1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
20 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "loop-reduce"
23 #include "llvm/Transforms/Scalar.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Instructions.h"
26 #include "llvm/IntrinsicInst.h"
27 #include "llvm/LLVMContext.h"
28 #include "llvm/Type.h"
29 #include "llvm/DerivedTypes.h"
30 #include "llvm/Analysis/Dominators.h"
31 #include "llvm/Analysis/IVUsers.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
38 #include "llvm/ADT/Statistic.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/Compiler.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/ValueHandle.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetLowering.h"
49 STATISTIC(NumReduced
, "Number of IV uses strength reduced");
50 STATISTIC(NumInserted
, "Number of PHIs inserted");
51 STATISTIC(NumVariable
, "Number of PHIs with variable strides");
52 STATISTIC(NumEliminated
, "Number of strides eliminated");
53 STATISTIC(NumShadow
, "Number of Shadow IVs optimized");
54 STATISTIC(NumImmSunk
, "Number of common expr immediates sunk into uses");
55 STATISTIC(NumLoopCond
, "Number of loop terminating conds optimized");
57 static cl::opt
<bool> EnableFullLSRMode("enable-full-lsr",
65 /// IVInfo - This structure keeps track of one IV expression inserted during
66 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as
67 /// well as the PHI node and increment value created for rewrite.
68 struct VISIBILITY_HIDDEN IVExpr
{
73 IVExpr(const SCEV
*const stride
, const SCEV
*const base
, PHINode
*phi
)
74 : Stride(stride
), Base(base
), PHI(phi
) {}
77 /// IVsOfOneStride - This structure keeps track of all IV expression inserted
78 /// during StrengthReduceStridedIVUsers for a particular stride of the IV.
79 struct VISIBILITY_HIDDEN IVsOfOneStride
{
80 std::vector
<IVExpr
> IVs
;
82 void addIV(const SCEV
*const Stride
, const SCEV
*const Base
, PHINode
*PHI
) {
83 IVs
.push_back(IVExpr(Stride
, Base
, PHI
));
87 class VISIBILITY_HIDDEN LoopStrengthReduce
: public LoopPass
{
94 /// IVsByStride - Keep track of all IVs that have been inserted for a
95 /// particular stride.
96 std::map
<const SCEV
*, IVsOfOneStride
> IVsByStride
;
98 /// StrideNoReuse - Keep track of all the strides whose ivs cannot be
99 /// reused (nor should they be rewritten to reuse other strides).
100 SmallSet
<const SCEV
*, 4> StrideNoReuse
;
102 /// DeadInsts - Keep track of instructions we may have made dead, so that
103 /// we can remove them after we are done working.
104 SmallVector
<WeakVH
, 16> DeadInsts
;
106 /// TLI - Keep a pointer of a TargetLowering to consult for determining
107 /// transformation profitability.
108 const TargetLowering
*TLI
;
111 static char ID
; // Pass ID, replacement for typeid
112 explicit LoopStrengthReduce(const TargetLowering
*tli
= NULL
) :
113 LoopPass(&ID
), TLI(tli
) {
116 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
118 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
119 // We split critical edges, so we change the CFG. However, we do update
120 // many analyses if they are around.
121 AU
.addPreservedID(LoopSimplifyID
);
122 AU
.addPreserved
<LoopInfo
>();
123 AU
.addPreserved
<DominanceFrontier
>();
124 AU
.addPreserved
<DominatorTree
>();
126 AU
.addRequiredID(LoopSimplifyID
);
127 AU
.addRequired
<LoopInfo
>();
128 AU
.addRequired
<DominatorTree
>();
129 AU
.addRequired
<ScalarEvolution
>();
130 AU
.addPreserved
<ScalarEvolution
>();
131 AU
.addRequired
<IVUsers
>();
132 AU
.addPreserved
<IVUsers
>();
136 ICmpInst
*ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
137 IVStrideUse
* &CondUse
,
138 const SCEV
*const * &CondStride
);
140 void OptimizeIndvars(Loop
*L
);
141 void OptimizeLoopCountIV(Loop
*L
);
142 void OptimizeLoopTermCond(Loop
*L
);
144 /// OptimizeShadowIV - If IV is used in a int-to-float cast
145 /// inside the loop then try to eliminate the cast opeation.
146 void OptimizeShadowIV(Loop
*L
);
148 /// OptimizeMax - Rewrite the loop's terminating condition
149 /// if it uses a max computation.
150 ICmpInst
*OptimizeMax(Loop
*L
, ICmpInst
*Cond
,
151 IVStrideUse
* &CondUse
);
153 bool FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
154 const SCEV
*const * &CondStride
);
155 bool RequiresTypeConversion(const Type
*Ty
, const Type
*NewTy
);
156 const SCEV
*CheckForIVReuse(bool, bool, bool, const SCEV
*const&,
157 IVExpr
&, const Type
*,
158 const std::vector
<BasedUser
>& UsersToProcess
);
159 bool ValidScale(bool, int64_t,
160 const std::vector
<BasedUser
>& UsersToProcess
);
161 bool ValidOffset(bool, int64_t, int64_t,
162 const std::vector
<BasedUser
>& UsersToProcess
);
163 const SCEV
*CollectIVUsers(const SCEV
*const &Stride
,
164 IVUsersOfOneStride
&Uses
,
166 bool &AllUsesAreAddresses
,
167 bool &AllUsesAreOutsideLoop
,
168 std::vector
<BasedUser
> &UsersToProcess
);
169 bool ShouldUseFullStrengthReductionMode(
170 const std::vector
<BasedUser
> &UsersToProcess
,
172 bool AllUsesAreAddresses
,
174 void PrepareToStrengthReduceFully(
175 std::vector
<BasedUser
> &UsersToProcess
,
177 const SCEV
*CommonExprs
,
179 SCEVExpander
&PreheaderRewriter
);
180 void PrepareToStrengthReduceFromSmallerStride(
181 std::vector
<BasedUser
> &UsersToProcess
,
183 const IVExpr
&ReuseIV
,
184 Instruction
*PreInsertPt
);
185 void PrepareToStrengthReduceWithNewPhi(
186 std::vector
<BasedUser
> &UsersToProcess
,
188 const SCEV
*CommonExprs
,
190 Instruction
*IVIncInsertPt
,
192 SCEVExpander
&PreheaderRewriter
);
193 void StrengthReduceStridedIVUsers(const SCEV
*const &Stride
,
194 IVUsersOfOneStride
&Uses
,
196 void DeleteTriviallyDeadInstructions();
200 char LoopStrengthReduce::ID
= 0;
201 static RegisterPass
<LoopStrengthReduce
>
202 X("loop-reduce", "Loop Strength Reduction");
204 Pass
*llvm::createLoopStrengthReducePass(const TargetLowering
*TLI
) {
205 return new LoopStrengthReduce(TLI
);
208 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
209 /// specified set are trivially dead, delete them and see if this makes any of
210 /// their operands subsequently dead.
211 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() {
212 if (DeadInsts
.empty()) return;
214 while (!DeadInsts
.empty()) {
215 Instruction
*I
= dyn_cast_or_null
<Instruction
>(DeadInsts
.back());
216 DeadInsts
.pop_back();
218 if (I
== 0 || !isInstructionTriviallyDead(I
))
221 for (User::op_iterator OI
= I
->op_begin(), E
= I
->op_end(); OI
!= E
; ++OI
) {
222 if (Instruction
*U
= dyn_cast
<Instruction
>(*OI
)) {
225 DeadInsts
.push_back(U
);
229 I
->eraseFromParent();
234 /// containsAddRecFromDifferentLoop - Determine whether expression S involves a
235 /// subexpression that is an AddRec from a loop other than L. An outer loop
236 /// of L is OK, but not an inner loop nor a disjoint loop.
237 static bool containsAddRecFromDifferentLoop(const SCEV
*S
, Loop
*L
) {
238 // This is very common, put it first.
239 if (isa
<SCEVConstant
>(S
))
241 if (const SCEVCommutativeExpr
*AE
= dyn_cast
<SCEVCommutativeExpr
>(S
)) {
242 for (unsigned int i
=0; i
< AE
->getNumOperands(); i
++)
243 if (containsAddRecFromDifferentLoop(AE
->getOperand(i
), L
))
247 if (const SCEVAddRecExpr
*AE
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
248 if (const Loop
*newLoop
= AE
->getLoop()) {
251 // if newLoop is an outer loop of L, this is OK.
252 if (!LoopInfo::isNotAlreadyContainedIn(L
, newLoop
))
257 if (const SCEVUDivExpr
*DE
= dyn_cast
<SCEVUDivExpr
>(S
))
258 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
259 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
261 // SCEVSDivExpr has been backed out temporarily, but will be back; we'll
262 // need this when it is.
263 if (const SCEVSDivExpr
*DE
= dyn_cast
<SCEVSDivExpr
>(S
))
264 return containsAddRecFromDifferentLoop(DE
->getLHS(), L
) ||
265 containsAddRecFromDifferentLoop(DE
->getRHS(), L
);
267 if (const SCEVCastExpr
*CE
= dyn_cast
<SCEVCastExpr
>(S
))
268 return containsAddRecFromDifferentLoop(CE
->getOperand(), L
);
272 /// isAddressUse - Returns true if the specified instruction is using the
273 /// specified value as an address.
274 static bool isAddressUse(Instruction
*Inst
, Value
*OperandVal
) {
275 bool isAddress
= isa
<LoadInst
>(Inst
);
276 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
)) {
277 if (SI
->getOperand(1) == OperandVal
)
279 } else if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
280 // Addressing modes can also be folded into prefetches and a variety
282 switch (II
->getIntrinsicID()) {
284 case Intrinsic::prefetch
:
285 case Intrinsic::x86_sse2_loadu_dq
:
286 case Intrinsic::x86_sse2_loadu_pd
:
287 case Intrinsic::x86_sse_loadu_ps
:
288 case Intrinsic::x86_sse_storeu_ps
:
289 case Intrinsic::x86_sse2_storeu_pd
:
290 case Intrinsic::x86_sse2_storeu_dq
:
291 case Intrinsic::x86_sse2_storel_dq
:
292 if (II
->getOperand(1) == OperandVal
)
300 /// getAccessType - Return the type of the memory being accessed.
301 static const Type
*getAccessType(const Instruction
*Inst
) {
302 const Type
*AccessTy
= Inst
->getType();
303 if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
304 AccessTy
= SI
->getOperand(0)->getType();
305 else if (const IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(Inst
)) {
306 // Addressing modes can also be folded into prefetches and a variety
308 switch (II
->getIntrinsicID()) {
310 case Intrinsic::x86_sse_storeu_ps
:
311 case Intrinsic::x86_sse2_storeu_pd
:
312 case Intrinsic::x86_sse2_storeu_dq
:
313 case Intrinsic::x86_sse2_storel_dq
:
314 AccessTy
= II
->getOperand(1)->getType();
322 /// BasedUser - For a particular base value, keep information about how we've
323 /// partitioned the expression so far.
325 /// SE - The current ScalarEvolution object.
328 /// Base - The Base value for the PHI node that needs to be inserted for
329 /// this use. As the use is processed, information gets moved from this
330 /// field to the Imm field (below). BasedUser values are sorted by this
334 /// Inst - The instruction using the induction variable.
337 /// OperandValToReplace - The operand value of Inst to replace with the
339 Value
*OperandValToReplace
;
341 /// Imm - The immediate value that should be added to the base immediately
342 /// before Inst, because it will be folded into the imm field of the
343 /// instruction. This is also sometimes used for loop-variant values that
344 /// must be added inside the loop.
347 /// Phi - The induction variable that performs the striding that
348 /// should be used for this user.
351 // isUseOfPostIncrementedValue - True if this should use the
352 // post-incremented version of this IV, not the preincremented version.
353 // This can only be set in special cases, such as the terminating setcc
354 // instruction for a loop and uses outside the loop that are dominated by
356 bool isUseOfPostIncrementedValue
;
358 BasedUser(IVStrideUse
&IVSU
, ScalarEvolution
*se
)
359 : SE(se
), Base(IVSU
.getOffset()), Inst(IVSU
.getUser()),
360 OperandValToReplace(IVSU
.getOperandValToReplace()),
361 Imm(SE
->getIntegerSCEV(0, Base
->getType())),
362 isUseOfPostIncrementedValue(IVSU
.isUseOfPostIncrementedValue()) {}
364 // Once we rewrite the code to insert the new IVs we want, update the
365 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
367 void RewriteInstructionToUseNewBase(const SCEV
*const &NewBase
,
368 Instruction
*InsertPt
,
369 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
371 SmallVectorImpl
<WeakVH
> &DeadInsts
);
373 Value
*InsertCodeForBaseAtPosition(const SCEV
*const &NewBase
,
375 SCEVExpander
&Rewriter
,
376 Instruction
*IP
, Loop
*L
,
382 void BasedUser::dump() const {
383 cerr
<< " Base=" << *Base
;
384 cerr
<< " Imm=" << *Imm
;
385 cerr
<< " Inst: " << *Inst
;
388 Value
*BasedUser::InsertCodeForBaseAtPosition(const SCEV
*const &NewBase
,
390 SCEVExpander
&Rewriter
,
391 Instruction
*IP
, Loop
*L
,
393 // Figure out where we *really* want to insert this code. In particular, if
394 // the user is inside of a loop that is nested inside of L, we really don't
395 // want to insert this expression before the user, we'd rather pull it out as
396 // many loops as possible.
