Disable stack coloring with register for now. It's not able to set kill markers.
[llvm/avr.git] / lib / Target / CBackend / CBackend.cpp
blobf7923200a9791211e37826cafb6008a8c1c567aa
1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This library converts LLVM code to C code, compilable by GCC and other C
11 // compilers.
13 //===----------------------------------------------------------------------===//
15 #include "CTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Analysis/ConstantsScanner.h"
30 #include "llvm/Analysis/FindUsedTypes.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/IntrinsicLowering.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Target/TargetAsmInfo.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetRegistry.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/FormattedStream.h"
42 #include "llvm/Support/GetElementPtrTypeIterator.h"
43 #include "llvm/Support/InstVisitor.h"
44 #include "llvm/Support/Mangler.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/System/Host.h"
47 #include "llvm/Config/config.h"
48 #include <algorithm>
49 #include <sstream>
50 using namespace llvm;
52 extern "C" void LLVMInitializeCBackendTarget() {
53 // Register the target.
54 RegisterTargetMachine<CTargetMachine> X(TheCBackendTarget);
57 namespace {
58 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
59 /// any unnamed structure types that are used by the program, and merges
60 /// external functions with the same name.
61 ///
62 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
63 public:
64 static char ID;
65 CBackendNameAllUsedStructsAndMergeFunctions()
66 : ModulePass(&ID) {}
67 void getAnalysisUsage(AnalysisUsage &AU) const {
68 AU.addRequired<FindUsedTypes>();
71 virtual const char *getPassName() const {
72 return "C backend type canonicalizer";
75 virtual bool runOnModule(Module &M);
78 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
80 /// CWriter - This class is the main chunk of code that converts an LLVM
81 /// module to a C translation unit.
82 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
83 formatted_raw_ostream &Out;
84 IntrinsicLowering *IL;
85 Mangler *Mang;
86 LoopInfo *LI;
87 const Module *TheModule;
88 const TargetAsmInfo* TAsm;
89 const TargetData* TD;
90 std::map<const Type *, std::string> TypeNames;
91 std::map<const ConstantFP *, unsigned> FPConstantMap;
92 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
93 std::set<const Argument*> ByValParams;
94 unsigned FPCounter;
95 unsigned OpaqueCounter;
96 DenseMap<const Value*, unsigned> AnonValueNumbers;
97 unsigned NextAnonValueNumber;
99 public:
100 static char ID;
101 explicit CWriter(formatted_raw_ostream &o)
102 : FunctionPass(&ID), Out(o), IL(0), Mang(0), LI(0),
103 TheModule(0), TAsm(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) {
104 FPCounter = 0;
107 virtual const char *getPassName() const { return "C backend"; }
109 void getAnalysisUsage(AnalysisUsage &AU) const {
110 AU.addRequired<LoopInfo>();
111 AU.setPreservesAll();
114 virtual bool doInitialization(Module &M);
116 bool runOnFunction(Function &F) {
117 // Do not codegen any 'available_externally' functions at all, they have
118 // definitions outside the translation unit.
119 if (F.hasAvailableExternallyLinkage())
120 return false;
122 LI = &getAnalysis<LoopInfo>();
124 // Get rid of intrinsics we can't handle.
125 lowerIntrinsics(F);
127 // Output all floating point constants that cannot be printed accurately.
128 printFloatingPointConstants(F);
130 printFunction(F);
131 return false;
134 virtual bool doFinalization(Module &M) {
135 // Free memory...
136 delete IL;
137 delete TD;
138 delete Mang;
139 FPConstantMap.clear();
140 TypeNames.clear();
141 ByValParams.clear();
142 intrinsicPrototypesAlreadyGenerated.clear();
143 return false;
146 raw_ostream &printType(formatted_raw_ostream &Out,
147 const Type *Ty,
148 bool isSigned = false,
149 const std::string &VariableName = "",
150 bool IgnoreName = false,
151 const AttrListPtr &PAL = AttrListPtr());
152 std::ostream &printType(std::ostream &Out, const Type *Ty,
153 bool isSigned = false,
154 const std::string &VariableName = "",
155 bool IgnoreName = false,
156 const AttrListPtr &PAL = AttrListPtr());
157 raw_ostream &printSimpleType(formatted_raw_ostream &Out,
158 const Type *Ty,
159 bool isSigned,
160 const std::string &NameSoFar = "");
161 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
162 bool isSigned,
163 const std::string &NameSoFar = "");
165 void printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
166 const AttrListPtr &PAL,
167 const PointerType *Ty);
169 /// writeOperandDeref - Print the result of dereferencing the specified
170 /// operand with '*'. This is equivalent to printing '*' then using
171 /// writeOperand, but avoids excess syntax in some cases.
172 void writeOperandDeref(Value *Operand) {
173 if (isAddressExposed(Operand)) {
174 // Already something with an address exposed.
175 writeOperandInternal(Operand);
176 } else {
177 Out << "*(";
178 writeOperand(Operand);
179 Out << ")";
183 void writeOperand(Value *Operand, bool Static = false);
184 void writeInstComputationInline(Instruction &I);
185 void writeOperandInternal(Value *Operand, bool Static = false);
186 void writeOperandWithCast(Value* Operand, unsigned Opcode);
187 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
188 bool writeInstructionCast(const Instruction &I);
190 void writeMemoryAccess(Value *Operand, const Type *OperandType,
191 bool IsVolatile, unsigned Alignment);
193 private :
194 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
196 void lowerIntrinsics(Function &F);
198 void printModule(Module *M);
199 void printModuleTypes(const TypeSymbolTable &ST);
200 void printContainedStructs(const Type *Ty, std::set<const Type *> &);
201 void printFloatingPointConstants(Function &F);
202 void printFloatingPointConstants(const Constant *C);
203 void printFunctionSignature(const Function *F, bool Prototype);
205 void printFunction(Function &);
206 void printBasicBlock(BasicBlock *BB);
207 void printLoop(Loop *L);
209 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
210 void printConstant(Constant *CPV, bool Static);
211 void printConstantWithCast(Constant *CPV, unsigned Opcode);
212 bool printConstExprCast(const ConstantExpr *CE, bool Static);
213 void printConstantArray(ConstantArray *CPA, bool Static);
214 void printConstantVector(ConstantVector *CV, bool Static);
216 /// isAddressExposed - Return true if the specified value's name needs to
217 /// have its address taken in order to get a C value of the correct type.
218 /// This happens for global variables, byval parameters, and direct allocas.
219 bool isAddressExposed(const Value *V) const {
220 if (const Argument *A = dyn_cast<Argument>(V))
221 return ByValParams.count(A);
222 return isa<GlobalVariable>(V) || isDirectAlloca(V);
225 // isInlinableInst - Attempt to inline instructions into their uses to build
226 // trees as much as possible. To do this, we have to consistently decide
227 // what is acceptable to inline, so that variable declarations don't get
228 // printed and an extra copy of the expr is not emitted.
230 static bool isInlinableInst(const Instruction &I) {
231 // Always inline cmp instructions, even if they are shared by multiple
232 // expressions. GCC generates horrible code if we don't.
233 if (isa<CmpInst>(I))
234 return true;
236 // Must be an expression, must be used exactly once. If it is dead, we
237 // emit it inline where it would go.
238 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
239 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
240 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I) ||
241 isa<InsertValueInst>(I))
242 // Don't inline a load across a store or other bad things!
243 return false;
245 // Must not be used in inline asm, extractelement, or shufflevector.
246 if (I.hasOneUse()) {
247 const Instruction &User = cast<Instruction>(*I.use_back());
248 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
249 isa<ShuffleVectorInst>(User))
250 return false;
253 // Only inline instruction it if it's use is in the same BB as the inst.
254 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
257 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
258 // variables which are accessed with the & operator. This causes GCC to
259 // generate significantly better code than to emit alloca calls directly.
261 static const AllocaInst *isDirectAlloca(const Value *V) {
262 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
263 if (!AI) return false;
264 if (AI->isArrayAllocation())
265 return 0; // FIXME: we can also inline fixed size array allocas!
266 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
267 return 0;
268 return AI;
271 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
272 static bool isInlineAsm(const Instruction& I) {
273 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
274 return true;
275 return false;
278 // Instruction visitation functions
279 friend class InstVisitor<CWriter>;
281 void visitReturnInst(ReturnInst &I);
282 void visitBranchInst(BranchInst &I);
283 void visitSwitchInst(SwitchInst &I);
284 void visitInvokeInst(InvokeInst &I) {
285 llvm_unreachable("Lowerinvoke pass didn't work!");
288 void visitUnwindInst(UnwindInst &I) {
289 llvm_unreachable("Lowerinvoke pass didn't work!");
291 void visitUnreachableInst(UnreachableInst &I);
293 void visitPHINode(PHINode &I);
294 void visitBinaryOperator(Instruction &I);
295 void visitICmpInst(ICmpInst &I);
296 void visitFCmpInst(FCmpInst &I);
298 void visitCastInst (CastInst &I);
299 void visitSelectInst(SelectInst &I);
300 void visitCallInst (CallInst &I);
301 void visitInlineAsm(CallInst &I);
302 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
304 void visitMallocInst(MallocInst &I);
305 void visitAllocaInst(AllocaInst &I);
306 void visitFreeInst (FreeInst &I);
307 void visitLoadInst (LoadInst &I);
308 void visitStoreInst (StoreInst &I);
309 void visitGetElementPtrInst(GetElementPtrInst &I);
310 void visitVAArgInst (VAArgInst &I);
312 void visitInsertElementInst(InsertElementInst &I);
313 void visitExtractElementInst(ExtractElementInst &I);
314 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
316 void visitInsertValueInst(InsertValueInst &I);
317 void visitExtractValueInst(ExtractValueInst &I);
319 void visitInstruction(Instruction &I) {
320 #ifndef NDEBUG
321 cerr << "C Writer does not know about " << I;
322 #endif
323 llvm_unreachable(0);
326 void outputLValue(Instruction *I) {
327 Out << " " << GetValueName(I) << " = ";
330 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
331 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
332 BasicBlock *Successor, unsigned Indent);
333 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
334 unsigned Indent);
335 void printGEPExpression(Value *Ptr, gep_type_iterator I,
336 gep_type_iterator E, bool Static);
338 std::string GetValueName(const Value *Operand);
342 char CWriter::ID = 0;
344 /// This method inserts names for any unnamed structure types that are used by
345 /// the program, and removes names from structure types that are not used by the
346 /// program.
348 bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
349 // Get a set of types that are used by the program...
350 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
352 // Loop over the module symbol table, removing types from UT that are
353 // already named, and removing names for types that are not used.
355 TypeSymbolTable &TST = M.getTypeSymbolTable();
356 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
357 TI != TE; ) {
358 TypeSymbolTable::iterator I = TI++;
360 // If this isn't a struct or array type, remove it from our set of types
361 // to name. This simplifies emission later.
362 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second) &&
363 !isa<ArrayType>(I->second)) {
364 TST.remove(I);
365 } else {
366 // If this is not used, remove it from the symbol table.
367 std::set<const Type *>::iterator UTI = UT.find(I->second);
368 if (UTI == UT.end())
369 TST.remove(I);
370 else
371 UT.erase(UTI); // Only keep one name for this type.
375 // UT now contains types that are not named. Loop over it, naming
376 // structure types.
378 bool Changed = false;
379 unsigned RenameCounter = 0;
380 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
381 I != E; ++I)
382 if (isa<StructType>(*I) || isa<ArrayType>(*I)) {
383 while (M.addTypeName("unnamed"+utostr(RenameCounter), *I))
384 ++RenameCounter;
385 Changed = true;
389 // Loop over all external functions and globals. If we have two with
390 // identical names, merge them.
391 // FIXME: This code should disappear when we don't allow values with the same
392 // names when they have different types!
393 std::map<std::string, GlobalValue*> ExtSymbols;
394 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
395 Function *GV = I++;
396 if (GV->isDeclaration() && GV->hasName()) {
397 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
398 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
399 if (!X.second) {
400 // Found a conflict, replace this global with the previous one.
401 GlobalValue *OldGV = X.first->second;
402 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
403 GV->eraseFromParent();
404 Changed = true;
408 // Do the same for globals.
409 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
410 I != E;) {
411 GlobalVariable *GV = I++;
412 if (GV->isDeclaration() && GV->hasName()) {
413 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
414 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
415 if (!X.second) {
416 // Found a conflict, replace this global with the previous one.
417 GlobalValue *OldGV = X.first->second;
418 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
419 GV->eraseFromParent();
420 Changed = true;
425 return Changed;
428 /// printStructReturnPointerFunctionType - This is like printType for a struct
429 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
430 /// print it as "Struct (*)(...)", for struct return functions.
431 void CWriter::printStructReturnPointerFunctionType(formatted_raw_ostream &Out,
432 const AttrListPtr &PAL,
433 const PointerType *TheTy) {
434 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
435 std::stringstream FunctionInnards;
436 FunctionInnards << " (*) (";
437 bool PrintedType = false;
439 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
440 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
441 unsigned Idx = 1;
442 for (++I, ++Idx; I != E; ++I, ++Idx) {
443 if (PrintedType)
444 FunctionInnards << ", ";
445 const Type *ArgTy = *I;
446 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
447 assert(isa<PointerType>(ArgTy));
448 ArgTy = cast<PointerType>(ArgTy)->getElementType();
450 printType(FunctionInnards, ArgTy,
451 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
452 PrintedType = true;
454 if (FTy->isVarArg()) {
455 if (PrintedType)
456 FunctionInnards << ", ...";
457 } else if (!PrintedType) {
458 FunctionInnards << "void";
460 FunctionInnards << ')';
461 std::string tstr = FunctionInnards.str();
462 printType(Out, RetTy,
463 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
466 raw_ostream &
467 CWriter::printSimpleType(formatted_raw_ostream &Out, const Type *Ty,
468 bool isSigned,
469 const std::string &NameSoFar) {
470 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
471 "Invalid type for printSimpleType");
472 switch (Ty->getTypeID()) {
473 case Type::VoidTyID: return Out << "void " << NameSoFar;
474 case Type::IntegerTyID: {
475 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
476 if (NumBits == 1)
477 return Out << "bool " << NameSoFar;
478 else if (NumBits <= 8)
479 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
480 else if (NumBits <= 16)
481 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
482 else if (NumBits <= 32)
483 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
484 else if (NumBits <= 64)
485 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
486 else {
487 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
488 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
491 case Type::FloatTyID: return Out << "float " << NameSoFar;
492 case Type::DoubleTyID: return Out << "double " << NameSoFar;
493 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
494 // present matches host 'long double'.
