1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library converts LLVM code to C code, compilable by GCC and other C
13 //===----------------------------------------------------------------------===//
15 #include "CTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/Analysis/ConstantsScanner.h"
30 #include "llvm/Analysis/FindUsedTypes.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/IntrinsicLowering.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Target/TargetAsmInfo.h"
36 #include "llvm/Target/TargetData.h"
37 #include "llvm/Target/TargetRegistry.h"
38 #include "llvm/Support/CallSite.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/FormattedStream.h"
42 #include "llvm/Support/GetElementPtrTypeIterator.h"
43 #include "llvm/Support/InstVisitor.h"
44 #include "llvm/Support/Mangler.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/System/Host.h"
47 #include "llvm/Config/config.h"
52 extern "C" void LLVMInitializeCBackendTarget() {
53 // Register the target.
54 RegisterTargetMachine
<CTargetMachine
> X(TheCBackendTarget
);
58 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
59 /// any unnamed structure types that are used by the program, and merges
60 /// external functions with the same name.
62 class CBackendNameAllUsedStructsAndMergeFunctions
: public ModulePass
{
65 CBackendNameAllUsedStructsAndMergeFunctions()
67 void getAnalysisUsage(AnalysisUsage
&AU
) const {
68 AU
.addRequired
<FindUsedTypes
>();
71 virtual const char *getPassName() const {
72 return "C backend type canonicalizer";
75 virtual bool runOnModule(Module
&M
);
78 char CBackendNameAllUsedStructsAndMergeFunctions::ID
= 0;
80 /// CWriter - This class is the main chunk of code that converts an LLVM
81 /// module to a C translation unit.
82 class CWriter
: public FunctionPass
, public InstVisitor
<CWriter
> {
83 formatted_raw_ostream
&Out
;
84 IntrinsicLowering
*IL
;
87 const Module
*TheModule
;
88 const TargetAsmInfo
* TAsm
;
90 std::map
<const Type
*, std::string
> TypeNames
;
91 std::map
<const ConstantFP
*, unsigned> FPConstantMap
;
92 std::set
<Function
*> intrinsicPrototypesAlreadyGenerated
;
93 std::set
<const Argument
*> ByValParams
;
95 unsigned OpaqueCounter
;
96 DenseMap
<const Value
*, unsigned> AnonValueNumbers
;
97 unsigned NextAnonValueNumber
;
101 explicit CWriter(formatted_raw_ostream
&o
)
102 : FunctionPass(&ID
), Out(o
), IL(0), Mang(0), LI(0),
103 TheModule(0), TAsm(0), TD(0), OpaqueCounter(0), NextAnonValueNumber(0) {
107 virtual const char *getPassName() const { return "C backend"; }
109 void getAnalysisUsage(AnalysisUsage
&AU
) const {
110 AU
.addRequired
<LoopInfo
>();
111 AU
.setPreservesAll();
114 virtual bool doInitialization(Module
&M
);
116 bool runOnFunction(Function
&F
) {
117 // Do not codegen any 'available_externally' functions at all, they have
118 // definitions outside the translation unit.
119 if (F
.hasAvailableExternallyLinkage())
122 LI
= &getAnalysis
<LoopInfo
>();
124 // Get rid of intrinsics we can't handle.
127 // Output all floating point constants that cannot be printed accurately.
128 printFloatingPointConstants(F
);
134 virtual bool doFinalization(Module
&M
) {
139 FPConstantMap
.clear();
142 intrinsicPrototypesAlreadyGenerated
.clear();
146 raw_ostream
&printType(formatted_raw_ostream
&Out
,
148 bool isSigned
= false,
149 const std::string
&VariableName
= "",
150 bool IgnoreName
= false,
151 const AttrListPtr
&PAL
= AttrListPtr());
152 std::ostream
&printType(std::ostream
&Out
, const Type
*Ty
,
153 bool isSigned
= false,
154 const std::string
&VariableName
= "",
155 bool IgnoreName
= false,
156 const AttrListPtr
&PAL
= AttrListPtr());
157 raw_ostream
&printSimpleType(formatted_raw_ostream
&Out
,
160 const std::string
&NameSoFar
= "");
161 std::ostream
&printSimpleType(std::ostream
&Out
, const Type
*Ty
,
163 const std::string
&NameSoFar
= "");
165 void printStructReturnPointerFunctionType(formatted_raw_ostream
&Out
,
166 const AttrListPtr
&PAL
,
167 const PointerType
*Ty
);
169 /// writeOperandDeref - Print the result of dereferencing the specified
170 /// operand with '*'. This is equivalent to printing '*' then using
171 /// writeOperand, but avoids excess syntax in some cases.
172 void writeOperandDeref(Value
*Operand
) {
173 if (isAddressExposed(Operand
)) {
174 // Already something with an address exposed.
175 writeOperandInternal(Operand
);
178 writeOperand(Operand
);
183 void writeOperand(Value
*Operand
, bool Static
= false);
184 void writeInstComputationInline(Instruction
&I
);
185 void writeOperandInternal(Value
*Operand
, bool Static
= false);
186 void writeOperandWithCast(Value
* Operand
, unsigned Opcode
);
187 void writeOperandWithCast(Value
* Operand
, const ICmpInst
&I
);
188 bool writeInstructionCast(const Instruction
&I
);
190 void writeMemoryAccess(Value
*Operand
, const Type
*OperandType
,
191 bool IsVolatile
, unsigned Alignment
);
194 std::string
InterpretASMConstraint(InlineAsm::ConstraintInfo
& c
);
196 void lowerIntrinsics(Function
&F
);
198 void printModule(Module
*M
);
199 void printModuleTypes(const TypeSymbolTable
&ST
);
200 void printContainedStructs(const Type
*Ty
, std::set
<const Type
*> &);
201 void printFloatingPointConstants(Function
&F
);
202 void printFloatingPointConstants(const Constant
*C
);
203 void printFunctionSignature(const Function
*F
, bool Prototype
);
205 void printFunction(Function
&);
206 void printBasicBlock(BasicBlock
*BB
);
207 void printLoop(Loop
*L
);
209 void printCast(unsigned opcode
, const Type
*SrcTy
, const Type
*DstTy
);
210 void printConstant(Constant
*CPV
, bool Static
);
211 void printConstantWithCast(Constant
*CPV
, unsigned Opcode
);
212 bool printConstExprCast(const ConstantExpr
*CE
, bool Static
);
213 void printConstantArray(ConstantArray
*CPA
, bool Static
);
214 void printConstantVector(ConstantVector
*CV
, bool Static
);
216 /// isAddressExposed - Return true if the specified value's name needs to
217 /// have its address taken in order to get a C value of the correct type.
218 /// This happens for global variables, byval parameters, and direct allocas.
219 bool isAddressExposed(const Value
*V
) const {
220 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
221 return ByValParams
.count(A
);
222 return isa
<GlobalVariable
>(V
) || isDirectAlloca(V
);
225 // isInlinableInst - Attempt to inline instructions into their uses to build
226 // trees as much as possible. To do this, we have to consistently decide
227 // what is acceptable to inline, so that variable declarations don't get
228 // printed and an extra copy of the expr is not emitted.
230 static bool isInlinableInst(const Instruction
&I
) {
231 // Always inline cmp instructions, even if they are shared by multiple
232 // expressions. GCC generates horrible code if we don't.
236 // Must be an expression, must be used exactly once. If it is dead, we
237 // emit it inline where it would go.
238 if (I
.getType() == Type::VoidTy
|| !I
.hasOneUse() ||
239 isa
<TerminatorInst
>(I
) || isa
<CallInst
>(I
) || isa
<PHINode
>(I
) ||
240 isa
<LoadInst
>(I
) || isa
<VAArgInst
>(I
) || isa
<InsertElementInst
>(I
) ||
241 isa
<InsertValueInst
>(I
))
242 // Don't inline a load across a store or other bad things!
245 // Must not be used in inline asm, extractelement, or shufflevector.
247 const Instruction
&User
= cast
<Instruction
>(*I
.use_back());
248 if (isInlineAsm(User
) || isa
<ExtractElementInst
>(User
) ||
249 isa
<ShuffleVectorInst
>(User
))
253 // Only inline instruction it if it's use is in the same BB as the inst.
254 return I
.getParent() == cast
<Instruction
>(I
.use_back())->getParent();
257 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
258 // variables which are accessed with the & operator. This causes GCC to
259 // generate significantly better code than to emit alloca calls directly.
261 static const AllocaInst
*isDirectAlloca(const Value
*V
) {
262 const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
);
263 if (!AI
) return false;
264 if (AI
->isArrayAllocation())
265 return 0; // FIXME: we can also inline fixed size array allocas!
266 if (AI
->getParent() != &AI
->getParent()->getParent()->getEntryBlock())
271 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
272 static bool isInlineAsm(const Instruction
& I
) {
273 if (isa
<CallInst
>(&I
) && isa
<InlineAsm
>(I
.getOperand(0)))
278 // Instruction visitation functions
279 friend class InstVisitor
<CWriter
>;
281 void visitReturnInst(ReturnInst
&I
);
282 void visitBranchInst(BranchInst
&I
);
283 void visitSwitchInst(SwitchInst
&I
);
284 void visitInvokeInst(InvokeInst
&I
) {
285 llvm_unreachable("Lowerinvoke pass didn't work!");
288 void visitUnwindInst(UnwindInst
&I
) {
289 llvm_unreachable("Lowerinvoke pass didn't work!");
291 void visitUnreachableInst(UnreachableInst
&I
);
293 void visitPHINode(PHINode
&I
);
294 void visitBinaryOperator(Instruction
&I
);
295 void visitICmpInst(ICmpInst
&I
);
296 void visitFCmpInst(FCmpInst
&I
);
298 void visitCastInst (CastInst
&I
);
299 void visitSelectInst(SelectInst
&I
);
300 void visitCallInst (CallInst
&I
);
301 void visitInlineAsm(CallInst
&I
);
302 bool visitBuiltinCall(CallInst
&I
, Intrinsic::ID ID
, bool &WroteCallee
);
304 void visitMallocInst(MallocInst
&I
);
305 void visitAllocaInst(AllocaInst
&I
);
306 void visitFreeInst (FreeInst
&I
);
307 void visitLoadInst (LoadInst
&I
);
308 void visitStoreInst (StoreInst
&I
);
309 void visitGetElementPtrInst(GetElementPtrInst
&I
);
310 void visitVAArgInst (VAArgInst
&I
);
312 void visitInsertElementInst(InsertElementInst
&I
);
313 void visitExtractElementInst(ExtractElementInst
&I
);
314 void visitShuffleVectorInst(ShuffleVectorInst
&SVI
);
316 void visitInsertValueInst(InsertValueInst
&I
);
317 void visitExtractValueInst(ExtractValueInst
&I
);
319 void visitInstruction(Instruction
&I
) {
321 cerr
<< "C Writer does not know about " << I
;
326 void outputLValue(Instruction
*I
) {
327 Out
<< " " << GetValueName(I
) << " = ";
330 bool isGotoCodeNecessary(BasicBlock
*From
, BasicBlock
*To
);
331 void printPHICopiesForSuccessor(BasicBlock
*CurBlock
,
332 BasicBlock
*Successor
, unsigned Indent
);
333 void printBranchToBlock(BasicBlock
*CurBlock
, BasicBlock
*SuccBlock
,
335 void printGEPExpression(Value
*Ptr
, gep_type_iterator I
,
336 gep_type_iterator E
, bool Static
);
338 std::string
GetValueName(const Value
*Operand
);
342 char CWriter::ID
= 0;
344 /// This method inserts names for any unnamed structure types that are used by
345 /// the program, and removes names from structure types that are not used by the
348 bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module
&M
) {
349 // Get a set of types that are used by the program...