397 Instruction
*BaseInsertPt
= IP
;
399 // Figure out the most-nested loop that IP is in.
400 Loop
*InsertLoop
= LI
.getLoopFor(IP
->getParent());
402 // If InsertLoop is not L, and InsertLoop is nested inside of L, figure out
403 // the preheader of the outer-most loop where NewBase is not loop invariant.
404 if (L
->contains(IP
->getParent()))
405 while (InsertLoop
&& NewBase
->isLoopInvariant(InsertLoop
)) {
406 BaseInsertPt
= InsertLoop
->getLoopPreheader()->getTerminator();
407 InsertLoop
= InsertLoop
->getParentLoop();
410 Value
*Base
= Rewriter
.expandCodeFor(NewBase
, 0, BaseInsertPt
);
412 const SCEV
*NewValSCEV
= SE
->getUnknown(Base
);
414 // Always emit the immediate into the same block as the user.
415 NewValSCEV
= SE
->getAddExpr(NewValSCEV
, Imm
);
417 return Rewriter
.expandCodeFor(NewValSCEV
, Ty
, IP
);
421 // Once we rewrite the code to insert the new IVs we want, update the
422 // operands of Inst to use the new expression 'NewBase', with 'Imm' added
423 // to it. NewBasePt is the last instruction which contributes to the
424 // value of NewBase in the case that it's a diffferent instruction from
425 // the PHI that NewBase is computed from, or null otherwise.
427 void BasedUser::RewriteInstructionToUseNewBase(const SCEV
*const &NewBase
,
428 Instruction
*NewBasePt
,
429 SCEVExpander
&Rewriter
, Loop
*L
, Pass
*P
,
431 SmallVectorImpl
<WeakVH
> &DeadInsts
) {
432 if (!isa
<PHINode
>(Inst
)) {
433 // By default, insert code at the user instruction.
434 BasicBlock::iterator InsertPt
= Inst
;
436 // However, if the Operand is itself an instruction, the (potentially
437 // complex) inserted code may be shared by many users. Because of this, we
438 // want to emit code for the computation of the operand right before its old
439 // computation. This is usually safe, because we obviously used to use the
440 // computation when it was computed in its current block. However, in some
441 // cases (e.g. use of a post-incremented induction variable) the NewBase
442 // value will be pinned to live somewhere after the original computation.
443 // In this case, we have to back off.
445 // If this is a use outside the loop (which means after, since it is based
446 // on a loop indvar) we use the post-incremented value, so that we don't
447 // artificially make the preinc value live out the bottom of the loop.
448 if (!isUseOfPostIncrementedValue
&& L
->contains(Inst
->getParent())) {
449 if (NewBasePt
&& isa
<PHINode
>(OperandValToReplace
)) {
450 InsertPt
= NewBasePt
;
452 } else if (Instruction
*OpInst
453 = dyn_cast
<Instruction
>(OperandValToReplace
)) {
455 while (isa
<PHINode
>(InsertPt
)) ++InsertPt
;
458 Value
*NewVal
= InsertCodeForBaseAtPosition(NewBase
,
459 OperandValToReplace
->getType(),
460 Rewriter
, InsertPt
, L
, LI
);
461 // Replace the use of the operand Value with the new Phi we just created.
462 Inst
->replaceUsesOfWith(OperandValToReplace
, NewVal
);
464 DOUT
<< " Replacing with ";
465 DEBUG(WriteAsOperand(*DOUT
, NewVal
, /*PrintType=*/false));
466 DOUT
<< ", which has value " << *NewBase
<< " plus IMM " << *Imm
<< "\n";
470 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm
471 // expression into each operand block that uses it. Note that PHI nodes can
472 // have multiple entries for the same predecessor. We use a map to make sure
473 // that a PHI node only has a single Value* for each predecessor (which also
474 // prevents us from inserting duplicate code in some blocks).
475 DenseMap
<BasicBlock
*, Value
*> InsertedCode
;
476 PHINode
*PN
= cast
<PHINode
>(Inst
);
477 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
478 if (PN
->getIncomingValue(i
) == OperandValToReplace
) {
479 // If the original expression is outside the loop, put the replacement
480 // code in the same place as the original expression,
481 // which need not be an immediate predecessor of this PHI. This way we
482 // need only one copy of it even if it is referenced multiple times in
483 // the PHI. We don't do this when the original expression is inside the
484 // loop because multiple copies sometimes do useful sinking of code in
486 Instruction
*OldLoc
= dyn_cast
<Instruction
>(OperandValToReplace
);
487 if (L
->contains(OldLoc
->getParent())) {
488 // If this is a critical edge, split the edge so that we do not insert
489 // the code on all predecessor/successor paths. We do this unless this
490 // is the canonical backedge for this loop, as this can make some
491 // inserted code be in an illegal position.
492 BasicBlock
*PHIPred
= PN
->getIncomingBlock(i
);
493 if (e
!= 1 && PHIPred
->getTerminator()->getNumSuccessors() > 1 &&
494 (PN
->getParent() != L
->getHeader() || !L
->contains(PHIPred
))) {
496 // First step, split the critical edge.
497 SplitCriticalEdge(PHIPred
, PN
->getParent(), P
, false);
499 // Next step: move the basic block. In particular, if the PHI node
500 // is outside of the loop, and PredTI is in the loop, we want to
501 // move the block to be immediately before the PHI block, not
502 // immediately after PredTI.
503 if (L
->contains(PHIPred
) && !L
->contains(PN
->getParent())) {
504 BasicBlock
*NewBB
= PN
->getIncomingBlock(i
);
505 NewBB
->moveBefore(PN
->getParent());
508 // Splitting the edge can reduce the number of PHI entries we have.
509 e
= PN
->getNumIncomingValues();
512 Value
*&Code
= InsertedCode
[PN
->getIncomingBlock(i
)];
514 // Insert the code into the end of the predecessor block.
515 Instruction
*InsertPt
= (L
->contains(OldLoc
->getParent())) ?
516 PN
->getIncomingBlock(i
)->getTerminator() :
517 OldLoc
->getParent()->getTerminator();
518 Code
= InsertCodeForBaseAtPosition(NewBase
, PN
->getType(),
519 Rewriter
, InsertPt
, L
, LI
);
521 DOUT
<< " Changing PHI use to ";
522 DEBUG(WriteAsOperand(*DOUT
, Code
, /*PrintType=*/false));
523 DOUT
<< ", which has value " << *NewBase
<< " plus IMM " << *Imm
<< "\n";
526 // Replace the use of the operand Value with the new Phi we just created.
527 PN
->setIncomingValue(i
, Code
);
532 // PHI node might have become a constant value after SplitCriticalEdge.
533 DeadInsts
.push_back(Inst
);
537 /// fitsInAddressMode - Return true if V can be subsumed within an addressing
538 /// mode, and does not need to be put in a register first.
539 static bool fitsInAddressMode(const SCEV
*const &V
, const Type
*AccessTy
,
540 const TargetLowering
*TLI
, bool HasBaseReg
) {
541 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(V
)) {
542 int64_t VC
= SC
->getValue()->getSExtValue();
544 TargetLowering::AddrMode AM
;
546 AM
.HasBaseReg
= HasBaseReg
;
547 return TLI
->isLegalAddressingMode(AM
, AccessTy
);
549 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field.
550 return (VC
> -(1 << 16) && VC
< (1 << 16)-1);
554 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(V
))
555 if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(SU
->getValue())) {
557 TargetLowering::AddrMode AM
;
559 AM
.HasBaseReg
= HasBaseReg
;
560 return TLI
->isLegalAddressingMode(AM
, AccessTy
);
562 // Default: assume global addresses are not legal.
569 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are
570 /// loop varying to the Imm operand.
571 static void MoveLoopVariantsToImmediateField(const SCEV
*&Val
, const SCEV
*&Imm
,
572 Loop
*L
, ScalarEvolution
*SE
) {
573 if (Val
->isLoopInvariant(L
)) return; // Nothing to do.
575 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
576 SmallVector
<const SCEV
*, 4> NewOps
;
577 NewOps
.reserve(SAE
->getNumOperands());
579 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
)
580 if (!SAE
->getOperand(i
)->isLoopInvariant(L
)) {
581 // If this is a loop-variant expression, it must stay in the immediate
582 // field of the expression.
583 Imm
= SE
->getAddExpr(Imm
, SAE
->getOperand(i
));
585 NewOps
.push_back(SAE
->getOperand(i
));
589 Val
= SE
->getIntegerSCEV(0, Val
->getType());
591 Val
= SE
->getAddExpr(NewOps
);
592 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
593 // Try to pull immediates out of the start value of nested addrec's.
594 const SCEV
*Start
= SARE
->getStart();
595 MoveLoopVariantsToImmediateField(Start
, Imm
, L
, SE
);
597 SmallVector
<const SCEV
*, 4> Ops(SARE
->op_begin(), SARE
->op_end());
599 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
601 // Otherwise, all of Val is variant, move the whole thing over.
602 Imm
= SE
->getAddExpr(Imm
, Val
);
603 Val
= SE
->getIntegerSCEV(0, Val
->getType());
608 /// MoveImmediateValues - Look at Val, and pull out any additions of constants
609 /// that can fit into the immediate field of instructions in the target.
610 /// Accumulate these immediate values into the Imm value.
611 static void MoveImmediateValues(const TargetLowering
*TLI
,
612 const Type
*AccessTy
,
613 const SCEV
*&Val
, const SCEV
*&Imm
,
614 bool isAddress
, Loop
*L
,
615 ScalarEvolution
*SE
) {
616 if (const SCEVAddExpr
*SAE
= dyn_cast
<SCEVAddExpr
>(Val
)) {
617 SmallVector
<const SCEV
*, 4> NewOps
;
618 NewOps
.reserve(SAE
->getNumOperands());
620 for (unsigned i
= 0; i
!= SAE
->getNumOperands(); ++i
) {
621 const SCEV
*NewOp
= SAE
->getOperand(i
);
622 MoveImmediateValues(TLI
, AccessTy
, NewOp
, Imm
, isAddress
, L
, SE
);
624 if (!NewOp
->isLoopInvariant(L
)) {
625 // If this is a loop-variant expression, it must stay in the immediate
626 // field of the expression.
627 Imm
= SE
->getAddExpr(Imm
, NewOp
);
629 NewOps
.push_back(NewOp
);
634 Val
= SE
->getIntegerSCEV(0, Val
->getType());
636 Val
= SE
->getAddExpr(NewOps
);
638 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Val
)) {
639 // Try to pull immediates out of the start value of nested addrec's.
640 const SCEV
*Start
= SARE
->getStart();
641 MoveImmediateValues(TLI
, AccessTy
, Start
, Imm
, isAddress
, L
, SE
);
643 if (Start
!= SARE
->getStart()) {
644 SmallVector
<const SCEV
*, 4> Ops(SARE
->op_begin(), SARE
->op_end());
646 Val
= SE
->getAddRecExpr(Ops
, SARE
->getLoop());
649 } else if (const SCEVMulExpr
*SME
= dyn_cast
<SCEVMulExpr
>(Val
)) {
650 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field.
652 fitsInAddressMode(SME
->getOperand(0), AccessTy
, TLI
, false) &&
653 SME
->getNumOperands() == 2 && SME
->isLoopInvariant(L
)) {
655 const SCEV
*SubImm
= SE
->getIntegerSCEV(0, Val
->getType());
656 const SCEV
*NewOp
= SME
->getOperand(1);
657 MoveImmediateValues(TLI
, AccessTy
, NewOp
, SubImm
, isAddress
, L
, SE
);
659 // If we extracted something out of the subexpressions, see if we can
661 if (NewOp
!= SME
->getOperand(1)) {
662 // Scale SubImm up by "8". If the result is a target constant, we are
664 SubImm
= SE
->getMulExpr(SubImm
, SME
->getOperand(0));
665 if (fitsInAddressMode(SubImm
, AccessTy
, TLI
, false)) {
666 // Accumulate the immediate.
667 Imm
= SE
->getAddExpr(Imm
, SubImm
);
669 // Update what is left of 'Val'.
670 Val
= SE
->getMulExpr(SME
->getOperand(0), NewOp
);
677 // Loop-variant expressions must stay in the immediate field of the
679 if ((isAddress
&& fitsInAddressMode(Val
, AccessTy
, TLI
, false)) ||
680 !Val
->isLoopInvariant(L
)) {
681 Imm
= SE
->getAddExpr(Imm
, Val
);
682 Val
= SE
->getIntegerSCEV(0, Val
->getType());
686 // Otherwise, no immediates to move.
689 static void MoveImmediateValues(const TargetLowering
*TLI
,
691 const SCEV
*&Val
, const SCEV
*&Imm
,
692 bool isAddress
, Loop
*L
,
693 ScalarEvolution
*SE
) {
694 const Type
*AccessTy
= getAccessType(User
);
695 MoveImmediateValues(TLI
, AccessTy
, Val
, Imm
, isAddress
, L
, SE
);
698 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are
699 /// added together. This is used to reassociate common addition subexprs
700 /// together for maximal sharing when rewriting bases.