495 case Type::X86_FP80TyID:
496 case Type::PPC_FP128TyID:
497 case Type::FP128TyID: return Out << "long double " << NameSoFar;
499 case Type::VectorTyID: {
500 const VectorType *VTy = cast<VectorType>(Ty);
501 return printSimpleType(Out, VTy->getElementType(), isSigned,
502 " __attribute__((vector_size(" +
503 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
506 default:
507 #ifndef NDEBUG
508 cerr << "Unknown primitive type: " << *Ty << "\n";
509 #endif
510 llvm_unreachable(0);
514 std::ostream &
515 CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
516 const std::string &NameSoFar) {
517 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
518 "Invalid type for printSimpleType");
519 switch (Ty->getTypeID()) {
520 case Type::VoidTyID: return Out << "void " << NameSoFar;
521 case Type::IntegerTyID: {
522 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
523 if (NumBits == 1)
524 return Out << "bool " << NameSoFar;
525 else if (NumBits <= 8)
526 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
527 else if (NumBits <= 16)
528 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
529 else if (NumBits <= 32)
530 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
531 else if (NumBits <= 64)
532 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
533 else {
534 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
535 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
538 case Type::FloatTyID: return Out << "float " << NameSoFar;
539 case Type::DoubleTyID: return Out << "double " << NameSoFar;
540 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
541 // present matches host 'long double'.
542 case Type::X86_FP80TyID:
543 case Type::PPC_FP128TyID:
544 case Type::FP128TyID: return Out << "long double " << NameSoFar;
546 case Type::VectorTyID: {
547 const VectorType *VTy = cast<VectorType>(Ty);
548 return printSimpleType(Out, VTy->getElementType(), isSigned,
549 " __attribute__((vector_size(" +
550 utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
553 default:
554 #ifndef NDEBUG
555 cerr << "Unknown primitive type: " << *Ty << "\n";
556 #endif
557 llvm_unreachable(0);
561 // Pass the Type* and the variable name and this prints out the variable
562 // declaration.
564 raw_ostream &CWriter::printType(formatted_raw_ostream &Out,
565 const Type *Ty,
566 bool isSigned, const std::string &NameSoFar,
567 bool IgnoreName, const AttrListPtr &PAL) {
568 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
569 printSimpleType(Out, Ty, isSigned, NameSoFar);
570 return Out;
573 // Check to see if the type is named.
574 if (!IgnoreName || isa<OpaqueType>(Ty)) {
575 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
576 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
579 switch (Ty->getTypeID()) {
580 case Type::FunctionTyID: {
581 const FunctionType *FTy = cast<FunctionType>(Ty);
582 std::stringstream FunctionInnards;
583 FunctionInnards << " (" << NameSoFar << ") (";
584 unsigned Idx = 1;
585 for (FunctionType::param_iterator I = FTy->param_begin(),
586 E = FTy->param_end(); I != E; ++I) {
587 const Type *ArgTy = *I;
588 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
589 assert(isa<PointerType>(ArgTy));
590 ArgTy = cast<PointerType>(ArgTy)->getElementType();
592 if (I != FTy->param_begin())
593 FunctionInnards << ", ";
594 printType(FunctionInnards, ArgTy,
595 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
596 ++Idx;
598 if (FTy->isVarArg()) {
599 if (FTy->getNumParams())
600 FunctionInnards << ", ...";
601 } else if (!FTy->getNumParams()) {
602 FunctionInnards << "void";
604 FunctionInnards << ')';
605 std::string tstr = FunctionInnards.str();
606 printType(Out, FTy->getReturnType(),
607 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
608 return Out;
610 case Type::StructTyID: {
611 const StructType *STy = cast<StructType>(Ty);
612 Out << NameSoFar + " {\n";
613 unsigned Idx = 0;
614 for (StructType::element_iterator I = STy->element_begin(),
615 E = STy->element_end(); I != E; ++I) {
616 Out << " ";
617 printType(Out, *I, false, "field" + utostr(Idx++));
618 Out << ";\n";
620 Out << '}';
621 if (STy->isPacked())
622 Out << " __attribute__ ((packed))";
623 return Out;
626 case Type::PointerTyID: {
627 const PointerType *PTy = cast<PointerType>(Ty);
628 std::string ptrName = "*" + NameSoFar;
630 if (isa<ArrayType>(PTy->getElementType()) ||
631 isa<VectorType>(PTy->getElementType()))
632 ptrName = "(" + ptrName + ")";
634 if (!PAL.isEmpty())
635 // Must be a function ptr cast!
636 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
637 return printType(Out, PTy->getElementType(), false, ptrName);
640 case Type::ArrayTyID: {
641 const ArrayType *ATy = cast<ArrayType>(Ty);
642 unsigned NumElements = ATy->getNumElements();
643 if (NumElements == 0) NumElements = 1;
644 // Arrays are wrapped in structs to allow them to have normal
645 // value semantics (avoiding the array "decay").
646 Out << NameSoFar << " { ";
647 printType(Out, ATy->getElementType(), false,
648 "array[" + utostr(NumElements) + "]");
649 return Out << "; }";
652 case Type::OpaqueTyID: {
653 std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
654 assert(TypeNames.find(Ty) == TypeNames.end());
655 TypeNames[Ty] = TyName;
656 return Out << TyName << ' ' << NameSoFar;
658 default:
659 llvm_unreachable("Unhandled case in getTypeProps!");
662 return Out;
665 // Pass the Type* and the variable name and this prints out the variable
666 // declaration.
668 std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
669 bool isSigned, const std::string &NameSoFar,
670 bool IgnoreName, const AttrListPtr &PAL) {
671 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
672 printSimpleType(Out, Ty, isSigned, NameSoFar);
673 return Out;
676 // Check to see if the type is named.
677 if (!IgnoreName || isa<OpaqueType>(Ty)) {
678 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
679 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
682 switch (Ty->getTypeID()) {
683 case Type::FunctionTyID: {
684 const FunctionType *FTy = cast<FunctionType>(Ty);
685 std::stringstream FunctionInnards;
686 FunctionInnards << " (" << NameSoFar << ") (";
687 unsigned Idx = 1;
688 for (FunctionType::param_iterator I = FTy->param_begin(),
689 E = FTy->param_end(); I != E; ++I) {
690 const Type *ArgTy = *I;
691 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
692 assert(isa<PointerType>(ArgTy));
693 ArgTy = cast<PointerType>(ArgTy)->getElementType();
695 if (I != FTy->param_begin())
696 FunctionInnards << ", ";
697 printType(FunctionInnards, ArgTy,
698 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt), "");
699 ++Idx;
701 if (FTy->isVarArg()) {
702 if (FTy->getNumParams())
703 FunctionInnards << ", ...";
704 } else if (!FTy->getNumParams()) {
705 FunctionInnards << "void";
707 FunctionInnards << ')';
708 std::string tstr = FunctionInnards.str();
709 printType(Out, FTy->getReturnType(),
710 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt), tstr);
711 return Out;
713 case Type::StructTyID: {
714 const StructType *STy = cast<StructType>(Ty);
715 Out << NameSoFar + " {\n";
716 unsigned Idx = 0;
717 for (StructType::element_iterator I = STy->element_begin(),
718 E = STy->element_end(); I != E; ++I) {
719 Out << " ";
720 printType(Out, *I, false, "field" + utostr(Idx++));
721 Out << ";\n";
723 Out << '}';
724 if (STy->isPacked())
725 Out << " __attribute__ ((packed))";
726 return Out;
729 case Type::PointerTyID: {
730 const PointerType *PTy = cast<PointerType>(Ty);
731 std::string ptrName = "*" + NameSoFar;
733 if (isa<ArrayType>(PTy->getElementType()) ||
734 isa<VectorType>(PTy->getElementType()))
735 ptrName = "(" + ptrName + ")";
737 if (!PAL.isEmpty())
738 // Must be a function ptr cast!
739 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
740 return printType(Out, PTy->getElementType(), false, ptrName);
743 case Type::ArrayTyID: {
744 const ArrayType *ATy = cast<ArrayType>(Ty);
745 unsigned NumElements = ATy->getNumElements();
746 if (NumElements == 0) NumElements = 1;
747 // Arrays are wrapped in structs to allow them to have normal
748 // value semantics (avoiding the array "decay").
749 Out << NameSoFar << " { ";
750 printType(Out, ATy->getElementType(), false,
751 "array[" + utostr(NumElements) + "]");
752 return Out << "; }";
755 case Type::OpaqueTyID: {
756 std::string TyName = "struct opaque_" + itostr(OpaqueCounter++);
757 assert(TypeNames.find(Ty) == TypeNames.end());
758 TypeNames[Ty] = TyName;
759 return Out << TyName << ' ' << NameSoFar;
761 default:
762 llvm_unreachable("Unhandled case in getTypeProps!");
765 return Out;
768 void CWriter::printConstantArray(ConstantArray *CPA, bool Static) {
770 // As a special case, print the array as a string if it is an array of
771 // ubytes or an array of sbytes with positive values.
773 const Type *ETy = CPA->getType()->getElementType();
774 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
776 // Make sure the last character is a null char, as automatically added by C
777 if (isString && (CPA->getNumOperands() == 0 ||
778 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
779 isString = false;
781 if (isString) {
782 Out << '\"';
783 // Keep track of whether the last number was a hexadecimal escape
784 bool LastWasHex = false;
786 // Do not include the last character, which we know is null
787 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
788 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
790 // Print it out literally if it is a printable character. The only thing
791 // to be careful about is when the last letter output was a hex escape
792 // code, in which case we have to be careful not to print out hex digits
793 // explicitly (the C compiler thinks it is a continuation of the previous
794 // character, sheesh...)
796 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
797 LastWasHex = false;
798 if (C == '"' || C == '\\')
799 Out << "\\" << (char)C;
800 else
801 Out << (char)C;
802 } else {
803 LastWasHex = false;
804 switch (C) {
805 case '\n': Out << "\\n"; break;
806 case '\t': Out << "\\t"; break;
807 case '\r': Out << "\\r"; break;
808 case '\v': Out << "\\v"; break;
809 case '\a': Out << "\\a"; break;
810 case '\"': Out << "\\\""; break;
811 case '\'': Out << "\\\'"; break;
812 default:
813 Out << "\\x";
814 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
815 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
816 LastWasHex = true;
817 break;
821 Out << '\"';
822 } else {
823 Out << '{';
824 if (CPA->getNumOperands()) {
825 Out << ' ';
826 printConstant(cast<Constant>(CPA->getOperand(0)), Static);
827 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
828 Out << ", ";
829 printConstant(cast<Constant>(CPA->getOperand(i)), Static);
832 Out << " }";
836 void CWriter::printConstantVector(ConstantVector *CP, bool Static) {
837 Out << '{';
838 if (CP->getNumOperands()) {
839 Out << ' ';
840 printConstant(cast<Constant>(CP->getOperand(0)), Static);
841 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
842 Out << ", ";
843 printConstant(cast<Constant>(CP->getOperand(i)), Static);
846 Out << " }";
849 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
850 // textually as a double (rather than as a reference to a stack-allocated
851 // variable). We decide this by converting CFP to a string and back into a
852 // double, and then checking whether the conversion results in a bit-equal
853 // double to the original value of CFP. This depends on us and the target C
854 // compiler agreeing on the conversion process (which is pretty likely since we
855 // only deal in IEEE FP).
857 static bool isFPCSafeToPrint(const ConstantFP *CFP) {
858 bool ignored;
859 // Do long doubles in hex for now.
860 if (CFP->getType() != Type::FloatTy && CFP->getType() != Type::DoubleTy)
861 return false;
862 APFloat APF = APFloat(CFP->getValueAPF()); // copy
863 if (CFP->getType() == Type::FloatTy)
864 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored);
865 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
866 char Buffer[100];
867 sprintf(Buffer, "%a", APF.convertToDouble());
868 if (!strncmp(Buffer, "0x", 2) ||
869 !strncmp(Buffer, "-0x", 3) ||
870 !strncmp(Buffer, "+0x", 3))
871 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
872 return false;
873 #else
874 std::string StrVal = ftostr(APF);
876 while (StrVal[0] == ' ')
877 StrVal.erase(StrVal.begin());
879 // Check to make sure that the stringized number is not some string like "Inf"
880 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
881 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
882 ((StrVal[0] == '-' || StrVal[0] == '+') &&
883 (StrVal[1] >= '0' && StrVal[1] <= '9')))
884 // Reparse stringized version!
885 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
886 return false;
887 #endif
890 /// Print out the casting for a cast operation. This does the double casting
891 /// necessary for conversion to the destination type, if necessary.
892 /// @brief Print a cast
893 void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
894 // Print the destination type cast
895 switch (opc) {
896 case Instruction::UIToFP:
897 case Instruction::SIToFP:
898 case Instruction::IntToPtr:
899 case Instruction::Trunc:
900 case Instruction::BitCast:
901 case Instruction::FPExt:
902 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
903 Out << '(';
904 printType(Out, DstTy);
905 Out << ')';
906 break;
907 case Instruction::ZExt:
908 case Instruction::PtrToInt:
909 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
910 Out << '(';
911 printSimpleType(Out, DstTy, false);
912 Out << ')';
913 break;
914 case Instruction::SExt:
915 case Instruction::FPToSI: // For these, make sure we get a signed dest
916 Out << '(';
917 printSimpleType(Out, DstTy, true);
918 Out << ')';
919 break;
920 default:
921 llvm_unreachable("Invalid cast opcode");
924 // Print the source type cast
925 switch (opc) {
926 case Instruction::UIToFP:
927 case Instruction::ZExt:
928 Out << '(';
929 printSimpleType(Out, SrcTy, false);
930 Out << ')';
931 break;
932 case Instruction::SIToFP:
933 case Instruction::SExt:
934 Out << '(';
935 printSimpleType(Out, SrcTy, true);
936 Out << ')';
937 break;
938 case Instruction::IntToPtr:
939 case Instruction::PtrToInt:
940 // Avoid "cast to pointer from integer of different size" warnings
941 Out << "(unsigned long)";
942 break;
943 case Instruction::Trunc:
944 case Instruction::BitCast:
945 case Instruction::FPExt:
946 case Instruction::FPTrunc:
947 case Instruction::FPToSI:
948 case Instruction::FPToUI:
949 break; // These don't need a source cast.
950 default:
951 llvm_unreachable("Invalid cast opcode");
952 break;
956 // printConstant - The LLVM Constant to C Constant converter.
