1 <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
5 <meta http-equiv=
"Content-Type" content=
"text/html; charset=utf-8">
6 <title>Writing an LLVM Compiler Backend
</title>
7 <link rel=
"stylesheet" href=
"llvm.css" type=
"text/css">
12 <div class=
"doc_title">
13 Writing an LLVM Compiler Backend
17 <li><a href=
"#intro">Introduction
</a>
19 <li><a href=
"#Audience">Audience
</a></li>
20 <li><a href=
"#Prerequisite">Prerequisite Reading
</a></li>
21 <li><a href=
"#Basic">Basic Steps
</a></li>
22 <li><a href=
"#Preliminaries">Preliminaries
</a></li>
24 <li><a href=
"#TargetMachine">Target Machine
</a></li>
25 <li><a href=
"#TargetRegistration">Target Registration
</a></li>
26 <li><a href=
"#RegisterSet">Register Set and Register Classes
</a>
28 <li><a href=
"#RegisterDef">Defining a Register
</a></li>
29 <li><a href=
"#RegisterClassDef">Defining a Register Class
</a></li>
30 <li><a href=
"#implementRegister">Implement a subclass of TargetRegisterInfo
</a></li>
32 <li><a href=
"#InstructionSet">Instruction Set
</a>
34 <li><a href=
"#operandMapping">Instruction Operand Mapping
</a></li>
35 <li><a href=
"#implementInstr">Implement a subclass of TargetInstrInfo
</a></li>
36 <li><a href=
"#branchFolding">Branch Folding and If Conversion
</a></li>
38 <li><a href=
"#InstructionSelector">Instruction Selector
</a>
40 <li><a href=
"#LegalizePhase">The SelectionDAG Legalize Phase
</a>
42 <li><a href=
"#promote">Promote
</a></li>
43 <li><a href=
"#expand">Expand
</a></li>
44 <li><a href=
"#custom">Custom
</a></li>
45 <li><a href=
"#legal">Legal
</a></li>
47 <li><a href=
"#callingConventions">Calling Conventions
</a></li>
49 <li><a href=
"#assemblyPrinter">Assembly Printer
</a></li>
50 <li><a href=
"#subtargetSupport">Subtarget Support
</a></li>
51 <li><a href=
"#jitSupport">JIT Support
</a>
53 <li><a href=
"#mce">Machine Code Emitter
</a></li>
54 <li><a href=
"#targetJITInfo">Target JIT Info
</a></li>
58 <div class=
"doc_author">
59 <p>Written by
<a href=
"http://www.woo.com">Mason Woo
</a> and
60 <a href=
"http://misha.brukman.net">Misha Brukman
</a></p>
63 <!-- *********************************************************************** -->
64 <div class=
"doc_section">
65 <a name=
"intro">Introduction
</a>
67 <!-- *********************************************************************** -->
69 <div class=
"doc_text">
72 This document describes techniques for writing compiler backends that convert
73 the LLVM Intermediate Representation (IR) to code for a specified machine or
74 other languages. Code intended for a specific machine can take the form of
75 either assembly code or binary code (usable for a JIT compiler).
79 The backend of LLVM features a target-independent code generator that may create
80 output for several types of target CPUs
— including X86, PowerPC, Alpha,
81 and SPARC. The backend may also be used to generate code targeted at SPUs of the
82 Cell processor or GPUs to support the execution of compute kernels.
86 The document focuses on existing examples found in subdirectories
87 of
<tt>llvm/lib/Target
</tt> in a downloaded LLVM release. In particular, this
88 document focuses on the example of creating a static compiler (one that emits
89 text assembly) for a SPARC target, because SPARC has fairly standard
90 characteristics, such as a RISC instruction set and straightforward calling
96 <div class=
"doc_subsection">
97 <a name=
"Audience">Audience
</a>
100 <div class=
"doc_text">
103 The audience for this document is anyone who needs to write an LLVM backend to
104 generate code for a specific hardware or software target.
109 <div class=
"doc_subsection">
110 <a name=
"Prerequisite">Prerequisite Reading
</a>
113 <div class=
"doc_text">
116 These essential documents must be read before reading this document:
120 <li><i><a href=
"http://www.llvm.org/docs/LangRef.html">LLVM Language Reference
121 Manual
</a></i> — a reference manual for the LLVM assembly language.
</li>
123 <li><i><a href=
"http://www.llvm.org/docs/CodeGenerator.html">The LLVM
124 Target-Independent Code Generator
</a></i> — a guide to the components
125 (classes and code generation algorithms) for translating the LLVM internal
126 representation into machine code for a specified target. Pay particular
127 attention to the descriptions of code generation stages: Instruction
128 Selection, Scheduling and Formation, SSA-based Optimization, Register
129 Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations,
130 and Code Emission.
</li>
132 <li><i><a href=
"http://www.llvm.org/docs/TableGenFundamentals.html">TableGen
133 Fundamentals
</a></i> —a document that describes the TableGen
134 (
<tt>tblgen
</tt>) application that manages domain-specific information to
135 support LLVM code generation. TableGen processes input from a target
136 description file (
<tt>.td
</tt> suffix) and generates C++ code that can be
137 used for code generation.
</li>
139 <li><i><a href=
"http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM
140 Pass
</a></i> — The assembly printer is a
<tt>FunctionPass
</tt>, as are
141 several SelectionDAG processing steps.
</li>
145 To follow the SPARC examples in this document, have a copy of
146 <i><a href=
"http://www.sparc.org/standards/V8.pdf">The SPARC Architecture
147 Manual, Version
8</a></i> for reference. For details about the ARM instruction
148 set, refer to the
<i><a href=
"http://infocenter.arm.com/">ARM Architecture
149 Reference Manual
</a></i>. For more about the GNU Assembler format
151 <i><a href=
"http://sourceware.org/binutils/docs/as/index.html">Using As
</a></i>,
152 especially for the assembly printer.
<i>Using As
</i> contains a list of target
153 machine dependent features.
158 <div class=
"doc_subsection">
159 <a name=
"Basic">Basic Steps
</a>
162 <div class=
"doc_text">
165 To write a compiler backend for LLVM that converts the LLVM IR to code for a
166 specified target (machine or other language), follow these steps:
170 <li>Create a subclass of the TargetMachine class that describes characteristics
171 of your target machine. Copy existing examples of specific TargetMachine
172 class and header files; for example, start with
173 <tt>SparcTargetMachine.cpp
</tt> and
<tt>SparcTargetMachine.h
</tt>, but
174 change the file names for your target. Similarly, change code that
175 references
"Sparc" to reference your target.
</li>
177 <li>Describe the register set of the target. Use TableGen to generate code for
178 register definition, register aliases, and register classes from a
179 target-specific
<tt>RegisterInfo.td
</tt> input file. You should also write
180 additional code for a subclass of the TargetRegisterInfo class that
181 represents the class register file data used for register allocation and
182 also describes the interactions between registers.
</li>
184 <li>Describe the instruction set of the target. Use TableGen to generate code
185 for target-specific instructions from target-specific versions of
186 <tt>TargetInstrFormats.td
</tt> and
<tt>TargetInstrInfo.td
</tt>. You should
187 write additional code for a subclass of the TargetInstrInfo class to
188 represent machine instructions supported by the target machine.
</li>
190 <li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic
191 Graph (DAG) representation of instructions to native target-specific
192 instructions. Use TableGen to generate code that matches patterns and
193 selects instructions based on additional information in a target-specific
194 version of
<tt>TargetInstrInfo.td
</tt>. Write code
195 for
<tt>XXXISelDAGToDAG.cpp
</tt>, where XXX identifies the specific target,
196 to perform pattern matching and DAG-to-DAG instruction selection. Also write
197 code in
<tt>XXXISelLowering.cpp
</tt> to replace or remove operations and
198 data types that are not supported natively in a SelectionDAG.
</li>
200 <li>Write code for an assembly printer that converts LLVM IR to a GAS format for
201 your target machine. You should add assembly strings to the instructions
202 defined in your target-specific version of
<tt>TargetInstrInfo.td
</tt>. You
203 should also write code for a subclass of AsmPrinter that performs the
204 LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.
</li>
206 <li>Optionally, add support for subtargets (i.e., variants with different
207 capabilities). You should also write code for a subclass of the
208 TargetSubtarget class, which allows you to use the
<tt>-mcpu=
</tt>
209 and
<tt>-mattr=
</tt> command-line options.
</li>
211 <li>Optionally, add JIT support and create a machine code emitter (subclass of
212 TargetJITInfo) that is used to emit binary code directly into memory.
</li>
216 In the
<tt>.cpp
</tt> and
<tt>.h
</tt>. files, initially stub up these methods and
217 then implement them later. Initially, you may not know which private members
218 that the class will need and which components will need to be subclassed.
223 <div class=
"doc_subsection">
224 <a name=
"Preliminaries">Preliminaries
</a>
227 <div class=
"doc_text">
230 To actually create your compiler backend, you need to create and modify a few
231 files. The absolute minimum is discussed here. But to actually use the LLVM
232 target-independent code generator, you must perform the steps described in
233 the
<a href=
"http://www.llvm.org/docs/CodeGenerator.html">LLVM
234 Target-Independent Code Generator
</a> document.
238 First, you should create a subdirectory under
<tt>lib/Target
</tt> to hold all
239 the files related to your target. If your target is called
"Dummy," create the
240 directory
<tt>lib/Target/Dummy
</tt>.
245 directory, create a
<tt>Makefile
</tt>. It is easiest to copy a
246 <tt>Makefile
</tt> of another target and modify it. It should at least contain
247 the
<tt>LEVEL
</tt>,
<tt>LIBRARYNAME
</tt> and
<tt>TARGET
</tt> variables, and then
248 include
<tt>$(LEVEL)/Makefile.common
</tt>. The library can be
249 named
<tt>LLVMDummy
</tt> (for example, see the MIPS target). Alternatively, you
250 can split the library into
<tt>LLVMDummyCodeGen
</tt>
251 and
<tt>LLVMDummyAsmPrinter
</tt>, the latter of which should be implemented in a
252 subdirectory below
<tt>lib/Target/Dummy
</tt> (for example, see the PowerPC
257 Note that these two naming schemes are hardcoded into
<tt>llvm-config
</tt>.
258 Using any other naming scheme will confuse
<tt>llvm-config
</tt> and produce a
259 lot of (seemingly unrelated) linker errors when linking
<tt>llc
</tt>.
263 To make your target actually do something, you need to implement a subclass of
264 <tt>TargetMachine
</tt>. This implementation should typically be in the file
265 <tt>lib/Target/DummyTargetMachine.cpp
</tt>, but any file in
266 the
<tt>lib/Target
</tt> directory will be built and should work. To use LLVM's
267 target independent code generator, you should do what all current machine
268 backends do: create a subclass of
<tt>LLVMTargetMachine
</tt>. (To create a
269 target from scratch, create a subclass of
<tt>TargetMachine
</tt>.)
273 To get LLVM to actually build and link your target, you need to add it to
274 the
<tt>TARGETS_TO_BUILD
</tt> variable. To do this, you modify the configure
275 script to know about your target when parsing the
<tt>--enable-targets
</tt>
276 option. Search the configure script for
<tt>TARGETS_TO_BUILD
</tt>, add your
277 target to the lists there (some creativity required), and then
278 reconfigure. Alternatively, you can change
<tt>autotools/configure.ac
</tt> and
279 regenerate configure by running
<tt>./autoconf/AutoRegen.sh
</tt>.
284 <!-- *********************************************************************** -->
285 <div class=
"doc_section">
286 <a name=
"TargetMachine">Target Machine
</a>
288 <!-- *********************************************************************** -->
290 <div class=
"doc_text">
293 <tt>LLVMTargetMachine
</tt> is designed as a base class for targets implemented
294 with the LLVM target-independent code generator. The
<tt>LLVMTargetMachine
</tt>
295 class should be specialized by a concrete target class that implements the
296 various virtual methods.
<tt>LLVMTargetMachine
</tt> is defined as a subclass of
297 <tt>TargetMachine
</tt> in
<tt>include/llvm/Target/TargetMachine.h
</tt>. The
298 <tt>TargetMachine
</tt> class implementation (
<tt>TargetMachine.cpp
</tt>) also
299 processes numerous command-line options.