701 static void SeparateSubExprs(SmallVector
<const SCEV
*, 16> &SubExprs
,
703 ScalarEvolution
*SE
) {
704 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(Expr
)) {
705 for (unsigned j
= 0, e
= AE
->getNumOperands(); j
!= e
; ++j
)
706 SeparateSubExprs(SubExprs
, AE
->getOperand(j
), SE
);
707 } else if (const SCEVAddRecExpr
*SARE
= dyn_cast
<SCEVAddRecExpr
>(Expr
)) {
708 const SCEV
*Zero
= SE
->getIntegerSCEV(0, Expr
->getType());
709 if (SARE
->getOperand(0) == Zero
) {
710 SubExprs
.push_back(Expr
);
712 // Compute the addrec with zero as its base.
713 SmallVector
<const SCEV
*, 4> Ops(SARE
->op_begin(), SARE
->op_end());
714 Ops
[0] = Zero
; // Start with zero base.
715 SubExprs
.push_back(SE
->getAddRecExpr(Ops
, SARE
->getLoop()));
718 SeparateSubExprs(SubExprs
, SARE
->getOperand(0), SE
);
720 } else if (!Expr
->isZero()) {
722 SubExprs
.push_back(Expr
);
726 // This is logically local to the following function, but C++ says we have
727 // to make it file scope.
728 struct SubExprUseData
{ unsigned Count
; bool notAllUsesAreFree
; };
730 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all
731 /// the Uses, removing any common subexpressions, except that if all such
732 /// subexpressions can be folded into an addressing mode for all uses inside
733 /// the loop (this case is referred to as "free" in comments herein) we do
734 /// not remove anything. This looks for things like (a+b+c) and
735 /// (a+c+d) and computes the common (a+c) subexpression. The common expression
736 /// is *removed* from the Bases and returned.
738 RemoveCommonExpressionsFromUseBases(std::vector
<BasedUser
> &Uses
,
739 ScalarEvolution
*SE
, Loop
*L
,
740 const TargetLowering
*TLI
) {
741 unsigned NumUses
= Uses
.size();
743 // Only one use? This is a very common case, so we handle it specially and
745 const SCEV
*Zero
= SE
->getIntegerSCEV(0, Uses
[0].Base
->getType());
746 const SCEV
*Result
= Zero
;
747 const SCEV
*FreeResult
= Zero
;
749 // If the use is inside the loop, use its base, regardless of what it is:
750 // it is clearly shared across all the IV's. If the use is outside the loop
751 // (which means after it) we don't want to factor anything *into* the loop,
752 // so just use 0 as the base.
753 if (L
->contains(Uses
[0].Inst
->getParent()))
754 std::swap(Result
, Uses
[0].Base
);
758 // To find common subexpressions, count how many of Uses use each expression.
759 // If any subexpressions are used Uses.size() times, they are common.
760 // Also track whether all uses of each expression can be moved into an
761 // an addressing mode "for free"; such expressions are left within the loop.
762 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; };
763 std::map
<const SCEV
*, SubExprUseData
> SubExpressionUseData
;
765 // UniqueSubExprs - Keep track of all of the subexpressions we see in the
766 // order we see them.
767 SmallVector
<const SCEV
*, 16> UniqueSubExprs
;
769 SmallVector
<const SCEV
*, 16> SubExprs
;
770 unsigned NumUsesInsideLoop
= 0;
771 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
772 // If the user is outside the loop, just ignore it for base computation.
773 // Since the user is outside the loop, it must be *after* the loop (if it
774 // were before, it could not be based on the loop IV). We don't want users
775 // after the loop to affect base computation of values *inside* the loop,
776 // because we can always add their offsets to the result IV after the loop
777 // is done, ensuring we get good code inside the loop.
778 if (!L
->contains(Uses
[i
].Inst
->getParent()))
782 // If the base is zero (which is common), return zero now, there are no
784 if (Uses
[i
].Base
== Zero
) return Zero
;
786 // If this use is as an address we may be able to put CSEs in the addressing
787 // mode rather than hoisting them.
788 bool isAddrUse
= isAddressUse(Uses
[i
].Inst
, Uses
[i
].OperandValToReplace
);
789 // We may need the AccessTy below, but only when isAddrUse, so compute it
790 // only in that case.
791 const Type
*AccessTy
= 0;
793 AccessTy
= getAccessType(Uses
[i
].Inst
);
795 // Split the expression into subexprs.
796 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
797 // Add one to SubExpressionUseData.Count for each subexpr present, and
798 // if the subexpr is not a valid immediate within an addressing mode use,
799 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to
800 // hoist these out of the loop (if they are common to all uses).
801 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
802 if (++SubExpressionUseData
[SubExprs
[j
]].Count
== 1)
803 UniqueSubExprs
.push_back(SubExprs
[j
]);
804 if (!isAddrUse
|| !fitsInAddressMode(SubExprs
[j
], AccessTy
, TLI
, false))
805 SubExpressionUseData
[SubExprs
[j
]].notAllUsesAreFree
= true;
810 // Now that we know how many times each is used, build Result. Iterate over
811 // UniqueSubexprs so that we have a stable ordering.
812 for (unsigned i
= 0, e
= UniqueSubExprs
.size(); i
!= e
; ++i
) {
813 std::map
<const SCEV
*, SubExprUseData
>::iterator I
=
814 SubExpressionUseData
.find(UniqueSubExprs
[i
]);
815 assert(I
!= SubExpressionUseData
.end() && "Entry not found?");
816 if (I
->second
.Count
== NumUsesInsideLoop
) { // Found CSE!
817 if (I
->second
.notAllUsesAreFree
)
818 Result
= SE
->getAddExpr(Result
, I
->first
);
820 FreeResult
= SE
->getAddExpr(FreeResult
, I
->first
);
822 // Remove non-cse's from SubExpressionUseData.
823 SubExpressionUseData
.erase(I
);
826 if (FreeResult
!= Zero
) {
827 // We have some subexpressions that can be subsumed into addressing
828 // modes in every use inside the loop. However, it's possible that
829 // there are so many of them that the combined FreeResult cannot
830 // be subsumed, or that the target cannot handle both a FreeResult
831 // and a Result in the same instruction (for example because it would
832 // require too many registers). Check this.
833 for (unsigned i
=0; i
<NumUses
; ++i
) {
834 if (!L
->contains(Uses
[i
].Inst
->getParent()))
836 // We know this is an addressing mode use; if there are any uses that
837 // are not, FreeResult would be Zero.
838 const Type
*AccessTy
= getAccessType(Uses
[i
].Inst
);
839 if (!fitsInAddressMode(FreeResult
, AccessTy
, TLI
, Result
!=Zero
)) {
840 // FIXME: could split up FreeResult into pieces here, some hoisted
841 // and some not. There is no obvious advantage to this.
842 Result
= SE
->getAddExpr(Result
, FreeResult
);
849 // If we found no CSE's, return now.
850 if (Result
== Zero
) return Result
;
852 // If we still have a FreeResult, remove its subexpressions from
853 // SubExpressionUseData. This means they will remain in the use Bases.
854 if (FreeResult
!= Zero
) {
855 SeparateSubExprs(SubExprs
, FreeResult
, SE
);
856 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
) {
857 std::map
<const SCEV
*, SubExprUseData
>::iterator I
=
858 SubExpressionUseData
.find(SubExprs
[j
]);
859 SubExpressionUseData
.erase(I
);
864 // Otherwise, remove all of the CSE's we found from each of the base values.
865 for (unsigned i
= 0; i
!= NumUses
; ++i
) {
866 // Uses outside the loop don't necessarily include the common base, but
867 // the final IV value coming into those uses does. Instead of trying to
868 // remove the pieces of the common base, which might not be there,
869 // subtract off the base to compensate for this.
870 if (!L
->contains(Uses
[i
].Inst
->getParent())) {
871 Uses
[i
].Base
= SE
->getMinusSCEV(Uses
[i
].Base
, Result
);
875 // Split the expression into subexprs.
876 SeparateSubExprs(SubExprs
, Uses
[i
].Base
, SE
);
878 // Remove any common subexpressions.
879 for (unsigned j
= 0, e
= SubExprs
.size(); j
!= e
; ++j
)
880 if (SubExpressionUseData
.count(SubExprs
[j
])) {
881 SubExprs
.erase(SubExprs
.begin()+j
);
885 // Finally, add the non-shared expressions together.
886 if (SubExprs
.empty())
889 Uses
[i
].Base
= SE
->getAddExpr(SubExprs
);
896 /// ValidScale - Check whether the given Scale is valid for all loads and
897 /// stores in UsersToProcess.
899 bool LoopStrengthReduce::ValidScale(bool HasBaseReg
, int64_t Scale
,
900 const std::vector
<BasedUser
>& UsersToProcess
) {
904 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!=e
; ++i
) {
905 // If this is a load or other access, pass the type of the access in.
906 const Type
*AccessTy
= Type::VoidTy
;
907 if (isAddressUse(UsersToProcess
[i
].Inst
,
908 UsersToProcess
[i
].OperandValToReplace
))
909 AccessTy
= getAccessType(UsersToProcess
[i
].Inst
);
910 else if (isa
<PHINode
>(UsersToProcess
[i
].Inst
))
913 TargetLowering::AddrMode AM
;
914 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(UsersToProcess
[i
].Imm
))
915 AM
.BaseOffs
= SC
->getValue()->getSExtValue();
916 AM
.HasBaseReg
= HasBaseReg
|| !UsersToProcess
[i
].Base
->isZero();
919 // If load[imm+r*scale] is illegal, bail out.
920 if (!TLI
->isLegalAddressingMode(AM
, AccessTy
))
926 /// ValidOffset - Check whether the given Offset is valid for all loads and
927 /// stores in UsersToProcess.
929 bool LoopStrengthReduce::ValidOffset(bool HasBaseReg
,
932 const std::vector
<BasedUser
>& UsersToProcess
) {
936 for (unsigned i
=0, e
= UsersToProcess
.size(); i
!=e
; ++i
) {
937 // If this is a load or other access, pass the type of the access in.
938 const Type
*AccessTy
= Type::VoidTy
;
939 if (isAddressUse(UsersToProcess
[i
].Inst
,
940 UsersToProcess
[i
].OperandValToReplace
))
941 AccessTy
= getAccessType(UsersToProcess
[i
].Inst
);
942 else if (isa
<PHINode
>(UsersToProcess
[i
].Inst
))
945 TargetLowering::AddrMode AM
;
946 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(UsersToProcess
[i
].Imm
))
947 AM
.BaseOffs
= SC
->getValue()->getSExtValue();
948 AM
.BaseOffs
= (uint64_t)AM
.BaseOffs
+ (uint64_t)Offset
;
949 AM
.HasBaseReg
= HasBaseReg
|| !UsersToProcess
[i
].Base
->isZero();
952 // If load[imm+r*scale] is illegal, bail out.
953 if (!TLI
->isLegalAddressingMode(AM
, AccessTy
))
959 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not
961 bool LoopStrengthReduce::RequiresTypeConversion(const Type
*Ty1
,
965 Ty1
= SE
->getEffectiveSCEVType(Ty1
);
966 Ty2
= SE
->getEffectiveSCEVType(Ty2
);
969 if (Ty1
->canLosslesslyBitCastTo(Ty2
))
971 if (TLI
&& TLI
->isTruncateFree(Ty1
, Ty2
))
976 /// CheckForIVReuse - Returns the multiple if the stride is the multiple
977 /// of a previous stride and it is a legal value for the target addressing
978 /// mode scale component and optional base reg. This allows the users of
979 /// this stride to be rewritten as prev iv * factor. It returns 0 if no
980 /// reuse is possible. Factors can be negative on same targets, e.g. ARM.
982 /// If all uses are outside the loop, we don't require that all multiplies
983 /// be folded into the addressing mode, nor even that the factor be constant;
984 /// a multiply (executed once) outside the loop is better than another IV
985 /// within. Well, usually.
986 const SCEV
*LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg
,
987 bool AllUsesAreAddresses
,
988 bool AllUsesAreOutsideLoop
,
989 const SCEV
*const &Stride
,
990 IVExpr
&IV
, const Type
*Ty
,
991 const std::vector
<BasedUser
>& UsersToProcess
) {
992 if (StrideNoReuse
.count(Stride
))
993 return SE
->getIntegerSCEV(0, Stride
->getType());
995 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Stride
)) {
996 int64_t SInt
= SC
->getValue()->getSExtValue();
997 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
998 NewStride
!= e
; ++NewStride
) {
999 std::map
<const SCEV
*, IVsOfOneStride
>::iterator SI
=
1000 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1001 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
) ||
1002 StrideNoReuse
.count(SI
->first
))
1004 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1005 if (SI
->first
!= Stride
&&
1006 (unsigned(abs64(SInt
)) < SSInt
|| (SInt
% SSInt
) != 0))
1008 int64_t Scale
= SInt
/ SSInt
;
1009 // Check that this stride is valid for all the types used for loads and
1010 // stores; if it can be used for some and not others, we might as well use
1011 // the original stride everywhere, since we have to create the IV for it
1012 // anyway. If the scale is 1, then we don't need to worry about folding
1015 (AllUsesAreAddresses
&&
1016 ValidScale(HasBaseReg
, Scale
, UsersToProcess
))) {
1017 // Prefer to reuse an IV with a base of zero.