957 void CWriter::printConstant(Constant *CPV, bool Static) {
958 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
959 switch (CE->getOpcode()) {
960 case Instruction::Trunc:
961 case Instruction::ZExt:
962 case Instruction::SExt:
963 case Instruction::FPTrunc:
964 case Instruction::FPExt:
965 case Instruction::UIToFP:
966 case Instruction::SIToFP:
967 case Instruction::FPToUI:
968 case Instruction::FPToSI:
969 case Instruction::PtrToInt:
970 case Instruction::IntToPtr:
971 case Instruction::BitCast:
972 Out << "(";
973 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
974 if (CE->getOpcode() == Instruction::SExt &&
975 CE->getOperand(0)->getType() == Type::Int1Ty) {
976 // Make sure we really sext from bool here by subtracting from 0
977 Out << "0-";
979 printConstant(CE->getOperand(0), Static);
980 if (CE->getType() == Type::Int1Ty &&
981 (CE->getOpcode() == Instruction::Trunc ||
982 CE->getOpcode() == Instruction::FPToUI ||
983 CE->getOpcode() == Instruction::FPToSI ||
984 CE->getOpcode() == Instruction::PtrToInt)) {
985 // Make sure we really truncate to bool here by anding with 1
986 Out << "&1u";
988 Out << ')';
989 return;
991 case Instruction::GetElementPtr:
992 Out << "(";
993 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
994 gep_type_end(CPV), Static);
995 Out << ")";
996 return;
997 case Instruction::Select:
998 Out << '(';
999 printConstant(CE->getOperand(0), Static);
1000 Out << '?';
1001 printConstant(CE->getOperand(1), Static);
1002 Out << ':';
1003 printConstant(CE->getOperand(2), Static);
1004 Out << ')';
1005 return;
1006 case Instruction::Add:
1007 case Instruction::FAdd:
1008 case Instruction::Sub:
1009 case Instruction::FSub:
1010 case Instruction::Mul:
1011 case Instruction::FMul:
1012 case Instruction::SDiv:
1013 case Instruction::UDiv:
1014 case Instruction::FDiv:
1015 case Instruction::URem:
1016 case Instruction::SRem:
1017 case Instruction::FRem:
1018 case Instruction::And:
1019 case Instruction::Or:
1020 case Instruction::Xor:
1021 case Instruction::ICmp:
1022 case Instruction::Shl:
1023 case Instruction::LShr:
1024 case Instruction::AShr:
1026 Out << '(';
1027 bool NeedsClosingParens = printConstExprCast(CE, Static);
1028 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1029 switch (CE->getOpcode()) {
1030 case Instruction::Add:
1031 case Instruction::FAdd: Out << " + "; break;
1032 case Instruction::Sub:
1033 case Instruction::FSub: Out << " - "; break;
1034 case Instruction::Mul:
1035 case Instruction::FMul: Out << " * "; break;
1036 case Instruction::URem:
1037 case Instruction::SRem:
1038 case Instruction::FRem: Out << " % "; break;
1039 case Instruction::UDiv:
1040 case Instruction::SDiv:
1041 case Instruction::FDiv: Out << " / "; break;
1042 case Instruction::And: Out << " & "; break;
1043 case Instruction::Or: Out << " | "; break;
1044 case Instruction::Xor: Out << " ^ "; break;
1045 case Instruction::Shl: Out << " << "; break;
1046 case Instruction::LShr:
1047 case Instruction::AShr: Out << " >> "; break;
1048 case Instruction::ICmp:
1049 switch (CE->getPredicate()) {
1050 case ICmpInst::ICMP_EQ: Out << " == "; break;
1051 case ICmpInst::ICMP_NE: Out << " != "; break;
1052 case ICmpInst::ICMP_SLT:
1053 case ICmpInst::ICMP_ULT: Out << " < "; break;
1054 case ICmpInst::ICMP_SLE:
1055 case ICmpInst::ICMP_ULE: Out << " <= "; break;
1056 case ICmpInst::ICMP_SGT:
1057 case ICmpInst::ICMP_UGT: Out << " > "; break;
1058 case ICmpInst::ICMP_SGE:
1059 case ICmpInst::ICMP_UGE: Out << " >= "; break;
1060 default: llvm_unreachable("Illegal ICmp predicate");
1062 break;
1063 default: llvm_unreachable("Illegal opcode here!");
1065 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1066 if (NeedsClosingParens)
1067 Out << "))";
1068 Out << ')';
1069 return;
1071 case Instruction::FCmp: {
1072 Out << '(';
1073 bool NeedsClosingParens = printConstExprCast(CE, Static);
1074 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
1075 Out << "0";
1076 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
1077 Out << "1";
1078 else {
1079 const char* op = 0;
1080 switch (CE->getPredicate()) {
1081 default: llvm_unreachable("Illegal FCmp predicate");
1082 case FCmpInst::FCMP_ORD: op = "ord"; break;
1083 case FCmpInst::FCMP_UNO: op = "uno"; break;
1084 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
1085 case FCmpInst::FCMP_UNE: op = "une"; break;
1086 case FCmpInst::FCMP_ULT: op = "ult"; break;
1087 case FCmpInst::FCMP_ULE: op = "ule"; break;
1088 case FCmpInst::FCMP_UGT: op = "ugt"; break;
1089 case FCmpInst::FCMP_UGE: op = "uge"; break;
1090 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
1091 case FCmpInst::FCMP_ONE: op = "one"; break;
1092 case FCmpInst::FCMP_OLT: op = "olt"; break;
1093 case FCmpInst::FCMP_OLE: op = "ole"; break;
1094 case FCmpInst::FCMP_OGT: op = "ogt"; break;
1095 case FCmpInst::FCMP_OGE: op = "oge"; break;
1097 Out << "llvm_fcmp_" << op << "(";
1098 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
1099 Out << ", ";
1100 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
1101 Out << ")";
1103 if (NeedsClosingParens)
1104 Out << "))";
1105 Out << ')';
1106 return;
1108 default:
1109 #ifndef NDEBUG
1110 cerr << "CWriter Error: Unhandled constant expression: "
1111 << *CE << "\n";
1112 #endif
1113 llvm_unreachable(0);
1115 } else if (isa<UndefValue>(CPV) && CPV->getType()->isSingleValueType()) {
1116 Out << "((";
1117 printType(Out, CPV->getType()); // sign doesn't matter
1118 Out << ")/*UNDEF*/";
1119 if (!isa<VectorType>(CPV->getType())) {
1120 Out << "0)";
1121 } else {
1122 Out << "{})";
1124 return;
1127 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
1128 const Type* Ty = CI->getType();
1129 if (Ty == Type::Int1Ty)
1130 Out << (CI->getZExtValue() ? '1' : '0');
1131 else if (Ty == Type::Int32Ty)
1132 Out << CI->getZExtValue() << 'u';
1133 else if (Ty->getPrimitiveSizeInBits() > 32)
1134 Out << CI->getZExtValue() << "ull";
1135 else {
1136 Out << "((";
1137 printSimpleType(Out, Ty, false) << ')';
1138 if (CI->isMinValue(true))
1139 Out << CI->getZExtValue() << 'u';
1140 else
1141 Out << CI->getSExtValue();
1142 Out << ')';
1144 return;
1147 switch (CPV->getType()->getTypeID()) {
1148 case Type::FloatTyID:
1149 case Type::DoubleTyID:
1150 case Type::X86_FP80TyID:
1151 case Type::PPC_FP128TyID:
1152 case Type::FP128TyID: {
1153 ConstantFP *FPC = cast<ConstantFP>(CPV);
1154 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
1155 if (I != FPConstantMap.end()) {
1156 // Because of FP precision problems we must load from a stack allocated
1157 // value that holds the value in hex.
1158 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
1159 FPC->getType() == Type::DoubleTy ? "double" :
1160 "long double")
1161 << "*)&FPConstant" << I->second << ')';
1162 } else {
1163 double V;
1164 if (FPC->getType() == Type::FloatTy)
1165 V = FPC->getValueAPF().convertToFloat();
1166 else if (FPC->getType() == Type::DoubleTy)
1167 V = FPC->getValueAPF().convertToDouble();
1168 else {
1169 // Long double. Convert the number to double, discarding precision.
1170 // This is not awesome, but it at least makes the CBE output somewhat
1171 // useful.
1172 APFloat Tmp = FPC->getValueAPF();
1173 bool LosesInfo;
1174 Tmp.convert(APFloat::IEEEdouble, APFloat::rmTowardZero, &LosesInfo);
1175 V = Tmp.convertToDouble();
1178 if (IsNAN(V)) {
1179 // The value is NaN
1181 // FIXME the actual NaN bits should be emitted.
1182 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
1183 // it's 0x7ff4.
1184 const unsigned long QuietNaN = 0x7ff8UL;
1185 //const unsigned long SignalNaN = 0x7ff4UL;
1187 // We need to grab the first part of the FP #
1188 char Buffer[100];
1190 uint64_t ll = DoubleToBits(V);
1191 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
1193 std::string Num(&Buffer[0], &Buffer[6]);
1194 unsigned long Val = strtoul(Num.c_str(), 0, 16);
1196 if (FPC->getType() == Type::FloatTy)
1197 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
1198 << Buffer << "\") /*nan*/ ";
1199 else
1200 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
1201 << Buffer << "\") /*nan*/ ";
1202 } else if (IsInf(V)) {
1203 // The value is Inf
1204 if (V < 0) Out << '-';
1205 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
1206 << " /*inf*/ ";
1207 } else {
1208 std::string Num;
1209 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1210 // Print out the constant as a floating point number.
1211 char Buffer[100];
1212 sprintf(Buffer, "%a", V);
1213 Num = Buffer;
1214 #else
1215 Num = ftostr(FPC->getValueAPF());
1216 #endif
1217 Out << Num;
1220 break;
1223 case Type::ArrayTyID:
1224 // Use C99 compound expression literal initializer syntax.
1225 if (!Static) {
1226 Out << "(";
1227 printType(Out, CPV->getType());
1228 Out << ")";
1230 Out << "{ "; // Arrays are wrapped in struct types.
1231 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
1232 printConstantArray(CA, Static);
1233 } else {
1234 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1235 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1236 Out << '{';
1237 if (AT->getNumElements()) {
1238 Out << ' ';
1239 Constant *CZ = Constant::getNullValue(AT->getElementType());
1240 printConstant(CZ, Static);
1241 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1242 Out << ", ";
1243 printConstant(CZ, Static);
1246 Out << " }";
1248 Out << " }"; // Arrays are wrapped in struct types.
1249 break;
1251 case Type::VectorTyID:
1252 // Use C99 compound expression literal initializer syntax.
1253 if (!Static) {
1254 Out << "(";
1255 printType(Out, CPV->getType());
1256 Out << ")";
1258 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
1259 printConstantVector(CV, Static);
1260 } else {
1261 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1262 const VectorType *VT = cast<VectorType>(CPV->getType());
1263 Out << "{ ";
1264 Constant *CZ = Constant::getNullValue(VT->getElementType());
1265 printConstant(CZ, Static);
1266 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
1267 Out << ", ";
1268 printConstant(CZ, Static);
1270 Out << " }";
1272 break;
1274 case Type::StructTyID:
1275 // Use C99 compound expression literal initializer syntax.
1276 if (!Static) {
1277 Out << "(";
1278 printType(Out, CPV->getType());
1279 Out << ")";
1281 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1282 const StructType *ST = cast<StructType>(CPV->getType());
1283 Out << '{';
1284 if (ST->getNumElements()) {
1285 Out << ' ';
1286 printConstant(Constant::getNullValue(ST->getElementType(0)), Static);
1287 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1288 Out << ", ";
1289 printConstant(Constant::getNullValue(ST->getElementType(i)), Static);
1292 Out << " }";
1293 } else {
1294 Out << '{';
1295 if (CPV->getNumOperands()) {
1296 Out << ' ';
1297 printConstant(cast<Constant>(CPV->getOperand(0)), Static);
1298 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1299 Out << ", ";
1300 printConstant(cast<Constant>(CPV->getOperand(i)), Static);
1303 Out << " }";
1305 break;
1307 case Type::PointerTyID:
1308 if (isa<ConstantPointerNull>(CPV)) {
1309 Out << "((";
1310 printType(Out, CPV->getType()); // sign doesn't matter
1311 Out << ")/*NULL*/0)";
1312 break;
1313 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1314 writeOperand(GV, Static);
1315 break;
1317 // FALL THROUGH
1318 default:
1319 #ifndef NDEBUG
1320 cerr << "Unknown constant type: " << *CPV << "\n";
1321 #endif
1322 llvm_unreachable(0);
1326 // Some constant expressions need to be casted back to the original types
1327 // because their operands were casted to the expected type. This function takes
1328 // care of detecting that case and printing the cast for the ConstantExpr.
1329 bool CWriter::printConstExprCast(const ConstantExpr* CE, bool Static) {
1330 bool NeedsExplicitCast = false;
1331 const Type *Ty = CE->getOperand(0)->getType();
1332 bool TypeIsSigned = false;
1333 switch (CE->getOpcode()) {
1334 case Instruction::Add:
1335 case Instruction::Sub:
1336 case Instruction::Mul:
1337 // We need to cast integer arithmetic so that it is always performed
1338 // as unsigned, to avoid undefined behavior on overflow.
1339 case Instruction::LShr:
1340 case Instruction::URem:
1341 case Instruction::UDiv: NeedsExplicitCast = true; break;
1342 case Instruction::AShr:
1343 case Instruction::SRem:
1344 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1345 case Instruction::SExt:
1346 Ty = CE->getType();
1347 NeedsExplicitCast = true;
1348 TypeIsSigned = true;
1349 break;
1350 case Instruction::ZExt:
1351 case Instruction::Trunc:
1352 case Instruction::FPTrunc:
1353 case Instruction::FPExt:
1354 case Instruction::UIToFP:
1355 case Instruction::SIToFP:
1356 case Instruction::FPToUI:
1357 case Instruction::FPToSI:
1358 case Instruction::PtrToInt:
1359 case Instruction::IntToPtr:
1360 case Instruction::BitCast:
1361 Ty = CE->getType();
1362 NeedsExplicitCast = true;
1363 break;
1364 default: break;
1366 if (NeedsExplicitCast) {
1367 Out << "((";
1368 if (Ty->isInteger() && Ty != Type::Int1Ty)
1369 printSimpleType(Out, Ty, TypeIsSigned);
1370 else
1371 printType(Out, Ty); // not integer, sign doesn't matter
1372 Out << ")(";
1374 return NeedsExplicitCast;
1377 // Print a constant assuming that it is the operand for a given Opcode. The
1378 // opcodes that care about sign need to cast their operands to the expected
1379 // type before the operation proceeds. This function does the casting.