303 To create a concrete target-specific subclass of
<tt>LLVMTargetMachine
</tt>,
304 start by copying an existing
<tt>TargetMachine
</tt> class and header. You
305 should name the files that you create to reflect your specific target. For
306 instance, for the SPARC target, name the files
<tt>SparcTargetMachine.h
</tt> and
307 <tt>SparcTargetMachine.cpp
</tt>.
311 For a target machine
<tt>XXX
</tt>, the implementation of
312 <tt>XXXTargetMachine
</tt> must have access methods to obtain objects that
313 represent target components. These methods are named
<tt>get*Info
</tt>, and are
314 intended to obtain the instruction set (
<tt>getInstrInfo
</tt>), register set
315 (
<tt>getRegisterInfo
</tt>), stack frame layout (
<tt>getFrameInfo
</tt>), and
316 similar information.
<tt>XXXTargetMachine
</tt> must also implement the
317 <tt>getTargetData
</tt> method to access an object with target-specific data
318 characteristics, such as data type size and alignment requirements.
322 For instance, for the SPARC target, the header file
323 <tt>SparcTargetMachine.h
</tt> declares prototypes for several
<tt>get*Info
</tt>
324 and
<tt>getTargetData
</tt> methods that simply return a class member.
327 <div class=
"doc_code">
333 class SparcTargetMachine : public LLVMTargetMachine {
334 const TargetData DataLayout; // Calculates type size
& alignment
335 SparcSubtarget Subtarget;
336 SparcInstrInfo InstrInfo;
337 TargetFrameInfo FrameInfo;
340 virtual const TargetAsmInfo *createTargetAsmInfo() const;
343 SparcTargetMachine(const Module
&M, const std::string
&FS);
345 virtual const SparcInstrInfo *getInstrInfo() const {return
&InstrInfo; }
346 virtual const TargetFrameInfo *getFrameInfo() const {return
&FrameInfo; }
347 virtual const TargetSubtarget *getSubtargetImpl() const{return
&Subtarget; }
348 virtual const TargetRegisterInfo *getRegisterInfo() const {
349 return
&InstrInfo.getRegisterInfo();
351 virtual const TargetData *getTargetData() const { return
&DataLayout; }
352 static unsigned getModuleMatchQuality(const Module
&M);
354 // Pass Pipeline Configuration
355 virtual bool addInstSelector(PassManagerBase
&PM, bool Fast);
356 virtual bool addPreEmitPass(PassManagerBase
&PM, bool Fast);
357 virtual bool addAssemblyEmitter(PassManagerBase
&PM, bool Fast,
358 std::ostream
&Out);
361 } // end namespace llvm
368 <div class=
"doc_text">
371 <li><tt>getInstrInfo()
</tt></li>
372 <li><tt>getRegisterInfo()
</tt></li>
373 <li><tt>getFrameInfo()
</tt></li>
374 <li><tt>getTargetData()
</tt></li>
375 <li><tt>getSubtargetImpl()
</tt></li>
378 <p>For some targets, you also need to support the following methods:
</p>
381 <li><tt>getTargetLowering()
</tt></li>
382 <li><tt>getJITInfo()
</tt></li>
386 In addition, the
<tt>XXXTargetMachine
</tt> constructor should specify a
387 <tt>TargetDescription
</tt> string that determines the data layout for the target
388 machine, including characteristics such as pointer size, alignment, and
389 endianness. For example, the constructor for SparcTargetMachine contains the
393 <div class=
"doc_code">
395 SparcTargetMachine::SparcTargetMachine(const Module
&M, const std::string
&FS)
396 : DataLayout(
"E-p:32:32-f128:128:128"),
397 Subtarget(M, FS), InstrInfo(Subtarget),
398 FrameInfo(TargetFrameInfo::StackGrowsDown,
8,
0) {
405 <div class=
"doc_text">
407 <p>Hyphens separate portions of the
<tt>TargetDescription
</tt> string.
</p>
410 <li>An upper-case
"<tt>E</tt>" in the string indicates a big-endian target data
411 model. a lower-case
"<tt>e</tt>" indicates little-endian.
</li>
413 <li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and
414 preferred alignment. If only two figures follow
"<tt>p:</tt>", then the
415 first value is pointer size, and the second value is both ABI and preferred
418 <li>Then a letter for numeric type alignment:
"<tt>i</tt>",
"<tt>f</tt>",
419 "<tt>v</tt>", or
"<tt>a</tt>" (corresponding to integer, floating point,
420 vector, or aggregate).
"<tt>i</tt>",
"<tt>v</tt>", or
"<tt>a</tt>" are
421 followed by ABI alignment and preferred alignment.
"<tt>f</tt>" is followed
422 by three values: the first indicates the size of a long double, then ABI
423 alignment, and then ABI preferred alignment.
</li>
428 <!-- *********************************************************************** -->
429 <div class=
"doc_section">
430 <a name=
"TargetRegistration">Target Registration
</a>
432 <!-- *********************************************************************** -->
434 <div class=
"doc_text">
437 You must also register your target with the
<tt>TargetRegistry
</tt>, which is
438 what other LLVM tools use to be able to lookup and use your target at
439 runtime. The
<tt>TargetRegistry
</tt> can be used directly, but for most targets
440 there are helper templates which should take care of the work for you.
</p>
443 All targets should declare a global
<tt>Target
</tt> object which is used to
444 represent the target during registration. Then, in the target's TargetInfo
445 library, the target should define that object and use
446 the
<tt>RegisterTarget
</tt> template to register the target. For example, the Sparc registration code looks like this:
449 <div class=
"doc_code">
451 Target llvm::TheSparcTarget;
453 extern
"C" void LLVMInitializeSparcTargetInfo() {
454 RegisterTarget
<Triple::sparc, /*HasJIT=*/false
>
455 X(TheSparcTarget,
"sparc",
"Sparc");
461 This allows the
<tt>TargetRegistry
</tt> to look up the target by name or by
462 target triple. In addition, most targets will also register additional features
463 which are available in separate libraries. These registration steps are
464 separate, because some clients may wish to only link in some parts of the target
465 -- the JIT code generator does not require the use of the assembler printer, for
466 example. Here is an example of registering the Sparc assembly printer:
469 <div class=
"doc_code">
471 extern
"C" void LLVMInitializeSparcAsmPrinter() {
472 RegisterAsmPrinter
<SparcAsmPrinter
> X(TheSparcTarget);
478 For more information, see
479 "<a href="/doxygen/TargetRegistry_8h-source.html
">llvm/Target/TargetRegistry.h</a>".
484 <!-- *********************************************************************** -->
485 <div class=
"doc_section">
486 <a name=
"RegisterSet">Register Set and Register Classes
</a>
488 <!-- *********************************************************************** -->
490 <div class=
"doc_text">
493 You should describe a concrete target-specific class that represents the
494 register file of a target machine. This class is called
<tt>XXXRegisterInfo
</tt>
495 (where
<tt>XXX
</tt> identifies the target) and represents the class register
496 file data that is used for register allocation. It also describes the
497 interactions between registers.
501 You also need to define register classes to categorize related registers. A
502 register class should be added for groups of registers that are all treated the
503 same way for some instruction. Typical examples are register classes for
504 integer, floating-point, or vector registers. A register allocator allows an
505 instruction to use any register in a specified register class to perform the
506 instruction in a similar manner. Register classes allocate virtual registers to
507 instructions from these sets, and register classes let the target-independent
508 register allocator automatically choose the actual registers.
512 Much of the code for registers, including register definition, register aliases,
513 and register classes, is generated by TableGen from
<tt>XXXRegisterInfo.td
</tt>
514 input files and placed in
<tt>XXXGenRegisterInfo.h.inc
</tt> and
515 <tt>XXXGenRegisterInfo.inc
</tt> output files. Some of the code in the
516 implementation of
<tt>XXXRegisterInfo
</tt> requires hand-coding.
521 <!-- ======================================================================= -->
522 <div class=
"doc_subsection">
523 <a name=
"RegisterDef">Defining a Register
</a>
526 <div class=
"doc_text">
529 The
<tt>XXXRegisterInfo.td
</tt> file typically starts with register definitions
530 for a target machine. The
<tt>Register
</tt> class (specified
531 in
<tt>Target.td
</tt>) is used to define an object for each register. The
532 specified string
<tt>n
</tt> becomes the
<tt>Name
</tt> of the register. The
533 basic
<tt>Register
</tt> object does not have any subregisters and does not
537 <div class=
"doc_code">
539 class Register
<string n
> {
540 string Namespace =
"";
544 int SpillAlignment =
0;
545 list
<Register
> Aliases = [];
546 list
<Register
> SubRegs = [];
547 list
<int
> DwarfNumbers = [];
553 For example, in the
<tt>X86RegisterInfo.td
</tt> file, there are register
554 definitions that utilize the Register class, such as:
557 <div class=
"doc_code">
559 def AL : Register
<"AL">, DwarfRegNum
<[
0,
0,
0]
>;
564 This defines the register
<tt>AL
</tt> and assigns it values (with
565 <tt>DwarfRegNum
</tt>) that are used by
<tt>gcc
</tt>,
<tt>gdb
</tt>, or a debug
566 information writer (such as
<tt>DwarfWriter
</tt>
567 in
<tt>llvm/lib/CodeGen/AsmPrinter
</tt>) to identify a register. For register
568 <tt>AL
</tt>,
<tt>DwarfRegNum
</tt> takes an array of
3 values representing
3
569 different modes: the first element is for X86-
64, the second for exception
570 handling (EH) on X86-
32, and the third is generic. -
1 is a special Dwarf number
571 that indicates the gcc number is undefined, and -
2 indicates the register number
572 is invalid for this mode.
576 From the previously described line in the
<tt>X86RegisterInfo.td
</tt> file,
577 TableGen generates this code in the
<tt>X86GenRegisterInfo.inc
</tt> file:
580 <div class=
"doc_code">
582 static const unsigned GR8[] = { X86::AL, ... };
584 const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX,
0 };
586 const TargetRegisterDesc RegisterDescriptors[] = {
588 {
"AL",
"AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
593 From the register info file, TableGen generates a
<tt>TargetRegisterDesc
</tt>
594 object for each register.
<tt>TargetRegisterDesc
</tt> is defined in
595 <tt>include/llvm/Target/TargetRegisterInfo.h
</tt> with the following fields:
598 <div class=
"doc_code">
600 struct TargetRegisterDesc {
601 const char *AsmName; // Assembly language name for the register
602 const char *Name; // Printable name for the reg (for debugging)
603 const unsigned *AliasSet; // Register Alias Set
604 const unsigned *SubRegs; // Sub-register set
605 const unsigned *ImmSubRegs; // Immediate sub-register set
606 const unsigned *SuperRegs; // Super-register set
611 TableGen uses the entire target description file (
<tt>.td
</tt>) to determine
612 text names for the register (in the
<tt>AsmName
</tt> and
<tt>Name
</tt> fields of
613 <tt>TargetRegisterDesc
</tt>) and the relationships of other registers to the
614 defined register (in the other
<tt>TargetRegisterDesc
</tt> fields). In this
615 example, other definitions establish the registers
"<tt>AX</tt>",
616 "<tt>EAX</tt>", and
"<tt>RAX</tt>" as aliases for one another, so TableGen
617 generates a null-terminated array (
<tt>AL_AliasSet
</tt>) for this register alias
622 The
<tt>Register
</tt> class is commonly used as a base class for more complex
623 classes. In
<tt>Target.td
</tt>, the
<tt>Register
</tt> class is the base for the
624 <tt>RegisterWithSubRegs
</tt> class that is used to define registers that need to
625 specify subregisters in the
<tt>SubRegs
</tt> list, as shown here:
628 <div class=
"doc_code">
630 class RegisterWithSubRegs
<string n,
631 list
<Register
> subregs
> : Register
<n
> {
632 let SubRegs = subregs;
638 In
<tt>SparcRegisterInfo.td
</tt>, additional register classes are defined for
639 SPARC: a Register subclass, SparcReg, and further subclasses:
<tt>Ri
</tt>,
640 <tt>Rf
</tt>, and
<tt>Rd
</tt>. SPARC registers are identified by
5-bit ID
641 numbers, which is a feature common to these subclasses. Note the use of
642 '
<tt>let
</tt>' expressions to override values that are initially defined in a
643 superclass (such as
<tt>SubRegs
</tt> field in the
<tt>Rd
</tt> class).
