant load.
1560 // If the instruction has lost its memoperands, conservatively assume that
1561 // it may not be an invariant load.
1562 if (memoperands_empty())
1565 const MachineFrameInfo
&MFI
= getParent()->getParent()->getFrameInfo();
1567 for (MachineMemOperand
*MMO
: memoperands()) {
1568 if (!MMO
->isUnordered())
1569 // If the memory operand has ordering side effects, we can't move the
1570 // instruction. Such an instruction is technically an invariant load,
1571 // but the caller code would need updated to expect that.
1573 if (MMO
->isStore()) return false;
1574 if (MMO
->isInvariant() && MMO
->isDereferenceable())
1577 // A load from a constant PseudoSourceValue is invariant.
1578 if (const PseudoSourceValue
*PSV
= MMO
->getPseudoValue()) {
1579 if (PSV
->isConstant(&MFI
))
1583 // Otherwise assume conservatively.
1587 // Everything checks out.
1591 Register
MachineInstr::isConstantValuePHI() const {
1594 assert(getNumOperands() >= 3 &&
1595 "It's illegal to have a PHI without source operands");
1597 Register Reg
= getOperand(1).getReg();
1598 for (unsigned i
= 3, e
= getNumOperands(); i
< e
; i
+= 2)
1599 if (getOperand(i
).getReg() != Reg
)
1604 bool MachineInstr::hasUnmodeledSideEffects() const {
1605 if (hasProperty(MCID::UnmodeledSideEffects
))
1607 if (isInlineAsm()) {
1608 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1609 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1616 bool MachineInstr::isLoadFoldBarrier() const {
1617 return mayStore() || isCall() ||
1618 (hasUnmodeledSideEffects() && !isPseudoProbe());
1621 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1623 bool MachineInstr::allDefsAreDead() const {
1624 for (const MachineOperand
&MO
: operands()) {
1625 if (!MO
.isReg() || MO
.isUse())
1633 bool MachineInstr::allImplicitDefsAreDead() const {
1634 for (const MachineOperand
&MO
: implicit_operands()) {
1635 if (!MO
.isReg() || MO
.isUse())
1643 /// copyImplicitOps - Copy implicit register operands from specified
1644 /// instruction to this instruction.
1645 void MachineInstr::copyImplicitOps(MachineFunction
&MF
,
1646 const MachineInstr
&MI
) {
1647 for (const MachineOperand
&MO
:
1648 llvm::drop_begin(MI
.operands(), MI
.getDesc().getNumOperands()))
1649 if ((MO
.isReg() && MO
.isImplicit()) || MO
.isRegMask())
1653 bool MachineInstr::hasComplexRegisterTies() const {
1654 const MCInstrDesc
&MCID
= getDesc();
1655 if (MCID
.Opcode
== TargetOpcode::STATEPOINT
)
1657 for (unsigned I
= 0, E
= getNumOperands(); I
< E
; ++I
) {
1658 const auto &Operand
= getOperand(I
);
1659 if (!Operand
.isReg() || Operand
.isDef())
1660 // Ignore the defined registers as MCID marks only the uses as tied.
1662 int ExpectedTiedIdx
= MCID
.getOperandConstraint(I
, MCOI::TIED_TO
);
1663 int TiedIdx
= Operand
.isTied() ? int(findTiedOperandIdx(I
)) : -1;
1664 if (ExpectedTiedIdx
!= TiedIdx
)
1670 LLT
MachineInstr::getTypeToPrint(unsigned OpIdx
, SmallBitVector
&PrintedTypes
,
1671 const MachineRegisterInfo
&MRI
) const {
1672 const MachineOperand
&Op
= getOperand(OpIdx
);
1676 if (isVariadic() || OpIdx
>= getNumExplicitOperands())
1677 return MRI
.getType(Op
.getReg());
1679 auto &OpInfo
= getDesc().operands()[OpIdx
];
1680 if (!OpInfo
.isGenericType())
1681 return MRI
.getType(Op
.getReg());
1683 if (PrintedTypes
[OpInfo
.getGenericTypeIndex()])
1686 LLT TypeToPrint
= MRI
.getType(Op
.getReg());
1687 // Don't mark the type index printed if it wasn't actually printed: maybe
1688 // another operand with the same type index has an actual type attached:
1689 if (TypeToPrint
.isValid())
1690 PrintedTypes
.set(OpInfo
.getGenericTypeIndex());
1694 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1695 LLVM_DUMP_METHOD
void MachineInstr::dump() const {
1700 LLVM_DUMP_METHOD
void MachineInstr::dumprImpl(
1701 const MachineRegisterInfo
&MRI
, unsigned Depth
, unsigned MaxDepth
,
1702 SmallPtrSetImpl
<const MachineInstr
*> &AlreadySeenInstrs
) const {
1703 if (Depth
>= MaxDepth
)
1705 if (!AlreadySeenInstrs
.insert(this).second
)
1707 // PadToColumn always inserts at least one space.
1708 // Don't mess up the alignment if we don't want any space.