1380 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1382 // Extract the operand's type, we'll need it.
1383 const Type* OpTy = CPV->getType();
1385 // Indicate whether to do the cast or not.
1386 bool shouldCast = false;
1387 bool typeIsSigned = false;
1389 // Based on the Opcode for which this Constant is being written, determine
1390 // the new type to which the operand should be casted by setting the value
1391 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1392 // casted below.
1393 switch (Opcode) {
1394 default:
1395 // for most instructions, it doesn't matter
1396 break;
1397 case Instruction::Add:
1398 case Instruction::Sub:
1399 case Instruction::Mul:
1400 // We need to cast integer arithmetic so that it is always performed
1401 // as unsigned, to avoid undefined behavior on overflow.
1402 case Instruction::LShr:
1403 case Instruction::UDiv:
1404 case Instruction::URem:
1405 shouldCast = true;
1406 break;
1407 case Instruction::AShr:
1408 case Instruction::SDiv:
1409 case Instruction::SRem:
1410 shouldCast = true;
1411 typeIsSigned = true;
1412 break;
1415 // Write out the casted constant if we should, otherwise just write the
1416 // operand.
1417 if (shouldCast) {
1418 Out << "((";
1419 printSimpleType(Out, OpTy, typeIsSigned);
1420 Out << ")";
1421 printConstant(CPV, false);
1422 Out << ")";
1423 } else
1424 printConstant(CPV, false);
1427 std::string CWriter::GetValueName(const Value *Operand) {
1428 // Mangle globals with the standard mangler interface for LLC compatibility.
1429 if (const GlobalValue *GV = dyn_cast<GlobalValue>(Operand))
1430 return Mang->getMangledName(GV);
1432 std::string Name = Operand->getName();
1434 if (Name.empty()) { // Assign unique names to local temporaries.
1435 unsigned &No = AnonValueNumbers[Operand];
1436 if (No == 0)
1437 No = ++NextAnonValueNumber;
1438 Name = "tmp__" + utostr(No);
1441 std::string VarName;
1442 VarName.reserve(Name.capacity());
1444 for (std::string::iterator I = Name.begin(), E = Name.end();
1445 I != E; ++I) {
1446 char ch = *I;
1448 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1449 (ch >= '0' && ch <= '9') || ch == '_')) {
1450 char buffer[5];
1451 sprintf(buffer, "_%x_", ch);
1452 VarName += buffer;
1453 } else
1454 VarName += ch;
1457 return "llvm_cbe_" + VarName;
1460 /// writeInstComputationInline - Emit the computation for the specified
1461 /// instruction inline, with no destination provided.
1462 void CWriter::writeInstComputationInline(Instruction &I) {
1463 // We can't currently support integer types other than 1, 8, 16, 32, 64.
1464 // Validate this.
1465 const Type *Ty = I.getType();
1466 if (Ty->isInteger() && (Ty!=Type::Int1Ty && Ty!=Type::Int8Ty &&
1467 Ty!=Type::Int16Ty && Ty!=Type::Int32Ty && Ty!=Type::Int64Ty)) {
1468 llvm_report_error("The C backend does not currently support integer "
1469 "types of widths other than 1, 8, 16, 32, 64.\n"
1470 "This is being tracked as PR 4158.");
1473 // If this is a non-trivial bool computation, make sure to truncate down to
1474 // a 1 bit value. This is important because we want "add i1 x, y" to return
1475 // "0" when x and y are true, not "2" for example.
1476 bool NeedBoolTrunc = false;
1477 if (I.getType() == Type::Int1Ty && !isa<ICmpInst>(I) && !isa<FCmpInst>(I))
1478 NeedBoolTrunc = true;
1480 if (NeedBoolTrunc)
1481 Out << "((";
1483 visit(I);
1485 if (NeedBoolTrunc)
1486 Out << ")&1)";
1490 void CWriter::writeOperandInternal(Value *Operand, bool Static) {
1491 if (Instruction *I = dyn_cast<Instruction>(Operand))
1492 // Should we inline this instruction to build a tree?
1493 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1494 Out << '(';
1495 writeInstComputationInline(*I);
1496 Out << ')';
1497 return;
1500 Constant* CPV = dyn_cast<Constant>(Operand);
1502 if (CPV && !isa<GlobalValue>(CPV))
1503 printConstant(CPV, Static);
1504 else
1505 Out << GetValueName(Operand);
1508 void CWriter::writeOperand(Value *Operand, bool Static) {
1509 bool isAddressImplicit = isAddressExposed(Operand);
1510 if (isAddressImplicit)
1511 Out << "(&"; // Global variables are referenced as their addresses by llvm
1513 writeOperandInternal(Operand, Static);
1515 if (isAddressImplicit)
1516 Out << ')';
1519 // Some instructions need to have their result value casted back to the
1520 // original types because their operands were casted to the expected type.
1521 // This function takes care of detecting that case and printing the cast
1522 // for the Instruction.
1523 bool CWriter::writeInstructionCast(const Instruction &I) {
1524 const Type *Ty = I.getOperand(0)->getType();
1525 switch (I.getOpcode()) {
1526 case Instruction::Add:
1527 case Instruction::Sub:
1528 case Instruction::Mul:
1529 // We need to cast integer arithmetic so that it is always performed
1530 // as unsigned, to avoid undefined behavior on overflow.
1531 case Instruction::LShr:
1532 case Instruction::URem:
1533 case Instruction::UDiv:
1534 Out << "((";
1535 printSimpleType(Out, Ty, false);
1536 Out << ")(";
1537 return true;
1538 case Instruction::AShr:
1539 case Instruction::SRem:
1540 case Instruction::SDiv:
1541 Out << "((";
1542 printSimpleType(Out, Ty, true);
1543 Out << ")(";
1544 return true;
1545 default: break;
1547 return false;
1550 // Write the operand with a cast to another type based on the Opcode being used.
1551 // This will be used in cases where an instruction has specific type
1552 // requirements (usually signedness) for its operands.
1553 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1555 // Extract the operand's type, we'll need it.
1556 const Type* OpTy = Operand->getType();
1558 // Indicate whether to do the cast or not.
1559 bool shouldCast = false;
1561 // Indicate whether the cast should be to a signed type or not.
1562 bool castIsSigned = false;
1564 // Based on the Opcode for which this Operand is being written, determine
1565 // the new type to which the operand should be casted by setting the value
1566 // of OpTy. If we change OpTy, also set shouldCast to true.
1567 switch (Opcode) {
1568 default:
1569 // for most instructions, it doesn't matter
1570 break;
1571 case Instruction::Add:
1572 case Instruction::Sub:
1573 case Instruction::Mul:
1574 // We need to cast integer arithmetic so that it is always performed
1575 // as unsigned, to avoid undefined behavior on overflow.
1576 case Instruction::LShr:
1577 case Instruction::UDiv:
1578 case Instruction::URem: // Cast to unsigned first
1579 shouldCast = true;
1580 castIsSigned = false;
1581 break;
1582 case Instruction::GetElementPtr:
1583 case Instruction::AShr:
1584 case Instruction::SDiv:
1585 case Instruction::SRem: // Cast to signed first
1586 shouldCast = true;
1587 castIsSigned = true;
1588 break;
1591 // Write out the casted operand if we should, otherwise just write the
1592 // operand.
1593 if (shouldCast) {
1594 Out << "((";
1595 printSimpleType(Out, OpTy, castIsSigned);
1596 Out << ")";
1597 writeOperand(Operand);
1598 Out << ")";
1599 } else
1600 writeOperand(Operand);
1603 // Write the operand with a cast to another type based on the icmp predicate
1604 // being used.
1605 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1606 // This has to do a cast to ensure the operand has the right signedness.
1607 // Also, if the operand is a pointer, we make sure to cast to an integer when
1608 // doing the comparison both for signedness and so that the C compiler doesn't
1609 // optimize things like "p < NULL" to false (p may contain an integer value
1610 // f.e.).
1611 bool shouldCast = Cmp.isRelational();
1613 // Write out the casted operand if we should, otherwise just write the
1614 // operand.
1615 if (!shouldCast) {
1616 writeOperand(Operand);
1617 return;
1620 // Should this be a signed comparison? If so, convert to signed.
1621 bool castIsSigned = Cmp.isSignedPredicate();
1623 // If the operand was a pointer, convert to a large integer type.
1624 const Type* OpTy = Operand->getType();
1625 if (isa<PointerType>(OpTy))
1626 OpTy = TD->getIntPtrType();
1628 Out << "((";
1629 printSimpleType(Out, OpTy, castIsSigned);
1630 Out << ")";
1631 writeOperand(Operand);
1632 Out << ")";
1635 // generateCompilerSpecificCode - This is where we add conditional compilation
1636 // directives to cater to specific compilers as need be.
1638 static void generateCompilerSpecificCode(formatted_raw_ostream& Out,
1639 const TargetData *TD) {
1640 // Alloca is hard to get, and we don't want to include stdlib.h here.
1641 Out << "/* get a declaration for alloca */\n"
1642 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1643 << "#define alloca(x) __builtin_alloca((x))\n"
1644 << "#define _alloca(x) __builtin_alloca((x))\n"
1645 << "#elif defined(__APPLE__)\n"
1646 << "extern void *__builtin_alloca(unsigned long);\n"
1647 << "#define alloca(x) __builtin_alloca(x)\n"
1648 << "#define longjmp _longjmp\n"
1649 << "#define setjmp _setjmp\n"
1650 << "#elif defined(__sun__)\n"
1651 << "#if defined(__sparcv9)\n"
1652 << "extern void *__builtin_alloca(unsigned long);\n"
1653 << "#else\n"
1654 << "extern void *__builtin_alloca(unsigned int);\n"
1655 << "#endif\n"
1656 << "#define alloca(x) __builtin_alloca(x)\n"
1657 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
1658 << "#define alloca(x) __builtin_alloca(x)\n"
1659 << "#elif defined(_MSC_VER)\n"
1660 << "#define inline _inline\n"
1661 << "#define alloca(x) _alloca(x)\n"
1662 << "#else\n"
1663 << "#include <alloca.h>\n"
1664 << "#endif\n\n";
1666 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1667 // If we aren't being compiled with GCC, just drop these attributes.
1668 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1669 << "#define __attribute__(X)\n"
1670 << "#endif\n\n";
1672 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1673 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1674 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1675 << "#elif defined(__GNUC__)\n"
1676 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1677 << "#else\n"
1678 << "#define __EXTERNAL_WEAK__\n"
1679 << "#endif\n\n";
1681 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1682 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1683 << "#define __ATTRIBUTE_WEAK__\n"
1684 << "#elif defined(__GNUC__)\n"
1685 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1686 << "#else\n"
1687 << "#define __ATTRIBUTE_WEAK__\n"
1688 << "#endif\n\n";
1690 // Add hidden visibility support. FIXME: APPLE_CC?
1691 Out << "#if defined(__GNUC__)\n"
1692 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1693 << "#endif\n\n";
1695 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1696 // From the GCC documentation:
1698 // double __builtin_nan (const char *str)
1700 // This is an implementation of the ISO C99 function nan.
1702 // Since ISO C99 defines this function in terms of strtod, which we do
1703 // not implement, a description of the parsing is in order. The string is
1704 // parsed as by strtol; that is, the base is recognized by leading 0 or
1705 // 0x prefixes. The number parsed is placed in the significand such that
1706 // the least significant bit of the number is at the least significant
1707 // bit of the significand. The number is truncated to fit the significand
1708 // field provided. The significand is forced to be a quiet NaN.
1710 // This function, if given a string literal, is evaluated early enough
1711 // that it is considered a compile-time constant.
1713 // float __builtin_nanf (const char *str)
1715 // Similar to __builtin_nan, except the return type is float.
1717 // double __builtin_inf (void)
1719 // Similar to __builtin_huge_val, except a warning is generated if the
1720 // target floating-point format does not support infinities. This
1721 // function is suitable for implementing the ISO C99 macro INFINITY.
1723 // float __builtin_inff (void)
1725 // Similar to __builtin_inf, except the return type is float.
1726 Out << "#ifdef __GNUC__\n"
1727 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1728 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1729 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1730 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1731 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1732 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1733 << "#define LLVM_PREFETCH(addr,rw,locality) "
1734 "__builtin_prefetch(addr,rw,locality)\n"
1735 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1736 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1737 << "#define LLVM_ASM __asm__\n"
1738 << "#else\n"
1739 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1740 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1741 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1742 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1743 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1744 << "#define LLVM_INFF 0.0F /* Float */\n"
1745 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1746 << "#define __ATTRIBUTE_CTOR__\n"
1747 << "#define __ATTRIBUTE_DTOR__\n"
1748 << "#define LLVM_ASM(X)\n"
1749 << "#endif\n\n";
1751 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1752 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1753 << "#define __builtin_stack_restore(X) /* noop */\n"
1754 << "#endif\n\n";
1756 // Output typedefs for 128-bit integers. If these are needed with a
1757 // 32-bit target or with a C compiler that doesn't support mode(TI),
1758 // more drastic measures will be needed.
1759 Out << "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1760 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1761 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1762 << "#endif\n\n";
1764 // Output target-specific code that should be inserted into main.
1765 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1768 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1769 /// the StaticTors set.
1770 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1771 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1772 if (!InitList) return;
1774 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1775 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1776 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1778 if (CS->getOperand(1)->isNullValue())
1779 return; // Found a null terminator, exit printing.
1780 Constant *FP = CS->getOperand(1);
1781 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1782 if (CE->isCast())
1783 FP = CE->getOperand(0);
1784 if (Function *F = dyn_cast<Function>(FP))
1785 StaticTors.insert(F);
1789 enum SpecialGlobalClass {
1790 NotSpecial = 0,
1791 GlobalCtors, GlobalDtors,
1792 NotPrinted
1795 /// getGlobalVariableClass - If this is a global that is specially recognized
1796 /// by LLVM, return a code that indicates how we should handle it.
1797 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1798 // If this is a global ctors/dtors list, handle it now.
1799 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1800 if (GV->getName() == "llvm.global_ctors")
1801 return GlobalCtors;
1802 else if (GV->getName() == "llvm.global_dtors")
1803 return GlobalDtors;
1806 // Otherwise, it it is other metadata, don't print it. This catches things
1807 // like debug information.
1808 if (GV->getSection() == "llvm.metadata")
1809 return NotPrinted;
1811 return NotSpecial;
1815 bool CWriter::doInitialization(Module &M) {
1816 FunctionPass::doInitialization(M);
1818 // Initialize
1819 TheModule = &M;
1821 TD = new TargetData(&M);
1822 IL = new IntrinsicLowering(*TD);
1823 IL->AddPrototypes(M);
1825 // Ensure that all structure types have names...