646 <div class=
"doc_code">
648 class SparcReg
<string n
> : Register
<n
> {
649 field bits
<5> Num;
650 let Namespace =
"SP";
652 // Ri -
32-bit integer registers
653 class Ri
<bits
<5> num, string n
> :
657 // Rf -
32-bit floating-point registers
658 class Rf
<bits
<5> num, string n
> :
662 // Rd - Slots in the FP register file for
64-bit
663 floating-point values.
664 class Rd
<bits
<5> num, string n,
665 list
<Register
> subregs
> : SparcReg
<n
> {
667 let SubRegs = subregs;
673 In the
<tt>SparcRegisterInfo.td
</tt> file, there are register definitions that
674 utilize these subclasses of
<tt>Register
</tt>, such as:
677 <div class=
"doc_code">
679 def G0 : Ri
< 0,
"G0">,
680 DwarfRegNum
<[
0]
>;
681 def G1 : Ri
< 1,
"G1">, DwarfRegNum
<[
1]
>;
683 def F0 : Rf
< 0,
"F0">,
684 DwarfRegNum
<[
32]
>;
685 def F1 : Rf
< 1,
"F1">,
686 DwarfRegNum
<[
33]
>;
688 def D0 : Rd
< 0,
"F0", [F0, F1]
>,
689 DwarfRegNum
<[
32]
>;
690 def D1 : Rd
< 2,
"F2", [F2, F3]
>,
691 DwarfRegNum
<[
34]
>;
696 The last two registers shown above (
<tt>D0
</tt> and
<tt>D1
</tt>) are
697 double-precision floating-point registers that are aliases for pairs of
698 single-precision floating-point sub-registers. In addition to aliases, the
699 sub-register and super-register relationships of the defined register are in
700 fields of a register's TargetRegisterDesc.
705 <!-- ======================================================================= -->
706 <div class=
"doc_subsection">
707 <a name=
"RegisterClassDef">Defining a Register Class
</a>
710 <div class=
"doc_text">
713 The
<tt>RegisterClass
</tt> class (specified in
<tt>Target.td
</tt>) is used to
714 define an object that represents a group of related registers and also defines
715 the default allocation order of the registers. A target description file
716 <tt>XXXRegisterInfo.td
</tt> that uses
<tt>Target.td
</tt> can construct register
717 classes using the following class:
720 <div class=
"doc_code">
722 class RegisterClass
<string namespace,
723 list
<ValueType
> regTypes, int alignment,
724 list
<Register
> regList
> {
725 string Namespace = namespace;
726 list
<ValueType
> RegTypes = regTypes;
727 int Size =
0; // spill size, in bits; zero lets tblgen pick the size
728 int Alignment = alignment;
730 // CopyCost is the cost of copying a value between two registers
731 // default value
1 means a single instruction
732 // A negative value means copying is extremely expensive or impossible
734 list
<Register
> MemberList = regList;
736 // for register classes that are subregisters of this class
737 list
<RegisterClass
> SubRegClassList = [];
739 code MethodProtos = [{}]; // to insert arbitrary code
740 code MethodBodies = [{}];
745 <p>To define a RegisterClass, use the following
4 arguments:
</p>
748 <li>The first argument of the definition is the name of the namespace.
</li>
750 <li>The second argument is a list of
<tt>ValueType
</tt> register type values
751 that are defined in
<tt>include/llvm/CodeGen/ValueTypes.td
</tt>. Defined
752 values include integer types (such as
<tt>i16
</tt>,
<tt>i32
</tt>,
753 and
<tt>i1
</tt> for Boolean), floating-point types
754 (
<tt>f32
</tt>,
<tt>f64
</tt>), and vector types (for example,
<tt>v8i16
</tt>
755 for an
<tt>8 x i16
</tt> vector). All registers in a
<tt>RegisterClass
</tt>
756 must have the same
<tt>ValueType
</tt>, but some registers may store vector
757 data in different configurations. For example a register that can process a
758 128-bit vector may be able to handle
16 8-bit integer elements,
8 16-bit
759 integers,
4 32-bit integers, and so on.
</li>
761 <li>The third argument of the
<tt>RegisterClass
</tt> definition specifies the
762 alignment required of the registers when they are stored or loaded to
765 <li>The final argument,
<tt>regList
</tt>, specifies which registers are in this
766 class. If an
<tt>allocation_order_*
</tt> method is not specified,
767 then
<tt>regList
</tt> also defines the order of allocation used by the
768 register allocator.
</li>
772 In
<tt>SparcRegisterInfo.td
</tt>, three RegisterClass objects are defined:
773 <tt>FPRegs
</tt>,
<tt>DFPRegs
</tt>, and
<tt>IntRegs
</tt>. For all three register
774 classes, the first argument defines the namespace with the string
775 '
<tt>SP
</tt>'.
<tt>FPRegs
</tt> defines a group of
32 single-precision
776 floating-point registers (
<tt>F0
</tt> to
<tt>F31
</tt>);
<tt>DFPRegs
</tt> defines
777 a group of
16 double-precision registers
778 (
<tt>D0-D15
</tt>). For
<tt>IntRegs
</tt>, the
<tt>MethodProtos
</tt>
779 and
<tt>MethodBodies
</tt> methods are used by TableGen to insert the specified
780 code into generated output.
783 <div class=
"doc_code">
785 def FPRegs : RegisterClass
<"SP", [f32],
32,
786 [F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15,
787 F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]
>;
789 def DFPRegs : RegisterClass
<"SP", [f64],
64,
790 [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]
>;
792 def IntRegs : RegisterClass
<"SP", [i32],
32,
793 [L0, L1, L2, L3, L4, L5, L6, L7,
794 I0, I1, I2, I3, I4, I5,
795 O0, O1, O2, O3, O4, O5, O7,
797 // Non-allocatable regs:
801 I7, // return address
803 G5, G6, G7 // reserved for kernel
805 let MethodProtos = [{
806 iterator allocation_order_end(const MachineFunction
&MF) const;
808 let MethodBodies = [{
809 IntRegsClass::iterator
810 IntRegsClass::allocation_order_end(const MachineFunction
&MF) const {
811 return end() -
10 // Don't allocate special registers
820 Using
<tt>SparcRegisterInfo.td
</tt> with TableGen generates several output files
821 that are intended for inclusion in other source code that you write.
822 <tt>SparcRegisterInfo.td
</tt> generates
<tt>SparcGenRegisterInfo.h.inc
</tt>,
823 which should be included in the header file for the implementation of the SPARC
824 register implementation that you write (
<tt>SparcRegisterInfo.h
</tt>). In
825 <tt>SparcGenRegisterInfo.h.inc
</tt> a new structure is defined called
826 <tt>SparcGenRegisterInfo
</tt> that uses
<tt>TargetRegisterInfo
</tt> as its
827 base. It also specifies types, based upon the defined register
828 classes:
<tt>DFPRegsClass
</tt>,
<tt>FPRegsClass
</tt>, and
<tt>IntRegsClass
</tt>.
832 <tt>SparcRegisterInfo.td
</tt> also generates
<tt>SparcGenRegisterInfo.inc
</tt>,
833 which is included at the bottom of
<tt>SparcRegisterInfo.cpp
</tt>, the SPARC
834 register implementation. The code below shows only the generated integer
835 registers and associated register classes. The order of registers
836 in
<tt>IntRegs
</tt> reflects the order in the definition of
<tt>IntRegs
</tt> in
837 the target description file. Take special note of the use
838 of
<tt>MethodBodies
</tt> in
<tt>SparcRegisterInfo.td
</tt> to create code in
839 <tt>SparcGenRegisterInfo.inc
</tt>.
<tt>MethodProtos
</tt> generates similar code
840 in
<tt>SparcGenRegisterInfo.h.inc
</tt>.
843 <div class=
"doc_code">
844 <pre> // IntRegs Register Class...
845 static const unsigned IntRegs[] = {
846 SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
847 SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
848 SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
849 SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
850 SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
854 // IntRegsVTs Register Class Value Types...
855 static const MVT::ValueType IntRegsVTs[] = {
859 namespace SP { // Register class instances
860 DFPRegsClass
DFPRegsRegClass;
861 FPRegsClass
FPRegsRegClass;
862 IntRegsClass
IntRegsRegClass;
864 // IntRegs Sub-register Classess...
865 static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
869 // IntRegs Super-register Classess...
870 static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
874 // IntRegs Register Class sub-classes...
875 static const TargetRegisterClass* const IntRegsSubclasses [] = {
879 // IntRegs Register Class super-classes...
880 static const TargetRegisterClass* const IntRegsSuperclasses [] = {
884 IntRegsClass::iterator
885 IntRegsClass::allocation_order_end(const MachineFunction
&MF) const {
886 return end()-
10 // Don't allocate special registers
890 IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
891 IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
892 IntRegsSuperRegClasses,
4,
4,
1, IntRegs, IntRegs +
32) {}
899 <!-- ======================================================================= -->
900 <div class=
"doc_subsection">
901 <a name=
"implementRegister">Implement a subclass of
</a>
902 <a href=
"http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo
</a>
905 <div class=
"doc_text">
908 The final step is to hand code portions of
<tt>XXXRegisterInfo
</tt>, which
909 implements the interface described in
<tt>TargetRegisterInfo.h
</tt>. These
910 functions return
<tt>0</tt>,
<tt>NULL
</tt>, or
<tt>false
</tt>, unless
911 overridden. Here is a list of functions that are overridden for the SPARC
912 implementation in
<tt>SparcRegisterInfo.cpp
</tt>:
916 <li><tt>getCalleeSavedRegs
</tt> — Returns a list of callee-saved registers
917 in the order of the desired callee-save stack frame offset.
</li>
919 <li><tt>getCalleeSavedRegClasses
</tt> — Returns a list of preferred
920 register classes with which to spill each callee saved register.
</li>
922 <li><tt>getReservedRegs
</tt> — Returns a bitset indexed by physical
923 register numbers, indicating if a particular register is unavailable.
</li>
925 <li><tt>hasFP
</tt> — Return a Boolean indicating if a function should have
926 a dedicated frame pointer register.
</li>
928 <li><tt>eliminateCallFramePseudoInstr
</tt> — If call frame setup or
929 destroy pseudo instructions are used, this can be called to eliminate
932 <li><tt>eliminateFrameIndex
</tt> — Eliminate abstract frame indices from
933 instructions that may use them.
</li>
935 <li><tt>emitPrologue
</tt> — Insert prologue code into the function.
</li>
937 <li><tt>emitEpilogue
</tt> — Insert epilogue code into the function.
</li>
942 <!-- *********************************************************************** -->
943 <div class=
"doc_section">
944 <a name=
"InstructionSet">Instruction Set
</a>
947 <!-- *********************************************************************** -->
948 <div class=
"doc_text">
951 During the early stages of code generation, the LLVM IR code is converted to a
952 <tt>SelectionDAG
</tt> with nodes that are instances of the
<tt>SDNode
</tt> class
953 containing target instructions. An
<tt>SDNode
</tt> has an opcode, operands, type
954 requirements, and operation properties. For example, is an operation
955 commutative, does an operation load from memory. The various operation node
956 types are described in the
<tt>include/llvm/CodeGen/SelectionDAGNodes.h
</tt>
957 file (values of the
<tt>NodeType
</tt> enum in the
<tt>ISD
</tt> namespace).
961 TableGen uses the following target description (
<tt>.td
</tt>) input files to
962 generate much of the code for instruction definition:
966 <li><tt>Target.td
</tt> — Where the
<tt>Instruction
</tt>,
<tt>Operand
</tt>,
967 <tt>InstrInfo
</tt>, and other fundamental classes are defined.