350 std::set
<const Type
*> UT
= getAnalysis
<FindUsedTypes
>().getTypes();
352 // Loop over the module symbol table, removing types from UT that are
353 // already named, and removing names for types that are not used.
355 TypeSymbolTable
&TST
= M
.getTypeSymbolTable();
356 for (TypeSymbolTable::iterator TI
= TST
.begin(), TE
= TST
.end();
358 TypeSymbolTable::iterator I
= TI
++;
360 // If this isn't a struct or array type, remove it from our set of types
361 // to name. This simplifies emission later.
362 if (!isa
<StructType
>(I
->second
) && !isa
<OpaqueType
>(I
->second
) &&
363 !isa
<ArrayType
>(I
->second
)) {
366 // If this is not used, remove it from the symbol table.
367 std::set
<const Type
*>::iterator UTI
= UT
.find(I
->second
);
371 UT
.erase(UTI
); // Only keep one name for this type.
375 // UT now contains types that are not named. Loop over it, naming
378 bool Changed
= false;
379 unsigned RenameCounter
= 0;
380 for (std::set
<const Type
*>::const_iterator I
= UT
.begin(), E
= UT
.end();
382 if (isa
<StructType
>(*I
) || isa
<ArrayType
>(*I
)) {
383 while (M
.addTypeName("unnamed"+utostr(RenameCounter
), *I
))
389 // Loop over all external functions and globals. If we have two with
390 // identical names, merge them.
391 // FIXME: This code should disappear when we don't allow values with the same
392 // names when they have different types!
393 std::map
<std::string
, GlobalValue
*> ExtSymbols
;
394 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
;) {
396 if (GV
->isDeclaration() && GV
->hasName()) {
397 std::pair
<std::map
<std::string
, GlobalValue
*>::iterator
, bool> X
398 = ExtSymbols
.insert(std::make_pair(GV
->getName(), GV
));
400 // Found a conflict, replace this global with the previous one.
401 GlobalValue
*OldGV
= X
.first
->second
;
402 GV
->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV
, GV
->getType()));
403 GV
->eraseFromParent();
408 // Do the same for globals.
409 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
411 GlobalVariable
*GV
= I
++;
412 if (GV
->isDeclaration() && GV
->hasName()) {
413 std::pair
<std::map
<std::string
, GlobalValue
*>::iterator
, bool> X
414 = ExtSymbols
.insert(std::make_pair(GV
->getName(), GV
));
416 // Found a conflict, replace this global with the previous one.
417 GlobalValue
*OldGV
= X
.first
->second
;
418 GV
->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV
, GV
->getType()));
419 GV
->eraseFromParent();
428 /// printStructReturnPointerFunctionType - This is like printType for a struct
429 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
430 /// print it as "Struct (*)(...)", for struct return functions.
431 void CWriter::printStructReturnPointerFunctionType(formatted_raw_ostream
&Out
,
432 const AttrListPtr
&PAL
,
433 const PointerType
*TheTy
) {
434 const FunctionType
*FTy
= cast
<FunctionType
>(TheTy
->getElementType());
435 std::stringstream FunctionInnards
;
436 FunctionInnards
<< " (*) (";
437 bool PrintedType
= false;
439 FunctionType::param_iterator I
= FTy
->param_begin(), E
= FTy
->param_end();
440 const Type
*RetTy
= cast
<PointerType
>(I
->get())->getElementType();
442 for (++I
, ++Idx
; I
!= E
; ++I
, ++Idx
) {
444 FunctionInnards
<< ", ";
445 const Type
*ArgTy
= *I
;
446 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
447 assert(isa
<PointerType
>(ArgTy
));
448 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
450 printType(FunctionInnards
, ArgTy
,
451 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
), "");
454 if (FTy
->isVarArg()) {
456 FunctionInnards
<< ", ...";
457 } else if (!PrintedType
) {
458 FunctionInnards
<< "void";
460 FunctionInnards
<< ')';
461 std::string tstr
= FunctionInnards
.str();
462 printType(Out
, RetTy
,
463 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
), tstr
);
467 CWriter::printSimpleType(formatted_raw_ostream
&Out
, const Type
*Ty
,
469 const std::string
&NameSoFar
) {
470 assert((Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) &&
471 "Invalid type for printSimpleType");
472 switch (Ty
->getTypeID()) {
473 case Type::VoidTyID
: return Out
<< "void " << NameSoFar
;
474 case Type::IntegerTyID
: {
475 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth();
477 return Out
<< "bool " << NameSoFar
;
478 else if (NumBits
<= 8)
479 return Out
<< (isSigned
?"signed":"unsigned") << " char " << NameSoFar
;
480 else if (NumBits
<= 16)
481 return Out
<< (isSigned
?"signed":"unsigned") << " short " << NameSoFar
;
482 else if (NumBits
<= 32)
483 return Out
<< (isSigned
?"signed":"unsigned") << " int " << NameSoFar
;
484 else if (NumBits
<= 64)
485 return Out
<< (isSigned
?"signed":"unsigned") << " long long "<< NameSoFar
;
487 assert(NumBits
<= 128 && "Bit widths > 128 not implemented yet");
488 return Out
<< (isSigned
?"llvmInt128":"llvmUInt128") << " " << NameSoFar
;
491 case Type::FloatTyID
: return Out
<< "float " << NameSoFar
;
492 case Type::DoubleTyID
: return Out
<< "double " << NameSoFar
;
493 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
494 // present matches host 'long double'.
495 case Type::X86_FP80TyID
:
496 case Type::PPC_FP128TyID
:
497 case Type::FP128TyID
: return Out
<< "long double " << NameSoFar
;
499 case Type::VectorTyID
: {
500 const VectorType
*VTy
= cast
<VectorType
>(Ty
);
501 return printSimpleType(Out
, VTy
->getElementType(), isSigned
,
502 " __attribute__((vector_size(" +
503 utostr(TD
->getTypeAllocSize(VTy
)) + " ))) " + NameSoFar
);
508 cerr
<< "Unknown primitive type: " << *Ty
<< "\n";
515 CWriter::printSimpleType(std::ostream
&Out
, const Type
*Ty
, bool isSigned
,
516 const std::string
&NameSoFar
) {
517 assert((Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) &&
518 "Invalid type for printSimpleType");
519 switch (Ty
->getTypeID()) {
520 case Type::VoidTyID
: return Out
<< "void " << NameSoFar
;
521 case Type::IntegerTyID
: {
522 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth();
524 return Out
<< "bool " << NameSoFar
;
525 else if (NumBits
<= 8)
526 return Out
<< (isSigned
?"signed":"unsigned") << " char " << NameSoFar
;
527 else if (NumBits
<= 16)
528 return Out
<< (isSigned
?"signed":"unsigned") << " short " << NameSoFar
;
529 else if (NumBits
<= 32)
530 return Out
<< (isSigned
?"signed":"unsigned") << " int " << NameSoFar
;
531 else if (NumBits
<= 64)
532 return Out
<< (isSigned
?"signed":"unsigned") << " long long "<< NameSoFar
;
534 assert(NumBits
<= 128 && "Bit widths > 128 not implemented yet");
535 return Out
<< (isSigned
?"llvmInt128":"llvmUInt128") << " " << NameSoFar
;
538 case Type::FloatTyID
: return Out
<< "float " << NameSoFar
;
539 case Type::DoubleTyID
: return Out
<< "double " << NameSoFar
;
540 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
541 // present matches host 'long double'.
542 case Type::X86_FP80TyID
:
543 case Type::PPC_FP128TyID
:
544 case Type::FP128TyID
: return Out
<< "long double " << NameSoFar
;
546 case Type::VectorTyID
: {
547 const VectorType
*VTy
= cast
<VectorType
>(Ty
);
548 return printSimpleType(Out
, VTy
->getElementType(), isSigned
,
549 " __attribute__((vector_size(" +
550 utostr(TD
->getTypeAllocSize(VTy
)) + " ))) " + NameSoFar
);
555 cerr
<< "Unknown primitive type: " << *Ty
<< "\n";
561 // Pass the Type* and the variable name and this prints out the variable
564 raw_ostream
&CWriter::printType(formatted_raw_ostream
&Out
,
566 bool isSigned
, const std::string
&NameSoFar
,
567 bool IgnoreName
, const AttrListPtr
&PAL
) {
568 if (Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) {
569 printSimpleType(Out
, Ty
, isSigned
, NameSoFar
);
573 // Check to see if the type is named.