1826 Mang = new Mangler(M);
1827 Mang->markCharUnacceptable('.');
1829 // Keep track of which functions are static ctors/dtors so they can have
1830 // an attribute added to their prototypes.
1831 std::set<Function*> StaticCtors, StaticDtors;
1832 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1833 I != E; ++I) {
1834 switch (getGlobalVariableClass(I)) {
1835 default: break;
1836 case GlobalCtors:
1837 FindStaticTors(I, StaticCtors);
1838 break;
1839 case GlobalDtors:
1840 FindStaticTors(I, StaticDtors);
1841 break;
1845 // get declaration for alloca
1846 Out << "/* Provide Declarations */\n";
1847 Out << "#include <stdarg.h>\n"; // Varargs support
1848 Out << "#include <setjmp.h>\n"; // Unwind support
1849 generateCompilerSpecificCode(Out, TD);
1851 // Provide a definition for `bool' if not compiling with a C++ compiler.
1852 Out << "\n"
1853 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1855 << "\n\n/* Support for floating point constants */\n"
1856 << "typedef unsigned long long ConstantDoubleTy;\n"
1857 << "typedef unsigned int ConstantFloatTy;\n"
1858 << "typedef struct { unsigned long long f1; unsigned short f2; "
1859 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1860 // This is used for both kinds of 128-bit long double; meaning differs.
1861 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1862 " ConstantFP128Ty;\n"
1863 << "\n\n/* Global Declarations */\n";
1865 // First output all the declarations for the program, because C requires
1866 // Functions & globals to be declared before they are used.
1869 // Loop over the symbol table, emitting all named constants...
1870 printModuleTypes(M.getTypeSymbolTable());
1872 // Global variable declarations...
1873 if (!M.global_empty()) {
1874 Out << "\n/* External Global Variable Declarations */\n";
1875 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1876 I != E; ++I) {
1878 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage() ||
1879 I->hasCommonLinkage())
1880 Out << "extern ";
1881 else if (I->hasDLLImportLinkage())
1882 Out << "__declspec(dllimport) ";
1883 else
1884 continue; // Internal Global
1886 // Thread Local Storage
1887 if (I->isThreadLocal())
1888 Out << "__thread ";
1890 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1892 if (I->hasExternalWeakLinkage())
1893 Out << " __EXTERNAL_WEAK__";
1894 Out << ";\n";
1898 // Function declarations
1899 Out << "\n/* Function Declarations */\n";
1900 Out << "double fmod(double, double);\n"; // Support for FP rem
1901 Out << "float fmodf(float, float);\n";
1902 Out << "long double fmodl(long double, long double);\n";
1904 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1905 // Don't print declarations for intrinsic functions.
1906 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
1907 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1908 if (I->hasExternalWeakLinkage())
1909 Out << "extern ";
1910 printFunctionSignature(I, true);
1911 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1912 Out << " __ATTRIBUTE_WEAK__";
1913 if (I->hasExternalWeakLinkage())
1914 Out << " __EXTERNAL_WEAK__";
1915 if (StaticCtors.count(I))
1916 Out << " __ATTRIBUTE_CTOR__";
1917 if (StaticDtors.count(I))
1918 Out << " __ATTRIBUTE_DTOR__";
1919 if (I->hasHiddenVisibility())
1920 Out << " __HIDDEN__";
1922 if (I->hasName() && I->getName()[0] == 1)
1923 Out << " LLVM_ASM(\"" << I->getName().substr(1) << "\")";
1925 Out << ";\n";
1929 // Output the global variable declarations
1930 if (!M.global_empty()) {
1931 Out << "\n\n/* Global Variable Declarations */\n";
1932 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1933 I != E; ++I)
1934 if (!I->isDeclaration()) {
1935 // Ignore special globals, such as debug info.
1936 if (getGlobalVariableClass(I))
1937 continue;
1939 if (I->hasLocalLinkage())
1940 Out << "static ";
1941 else
1942 Out << "extern ";
1944 // Thread Local Storage
1945 if (I->isThreadLocal())
1946 Out << "__thread ";
1948 printType(Out, I->getType()->getElementType(), false,
1949 GetValueName(I));
1951 if (I->hasLinkOnceLinkage())
1952 Out << " __attribute__((common))";
1953 else if (I->hasCommonLinkage()) // FIXME is this right?
1954 Out << " __ATTRIBUTE_WEAK__";
1955 else if (I->hasWeakLinkage())
1956 Out << " __ATTRIBUTE_WEAK__";
1957 else if (I->hasExternalWeakLinkage())
1958 Out << " __EXTERNAL_WEAK__";
1959 if (I->hasHiddenVisibility())
1960 Out << " __HIDDEN__";
1961 Out << ";\n";
1965 // Output the global variable definitions and contents...
1966 if (!M.global_empty()) {
1967 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1968 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1969 I != E; ++I)
1970 if (!I->isDeclaration()) {
1971 // Ignore special globals, such as debug info.
1972 if (getGlobalVariableClass(I))
1973 continue;
1975 if (I->hasLocalLinkage())
1976 Out << "static ";
1977 else if (I->hasDLLImportLinkage())
1978 Out << "__declspec(dllimport) ";
1979 else if (I->hasDLLExportLinkage())
1980 Out << "__declspec(dllexport) ";
1982 // Thread Local Storage
1983 if (I->isThreadLocal())
1984 Out << "__thread ";
1986 printType(Out, I->getType()->getElementType(), false,
1987 GetValueName(I));
1988 if (I->hasLinkOnceLinkage())
1989 Out << " __attribute__((common))";
1990 else if (I->hasWeakLinkage())
1991 Out << " __ATTRIBUTE_WEAK__";
1992 else if (I->hasCommonLinkage())
1993 Out << " __ATTRIBUTE_WEAK__";
1995 if (I->hasHiddenVisibility())
1996 Out << " __HIDDEN__";
1998 // If the initializer is not null, emit the initializer. If it is null,
1999 // we try to avoid emitting large amounts of zeros. The problem with
2000 // this, however, occurs when the variable has weak linkage. In this
2001 // case, the assembler will complain about the variable being both weak
2002 // and common, so we disable this optimization.
2003 // FIXME common linkage should avoid this problem.
2004 if (!I->getInitializer()->isNullValue()) {
2005 Out << " = " ;
2006 writeOperand(I->getInitializer(), true);
2007 } else if (I->hasWeakLinkage()) {
2008 // We have to specify an initializer, but it doesn't have to be
2009 // complete. If the value is an aggregate, print out { 0 }, and let
2010 // the compiler figure out the rest of the zeros.
2011 Out << " = " ;
2012 if (isa<StructType>(I->getInitializer()->getType()) ||
2013 isa<VectorType>(I->getInitializer()->getType())) {
2014 Out << "{ 0 }";
2015 } else if (isa<ArrayType>(I->getInitializer()->getType())) {
2016 // As with structs and vectors, but with an extra set of braces
2017 // because arrays are wrapped in structs.
2018 Out << "{ { 0 } }";
2019 } else {
2020 // Just print it out normally.
2021 writeOperand(I->getInitializer(), true);
2024 Out << ";\n";
2028 if (!M.empty())
2029 Out << "\n\n/* Function Bodies */\n";
2031 // Emit some helper functions for dealing with FCMP instruction's
2032 // predicates
2033 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
2034 Out << "return X == X && Y == Y; }\n";
2035 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
2036 Out << "return X != X || Y != Y; }\n";
2037 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
2038 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
2039 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
2040 Out << "return X != Y; }\n";
2041 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
2042 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
2043 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
2044 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
2045 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
2046 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
2047 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
2048 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
2049 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
2050 Out << "return X == Y ; }\n";
2051 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
2052 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
2053 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
2054 Out << "return X < Y ; }\n";
2055 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
2056 Out << "return X > Y ; }\n";
2057 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
2058 Out << "return X <= Y ; }\n";
2059 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
2060 Out << "return X >= Y ; }\n";
2061 return false;
2065 /// Output all floating point constants that cannot be printed accurately...
2066 void CWriter::printFloatingPointConstants(Function &F) {
2067 // Scan the module for floating point constants. If any FP constant is used
2068 // in the function, we want to redirect it here so that we do not depend on
2069 // the precision of the printed form, unless the printed form preserves
2070 // precision.
2072 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
2073 I != E; ++I)
2074 printFloatingPointConstants(*I);
2076 Out << '\n';
2079 void CWriter::printFloatingPointConstants(const Constant *C) {
2080 // If this is a constant expression, recursively check for constant fp values.
2081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2082 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
2083 printFloatingPointConstants(CE->getOperand(i));
2084 return;
2087 // Otherwise, check for a FP constant that we need to print.
2088 const ConstantFP *FPC = dyn_cast<ConstantFP>(C);
2089 if (FPC == 0 ||
2090 // Do not put in FPConstantMap if safe.
2091 isFPCSafeToPrint(FPC) ||
2092 // Already printed this constant?
2093 FPConstantMap.count(FPC))
2094 return;
2096 FPConstantMap[FPC] = FPCounter; // Number the FP constants
2098 if (FPC->getType() == Type::DoubleTy) {
2099 double Val = FPC->getValueAPF().convertToDouble();
2100 uint64_t i = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2101 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
2102 << " = 0x" << utohexstr(i)
2103 << "ULL; /* " << Val << " */\n";
2104 } else if (FPC->getType() == Type::FloatTy) {
2105 float Val = FPC->getValueAPF().convertToFloat();
2106 uint32_t i = (uint32_t)FPC->getValueAPF().bitcastToAPInt().
2107 getZExtValue();
2108 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
2109 << " = 0x" << utohexstr(i)
2110 << "U; /* " << Val << " */\n";
2111 } else if (FPC->getType() == Type::X86_FP80Ty) {
2112 // api needed to prevent premature destruction
2113 APInt api = FPC->getValueAPF().bitcastToAPInt();
2114 const uint64_t *p = api.getRawData();
2115 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
2116 << " = { 0x" << utohexstr(p[0])
2117 << "ULL, 0x" << utohexstr((uint16_t)p[1]) << ",{0,0,0}"
2118 << "}; /* Long double constant */\n";
2119 } else if (FPC->getType() == Type::PPC_FP128Ty) {
2120 APInt api = FPC->getValueAPF().bitcastToAPInt();
2121 const uint64_t *p = api.getRawData();
2122 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
2123 << " = { 0x"
2124 << utohexstr(p[0]) << ", 0x" << utohexstr(p[1])
2125 << "}; /* Long double constant */\n";
2127 } else {
2128 llvm_unreachable("Unknown float type!");
2134 /// printSymbolTable - Run through symbol table looking for type names. If a
2135 /// type name is found, emit its declaration...
2137 void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
2138 Out << "/* Helper union for bitcasts */\n";
2139 Out << "typedef union {\n";
2140 Out << " unsigned int Int32;\n";
2141 Out << " unsigned long long Int64;\n";
2142 Out << " float Float;\n";
2143 Out << " double Double;\n";
2144 Out << "} llvmBitCastUnion;\n";
2146 // We are only interested in the type plane of the symbol table.
2147 TypeSymbolTable::const_iterator I = TST.begin();
2148 TypeSymbolTable::const_iterator End = TST.end();
2150 // If there are no type names, exit early.
2151 if (I == End) return;
2153 // Print out forward declarations for structure types before anything else!
2154 Out << "/* Structure forward decls */\n";
2155 for (; I != End; ++I) {
2156 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
2157 Out << Name << ";\n";
2158 TypeNames.insert(std::make_pair(I->second, Name));
2161 Out << '\n';
2163 // Now we can print out typedefs. Above, we guaranteed that this can only be
2164 // for struct or opaque types.
2165 Out << "/* Typedefs */\n";
2166 for (I = TST.begin(); I != End; ++I) {
2167 std::string Name = "l_" + Mang->makeNameProper(I->first);
2168 Out << "typedef ";
2169 printType(Out, I->second, false, Name);
2170 Out << ";\n";
2173 Out << '\n';
2175 // Keep track of which structures have been printed so far...
2176 std::set<const Type *> StructPrinted;
2178 // Loop over all structures then push them into the stack so they are
2179 // printed in the correct order.
2181 Out << "/* Structure contents */\n";
2182 for (I = TST.begin(); I != End; ++I)
2183 if (isa<StructType>(I->second) || isa<ArrayType>(I->second))
2184 // Only print out used types!
2185 printContainedStructs(I->second, StructPrinted);
2188 // Push the struct onto the stack and recursively push all structs
2189 // this one depends on.
2191 // TODO: Make this work properly with vector types
2193 void CWriter::printContainedStructs(const Type *Ty,
2194 std::set<const Type*> &StructPrinted) {
2195 // Don't walk through pointers.
2196 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
2198 // Print all contained types first.
2199 for (Type::subtype_iterator I = Ty->subtype_begin(),
2200 E = Ty->subtype_end(); I != E; ++I)
2201 printContainedStructs(*I, StructPrinted);
2203 if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
2204 // Check to see if we have already printed this struct.
2205 if (StructPrinted.insert(Ty).second) {
2206 // Print structure type out.
2207 std::string Name = TypeNames[Ty];
2208 printType(Out, Ty, false, Name, true);
2209 Out << ";\n\n";
2214 void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
2215 /// isStructReturn - Should this function actually return a struct by-value?
2216 bool isStructReturn = F->hasStructRetAttr();
2218 if (F->hasLocalLinkage()) Out << "static ";
2219 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
2220 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
2221 switch (F->getCallingConv()) {
2222 case CallingConv::X86_StdCall:
2223 Out << "__attribute__((stdcall)) ";
2224 break;
2225 case CallingConv::X86_FastCall:
2226 Out << "__attribute__((fastcall)) ";
2227 break;
2230 // Loop over the arguments, printing them...
2231 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
2232 const AttrListPtr &PAL = F->getAttributes();
2234 std::stringstream FunctionInnards;
2236 // Print out the name...
2237 FunctionInnards << GetValueName(F) << '(';
2239 bool PrintedArg = false;
2240 if (!F->isDeclaration()) {
2241 if (!F->arg_empty()) {
2242 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2243 unsigned Idx = 1;
2245 // If this is a struct-return function, don't print the hidden
2246 // struct-return argument.