</li>
969 <li><tt>TargetSelectionDAG.td
</tt>— Used by
<tt>SelectionDAG
</tt>
970 instruction selection generators, contains
<tt>SDTC*
</tt> classes (selection
971 DAG type constraint), definitions of
<tt>SelectionDAG
</tt> nodes (such as
972 <tt>imm
</tt>,
<tt>cond
</tt>,
<tt>bb
</tt>,
<tt>add
</tt>,
<tt>fadd
</tt>,
973 <tt>sub
</tt>), and pattern support (
<tt>Pattern
</tt>,
<tt>Pat
</tt>,
974 <tt>PatFrag
</tt>,
<tt>PatLeaf
</tt>,
<tt>ComplexPattern
</tt>.
</li>
976 <li><tt>XXXInstrFormats.td
</tt> — Patterns for definitions of
977 target-specific instructions.
</li>
979 <li><tt>XXXInstrInfo.td
</tt> — Target-specific definitions of instruction
980 templates, condition codes, and instructions of an instruction set. For
981 architecture modifications, a different file name may be used. For example,
982 for Pentium with SSE instruction, this file is
<tt>X86InstrSSE.td
</tt>, and
983 for Pentium with MMX, this file is
<tt>X86InstrMMX.td
</tt>.
</li>
987 There is also a target-specific
<tt>XXX.td
</tt> file, where
<tt>XXX
</tt> is the
988 name of the target. The
<tt>XXX.td
</tt> file includes the other
<tt>.td
</tt>
989 input files, but its contents are only directly important for subtargets.
993 You should describe a concrete target-specific class
<tt>XXXInstrInfo
</tt> that
994 represents machine instructions supported by a target machine.
995 <tt>XXXInstrInfo
</tt> contains an array of
<tt>XXXInstrDescriptor
</tt> objects,
996 each of which describes one instruction. An instruction descriptor defines:
</p>
999 <li>Opcode mnemonic
</li>
1001 <li>Number of operands
</li>
1003 <li>List of implicit register definitions and uses
</li>
1005 <li>Target-independent properties (such as memory access, is commutable)
</li>
1007 <li>Target-specific flags
</li>
1011 The Instruction class (defined in
<tt>Target.td
</tt>) is mostly used as a base
1012 for more complex instruction classes.
1015 <div class=
"doc_code">
1016 <pre>class Instruction {
1017 string Namespace =
"";
1018 dag OutOperandList; // An dag containing the MI def operand list.
1019 dag InOperandList; // An dag containing the MI use operand list.
1020 string AsmString =
""; // The .s format to print the instruction with.
1021 list
<dag
> Pattern; // Set to the DAG pattern for this instruction
1022 list
<Register
> Uses = [];
1023 list
<Register
> Defs = [];
1024 list
<Predicate
> Predicates = []; // predicates turned into isel match code
1025 ... remainder not shown for space ...
1031 A
<tt>SelectionDAG
</tt> node (
<tt>SDNode
</tt>) should contain an object
1032 representing a target-specific instruction that is defined
1033 in
<tt>XXXInstrInfo.td
</tt>. The instruction objects should represent
1034 instructions from the architecture manual of the target machine (such as the
1035 SPARC Architecture Manual for the SPARC target).
1039 A single instruction from the architecture manual is often modeled as multiple
1040 target instructions, depending upon its operands. For example, a manual might
1041 describe an add instruction that takes a register or an immediate operand. An
1042 LLVM target could model this with two instructions named
<tt>ADDri
</tt> and
1047 You should define a class for each instruction category and define each opcode
1048 as a subclass of the category with appropriate parameters such as the fixed
1049 binary encoding of opcodes and extended opcodes. You should map the register
1050 bits to the bits of the instruction in which they are encoded (for the
1051 JIT). Also you should specify how the instruction should be printed when the
1052 automatic assembly printer is used.
1056 As is described in the SPARC Architecture Manual, Version
8, there are three
1057 major
32-bit formats for instructions. Format
1 is only for the
<tt>CALL
</tt>
1058 instruction. Format
2 is for branch on condition codes and
<tt>SETHI
</tt> (set
1059 high bits of a register) instructions. Format
3 is for other instructions.
1063 Each of these formats has corresponding classes in
<tt>SparcInstrFormat.td
</tt>.
1064 <tt>InstSP
</tt> is a base class for other instruction classes. Additional base
1065 classes are specified for more precise formats: for example
1066 in
<tt>SparcInstrFormat.td
</tt>,
<tt>F2_1
</tt> is for
<tt>SETHI
</tt>,
1067 and
<tt>F2_2
</tt> is for branches. There are three other base
1068 classes:
<tt>F3_1
</tt> for register/register operations,
<tt>F3_2
</tt> for
1069 register/immediate operations, and
<tt>F3_3
</tt> for floating-point
1070 operations.
<tt>SparcInstrInfo.td
</tt> also adds the base class Pseudo for
1071 synthetic SPARC instructions.
1075 <tt>SparcInstrInfo.td
</tt> largely consists of operand and instruction
1076 definitions for the SPARC target. In
<tt>SparcInstrInfo.td
</tt>, the following
1077 target description file entry,
<tt>LDrr
</tt>, defines the Load Integer
1078 instruction for a Word (the
<tt>LD
</tt> SPARC opcode) from a memory address to a
1079 register. The first parameter, the value
3 (
<tt>11<sub>2</sub></tt>), is the
1080 operation value for this category of operation. The second parameter
1081 (
<tt>000000<sub>2</sub></tt>) is the specific operation value
1082 for
<tt>LD
</tt>/Load Word. The third parameter is the output destination, which
1083 is a register operand and defined in the
<tt>Register
</tt> target description
1084 file (
<tt>IntRegs
</tt>).
1087 <div class=
"doc_code">
1088 <pre>def LDrr : F3_1
<3,
0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
1090 [(set IntRegs:$dst, (load ADDRrr:$addr))]
>;
1095 The fourth parameter is the input source, which uses the address
1096 operand
<tt>MEMrr
</tt> that is defined earlier in
<tt>SparcInstrInfo.td
</tt>:
1099 <div class=
"doc_code">
1100 <pre>def MEMrr : Operand
<i32
> {
1101 let PrintMethod =
"printMemOperand";
1102 let MIOperandInfo = (ops IntRegs, IntRegs);
1108 The fifth parameter is a string that is used by the assembly printer and can be
1109 left as an empty string until the assembly printer interface is implemented. The
1110 sixth and final parameter is the pattern used to match the instruction during
1111 the SelectionDAG Select Phase described in
1112 (
<a href=
"http://www.llvm.org/docs/CodeGenerator.html">The LLVM
1113 Target-Independent Code Generator
</a>). This parameter is detailed in the next
1114 section,
<a href=
"#InstructionSelector">Instruction Selector
</a>.
1118 Instruction class definitions are not overloaded for different operand types, so
1119 separate versions of instructions are needed for register, memory, or immediate
1120 value operands. For example, to perform a Load Integer instruction for a Word
1121 from an immediate operand to a register, the following instruction class is
1125 <div class=
"doc_code">
1126 <pre>def LDri : F3_2
<3,
0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
1128 [(set IntRegs:$dst, (load ADDRri:$addr))]
>;
1133 Writing these definitions for so many similar instructions can involve a lot of
1134 cut and paste. In td files, the
<tt>multiclass
</tt> directive enables the
1135 creation of templates to define several instruction classes at once (using
1136 the
<tt>defm
</tt> directive). For example in
<tt>SparcInstrInfo.td
</tt>, the
1137 <tt>multiclass
</tt> pattern
<tt>F3_12
</tt> is defined to create
2 instruction
1138 classes each time
<tt>F3_12
</tt> is invoked:
1141 <div class=
"doc_code">
1142 <pre>multiclass F3_12
<string OpcStr, bits
<6> Op3Val, SDNode OpNode
> {
1143 def rr : F3_1
<2, Op3Val,
1144 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
1145 !strconcat(OpcStr,
" $b, $c, $dst"),
1146 [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]
>;
1147 def ri : F3_2
<2, Op3Val,
1148 (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
1149 !strconcat(OpcStr,
" $b, $c, $dst"),
1150 [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]
>;
1156 So when the
<tt>defm
</tt> directive is used for the
<tt>XOR
</tt>
1157 and
<tt>ADD
</tt> instructions, as seen below, it creates four instruction
1158 objects:
<tt>XORrr
</tt>,
<tt>XORri
</tt>,
<tt>ADDrr
</tt>, and
<tt>ADDri
</tt>.
1161 <div class=
"doc_code">
1163 defm XOR : F3_12
<"xor",
0b000011, xor
>;
1164 defm ADD : F3_12
<"add",
0b000000, add
>;
1169 <tt>SparcInstrInfo.td
</tt> also includes definitions for condition codes that
1170 are referenced by branch instructions. The following definitions
1171 in
<tt>SparcInstrInfo.td
</tt> indicate the bit location of the SPARC condition
1172 code. For example, the
10<sup>th
</sup> bit represents the 'greater than'
1173 condition for integers, and the
22<sup>nd
</sup> bit represents the 'greater
1174 than' condition for floats.
1177 <div class=
"doc_code">
1179 def ICC_NE : ICC_VAL
< 9>; // Not Equal
1180 def ICC_E : ICC_VAL
< 1>; // Equal
1181 def ICC_G : ICC_VAL
<10>; // Greater
1183 def FCC_U : FCC_VAL
<23>; // Unordered
1184 def FCC_G : FCC_VAL
<22>; // Greater
1185 def FCC_UG : FCC_VAL
<21>; // Unordered or Greater
1191 (Note that
<tt>Sparc.h
</tt> also defines enums that correspond to the same SPARC
1192 condition codes. Care must be taken to ensure the values in
<tt>Sparc.h
</tt>
1193 correspond to the values in
<tt>SparcInstrInfo.td
</tt>. I.e.,
1194 <tt>SPCC::ICC_NE =
9</tt>,
<tt>SPCC::FCC_U =
23</tt> and so on.)
1199 <!-- ======================================================================= -->
1200 <div class=
"doc_subsection">
1201 <a name=
"operandMapping">Instruction Operand Mapping
</a>
1204 <div class=
"doc_text">
1207 The code generator backend maps instruction operands to fields in the
1208 instruction. Operands are assigned to unbound fields in the instruction in the
1209 order they are defined. Fields are bound when they are assigned a value. For
1210 example, the Sparc target defines the
<tt>XNORrr
</tt> instruction as
1211 a
<tt>F3_1
</tt> format instruction having three operands.
1214 <div class=
"doc_code">
1216 def XNORrr : F3_1
<2,
0b000111,
1217 (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
1218 "xnor $b, $c, $dst",
1219 [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]
>;
1224 The instruction templates in
<tt>SparcInstrFormats.td
</tt> show the base class
1225 for
<tt>F3_1
</tt> is
<tt>InstSP
</tt>.
1228 <div class=
"doc_code">
1230 class InstSP
<dag outs, dag ins, string asmstr, list
<dag
> pattern
> : Instruction {
1231 field bits
<32> Inst;
1232 let Namespace =
"SP";
1234 let Inst{
31-
30} = op;
1235 dag OutOperandList = outs;
1236 dag InOperandList = ins;
1237 let AsmString = asmstr;
1238 let Pattern = pattern;
1243 <p><tt>InstSP
</tt> leaves the
<tt>op
</tt> field unbound.
</p>
1245 <div class=
"doc_code">
1247 class F3
<dag outs, dag ins, string asmstr, list
<dag
> pattern
>
1248 : InstSP
<outs, ins, asmstr, pattern
> {
1252 let op{
1} =
1; // Op =
2 or
3
1253 let Inst{
29-
25} = rd;
1254 let Inst{
24-
19} = op3;
1255 let Inst{
18-
14} = rs1;
1261 <tt>F3
</tt> binds the
<tt>op
</tt> field and defines the
<tt>rd
</tt>,
1262 <tt>op3
</tt>, and
<tt>rs1
</tt> fields.
<tt>F3
</tt> format instructions will
1263 bind the operands
<tt>rd
</tt>,
<tt>op3
</tt>, and
<tt>rs1
</tt> fields.
1266 <div class=
"doc_code">
1268 class F3_1
<bits
<2> opVal, bits
<6> op3val, dag outs, dag ins,
1269 string asmstr, list
<dag
> pattern
> : F3
<outs, ins, asmstr, pattern
> {
1270 bits
<8> asi =
0; // asi not currently used
1274 let Inst{
13} =
0; // i field =
0
1275 let Inst{
12-
5} = asi; // address space identifier
1276 let Inst{
4-
0} = rs2;
1282 <tt>F3_1
</tt> binds the
<tt>op3
</tt> field and defines the
<tt>rs2
</tt>
1283 fields.