1710 fdbgs().PadToColumn(Depth
* 2);
1712 for (const MachineOperand
&MO
: operands()) {
1713 if (!MO
.isReg() || MO
.isDef())
1715 Register Reg
= MO
.getReg();
1716 if (Reg
.isPhysical())
1718 const MachineInstr
*NewMI
= MRI
.getUniqueVRegDef(Reg
);
1719 if (NewMI
== nullptr)
1721 NewMI
->dumprImpl(MRI
, Depth
+ 1, MaxDepth
, AlreadySeenInstrs
);
1725 LLVM_DUMP_METHOD
void MachineInstr::dumpr(const MachineRegisterInfo
&MRI
,
1726 unsigned MaxDepth
) const {
1727 SmallPtrSet
<const MachineInstr
*, 16> AlreadySeenInstrs
;
1728 dumprImpl(MRI
, 0, MaxDepth
, AlreadySeenInstrs
);
1732 void MachineInstr::print(raw_ostream
&OS
, bool IsStandalone
, bool SkipOpers
,
1733 bool SkipDebugLoc
, bool AddNewLine
,
1734 const TargetInstrInfo
*TII
) const {
1735 const Module
*M
= nullptr;
1736 const Function
*F
= nullptr;
1737 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
1738 F
= &MF
->getFunction();
1741 TII
= MF
->getSubtarget().getInstrInfo();
1744 ModuleSlotTracker
MST(M
);
1746 MST
.incorporateFunction(*F
);
1747 print(OS
, MST
, IsStandalone
, SkipOpers
, SkipDebugLoc
, AddNewLine
, TII
);
1750 void MachineInstr::print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
1751 bool IsStandalone
, bool SkipOpers
, bool SkipDebugLoc
,
1752 bool AddNewLine
, const TargetInstrInfo
*TII
) const {
1753 // We can be a bit tidier if we know the MachineFunction.
1754 const TargetRegisterInfo
*TRI
= nullptr;
1755 const MachineRegisterInfo
*MRI
= nullptr;
1756 const TargetIntrinsicInfo
*IntrinsicInfo
= nullptr;
1757 tryToGetTargetInfo(*this, TRI
, MRI
, IntrinsicInfo
, TII
);
1759 if (isCFIInstruction())
1760 assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
1762 SmallBitVector
PrintedTypes(8);
1763 bool ShouldPrintRegisterTies
= IsStandalone
|| hasComplexRegisterTies();
1764 auto getTiedOperandIdx
= [&](unsigned OpIdx
) {
1765 if (!ShouldPrintRegisterTies
)
1767 const MachineOperand
&MO
= getOperand(OpIdx
);
1768 if (MO
.isReg() && MO
.isTied() && !MO
.isDef())
1769 return findTiedOperandIdx(OpIdx
);
1772 unsigned StartOp
= 0;
1773 unsigned e
= getNumOperands();
1775 // Print explicitly defined operands on the left of an assignment syntax.
1776 while (StartOp
< e
) {
1777 const MachineOperand
&MO
= getOperand(StartOp
);
1778 if (!MO
.isReg() || !MO
.isDef() || MO
.isImplicit())
1784 LLT TypeToPrint
= MRI
? getTypeToPrint(StartOp
, PrintedTypes
, *MRI
) : LLT
{};
1785 unsigned TiedOperandIdx
= getTiedOperandIdx(StartOp
);
1786 MO
.print(OS
, MST
, TypeToPrint
, StartOp
, /*PrintDef=*/false, IsStandalone
,
1787 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1794 if (getFlag(MachineInstr::FrameSetup
))
1795 OS
<< "frame-setup ";
1796 if (getFlag(MachineInstr::FrameDestroy
))
1797 OS
<< "frame-destroy ";
1798 if (getFlag(MachineInstr::FmNoNans
))
1800 if (getFlag(MachineInstr::FmNoInfs
))
1802 if (getFlag(MachineInstr::FmNsz
))
1804 if (getFlag(MachineInstr::FmArcp
))
1806 if (getFlag(MachineInstr::FmContract
))
1808 if (getFlag(MachineInstr::FmAfn
))
1810 if (getFlag(MachineInstr::FmReassoc
))
1812 if (getFlag(MachineInstr::NoUWrap
))
1814 if (getFlag(MachineInstr::NoSWrap
))
1816 if (getFlag(MachineInstr::IsExact
))
1818 if (getFlag(MachineInstr::NoFPExcept
))
1819 OS
<< "nofpexcept ";
1820 if (getFlag(MachineInstr::NoMerge
))
1822 if (getFlag(MachineInstr::NonNeg
))
1824 if (getFlag(MachineInstr::Disjoint
))
1826 if (getFlag(MachineInstr::SameSign
))
1829 // Print the opcode name.
1831 OS
<< TII
->getName(getOpcode());
1838 // Print the rest of the operands.
1839 bool FirstOp
= true;
1840 unsigned AsmDescOp
= ~0u;
1841 unsigned AsmOpCount
= 0;
1843 if (isInlineAsm() && e
>= InlineAsm::MIOp_FirstOperand
) {
1844 // Print asm string.