574 if (!IgnoreName
|| isa
<OpaqueType
>(Ty
)) {
575 std::map
<const Type
*, std::string
>::iterator I
= TypeNames
.find(Ty
);
576 if (I
!= TypeNames
.end()) return Out
<< I
->second
<< ' ' << NameSoFar
;
579 switch (Ty
->getTypeID()) {
580 case Type::FunctionTyID
: {
581 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
582 std::stringstream FunctionInnards
;
583 FunctionInnards
<< " (" << NameSoFar
<< ") (";
585 for (FunctionType::param_iterator I
= FTy
->param_begin(),
586 E
= FTy
->param_end(); I
!= E
; ++I
) {
587 const Type
*ArgTy
= *I
;
588 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
589 assert(isa
<PointerType
>(ArgTy
));
590 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
592 if (I
!= FTy
->param_begin())
593 FunctionInnards
<< ", ";
594 printType(FunctionInnards
, ArgTy
,
595 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
), "");
598 if (FTy
->isVarArg()) {
599 if (FTy
->getNumParams())
600 FunctionInnards
<< ", ...";
601 } else if (!FTy
->getNumParams()) {
602 FunctionInnards
<< "void";
604 FunctionInnards
<< ')';
605 std::string tstr
= FunctionInnards
.str();
606 printType(Out
, FTy
->getReturnType(),
607 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
), tstr
);
610 case Type::StructTyID
: {
611 const StructType
*STy
= cast
<StructType
>(Ty
);
612 Out
<< NameSoFar
+ " {\n";
614 for (StructType::element_iterator I
= STy
->element_begin(),
615 E
= STy
->element_end(); I
!= E
; ++I
) {
617 printType(Out
, *I
, false, "field" + utostr(Idx
++));
622 Out
<< " __attribute__ ((packed))";
626 case Type::PointerTyID
: {
627 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
628 std::string ptrName
= "*" + NameSoFar
;
630 if (isa
<ArrayType
>(PTy
->getElementType()) ||
631 isa
<VectorType
>(PTy
->getElementType()))
632 ptrName
= "(" + ptrName
+ ")";
635 // Must be a function ptr cast!
636 return printType(Out
, PTy
->getElementType(), false, ptrName
, true, PAL
);
637 return printType(Out
, PTy
->getElementType(), false, ptrName
);
640 case Type::ArrayTyID
: {
641 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
642 unsigned NumElements
= ATy
->getNumElements();
643 if (NumElements
== 0) NumElements
= 1;
644 // Arrays are wrapped in structs to allow them to have normal
645 // value semantics (avoiding the array "decay").
646 Out
<< NameSoFar
<< " { ";
647 printType(Out
, ATy
->getElementType(), false,
648 "array[" + utostr(NumElements
) + "]");
652 case Type::OpaqueTyID
: {
653 std::string TyName
= "struct opaque_" + itostr(OpaqueCounter
++);
654 assert(TypeNames
.find(Ty
) == TypeNames
.end());
655 TypeNames
[Ty
] = TyName
;
656 return Out
<< TyName
<< ' ' << NameSoFar
;
659 llvm_unreachable("Unhandled case in getTypeProps!");
665 // Pass the Type* and the variable name and this prints out the variable
668 std::ostream
&CWriter::printType(std::ostream
&Out
, const Type
*Ty
,
669 bool isSigned
, const std::string
&NameSoFar
,
670 bool IgnoreName
, const AttrListPtr
&PAL
) {
671 if (Ty
->isPrimitiveType() || Ty
->isInteger() || isa
<VectorType
>(Ty
)) {
672 printSimpleType(Out
, Ty
, isSigned
, NameSoFar
);
676 // Check to see if the type is named.
677 if (!IgnoreName
|| isa
<OpaqueType
>(Ty
)) {
678 std::map
<const Type
*, std::string
>::iterator I
= TypeNames
.find(Ty
);
679 if (I
!= TypeNames
.end()) return Out
<< I
->second
<< ' ' << NameSoFar
;
682 switch (Ty
->getTypeID()) {
683 case Type::FunctionTyID
: {
684 const FunctionType
*FTy
= cast
<FunctionType
>(Ty
);
685 std::stringstream FunctionInnards
;
686 FunctionInnards
<< " (" << NameSoFar
<< ") (";
688 for (FunctionType::param_iterator I
= FTy
->param_begin(),
689 E
= FTy
->param_end(); I
!= E
; ++I
) {
690 const Type
*ArgTy
= *I
;
691 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
692 assert(isa
<PointerType
>(ArgTy
));
693 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
695 if (I
!= FTy
->param_begin())
696 FunctionInnards
<< ", ";
697 printType(FunctionInnards
, ArgTy
,
698 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
), "");
701 if (FTy
->isVarArg()) {
702 if (FTy
->getNumParams())
703 FunctionInnards
<< ", ...";
704 } else if (!FTy
->getNumParams()) {
705 FunctionInnards
<< "void";
707 FunctionInnards
<< ')';
708 std::string tstr
= FunctionInnards
.str();
709 printType(Out
, FTy
->getReturnType(),
710 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
), tstr
);
713 case Type::StructTyID
: {
714 const StructType
*STy
= cast
<StructType
>(Ty
);
715 Out
<< NameSoFar
+ " {\n";
717 for (StructType::element_iterator I
= STy
->element_begin(),
718 E
= STy
->element_end(); I
!= E
; ++I
) {
720 printType(Out
, *I
, false, "field" + utostr(Idx
++));
725 Out
<< " __attribute__ ((packed))";
729 case Type::PointerTyID
: {
730 const PointerType
*PTy
= cast
<PointerType
>(Ty
);
731 std::string ptrName
= "*" + NameSoFar
;
733 if (isa
<ArrayType
>(PTy
->getElementType()) ||
734 isa
<VectorType
>(PTy
->getElementType()))
735 ptrName
= "(" + ptrName
+ ")";
738 // Must be a function ptr cast!
739 return printType(Out
, PTy
->getElementType(), false, ptrName
, true, PAL
);
740 return printType(Out
, PTy
->getElementType(), false, ptrName
);
743 case Type::ArrayTyID
: {
744 const ArrayType
*ATy
= cast
<ArrayType
>(Ty
);
745 unsigned NumElements
= ATy
->getNumElements();
746 if (NumElements
== 0) NumElements
= 1;
747 // Arrays are wrapped in structs to allow them to have normal
748 // value semantics (avoiding the array "decay").
749 Out
<< NameSoFar
<< " { ";
750 printType(Out
, ATy
->getElementType(), false,
751 "array[" + utostr(NumElements
) + "]");
755 case Type::OpaqueTyID
: {
756 std::string TyName
= "struct opaque_" + itostr(OpaqueCounter
++);
757 assert(TypeNames
.find(Ty
) == TypeNames
.end());
758 TypeNames
[Ty
] = TyName
;
759 return Out
<< TyName
<< ' ' << NameSoFar
;
762 llvm_unreachable("Unhandled case in getTypeProps!");
768 void CWriter::printConstantArray(ConstantArray
*CPA
, bool Static
) {
770 // As a special case, print the array as a string if it is an array of
771 // ubytes or an array of sbytes with positive values.
773 const Type
*ETy
= CPA
->getType()->getElementType();
774 bool isString
= (ETy
== Type::Int8Ty
|| ETy
== Type::Int8Ty
);
776 // Make sure the last character is a null char, as automatically added by C
777 if (isString
&& (CPA
->getNumOperands() == 0 ||
778 !cast
<Constant
>(*(CPA
->op_end()-1))->isNullValue()))
783 // Keep track of whether the last number was a hexadecimal escape
784 bool LastWasHex
= false;
786 // Do not include the last character, which we know is null
787 for (unsigned i
= 0, e
= CPA
->getNumOperands()-1; i
!= e
; ++i
) {
788 unsigned char C
= cast
<ConstantInt
>(CPA
->getOperand(i
))->getZExtValue();
790 // Print it out literally if it is a printable character. The only thing
791 // to be careful about is when the last letter output was a hex escape
792 // code, in which case we have to be careful not to print out hex digits
793 // explicitly (the C compiler thinks it is a continuation of the previous
794 // character, sheesh...)
796 if (isprint(C
) && (!LastWasHex
|| !isxdigit(C
))) {
798 if (C
== '"' || C
== '\\')
799 Out
<< "\\" << (char)C
;
805 case '\n': Out
<< "\\n"; break;
806 case '\t': Out
<< "\\t"; break;
807 case '\r': Out
<< "\\r"; break;
808 case '\v': Out
<< "\\v"; break;
809 case '\a': Out
<< "\\a"; break;
810 case '\"': Out
<< "\\\""; break;
811 case '\'': Out
<< "\\\'"; break;
814 Out
<< (char)(( C
/16 < 10) ? ( C
/16 +'0') : ( C
/16 -10+'A'));
815 Out
<< (char)(((C
&15) < 10) ? ((C
&15)+'0') : ((C
&15)-10+'A'));
824 if (CPA
->getNumOperands()) {
826 printConstant(cast
<Constant
>(CPA
->getOperand(0)), Static
);
827 for (unsigned i
= 1, e
= CPA
->getNumOperands(); i
!= e
; ++i
) {
829 printConstant(cast
<Constant
>(CPA
->getOperand(i
)), Static
);
836 void CWriter::printConstantVector(ConstantVector
*CP
, bool Static
) {
838 if (CP
->getNumOperands()) {
840 printConstant(cast
<Constant
>(CP
->getOperand(0)), Static
);
841 for (unsigned i
= 1, e
= CP
->getNumOperands(); i
!= e
; ++i
) {
843 printConstant(cast
<Constant
>(CP
->getOperand(i
)), Static
);
849 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
850 // textually as a double (rather than as a reference to a stack-allocated
851 // variable). We decide this by converting CFP to a string and back into a
852 // double, and then checking whether the conversion results in a bit-equal
853 // double to the original value of CFP. This depends on us and the target C
854 // compiler agreeing on the conversion process (which is pretty likely since we
855 // only deal in IEEE FP).
857 static bool isFPCSafeToPrint(const ConstantFP
*CFP
) {
859 // Do long doubles in hex for now.
860 if (CFP
->getType() != Type::FloatTy
&& CFP
->getType() != Type::DoubleTy
)
862 APFloat APF
= APFloat(CFP
->getValueAPF()); // copy
863 if (CFP
->getType() == Type::FloatTy
)
864 APF
.convert(APFloat::IEEEdouble
, APFloat::rmNearestTiesToEven
, &ignored
);
865 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
867 sprintf(Buffer
, "%a", APF
.convertToDouble());
868 if (!strncmp(Buffer
, "0x", 2) ||
869 !strncmp(Buffer
, "-0x", 3) ||
870 !strncmp(Buffer
, "+0x", 3))
871 return APF
.bitwiseIsEqual(APFloat(atof(Buffer
)));
874 std::string StrVal
= ftostr(APF
);
876 while (StrVal
[0] == ' ')
877 StrVal
.erase(StrVal
.begin());
879 // Check to make sure that the stringized number is not some string like "Inf"
880 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
881 if ((StrVal
[0] >= '0' && StrVal
[0] <= '9') ||
882 ((StrVal
[0] == '-' || StrVal
[0] == '+') &&
883 (StrVal
[1] >= '0' && StrVal
[1] <= '9')))
884 // Reparse stringized version!