<tt>F3_1
</tt> format instructions will bind the operands to the
<tt>rd
</tt>,
1284 <tt>rs1
</tt>, and
<tt>rs2
</tt> fields. This results in the
<tt>XNORrr
</tt>
1285 instruction binding
<tt>$dst
</tt>,
<tt>$b
</tt>, and
<tt>$c
</tt> operands to
1286 the
<tt>rd
</tt>,
<tt>rs1
</tt>, and
<tt>rs2
</tt> fields respectively.
1291 <!-- ======================================================================= -->
1292 <div class=
"doc_subsection">
1293 <a name=
"implementInstr">Implement a subclass of
</a>
1294 <a href=
"http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo
</a>
1297 <div class=
"doc_text">
1300 The final step is to hand code portions of
<tt>XXXInstrInfo
</tt>, which
1301 implements the interface described in
<tt>TargetInstrInfo.h
</tt>. These
1302 functions return
<tt>0</tt> or a Boolean or they assert, unless
1303 overridden. Here's a list of functions that are overridden for the SPARC
1304 implementation in
<tt>SparcInstrInfo.cpp
</tt>:
1308 <li><tt>isMoveInstr
</tt> — Return true if the instruction is a register to
1309 register move; false, otherwise.
</li>
1311 <li><tt>isLoadFromStackSlot
</tt> — If the specified machine instruction is
1312 a direct load from a stack slot, return the register number of the
1313 destination and the
<tt>FrameIndex
</tt> of the stack slot.
</li>
1315 <li><tt>isStoreToStackSlot
</tt> — If the specified machine instruction is
1316 a direct store to a stack slot, return the register number of the
1317 destination and the
<tt>FrameIndex
</tt> of the stack slot.
</li>
1319 <li><tt>copyRegToReg
</tt> — Copy values between a pair of registers.
</li>
1321 <li><tt>storeRegToStackSlot
</tt> — Store a register value to a stack
1324 <li><tt>loadRegFromStackSlot
</tt> — Load a register value from a stack
1327 <li><tt>storeRegToAddr
</tt> — Store a register value to memory.
</li>
1329 <li><tt>loadRegFromAddr
</tt> — Load a register value from memory.
</li>
1331 <li><tt>foldMemoryOperand
</tt> — Attempt to combine instructions of any
1332 load or store instruction for the specified operand(s).
</li>
1337 <!-- ======================================================================= -->
1338 <div class=
"doc_subsection">
1339 <a name=
"branchFolding">Branch Folding and If Conversion
</a>
1341 <div class=
"doc_text">
1344 Performance can be improved by combining instructions or by eliminating
1345 instructions that are never reached. The
<tt>AnalyzeBranch
</tt> method
1346 in
<tt>XXXInstrInfo
</tt> may be implemented to examine conditional instructions
1347 and remove unnecessary instructions.
<tt>AnalyzeBranch
</tt> looks at the end of
1348 a machine basic block (MBB) for opportunities for improvement, such as branch
1349 folding and if conversion. The
<tt>BranchFolder
</tt> and
<tt>IfConverter
</tt>
1350 machine function passes (see the source files
<tt>BranchFolding.cpp
</tt> and
1351 <tt>IfConversion.cpp
</tt> in the
<tt>lib/CodeGen
</tt> directory) call
1352 <tt>AnalyzeBranch
</tt> to improve the control flow graph that represents the
1357 Several implementations of
<tt>AnalyzeBranch
</tt> (for ARM, Alpha, and X86) can
1358 be examined as models for your own
<tt>AnalyzeBranch
</tt> implementation. Since
1359 SPARC does not implement a useful
<tt>AnalyzeBranch
</tt>, the ARM target
1360 implementation is shown below.
1363 <p><tt>AnalyzeBranch
</tt> returns a Boolean value and takes four parameters:
</p>
1366 <li><tt>MachineBasicBlock
&MBB
</tt> — The incoming block to be
1369 <li><tt>MachineBasicBlock *
&TBB
</tt> — A destination block that is
1370 returned. For a conditional branch that evaluates to true,
<tt>TBB
</tt> is
1371 the destination.
</li>
1373 <li><tt>MachineBasicBlock *
&FBB
</tt> — For a conditional branch that
1374 evaluates to false,
<tt>FBB
</tt> is returned as the destination.
</li>
1376 <li><tt>std::vector
<MachineOperand
> &Cond
</tt> — List of
1377 operands to evaluate a condition for a conditional branch.
</li>
1381 In the simplest case, if a block ends without a branch, then it falls through to
1382 the successor block. No destination blocks are specified for either
<tt>TBB
</tt>
1383 or
<tt>FBB
</tt>, so both parameters return
<tt>NULL
</tt>. The start of
1384 the
<tt>AnalyzeBranch
</tt> (see code below for the ARM target) shows the
1385 function parameters and the code for the simplest case.
1388 <div class=
"doc_code">
1389 <pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock
&MBB,
1390 MachineBasicBlock *
&TBB, MachineBasicBlock *
&FBB,
1391 std::vector
<MachineOperand
> &Cond) const
1393 MachineBasicBlock::iterator I = MBB.end();
1394 if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
1400 If a block ends with a single unconditional branch instruction, then
1401 <tt>AnalyzeBranch
</tt> (shown below) should return the destination of that
1402 branch in the
<tt>TBB
</tt> parameter.
1405 <div class=
"doc_code">
1407 if (LastOpc == ARM::B || LastOpc == ARM::tB) {
1408 TBB = LastInst-
>getOperand(
0).getMBB();
1415 If a block ends with two unconditional branches, then the second branch is never
1416 reached. In that situation, as shown below, remove the last branch instruction
1417 and return the penultimate branch in the
<tt>TBB
</tt> parameter.
1420 <div class=
"doc_code">
1422 if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB)
&&
1423 (LastOpc == ARM::B || LastOpc == ARM::tB)) {
1424 TBB = SecondLastInst-
>getOperand(
0).getMBB();
1426 I-
>eraseFromParent();
1433 A block may end with a single conditional branch instruction that falls through
1434 to successor block if the condition evaluates to false. In that case,
1435 <tt>AnalyzeBranch
</tt> (shown below) should return the destination of that
1436 conditional branch in the
<tt>TBB
</tt> parameter and a list of operands in
1437 the
<tt>Cond
</tt> parameter to evaluate the condition.
1440 <div class=
"doc_code">
1442 if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
1443 // Block ends with fall-through condbranch.
1444 TBB = LastInst-
>getOperand(
0).getMBB();
1445 Cond.push_back(LastInst-
>getOperand(
1));
1446 Cond.push_back(LastInst-
>getOperand(
2));
1453 If a block ends with both a conditional branch and an ensuing unconditional
1454 branch, then
<tt>AnalyzeBranch
</tt> (shown below) should return the conditional
1455 branch destination (assuming it corresponds to a conditional evaluation of
1456 '
<tt>true
</tt>') in the
<tt>TBB
</tt> parameter and the unconditional branch
1457 destination in the
<tt>FBB
</tt> (corresponding to a conditional evaluation of
1458 '
<tt>false
</tt>'). A list of operands to evaluate the condition should be
1459 returned in the
<tt>Cond
</tt> parameter.
1462 <div class=
"doc_code">
1464 unsigned SecondLastOpc = SecondLastInst-
>getOpcode();
1466 if ((SecondLastOpc == ARM::Bcc
&& LastOpc == ARM::B) ||
1467 (SecondLastOpc == ARM::tBcc
&& LastOpc == ARM::tB)) {
1468 TBB = SecondLastInst-
>getOperand(
0).getMBB();
1469 Cond.push_back(SecondLastInst-
>getOperand(
1));
1470 Cond.push_back(SecondLastInst-
>getOperand(
2));
1471 FBB = LastInst-
>getOperand(
0).getMBB();
1478 For the last two cases (ending with a single conditional branch or ending with
1479 one conditional and one unconditional branch), the operands returned in
1480 the
<tt>Cond
</tt> parameter can be passed to methods of other instructions to
1481 create new branches or perform other operations. An implementation
1482 of
<tt>AnalyzeBranch
</tt> requires the helper methods
<tt>RemoveBranch
</tt>
1483 and
<tt>InsertBranch
</tt> to manage subsequent operations.
1487 <tt>AnalyzeBranch
</tt> should return false indicating success in most circumstances.
1488 <tt>AnalyzeBranch
</tt> should only return true when the method is stumped about what to
1489 do, for example, if a block has three terminating branches.
<tt>AnalyzeBranch
</tt> may
1490 return true if it encounters a terminator it cannot handle, such as an indirect
1496 <!-- *********************************************************************** -->
1497 <div class=
"doc_section">
1498 <a name=
"InstructionSelector">Instruction Selector
</a>
1500 <!-- *********************************************************************** -->
1502 <div class=
"doc_text">
1505 LLVM uses a
<tt>SelectionDAG
</tt> to represent LLVM IR instructions, and nodes
1506 of the
<tt>SelectionDAG
</tt> ideally represent native target
1507 instructions. During code generation, instruction selection passes are performed
1508 to convert non-native DAG instructions into native target-specific
1509 instructions. The pass described in
<tt>XXXISelDAGToDAG.cpp
</tt> is used to
1510 match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass
1511 may be defined (in
<tt>XXXBranchSelector.cpp
</tt>) to perform similar DAG-to-DAG
1512 operations for branch instructions. Later, the code in
1513 <tt>XXXISelLowering.cpp
</tt> replaces or removes operations and data types not
1514 supported natively (legalizes) in a
<tt>SelectionDAG
</tt>.
1518 TableGen generates code for instruction selection using the following target
1519 description input files:
1523 <li><tt>XXXInstrInfo.td
</tt> — Contains definitions of instructions in a
1524 target-specific instruction set, generates
<tt>XXXGenDAGISel.inc
</tt>, which
1525 is included in
<tt>XXXISelDAGToDAG.cpp
</tt>.
</li>
1527 <li><tt>XXXCallingConv.td
</tt> — Contains the calling and return value
1528 conventions for the target architecture, and it generates
1529 <tt>XXXGenCallingConv.inc
</tt>, which is included in
1530 <tt>XXXISelLowering.cpp
</tt>.
</li>
1534 The implementation of an instruction selection pass must include a header that
1535 declares the
<tt>FunctionPass
</tt> class or a subclass of
<tt>FunctionPass
</tt>. In
1536 <tt>XXXTargetMachine.cpp
</tt>, a Pass Manager (PM) should add each instruction
1537 selection pass into the queue of passes to run.
1541 The LLVM static compiler (
<tt>llc
</tt>) is an excellent tool for visualizing the
1542 contents of DAGs. To display the
<tt>SelectionDAG
</tt> before or after specific
1543 processing phases, use the command line options for
<tt>llc
</tt>, described
1544 at
<a href=
"http://llvm.org/docs/CodeGenerator.html#selectiondag_process">
1545 SelectionDAG Instruction Selection Process
</a>.
1549 To describe instruction selector behavior, you should add patterns for lowering
1550 LLVM code into a
<tt>SelectionDAG
</tt> as the last parameter of the instruction
1551 definitions in
<tt>XXXInstrInfo.td
</tt>. For example, in
1552 <tt>SparcInstrInfo.td
</tt>, this entry defines a register store operation, and
1553 the last parameter describes a pattern with the store DAG operator.
1556 <div class=
"doc_code">
1558 def STrr : F3_1
< 3,
0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
1559 "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]
>;
1564 <tt>ADDRrr
</tt> is a memory mode that is also defined in
1565 <tt>SparcInstrInfo.td
</tt>:
1568 <div class=
"doc_code">
1570 def ADDRrr : ComplexPattern
<i32,
2,
"SelectADDRrr", [], []
>;
1575 The definition of
<tt>ADDRrr
</tt> refers to
<tt>SelectADDRrr
</tt>, which is a
1576 function defined in an implementation of the Instructor Selector (such
1577 as
<tt>SparcISelDAGToDAG.cpp
</tt>).