1846 const unsigned OpIdx
= InlineAsm::MIOp_AsmString
;
1847 LLT TypeToPrint
= MRI
? getTypeToPrint(OpIdx
, PrintedTypes
, *MRI
) : LLT
{};
1848 unsigned TiedOperandIdx
= getTiedOperandIdx(OpIdx
);
1849 getOperand(OpIdx
).print(OS
, MST
, TypeToPrint
, OpIdx
, /*PrintDef=*/true, IsStandalone
,
1850 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
,
1853 // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1854 unsigned ExtraInfo
= getOperand(InlineAsm::MIOp_ExtraInfo
).getImm();
1855 if (ExtraInfo
& InlineAsm::Extra_HasSideEffects
)
1856 OS
<< " [sideeffect]";
1857 if (ExtraInfo
& InlineAsm::Extra_MayLoad
)
1859 if (ExtraInfo
& InlineAsm::Extra_MayStore
)
1860 OS
<< " [maystore]";
1861 if (ExtraInfo
& InlineAsm::Extra_IsConvergent
)
1862 OS
<< " [isconvergent]";
1863 if (ExtraInfo
& InlineAsm::Extra_IsAlignStack
)
1864 OS
<< " [alignstack]";
1865 if (getInlineAsmDialect() == InlineAsm::AD_ATT
)
1866 OS
<< " [attdialect]";
1867 if (getInlineAsmDialect() == InlineAsm::AD_Intel
)
1868 OS
<< " [inteldialect]";
1870 StartOp
= AsmDescOp
= InlineAsm::MIOp_FirstOperand
;
1874 for (unsigned i
= StartOp
, e
= getNumOperands(); i
!= e
; ++i
) {
1875 const MachineOperand
&MO
= getOperand(i
);
1877 if (FirstOp
) FirstOp
= false; else OS
<< ",";
1880 if (isDebugValueLike() && MO
.isMetadata()) {
1881 // Pretty print DBG_VALUE* instructions.
1882 auto *DIV
= dyn_cast
<DILocalVariable
>(MO
.getMetadata());
1883 if (DIV
&& !DIV
->getName().empty())
1884 OS
<< "!\"" << DIV
->getName() << '\"';
1886 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1887 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1888 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1889 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1891 } else if (isDebugLabel() && MO
.isMetadata()) {
1892 // Pretty print DBG_LABEL instructions.
1893 auto *DIL
= dyn_cast
<DILabel
>(MO
.getMetadata());
1894 if (DIL
&& !DIL
->getName().empty())
1895 OS
<< "\"" << DIL
->getName() << '\"';
1897 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1898 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1899 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1900 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1902 } else if (i
== AsmDescOp
&& MO
.isImm()) {
1903 // Pretty print the inline asm operand descriptor.
1904 OS
<< '$' << AsmOpCount
++;
1905 unsigned Flag
= MO
.getImm();
1906 const InlineAsm::Flag
F(Flag
);
1908 OS
<< F
.getKindName();
1911 if (!F
.isImmKind() && !F
.isMemKind() && F
.hasRegClassConstraint(RCID
)) {
1913 OS
<< ':' << TRI
->getRegClassName(TRI
->getRegClass(RCID
));
1915 OS
<< ":RC" << RCID
;
1918 if (F
.isMemKind()) {
1919 const InlineAsm::ConstraintCode MCID
= F
.getMemoryConstraintID();
1920 OS
<< ":" << InlineAsm::getMemConstraintName(MCID
);
1924 if (F
.isUseOperandTiedToDef(TiedTo
))
1925 OS
<< " tiedto:$" << TiedTo
;
1927 if ((F
.isRegDefKind() || F
.isRegDefEarlyClobberKind() ||
1928 F
.isRegUseKind()) &&
1929 F
.getRegMayBeFolded()) {
1935 // Compute the index of the next operand descriptor.
1936 AsmDescOp
+= 1 + F
.getNumOperandRegisters();
1938 LLT TypeToPrint
= MRI
? getTypeToPrint(i
, PrintedTypes
, *MRI
) : LLT
{};
1939 unsigned TiedOperandIdx
= getTiedOperandIdx(i
);
1940 if (MO
.isImm() && isOperandSubregIdx(i
))
1941 MachineOperand::printSubRegIdx(OS
, MO
.getImm(), TRI
);
1943 MO
.print(OS
, MST
, TypeToPrint
, i
, /*PrintDef=*/true, IsStandalone
,
1944 ShouldPrintRegisterTies
, TiedOperandIdx
, TRI
, IntrinsicInfo
);
1948 // Print any optional symbols attached to this instruction as-if they were
1950 if (MCSymbol
*PreInstrSymbol
= getPreInstrSymbol()) {
1955 OS
<< " pre-instr-symbol ";
1956 MachineOperand::printSymbol(OS
, *PreInstrSymbol
);
1958 if (MCSymbol
*PostInstrSymbol
= getPostInstrSymbol()) {
1963 OS
<< " post-instr-symbol ";
1964 MachineOperand::printSymbol(OS
, *PostInstrSymbol
);
1966 if (MDNode
*HeapAllocMarker
= getHeapAllocMarker()) {
1971 OS
<< " heap-alloc-marker ";
1972 HeapAllocMarker
->printAsOperand(OS
, MST
);
1974 if (MDNode
*PCSections
= getPCSections()) {
1979 OS
<< " pcsections ";
1980 PCSections
->printAsOperand(OS
, MST
);
1982 if (MDNode
*MMRA
= getMMRAMetadata()) {
1988 MMRA
->printAsOperand(OS
, MST
);
1990 if (uint32_t CFIType
= getCFIType()) {
1993 OS
<< " cfi-type " << CFIType
;
1996 if (DebugInstrNum
) {
1999 OS
<< " debug-instr-number " << DebugInstrNum
;
2002 if (!SkipDebugLoc
) {
2003 if (const DebugLoc
&DL
= getDebugLoc()) {
2006 OS
<< " debug-location ";
2007 DL
->printAsOperand(OS
, MST
);
2011 if (!memoperands_empty()) {
2012 SmallVector
<StringRef
, 0> SSNs
;
2013 const LLVMContext
*Context
= nullptr;
2014 std::unique_ptr
<LLVMContext
> CtxPtr
;
2015 const MachineFrameInfo
*MFI
= nullptr;
2016 if (const MachineFunction
*MF
= getMFIfAvailable(*this)) {
2017 MFI
= &MF
->getFrameInfo();
2018 Context
= &MF
->getFunction().getContext();
2020 CtxPtr
= std::make_unique
<LLVMContext
>();
2021 Context
= CtxPtr
.get();
2025 bool NeedComma
= false;
2026 for (const MachineMemOperand
*Op
: memoperands()) {
2029 Op
->print(OS
, MST
, SSNs
, *Context
, MFI
, TII
);
2037 bool HaveSemi
= false;
2039 // Print debug location information.