885 return APF
.bitwiseIsEqual(APFloat(atof(StrVal
.c_str())));
890 /// Print out the casting for a cast operation. This does the double casting
891 /// necessary for conversion to the destination type, if necessary.
892 /// @brief Print a cast
893 void CWriter::printCast(unsigned opc
, const Type
*SrcTy
, const Type
*DstTy
) {
894 // Print the destination type cast
896 case Instruction::UIToFP
:
897 case Instruction::SIToFP
:
898 case Instruction::IntToPtr
:
899 case Instruction::Trunc
:
900 case Instruction::BitCast
:
901 case Instruction::FPExt
:
902 case Instruction::FPTrunc
: // For these the DstTy sign doesn't matter
904 printType(Out
, DstTy
);
907 case Instruction::ZExt
:
908 case Instruction::PtrToInt
:
909 case Instruction::FPToUI
: // For these, make sure we get an unsigned dest
911 printSimpleType(Out
, DstTy
, false);
914 case Instruction::SExt
:
915 case Instruction::FPToSI
: // For these, make sure we get a signed dest
917 printSimpleType(Out
, DstTy
, true);
921 llvm_unreachable("Invalid cast opcode");
924 // Print the source type cast
926 case Instruction::UIToFP
:
927 case Instruction::ZExt
:
929 printSimpleType(Out
, SrcTy
, false);
932 case Instruction::SIToFP
:
933 case Instruction::SExt
:
935 printSimpleType(Out
, SrcTy
, true);
938 case Instruction::IntToPtr
:
939 case Instruction::PtrToInt
:
940 // Avoid "cast to pointer from integer of different size" warnings
941 Out
<< "(unsigned long)";
943 case Instruction::Trunc
:
944 case Instruction::BitCast
:
945 case Instruction::FPExt
:
946 case Instruction::FPTrunc
:
947 case Instruction::FPToSI
:
948 case Instruction::FPToUI
:
949 break; // These don't need a source cast.
951 llvm_unreachable("Invalid cast opcode");
956 // printConstant - The LLVM Constant to C Constant converter.
957 void CWriter::printConstant(Constant
*CPV
, bool Static
) {
958 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(CPV
)) {
959 switch (CE
->getOpcode()) {
960 case Instruction::Trunc
:
961 case Instruction::ZExt
:
962 case Instruction::SExt
:
963 case Instruction::FPTrunc
:
964 case Instruction::FPExt
:
965 case Instruction::UIToFP
:
966 case Instruction::SIToFP
:
967 case Instruction::FPToUI
:
968 case Instruction::FPToSI
:
969 case Instruction::PtrToInt
:
970 case Instruction::IntToPtr
:
971 case Instruction::BitCast
:
973 printCast(CE
->getOpcode(), CE
->getOperand(0)->getType(), CE
->getType());
974 if (CE
->getOpcode() == Instruction::SExt
&&
975 CE
->getOperand(0)->getType() == Type::Int1Ty
) {
976 // Make sure we really sext from bool here by subtracting from 0
979 printConstant(CE
->getOperand(0), Static
);
980 if (CE
->getType() == Type::Int1Ty
&&
981 (CE
->getOpcode() == Instruction::Trunc
||
982 CE
->getOpcode() == Instruction::FPToUI
||
983 CE
->getOpcode() == Instruction::FPToSI
||
984 CE
->getOpcode() == Instruction::PtrToInt
)) {
985 // Make sure we really truncate to bool here by anding with 1
991 case Instruction::GetElementPtr
:
993 printGEPExpression(CE
->getOperand(0), gep_type_begin(CPV
),
994 gep_type_end(CPV
), Static
);
997 case Instruction::Select
:
999 printConstant(CE
->getOperand(0), Static
);
1001 printConstant(CE
->getOperand(1), Static
);
1003 printConstant(CE
->getOperand(2), Static
);
1006 case Instruction::Add
:
1007 case Instruction::FAdd
:
1008 case Instruction::Sub
:
1009 case Instruction::FSub
:
1010 case Instruction::Mul
:
1011 case Instruction::FMul
:
1012 case Instruction::SDiv
:
1013 case Instruction::UDiv
:
1014 case Instruction::FDiv
:
1015 case Instruction::URem
:
1016 case Instruction::SRem
:
1017 case Instruction::FRem
:
1018 case Instruction::And
:
1019 case Instruction::Or
:
1020 case Instruction::Xor
:
1021 case Instruction::ICmp
:
1022 case Instruction::Shl
:
1023 case Instruction::LShr
:
1024 case Instruction::AShr
:
1027 bool NeedsClosingParens
= printConstExprCast(CE
, Static
);
1028 printConstantWithCast(CE
->getOperand(0), CE
->getOpcode());
1029 switch (CE
->getOpcode()) {
1030 case Instruction::Add
:
1031 case Instruction::FAdd
: Out
<< " + "; break;
1032 case Instruction::Sub
:
1033 case Instruction::FSub
: Out
<< " - "; break;
1034 case Instruction::Mul
:
1035 case Instruction::FMul
: Out
<< " * "; break;
1036 case Instruction::URem
:
1037 case Instruction::SRem
:
1038 case Instruction::FRem
: Out
<< " % "; break;
1039 case Instruction::UDiv
:
1040 case Instruction::SDiv
:
1041 case Instruction::FDiv
: Out
<< " / "; break;
1042 case Instruction::And
: Out
<< " & "; break;
1043 case Instruction::Or
: Out
<< " | "; break;
1044 case Instruction::Xor
: Out
<< " ^ "; break;
1045 case Instruction::Shl
: Out
<< " << "; break;
1046 case Instruction::LShr
:
1047 case Instruction::AShr
: Out
<< " >> "; break;
1048 case Instruction::ICmp
:
1049 switch (CE
->getPredicate()) {
1050 case ICmpInst::ICMP_EQ
: Out
<< " == "; break;
1051 case ICmpInst::ICMP_NE
: Out
<< " != "; break;
1052 case ICmpInst::ICMP_SLT
:
1053 case ICmpInst::ICMP_ULT
: Out
<< " < "; break;
1054 case ICmpInst::ICMP_SLE
:
1055 case ICmpInst::ICMP_ULE
: Out
<< " <= "; break;
1056 case ICmpInst::ICMP_SGT
:
1057 case ICmpInst::ICMP_UGT
: Out
<< " > "; break;
1058 case ICmpInst::ICMP_SGE
:
1059 case ICmpInst::ICMP_UGE
: Out
<< " >= "; break;
1060 default: llvm_unreachable("Illegal ICmp predicate");
1063 default: llvm_unreachable("Illegal opcode here!");
1065 printConstantWithCast(CE
->getOperand(1), CE
->getOpcode());
1066 if (NeedsClosingParens
)
1071 case Instruction::FCmp
: {
1073 bool NeedsClosingParens
= printConstExprCast(CE
, Static
);
1074 if (CE
->getPredicate() == FCmpInst::FCMP_FALSE
)
1076 else if (CE
->getPredicate() == FCmpInst::FCMP_TRUE
)
1080 switch (CE
->getPredicate()) {
1081 default: llvm_unreachable("Illegal FCmp predicate");
1082 case FCmpInst::FCMP_ORD
: op
= "ord"; break;
1083 case FCmpInst::FCMP_UNO
: op
= "uno"; break;
1084 case FCmpInst::FCMP_UEQ
: op
= "ueq"; break;
1085 case FCmpInst::FCMP_UNE
: op
= "une"; break;
1086 case FCmpInst::FCMP_ULT
: op
= "ult"; break;
1087 case FCmpInst::FCMP_ULE
: op
= "ule"; break;
1088 case FCmpInst::FCMP_UGT
: op
= "ugt"; break;
1089 case FCmpInst::FCMP_UGE
: op
= "uge"; break;
1090 case FCmpInst::FCMP_OEQ
: op
= "oeq"; break;
1091 case FCmpInst::FCMP_ONE
: op
= "one"; break;
1092 case FCmpInst::FCMP_OLT
: op
= "olt"; break;
1093 case FCmpInst::FCMP_OLE
: op
= "ole"; break;
1094 case FCmpInst::FCMP_OGT
: op
= "ogt"; break;
1095 case FCmpInst::FCMP_OGE
: op
= "oge"; break;
1097 Out
<< "llvm_fcmp_" << op
<< "(";
1098 printConstantWithCast(CE
->getOperand(0), CE
->getOpcode());
1100 printConstantWithCast(CE
->getOperand(1), CE
->getOpcode());
1103 if (NeedsClosingParens
)
1110 cerr
<< "CWriter Error: Unhandled constant expression: "
1113 llvm_unreachable(0);
1115 } else if (isa
<UndefValue
>(CPV
) && CPV
->getType()->isSingleValueType()) {
1117 printType(Out
, CPV
->getType()); // sign doesn't matter
1118 Out
<< ")/*UNDEF*/";
1119 if (!isa
<VectorType
>(CPV
->getType())) {
1127 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(CPV
)) {
1128 const Type
* Ty
= CI
->getType();
1129 if (Ty
== Type::Int1Ty
)
1130 Out
<< (CI
->getZExtValue() ? '1' : '0');
1131 else if (Ty
== Type::Int32Ty
)
1132 Out
<< CI
->getZExtValue() << 'u';
1133 else if (Ty
->getPrimitiveSizeInBits() > 32)
1134 Out
<< CI
->getZExtValue() << "ull";
1137 printSimpleType(Out
, Ty
, false) << ')';
1138 if (CI
->isMinValue(true))
1139 Out
<< CI
->getZExtValue() << 'u';
1141 Out
<< CI
->getSExtValue();
1147 switch (CPV
->getType()->getTypeID()) {
1148 case Type::FloatTyID
:
1149 case Type::DoubleTyID
:
1150 case Type::X86_FP80TyID
:
1151 case Type::PPC_FP128TyID
:
1152 case Type::FP128TyID
: {
1153 ConstantFP
*FPC
= cast
<ConstantFP
>(CPV
);
1154 std::map
<const ConstantFP
*, unsigned>::iterator I
= FPConstantMap
.find(FPC
);
1155 if (I
!= FPConstantMap
.end()) {
1156 // Because of FP precision problems we must load from a stack allocated
1157 // value that holds the value in hex.