1581 In
<tt>lib/Target/TargetSelectionDAG.td
</tt>, the DAG operator for store is
1585 <div class=
"doc_code">
1587 def store : PatFrag
<(ops node:$val, node:$ptr),
1588 (st node:$val, node:$ptr), [{
1589 if (StoreSDNode *ST = dyn_cast
<StoreSDNode
>(N))
1590 return !ST-
>isTruncatingStore()
&&
1591 ST-
>getAddressingMode() == ISD::UNINDEXED;
1598 <tt>XXXInstrInfo.td
</tt> also generates (in
<tt>XXXGenDAGISel.inc
</tt>) the
1599 <tt>SelectCode
</tt> method that is used to call the appropriate processing
1600 method for an instruction. In this example,
<tt>SelectCode
</tt>
1601 calls
<tt>Select_ISD_STORE
</tt> for the
<tt>ISD::STORE
</tt> opcode.
1604 <div class=
"doc_code">
1606 SDNode *SelectCode(SDValue N) {
1608 MVT::ValueType NVT = N.getNode()-
>getValueType(
0);
1609 switch (N.getOpcode()) {
1613 return Select_ISD_STORE(N);
1623 The pattern for
<tt>STrr
</tt> is matched, so elsewhere in
1624 <tt>XXXGenDAGISel.inc
</tt>, code for
<tt>STrr
</tt> is created for
1625 <tt>Select_ISD_STORE
</tt>. The
<tt>Emit_22
</tt> method is also generated
1626 in
<tt>XXXGenDAGISel.inc
</tt> to complete the processing of this
1630 <div class=
"doc_code">
1632 SDNode *Select_ISD_STORE(const SDValue
&N) {
1633 SDValue Chain = N.getOperand(
0);
1634 if (Predicate_store(N.getNode())) {
1635 SDValue N1 = N.getOperand(
1);
1636 SDValue N2 = N.getOperand(
2);
1640 // Pattern: (st:void IntRegs:i32:$src,
1641 // ADDRrr:i32:$addr)
<<P:Predicate_store
>>
1642 // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
1643 // Pattern complexity =
13 cost =
1 size =
0
1644 if (SelectADDRrr(N, N2, CPTmp0, CPTmp1)
&&
1645 N1.getNode()-
>getValueType(
0) == MVT::i32
&&
1646 N2.getNode()-
>getValueType(
0) == MVT::i32) {
1647 return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
1655 <!-- ======================================================================= -->
1656 <div class=
"doc_subsection">
1657 <a name=
"LegalizePhase">The SelectionDAG Legalize Phase
</a>
1660 <div class=
"doc_text">
1663 The Legalize phase converts a DAG to use types and operations that are natively
1664 supported by the target. For natively unsupported types and operations, you need
1665 to add code to the target-specific XXXTargetLowering implementation to convert
1666 unsupported types and operations to supported ones.
1670 In the constructor for the
<tt>XXXTargetLowering
</tt> class, first use the
1671 <tt>addRegisterClass
</tt> method to specify which types are supports and which
1672 register classes are associated with them. The code for the register classes are
1673 generated by TableGen from
<tt>XXXRegisterInfo.td
</tt> and placed
1674 in
<tt>XXXGenRegisterInfo.h.inc
</tt>. For example, the implementation of the
1675 constructor for the SparcTargetLowering class (in
1676 <tt>SparcISelLowering.cpp
</tt>) starts with the following code:
1679 <div class=
"doc_code">
1681 addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
1682 addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
1683 addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
1688 You should examine the node types in the
<tt>ISD
</tt> namespace
1689 (
<tt>include/llvm/CodeGen/SelectionDAGNodes.h
</tt>) and determine which
1690 operations the target natively supports. For operations that do
<b>not
</b> have
1691 native support, add a callback to the constructor for the XXXTargetLowering
1692 class, so the instruction selection process knows what to do. The TargetLowering
1693 class callback methods (declared in
<tt>llvm/Target/TargetLowering.h
</tt>) are:
1697 <li><tt>setOperationAction
</tt> — General operation.
</li>
1699 <li><tt>setLoadExtAction
</tt> — Load with extension.
</li>
1701 <li><tt>setTruncStoreAction
</tt> — Truncating store.
</li>
1703 <li><tt>setIndexedLoadAction
</tt> — Indexed load.
</li>
1705 <li><tt>setIndexedStoreAction
</tt> — Indexed store.
</li>
1707 <li><tt>setConvertAction
</tt> — Type conversion.
</li>
1709 <li><tt>setCondCodeAction
</tt> — Support for a given condition code.
</li>
1713 Note: on older releases,
<tt>setLoadXAction
</tt> is used instead
1714 of
<tt>setLoadExtAction
</tt>. Also, on older releases,
1715 <tt>setCondCodeAction
</tt> may not be supported. Examine your release
1716 to see what methods are specifically supported.
1720 These callbacks are used to determine that an operation does or does not work
1721 with a specified type (or types). And in all cases, the third parameter is
1722 a
<tt>LegalAction
</tt> type enum value:
<tt>Promote
</tt>,
<tt>Expand
</tt>,
1723 <tt>Custom
</tt>, or
<tt>Legal
</tt>.
<tt>SparcISelLowering.cpp
</tt>
1724 contains examples of all four
<tt>LegalAction
</tt> values.
1729 <!-- _______________________________________________________________________ -->
1730 <div class=
"doc_subsubsection">
1731 <a name=
"promote">Promote
</a>
1734 <div class=
"doc_text">
1737 For an operation without native support for a given type, the specified type may
1738 be promoted to a larger type that is supported. For example, SPARC does not
1739 support a sign-extending load for Boolean values (
<tt>i1
</tt> type), so
1740 in
<tt>SparcISelLowering.cpp
</tt> the third parameter below,
<tt>Promote
</tt>,
1741 changes
<tt>i1
</tt> type values to a large type before loading.
1744 <div class=
"doc_code">
1746 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
1752 <!-- _______________________________________________________________________ -->
1753 <div class=
"doc_subsubsection">
1754 <a name=
"expand">Expand
</a>
1757 <div class=
"doc_text">
1760 For a type without native support, a value may need to be broken down further,
1761 rather than promoted. For an operation without native support, a combination of
1762 other operations may be used to similar effect. In SPARC, the floating-point
1763 sine and cosine trig operations are supported by expansion to other operations,
1764 as indicated by the third parameter,
<tt>Expand
</tt>, to
1765 <tt>setOperationAction
</tt>:
1768 <div class=
"doc_code">
1770 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1771 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1777 <!-- _______________________________________________________________________ -->
1778 <div class=
"doc_subsubsection">
1779 <a name=
"custom">Custom
</a>
1782 <div class=
"doc_text">
1785 For some operations, simple type promotion or operation expansion may be
1786 insufficient. In some cases, a special intrinsic function must be implemented.
1790 For example, a constant value may require special treatment, or an operation may
1791 require spilling and restoring registers in the stack and working with register
1796 As seen in
<tt>SparcISelLowering.cpp
</tt> code below, to perform a type
1797 conversion from a floating point value to a signed integer, first the
1798 <tt>setOperationAction
</tt> should be called with
<tt>Custom
</tt> as the third
1802 <div class=
"doc_code">
1804 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1809 In the
<tt>LowerOperation
</tt> method, for each
<tt>Custom
</tt> operation, a
1810 case statement should be added to indicate what function to call. In the
1811 following code, an
<tt>FP_TO_SINT
</tt> opcode will call
1812 the
<tt>LowerFP_TO_SINT
</tt> method:
1815 <div class=
"doc_code">
1817 SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG
&DAG) {
1818 switch (Op.getOpcode()) {
1819 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1827 Finally, the
<tt>LowerFP_TO_SINT
</tt> method is implemented, using an FP
1828 register to convert the floating-point value to an integer.
1831 <div class=
"doc_code">
1833 static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG
&DAG) {
1834 assert(Op.getValueType() == MVT::i32);
1835 Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(
0));
1836 return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
1843 <!-- _______________________________________________________________________ -->
1844 <div class=
"doc_subsubsection">
1845 <a name=
"legal">Legal
</a>
1848 <div class=
"doc_text">
1851 The
<tt>Legal
</tt> LegalizeAction enum value simply indicates that an
1852 operation
<b>is
</b> natively supported.
<tt>Legal
</tt> represents the default
1853 condition, so it is rarely used. In
<tt>SparcISelLowering.cpp
</tt>, the action
1854 for
<tt>CTPOP
</tt> (an operation to count the bits set in an integer) is
1855 natively supported only for SPARC v9. The following code enables
1856 the
<tt>Expand
</tt> conversion technique for non-v9 SPARC implementations.
1859 <div class=
"doc_code">
1861 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1863 if (TM.getSubtarget
<SparcSubtarget
>().isV9())
1864 setOperationAction(ISD::CTPOP, MVT::i32, Legal);
1865 case ISD::SETULT: return SPCC::ICC_CS;
1866 case ISD::SETULE: return SPCC::ICC_LEU;
1867 case ISD::SETUGT: return SPCC::ICC_GU;
1868 case ISD::SETUGE: return SPCC::ICC_CC;
1876 <!-- ======================================================================= -->
1877 <div class=
"doc_subsection">
1878 <a name=
"callingConventions">Calling Conventions
</a>
1881 <div class=
"doc_text">
1884 To support target-specific calling conventions,
<tt>XXXGenCallingConv.td
</tt>
1885 uses interfaces (such as CCIfType and CCAssignToReg) that are defined in
1886 <tt>lib/Target/TargetCallingConv.td
</tt>. TableGen can take the target
1887 descriptor file
<tt>XXXGenCallingConv.td
</tt> and generate the header
1888 file
<tt>XXXGenCallingConv.inc
</tt>, which is typically included
1889 in
<tt>XXXISelLowering.cpp
</tt>. You can use the interfaces in
1890 <tt>TargetCallingConv.td
</tt> to specify:
1894 <li>The order of parameter allocation.
</li>
1896 <li>Where parameters and return values are placed (that is, on the stack or in
1899 <li>Which registers may be used.
</li>
1901 <li>Whether the caller or callee unwinds the stack.
</li>
1905 The following example demonstrates the use of the
<tt>CCIfType
</tt> and
1906 <tt>CCAssignToReg
</tt> interfaces. If the
<tt>CCIfType
</tt> predicate is true
1907 (that is, if the current argument is of type
<tt>f32
</tt> or
<tt>f64
</tt>), then
1908 the action is performed. In this case, the
<tt>CCAssignToReg
</tt> action assigns
1909 the argument value to the first available register: either
<tt>R0
</tt>
1913 <div class=
"doc_code">
1915 CCIfType
<[f32,f64], CCAssignToReg
<[R0, R1]
>>
1920 <tt>SparcCallingConv.td
</tt> contains definitions for a target-specific
1921 return-value calling convention (RetCC_Sparc32) and a basic
32-bit C calling
1922 convention (
<tt>CC_Sparc32
</tt>). The definition of
<tt>RetCC_Sparc32
</tt>
1923 (shown below) indicates which registers are used for specified scalar return
1924 types. A single-precision float is returned to register
<tt>F0
</tt>, and a
1925 double-precision float goes to register
<tt>D0
</tt>. A
32-bit integer is
1926 returned in register
<tt>I0
</tt> or
<tt>I1
</tt>.
1929 <div class=
"doc_code">
1931 def RetCC_Sparc32 : CallingConv
<[
1932 CCIfType
<[i32], CCAssignToReg
<[I0, I1]
>>,
1933 CCIfType
<[f32], CCAssignToReg
<[F0]
>>,
1934 CCIfType
<[f64], CCAssignToReg
<[D0]
>>
1940 The definition of
<tt>CC_Sparc32
</tt> in
<tt>SparcCallingConv.td
</tt> introduces
1941 <tt>CCAssignToStack
</tt>, which assigns the value to a stack slot with the
1942 specified size and alignment. In the example below, the first parameter,
4,
1943 indicates the size of the slot, and the second parameter, also
4, indicates the
1944 stack alignment along
4-byte units. (Special cases: if size is zero, then the
1945 ABI size is used; if alignment is zero, then the ABI alignment is used.)
1948 <div class=
"doc_code">
1950 def CC_Sparc32 : CallingConv
<[
1951 // All arguments get passed in integer registers if there is space.