2040 if (const DebugLoc
&DL
= getDebugLoc()) {
2049 // Print extra comments for DEBUG_VALUE and friends if they are well-formed.
2050 if ((isNonListDebugValue() && getNumOperands() >= 4) ||
2051 (isDebugValueList() && getNumOperands() >= 2) ||
2052 (isDebugRef() && getNumOperands() >= 3)) {
2053 if (getDebugVariableOp().isMetadata()) {
2058 auto *DV
= getDebugVariable();
2059 OS
<< " line no:" << DV
->getLine();
2060 if (isIndirectDebugValue())
2070 bool MachineInstr::addRegisterKilled(Register IncomingReg
,
2071 const TargetRegisterInfo
*RegInfo
,
2072 bool AddIfNotFound
) {
2073 bool isPhysReg
= IncomingReg
.isPhysical();
2074 bool hasAliases
= isPhysReg
&&
2075 MCRegAliasIterator(IncomingReg
, RegInfo
, false).isValid();
2077 SmallVector
<unsigned,4> DeadOps
;
2078 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2079 MachineOperand
&MO
= getOperand(i
);
2080 if (!MO
.isReg() || !MO
.isUse() || MO
.isUndef())
2083 // DEBUG_VALUE nodes do not contribute to code generation and should
2084 // always be ignored. Failure to do so may result in trying to modify
2085 // KILL flags on DEBUG_VALUE nodes.
2089 Register Reg
= MO
.getReg();
2093 if (Reg
== IncomingReg
) {
2096 // The register is already marked kill.
2098 if (isPhysReg
&& isRegTiedToDefOperand(i
))
2099 // Two-address uses of physregs must not be marked kill.
2104 } else if (hasAliases
&& MO
.isKill() && Reg
.isPhysical()) {
2105 // A super-register kill already exists.
2106 if (RegInfo
->isSuperRegister(IncomingReg
, Reg
))
2108 if (RegInfo
->isSubRegister(IncomingReg
, Reg
))
2109 DeadOps
.push_back(i
);
2113 // Trim unneeded kill operands.
2114 while (!DeadOps
.empty()) {
2115 unsigned OpIdx
= DeadOps
.back();
2116 if (getOperand(OpIdx
).isImplicit() &&
2117 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
2118 removeOperand(OpIdx
);
2120 getOperand(OpIdx
).setIsKill(false);
2124 // If not found, this means an alias of one of the operands is killed. Add a
2125 // new implicit operand if required.
2126 if (!Found
&& AddIfNotFound
) {
2127 addOperand(MachineOperand::CreateReg(IncomingReg
,
2136 void MachineInstr::clearRegisterKills(Register Reg
,
2137 const TargetRegisterInfo
*RegInfo
) {
2138 if (!Reg
.isPhysical())
2140 for (MachineOperand
&MO
: operands()) {
2141 if (!MO
.isReg() || !MO
.isUse() || !MO
.isKill())
2143 Register OpReg
= MO
.getReg();
2144 if ((RegInfo
&& RegInfo
->regsOverlap(Reg
, OpReg
)) || Reg
== OpReg
)
2145 MO
.setIsKill(false);
2149 bool MachineInstr::addRegisterDead(Register Reg
,
2150 const TargetRegisterInfo
*RegInfo
,
2151 bool AddIfNotFound
) {
2152 bool isPhysReg
= Reg
.isPhysical();
2153 bool hasAliases
= isPhysReg
&&
2154 MCRegAliasIterator(Reg
, RegInfo
, false).isValid();
2156 SmallVector
<unsigned,4> DeadOps
;
2157 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2158 MachineOperand
&MO
= getOperand(i
);
2159 if (!MO
.isReg() || !MO
.isDef())
2161 Register MOReg
= MO
.getReg();
2168 } else if (hasAliases
&& MO
.isDead() && MOReg
.isPhysical()) {
2169 // There exists a super-register that's marked dead.
2170 if (RegInfo
->isSuperRegister(Reg
, MOReg
))
2172 if (RegInfo
->isSubRegister(Reg
, MOReg
))
2173 DeadOps
.push_back(i
);
2177 // Trim unneeded dead operands.