1018 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1019 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1020 // Only reuse previous IV if it would not require a type conversion
1021 // and if the base difference can be folded.
1022 if (II
->Base
->isZero() &&
1023 !RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1025 return SE
->getIntegerSCEV(Scale
, Stride
->getType());
1027 // Otherwise, settle for an IV with a foldable base.
1028 if (AllUsesAreAddresses
)
1029 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1030 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1031 // Only reuse previous IV if it would not require a type conversion
1032 // and if the base difference can be folded.
1033 if (SE
->getEffectiveSCEVType(II
->Base
->getType()) ==
1034 SE
->getEffectiveSCEVType(Ty
) &&
1035 isa
<SCEVConstant
>(II
->Base
)) {
1037 cast
<SCEVConstant
>(II
->Base
)->getValue()->getSExtValue();
1038 if (Base
> INT32_MIN
&& Base
<= INT32_MAX
&&
1039 ValidOffset(HasBaseReg
, -Base
* Scale
,
1040 Scale
, UsersToProcess
)) {
1042 return SE
->getIntegerSCEV(Scale
, Stride
->getType());
1047 } else if (AllUsesAreOutsideLoop
) {
1048 // Accept nonconstant strides here; it is really really right to substitute
1049 // an existing IV if we can.
1050 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1051 NewStride
!= e
; ++NewStride
) {
1052 std::map
<const SCEV
*, IVsOfOneStride
>::iterator SI
=
1053 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1054 if (SI
== IVsByStride
.end() || !isa
<SCEVConstant
>(SI
->first
))
1056 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1057 if (SI
->first
!= Stride
&& SSInt
!= 1)
1059 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1060 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1061 // Accept nonzero base here.
1062 // Only reuse previous IV if it would not require a type conversion.
1063 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1068 // Special case, old IV is -1*x and this one is x. Can treat this one as
1070 for (unsigned NewStride
= 0, e
= IU
->StrideOrder
.size();
1071 NewStride
!= e
; ++NewStride
) {
1072 std::map
<const SCEV
*, IVsOfOneStride
>::iterator SI
=
1073 IVsByStride
.find(IU
->StrideOrder
[NewStride
]);
1074 if (SI
== IVsByStride
.end())
1076 if (const SCEVMulExpr
*ME
= dyn_cast
<SCEVMulExpr
>(SI
->first
))
1077 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(ME
->getOperand(0)))
1078 if (Stride
== ME
->getOperand(1) &&
1079 SC
->getValue()->getSExtValue() == -1LL)
1080 for (std::vector
<IVExpr
>::iterator II
= SI
->second
.IVs
.begin(),
1081 IE
= SI
->second
.IVs
.end(); II
!= IE
; ++II
)
1082 // Accept nonzero base here.
1083 // Only reuse previous IV if it would not require type conversion.
1084 if (!RequiresTypeConversion(II
->Base
->getType(), Ty
)) {
1086 return SE
->getIntegerSCEV(-1LL, Stride
->getType());
1090 return SE
->getIntegerSCEV(0, Stride
->getType());
1093 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that
1094 /// returns true if Val's isUseOfPostIncrementedValue is true.
1095 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser
&Val
) {
1096 return Val
.isUseOfPostIncrementedValue
;
1099 /// isNonConstantNegative - Return true if the specified scev is negated, but
1101 static bool isNonConstantNegative(const SCEV
*const &Expr
) {
1102 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Expr
);
1103 if (!Mul
) return false;
1105 // If there is a constant factor, it will be first.
1106 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
1107 if (!SC
) return false;
1109 // Return true if the value is negative, this matches things like (-42 * V).
1110 return SC
->getValue()->getValue().isNegative();
1113 /// CollectIVUsers - Transform our list of users and offsets to a bit more
1114 /// complex table. In this new vector, each 'BasedUser' contains 'Base', the base
1115 /// of the strided accesses, as well as the old information from Uses. We
1116 /// progressively move information from the Base field to the Imm field, until
1117 /// we eventually have the full access expression to rewrite the use.
1118 const SCEV
*LoopStrengthReduce::CollectIVUsers(const SCEV
*const &Stride
,
1119 IVUsersOfOneStride
&Uses
,
1121 bool &AllUsesAreAddresses
,
1122 bool &AllUsesAreOutsideLoop
,
1123 std::vector
<BasedUser
> &UsersToProcess
) {
1124 // FIXME: Generalize to non-affine IV's.
1125 if (!Stride
->isLoopInvariant(L
))
1126 return SE
->getIntegerSCEV(0, Stride
->getType());
1128 UsersToProcess
.reserve(Uses
.Users
.size());
1129 for (ilist
<IVStrideUse
>::iterator I
= Uses
.Users
.begin(),
1130 E
= Uses
.Users
.end(); I
!= E
; ++I
) {
1131 UsersToProcess
.push_back(BasedUser(*I
, SE
));
1133 // Move any loop variant operands from the offset field to the immediate
1134 // field of the use, so that we don't try to use something before it is
1136 MoveLoopVariantsToImmediateField(UsersToProcess
.back().Base
,
1137 UsersToProcess
.back().Imm
, L
, SE
);
1138 assert(UsersToProcess
.back().Base
->isLoopInvariant(L
) &&
1139 "Base value is not loop invariant!");
1142 // We now have a whole bunch of uses of like-strided induction variables, but
1143 // they might all have different bases. We want to emit one PHI node for this
1144 // stride which we fold as many common expressions (between the IVs) into as
1145 // possible. Start by identifying the common expressions in the base values
1146 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find
1147 // "A+B"), emit it to the preheader, then remove the expression from the
1148 // UsersToProcess base values.
1149 const SCEV
*CommonExprs
=
1150 RemoveCommonExpressionsFromUseBases(UsersToProcess
, SE
, L
, TLI
);
1152 // Next, figure out what we can represent in the immediate fields of
1153 // instructions. If we can represent anything there, move it to the imm
1154 // fields of the BasedUsers. We do this so that it increases the commonality
1155 // of the remaining uses.
1156 unsigned NumPHI
= 0;
1157 bool HasAddress
= false;
1158 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1159 // If the user is not in the current loop, this means it is using the exit
1160 // value of the IV. Do not put anything in the base, make sure it's all in
1161 // the immediate field to allow as much factoring as possible.
1162 if (!L
->contains(UsersToProcess
[i
].Inst
->getParent())) {
1163 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
,
1164 UsersToProcess
[i
].Base
);
1165 UsersToProcess
[i
].Base
=
1166 SE
->getIntegerSCEV(0, UsersToProcess
[i
].Base
->getType());
1168 // Not all uses are outside the loop.
1169 AllUsesAreOutsideLoop
= false;
1171 // Addressing modes can be folded into loads and stores. Be careful that
1172 // the store is through the expression, not of the expression though.
1174 bool isAddress
= isAddressUse(UsersToProcess
[i
].Inst
,
1175 UsersToProcess
[i
].OperandValToReplace
);
1176 if (isa
<PHINode
>(UsersToProcess
[i
].Inst
)) {
1184 // If this use isn't an address, then not all uses are addresses.
1185 if (!isAddress
&& !isPHI
)
1186 AllUsesAreAddresses
= false;
1188 MoveImmediateValues(TLI
, UsersToProcess
[i
].Inst
, UsersToProcess
[i
].Base
,
1189 UsersToProcess
[i
].Imm
, isAddress
, L
, SE
);
1193 // If one of the use is a PHI node and all other uses are addresses, still
1194 // allow iv reuse. Essentially we are trading one constant multiplication
1195 // for one fewer iv.
1197 AllUsesAreAddresses
= false;
1199 // There are no in-loop address uses.
1200 if (AllUsesAreAddresses
&& (!HasAddress
&& !AllUsesAreOutsideLoop
))
1201 AllUsesAreAddresses
= false;
1206 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction
1207 /// is valid and profitable for the given set of users of a stride. In
1208 /// full strength-reduction mode, all addresses at the current stride are
1209 /// strength-reduced all the way down to pointer arithmetic.
1211 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode(
1212 const std::vector
<BasedUser
> &UsersToProcess
,
1214 bool AllUsesAreAddresses
,
1215 const SCEV
*Stride
) {
1216 if (!EnableFullLSRMode
)
1219 // The heuristics below aim to avoid increasing register pressure, but
1220 // fully strength-reducing all the addresses increases the number of
1221 // add instructions, so don't do this when optimizing for size.
1222 // TODO: If the loop is large, the savings due to simpler addresses
1223 // may oughtweight the costs of the extra increment instructions.
1224 if (L
->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize
))
1227 // TODO: For now, don't do full strength reduction if there could
1228 // potentially be greater-stride multiples of the current stride
1229 // which could reuse the current stride IV.
1230 if (IU
->StrideOrder
.back() != Stride
)
1233 // Iterate through the uses to find conditions that automatically rule out
1235 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1236 const SCEV
*Base
= UsersToProcess
[i
].Base
;
1237 const SCEV
*Imm
= UsersToProcess
[i
].Imm
;
1238 // If any users have a loop-variant component, they can't be fully
1239 // strength-reduced.
1240 if (Imm
&& !Imm
->isLoopInvariant(L
))
1242 // If there are to users with the same base and the difference between
1243 // the two Imm values can't be folded into the address, full
1244 // strength reduction would increase register pressure.
1246 const SCEV
*CurImm
= UsersToProcess
[i
].Imm
;
1247 if ((CurImm
|| Imm
) && CurImm
!= Imm
) {
1248 if (!CurImm
) CurImm
= SE
->getIntegerSCEV(0, Stride
->getType());
1249 if (!Imm
) Imm
= SE
->getIntegerSCEV(0, Stride
->getType());
1250 const Instruction
*Inst
= UsersToProcess
[i
].Inst
;
1251 const Type
*AccessTy
= getAccessType(Inst
);
1252 const SCEV
*Diff
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1253 if (!Diff
->isZero() &&
1254 (!AllUsesAreAddresses
||
1255 !fitsInAddressMode(Diff
, AccessTy
, TLI
, /*HasBaseReg=*/true)))
1258 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1261 // If there's exactly one user in this stride, fully strength-reducing it
1262 // won't increase register pressure. If it's starting from a non-zero base,
1263 // it'll be simpler this way.
1264 if (UsersToProcess
.size() == 1 && !UsersToProcess
[0].Base
->isZero())
1267 // Otherwise, if there are any users in this stride that don't require
1268 // a register for their base, full strength-reduction will increase
1269 // register pressure.
1270 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1271 if (UsersToProcess
[i
].Base
->isZero())
1274 // Otherwise, go for it.
1278 /// InsertAffinePhi Create and insert a PHI node for an induction variable
1279 /// with the specified start and step values in the specified loop.
1281 /// If NegateStride is true, the stride should be negated by using a
1282 /// subtract instead of an add.
1284 /// Return the created phi node.
1286 static PHINode
*InsertAffinePhi(const SCEV
*Start
, const SCEV
*Step
,
1287 Instruction
*IVIncInsertPt
,
1289 SCEVExpander
&Rewriter
) {
1290 assert(Start
->isLoopInvariant(L
) && "New PHI start is not loop invariant!");
1291 assert(Step
->isLoopInvariant(L
) && "New PHI stride is not loop invariant!");
1293 BasicBlock
*Header
= L
->getHeader();
1294 BasicBlock
*Preheader
= L
->getLoopPreheader();
1295 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1296 const Type
*Ty
= Start
->getType();
1297 Ty
= Rewriter
.SE
.getEffectiveSCEVType(Ty
);
1299 PHINode
*PN
= PHINode::Create(Ty
, "lsr.iv", Header
->begin());
1300 PN
->addIncoming(Rewriter
.expandCodeFor(Start
, Ty
, Preheader
->getTerminator()),
1303 // If the stride is negative, insert a sub instead of an add for the
1305 bool isNegative
= isNonConstantNegative(Step
);
1306 const SCEV
*IncAmount
= Step
;
1308 IncAmount
= Rewriter
.SE
.getNegativeSCEV(Step
);
1310 // Insert an add instruction right before the terminator corresponding
1311 // to the back-edge or just before the only use. The location is determined
1312 // by the caller and passed in as IVIncInsertPt.
1313 Value
*StepV
= Rewriter
.expandCodeFor(IncAmount
, Ty
,
1314 Preheader
->getTerminator());
1317 IncV
= BinaryOperator::CreateSub(PN
, StepV
, "lsr.iv.next",
1320 IncV
= BinaryOperator::CreateAdd(PN
, StepV
, "lsr.iv.next",
1323 if (!isa
<ConstantInt
>(StepV
)) ++NumVariable
;
1325 PN
->addIncoming(IncV
, LatchBlock
);
1331 static void SortUsersToProcess(std::vector
<BasedUser
> &UsersToProcess
) {
1332 // We want to emit code for users inside the loop first. To do this, we
1333 // rearrange BasedUser so that the entries at the end have
1334 // isUseOfPostIncrementedValue = false, because we pop off the end of the
1335 // vector (so we handle them first).