1952 CCIfType
<[i32, f32, f64], CCAssignToReg
<[I0, I1, I2, I3, I4, I5]
>>,
1953 CCAssignToStack
<4,
4>
1959 <tt>CCDelegateTo
</tt> is another commonly used interface, which tries to find a
1960 specified sub-calling convention, and, if a match is found, it is invoked. In
1961 the following example (in
<tt>X86CallingConv.td
</tt>), the definition of
1962 <tt>RetCC_X86_32_C
</tt> ends with
<tt>CCDelegateTo
</tt>. After the current value
1963 is assigned to the register
<tt>ST0
</tt> or
<tt>ST1
</tt>,
1964 the
<tt>RetCC_X86Common
</tt> is invoked.
1967 <div class=
"doc_code">
1969 def RetCC_X86_32_C : CallingConv
<[
1970 CCIfType
<[f32], CCAssignToReg
<[ST0, ST1]
>>,
1971 CCIfType
<[f64], CCAssignToReg
<[ST0, ST1]
>>,
1972 CCDelegateTo
<RetCC_X86Common
>
1978 <tt>CCIfCC
</tt> is an interface that attempts to match the given name to the
1979 current calling convention. If the name identifies the current calling
1980 convention, then a specified action is invoked. In the following example (in
1981 <tt>X86CallingConv.td
</tt>), if the
<tt>Fast
</tt> calling convention is in use,
1982 then
<tt>RetCC_X86_32_Fast
</tt> is invoked. If the
<tt>SSECall
</tt> calling
1983 convention is in use, then
<tt>RetCC_X86_32_SSE
</tt> is invoked.
1986 <div class=
"doc_code">
1988 def RetCC_X86_32 : CallingConv
<[
1989 CCIfCC
<"CallingConv::Fast", CCDelegateTo
<RetCC_X86_32_Fast
>>,
1990 CCIfCC
<"CallingConv::X86_SSECall", CCDelegateTo
<RetCC_X86_32_SSE
>>,
1991 CCDelegateTo
<RetCC_X86_32_C
>
1996 <p>Other calling convention interfaces include:
</p>
1999 <li><tt>CCIf
<predicate, action
></tt> — If the predicate matches,
2000 apply the action.
</li>
2002 <li><tt>CCIfInReg
<action
></tt> — If the argument is marked with the
2003 '
<tt>inreg
</tt>' attribute, then apply the action.
</li>
2005 <li><tt>CCIfNest
<action
></tt> — Inf the argument is marked with the
2006 '
<tt>nest
</tt>' attribute, then apply the action.
</li>
2008 <li><tt>CCIfNotVarArg
<action
></tt> — If the current function does
2009 not take a variable number of arguments, apply the action.
</li>
2011 <li><tt>CCAssignToRegWithShadow
<registerList, shadowList
></tt> —
2012 similar to
<tt>CCAssignToReg
</tt>, but with a shadow list of registers.
</li>
2014 <li><tt>CCPassByVal
<size, align
></tt> — Assign value to a stack
2015 slot with the minimum specified size and alignment.
</li>
2017 <li><tt>CCPromoteToType
<type
></tt> — Promote the current value to
2018 the specified type.
</li>
2020 <li><tt>CallingConv
<[actions]
></tt> — Define each calling
2021 convention that is supported.
</li>
2026 <!-- *********************************************************************** -->
2027 <div class=
"doc_section">
2028 <a name=
"assemblyPrinter">Assembly Printer
</a>
2030 <!-- *********************************************************************** -->
2032 <div class=
"doc_text">
2035 During the code emission stage, the code generator may utilize an LLVM pass to
2036 produce assembly output. To do this, you want to implement the code for a
2037 printer that converts LLVM IR to a GAS-format assembly language for your target
2038 machine, using the following steps:
2042 <li>Define all the assembly strings for your target, adding them to the
2043 instructions defined in the
<tt>XXXInstrInfo.td
</tt> file.
2044 (See
<a href=
"#InstructionSet">Instruction Set
</a>.) TableGen will produce
2045 an output file (
<tt>XXXGenAsmWriter.inc
</tt>) with an implementation of
2046 the
<tt>printInstruction
</tt> method for the XXXAsmPrinter class.
</li>
2048 <li>Write
<tt>XXXTargetAsmInfo.h
</tt>, which contains the bare-bones declaration
2049 of the
<tt>XXXTargetAsmInfo
</tt> class (a subclass
2050 of
<tt>TargetAsmInfo
</tt>).
</li>
2052 <li>Write
<tt>XXXTargetAsmInfo.cpp
</tt>, which contains target-specific values
2053 for
<tt>TargetAsmInfo
</tt> properties and sometimes new implementations for
2056 <li>Write
<tt>XXXAsmPrinter.cpp
</tt>, which implements the
<tt>AsmPrinter
</tt>
2057 class that performs the LLVM-to-assembly conversion.
</li>
2061 The code in
<tt>XXXTargetAsmInfo.h
</tt> is usually a trivial declaration of the
2062 <tt>XXXTargetAsmInfo
</tt> class for use in
<tt>XXXTargetAsmInfo.cpp
</tt>.
2063 Similarly,
<tt>XXXTargetAsmInfo.cpp
</tt> usually has a few declarations of
2064 <tt>XXXTargetAsmInfo
</tt> replacement values that override the default values
2065 in
<tt>TargetAsmInfo.cpp
</tt>. For example in
<tt>SparcTargetAsmInfo.cpp
</tt>:
2068 <div class=
"doc_code">
2070 SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine
&TM) {
2071 Data16bitsDirective =
"\t.half\t";
2072 Data32bitsDirective =
"\t.word\t";
2073 Data64bitsDirective =
0; // .xword is only supported by V9.
2074 ZeroDirective =
"\t.skip\t";
2075 CommentString =
"!";
2076 ConstantPoolSection =
"\t.section \".rodata\
",#alloc\n";
2082 The X86 assembly printer implementation (
<tt>X86TargetAsmInfo
</tt>) is an
2083 example where the target specific
<tt>TargetAsmInfo
</tt> class uses an
2084 overridden methods:
<tt>ExpandInlineAsm
</tt>.
2088 A target-specific implementation of AsmPrinter is written in
2089 <tt>XXXAsmPrinter.cpp
</tt>, which implements the
<tt>AsmPrinter
</tt> class that
2090 converts the LLVM to printable assembly. The implementation must include the
2091 following headers that have declarations for the
<tt>AsmPrinter
</tt> and
2092 <tt>MachineFunctionPass
</tt> classes. The
<tt>MachineFunctionPass
</tt> is a
2093 subclass of
<tt>FunctionPass
</tt>.
2096 <div class=
"doc_code">
2098 #include
"llvm/CodeGen/AsmPrinter.h"
2099 #include
"llvm/CodeGen/MachineFunctionPass.h"
2104 As a
<tt>FunctionPass
</tt>,
<tt>AsmPrinter
</tt> first
2105 calls
<tt>doInitialization
</tt> to set up the
<tt>AsmPrinter
</tt>. In
2106 <tt>SparcAsmPrinter
</tt>, a
<tt>Mangler
</tt> object is instantiated to process
2111 In
<tt>XXXAsmPrinter.cpp
</tt>, the
<tt>runOnMachineFunction
</tt> method
2112 (declared in
<tt>MachineFunctionPass
</tt>) must be implemented
2113 for
<tt>XXXAsmPrinter
</tt>. In
<tt>MachineFunctionPass
</tt>,
2114 the
<tt>runOnFunction
</tt> method invokes
<tt>runOnMachineFunction
</tt>.
2115 Target-specific implementations of
<tt>runOnMachineFunction
</tt> differ, but
2116 generally do the following to process each machine function:
2120 <li>Call
<tt>SetupMachineFunction
</tt> to perform initialization.
</li>
2122 <li>Call
<tt>EmitConstantPool
</tt> to print out (to the output stream) constants
2123 which have been spilled to memory.
</li>
2125 <li>Call
<tt>EmitJumpTableInfo
</tt> to print out jump tables used by the current
2128 <li>Print out the label for the current function.
</li>
2130 <li>Print out the code for the function, including basic block labels and the
2131 assembly for the instruction (using
<tt>printInstruction
</tt>)
</li>
2135 The
<tt>XXXAsmPrinter
</tt> implementation must also include the code generated
2136 by TableGen that is output in the
<tt>XXXGenAsmWriter.inc
</tt> file. The code
2137 in
<tt>XXXGenAsmWriter.inc
</tt> contains an implementation of the
2138 <tt>printInstruction
</tt> method that may call these methods:
2142 <li><tt>printOperand
</tt></li>
2144 <li><tt>printMemOperand
</tt></li>
2146 <li><tt>printCCOperand (for conditional statements)
</tt></li>
2148 <li><tt>printDataDirective
</tt></li>
2150 <li><tt>printDeclare
</tt></li>
2152 <li><tt>printImplicitDef
</tt></li>
2154 <li><tt>printInlineAsm
</tt></li>
2156 <li><tt>printLabel
</tt></li>
2158 <li><tt>printPICJumpTableEntry
</tt></li>
2160 <li><tt>printPICJumpTableSetLabel
</tt></li>
2164 The implementations of
<tt>printDeclare
</tt>,
<tt>printImplicitDef
</tt>,
2165 <tt>printInlineAsm
</tt>, and
<tt>printLabel
</tt> in
<tt>AsmPrinter.cpp
</tt> are
2166 generally adequate for printing assembly and do not need to be
2167 overridden. (
<tt>printBasicBlockLabel
</tt> is another method that is implemented
2168 in
<tt>AsmPrinter.cpp
</tt> that may be directly used in an implementation of
2169 <tt>XXXAsmPrinter
</tt>.)
2173 The
<tt>printOperand
</tt> method is implemented with a long switch/case
2174 statement for the type of operand: register, immediate, basic block, external
2175 symbol, global address, constant pool index, or jump table index. For an
2176 instruction with a memory address operand, the
<tt>printMemOperand
</tt> method
2177 should be implemented to generate the proper output. Similarly,
2178 <tt>printCCOperand
</tt> should be used to print a conditional operand.
2181 <p><tt>doFinalization
</tt> should be overridden in
<tt>XXXAsmPrinter
</tt>, and
2182 it should be called to shut down the assembly printer. During
2183 <tt>doFinalization
</tt>, global variables and constants are printed to
2189 <!-- *********************************************************************** -->
2190 <div class=
"doc_section">
2191 <a name=
"subtargetSupport">Subtarget Support
</a>
2193 <!-- *********************************************************************** -->
2195 <div class=
"doc_text">
2198 Subtarget support is used to inform the code generation process of instruction
2199 set variations for a given chip set. For example, the LLVM SPARC implementation
2200 provided covers three major versions of the SPARC microprocessor architecture:
2201 Version
8 (V8, which is a
32-bit architecture), Version
9 (V9, a
64-bit
2202 architecture), and the UltraSPARC architecture. V8 has
16 double-precision
2203 floating-point registers that are also usable as either
32 single-precision or
8
2204 quad-precision registers. V8 is also purely big-endian. V9 has
32
2205 double-precision floating-point registers that are also usable as
16
2206 quad-precision registers, but cannot be used as single-precision registers. The
2207 UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
2212 If subtarget support is needed, you should implement a target-specific
2213 XXXSubtarget class for your architecture. This class should process the
2214 command-line options
<tt>-mcpu=
</tt> and
<tt>-mattr=
</tt>.
2218 TableGen uses definitions in the
<tt>Target.td
</tt> and
<tt>Sparc.td
</tt> files
2219 to generate code in
<tt>SparcGenSubtarget.inc
</tt>. In
<tt>Target.td
</tt>, shown
2220 below, the
<tt>SubtargetFeature
</tt> interface is defined. The first
4 string
2221 parameters of the
<tt>SubtargetFeature
</tt> interface are a feature name, an
2222 attribute set by the feature, the value of the attribute, and a description of
2223 the feature. (The fifth parameter is a list of features whose presence is
2224 implied, and its default value is an empty array.)