2178 while (!DeadOps
.empty()) {
2179 unsigned OpIdx
= DeadOps
.back();
2180 if (getOperand(OpIdx
).isImplicit() &&
2181 (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx
) < 0))
2182 removeOperand(OpIdx
);
2184 getOperand(OpIdx
).setIsDead(false);
2188 // If not found, this means an alias of one of the operands is dead. Add a
2189 // new implicit operand if required.
2190 if (Found
|| !AddIfNotFound
)
2193 addOperand(MachineOperand::CreateReg(Reg
,
2201 void MachineInstr::clearRegisterDeads(Register Reg
) {
2202 for (MachineOperand
&MO
: all_defs())
2203 if (MO
.getReg() == Reg
)
2204 MO
.setIsDead(false);
2207 void MachineInstr::setRegisterDefReadUndef(Register Reg
, bool IsUndef
) {
2208 for (MachineOperand
&MO
: all_defs())
2209 if (MO
.getReg() == Reg
&& MO
.getSubReg() != 0)
2210 MO
.setIsUndef(IsUndef
);
2213 void MachineInstr::addRegisterDefined(Register Reg
,
2214 const TargetRegisterInfo
*RegInfo
) {
2215 if (Reg
.isPhysical()) {
2216 MachineOperand
*MO
= findRegisterDefOperand(Reg
, RegInfo
, false, false);
2220 for (const MachineOperand
&MO
: all_defs()) {
2221 if (MO
.getReg() == Reg
&& MO
.getSubReg() == 0)
2225 addOperand(MachineOperand::CreateReg(Reg
,
2230 void MachineInstr::setPhysRegsDeadExcept(ArrayRef
<Register
> UsedRegs
,
2231 const TargetRegisterInfo
&TRI
) {
2232 bool HasRegMask
= false;
2233 for (MachineOperand
&MO
: operands()) {
2234 if (MO
.isRegMask()) {
2238 if (!MO
.isReg() || !MO
.isDef()) continue;
2239 Register Reg
= MO
.getReg();
2240 if (!Reg
.isPhysical())
2242 // If there are no uses, including partial uses, the def is dead.
2243 if (llvm::none_of(UsedRegs
,
2244 [&](MCRegister Use
) { return TRI
.regsOverlap(Use
, Reg
); }))
2248 // This is a call with a register mask operand.
2249 // Mask clobbers are always dead, so add defs for the non-dead defines.
2251 for (const Register
&UsedReg
: UsedRegs
)
2252 addRegisterDefined(UsedReg
, &TRI
);
2256 MachineInstrExpressionTrait::getHashValue(const MachineInstr
* const &MI
) {
2257 // Build up a buffer of hash code components.
2258 SmallVector
<size_t, 16> HashComponents
;
2259 HashComponents
.reserve(MI
->getNumOperands() + 1);
2260 HashComponents
.push_back(MI
->getOpcode());
2261 for (const MachineOperand
&MO
: MI
->operands()) {
2262 if (MO
.isReg() && MO
.isDef() && MO
.getReg().isVirtual())
2263 continue; // Skip virtual register defs.
2265 HashComponents
.push_back(hash_value(MO
));
2267 return hash_combine_range(HashComponents
.begin(), HashComponents
.end());
2270 const MDNode
*MachineInstr::getLocCookieMD() const {
2271 // Find the source location cookie.
2272 const MDNode
*LocMD
= nullptr;
2273 for (unsigned i
= getNumOperands(); i
!= 0; --i
) {
2274 if (getOperand(i
-1).isMetadata() &&
2275 (LocMD
= getOperand(i
-1).getMetadata()) &&
2276 LocMD
->getNumOperands() != 0) {
2277 if (mdconst::hasa
<ConstantInt
>(LocMD
->getOperand(0)))
2285 void MachineInstr::emitInlineAsmError(const Twine
&Msg
) const {
2286 assert(isInlineAsm());
2287 const MDNode
*LocMD
= getLocCookieMD();
2288 uint64_t LocCookie
=
2290 ? mdconst::extract
<ConstantInt
>(LocMD
->getOperand(0))->getZExtValue()
2292 LLVMContext
&Ctx
= getMF()->getFunction().getContext();
2293 Ctx
.diagnose(DiagnosticInfoInlineAsm(LocCookie
, Msg
));
2296 void MachineInstr::emitGenericError(const Twine
&Msg
) const {
2297 const Function
&Fn
= getMF()->getFunction();
2298 Fn
.getContext().diagnose(
2299 DiagnosticInfoGenericWithLoc(Msg
, Fn
, getDebugLoc()));
2302 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2303 const MCInstrDesc
&MCID
, bool IsIndirect
,
2304 Register Reg
, const MDNode
*Variable
,
2305 const MDNode
*Expr
) {
2306 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2307 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2308 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2309 "Expected inlined-at fields to agree");
2310 auto MIB
= BuildMI(MF
, DL
, MCID
).addReg(Reg
);
2315 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2318 MachineInstrBuilder
llvm::BuildMI(MachineFunction
&MF
, const DebugLoc
&DL
,
2319 const MCInstrDesc
&MCID
, bool IsIndirect
,
2320 ArrayRef
<MachineOperand
> DebugOps
,
2321 const MDNode
*Variable
, const MDNode
*Expr
) {
2322 assert(isa
<DILocalVariable
>(Variable
) && "not a variable");
2323 assert(cast
<DIExpression
>(Expr
)->isValid() && "not an expression");
2324 assert(cast
<DILocalVariable
>(Variable
)->isValidLocationForIntrinsic(DL
) &&
2325 "Expected inlined-at fields to agree");