2247 if (isStructReturn) {
2248 assert(I != E && "Invalid struct return function!");
2249 ++I;
2250 ++Idx;
2253 std::string ArgName;
2254 for (; I != E; ++I) {
2255 if (PrintedArg) FunctionInnards << ", ";
2256 if (I->hasName() || !Prototype)
2257 ArgName = GetValueName(I);
2258 else
2259 ArgName = "";
2260 const Type *ArgTy = I->getType();
2261 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2262 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2263 ByValParams.insert(I);
2265 printType(FunctionInnards, ArgTy,
2266 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt),
2267 ArgName);
2268 PrintedArg = true;
2269 ++Idx;
2272 } else {
2273 // Loop over the arguments, printing them.
2274 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
2275 unsigned Idx = 1;
2277 // If this is a struct-return function, don't print the hidden
2278 // struct-return argument.
2279 if (isStructReturn) {
2280 assert(I != E && "Invalid struct return function!");
2281 ++I;
2282 ++Idx;
2285 for (; I != E; ++I) {
2286 if (PrintedArg) FunctionInnards << ", ";
2287 const Type *ArgTy = *I;
2288 if (PAL.paramHasAttr(Idx, Attribute::ByVal)) {
2289 assert(isa<PointerType>(ArgTy));
2290 ArgTy = cast<PointerType>(ArgTy)->getElementType();
2292 printType(FunctionInnards, ArgTy,
2293 /*isSigned=*/PAL.paramHasAttr(Idx, Attribute::SExt));
2294 PrintedArg = true;
2295 ++Idx;
2299 // Finish printing arguments... if this is a vararg function, print the ...,
2300 // unless there are no known types, in which case, we just emit ().
2302 if (FT->isVarArg() && PrintedArg) {
2303 if (PrintedArg) FunctionInnards << ", ";
2304 FunctionInnards << "..."; // Output varargs portion of signature!
2305 } else if (!FT->isVarArg() && !PrintedArg) {
2306 FunctionInnards << "void"; // ret() -> ret(void) in C.
2308 FunctionInnards << ')';
2310 // Get the return tpe for the function.
2311 const Type *RetTy;
2312 if (!isStructReturn)
2313 RetTy = F->getReturnType();
2314 else {
2315 // If this is a struct-return function, print the struct-return type.
2316 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2319 // Print out the return type and the signature built above.
2320 printType(Out, RetTy,
2321 /*isSigned=*/PAL.paramHasAttr(0, Attribute::SExt),
2322 FunctionInnards.str());
2325 static inline bool isFPIntBitCast(const Instruction &I) {
2326 if (!isa<BitCastInst>(I))
2327 return false;
2328 const Type *SrcTy = I.getOperand(0)->getType();
2329 const Type *DstTy = I.getType();
2330 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2331 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2334 void CWriter::printFunction(Function &F) {
2335 /// isStructReturn - Should this function actually return a struct by-value?
2336 bool isStructReturn = F.hasStructRetAttr();
2338 printFunctionSignature(&F, false);
2339 Out << " {\n";
2341 // If this is a struct return function, handle the result with magic.
2342 if (isStructReturn) {
2343 const Type *StructTy =
2344 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2345 Out << " ";
2346 printType(Out, StructTy, false, "StructReturn");
2347 Out << "; /* Struct return temporary */\n";
2349 Out << " ";
2350 printType(Out, F.arg_begin()->getType(), false,
2351 GetValueName(F.arg_begin()));
2352 Out << " = &StructReturn;\n";
2355 bool PrintedVar = false;
2357 // print local variable information for the function
2358 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2359 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2360 Out << " ";
2361 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2362 Out << "; /* Address-exposed local */\n";
2363 PrintedVar = true;
2364 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2365 Out << " ";
2366 printType(Out, I->getType(), false, GetValueName(&*I));
2367 Out << ";\n";
2369 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2370 Out << " ";
2371 printType(Out, I->getType(), false,
2372 GetValueName(&*I)+"__PHI_TEMPORARY");
2373 Out << ";\n";
2375 PrintedVar = true;
2377 // We need a temporary for the BitCast to use so it can pluck a value out
2378 // of a union to do the BitCast. This is separate from the need for a
2379 // variable to hold the result of the BitCast.
2380 if (isFPIntBitCast(*I)) {
2381 Out << " llvmBitCastUnion " << GetValueName(&*I)
2382 << "__BITCAST_TEMPORARY;\n";
2383 PrintedVar = true;
2387 if (PrintedVar)
2388 Out << '\n';
2390 if (F.hasExternalLinkage() && F.getName() == "main")
2391 Out << " CODE_FOR_MAIN();\n";
2393 // print the basic blocks
2394 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2395 if (Loop *L = LI->getLoopFor(BB)) {
2396 if (L->getHeader() == BB && L->getParentLoop() == 0)
2397 printLoop(L);
2398 } else {
2399 printBasicBlock(BB);
2403 Out << "}\n\n";
2406 void CWriter::printLoop(Loop *L) {
2407 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2408 << "' to make GCC happy */\n";
2409 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2410 BasicBlock *BB = L->getBlocks()[i];
2411 Loop *BBLoop = LI->getLoopFor(BB);
2412 if (BBLoop == L)
2413 printBasicBlock(BB);
2414 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2415 printLoop(BBLoop);
2417 Out << " } while (1); /* end of syntactic loop '"
2418 << L->getHeader()->getName() << "' */\n";
2421 void CWriter::printBasicBlock(BasicBlock *BB) {
2423 // Don't print the label for the basic block if there are no uses, or if
2424 // the only terminator use is the predecessor basic block's terminator.
2425 // We have to scan the use list because PHI nodes use basic blocks too but
2426 // do not require a label to be generated.
2428 bool NeedsLabel = false;
2429 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2430 if (isGotoCodeNecessary(*PI, BB)) {
2431 NeedsLabel = true;
2432 break;
2435 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2437 // Output all of the instructions in the basic block...
2438 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2439 ++II) {
2440 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2441 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2442 outputLValue(II);
2443 else
2444 Out << " ";
2445 writeInstComputationInline(*II);
2446 Out << ";\n";
2450 // Don't emit prefix or suffix for the terminator.
2451 visit(*BB->getTerminator());
2455 // Specific Instruction type classes... note that all of the casts are
2456 // necessary because we use the instruction classes as opaque types...
2458 void CWriter::visitReturnInst(ReturnInst &I) {
2459 // If this is a struct return function, return the temporary struct.
2460 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
2462 if (isStructReturn) {
2463 Out << " return StructReturn;\n";
2464 return;
2467 // Don't output a void return if this is the last basic block in the function
2468 if (I.getNumOperands() == 0 &&
2469 &*--I.getParent()->getParent()->end() == I.getParent() &&
2470 !I.getParent()->size() == 1) {
2471 return;
2474 if (I.getNumOperands() > 1) {
2475 Out << " {\n";
2476 Out << " ";
2477 printType(Out, I.getParent()->getParent()->getReturnType());
2478 Out << " llvm_cbe_mrv_temp = {\n";
2479 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2480 Out << " ";
2481 writeOperand(I.getOperand(i));
2482 if (i != e - 1)
2483 Out << ",";
2484 Out << "\n";
2486 Out << " };\n";
2487 Out << " return llvm_cbe_mrv_temp;\n";
2488 Out << " }\n";
2489 return;
2492 Out << " return";
2493 if (I.getNumOperands()) {
2494 Out << ' ';
2495 writeOperand(I.getOperand(0));
2497 Out << ";\n";
2500 void CWriter::visitSwitchInst(SwitchInst &SI) {
2502 Out << " switch (";
2503 writeOperand(SI.getOperand(0));
2504 Out << ") {\n default:\n";
2505 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2506 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2507 Out << ";\n";
2508 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2509 Out << " case ";
2510 writeOperand(SI.getOperand(i));
2511 Out << ":\n";
2512 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2513 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2514 printBranchToBlock(SI.getParent(), Succ, 2);
2515 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2516 Out << " break;\n";
2518 Out << " }\n";
2521 void CWriter::visitUnreachableInst(UnreachableInst &I) {
2522 Out << " /*UNREACHABLE*/;\n";
2525 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2526 /// FIXME: This should be reenabled, but loop reordering safe!!
2527 return true;
2529 if (next(Function::iterator(From)) != Function::iterator(To))
2530 return true; // Not the direct successor, we need a goto.
2532 //isa<SwitchInst>(From->getTerminator())
2534 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2535 return true;
2536 return false;
2539 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2540 BasicBlock *Successor,
2541 unsigned Indent) {
2542 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2543 PHINode *PN = cast<PHINode>(I);
2544 // Now we have to do the printing.
2545 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2546 if (!isa<UndefValue>(IV)) {
2547 Out << std::string(Indent, ' ');
2548 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2549 writeOperand(IV);
2550 Out << "; /* for PHI node */\n";
2555 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2556 unsigned Indent) {
2557 if (isGotoCodeNecessary(CurBB, Succ)) {
2558 Out << std::string(Indent, ' ') << " goto ";
2559 writeOperand(Succ);
2560 Out << ";\n";
2564 // Branch instruction printing - Avoid printing out a branch to a basic block
2565 // that immediately succeeds the current one.
2567 void CWriter::visitBranchInst(BranchInst &I) {
2569 if (I.isConditional()) {
2570 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2571 Out << " if (";
2572 writeOperand(I.getCondition());
2573 Out << ") {\n";
2575 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2576 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2578 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2579 Out << " } else {\n";
2580 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2581 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2583 } else {
2584 // First goto not necessary, assume second one is...
2585 Out << " if (!";
2586 writeOperand(I.getCondition());
2587 Out << ") {\n";
2589 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2590 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2593 Out << " }\n";
2594 } else {
2595 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2596 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2598 Out << "\n";
2601 // PHI nodes get copied into temporary values at the end of predecessor basic
2602 // blocks. We now need to copy these temporary values into the REAL value for
2603 // the PHI.
2604 void CWriter::visitPHINode(PHINode &I) {
2605 writeOperand(&I);
2606 Out << "__PHI_TEMPORARY";
2610 void CWriter::visitBinaryOperator(Instruction &I) {
2611 // binary instructions, shift instructions, setCond instructions.
2612 assert(!isa<PointerType>(I.getType()));
2614 // We must cast the results of binary operations which might be promoted.
2615 bool needsCast = false;
2616 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2617 || (I.getType() == Type::FloatTy)) {
2618 needsCast = true;
2619 Out << "((";
2620 printType(Out, I.getType(), false);
2621 Out << ")(";
2624 // If this is a negation operation, print it out as such. For FP, we don't
2625 // want to print "-0.0 - X".
2626 if (BinaryOperator::isNeg(&I)) {
2627 Out << "-(";
2628 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2629 Out << ")";
2630 } else if (BinaryOperator::isFNeg(&I)) {
2631 Out << "-(";
2632 writeOperand(BinaryOperator::getFNegArgument(cast<BinaryOperator>(&I)));
2633 Out << ")";
2634 } else if (I.getOpcode() == Instruction::FRem) {
2635 // Output a call to fmod/fmodf instead of emitting a%b
2636 if (I.getType() == Type::FloatTy)
2637 Out << "fmodf(";
2638 else if (I.getType() == Type::DoubleTy)
2639 Out << "fmod(";
2640 else // all 3 flavors of long double
2641 Out << "fmodl(";
2642 writeOperand(I.getOperand(0));
2643 Out << ", ";
2644 writeOperand(I.getOperand(1));
2645 Out << ")";
2646 } else {
2648 // Write out the cast of the instruction's value back to the proper type
2649 // if necessary.
2650 bool NeedsClosingParens = writeInstructionCast(I);
2652 // Certain instructions require the operand to be forced to a specific type
2653 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2654 // below for operand 1
2655 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2657 switch (I.getOpcode()) {
2658 case Instruction::Add:
2659 case Instruction::FAdd: Out << " + "; break;
2660 case Instruction::Sub:
2661 case Instruction::FSub: Out << " - "; break;
2662 case Instruction::Mul:
2663 case Instruction::FMul: Out << " * "; break;
2664 case Instruction::URem:
2665 case Instruction::SRem:
2666 case Instruction::FRem: Out << " % "; break;
2667 case Instruction::UDiv:
2668 case Instruction::SDiv:
2669 case Instruction::FDiv: Out << " / "; break;
2670 case Instruction::And: Out << " & "; break;
2671 case Instruction::Or: Out << " | "; break;
2672 case Instruction::Xor: Out << " ^ "; break;
2673 case Instruction::Shl : Out << " << "; break;
2674 case Instruction::LShr:
2675 case Instruction::AShr: Out << " >> "; break;
2676 default:
2677 #ifndef NDEBUG
2678 cerr << "Invalid operator type!" << I;
2679 #endif
2680 llvm_unreachable(0);
2683 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2684 if (NeedsClosingParens)
2685 Out << "))";
2688 if (needsCast) {
2689 Out << "))";
2693 void CWriter::visitICmpInst(ICmpInst &I) {
2694 // We must cast the results of icmp which might be promoted.
2695 bool needsCast = false;
2697 // Write out the cast of the instruction's value back to the proper type
2698 // if necessary.