1158 Out
<< "(*(" << (FPC
->getType() == Type::FloatTy
? "float" :
1159 FPC
->getType() == Type::DoubleTy
? "double" :
1161 << "*)&FPConstant" << I
->second
<< ')';
1164 if (FPC
->getType() == Type::FloatTy
)
1165 V
= FPC
->getValueAPF().convertToFloat();
1166 else if (FPC
->getType() == Type::DoubleTy
)
1167 V
= FPC
->getValueAPF().convertToDouble();
1169 // Long double. Convert the number to double, discarding precision.
1170 // This is not awesome, but it at least makes the CBE output somewhat
1172 APFloat Tmp
= FPC
->getValueAPF();
1174 Tmp
.convert(APFloat::IEEEdouble
, APFloat::rmTowardZero
, &LosesInfo
);
1175 V
= Tmp
.convertToDouble();
1181 // FIXME the actual NaN bits should be emitted.
1182 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
1184 const unsigned long QuietNaN
= 0x7ff8UL
;
1185 //const unsigned long SignalNaN = 0x7ff4UL;
1187 // We need to grab the first part of the FP #
1190 uint64_t ll
= DoubleToBits(V
);
1191 sprintf(Buffer
, "0x%llx", static_cast<long long>(ll
));
1193 std::string
Num(&Buffer
[0], &Buffer
[6]);
1194 unsigned long Val
= strtoul(Num
.c_str(), 0, 16);
1196 if (FPC
->getType() == Type::FloatTy
)
1197 Out
<< "LLVM_NAN" << (Val
== QuietNaN
? "" : "S") << "F(\""
1198 << Buffer
<< "\") /*nan*/ ";
1200 Out
<< "LLVM_NAN" << (Val
== QuietNaN
? "" : "S") << "(\""
1201 << Buffer
<< "\") /*nan*/ ";
1202 } else if (IsInf(V
)) {
1204 if (V
< 0) Out
<< '-';
1205 Out
<< "LLVM_INF" << (FPC
->getType() == Type::FloatTy
? "F" : "")
1209 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1210 // Print out the constant as a floating point number.
1212 sprintf(Buffer
, "%a", V
);
1215 Num
= ftostr(FPC
->getValueAPF());
1223 case Type::ArrayTyID
:
1224 // Use C99 compound expression literal initializer syntax.
1227 printType(Out
, CPV
->getType());
1230 Out
<< "{ "; // Arrays are wrapped in struct types.
1231 if (ConstantArray
*CA
= dyn_cast
<ConstantArray
>(CPV
)) {
1232 printConstantArray(CA
, Static
);
1234 assert(isa
<ConstantAggregateZero
>(CPV
) || isa
<UndefValue
>(CPV
));
1235 const ArrayType
*AT
= cast
<ArrayType
>(CPV
->getType());
1237 if (AT
->getNumElements()) {
1239 Constant
*CZ
= Constant::getNullValue(AT
->getElementType());
1240 printConstant(CZ
, Static
);
1241 for (unsigned i
= 1, e
= AT
->getNumElements(); i
!= e
; ++i
) {
1243 printConstant(CZ
, Static
);
1248 Out
<< " }"; // Arrays are wrapped in struct types.
1251 case Type::VectorTyID
:
1252 // Use C99 compound expression literal initializer syntax.
1255 printType(Out
, CPV
->getType());
1258 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(CPV
)) {
1259 printConstantVector(CV
, Static
);
1261 assert(isa
<ConstantAggregateZero
>(CPV
) || isa
<UndefValue
>(CPV
));
1262 const VectorType
*VT
= cast
<VectorType
>(CPV
->getType());
1264 Constant
*CZ
= Constant::getNullValue(VT
->getElementType());
1265 printConstant(CZ
, Static
);
1266 for (unsigned i
= 1, e
= VT
->getNumElements(); i
!= e
; ++i
) {
1268 printConstant(CZ
, Static
);
1274 case Type::StructTyID
:
1275 // Use C99 compound expression literal initializer syntax.
1278 printType(Out
, CPV
->getType());
1281 if (isa
<ConstantAggregateZero
>(CPV
) || isa
<UndefValue
>(CPV
)) {
1282 const StructType
*ST
= cast
<StructType
>(CPV
->getType());
1284 if (ST
->getNumElements()) {
1286 printConstant(Constant::getNullValue(ST
->getElementType(0)), Static
);
1287 for (unsigned i
= 1, e
= ST
->getNumElements(); i
!= e
; ++i
) {
1289 printConstant(Constant::getNullValue(ST
->getElementType(i
)), Static
);
1295 if (CPV
->getNumOperands()) {
1297 printConstant(cast
<Constant
>(CPV
->getOperand(0)), Static
);
1298 for (unsigned i
= 1, e
= CPV
->getNumOperands(); i
!= e
; ++i
) {
1300 printConstant(cast
<Constant
>(CPV
->getOperand(i
)), Static
);
1307 case Type::PointerTyID
:
1308 if (isa
<ConstantPointerNull
>(CPV
)) {
1310 printType(Out
, CPV
->getType()); // sign doesn't matter
1311 Out
<< ")/*NULL*/0)";
1313 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(CPV
)) {
1314 writeOperand(GV
, Static
);
1320 cerr
<< "Unknown constant type: " << *CPV
<< "\n";
1322 llvm_unreachable(0);
1326 // Some constant expressions need to be casted back to the original types
1327 // because their operands were casted to the expected type. This function takes
1328 // care of detecting that case and printing the cast for the ConstantExpr.
1329 bool CWriter::printConstExprCast(const ConstantExpr
* CE
, bool Static
) {
1330 bool NeedsExplicitCast
= false;
1331 const Type
*Ty
= CE
->getOperand(0)->getType();
1332 bool TypeIsSigned
= false;
1333 switch (CE
->getOpcode()) {
1334 case Instruction::Add
:
1335 case Instruction::Sub
:
1336 case Instruction::Mul
:
1337 // We need to cast integer arithmetic so that it is always performed
1338 // as unsigned, to avoid undefined behavior on overflow.
1339 case Instruction::LShr
:
1340 case Instruction::URem
:
1341 case Instruction::UDiv
: NeedsExplicitCast
= true; break;
1342 case Instruction::AShr
:
1343 case Instruction::SRem
:
1344 case Instruction::SDiv
: NeedsExplicitCast
= true; TypeIsSigned
= true; break;
1345 case Instruction::SExt
:
1347 NeedsExplicitCast
= true;
1348 TypeIsSigned
= true;
1350 case Instruction::ZExt
:
1351 case Instruction::Trunc
:
1352 case Instruction::FPTrunc
:
1353 case Instruction::FPExt
:
1354 case Instruction::UIToFP
:
1355 case Instruction::SIToFP
:
1356 case Instruction::FPToUI
:
1357 case Instruction::FPToSI
:
1358 case Instruction::PtrToInt
:
1359 case Instruction::IntToPtr
:
1360 case Instruction::BitCast
:
1362 NeedsExplicitCast
= true;
1366 if (NeedsExplicitCast
) {
1368 if (Ty
->isInteger() && Ty
!= Type::Int1Ty
)
1369 printSimpleType(Out
, Ty
, TypeIsSigned
);
1371 printType(Out
, Ty
); // not integer, sign doesn't matter
1374 return NeedsExplicitCast
;
1377 // Print a constant assuming that it is the operand for a given Opcode. The
1378 // opcodes that care about sign need to cast their operands to the expected
1379 // type before the operation proceeds. This function does the casting.
1380 void CWriter::printConstantWithCast(Constant
* CPV
, unsigned Opcode
) {
1382 // Extract the operand's type, we'll need it.
1383 const Type
* OpTy
= CPV
->getType();
1385 // Indicate whether to do the cast or not.
1386 bool shouldCast
= false;
1387 bool typeIsSigned
= false;
1389 // Based on the Opcode for which this Constant is being written, determine
1390 // the new type to which the operand should be casted by setting the value
1391 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1395 // for most instructions, it doesn't matter
1397 case Instruction::Add
:
1398 case Instruction::Sub
:
1399 case Instruction::Mul
:
1400 // We need to cast integer arithmetic so that it is always performed
1401 // as unsigned, to avoid undefined behavior on overflow.
1402 case Instruction::LShr
:
1403 case Instruction::UDiv
:
1404 case Instruction::URem
:
1407 case Instruction::AShr
:
1408 case Instruction::SDiv
:
1409 case Instruction::SRem
:
1411 typeIsSigned
= true;
1415 // Write out the casted constant if we should, otherwise just write the
1419 printSimpleType(Out
, OpTy
, typeIsSigned
);
1421 printConstant(CPV
, false);
1424 printConstant(CPV
, false);
1427 std::string
CWriter::GetValueName(const Value
*Operand
) {
1428 // Mangle globals with the standard mangler interface for LLC compatibility.
1429 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(Operand
))
1430 return Mang
->getMangledName(GV
);
1432 std::string Name
= Operand
->getName();
1434 if (Name
.empty()) { // Assign unique names to local temporaries.
1435 unsigned &No
= AnonValueNumbers
[Operand
];
1437 No
= ++NextAnonValueNumber
;
1438 Name
= "tmp__" + utostr(No
);
1441 std::string VarName
;
1442 VarName
.reserve(Name
.capacity());
1444 for (std::string::iterator I
= Name
.begin(), E
= Name
.end();
1448 if (!((ch
>= 'a' && ch
<= 'z') || (ch
>= 'A' && ch
<= 'Z') ||
1449 (ch
>= '0' && ch
<= '9') || ch
== '_')) {
1451 sprintf(buffer
, "_%x_", ch
);
1457 return "llvm_cbe_" + VarName
;
1460 /// writeInstComputationInline - Emit the computation for the specified
1461 /// instruction inline, with no destination provided.
1462 void CWriter::writeInstComputationInline(Instruction
&I
) {
1463 // We can't currently support integer types other than 1, 8, 16, 32, 64.