2326 if (MCID
.Opcode
== TargetOpcode::DBG_VALUE
) {
2327 assert(DebugOps
.size() == 1 &&
2328 "DBG_VALUE must contain exactly one debug operand");
2329 MachineOperand DebugOp
= DebugOps
[0];
2330 if (DebugOp
.isReg())
2331 return BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOp
.getReg(), Variable
,
2334 auto MIB
= BuildMI(MF
, DL
, MCID
).add(DebugOp
);
2339 return MIB
.addMetadata(Variable
).addMetadata(Expr
);
2342 auto MIB
= BuildMI(MF
, DL
, MCID
);
2343 MIB
.addMetadata(Variable
).addMetadata(Expr
);
2344 for (const MachineOperand
&DebugOp
: DebugOps
)
2345 if (DebugOp
.isReg())
2346 MIB
.addReg(DebugOp
.getReg());
2352 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2353 MachineBasicBlock::iterator I
,
2354 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2355 bool IsIndirect
, Register Reg
,
2356 const MDNode
*Variable
, const MDNode
*Expr
) {
2357 MachineFunction
&MF
= *BB
.getParent();
2358 MachineInstr
*MI
= BuildMI(MF
, DL
, MCID
, IsIndirect
, Reg
, Variable
, Expr
);
2360 return MachineInstrBuilder(MF
, MI
);
2363 MachineInstrBuilder
llvm::BuildMI(MachineBasicBlock
&BB
,
2364 MachineBasicBlock::iterator I
,
2365 const DebugLoc
&DL
, const MCInstrDesc
&MCID
,
2367 ArrayRef
<MachineOperand
> DebugOps
,
2368 const MDNode
*Variable
, const MDNode
*Expr
) {
2369 MachineFunction
&MF
= *BB
.getParent();
2371 BuildMI(MF
, DL
, MCID
, IsIndirect
, DebugOps
, Variable
, Expr
);
2373 return MachineInstrBuilder(MF
, *MI
);
2376 /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot.
2377 /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE.
2378 static const DIExpression
*computeExprForSpill(
2379 const MachineInstr
&MI
,
2380 const SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2381 assert(MI
.getDebugVariable()->isValidLocationForIntrinsic(MI
.getDebugLoc()) &&
2382 "Expected inlined-at fields to agree");
2384 const DIExpression
*Expr
= MI
.getDebugExpression();
2385 if (MI
.isIndirectDebugValue()) {
2386 assert(MI
.getDebugOffset().getImm() == 0 &&
2387 "DBG_VALUE with nonzero offset");
2388 Expr
= DIExpression::prepend(Expr
, DIExpression::DerefBefore
);
2389 } else if (MI
.isDebugValueList()) {
2390 // We will replace the spilled register with a frame index, so
2391 // immediately deref all references to the spilled register.
2392 std::array
<uint64_t, 1> Ops
{{dwarf::DW_OP_deref
}};
2393 for (const MachineOperand
*Op
: SpilledOperands
) {
2394 unsigned OpIdx
= MI
.getDebugOperandIndex(Op
);
2395 Expr
= DIExpression::appendOpsToArg(Expr
, Ops
, OpIdx
);
2400 static const DIExpression
*computeExprForSpill(const MachineInstr
&MI
,
2401 Register SpillReg
) {
2402 assert(MI
.hasDebugOperandForReg(SpillReg
) && "Spill Reg is not used in MI.");
2403 SmallVector
<const MachineOperand
*> SpillOperands
;
2404 for (const MachineOperand
&Op
: MI
.getDebugOperandsForReg(SpillReg
))
2405 SpillOperands
.push_back(&Op
);
2406 return computeExprForSpill(MI
, SpillOperands
);
2409 MachineInstr
*llvm::buildDbgValueForSpill(MachineBasicBlock
&BB
,
2410 MachineBasicBlock::iterator I
,
2411 const MachineInstr
&Orig
,
2412 int FrameIndex
, Register SpillReg
) {
2413 assert(!Orig
.isDebugRef() &&
2414 "DBG_INSTR_REF should not reference a virtual register.");
2415 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpillReg
);
2416 MachineInstrBuilder NewMI
=
2417 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2418 // Non-Variadic Operands: Location, Offset, Variable, Expression
2419 // Variadic Operands: Variable, Expression, Locations...
2420 if (Orig
.isNonListDebugValue())
2421 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2422 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2423 if (Orig
.isDebugValueList()) {
2424 for (const MachineOperand
&Op
: Orig
.debug_operands())
2425 if (Op
.isReg() && Op
.getReg() == SpillReg
)
2426 NewMI
.addFrameIndex(FrameIndex
);
2428 NewMI
.add(MachineOperand(Op
));
2432 MachineInstr
*llvm::buildDbgValueForSpill(
2433 MachineBasicBlock
&BB
, MachineBasicBlock::iterator I
,
2434 const MachineInstr
&Orig
, int FrameIndex
,
2435 const SmallVectorImpl
<const MachineOperand
*> &SpilledOperands
) {
2436 const DIExpression
*Expr
= computeExprForSpill(Orig
, SpilledOperands
);
2437 MachineInstrBuilder NewMI
=
2438 BuildMI(BB
, I
, Orig
.getDebugLoc(), Orig
.getDesc());
2439 // Non-Variadic Operands: Location, Offset, Variable, Expression
2440 // Variadic Operands: Variable, Expression, Locations...