1336 std::partition(UsersToProcess
.begin(), UsersToProcess
.end(),
1337 PartitionByIsUseOfPostIncrementedValue
);
1339 // Sort this by base, so that things with the same base are handled
1340 // together. By partitioning first and stable-sorting later, we are
1341 // guaranteed that within each base we will pop off users from within the
1342 // loop before users outside of the loop with a particular base.
1344 // We would like to use stable_sort here, but we can't. The problem is that
1345 // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so
1346 // we don't have anything to do a '<' comparison on. Because we think the
1347 // number of uses is small, do a horrible bubble sort which just relies on
1349 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1350 // Get a base value.
1351 const SCEV
*Base
= UsersToProcess
[i
].Base
;
1353 // Compact everything with this base to be consecutive with this one.
1354 for (unsigned j
= i
+1; j
!= e
; ++j
) {
1355 if (UsersToProcess
[j
].Base
== Base
) {
1356 std::swap(UsersToProcess
[i
+1], UsersToProcess
[j
]);
1363 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce
1364 /// UsersToProcess, meaning lowering addresses all the way down to direct
1365 /// pointer arithmetic.
1368 LoopStrengthReduce::PrepareToStrengthReduceFully(
1369 std::vector
<BasedUser
> &UsersToProcess
,
1371 const SCEV
*CommonExprs
,
1373 SCEVExpander
&PreheaderRewriter
) {
1374 DOUT
<< " Fully reducing all users\n";
1376 // Rewrite the UsersToProcess records, creating a separate PHI for each
1377 // unique Base value.
1378 Instruction
*IVIncInsertPt
= L
->getLoopLatch()->getTerminator();
1379 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ) {
1380 // TODO: The uses are grouped by base, but not sorted. We arbitrarily
1381 // pick the first Imm value here to start with, and adjust it for the
1383 const SCEV
*Imm
= UsersToProcess
[i
].Imm
;
1384 const SCEV
*Base
= UsersToProcess
[i
].Base
;
1385 const SCEV
*Start
= SE
->getAddExpr(CommonExprs
, Base
, Imm
);
1386 PHINode
*Phi
= InsertAffinePhi(Start
, Stride
, IVIncInsertPt
, L
,
1388 // Loop over all the users with the same base.
1390 UsersToProcess
[i
].Base
= SE
->getIntegerSCEV(0, Stride
->getType());
1391 UsersToProcess
[i
].Imm
= SE
->getMinusSCEV(UsersToProcess
[i
].Imm
, Imm
);
1392 UsersToProcess
[i
].Phi
= Phi
;
1393 assert(UsersToProcess
[i
].Imm
->isLoopInvariant(L
) &&
1394 "ShouldUseFullStrengthReductionMode should reject this!");
1395 } while (++i
!= e
&& Base
== UsersToProcess
[i
].Base
);
1399 /// FindIVIncInsertPt - Return the location to insert the increment instruction.
1400 /// If the only use if a use of postinc value, (must be the loop termination
1401 /// condition), then insert it just before the use.
1402 static Instruction
*FindIVIncInsertPt(std::vector
<BasedUser
> &UsersToProcess
,
1404 if (UsersToProcess
.size() == 1 &&
1405 UsersToProcess
[0].isUseOfPostIncrementedValue
&&
1406 L
->contains(UsersToProcess
[0].Inst
->getParent()))
1407 return UsersToProcess
[0].Inst
;
1408 return L
->getLoopLatch()->getTerminator();
1411 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the
1412 /// given users to share.
1415 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi(
1416 std::vector
<BasedUser
> &UsersToProcess
,
1418 const SCEV
*CommonExprs
,
1420 Instruction
*IVIncInsertPt
,
1422 SCEVExpander
&PreheaderRewriter
) {
1423 DOUT
<< " Inserting new PHI:\n";
1425 PHINode
*Phi
= InsertAffinePhi(SE
->getUnknown(CommonBaseV
),
1426 Stride
, IVIncInsertPt
, L
,
1429 // Remember this in case a later stride is multiple of this.
1430 IVsByStride
[Stride
].addIV(Stride
, CommonExprs
, Phi
);
1432 // All the users will share this new IV.
1433 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1434 UsersToProcess
[i
].Phi
= Phi
;
1437 DEBUG(WriteAsOperand(*DOUT
, Phi
, /*PrintType=*/false));
1441 /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to
1442 /// reuse an induction variable with a stride that is a factor of the current
1443 /// induction variable.
1446 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride(
1447 std::vector
<BasedUser
> &UsersToProcess
,
1449 const IVExpr
&ReuseIV
,
1450 Instruction
*PreInsertPt
) {
1451 DOUT
<< " Rewriting in terms of existing IV of STRIDE " << *ReuseIV
.Stride
1452 << " and BASE " << *ReuseIV
.Base
<< "\n";
1454 // All the users will share the reused IV.
1455 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1456 UsersToProcess
[i
].Phi
= ReuseIV
.PHI
;
1458 Constant
*C
= dyn_cast
<Constant
>(CommonBaseV
);
1460 (!C
->isNullValue() &&
1461 !fitsInAddressMode(SE
->getUnknown(CommonBaseV
), CommonBaseV
->getType(),
1463 // We want the common base emitted into the preheader! This is just
1464 // using cast as a copy so BitCast (no-op cast) is appropriate
1465 CommonBaseV
= new BitCastInst(CommonBaseV
, CommonBaseV
->getType(),
1466 "commonbase", PreInsertPt
);
1469 static bool IsImmFoldedIntoAddrMode(GlobalValue
*GV
, int64_t Offset
,
1470 const Type
*AccessTy
,
1471 std::vector
<BasedUser
> &UsersToProcess
,
1472 const TargetLowering
*TLI
) {
1473 SmallVector
<Instruction
*, 16> AddrModeInsts
;
1474 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
) {
1475 if (UsersToProcess
[i
].isUseOfPostIncrementedValue
)
1477 ExtAddrMode AddrMode
=
1478 AddressingModeMatcher::Match(UsersToProcess
[i
].OperandValToReplace
,
1479 AccessTy
, UsersToProcess
[i
].Inst
,
1480 AddrModeInsts
, *TLI
);
1481 if (GV
&& GV
!= AddrMode
.BaseGV
)
1483 if (Offset
&& !AddrMode
.BaseOffs
)
1484 // FIXME: How to accurate check it's immediate offset is folded.
1486 AddrModeInsts
.clear();
1491 /// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
1492 /// stride of IV. All of the users may have different starting values, and this
1493 /// may not be the only stride.
1494 void LoopStrengthReduce::StrengthReduceStridedIVUsers(const SCEV
*const &Stride
,
1495 IVUsersOfOneStride
&Uses
,
1497 // If all the users are moved to another stride, then there is nothing to do.
1498 if (Uses
.Users
.empty())
1501 // Keep track if every use in UsersToProcess is an address. If they all are,
1502 // we may be able to rewrite the entire collection of them in terms of a
1503 // smaller-stride IV.
1504 bool AllUsesAreAddresses
= true;
1506 // Keep track if every use of a single stride is outside the loop. If so,
1507 // we want to be more aggressive about reusing a smaller-stride IV; a
1508 // multiply outside the loop is better than another IV inside. Well, usually.
1509 bool AllUsesAreOutsideLoop
= true;
1511 // Transform our list of users and offsets to a bit more complex table. In
1512 // this new vector, each 'BasedUser' contains 'Base' the base of the
1513 // strided accessas well as the old information from Uses. We progressively
1514 // move information from the Base field to the Imm field, until we eventually
1515 // have the full access expression to rewrite the use.
1516 std::vector
<BasedUser
> UsersToProcess
;
1517 const SCEV
*CommonExprs
= CollectIVUsers(Stride
, Uses
, L
, AllUsesAreAddresses
,
1518 AllUsesAreOutsideLoop
,
1521 // Sort the UsersToProcess array so that users with common bases are
1522 // next to each other.
1523 SortUsersToProcess(UsersToProcess
);
1525 // If we managed to find some expressions in common, we'll need to carry
1526 // their value in a register and add it in for each use. This will take up
1527 // a register operand, which potentially restricts what stride values are
1529 bool HaveCommonExprs
= !CommonExprs
->isZero();
1530 const Type
*ReplacedTy
= CommonExprs
->getType();
1532 // If all uses are addresses, consider sinking the immediate part of the
1533 // common expression back into uses if they can fit in the immediate fields.
1534 if (TLI
&& HaveCommonExprs
&& AllUsesAreAddresses
) {
1535 const SCEV
*NewCommon
= CommonExprs
;
1536 const SCEV
*Imm
= SE
->getIntegerSCEV(0, ReplacedTy
);
1537 MoveImmediateValues(TLI
, Type::VoidTy
, NewCommon
, Imm
, true, L
, SE
);
1538 if (!Imm
->isZero()) {
1541 // If the immediate part of the common expression is a GV, check if it's
1542 // possible to fold it into the target addressing mode.
1543 GlobalValue
*GV
= 0;
1544 if (const SCEVUnknown
*SU
= dyn_cast
<SCEVUnknown
>(Imm
))
1545 GV
= dyn_cast
<GlobalValue
>(SU
->getValue());
1547 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Imm
))
1548 Offset
= SC
->getValue()->getSExtValue();
1550 // Pass VoidTy as the AccessTy to be conservative, because
1551 // there could be multiple access types among all the uses.
1552 DoSink
= IsImmFoldedIntoAddrMode(GV
, Offset
, Type::VoidTy
,
1553 UsersToProcess
, TLI
);
1556 DOUT
<< " Sinking " << *Imm
<< " back down into uses\n";
1557 for (unsigned i
= 0, e
= UsersToProcess
.size(); i
!= e
; ++i
)
1558 UsersToProcess
[i
].Imm
= SE
->getAddExpr(UsersToProcess
[i
].Imm
, Imm
);
1559 CommonExprs
= NewCommon
;
1560 HaveCommonExprs
= !CommonExprs
->isZero();
1566 // Now that we know what we need to do, insert the PHI node itself.
1568 DOUT
<< "LSR: Examining IVs of TYPE " << *ReplacedTy
<< " of STRIDE "
1570 << " Common base: " << *CommonExprs
<< "\n";
1572 SCEVExpander
Rewriter(*SE
);
1573 SCEVExpander
PreheaderRewriter(*SE
);
1575 BasicBlock
*Preheader
= L
->getLoopPreheader();
1576 Instruction
*PreInsertPt
= Preheader
->getTerminator();
1577 BasicBlock
*LatchBlock
= L
->getLoopLatch();
1578 Instruction
*IVIncInsertPt
= LatchBlock
->getTerminator();
1580 LLVMContext
&Context
= Preheader
->getContext();
1582 Value
*CommonBaseV
= Context
.getNullValue(ReplacedTy
);
1584 const SCEV
*RewriteFactor
= SE
->getIntegerSCEV(0, ReplacedTy
);
1585 IVExpr
ReuseIV(SE
->getIntegerSCEV(0, Type::Int32Ty
),
1586 SE
->getIntegerSCEV(0, Type::Int32Ty
),
1589 /// Choose a strength-reduction strategy and prepare for it by creating
1590 /// the necessary PHIs and adjusting the bookkeeping.
1591 if (ShouldUseFullStrengthReductionMode(UsersToProcess
, L
,
1592 AllUsesAreAddresses
, Stride
)) {
1593 PrepareToStrengthReduceFully(UsersToProcess
, Stride
, CommonExprs
, L
,
1596 // Emit the initial base value into the loop preheader.
1597 CommonBaseV
= PreheaderRewriter
.expandCodeFor(CommonExprs
, ReplacedTy
,
1600 // If all uses are addresses, check if it is possible to reuse an IV. The
1601 // new IV must have a stride that is a multiple of the old stride; the
1602 // multiple must be a number that can be encoded in the scale field of the
1603 // target addressing mode; and we must have a valid instruction after this
1604 // substitution, including the immediate field, if any.
1605 RewriteFactor
= CheckForIVReuse(HaveCommonExprs
, AllUsesAreAddresses
,
1606 AllUsesAreOutsideLoop
,
1607 Stride
, ReuseIV
, ReplacedTy
,
1609 if (!RewriteFactor
->isZero())
1610 PrepareToStrengthReduceFromSmallerStride(UsersToProcess
, CommonBaseV
,
1611 ReuseIV
, PreInsertPt
);
1613 IVIncInsertPt
= FindIVIncInsertPt(UsersToProcess
, L
);
1614 PrepareToStrengthReduceWithNewPhi(UsersToProcess
, Stride
, CommonExprs
,
1615 CommonBaseV
, IVIncInsertPt
,
1616 L
, PreheaderRewriter
);
1620 // Process all the users now, replacing their strided uses with
1621 // strength-reduced forms. This outer loop handles all bases, the inner
1622 // loop handles all users of a particular base.
1623 while (!UsersToProcess
.empty()) {
1624 const SCEV
*Base
= UsersToProcess
.back().Base
;
1625 Instruction
*Inst
= UsersToProcess
.back().Inst
;
1627 // Emit the code for Base into the preheader.
1629 if (!Base
->isZero()) {
1630 BaseV
= PreheaderRewriter
.expandCodeFor(Base
, 0, PreInsertPt
);
1632 DOUT
<< " INSERTING code for BASE = " << *Base
<< ":";
1633 if (BaseV
->hasName())
1634 DOUT
<< " Result value name = %" << BaseV
->getNameStr();
1637 // If BaseV is a non-zero constant, make sure that it gets inserted into
1638 // the preheader, instead of being forward substituted into the uses. We
1639 // do this by forcing a BitCast (noop cast) to be inserted into the
1640 // preheader in this case.