2699 bool NeedsClosingParens = writeInstructionCast(I);
2701 // Certain icmp predicate require the operand to be forced to a specific type
2702 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2703 // below for operand 1
2704 writeOperandWithCast(I.getOperand(0), I);
2706 switch (I.getPredicate()) {
2707 case ICmpInst::ICMP_EQ: Out << " == "; break;
2708 case ICmpInst::ICMP_NE: Out << " != "; break;
2709 case ICmpInst::ICMP_ULE:
2710 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2711 case ICmpInst::ICMP_UGE:
2712 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2713 case ICmpInst::ICMP_ULT:
2714 case ICmpInst::ICMP_SLT: Out << " < "; break;
2715 case ICmpInst::ICMP_UGT:
2716 case ICmpInst::ICMP_SGT: Out << " > "; break;
2717 default:
2718 #ifndef NDEBUG
2719 cerr << "Invalid icmp predicate!" << I;
2720 #endif
2721 llvm_unreachable(0);
2724 writeOperandWithCast(I.getOperand(1), I);
2725 if (NeedsClosingParens)
2726 Out << "))";
2728 if (needsCast) {
2729 Out << "))";
2733 void CWriter::visitFCmpInst(FCmpInst &I) {
2734 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2735 Out << "0";
2736 return;
2738 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2739 Out << "1";
2740 return;
2743 const char* op = 0;
2744 switch (I.getPredicate()) {
2745 default: llvm_unreachable("Illegal FCmp predicate");
2746 case FCmpInst::FCMP_ORD: op = "ord"; break;
2747 case FCmpInst::FCMP_UNO: op = "uno"; break;
2748 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2749 case FCmpInst::FCMP_UNE: op = "une"; break;
2750 case FCmpInst::FCMP_ULT: op = "ult"; break;
2751 case FCmpInst::FCMP_ULE: op = "ule"; break;
2752 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2753 case FCmpInst::FCMP_UGE: op = "uge"; break;
2754 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2755 case FCmpInst::FCMP_ONE: op = "one"; break;
2756 case FCmpInst::FCMP_OLT: op = "olt"; break;
2757 case FCmpInst::FCMP_OLE: op = "ole"; break;
2758 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2759 case FCmpInst::FCMP_OGE: op = "oge"; break;
2762 Out << "llvm_fcmp_" << op << "(";
2763 // Write the first operand
2764 writeOperand(I.getOperand(0));
2765 Out << ", ";
2766 // Write the second operand
2767 writeOperand(I.getOperand(1));
2768 Out << ")";
2771 static const char * getFloatBitCastField(const Type *Ty) {
2772 switch (Ty->getTypeID()) {
2773 default: llvm_unreachable("Invalid Type");
2774 case Type::FloatTyID: return "Float";
2775 case Type::DoubleTyID: return "Double";
2776 case Type::IntegerTyID: {
2777 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2778 if (NumBits <= 32)
2779 return "Int32";
2780 else
2781 return "Int64";
2786 void CWriter::visitCastInst(CastInst &I) {
2787 const Type *DstTy = I.getType();
2788 const Type *SrcTy = I.getOperand(0)->getType();
2789 if (isFPIntBitCast(I)) {
2790 Out << '(';
2791 // These int<->float and long<->double casts need to be handled specially
2792 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2793 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2794 writeOperand(I.getOperand(0));
2795 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2796 << getFloatBitCastField(I.getType());
2797 Out << ')';
2798 return;
2801 Out << '(';
2802 printCast(I.getOpcode(), SrcTy, DstTy);
2804 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2805 if (SrcTy == Type::Int1Ty && I.getOpcode() == Instruction::SExt)
2806 Out << "0-";
2808 writeOperand(I.getOperand(0));
2810 if (DstTy == Type::Int1Ty &&
2811 (I.getOpcode() == Instruction::Trunc ||
2812 I.getOpcode() == Instruction::FPToUI ||
2813 I.getOpcode() == Instruction::FPToSI ||
2814 I.getOpcode() == Instruction::PtrToInt)) {
2815 // Make sure we really get a trunc to bool by anding the operand with 1
2816 Out << "&1u";
2818 Out << ')';
2821 void CWriter::visitSelectInst(SelectInst &I) {
2822 Out << "((";
2823 writeOperand(I.getCondition());
2824 Out << ") ? (";
2825 writeOperand(I.getTrueValue());
2826 Out << ") : (";
2827 writeOperand(I.getFalseValue());
2828 Out << "))";
2832 void CWriter::lowerIntrinsics(Function &F) {
2833 // This is used to keep track of intrinsics that get generated to a lowered
2834 // function. We must generate the prototypes before the function body which
2835 // will only be expanded on first use (by the loop below).
2836 std::vector<Function*> prototypesToGen;
2838 // Examine all the instructions in this function to find the intrinsics that
2839 // need to be lowered.
2840 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2841 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2842 if (CallInst *CI = dyn_cast<CallInst>(I++))
2843 if (Function *F = CI->getCalledFunction())
2844 switch (F->getIntrinsicID()) {
2845 case Intrinsic::not_intrinsic:
2846 case Intrinsic::memory_barrier:
2847 case Intrinsic::vastart:
2848 case Intrinsic::vacopy:
2849 case Intrinsic::vaend:
2850 case Intrinsic::returnaddress:
2851 case Intrinsic::frameaddress:
2852 case Intrinsic::setjmp:
2853 case Intrinsic::longjmp:
2854 case Intrinsic::prefetch:
2855 case Intrinsic::dbg_stoppoint:
2856 case Intrinsic::powi:
2857 case Intrinsic::x86_sse_cmp_ss:
2858 case Intrinsic::x86_sse_cmp_ps:
2859 case Intrinsic::x86_sse2_cmp_sd:
2860 case Intrinsic::x86_sse2_cmp_pd:
2861 case Intrinsic::ppc_altivec_lvsl:
2862 // We directly implement these intrinsics
2863 break;
2864 default:
2865 // If this is an intrinsic that directly corresponds to a GCC
2866 // builtin, we handle it.
2867 const char *BuiltinName = "";
2868 #define GET_GCC_BUILTIN_NAME
2869 #include "llvm/Intrinsics.gen"
2870 #undef GET_GCC_BUILTIN_NAME
2871 // If we handle it, don't lower it.
2872 if (BuiltinName[0]) break;
2874 // All other intrinsic calls we must lower.
2875 Instruction *Before = 0;
2876 if (CI != &BB->front())
2877 Before = prior(BasicBlock::iterator(CI));
2879 IL->LowerIntrinsicCall(CI);
2880 if (Before) { // Move iterator to instruction after call
2881 I = Before; ++I;
2882 } else {
2883 I = BB->begin();
2885 // If the intrinsic got lowered to another call, and that call has
2886 // a definition then we need to make sure its prototype is emitted
2887 // before any calls to it.
2888 if (CallInst *Call = dyn_cast<CallInst>(I))
2889 if (Function *NewF = Call->getCalledFunction())
2890 if (!NewF->isDeclaration())
2891 prototypesToGen.push_back(NewF);
2893 break;
2896 // We may have collected some prototypes to emit in the loop above.
2897 // Emit them now, before the function that uses them is emitted. But,
2898 // be careful not to emit them twice.
2899 std::vector<Function*>::iterator I = prototypesToGen.begin();
2900 std::vector<Function*>::iterator E = prototypesToGen.end();
2901 for ( ; I != E; ++I) {
2902 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2903 Out << '\n';
2904 printFunctionSignature(*I, true);
2905 Out << ";\n";
2910 void CWriter::visitCallInst(CallInst &I) {
2911 if (isa<InlineAsm>(I.getOperand(0)))
2912 return visitInlineAsm(I);
2914 bool WroteCallee = false;
2916 // Handle intrinsic function calls first...
2917 if (Function *F = I.getCalledFunction())
2918 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2919 if (visitBuiltinCall(I, ID, WroteCallee))
2920 return;
2922 Value *Callee = I.getCalledValue();
2924 const PointerType *PTy = cast<PointerType>(Callee->getType());
2925 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2927 // If this is a call to a struct-return function, assign to the first
2928 // parameter instead of passing it to the call.
2929 const AttrListPtr &PAL = I.getAttributes();
2930 bool hasByVal = I.hasByValArgument();
2931 bool isStructRet = I.hasStructRetAttr();
2932 if (isStructRet) {
2933 writeOperandDeref(I.getOperand(1));
2934 Out << " = ";
2937 if (I.isTailCall()) Out << " /*tail*/ ";
2939 if (!WroteCallee) {
2940 // If this is an indirect call to a struct return function, we need to cast
2941 // the pointer. Ditto for indirect calls with byval arguments.
2942 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
2944 // GCC is a real PITA. It does not permit codegening casts of functions to
2945 // function pointers if they are in a call (it generates a trap instruction
2946 // instead!). We work around this by inserting a cast to void* in between
2947 // the function and the function pointer cast. Unfortunately, we can't just
2948 // form the constant expression here, because the folder will immediately
2949 // nuke it.
2951 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2952 // that void* and function pointers have the same size. :( To deal with this
2953 // in the common case, we handle casts where the number of arguments passed
2954 // match exactly.
2956 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2957 if (CE->isCast())
2958 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2959 NeedsCast = true;
2960 Callee = RF;
2963 if (NeedsCast) {
2964 // Ok, just cast the pointer type.
2965 Out << "((";
2966 if (isStructRet)
2967 printStructReturnPointerFunctionType(Out, PAL,
2968 cast<PointerType>(I.getCalledValue()->getType()));
2969 else if (hasByVal)
2970 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2971 else
2972 printType(Out, I.getCalledValue()->getType());
2973 Out << ")(void*)";
2975 writeOperand(Callee);
2976 if (NeedsCast) Out << ')';
2979 Out << '(';
2981 unsigned NumDeclaredParams = FTy->getNumParams();
2983 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2984 unsigned ArgNo = 0;
2985 if (isStructRet) { // Skip struct return argument.
2986 ++AI;
2987 ++ArgNo;
2990 bool PrintedArg = false;
2991 for (; AI != AE; ++AI, ++ArgNo) {
2992 if (PrintedArg) Out << ", ";
2993 if (ArgNo < NumDeclaredParams &&
2994 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2995 Out << '(';
2996 printType(Out, FTy->getParamType(ArgNo),
2997 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, Attribute::SExt));
2998 Out << ')';
3000 // Check if the argument is expected to be passed by value.
3001 if (I.paramHasAttr(ArgNo+1, Attribute::ByVal))
3002 writeOperandDeref(*AI);
3003 else
3004 writeOperand(*AI);
3005 PrintedArg = true;
3007 Out << ')';
3010 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true
3011 /// if the entire call is handled, return false it it wasn't handled, and
3012 /// optionally set 'WroteCallee' if the callee has already been printed out.
3013 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
3014 bool &WroteCallee) {
3015 switch (ID) {
3016 default: {
3017 // If this is an intrinsic that directly corresponds to a GCC
3018 // builtin, we emit it here.
3019 const char *BuiltinName = "";
3020 Function *F = I.getCalledFunction();
3021 #define GET_GCC_BUILTIN_NAME
3022 #include "llvm/Intrinsics.gen"
3023 #undef GET_GCC_BUILTIN_NAME
3024 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
3026 Out << BuiltinName;
3027 WroteCallee = true;
3028 return false;
3030 case Intrinsic::memory_barrier:
3031 Out << "__sync_synchronize()";
3032 return true;
3033 case Intrinsic::vastart:
3034 Out << "0; ";
3036 Out << "va_start(*(va_list*)";
3037 writeOperand(I.getOperand(1));
3038 Out << ", ";
3039 // Output the last argument to the enclosing function.
3040 if (I.getParent()->getParent()->arg_empty()) {
3041 std::string msg;
3042 raw_string_ostream Msg(msg);
3043 Msg << "The C backend does not currently support zero "
3044 << "argument varargs functions, such as '"
3045 << I.getParent()->getParent()->getName() << "'!";
3046 llvm_report_error(Msg.str());
3048 writeOperand(--I.getParent()->getParent()->arg_end());
3049 Out << ')';
3050 return true;
3051 case Intrinsic::vaend:
3052 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
3053 Out << "0; va_end(*(va_list*)";
3054 writeOperand(I.getOperand(1));
3055 Out << ')';
3056 } else {
3057 Out << "va_end(*(va_list*)0)";
3059 return true;
3060 case Intrinsic::vacopy:
3061 Out << "0; ";
3062 Out << "va_copy(*(va_list*)";
3063 writeOperand(I.getOperand(1));
3064 Out << ", *(va_list*)";
3065 writeOperand(I.getOperand(2));
3066 Out << ')';
3067 return true;
3068 case Intrinsic::returnaddress:
3069 Out << "__builtin_return_address(";
3070 writeOperand(I.getOperand(1));
3071 Out << ')';
3072 return true;
3073 case Intrinsic::frameaddress:
3074 Out << "__builtin_frame_address(";
3075 writeOperand(I.getOperand(1));
3076 Out << ')';
3077 return true;
3078 case Intrinsic::powi:
3079 Out << "__builtin_powi(";
3080 writeOperand(I.getOperand(1));
3081 Out << ", ";
3082 writeOperand(I.getOperand(2));
3083 Out << ')';
3084 return true;
3085 case Intrinsic::setjmp:
3086 Out << "setjmp(*(jmp_buf*)";
3087 writeOperand(I.getOperand(1));
3088 Out << ')';
3089 return true;
3090 case Intrinsic::longjmp:
3091 Out << "longjmp(*(jmp_buf*)";
3092 writeOperand(I.getOperand(1));
3093 Out << ", ";
3094 writeOperand(I.getOperand(2));
3095 Out << ')';
3096 return true;
3097 case Intrinsic::prefetch:
3098 Out << "LLVM_PREFETCH((const void *)";
3099 writeOperand(I.getOperand(1));
3100 Out << ", ";
3101 writeOperand(I.getOperand(2));
3102 Out << ", ";
3103 writeOperand(I.getOperand(3));
3104 Out << ")";
3105 return true;
3106 case Intrinsic::stacksave:
3107 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
3108 // to work around GCC bugs (see PR1809).
3109 Out << "0; *((void**)&" << GetValueName(&I)
3110 << ") = __builtin_stack_save()";
3111 return true;
3112 case Intrinsic::dbg_stoppoint: {
3113 // If we use writeOperand directly we get a "u" suffix which is rejected
3114 // by gcc.
3115 std::stringstream SPIStr;
3116 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3117 SPI.getDirectory()->print(SPIStr);
3118 Out << "\n#line "
3119 << SPI.getLine()
3120 << " \"";
3121 Out << SPIStr.str();
3122 SPIStr.clear();
3123 SPI.getFileName()->print(SPIStr);
3124 Out << SPIStr.str() << "\"\n";
3125 return true;
3127 case Intrinsic::x86_sse_cmp_ss:
3128 case Intrinsic::x86_sse_cmp_ps:
3129 case Intrinsic::x86_sse2_cmp_sd:
3130 case Intrinsic::x86_sse2_cmp_pd:
3131 Out << '(';
3132 printType(Out, I.getType());
3133 Out << ')';
3134 // Multiple GCC builtins multiplex onto this intrinsic.
3135 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
3136 default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
3137 case 0: Out << "__builtin_ia32_cmpeq"; break;
3138 case 1: Out << "__builtin_ia32_cmplt"; break;
3139 case 2: Out << "__builtin_ia32_cmple"; break;
3140 case 3: Out << "__builtin_ia32_cmpunord"; break;
3141 case 4: Out << "__builtin_ia32_cmpneq"; break;
3142 case 5: Out << "__builtin_ia32_cmpnlt"; break;
3143 case 6: Out << "__builtin_ia32_cmpnle"; break;
3144 case 7: Out << "__builtin_ia32_cmpord"; break;
3146 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
3147 Out << 'p';
3148 else
3149 Out << 's';
3150 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
3151 Out << 's';
3152 else
3153 Out << 'd';
3155 Out << "(";
3156 writeOperand(I.getOperand(1));
3157 Out << ", ";
3158 writeOperand(I.getOperand(2));
3159 Out << ")";
3160 return true;
3161 case Intrinsic::ppc_altivec_lvsl:
3162 Out << '(';
3163 printType(Out, I.getType());
3164 Out << ')';
3165 Out << "__builtin_altivec_lvsl(0, (void*)";
3166 writeOperand(I.getOperand(1));
3167 Out << ")";
3168 return true;
3172 //This converts the llvm constraint string to something gcc is expecting.