2227 <div class=
"doc_code">
2229 class SubtargetFeature
<string n, string a, string v, string d,
2230 list
<SubtargetFeature
> i = []
> {
2232 string Attribute = a;
2235 list
<SubtargetFeature
> Implies = i;
2241 In the
<tt>Sparc.td
</tt> file, the SubtargetFeature is used to define the
2245 <div class=
"doc_code">
2247 def FeatureV9 : SubtargetFeature
<"v9",
"IsV9",
"true",
2248 "Enable SPARC-V9 instructions">;
2249 def FeatureV8Deprecated : SubtargetFeature
<"deprecated-v8",
2250 "V8DeprecatedInsts",
"true",
2251 "Enable deprecated V8 instructions in V9 mode">;
2252 def FeatureVIS : SubtargetFeature
<"vis",
"IsVIS",
"true",
2253 "Enable UltraSPARC Visual Instruction Set extensions">;
2258 Elsewhere in
<tt>Sparc.td
</tt>, the Proc class is defined and then is used to
2259 define particular SPARC processor subtypes that may have the previously
2263 <div class=
"doc_code">
2265 class Proc
<string Name, list
<SubtargetFeature
> Features
>
2266 : Processor
<Name, NoItineraries, Features
>;
2268 def : Proc
<"generic", []
>;
2269 def : Proc
<"v8", []
>;
2270 def : Proc
<"supersparc", []
>;
2271 def : Proc
<"sparclite", []
>;
2272 def : Proc
<"f934", []
>;
2273 def : Proc
<"hypersparc", []
>;
2274 def : Proc
<"sparclite86x", []
>;
2275 def : Proc
<"sparclet", []
>;
2276 def : Proc
<"tsc701", []
>;
2277 def : Proc
<"v9", [FeatureV9]
>;
2278 def : Proc
<"ultrasparc", [FeatureV9, FeatureV8Deprecated]
>;
2279 def : Proc
<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]
>;
2280 def : Proc
<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]
>;
2285 From
<tt>Target.td
</tt> and
<tt>Sparc.td
</tt> files, the resulting
2286 SparcGenSubtarget.inc specifies enum values to identify the features, arrays of
2287 constants to represent the CPU features and CPU subtypes, and the
2288 ParseSubtargetFeatures method that parses the features string that sets
2289 specified subtarget options. The generated
<tt>SparcGenSubtarget.inc
</tt> file
2290 should be included in the
<tt>SparcSubtarget.cpp
</tt>. The target-specific
2291 implementation of the XXXSubtarget method should follow this pseudocode:
2294 <div class=
"doc_code">
2296 XXXSubtarget::XXXSubtarget(const Module
&M, const std::string
&FS) {
2297 // Set the default features
2298 // Determine default and user specified characteristics of the CPU
2299 // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
2300 // Perform any additional operations
2307 <!-- *********************************************************************** -->
2308 <div class=
"doc_section">
2309 <a name=
"jitSupport">JIT Support
</a>
2311 <!-- *********************************************************************** -->
2313 <div class=
"doc_text">
2316 The implementation of a target machine optionally includes a Just-In-Time (JIT)
2317 code generator that emits machine code and auxiliary structures as binary output
2318 that can be written directly to memory. To do this, implement JIT code
2319 generation by performing the following steps:
2323 <li>Write an
<tt>XXXCodeEmitter.cpp
</tt> file that contains a machine function
2324 pass that transforms target-machine instructions into relocatable machine
2327 <li>Write an
<tt>XXXJITInfo.cpp
</tt> file that implements the JIT interfaces for
2328 target-specific code-generation activities, such as emitting machine code
2331 <li>Modify
<tt>XXXTargetMachine
</tt> so that it provides a
2332 <tt>TargetJITInfo
</tt> object through its
<tt>getJITInfo
</tt> method.
</li>
2336 There are several different approaches to writing the JIT support code. For
2337 instance, TableGen and target descriptor files may be used for creating a JIT
2338 code generator, but are not mandatory. For the Alpha and PowerPC target
2339 machines, TableGen is used to generate
<tt>XXXGenCodeEmitter.inc
</tt>, which
2340 contains the binary coding of machine instructions and the
2341 <tt>getBinaryCodeForInstr
</tt> method to access those codes. Other JIT
2342 implementations do not.
2346 Both
<tt>XXXJITInfo.cpp
</tt> and
<tt>XXXCodeEmitter.cpp
</tt> must include the
2347 <tt>llvm/CodeGen/MachineCodeEmitter.h
</tt> header file that defines the
2348 <tt>MachineCodeEmitter
</tt> class containing code for several callback functions
2349 that write data (in bytes, words, strings, etc.) to the output stream.
2354 <!-- ======================================================================= -->
2355 <div class=
"doc_subsection">
2356 <a name=
"mce">Machine Code Emitter
</a>
2359 <div class=
"doc_text">
2362 In
<tt>XXXCodeEmitter.cpp
</tt>, a target-specific of the
<tt>Emitter
</tt> class
2363 is implemented as a function pass (subclass
2364 of
<tt>MachineFunctionPass
</tt>). The target-specific implementation
2365 of
<tt>runOnMachineFunction
</tt> (invoked by
2366 <tt>runOnFunction
</tt> in
<tt>MachineFunctionPass
</tt>) iterates through the
2367 <tt>MachineBasicBlock
</tt> calls
<tt>emitInstruction
</tt> to process each
2368 instruction and emit binary code.
<tt>emitInstruction
</tt> is largely
2369 implemented with case statements on the instruction types defined in
2370 <tt>XXXInstrInfo.h
</tt>. For example, in
<tt>X86CodeEmitter.cpp
</tt>,
2371 the
<tt>emitInstruction
</tt> method is built around the following switch/case
2375 <div class=
"doc_code">
2377 switch (Desc-
>TSFlags
& X86::FormMask) {
2378 case X86II::Pseudo: // for not yet implemented instructions
2379 ... // or pseudo-instructions
2381 case X86II::RawFrm: // for instructions with a fixed opcode value
2384 case X86II::AddRegFrm: // for instructions that have one register operand
2385 ... // added to their opcode
2387 case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
2388 ... // to specify a destination (register)
2390 case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
2391 ... // to specify a destination (memory)
2393 case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
2394 ... // to specify a source (register)
2396 case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
2397 ... // to specify a source (memory)
2399 case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on
2400 case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and
2401 case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field
2402 case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data
2405 case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on
2406 case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and
2407 case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field
2408 case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data
2411 case X86II::MRMInitReg: // for instructions whose source and
2412 ... // destination are the same register
2419 The implementations of these case statements often first emit the opcode and
2420 then get the operand(s). Then depending upon the operand, helper methods may be
2421 called to process the operand(s). For example, in
<tt>X86CodeEmitter.cpp
</tt>,
2422 for the
<tt>X86II::AddRegFrm
</tt> case, the first data emitted
2423 (by
<tt>emitByte
</tt>) is the opcode added to the register operand. Then an
2424 object representing the machine operand,
<tt>MO1
</tt>, is extracted. The helper
2425 methods such as
<tt>isImmediate
</tt>,
2426 <tt>isGlobalAddress
</tt>,
<tt>isExternalSymbol
</tt>,
<tt>isConstantPoolIndex
</tt>, and
2427 <tt>isJumpTableIndex
</tt> determine the operand
2428 type. (
<tt>X86CodeEmitter.cpp
</tt> also has private methods such
2429 as
<tt>emitConstant
</tt>,
<tt>emitGlobalAddress
</tt>,
2430 <tt>emitExternalSymbolAddress
</tt>,
<tt>emitConstPoolAddress
</tt>,
2431 and
<tt>emitJumpTableAddress
</tt> that emit the data into the output stream.)
2434 <div class=
"doc_code">
2436 case X86II::AddRegFrm:
2437 MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
2439 if (CurOp != NumOps) {
2440 const MachineOperand
&MO1 = MI.getOperand(CurOp++);
2441 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2442 if (MO1.isImmediate())
2443 emitConstant(MO1.getImm(), Size);
2445 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
2446 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
2447 if (Opcode == X86::MOV64ri)
2448 rt = X86::reloc_absolute_dword; // FIXME: add X86II flag?
2449 if (MO1.isGlobalAddress()) {
2450 bool NeedStub = isa
<Function
>(MO1.getGlobal());
2451 bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
2452 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(),
0,
2454 } else if (MO1.isExternalSymbol())
2455 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
2456 else if (MO1.isConstantPoolIndex())
2457 emitConstPoolAddress(MO1.getIndex(), rt);
2458 else if (MO1.isJumpTableIndex())
2459 emitJumpTableAddress(MO1.getIndex(), rt);
2467 In the previous example,
<tt>XXXCodeEmitter.cpp
</tt> uses the
2468 variable
<tt>rt
</tt>, which is a RelocationType enum that may be used to
2469 relocate addresses (for example, a global address with a PIC base offset). The
2470 <tt>RelocationType
</tt> enum for that target is defined in the short
2471 target-specific
<tt>XXXRelocations.h
</tt> file. The
<tt>RelocationType
</tt> is used by
2472 the
<tt>relocate
</tt> method defined in
<tt>XXXJITInfo.cpp
</tt> to rewrite
2473 addresses for referenced global symbols.
2477 For example,
<tt>X86Relocations.h
</tt> specifies the following relocation types
2478 for the X86 addresses. In all four cases, the relocated value is added to the
2479 value already in memory. For
<tt>reloc_pcrel_word
</tt>
2480 and
<tt>reloc_picrel_word
</tt>, there is an additional initial adjustment.
2483 <div class=
"doc_code">
2485 enum RelocationType {
2486 reloc_pcrel_word =
0, // add reloc value after adjusting for the PC loc
2487 reloc_picrel_word =
1, // add reloc value after adjusting for the PIC base
2488 reloc_absolute_word =
2, // absolute relocation; no additional adjustment
2489 reloc_absolute_dword =
3 // absolute relocation; no additional adjustment
2496 <!-- ======================================================================= -->
2497 <div class=
"doc_subsection">
2498 <a name=
"targetJITInfo">Target JIT Info
</a>
2501 <div class=
"doc_text">
2504 <tt>XXXJITInfo.cpp
</tt> implements the JIT interfaces for target-specific
2505 code-generation activities, such as emitting machine code and stubs. At minimum,
2506 a target-specific version of
<tt>XXXJITInfo
</tt> implements the following:
2510 <li><tt>getLazyResolverFunction
</tt> — Initializes the JIT, gives the
2511 target a function that is used for compilation.
</li>
2513 <li><tt>emitFunctionStub
</tt> — Returns a native function with a specified
2514 address for a callback function.
</li>
2516 <li><tt>relocate
</tt> — Changes the addresses of referenced globals, based
2517 on relocation types.
</li>
2519 <li>Callback function that are wrappers to a function stub that is used when the
2520 real target is not initially known.
</li>
2524 <tt>getLazyResolverFunction
</tt> is generally trivial to implement. It makes the
2525 incoming parameter as the global
<tt>JITCompilerFunction
</tt> and returns the
2526 callback function that will be used a function wrapper. For the Alpha target
2527 (in
<tt>AlphaJITInfo.cpp
</tt>), the
<tt>getLazyResolverFunction
</tt>
2528 implementation is simply:
2531 <div class=
"doc_code">
2533 TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
2535 JITCompilerFunction = F;
2536 return AlphaCompilationCallback;
2542 For the X86 target, the
<tt>getLazyResolverFunction
</tt> implementation is a
2543 little more complication, because it returns a different callback function for
2544 processors with SSE instructions and XMM registers.
2548 The callback function initially saves and later restores the callee register
2549 values, incoming arguments, and frame and return address. The callback function
2550 needs low-level access to the registers or stack, so it is typically implemented
2556 <!-- *********************************************************************** -->
2560 <a href=
"http://jigsaw.w3.org/css-validator/check/referer"><img
2561 src=
"http://jigsaw.w3.org/css-validator/images/vcss-blue" alt=
"Valid CSS"></a>
2562 <a href=
"http://validator.w3.org/check/referer"><img
2563 src=
"http://www.w3.org/Icons/valid-html401-blue" alt=
"Valid HTML 4.01"></a>
2565 <a href=
"http://www.woo.com">Mason Woo
</a> and
<a href=
"http://misha.brukman.net">Misha Brukman
</a><br>
2566 <a href=
"http://llvm.org">The LLVM Compiler Infrastructure
</a>
2568 Last modified: $Date$