1465 const Type
*Ty
= I
.getType();
1466 if (Ty
->isInteger() && (Ty
!=Type::Int1Ty
&& Ty
!=Type::Int8Ty
&&
1467 Ty
!=Type::Int16Ty
&& Ty
!=Type::Int32Ty
&& Ty
!=Type::Int64Ty
)) {
1468 llvm_report_error("The C backend does not currently support integer "
1469 "types of widths other than 1, 8, 16, 32, 64.\n"
1470 "This is being tracked as PR 4158.");
1473 // If this is a non-trivial bool computation, make sure to truncate down to
1474 // a 1 bit value. This is important because we want "add i1 x, y" to return
1475 // "0" when x and y are true, not "2" for example.
1476 bool NeedBoolTrunc
= false;
1477 if (I
.getType() == Type::Int1Ty
&& !isa
<ICmpInst
>(I
) && !isa
<FCmpInst
>(I
))
1478 NeedBoolTrunc
= true;
1490 void CWriter::writeOperandInternal(Value
*Operand
, bool Static
) {
1491 if (Instruction
*I
= dyn_cast
<Instruction
>(Operand
))
1492 // Should we inline this instruction to build a tree?
1493 if (isInlinableInst(*I
) && !isDirectAlloca(I
)) {
1495 writeInstComputationInline(*I
);
1500 Constant
* CPV
= dyn_cast
<Constant
>(Operand
);
1502 if (CPV
&& !isa
<GlobalValue
>(CPV
))
1503 printConstant(CPV
, Static
);
1505 Out
<< GetValueName(Operand
);
1508 void CWriter::writeOperand(Value
*Operand
, bool Static
) {
1509 bool isAddressImplicit
= isAddressExposed(Operand
);
1510 if (isAddressImplicit
)
1511 Out
<< "(&"; // Global variables are referenced as their addresses by llvm
1513 writeOperandInternal(Operand
, Static
);
1515 if (isAddressImplicit
)
1519 // Some instructions need to have their result value casted back to the
1520 // original types because their operands were casted to the expected type.
1521 // This function takes care of detecting that case and printing the cast
1522 // for the Instruction.
1523 bool CWriter::writeInstructionCast(const Instruction
&I
) {
1524 const Type
*Ty
= I
.getOperand(0)->getType();
1525 switch (I
.getOpcode()) {
1526 case Instruction::Add
:
1527 case Instruction::Sub
:
1528 case Instruction::Mul
:
1529 // We need to cast integer arithmetic so that it is always performed
1530 // as unsigned, to avoid undefined behavior on overflow.
1531 case Instruction::LShr
:
1532 case Instruction::URem
:
1533 case Instruction::UDiv
:
1535 printSimpleType(Out
, Ty
, false);
1538 case Instruction::AShr
:
1539 case Instruction::SRem
:
1540 case Instruction::SDiv
:
1542 printSimpleType(Out
, Ty
, true);
1550 // Write the operand with a cast to another type based on the Opcode being used.
1551 // This will be used in cases where an instruction has specific type
1552 // requirements (usually signedness) for its operands.
1553 void CWriter::writeOperandWithCast(Value
* Operand
, unsigned Opcode
) {
1555 // Extract the operand's type, we'll need it.
1556 const Type
* OpTy
= Operand
->getType();
1558 // Indicate whether to do the cast or not.
1559 bool shouldCast
= false;
1561 // Indicate whether the cast should be to a signed type or not.
1562 bool castIsSigned
= false;
1564 // Based on the Opcode for which this Operand is being written, determine
1565 // the new type to which the operand should be casted by setting the value
1566 // of OpTy. If we change OpTy, also set shouldCast to true.
1569 // for most instructions, it doesn't matter
1571 case Instruction::Add
:
1572 case Instruction::Sub
:
1573 case Instruction::Mul
:
1574 // We need to cast integer arithmetic so that it is always performed
1575 // as unsigned, to avoid undefined behavior on overflow.
1576 case Instruction::LShr
:
1577 case Instruction::UDiv
:
1578 case Instruction::URem
: // Cast to unsigned first
1580 castIsSigned
= false;
1582 case Instruction::GetElementPtr
:
1583 case Instruction::AShr
:
1584 case Instruction::SDiv
:
1585 case Instruction::SRem
: // Cast to signed first
1587 castIsSigned
= true;
1591 // Write out the casted operand if we should, otherwise just write the
1595 printSimpleType(Out
, OpTy
, castIsSigned
);
1597 writeOperand(Operand
);
1600 writeOperand(Operand
);
1603 // Write the operand with a cast to another type based on the icmp predicate
1605 void CWriter::writeOperandWithCast(Value
* Operand
, const ICmpInst
&Cmp
) {
1606 // This has to do a cast to ensure the operand has the right signedness.
1607 // Also, if the operand is a pointer, we make sure to cast to an integer when
1608 // doing the comparison both for signedness and so that the C compiler doesn't
1609 // optimize things like "p < NULL" to false (p may contain an integer value
1611 bool shouldCast
= Cmp
.isRelational();
1613 // Write out the casted operand if we should, otherwise just write the
1616 writeOperand(Operand
);
1620 // Should this be a signed comparison? If so, convert to signed.
1621 bool castIsSigned
= Cmp
.isSignedPredicate();
1623 // If the operand was a pointer, convert to a large integer type.
1624 const Type
* OpTy
= Operand
->getType();
1625 if (isa
<PointerType
>(OpTy
))
1626 OpTy
= TD
->getIntPtrType();
1629 printSimpleType(Out
, OpTy
, castIsSigned
);
1631 writeOperand(Operand
);
1635 // generateCompilerSpecificCode - This is where we add conditional compilation
1636 // directives to cater to specific compilers as need be.
1638 static void generateCompilerSpecificCode(formatted_raw_ostream
& Out
,
1639 const TargetData
*TD
) {
1640 // Alloca is hard to get, and we don't want to include stdlib.h here.
1641 Out
<< "/* get a declaration for alloca */\n"
1642 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1643 << "#define alloca(x) __builtin_alloca((x))\n"
1644 << "#define _alloca(x) __builtin_alloca((x))\n"
1645 << "#elif defined(__APPLE__)\n"
1646 << "extern void *__builtin_alloca(unsigned long);\n"
1647 << "#define alloca(x) __builtin_alloca(x)\n"
1648 << "#define longjmp _longjmp\n"
1649 << "#define setjmp _setjmp\n"
1650 << "#elif defined(__sun__)\n"
1651 << "#if defined(__sparcv9)\n"
1652 << "extern void *__builtin_alloca(unsigned long);\n"
1654 << "extern void *__builtin_alloca(unsigned int);\n"
1656 << "#define alloca(x) __builtin_alloca(x)\n"
1657 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)\n"
1658 << "#define alloca(x) __builtin_alloca(x)\n"
1659 << "#elif defined(_MSC_VER)\n"
1660 << "#define inline _inline\n"
1661 << "#define alloca(x) _alloca(x)\n"
1663 << "#include <alloca.h>\n"
1666 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1667 // If we aren't being compiled with GCC, just drop these attributes.
1668 Out
<< "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1669 << "#define __attribute__(X)\n"
1672 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1673 Out
<< "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1674 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1675 << "#elif defined(__GNUC__)\n"
1676 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1678 << "#define __EXTERNAL_WEAK__\n"
1681 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1682 Out
<< "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1683 << "#define __ATTRIBUTE_WEAK__\n"
1684 << "#elif defined(__GNUC__)\n"
1685 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1687 << "#define __ATTRIBUTE_WEAK__\n"
1690 // Add hidden visibility support. FIXME: APPLE_CC?
1691 Out
<< "#if defined(__GNUC__)\n"
1692 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1695 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1696 // From the GCC documentation:
1698 // double __builtin_nan (const char *str)
1700 // This is an implementation of the ISO C99 function nan.
1702 // Since ISO C99 defines this function in terms of strtod, which we do
1703 // not implement, a description of the parsing is in order. The string is
1704 // parsed as by strtol; that is, the base is recognized by leading 0 or
1705 // 0x prefixes. The number parsed is placed in the significand such that
1706 // the least significant bit of the number is at the least significant
1707 // bit of the significand. The number is truncated to fit the significand
1708 // field provided. The significand is forced to be a quiet NaN.
1710 // This function, if given a string literal, is evaluated early enough
1711 // that it is considered a compile-time constant.
1713 // float __builtin_nanf (const char *str)
1715 // Similar to __builtin_nan, except the return type is float.
1717 // double __builtin_inf (void)
1719 // Similar to __builtin_huge_val, except a warning is generated if the
1720 // target floating-point format does not support infinities. This
1721 // function is suitable for implementing the ISO C99 macro INFINITY.
1723 // float __builtin_inff (void)
1725 // Similar to __builtin_inf, except the return type is float.
1726 Out
<< "#ifdef __GNUC__\n"
1727 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1728 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1729 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1730 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1731 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1732 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1733 << "#define LLVM_PREFETCH(addr,rw,locality) "
1734 "__builtin_prefetch(addr,rw,locality)\n"
1735 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1736 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1737 << "#define LLVM_ASM __asm__\n"
1739 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1740 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1741 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1742 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1743 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1744 << "#define LLVM_INFF 0.0F /* Float */\n"
1745 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1746 << "#define __ATTRIBUTE_CTOR__\n"
1747 << "#define __ATTRIBUTE_DTOR__\n"
1748 << "#define LLVM_ASM(X)\n"
1751 Out
<< "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1752 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1753 << "#define __builtin_stack_restore(X) /* noop */\n"
1756 // Output typedefs for 128-bit integers. If these are needed with a
1757 // 32-bit target or with a C compiler that doesn't support mode(TI),
1758 // more drastic measures will be needed.
1759 Out
<< "#if __GNUC__ && __LP64__ /* 128-bit integer types */\n"
1760 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1761 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1764 // Output target-specific code that should be inserted into main.
1765 Out
<< "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1768 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1769 /// the StaticTors set.
1770 static void FindStaticTors(GlobalVariable
*GV
, std::set
<Function
*> &StaticTors
){
1771 ConstantArray
*InitList
= dyn_cast
<ConstantArray
>(GV
->getInitializer());
1772 if (!InitList
) return;
1774 for (unsigned i
= 0, e
= InitList
->getNumOperands(); i
!= e
; ++i
)
1775 if (ConstantStruct
*CS
= dyn_cast
<ConstantStruct
>(InitList
->getOperand(i
))){
1776 if (CS
->getNumOperands() != 2) return; // Not array of 2-element structs.