3173 //TODO: work out platform independent constraints and factor those out
3174 // of the per target tables
3175 // handle multiple constraint codes
3176 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
3178 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
3180 const char *const *table = 0;
3182 // Grab the translation table from TargetAsmInfo if it exists.
3183 if (!TAsm) {
3184 std::string Triple = TheModule->getTargetTriple();
3185 if (Triple.empty())
3186 Triple = llvm::sys::getHostTriple();
3188 std::string E;
3189 const Target *Match = TargetRegistry::lookupTarget(Triple, E);
3190 if (Match) {
3191 // Per platform Target Machines don't exist, so create it;
3192 // this must be done only once.
3193 const TargetMachine* TM = Match->createTargetMachine(Triple, "");
3194 TAsm = TM->getTargetAsmInfo();
3197 if (TAsm)
3198 table = TAsm->getAsmCBE();
3200 // Search the translation table if it exists.
3201 for (int i = 0; table && table[i]; i += 2)
3202 if (c.Codes[0] == table[i])
3203 return table[i+1];
3205 // Default is identity.
3206 return c.Codes[0];
3209 //TODO: import logic from AsmPrinter.cpp
3210 static std::string gccifyAsm(std::string asmstr) {
3211 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
3212 if (asmstr[i] == '\n')
3213 asmstr.replace(i, 1, "\\n");
3214 else if (asmstr[i] == '\t')
3215 asmstr.replace(i, 1, "\\t");
3216 else if (asmstr[i] == '$') {
3217 if (asmstr[i + 1] == '{') {
3218 std::string::size_type a = asmstr.find_first_of(':', i + 1);
3219 std::string::size_type b = asmstr.find_first_of('}', i + 1);
3220 std::string n = "%" +
3221 asmstr.substr(a + 1, b - a - 1) +
3222 asmstr.substr(i + 2, a - i - 2);
3223 asmstr.replace(i, b - i + 1, n);
3224 i += n.size() - 1;
3225 } else
3226 asmstr.replace(i, 1, "%");
3228 else if (asmstr[i] == '%')//grr
3229 { asmstr.replace(i, 1, "%%"); ++i;}
3231 return asmstr;
3234 //TODO: assumptions about what consume arguments from the call are likely wrong
3235 // handle communitivity
3236 void CWriter::visitInlineAsm(CallInst &CI) {
3237 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
3238 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
3240 std::vector<std::pair<Value*, int> > ResultVals;
3241 if (CI.getType() == Type::VoidTy)
3243 else if (const StructType *ST = dyn_cast<StructType>(CI.getType())) {
3244 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i)
3245 ResultVals.push_back(std::make_pair(&CI, (int)i));
3246 } else {
3247 ResultVals.push_back(std::make_pair(&CI, -1));
3250 // Fix up the asm string for gcc and emit it.
3251 Out << "__asm__ volatile (\"" << gccifyAsm(as->getAsmString()) << "\"\n";
3252 Out << " :";
3254 unsigned ValueCount = 0;
3255 bool IsFirst = true;
3257 // Convert over all the output constraints.
3258 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3259 E = Constraints.end(); I != E; ++I) {
3261 if (I->Type != InlineAsm::isOutput) {
3262 ++ValueCount;
3263 continue; // Ignore non-output constraints.
3266 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3267 std::string C = InterpretASMConstraint(*I);
3268 if (C.empty()) continue;
3270 if (!IsFirst) {
3271 Out << ", ";
3272 IsFirst = false;
3275 // Unpack the dest.
3276 Value *DestVal;
3277 int DestValNo = -1;
3279 if (ValueCount < ResultVals.size()) {
3280 DestVal = ResultVals[ValueCount].first;
3281 DestValNo = ResultVals[ValueCount].second;
3282 } else
3283 DestVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3285 if (I->isEarlyClobber)
3286 C = "&"+C;
3288 Out << "\"=" << C << "\"(" << GetValueName(DestVal);
3289 if (DestValNo != -1)
3290 Out << ".field" << DestValNo; // Multiple retvals.
3291 Out << ")";
3292 ++ValueCount;
3296 // Convert over all the input constraints.
3297 Out << "\n :";
3298 IsFirst = true;
3299 ValueCount = 0;
3300 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3301 E = Constraints.end(); I != E; ++I) {
3302 if (I->Type != InlineAsm::isInput) {
3303 ++ValueCount;
3304 continue; // Ignore non-input constraints.
3307 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3308 std::string C = InterpretASMConstraint(*I);
3309 if (C.empty()) continue;
3311 if (!IsFirst) {
3312 Out << ", ";
3313 IsFirst = false;
3316 assert(ValueCount >= ResultVals.size() && "Input can't refer to result");
3317 Value *SrcVal = CI.getOperand(ValueCount-ResultVals.size()+1);
3319 Out << "\"" << C << "\"(";
3320 if (!I->isIndirect)
3321 writeOperand(SrcVal);
3322 else
3323 writeOperandDeref(SrcVal);
3324 Out << ")";
3327 // Convert over the clobber constraints.
3328 IsFirst = true;
3329 ValueCount = 0;
3330 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
3331 E = Constraints.end(); I != E; ++I) {
3332 if (I->Type != InlineAsm::isClobber)
3333 continue; // Ignore non-input constraints.
3335 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
3336 std::string C = InterpretASMConstraint(*I);
3337 if (C.empty()) continue;
3339 if (!IsFirst) {
3340 Out << ", ";
3341 IsFirst = false;
3344 Out << '\"' << C << '"';
3347 Out << ")";
3350 void CWriter::visitMallocInst(MallocInst &I) {
3351 llvm_unreachable("lowerallocations pass didn't work!");
3354 void CWriter::visitAllocaInst(AllocaInst &I) {
3355 Out << '(';
3356 printType(Out, I.getType());
3357 Out << ") alloca(sizeof(";
3358 printType(Out, I.getType()->getElementType());
3359 Out << ')';
3360 if (I.isArrayAllocation()) {
3361 Out << " * " ;
3362 writeOperand(I.getOperand(0));
3364 Out << ')';
3367 void CWriter::visitFreeInst(FreeInst &I) {
3368 llvm_unreachable("lowerallocations pass didn't work!");
3371 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3372 gep_type_iterator E, bool Static) {
3374 // If there are no indices, just print out the pointer.
3375 if (I == E) {
3376 writeOperand(Ptr);
3377 return;
3380 // Find out if the last index is into a vector. If so, we have to print this
3381 // specially. Since vectors can't have elements of indexable type, only the
3382 // last index could possibly be of a vector element.
3383 const VectorType *LastIndexIsVector = 0;
3385 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3386 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
3389 Out << "(";
3391 // If the last index is into a vector, we can't print it as &a[i][j] because
3392 // we can't index into a vector with j in GCC. Instead, emit this as
3393 // (((float*)&a[i])+j)
3394 if (LastIndexIsVector) {
3395 Out << "((";
3396 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3397 Out << ")(";
3400 Out << '&';
3402 // If the first index is 0 (very typical) we can do a number of
3403 // simplifications to clean up the code.
3404 Value *FirstOp = I.getOperand();
3405 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3406 // First index isn't simple, print it the hard way.
3407 writeOperand(Ptr);
3408 } else {
3409 ++I; // Skip the zero index.
3411 // Okay, emit the first operand. If Ptr is something that is already address
3412 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3413 if (isAddressExposed(Ptr)) {
3414 writeOperandInternal(Ptr, Static);
3415 } else if (I != E && isa<StructType>(*I)) {
3416 // If we didn't already emit the first operand, see if we can print it as
3417 // P->f instead of "P[0].f"
3418 writeOperand(Ptr);
3419 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3420 ++I; // eat the struct index as well.
3421 } else {
3422 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3423 Out << "(*";
3424 writeOperand(Ptr);
3425 Out << ")";
3429 for (; I != E; ++I) {
3430 if (isa<StructType>(*I)) {
3431 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3432 } else if (isa<ArrayType>(*I)) {
3433 Out << ".array[";
3434 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3435 Out << ']';
3436 } else if (!isa<VectorType>(*I)) {
3437 Out << '[';
3438 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3439 Out << ']';
3440 } else {
3441 // If the last index is into a vector, then print it out as "+j)". This
3442 // works with the 'LastIndexIsVector' code above.
3443 if (isa<Constant>(I.getOperand()) &&
3444 cast<Constant>(I.getOperand())->isNullValue()) {
3445 Out << "))"; // avoid "+0".
3446 } else {
3447 Out << ")+(";
3448 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3449 Out << "))";
3453 Out << ")";
3456 void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3457 bool IsVolatile, unsigned Alignment) {
3459 bool IsUnaligned = Alignment &&
3460 Alignment < TD->getABITypeAlignment(OperandType);
3462 if (!IsUnaligned)
3463 Out << '*';
3464 if (IsVolatile || IsUnaligned) {
3465 Out << "((";
3466 if (IsUnaligned)
3467 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3468 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3469 if (IsUnaligned) {
3470 Out << "; } ";
3471 if (IsVolatile) Out << "volatile ";
3472 Out << "*";
3474 Out << ")";
3477 writeOperand(Operand);
3479 if (IsVolatile || IsUnaligned) {
3480 Out << ')';
3481 if (IsUnaligned)
3482 Out << "->data";
3486 void CWriter::visitLoadInst(LoadInst &I) {
3487 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3488 I.getAlignment());
3492 void CWriter::visitStoreInst(StoreInst &I) {
3493 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3494 I.isVolatile(), I.getAlignment());
3495 Out << " = ";
3496 Value *Operand = I.getOperand(0);
3497 Constant *BitMask = 0;
3498 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3499 if (!ITy->isPowerOf2ByteWidth())
3500 // We have a bit width that doesn't match an even power-of-2 byte
3501 // size. Consequently we must & the value with the type's bit mask
3502 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3503 if (BitMask)
3504 Out << "((";
3505 writeOperand(Operand);
3506 if (BitMask) {
3507 Out << ") & ";
3508 printConstant(BitMask, false);
3509 Out << ")";
3513 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3514 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3515 gep_type_end(I), false);
3518 void CWriter::visitVAArgInst(VAArgInst &I) {
3519 Out << "va_arg(*(va_list*)";
3520 writeOperand(I.getOperand(0));
3521 Out << ", ";
3522 printType(Out, I.getType());
3523 Out << ");\n ";
3526 void CWriter::visitInsertElementInst(InsertElementInst &I) {
3527 const Type *EltTy = I.getType()->getElementType();
3528 writeOperand(I.getOperand(0));
3529 Out << ";\n ";
3530 Out << "((";
3531 printType(Out, PointerType::getUnqual(EltTy));
3532 Out << ")(&" << GetValueName(&I) << "))[";
3533 writeOperand(I.getOperand(2));
3534 Out << "] = (";
3535 writeOperand(I.getOperand(1));
3536 Out << ")";
3539 void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3540 // We know that our operand is not inlined.
3541 Out << "((";
3542 const Type *EltTy =
3543 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3544 printType(Out, PointerType::getUnqual(EltTy));
3545 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3546 writeOperand(I.getOperand(1));
3547 Out << "]";
3550 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3551 Out << "(";
3552 printType(Out, SVI.getType());
3553 Out << "){ ";
3554 const VectorType *VT = SVI.getType();
3555 unsigned NumElts = VT->getNumElements();
3556 const Type *EltTy = VT->getElementType();
3558 for (unsigned i = 0; i != NumElts; ++i) {
3559 if (i) Out << ", ";
3560 int SrcVal = SVI.getMaskValue(i);
3561 if ((unsigned)SrcVal >= NumElts*2) {
3562 Out << " 0/*undef*/ ";
3563 } else {
3564 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3565 if (isa<Instruction>(Op)) {
3566 // Do an extractelement of this value from the appropriate input.
3567 Out << "((";
3568 printType(Out, PointerType::getUnqual(EltTy));
3569 Out << ")(&" << GetValueName(Op)
3570 << "))[" << (SrcVal & (NumElts-1)) << "]";
3571 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3572 Out << "0";
3573 } else {
3574 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal &
3575 (NumElts-1)),
3576 false);
3580 Out << "}";
3583 void CWriter::visitInsertValueInst(InsertValueInst &IVI) {
3584 // Start by copying the entire aggregate value into the result variable.
3585 writeOperand(IVI.getOperand(0));
3586 Out << ";\n ";
3588 // Then do the insert to update the field.
3589 Out << GetValueName(&IVI);
3590 for (const unsigned *b = IVI.idx_begin(), *i = b, *e = IVI.idx_end();
3591 i != e; ++i) {
3592 const Type *IndexedTy =
3593 ExtractValueInst::getIndexedType(IVI.getOperand(0)->getType(), b, i+1);
3594 if (isa<ArrayType>(IndexedTy))
3595 Out << ".array[" << *i << "]";
3596 else
3597 Out << ".field" << *i;
3599 Out << " = ";
3600 writeOperand(IVI.getOperand(1));
3603 void CWriter::visitExtractValueInst(ExtractValueInst &EVI) {
3604 Out << "(";
3605 if (isa<UndefValue>(EVI.getOperand(0))) {
3606 Out << "(";
3607 printType(Out, EVI.getType());
3608 Out << ") 0/*UNDEF*/";
3609 } else {
3610 Out << GetValueName(EVI.getOperand(0));
3611 for (const unsigned *b = EVI.idx_begin(), *i = b, *e = EVI.idx_end();
3612 i != e; ++i) {
3613 const Type *IndexedTy =
3614 ExtractValueInst::getIndexedType(EVI.getOperand(0)->getType(), b, i+1);
3615 if (isa<ArrayType>(IndexedTy))
3616 Out << ".array[" << *i << "]";
3617 else
3618 Out << ".field" << *i;
3621 Out << ")";
3624 //===----------------------------------------------------------------------===//
3625 // External Interface declaration
3626 //===----------------------------------------------------------------------===//
3628 bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3629 formatted_raw_ostream &o,
3630 CodeGenFileType FileType,
3631 CodeGenOpt::Level OptLevel) {
3632 if (FileType != TargetMachine::AssemblyFile) return true;
3634 PM.add(createGCLoweringPass());
3635 PM.add(createLowerAllocationsPass(true));
3636 PM.add(createLowerInvokePass());
3637 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3638 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3639 PM.add(new CWriter(o));
3640 PM.add(createGCInfoDeleter());
3641 return false;