1641 if (!fitsInAddressMode(Base
, getAccessType(Inst
), TLI
, false) &&
1642 !isa
<Instruction
>(BaseV
)) {
1643 // We want this constant emitted into the preheader! This is just
1644 // using cast as a copy so BitCast (no-op cast) is appropriate
1645 BaseV
= new BitCastInst(BaseV
, BaseV
->getType(), "preheaderinsert",
1650 // Emit the code to add the immediate offset to the Phi value, just before
1651 // the instructions that we identified as using this stride and base.
1653 // FIXME: Use emitted users to emit other users.
1654 BasedUser
&User
= UsersToProcess
.back();
1656 DOUT
<< " Examining ";
1657 if (User
.isUseOfPostIncrementedValue
)
1662 DEBUG(WriteAsOperand(*DOUT
, UsersToProcess
.back().OperandValToReplace
,
1663 /*PrintType=*/false));
1664 DOUT
<< " in Inst: " << *(User
.Inst
);
1666 // If this instruction wants to use the post-incremented value, move it
1667 // after the post-inc and use its value instead of the PHI.
1668 Value
*RewriteOp
= User
.Phi
;
1669 if (User
.isUseOfPostIncrementedValue
) {
1670 RewriteOp
= User
.Phi
->getIncomingValueForBlock(LatchBlock
);
1671 // If this user is in the loop, make sure it is the last thing in the
1672 // loop to ensure it is dominated by the increment. In case it's the
1673 // only use of the iv, the increment instruction is already before the
1675 if (L
->contains(User
.Inst
->getParent()) && User
.Inst
!= IVIncInsertPt
)
1676 User
.Inst
->moveBefore(IVIncInsertPt
);
1679 const SCEV
*RewriteExpr
= SE
->getUnknown(RewriteOp
);
1681 if (SE
->getEffectiveSCEVType(RewriteOp
->getType()) !=
1682 SE
->getEffectiveSCEVType(ReplacedTy
)) {
1683 assert(SE
->getTypeSizeInBits(RewriteOp
->getType()) >
1684 SE
->getTypeSizeInBits(ReplacedTy
) &&
1685 "Unexpected widening cast!");
1686 RewriteExpr
= SE
->getTruncateExpr(RewriteExpr
, ReplacedTy
);
1689 // If we had to insert new instructions for RewriteOp, we have to
1690 // consider that they may not have been able to end up immediately
1691 // next to RewriteOp, because non-PHI instructions may never precede
1692 // PHI instructions in a block. In this case, remember where the last
1693 // instruction was inserted so that if we're replacing a different
1694 // PHI node, we can use the later point to expand the final
1696 Instruction
*NewBasePt
= dyn_cast
<Instruction
>(RewriteOp
);
1697 if (RewriteOp
== User
.Phi
) NewBasePt
= 0;
1699 // Clear the SCEVExpander's expression map so that we are guaranteed
1700 // to have the code emitted where we expect it.
1703 // If we are reusing the iv, then it must be multiplied by a constant
1704 // factor to take advantage of the addressing mode scale component.
1705 if (!RewriteFactor
->isZero()) {
1706 // If we're reusing an IV with a nonzero base (currently this happens
1707 // only when all reuses are outside the loop) subtract that base here.
1708 // The base has been used to initialize the PHI node but we don't want
1710 if (!ReuseIV
.Base
->isZero()) {
1711 const SCEV
*typedBase
= ReuseIV
.Base
;
1712 if (SE
->getEffectiveSCEVType(RewriteExpr
->getType()) !=
1713 SE
->getEffectiveSCEVType(ReuseIV
.Base
->getType())) {
1714 // It's possible the original IV is a larger type than the new IV,
1715 // in which case we have to truncate the Base. We checked in
1716 // RequiresTypeConversion that this is valid.
1717 assert(SE
->getTypeSizeInBits(RewriteExpr
->getType()) <
1718 SE
->getTypeSizeInBits(ReuseIV
.Base
->getType()) &&
1719 "Unexpected lengthening conversion!");
1720 typedBase
= SE
->getTruncateExpr(ReuseIV
.Base
,
1721 RewriteExpr
->getType());
1723 RewriteExpr
= SE
->getMinusSCEV(RewriteExpr
, typedBase
);
1726 // Multiply old variable, with base removed, by new scale factor.
1727 RewriteExpr
= SE
->getMulExpr(RewriteFactor
,
1730 // The common base is emitted in the loop preheader. But since we
1731 // are reusing an IV, it has not been used to initialize the PHI node.
1732 // Add it to the expression used to rewrite the uses.
1733 // When this use is outside the loop, we earlier subtracted the
1734 // common base, and are adding it back here. Use the same expression
1735 // as before, rather than CommonBaseV, so DAGCombiner will zap it.
1736 if (!CommonExprs
->isZero()) {
1737 if (L
->contains(User
.Inst
->getParent()))
1738 RewriteExpr
= SE
->getAddExpr(RewriteExpr
,
1739 SE
->getUnknown(CommonBaseV
));
1741 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, CommonExprs
);
1745 // Now that we know what we need to do, insert code before User for the
1746 // immediate and any loop-variant expressions.
1748 // Add BaseV to the PHI value if needed.
1749 RewriteExpr
= SE
->getAddExpr(RewriteExpr
, SE
->getUnknown(BaseV
));
1751 User
.RewriteInstructionToUseNewBase(RewriteExpr
, NewBasePt
,
1752 Rewriter
, L
, this, *LI
,
1755 // Mark old value we replaced as possibly dead, so that it is eliminated
1756 // if we just replaced the last use of that value.
1757 DeadInsts
.push_back(User
.OperandValToReplace
);
1759 UsersToProcess
.pop_back();
1762 // If there are any more users to process with the same base, process them
1763 // now. We sorted by base above, so we just have to check the last elt.
1764 } while (!UsersToProcess
.empty() && UsersToProcess
.back().Base
== Base
);
1765 // TODO: Next, find out which base index is the most common, pull it out.
1768 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
1769 // different starting values, into different PHIs.
1772 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
1773 /// set the IV user and stride information and return true, otherwise return
1775 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst
*Cond
, IVStrideUse
*&CondUse
,
1776 const SCEV
*const * &CondStride
) {
1777 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size();
1778 Stride
!= e
&& !CondUse
; ++Stride
) {
1779 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
1780 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
1781 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
1783 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
1784 E
= SI
->second
->Users
.end(); UI
!= E
; ++UI
)
1785 if (UI
->getUser() == Cond
) {
1786 // NOTE: we could handle setcc instructions with multiple uses here, but
1787 // InstCombine does it as well for simple uses, it's not clear that it
1788 // occurs enough in real life to handle.
1790 CondStride
= &SI
->first
;
1798 // Constant strides come first which in turns are sorted by their absolute
1799 // values. If absolute values are the same, then positive strides comes first.
1801 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X
1802 struct StrideCompare
{
1803 const ScalarEvolution
*SE
;
1804 explicit StrideCompare(const ScalarEvolution
*se
) : SE(se
) {}
1806 bool operator()(const SCEV
*const &LHS
, const SCEV
*const &RHS
) {
1807 const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
);
1808 const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
1810 int64_t LV
= LHSC
->getValue()->getSExtValue();
1811 int64_t RV
= RHSC
->getValue()->getSExtValue();
1812 uint64_t ALV
= (LV
< 0) ? -LV
: LV
;
1813 uint64_t ARV
= (RV
< 0) ? -RV
: RV
;
1821 // If it's the same value but different type, sort by bit width so
1822 // that we emit larger induction variables before smaller
1823 // ones, letting the smaller be re-written in terms of larger ones.
1824 return SE
->getTypeSizeInBits(RHS
->getType()) <
1825 SE
->getTypeSizeInBits(LHS
->getType());
1827 return LHSC
&& !RHSC
;
1832 /// ChangeCompareStride - If a loop termination compare instruction is the
1833 /// only use of its stride, and the compaison is against a constant value,
1834 /// try eliminate the stride by moving the compare instruction to another
1835 /// stride and change its constant operand accordingly. e.g.
1841 /// if (v2 < 10) goto loop
1846 /// if (v1 < 30) goto loop
1847 ICmpInst
*LoopStrengthReduce::ChangeCompareStride(Loop
*L
, ICmpInst
*Cond
,
1848 IVStrideUse
* &CondUse
,
1849 const SCEV
*const* &CondStride
) {
1850 // If there's only one stride in the loop, there's nothing to do here.
1851 if (IU
->StrideOrder
.size() < 2)
1853 // If there are other users of the condition's stride, don't bother
1854 // trying to change the condition because the stride will still
1856 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator I
=
1857 IU
->IVUsesByStride
.find(*CondStride
);
1858 if (I
== IU
->IVUsesByStride
.end() ||
1859 I
->second
->Users
.size() != 1)
1861 // Only handle constant strides for now.
1862 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*CondStride
);
1863 if (!SC
) return Cond
;
1865 LLVMContext
&Context
= Cond
->getContext();
1867 ICmpInst::Predicate Predicate
= Cond
->getPredicate();
1868 int64_t CmpSSInt
= SC
->getValue()->getSExtValue();
1869 unsigned BitWidth
= SE
->getTypeSizeInBits((*CondStride
)->getType());
1870 uint64_t SignBit
= 1ULL << (BitWidth
-1);
1871 const Type
*CmpTy
= Cond
->getOperand(0)->getType();
1872 const Type
*NewCmpTy
= NULL
;
1873 unsigned TyBits
= SE
->getTypeSizeInBits(CmpTy
);
1874 unsigned NewTyBits
= 0;
1875 const SCEV
**NewStride
= NULL
;
1876 Value
*NewCmpLHS
= NULL
;
1877 Value
*NewCmpRHS
= NULL
;
1879 const SCEV
*NewOffset
= SE
->getIntegerSCEV(0, CmpTy
);
1881 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(Cond
->getOperand(1))) {
1882 int64_t CmpVal
= C
->getValue().getSExtValue();
1884 // Check stride constant and the comparision constant signs to detect
1886 if ((CmpVal
& SignBit
) != (CmpSSInt
& SignBit
))
1889 // Look for a suitable stride / iv as replacement.
1890 for (unsigned i
= 0, e
= IU
->StrideOrder
.size(); i
!= e
; ++i
) {
1891 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
1892 IU
->IVUsesByStride
.find(IU
->StrideOrder
[i
]);
1893 if (!isa
<SCEVConstant
>(SI
->first
))
1895 int64_t SSInt
= cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
1896 if (SSInt
== CmpSSInt
||
1897 abs64(SSInt
) < abs64(CmpSSInt
) ||
1898 (SSInt
% CmpSSInt
) != 0)
1901 Scale
= SSInt
/ CmpSSInt
;
1902 int64_t NewCmpVal
= CmpVal
* Scale
;
1903 APInt Mul
= APInt(BitWidth
*2, CmpVal
, true);
1904 Mul
= Mul
* APInt(BitWidth
*2, Scale
, true);
1905 // Check for overflow.
1906 if (!Mul
.isSignedIntN(BitWidth
))
1908 // Check for overflow in the stride's type too.
1909 if (!Mul
.isSignedIntN(SE
->getTypeSizeInBits(SI
->first
->getType())))
1912 // Watch out for overflow.
1913 if (ICmpInst::isSignedPredicate(Predicate
) &&
1914 (CmpVal
& SignBit
) != (NewCmpVal
& SignBit
))
1917 if (NewCmpVal
== CmpVal
)
1919 // Pick the best iv to use trying to avoid a cast.
1921 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
1922 E
= SI
->second
->Users
.end(); UI
!= E
; ++UI
) {
1923 Value
*Op
= UI
->getOperandValToReplace();
1925 // If the IVStrideUse implies a cast, check for an actual cast which
1926 // can be used to find the original IV expression.
1927 if (SE
->getEffectiveSCEVType(Op
->getType()) !=
1928 SE
->getEffectiveSCEVType(SI
->first
->getType())) {
1929 CastInst
*CI
= dyn_cast
<CastInst
>(Op
);
1930 // If it's not a simple cast, it's complicated.
1933 // If it's a cast from a type other than the stride type,
1934 // it's complicated.
1935 if (CI
->getOperand(0)->getType() != SI
->first
->getType())
1937 // Ok, we found the IV expression in the stride's type.
1938 Op
= CI
->getOperand(0);
1942 if (NewCmpLHS
->getType() == CmpTy
)
1948 NewCmpTy
= NewCmpLHS
->getType();
1949 NewTyBits
= SE
->getTypeSizeInBits(NewCmpTy
);
1950 const Type
*NewCmpIntTy
= Context
.getIntegerType(NewTyBits
);
1951 if (RequiresTypeConversion(NewCmpTy
, CmpTy
)) {
1952 // Check if it is possible to rewrite it using
1953 // an iv / stride of a smaller integer type.
1954 unsigned Bits
= NewTyBits
;
1955 if (ICmpInst::isSignedPredicate(Predicate
))
1957 uint64_t Mask
= (1ULL << Bits
) - 1;
1958 if (((uint64_t)NewCmpVal
& Mask
) != (uint64_t)NewCmpVal
)
1962 // Don't rewrite if use offset is non-constant and the new type is
1963 // of a different type.