2441 if (Orig
.isNonListDebugValue())
2442 NewMI
.addFrameIndex(FrameIndex
).addImm(0U);
2443 NewMI
.addMetadata(Orig
.getDebugVariable()).addMetadata(Expr
);
2444 if (Orig
.isDebugValueList()) {
2445 for (const MachineOperand
&Op
: Orig
.debug_operands())
2446 if (is_contained(SpilledOperands
, &Op
))
2447 NewMI
.addFrameIndex(FrameIndex
);
2449 NewMI
.add(MachineOperand(Op
));
2454 void llvm::updateDbgValueForSpill(MachineInstr
&Orig
, int FrameIndex
,
2456 const DIExpression
*Expr
= computeExprForSpill(Orig
, Reg
);
2457 if (Orig
.isNonListDebugValue())
2458 Orig
.getDebugOffset().ChangeToImmediate(0U);
2459 for (MachineOperand
&Op
: Orig
.getDebugOperandsForReg(Reg
))
2460 Op
.ChangeToFrameIndex(FrameIndex
);
2461 Orig
.getDebugExpressionOp().setMetadata(Expr
);
2464 void MachineInstr::collectDebugValues(
2465 SmallVectorImpl
<MachineInstr
*> &DbgValues
) {
2466 MachineInstr
&MI
= *this;
2467 if (!MI
.getOperand(0).isReg())
2470 MachineBasicBlock::iterator DI
= MI
; ++DI
;
2471 for (MachineBasicBlock::iterator DE
= MI
.getParent()->end();
2473 if (!DI
->isDebugValue())
2475 if (DI
->hasDebugOperandForReg(MI
.getOperand(0).getReg()))
2476 DbgValues
.push_back(&*DI
);
2480 void MachineInstr::changeDebugValuesDefReg(Register Reg
) {
2481 // Collect matching debug values.
2482 SmallVector
<MachineInstr
*, 2> DbgValues
;
2484 if (!getOperand(0).isReg())
2487 Register DefReg
= getOperand(0).getReg();
2488 auto *MRI
= getRegInfo();
2489 for (auto &MO
: MRI
->use_operands(DefReg
)) {
2490 auto *DI
= MO
.getParent();
2491 if (!DI
->isDebugValue())
2493 if (DI
->hasDebugOperandForReg(DefReg
)) {
2494 DbgValues
.push_back(DI
);
2498 // Propagate Reg to debug value instructions.
2499 for (auto *DBI
: DbgValues
)
2500 for (MachineOperand
&Op
: DBI
->getDebugOperandsForReg(DefReg
))
2504 using MMOList
= SmallVector
<const MachineMemOperand
*, 2>;
2506 static LocationSize
getSpillSlotSize(const MMOList
&Accesses
,
2507 const MachineFrameInfo
&MFI
) {
2509 for (const auto *A
: Accesses
) {
2510 if (MFI
.isSpillSlotObjectIndex(
2511 cast
<FixedStackPseudoSourceValue
>(A
->getPseudoValue())
2512 ->getFrameIndex())) {
2513 LocationSize S
= A
->getSize();
2515 return LocationSize::beforeOrAfterPointer();
2516 Size
+= S
.getValue();
2522 std::optional
<LocationSize
>
2523 MachineInstr::getSpillSize(const TargetInstrInfo
*TII
) const {
2525 if (TII
->isStoreToStackSlotPostFE(*this, FI
)) {
2526 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2527 if (MFI
.isSpillSlotObjectIndex(FI
))
2528 return (*memoperands_begin())->getSize();
2530 return std::nullopt
;
2533 std::optional
<LocationSize
>
2534 MachineInstr::getFoldedSpillSize(const TargetInstrInfo
*TII
) const {
2536 if (TII
->hasStoreToStackSlot(*this, Accesses
))
2537 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2538 return std::nullopt
;
2541 std::optional
<LocationSize
>
2542 MachineInstr::getRestoreSize(const TargetInstrInfo
*TII
) const {
2544 if (TII
->isLoadFromStackSlotPostFE(*this, FI
)) {
2545 const MachineFrameInfo
&MFI
= getMF()->getFrameInfo();
2546 if (MFI
.isSpillSlotObjectIndex(FI
))
2547 return (*memoperands_begin())->getSize();
2549 return std::nullopt
;
2552 std::optional
<LocationSize
>
2553 MachineInstr::getFoldedRestoreSize(const TargetInstrInfo
*TII
) const {
2555 if (TII
->hasLoadFromStackSlot(*this, Accesses
))
2556 return getSpillSlotSize(Accesses
, getMF()->getFrameInfo());
2557 return std::nullopt
;
2560 unsigned MachineInstr::getDebugInstrNum() {
2561 if (DebugInstrNum
== 0)
2562 DebugInstrNum
= getParent()->getParent()->getNewDebugInstrNum();
2563 return DebugInstrNum
;
2566 unsigned MachineInstr::getDebugInstrNum(MachineFunction
&MF
) {
2567 if (DebugInstrNum
== 0)
2568 DebugInstrNum
= MF
.getNewDebugInstrNum();
2569 return DebugInstrNum
;
2572 std::tuple
<LLT
, LLT
> MachineInstr::getFirst2LLTs() const {
2573 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2574 getRegInfo()->getType(getOperand(1).getReg()));
2577 std::tuple
<LLT
, LLT
, LLT
> MachineInstr::getFirst3LLTs() const {