1778 if (CS
->getOperand(1)->isNullValue())
1779 return; // Found a null terminator, exit printing.
1780 Constant
*FP
= CS
->getOperand(1);
1781 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(FP
))
1783 FP
= CE
->getOperand(0);
1784 if (Function
*F
= dyn_cast
<Function
>(FP
))
1785 StaticTors
.insert(F
);
1789 enum SpecialGlobalClass
{
1791 GlobalCtors
, GlobalDtors
,
1795 /// getGlobalVariableClass - If this is a global that is specially recognized
1796 /// by LLVM, return a code that indicates how we should handle it.
1797 static SpecialGlobalClass
getGlobalVariableClass(const GlobalVariable
*GV
) {
1798 // If this is a global ctors/dtors list, handle it now.
1799 if (GV
->hasAppendingLinkage() && GV
->use_empty()) {
1800 if (GV
->getName() == "llvm.global_ctors")
1802 else if (GV
->getName() == "llvm.global_dtors")
1806 // Otherwise, it it is other metadata, don't print it. This catches things
1807 // like debug information.
1808 if (GV
->getSection() == "llvm.metadata")
1815 bool CWriter::doInitialization(Module
&M
) {
1816 FunctionPass::doInitialization(M
);
1821 TD
= new TargetData(&M
);
1822 IL
= new IntrinsicLowering(*TD
);
1823 IL
->AddPrototypes(M
);
1825 // Ensure that all structure types have names...
1826 Mang
= new Mangler(M
);
1827 Mang
->markCharUnacceptable('.');
1829 // Keep track of which functions are static ctors/dtors so they can have
1830 // an attribute added to their prototypes.
1831 std::set
<Function
*> StaticCtors
, StaticDtors
;
1832 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1834 switch (getGlobalVariableClass(I
)) {
1837 FindStaticTors(I
, StaticCtors
);
1840 FindStaticTors(I
, StaticDtors
);
1845 // get declaration for alloca
1846 Out
<< "/* Provide Declarations */\n";
1847 Out
<< "#include <stdarg.h>\n"; // Varargs support
1848 Out
<< "#include <setjmp.h>\n"; // Unwind support
1849 generateCompilerSpecificCode(Out
, TD
);
1851 // Provide a definition for `bool' if not compiling with a C++ compiler.
1853 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1855 << "\n\n/* Support for floating point constants */\n"
1856 << "typedef unsigned long long ConstantDoubleTy;\n"
1857 << "typedef unsigned int ConstantFloatTy;\n"
1858 << "typedef struct { unsigned long long f1; unsigned short f2; "
1859 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1860 // This is used for both kinds of 128-bit long double; meaning differs.
1861 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1862 " ConstantFP128Ty;\n"
1863 << "\n\n/* Global Declarations */\n";
1865 // First output all the declarations for the program, because C requires
1866 // Functions & globals to be declared before they are used.
1869 // Loop over the symbol table, emitting all named constants...
1870 printModuleTypes(M
.getTypeSymbolTable());
1872 // Global variable declarations...
1873 if (!M
.global_empty()) {
1874 Out
<< "\n/* External Global Variable Declarations */\n";
1875 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1878 if (I
->hasExternalLinkage() || I
->hasExternalWeakLinkage() ||
1879 I
->hasCommonLinkage())
1881 else if (I
->hasDLLImportLinkage())
1882 Out
<< "__declspec(dllimport) ";
1884 continue; // Internal Global
1886 // Thread Local Storage
1887 if (I
->isThreadLocal())
1890 printType(Out
, I
->getType()->getElementType(), false, GetValueName(I
));
1892 if (I
->hasExternalWeakLinkage())
1893 Out
<< " __EXTERNAL_WEAK__";
1898 // Function declarations
1899 Out
<< "\n/* Function Declarations */\n";
1900 Out
<< "double fmod(double, double);\n"; // Support for FP rem
1901 Out
<< "float fmodf(float, float);\n";
1902 Out
<< "long double fmodl(long double, long double);\n";
1904 for (Module::iterator I
= M
.begin(), E
= M
.end(); I
!= E
; ++I
) {
1905 // Don't print declarations for intrinsic functions.
1906 if (!I
->isIntrinsic() && I
->getName() != "setjmp" &&
1907 I
->getName() != "longjmp" && I
->getName() != "_setjmp") {
1908 if (I
->hasExternalWeakLinkage())
1910 printFunctionSignature(I
, true);
1911 if (I
->hasWeakLinkage() || I
->hasLinkOnceLinkage())
1912 Out
<< " __ATTRIBUTE_WEAK__";
1913 if (I
->hasExternalWeakLinkage())
1914 Out
<< " __EXTERNAL_WEAK__";
1915 if (StaticCtors
.count(I
))
1916 Out
<< " __ATTRIBUTE_CTOR__";
1917 if (StaticDtors
.count(I
))
1918 Out
<< " __ATTRIBUTE_DTOR__";
1919 if (I
->hasHiddenVisibility())
1920 Out
<< " __HIDDEN__";
1922 if (I
->hasName() && I
->getName()[0] == 1)
1923 Out
<< " LLVM_ASM(\"" << I
->getName().substr(1) << "\")";
1929 // Output the global variable declarations
1930 if (!M
.global_empty()) {
1931 Out
<< "\n\n/* Global Variable Declarations */\n";
1932 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1934 if (!I
->isDeclaration()) {
1935 // Ignore special globals, such as debug info.
1936 if (getGlobalVariableClass(I
))
1939 if (I
->hasLocalLinkage())
1944 // Thread Local Storage
1945 if (I
->isThreadLocal())
1948 printType(Out
, I
->getType()->getElementType(), false,
1951 if (I
->hasLinkOnceLinkage())
1952 Out
<< " __attribute__((common))";
1953 else if (I
->hasCommonLinkage()) // FIXME is this right?
1954 Out
<< " __ATTRIBUTE_WEAK__";
1955 else if (I
->hasWeakLinkage())
1956 Out
<< " __ATTRIBUTE_WEAK__";
1957 else if (I
->hasExternalWeakLinkage())
1958 Out
<< " __EXTERNAL_WEAK__";
1959 if (I
->hasHiddenVisibility())
1960 Out
<< " __HIDDEN__";
1965 // Output the global variable definitions and contents...
1966 if (!M
.global_empty()) {
1967 Out
<< "\n\n/* Global Variable Definitions and Initialization */\n";
1968 for (Module::global_iterator I
= M
.global_begin(), E
= M
.global_end();
1970 if (!I
->isDeclaration()) {
1971 // Ignore special globals, such as debug info.
1972 if (getGlobalVariableClass(I
))
1975 if (I
->hasLocalLinkage())
1977 else if (I
->hasDLLImportLinkage())
1978 Out
<< "__declspec(dllimport) ";
1979 else if (I
->hasDLLExportLinkage())
1980 Out
<< "__declspec(dllexport) ";
1982 // Thread Local Storage
1983 if (I
->isThreadLocal())
1986 printType(Out
, I
->getType()->getElementType(), false,
1988 if (I
->hasLinkOnceLinkage())
1989 Out
<< " __attribute__((common))";
1990 else if (I
->hasWeakLinkage())
1991 Out
<< " __ATTRIBUTE_WEAK__";
1992 else if (I
->hasCommonLinkage())
1993 Out
<< " __ATTRIBUTE_WEAK__";
1995 if (I
->hasHiddenVisibility())
1996 Out
<< " __HIDDEN__";
1998 // If the initializer is not null, emit the initializer. If it is null,
1999 // we try to avoid emitting large amounts of zeros. The problem with
2000 // this, however, occurs when the variable has weak linkage. In this
2001 // case, the assembler will complain about the variable being both weak
2002 // and common, so we disable this optimization.
2003 // FIXME common linkage should avoid this problem.
2004 if (!I
->getInitializer()->isNullValue()) {
2006 writeOperand(I
->getInitializer(), true);
2007 } else if (I
->hasWeakLinkage()) {
2008 // We have to specify an initializer, but it doesn't have to be
2009 // complete. If the value is an aggregate, print out { 0 }, and let
2010 // the compiler figure out the rest of the zeros.
2012 if (isa
<StructType
>(I
->getInitializer()->getType()) ||
2013 isa
<VectorType
>(I
->getInitializer()->getType())) {
2015 } else if (isa
<ArrayType
>(I
->getInitializer()->getType())) {
2016 // As with structs and vectors, but with an extra set of braces
2017 // because arrays are wrapped in structs.
2020 // Just print it out normally.
2021 writeOperand(I
->getInitializer(), true);
2029 Out
<< "\n\n/* Function Bodies */\n";
2031 // Emit some helper functions for dealing with FCMP instruction's
2033 Out
<< "static inline int llvm_fcmp_ord(double X, double Y) { ";
2034 Out
<< "return X == X && Y == Y; }\n";
2035 Out
<< "static inline int llvm_fcmp_uno(double X, double Y) { ";
2036 Out
<< "return X != X || Y != Y; }\n";
2037 Out
<< "static inline int llvm_fcmp_ueq(double X, double Y) { ";
2038 Out
<< "return X == Y || llvm_fcmp_uno(X, Y); }\n";
2039 Out
<< "static inline int llvm_fcmp_une(double X, double Y) { ";
2040 Out
<< "return X != Y; }\n";
2041 Out
<< "static inline int llvm_fcmp_ult(double X, double Y) { ";
2042 Out
<< "return X < Y || llvm_fcmp_uno(X, Y); }\n";
2043 Out
<< "static inline int llvm_fcmp_ugt(double X, double Y) { ";
2044 Out
<< "return X > Y || llvm_fcmp_uno(X, Y); }\n";
2045 Out
<< "static inline int llvm_fcmp_ule(double X, double Y) { ";
2046 Out
<< "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
2047 Out
<< "static inline int llvm_fcmp_uge(double X, double Y) { ";
2048 Out
<< "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
2049 Out
<< "static inline int llvm_fcmp_oeq(double X, double Y) { ";
2050 Out
<< "return X == Y ; }\n";
2051 Out
<< "static inline int llvm_fcmp_one(double X, double Y) { ";
2052 Out
<< "return X != Y && llvm_fcmp_ord(X, Y); }\n";
2053 Out
<< "static inline int llvm_fcmp_olt(double X, double Y) { ";
2054 Out
<< "return X < Y ; }\n";
2055 Out
<< "static inline int llvm_fcmp_ogt(double X, double Y) { ";
2056 Out
<< "return X > Y ; }\n";
2057 Out
<< "static inline int llvm_fcmp_ole(double X, double Y) { ";
2058 Out
<< "return X <= Y ; }\n";
2059 Out
<< "static inline int llvm_fcmp_oge(double X, double Y) { ";
2060 Out
<< "return X >= Y ; }\n";
2065 /// Output all floating point constants that cannot be printed accurately...