1964 // FIXME: too conservative?
1965 if (NewTyBits
!= TyBits
&& !isa
<SCEVConstant
>(CondUse
->getOffset()))
1968 bool AllUsesAreAddresses
= true;
1969 bool AllUsesAreOutsideLoop
= true;
1970 std::vector
<BasedUser
> UsersToProcess
;
1971 const SCEV
*CommonExprs
= CollectIVUsers(SI
->first
, *SI
->second
, L
,
1972 AllUsesAreAddresses
,
1973 AllUsesAreOutsideLoop
,
1975 // Avoid rewriting the compare instruction with an iv of new stride
1976 // if it's likely the new stride uses will be rewritten using the
1977 // stride of the compare instruction.
1978 if (AllUsesAreAddresses
&&
1979 ValidScale(!CommonExprs
->isZero(), Scale
, UsersToProcess
))
1982 // Avoid rewriting the compare instruction with an iv which has
1983 // implicit extension or truncation built into it.
1984 // TODO: This is over-conservative.
1985 if (SE
->getTypeSizeInBits(CondUse
->getOffset()->getType()) != TyBits
)
1988 // If scale is negative, use swapped predicate unless it's testing
1990 if (Scale
< 0 && !Cond
->isEquality())
1991 Predicate
= ICmpInst::getSwappedPredicate(Predicate
);
1993 NewStride
= &IU
->StrideOrder
[i
];
1994 if (!isa
<PointerType
>(NewCmpTy
))
1995 NewCmpRHS
= ConstantInt::get(NewCmpTy
, NewCmpVal
);
1997 Constant
*CI
= ConstantInt::get(NewCmpIntTy
, NewCmpVal
);
1998 NewCmpRHS
= ConstantExpr::getIntToPtr(CI
, NewCmpTy
);
2000 NewOffset
= TyBits
== NewTyBits
2001 ? SE
->getMulExpr(CondUse
->getOffset(),
2002 SE
->getConstant(CmpTy
, Scale
))
2003 : SE
->getConstant(NewCmpIntTy
,
2004 cast
<SCEVConstant
>(CondUse
->getOffset())->getValue()
2005 ->getSExtValue()*Scale
);
2010 // Forgo this transformation if it the increment happens to be
2011 // unfortunately positioned after the condition, and the condition
2012 // has multiple uses which prevent it from being moved immediately
2013 // before the branch. See
2014 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll
2015 // for an example of this situation.
2016 if (!Cond
->hasOneUse()) {
2017 for (BasicBlock::iterator I
= Cond
, E
= Cond
->getParent()->end();
2024 // Create a new compare instruction using new stride / iv.
2025 ICmpInst
*OldCond
= Cond
;
2026 // Insert new compare instruction.
2027 Cond
= new ICmpInst(OldCond
, Predicate
, NewCmpLHS
, NewCmpRHS
,
2028 L
->getHeader()->getName() + ".termcond");
2030 // Remove the old compare instruction. The old indvar is probably dead too.
2031 DeadInsts
.push_back(CondUse
->getOperandValToReplace());
2032 OldCond
->replaceAllUsesWith(Cond
);
2033 OldCond
->eraseFromParent();
2035 IU
->IVUsesByStride
[*NewStride
]->addUser(NewOffset
, Cond
, NewCmpLHS
);
2036 CondUse
= &IU
->IVUsesByStride
[*NewStride
]->Users
.back();
2037 CondStride
= NewStride
;
2045 /// OptimizeMax - Rewrite the loop's terminating condition if it uses
2046 /// a max computation.
2048 /// This is a narrow solution to a specific, but acute, problem. For loops
2054 /// } while (++i < n);
2056 /// the trip count isn't just 'n', because 'n' might not be positive. And
2057 /// unfortunately this can come up even for loops where the user didn't use
2058 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2059 /// will commonly be lowered like this:
2065 /// } while (++i < n);
2068 /// and then it's possible for subsequent optimization to obscure the if
2069 /// test in such a way that indvars can't find it.
2071 /// When indvars can't find the if test in loops like this, it creates a
2072 /// max expression, which allows it to give the loop a canonical
2073 /// induction variable:
2076 /// max = n < 1 ? 1 : n;
2079 /// } while (++i != max);
2081 /// Canonical induction variables are necessary because the loop passes
2082 /// are designed around them. The most obvious example of this is the
2083 /// LoopInfo analysis, which doesn't remember trip count values. It
2084 /// expects to be able to rediscover the trip count each time it is
2085 /// needed, and it does this using a simple analyis that only succeeds if
2086 /// the loop has a canonical induction variable.
2088 /// However, when it comes time to generate code, the maximum operation
2089 /// can be quite costly, especially if it's inside of an outer loop.
2091 /// This function solves this problem by detecting this type of loop and
2092 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2093 /// the instructions for the maximum computation.
2095 ICmpInst
*LoopStrengthReduce::OptimizeMax(Loop
*L
, ICmpInst
*Cond
,
2096 IVStrideUse
* &CondUse
) {
2097 // Check that the loop matches the pattern we're looking for.
2098 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
&&
2099 Cond
->getPredicate() != CmpInst::ICMP_NE
)
2102 SelectInst
*Sel
= dyn_cast
<SelectInst
>(Cond
->getOperand(1));
2103 if (!Sel
|| !Sel
->hasOneUse()) return Cond
;
2105 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2106 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2108 const SCEV
*One
= SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType());
2110 // Add one to the backedge-taken count to get the trip count.
2111 const SCEV
*IterationCount
= SE
->getAddExpr(BackedgeTakenCount
, One
);
2113 // Check for a max calculation that matches the pattern.
2114 if (!isa
<SCEVSMaxExpr
>(IterationCount
) && !isa
<SCEVUMaxExpr
>(IterationCount
))
2116 const SCEVNAryExpr
*Max
= cast
<SCEVNAryExpr
>(IterationCount
);
2117 if (Max
!= SE
->getSCEV(Sel
)) return Cond
;
2119 // To handle a max with more than two operands, this optimization would
2120 // require additional checking and setup.
2121 if (Max
->getNumOperands() != 2)
2124 const SCEV
*MaxLHS
= Max
->getOperand(0);
2125 const SCEV
*MaxRHS
= Max
->getOperand(1);
2126 if (!MaxLHS
|| MaxLHS
!= One
) return Cond
;
2128 // Check the relevant induction variable for conformance to
2130 const SCEV
*IV
= SE
->getSCEV(Cond
->getOperand(0));
2131 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2132 if (!AR
|| !AR
->isAffine() ||
2133 AR
->getStart() != One
||
2134 AR
->getStepRecurrence(*SE
) != One
)
2137 assert(AR
->getLoop() == L
&&
2138 "Loop condition operand is an addrec in a different loop!");
2140 // Check the right operand of the select, and remember it, as it will
2141 // be used in the new comparison instruction.
2143 if (SE
->getSCEV(Sel
->getOperand(1)) == MaxRHS
)
2144 NewRHS
= Sel
->getOperand(1);
2145 else if (SE
->getSCEV(Sel
->getOperand(2)) == MaxRHS
)
2146 NewRHS
= Sel
->getOperand(2);
2147 if (!NewRHS
) return Cond
;
2149 // Determine the new comparison opcode. It may be signed or unsigned,
2150 // and the original comparison may be either equality or inequality.
2151 CmpInst::Predicate Pred
=
2152 isa
<SCEVSMaxExpr
>(Max
) ? CmpInst::ICMP_SLT
: CmpInst::ICMP_ULT
;
2153 if (Cond
->getPredicate() == CmpInst::ICMP_EQ
)
2154 Pred
= CmpInst::getInversePredicate(Pred
);
2156 // Ok, everything looks ok to change the condition into an SLT or SGE and
2157 // delete the max calculation.
2159 new ICmpInst(Cond
, Pred
, Cond
->getOperand(0), NewRHS
, "scmp");
2161 // Delete the max calculation instructions.
2162 Cond
->replaceAllUsesWith(NewCond
);
2163 CondUse
->setUser(NewCond
);
2164 Instruction
*Cmp
= cast
<Instruction
>(Sel
->getOperand(0));
2165 Cond
->eraseFromParent();
2166 Sel
->eraseFromParent();
2167 if (Cmp
->use_empty())
2168 Cmp
->eraseFromParent();
2172 /// OptimizeShadowIV - If IV is used in a int-to-float cast
2173 /// inside the loop then try to eliminate the cast opeation.
2174 void LoopStrengthReduce::OptimizeShadowIV(Loop
*L
) {
2176 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2177 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2180 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size(); Stride
!= e
;
2182 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
2183 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
2184 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
2185 if (!isa
<SCEVConstant
>(SI
->first
))
2188 for (ilist
<IVStrideUse
>::iterator UI
= SI
->second
->Users
.begin(),
2189 E
= SI
->second
->Users
.end(); UI
!= E
; /* empty */) {
2190 ilist
<IVStrideUse
>::iterator CandidateUI
= UI
;
2192 Instruction
*ShadowUse
= CandidateUI
->getUser();
2193 const Type
*DestTy
= NULL
;
2195 /* If shadow use is a int->float cast then insert a second IV
2196 to eliminate this cast.
2198 for (unsigned i = 0; i < n; ++i)
2204 for (unsigned i = 0; i < n; ++i, ++d)
2207 if (UIToFPInst
*UCast
= dyn_cast
<UIToFPInst
>(CandidateUI
->getUser()))
2208 DestTy
= UCast
->getDestTy();
2209 else if (SIToFPInst
*SCast
= dyn_cast
<SIToFPInst
>(CandidateUI
->getUser()))
2210 DestTy
= SCast
->getDestTy();
2211 if (!DestTy
) continue;
2214 // If target does not support DestTy natively then do not apply
2215 // this transformation.
2216 MVT DVT
= TLI
->getValueType(DestTy
);
2217 if (!TLI
->isTypeLegal(DVT
)) continue;
2220 PHINode
*PH
= dyn_cast
<PHINode
>(ShadowUse
->getOperand(0));
2222 if (PH
->getNumIncomingValues() != 2) continue;
2224 const Type
*SrcTy
= PH
->getType();
2225 int Mantissa
= DestTy
->getFPMantissaWidth();
2226 if (Mantissa
== -1) continue;
2227 if ((int)SE
->getTypeSizeInBits(SrcTy
) > Mantissa
)
2230 unsigned Entry
, Latch
;
2231 if (PH
->getIncomingBlock(0) == L
->getLoopPreheader()) {
2239 ConstantInt
*Init
= dyn_cast
<ConstantInt
>(PH
->getIncomingValue(Entry
));
2240 if (!Init
) continue;
2241 Constant
*NewInit
= ConstantFP::get(DestTy
, Init
->getZExtValue());
2243 BinaryOperator
*Incr
=
2244 dyn_cast
<BinaryOperator
>(PH
->getIncomingValue(Latch
));
2245 if (!Incr
) continue;
2246 if (Incr
->getOpcode() != Instruction::Add
2247 && Incr
->getOpcode() != Instruction::Sub
)
2250 /* Initialize new IV, double d = 0.0 in above example. */
2251 ConstantInt
*C
= NULL
;
2252 if (Incr
->getOperand(0) == PH
)
2253 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(1));
2254 else if (Incr
->getOperand(1) == PH
)
2255 C
= dyn_cast
<ConstantInt
>(Incr
->getOperand(0));
2261 /* Add new PHINode. */
2262 PHINode
*NewPH
= PHINode::Create(DestTy
, "IV.S.", PH
);
2264 /* create new increment. '++d' in above example. */
2265 Constant
*CFP
= ConstantFP::get(DestTy
, C
->getZExtValue());
2266 BinaryOperator
*NewIncr
=
2267 BinaryOperator::Create(Incr
->getOpcode() == Instruction::Add
?
2268 Instruction::FAdd
: Instruction::FSub
,
2269 NewPH
, CFP
, "IV.S.next.", Incr
);
2271 NewPH
->addIncoming(NewInit
, PH
->getIncomingBlock(Entry
));
2272 NewPH
->addIncoming(NewIncr
, PH
->getIncomingBlock(Latch
));
2274 /* Remove cast operation */
2275 ShadowUse
->replaceAllUsesWith(NewPH
);
2276 ShadowUse
->eraseFromParent();
2283 /// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar
2284 /// uses in the loop, look to see if we can eliminate some, in favor of using
2285 /// common indvars for the different uses.
2286 void LoopStrengthReduce::OptimizeIndvars(Loop
*L
) {
2287 // TODO: implement optzns here.
2289 OptimizeShadowIV(L
);
2292 /// OptimizeLoopTermCond - Change loop terminating condition to use the
2293 /// postinc iv when possible.
2294 void LoopStrengthReduce::OptimizeLoopTermCond(Loop
*L
) {
2295 // Finally, get the terminating condition for the loop if possible. If we
2296 // can, we want to change it to use a post-incremented version of its
2297 // induction variable, to allow coalescing the live ranges for the IV into
2298 // one register value.
2299 BasicBlock
*LatchBlock
= L
->getLoopLatch();
2300 BasicBlock
*ExitingBlock
= L
->getExitingBlock();
2301 LLVMContext
&Context
= LatchBlock
->getContext();
2304 // Multiple exits, just look at the exit in the latch block if there is one.