2578 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2579 getRegInfo()->getType(getOperand(1).getReg()),
2580 getRegInfo()->getType(getOperand(2).getReg()));
2583 std::tuple
<LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst4LLTs() const {
2584 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2585 getRegInfo()->getType(getOperand(1).getReg()),
2586 getRegInfo()->getType(getOperand(2).getReg()),
2587 getRegInfo()->getType(getOperand(3).getReg()));
2590 std::tuple
<LLT
, LLT
, LLT
, LLT
, LLT
> MachineInstr::getFirst5LLTs() const {
2591 return std::tuple(getRegInfo()->getType(getOperand(0).getReg()),
2592 getRegInfo()->getType(getOperand(1).getReg()),
2593 getRegInfo()->getType(getOperand(2).getReg()),
2594 getRegInfo()->getType(getOperand(3).getReg()),
2595 getRegInfo()->getType(getOperand(4).getReg()));
2598 std::tuple
<Register
, LLT
, Register
, LLT
>
2599 MachineInstr::getFirst2RegLLTs() const {
2600 Register Reg0
= getOperand(0).getReg();
2601 Register Reg1
= getOperand(1).getReg();
2602 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2603 getRegInfo()->getType(Reg1
));
2606 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
>
2607 MachineInstr::getFirst3RegLLTs() const {
2608 Register Reg0
= getOperand(0).getReg();
2609 Register Reg1
= getOperand(1).getReg();
2610 Register Reg2
= getOperand(2).getReg();
2611 return std::tuple(Reg0
, getRegInfo()->getType(Reg0
), Reg1
,
2612 getRegInfo()->getType(Reg1
), Reg2
,
2613 getRegInfo()->getType(Reg2
));
2616 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
>
2617 MachineInstr::getFirst4RegLLTs() const {
2618 Register Reg0
= getOperand(0).getReg();
2619 Register Reg1
= getOperand(1).getReg();
2620 Register Reg2
= getOperand(2).getReg();
2621 Register Reg3
= getOperand(3).getReg();
2623 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2624 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
));
2627 std::tuple
<Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
, LLT
, Register
,
2629 MachineInstr::getFirst5RegLLTs() const {
2630 Register Reg0
= getOperand(0).getReg();
2631 Register Reg1
= getOperand(1).getReg();
2632 Register Reg2
= getOperand(2).getReg();
2633 Register Reg3
= getOperand(3).getReg();
2634 Register Reg4
= getOperand(4).getReg();
2636 Reg0
, getRegInfo()->getType(Reg0
), Reg1
, getRegInfo()->getType(Reg1
),
2637 Reg2
, getRegInfo()->getType(Reg2
), Reg3
, getRegInfo()->getType(Reg3
),
2638 Reg4
, getRegInfo()->getType(Reg4
));
2641 void MachineInstr::insert(mop_iterator InsertBefore
,
2642 ArrayRef
<MachineOperand
> Ops
) {
2643 assert(InsertBefore
!= nullptr && "invalid iterator");
2644 assert(InsertBefore
->getParent() == this &&
2645 "iterator points to operand of other inst");
2649 // Do one pass to untie operands.
2650 SmallDenseMap
<unsigned, unsigned> TiedOpIndices
;
2651 for (const MachineOperand
&MO
: operands()) {
2652 if (MO
.isReg() && MO
.isTied()) {
2653 unsigned OpNo
= getOperandNo(&MO
);
2654 unsigned TiedTo
= findTiedOperandIdx(OpNo
);
2655 TiedOpIndices
[OpNo
] = TiedTo
;
2656 untieRegOperand(OpNo
);
2660 unsigned OpIdx
= getOperandNo(InsertBefore
);
2661 unsigned NumOperands
= getNumOperands();
2662 unsigned OpsToMove
= NumOperands
- OpIdx
;
2664 SmallVector
<MachineOperand
> MovingOps
;
2665 MovingOps
.reserve(OpsToMove
);
2667 for (unsigned I
= 0; I
< OpsToMove
; ++I
) {
2668 MovingOps
.emplace_back(getOperand(OpIdx
));
2669 removeOperand(OpIdx
);
2671 for (const MachineOperand
&MO
: Ops
)
2673 for (const MachineOperand
&OpMoved
: MovingOps
)
2674 addOperand(OpMoved
);
2677 for (auto [Tie1
, Tie2
] : TiedOpIndices
) {
2682 tieOperands(Tie1
, Tie2
);
2686 bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId
) const {
2687 assert(OpId
&& "expected non-zero operand id");
2688 assert(isInlineAsm() && "should only be used on inline asm");
2690 if (!getOperand(OpId
).isReg())
2693 const MachineOperand
&MD
= getOperand(OpId
- 1);
2697 InlineAsm::Flag
F(MD
.getImm());
2698 if (F
.isRegUseKind() || F
.isRegDefKind() || F
.isRegDefEarlyClobberKind())
2699 return F
.getRegMayBeFolded();