2305 ExitingBlock
= LatchBlock
;
2306 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2309 if (TermBr
->isUnconditional() || !isa
<ICmpInst
>(TermBr
->getCondition()))
2312 // Search IVUsesByStride to find Cond's IVUse if there is one.
2313 IVStrideUse
*CondUse
= 0;
2314 const SCEV
*const *CondStride
= 0;
2315 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2316 if (!FindIVUserForCond(Cond
, CondUse
, CondStride
))
2317 return; // setcc doesn't use the IV.
2319 if (ExitingBlock
!= LatchBlock
) {
2320 if (!Cond
->hasOneUse())
2321 // See below, we don't want the condition to be cloned.
2324 // If exiting block is the latch block, we know it's safe and profitable to
2325 // transform the icmp to use post-inc iv. Otherwise do so only if it would
2326 // not reuse another iv and its iv would be reused by other uses. We are
2327 // optimizing for the case where the icmp is the only use of the iv.
2328 IVUsersOfOneStride
&StrideUses
= *IU
->IVUsesByStride
[*CondStride
];
2329 for (ilist
<IVStrideUse
>::iterator I
= StrideUses
.Users
.begin(),
2330 E
= StrideUses
.Users
.end(); I
!= E
; ++I
) {
2331 if (I
->getUser() == Cond
)
2333 if (!I
->isUseOfPostIncrementedValue())
2337 // FIXME: This is expensive, and worse still ChangeCompareStride does a
2338 // similar check. Can we perform all the icmp related transformations after
2339 // StrengthReduceStridedIVUsers?
2340 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(*CondStride
)) {
2341 int64_t SInt
= SC
->getValue()->getSExtValue();
2342 for (unsigned NewStride
= 0, ee
= IU
->StrideOrder
.size(); NewStride
!= ee
;
2344 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
2345 IU
->IVUsesByStride
.find(IU
->StrideOrder
[NewStride
]);
2346 if (!isa
<SCEVConstant
>(SI
->first
) || SI
->first
== *CondStride
)
2349 cast
<SCEVConstant
>(SI
->first
)->getValue()->getSExtValue();
2351 return; // This can definitely be reused.
2352 if (unsigned(abs64(SSInt
)) < SInt
|| (SSInt
% SInt
) != 0)
2354 int64_t Scale
= SSInt
/ SInt
;
2355 bool AllUsesAreAddresses
= true;
2356 bool AllUsesAreOutsideLoop
= true;
2357 std::vector
<BasedUser
> UsersToProcess
;
2358 const SCEV
*CommonExprs
= CollectIVUsers(SI
->first
, *SI
->second
, L
,
2359 AllUsesAreAddresses
,
2360 AllUsesAreOutsideLoop
,
2362 // Avoid rewriting the compare instruction with an iv of new stride
2363 // if it's likely the new stride uses will be rewritten using the
2364 // stride of the compare instruction.
2365 if (AllUsesAreAddresses
&&
2366 ValidScale(!CommonExprs
->isZero(), Scale
, UsersToProcess
))
2371 StrideNoReuse
.insert(*CondStride
);
2374 // If the trip count is computed in terms of a max (due to ScalarEvolution
2375 // being unable to find a sufficient guard, for example), change the loop
2376 // comparison to use SLT or ULT instead of NE.
2377 Cond
= OptimizeMax(L
, Cond
, CondUse
);
2379 // If possible, change stride and operands of the compare instruction to
2380 // eliminate one stride.
2381 if (ExitingBlock
== LatchBlock
)
2382 Cond
= ChangeCompareStride(L
, Cond
, CondUse
, CondStride
);
2384 // It's possible for the setcc instruction to be anywhere in the loop, and
2385 // possible for it to have multiple users. If it is not immediately before
2386 // the latch block branch, move it.
2387 if (&*++BasicBlock::iterator(Cond
) != (Instruction
*)TermBr
) {
2388 if (Cond
->hasOneUse()) { // Condition has a single use, just move it.
2389 Cond
->moveBefore(TermBr
);
2391 // Otherwise, clone the terminating condition and insert into the loopend.
2392 Cond
= cast
<ICmpInst
>(Cond
->clone(Context
));
2393 Cond
->setName(L
->getHeader()->getName() + ".termcond");
2394 LatchBlock
->getInstList().insert(TermBr
, Cond
);
2396 // Clone the IVUse, as the old use still exists!
2397 IU
->IVUsesByStride
[*CondStride
]->addUser(CondUse
->getOffset(), Cond
,
2398 CondUse
->getOperandValToReplace());
2399 CondUse
= &IU
->IVUsesByStride
[*CondStride
]->Users
.back();
2403 // If we get to here, we know that we can transform the setcc instruction to
2404 // use the post-incremented version of the IV, allowing us to coalesce the
2405 // live ranges for the IV correctly.
2406 CondUse
->setOffset(SE
->getMinusSCEV(CondUse
->getOffset(), *CondStride
));
2407 CondUse
->setIsUseOfPostIncrementedValue(true);
2413 /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding
2414 /// when to exit the loop is used only for that purpose, try to rearrange things
2415 /// so it counts down to a test against zero.
2416 void LoopStrengthReduce::OptimizeLoopCountIV(Loop
*L
) {
2418 // If the number of times the loop is executed isn't computable, give up.
2419 const SCEV
*BackedgeTakenCount
= SE
->getBackedgeTakenCount(L
);
2420 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
2423 // Get the terminating condition for the loop if possible (this isn't
2424 // necessarily in the latch, or a block that's a predecessor of the header).
2425 if (!L
->getExitBlock())
2426 return; // More than one loop exit blocks.
2428 // Okay, there is one exit block. Try to find the condition that causes the
2429 // loop to be exited.
2430 BasicBlock
*ExitingBlock
= L
->getExitingBlock();
2432 return; // More than one block exiting!
2434 // Okay, we've computed the exiting block. See what condition causes us to
2437 // FIXME: we should be able to handle switch instructions (with a single exit)
2438 BranchInst
*TermBr
= dyn_cast
<BranchInst
>(ExitingBlock
->getTerminator());
2439 if (TermBr
== 0) return;
2440 assert(TermBr
->isConditional() && "If unconditional, it can't be in loop!");
2441 if (!isa
<ICmpInst
>(TermBr
->getCondition()))
2443 ICmpInst
*Cond
= cast
<ICmpInst
>(TermBr
->getCondition());
2445 // Handle only tests for equality for the moment, and only stride 1.
2446 if (Cond
->getPredicate() != CmpInst::ICMP_EQ
)
2448 const SCEV
*IV
= SE
->getSCEV(Cond
->getOperand(0));
2449 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(IV
);
2450 const SCEV
*One
= SE
->getIntegerSCEV(1, BackedgeTakenCount
->getType());
2451 if (!AR
|| !AR
->isAffine() || AR
->getStepRecurrence(*SE
) != One
)
2453 // If the RHS of the comparison is defined inside the loop, the rewrite
2455 if (Instruction
*CR
= dyn_cast
<Instruction
>(Cond
->getOperand(1)))
2456 if (L
->contains(CR
->getParent()))
2459 // Make sure the IV is only used for counting. Value may be preinc or
2460 // postinc; 2 uses in either case.
2461 if (!Cond
->getOperand(0)->hasNUses(2))
2463 PHINode
*phi
= dyn_cast
<PHINode
>(Cond
->getOperand(0));
2465 if (phi
&& phi
->getParent()==L
->getHeader()) {
2466 // value tested is preinc. Find the increment.
2467 // A CmpInst is not a BinaryOperator; we depend on this.
2468 Instruction::use_iterator UI
= phi
->use_begin();
2469 incr
= dyn_cast
<BinaryOperator
>(UI
);
2471 incr
= dyn_cast
<BinaryOperator
>(++UI
);
2472 // 1 use for postinc value, the phi. Unnecessarily conservative?
2473 if (!incr
|| !incr
->hasOneUse() || incr
->getOpcode()!=Instruction::Add
)
2476 // Value tested is postinc. Find the phi node.
2477 incr
= dyn_cast
<BinaryOperator
>(Cond
->getOperand(0));
2478 if (!incr
|| incr
->getOpcode()!=Instruction::Add
)
2481 Instruction::use_iterator UI
= Cond
->getOperand(0)->use_begin();
2482 phi
= dyn_cast
<PHINode
>(UI
);
2484 phi
= dyn_cast
<PHINode
>(++UI
);
2485 // 1 use for preinc value, the increment.
2486 if (!phi
|| phi
->getParent()!=L
->getHeader() || !phi
->hasOneUse())
2490 // Replace the increment with a decrement.
2491 BinaryOperator
*decr
=
2492 BinaryOperator::Create(Instruction::Sub
, incr
->getOperand(0),
2493 incr
->getOperand(1), "tmp", incr
);
2494 incr
->replaceAllUsesWith(decr
);
2495 incr
->eraseFromParent();
2497 // Substitute endval-startval for the original startval, and 0 for the
2498 // original endval. Since we're only testing for equality this is OK even
2499 // if the computation wraps around.
2500 BasicBlock
*Preheader
= L
->getLoopPreheader();
2501 Instruction
*PreInsertPt
= Preheader
->getTerminator();
2502 int inBlock
= L
->contains(phi
->getIncomingBlock(0)) ? 1 : 0;
2503 Value
*startVal
= phi
->getIncomingValue(inBlock
);
2504 Value
*endVal
= Cond
->getOperand(1);
2505 // FIXME check for case where both are constant
2506 Constant
* Zero
= ConstantInt::get(Cond
->getOperand(1)->getType(), 0);
2507 BinaryOperator
*NewStartVal
=
2508 BinaryOperator::Create(Instruction::Sub
, endVal
, startVal
,
2509 "tmp", PreInsertPt
);
2510 phi
->setIncomingValue(inBlock
, NewStartVal
);
2511 Cond
->setOperand(1, Zero
);
2516 bool LoopStrengthReduce::runOnLoop(Loop
*L
, LPPassManager
&LPM
) {
2518 IU
= &getAnalysis
<IVUsers
>();
2519 LI
= &getAnalysis
<LoopInfo
>();
2520 DT
= &getAnalysis
<DominatorTree
>();
2521 SE
= &getAnalysis
<ScalarEvolution
>();
2524 if (!IU
->IVUsesByStride
.empty()) {
2525 DEBUG(errs() << "\nLSR on \"" << L
->getHeader()->getParent()->getName()
2529 // Sort the StrideOrder so we process larger strides first.
2530 std::stable_sort(IU
->StrideOrder
.begin(), IU
->StrideOrder
.end(),
2533 // Optimize induction variables. Some indvar uses can be transformed to use
2534 // strides that will be needed for other purposes. A common example of this
2535 // is the exit test for the loop, which can often be rewritten to use the
2536 // computation of some other indvar to decide when to terminate the loop.
2539 // Change loop terminating condition to use the postinc iv when possible
2540 // and optimize loop terminating compare. FIXME: Move this after
2541 // StrengthReduceStridedIVUsers?
2542 OptimizeLoopTermCond(L
);
2544 // FIXME: We can shrink overlarge IV's here. e.g. if the code has
2545 // computation in i64 values and the target doesn't support i64, demote
2546 // the computation to 32-bit if safe.
2548 // FIXME: Attempt to reuse values across multiple IV's. In particular, we
2549 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should
2550 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC.
2551 // Need to be careful that IV's are all the same type. Only works for
2552 // intptr_t indvars.
2554 // IVsByStride keeps IVs for one particular loop.
2555 assert(IVsByStride
.empty() && "Stale entries in IVsByStride?");
2557 // Note: this processes each stride/type pair individually. All users
2558 // passed into StrengthReduceStridedIVUsers have the same type AND stride.
2559 // Also, note that we iterate over IVUsesByStride indirectly by using
2560 // StrideOrder. This extra layer of indirection makes the ordering of
2561 // strides deterministic - not dependent on map order.
2562 for (unsigned Stride
= 0, e
= IU
->StrideOrder
.size();
2563 Stride
!= e
; ++Stride
) {
2564 std::map
<const SCEV
*, IVUsersOfOneStride
*>::iterator SI
=
2565 IU
->IVUsesByStride
.find(IU
->StrideOrder
[Stride
]);
2566 assert(SI
!= IU
->IVUsesByStride
.end() && "Stride doesn't exist!");
2567 // FIXME: Generalize to non-affine IV's.
2568 if (!SI
->first
->isLoopInvariant(L
))
2570 StrengthReduceStridedIVUsers(SI
->first
, *SI
->second
, L
);
2574 // After all sharing is done, see if we can adjust the loop to test against
2575 // zero instead of counting up to a maximum. This is usually faster.
2576 OptimizeLoopCountIV(L
);
2578 // We're done analyzing this loop; release all the state we built up for it.
2579 IVsByStride
.clear();
2580 StrideNoReuse
.clear();
2582 // Clean up after ourselves
2583 if (!DeadInsts
.empty())
2584 DeleteTriviallyDeadInstructions();
2586 // At this point, it is worth checking to see if any recurrence PHIs are also
2587 // dead, so that we can remove them as well.
2588 DeleteDeadPHIs(L
->getHeader());