2066 void CWriter::printFloatingPointConstants(Function
&F
) {
2067 // Scan the module for floating point constants. If any FP constant is used
2068 // in the function, we want to redirect it here so that we do not depend on
2069 // the precision of the printed form, unless the printed form preserves
2072 for (constant_iterator I
= constant_begin(&F
), E
= constant_end(&F
);
2074 printFloatingPointConstants(*I
);
2079 void CWriter::printFloatingPointConstants(const Constant
*C
) {
2080 // If this is a constant expression, recursively check for constant fp values.
2081 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2082 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
)
2083 printFloatingPointConstants(CE
->getOperand(i
));
2087 // Otherwise, check for a FP constant that we need to print.
2088 const ConstantFP
*FPC
= dyn_cast
<ConstantFP
>(C
);
2090 // Do not put in FPConstantMap if safe.
2091 isFPCSafeToPrint(FPC
) ||
2092 // Already printed this constant?
2093 FPConstantMap
.count(FPC
))
2096 FPConstantMap
[FPC
] = FPCounter
; // Number the FP constants
2098 if (FPC
->getType() == Type::DoubleTy
) {
2099 double Val
= FPC
->getValueAPF().convertToDouble();
2100 uint64_t i
= FPC
->getValueAPF().bitcastToAPInt().getZExtValue();
2101 Out
<< "static const ConstantDoubleTy FPConstant" << FPCounter
++
2102 << " = 0x" << utohexstr(i
)
2103 << "ULL; /* " << Val
<< " */\n";
2104 } else if (FPC
->getType() == Type::FloatTy
) {
2105 float Val
= FPC
->getValueAPF().convertToFloat();
2106 uint32_t i
= (uint32_t)FPC
->getValueAPF().bitcastToAPInt().
2108 Out
<< "static const ConstantFloatTy FPConstant" << FPCounter
++
2109 << " = 0x" << utohexstr(i
)
2110 << "U; /* " << Val
<< " */\n";
2111 } else if (FPC
->getType() == Type::X86_FP80Ty
) {
2112 // api needed to prevent premature destruction
2113 APInt api
= FPC
->getValueAPF().bitcastToAPInt();
2114 const uint64_t *p
= api
.getRawData();
2115 Out
<< "static const ConstantFP80Ty FPConstant" << FPCounter
++
2116 << " = { 0x" << utohexstr(p
[0])
2117 << "ULL, 0x" << utohexstr((uint16_t)p
[1]) << ",{0,0,0}"
2118 << "}; /* Long double constant */\n";
2119 } else if (FPC
->getType() == Type::PPC_FP128Ty
) {
2120 APInt api
= FPC
->getValueAPF().bitcastToAPInt();
2121 const uint64_t *p
= api
.getRawData();
2122 Out
<< "static const ConstantFP128Ty FPConstant" << FPCounter
++
2124 << utohexstr(p
[0]) << ", 0x" << utohexstr(p
[1])
2125 << "}; /* Long double constant */\n";
2128 llvm_unreachable("Unknown float type!");
2134 /// printSymbolTable - Run through symbol table looking for type names. If a
2135 /// type name is found, emit its declaration...
2137 void CWriter::printModuleTypes(const TypeSymbolTable
&TST
) {
2138 Out
<< "/* Helper union for bitcasts */\n";
2139 Out
<< "typedef union {\n";
2140 Out
<< " unsigned int Int32;\n";
2141 Out
<< " unsigned long long Int64;\n";
2142 Out
<< " float Float;\n";
2143 Out
<< " double Double;\n";
2144 Out
<< "} llvmBitCastUnion;\n";
2146 // We are only interested in the type plane of the symbol table.
2147 TypeSymbolTable::const_iterator I
= TST
.begin();
2148 TypeSymbolTable::const_iterator End
= TST
.end();
2150 // If there are no type names, exit early.
2151 if (I
== End
) return;
2153 // Print out forward declarations for structure types before anything else!
2154 Out
<< "/* Structure forward decls */\n";
2155 for (; I
!= End
; ++I
) {
2156 std::string Name
= "struct l_" + Mang
->makeNameProper(I
->first
);
2157 Out
<< Name
<< ";\n";
2158 TypeNames
.insert(std::make_pair(I
->second
, Name
));
2163 // Now we can print out typedefs. Above, we guaranteed that this can only be
2164 // for struct or opaque types.
2165 Out
<< "/* Typedefs */\n";
2166 for (I
= TST
.begin(); I
!= End
; ++I
) {
2167 std::string Name
= "l_" + Mang
->makeNameProper(I
->first
);
2169 printType(Out
, I
->second
, false, Name
);
2175 // Keep track of which structures have been printed so far...
2176 std::set
<const Type
*> StructPrinted
;
2178 // Loop over all structures then push them into the stack so they are
2179 // printed in the correct order.
2181 Out
<< "/* Structure contents */\n";
2182 for (I
= TST
.begin(); I
!= End
; ++I
)
2183 if (isa
<StructType
>(I
->second
) || isa
<ArrayType
>(I
->second
))
2184 // Only print out used types!
2185 printContainedStructs(I
->second
, StructPrinted
);
2188 // Push the struct onto the stack and recursively push all structs
2189 // this one depends on.
2191 // TODO: Make this work properly with vector types
2193 void CWriter::printContainedStructs(const Type
*Ty
,
2194 std::set
<const Type
*> &StructPrinted
) {
2195 // Don't walk through pointers.
2196 if (isa
<PointerType
>(Ty
) || Ty
->isPrimitiveType() || Ty
->isInteger()) return;
2198 // Print all contained types first.
2199 for (Type::subtype_iterator I
= Ty
->subtype_begin(),
2200 E
= Ty
->subtype_end(); I
!= E
; ++I
)
2201 printContainedStructs(*I
, StructPrinted
);
2203 if (isa
<StructType
>(Ty
) || isa
<ArrayType
>(Ty
)) {
2204 // Check to see if we have already printed this struct.
2205 if (StructPrinted
.insert(Ty
).second
) {
2206 // Print structure type out.
2207 std::string Name
= TypeNames
[Ty
];
2208 printType(Out
, Ty
, false, Name
, true);
2214 void CWriter::printFunctionSignature(const Function
*F
, bool Prototype
) {
2215 /// isStructReturn - Should this function actually return a struct by-value?
2216 bool isStructReturn
= F
->hasStructRetAttr();
2218 if (F
->hasLocalLinkage()) Out
<< "static ";
2219 if (F
->hasDLLImportLinkage()) Out
<< "__declspec(dllimport) ";
2220 if (F
->hasDLLExportLinkage()) Out
<< "__declspec(dllexport) ";
2221 switch (F
->getCallingConv()) {
2222 case CallingConv::X86_StdCall
:
2223 Out
<< "__attribute__((stdcall)) ";
2225 case CallingConv::X86_FastCall
:
2226 Out
<< "__attribute__((fastcall)) ";
2230 // Loop over the arguments, printing them...
2231 const FunctionType
*FT
= cast
<FunctionType
>(F
->getFunctionType());
2232 const AttrListPtr
&PAL
= F
->getAttributes();
2234 std::stringstream FunctionInnards
;
2236 // Print out the name...
2237 FunctionInnards
<< GetValueName(F
) << '(';
2239 bool PrintedArg
= false;
2240 if (!F
->isDeclaration()) {
2241 if (!F
->arg_empty()) {
2242 Function::const_arg_iterator I
= F
->arg_begin(), E
= F
->arg_end();
2245 // If this is a struct-return function, don't print the hidden
2246 // struct-return argument.
2247 if (isStructReturn
) {
2248 assert(I
!= E
&& "Invalid struct return function!");
2253 std::string ArgName
;
2254 for (; I
!= E
; ++I
) {
2255 if (PrintedArg
) FunctionInnards
<< ", ";
2256 if (I
->hasName() || !Prototype
)
2257 ArgName
= GetValueName(I
);
2260 const Type
*ArgTy
= I
->getType();
2261 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
2262 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
2263 ByValParams
.insert(I
);
2265 printType(FunctionInnards
, ArgTy
,
2266 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
),
2273 // Loop over the arguments, printing them.
2274 FunctionType::param_iterator I
= FT
->param_begin(), E
= FT
->param_end();
2277 // If this is a struct-return function, don't print the hidden
2278 // struct-return argument.
2279 if (isStructReturn
) {
2280 assert(I
!= E
&& "Invalid struct return function!");
2285 for (; I
!= E
; ++I
) {
2286 if (PrintedArg
) FunctionInnards
<< ", ";
2287 const Type
*ArgTy
= *I
;
2288 if (PAL
.paramHasAttr(Idx
, Attribute::ByVal
)) {
2289 assert(isa
<PointerType
>(ArgTy
));
2290 ArgTy
= cast
<PointerType
>(ArgTy
)->getElementType();
2292 printType(FunctionInnards
, ArgTy
,
2293 /*isSigned=*/PAL
.paramHasAttr(Idx
, Attribute::SExt
));
2299 // Finish printing arguments... if this is a vararg function, print the ...,
2300 // unless there are no known types, in which case, we just emit ().
2302 if (FT
->isVarArg() && PrintedArg
) {
2303 if (PrintedArg
) FunctionInnards
<< ", ";
2304 FunctionInnards
<< "..."; // Output varargs portion of signature!
2305 } else if (!FT
->isVarArg() && !PrintedArg
) {
2306 FunctionInnards
<< "void"; // ret() -> ret(void) in C.
2308 FunctionInnards
<< ')';
2310 // Get the return tpe for the function.
2312 if (!isStructReturn
)
2313 RetTy
= F
->getReturnType();
2315 // If this is a struct-return function, print the struct-return type.
2316 RetTy
= cast
<PointerType
>(FT
->getParamType(0))->getElementType();
2319 // Print out the return type and the signature built above.
2320 printType(Out
, RetTy
,
2321 /*isSigned=*/PAL
.paramHasAttr(0, Attribute::SExt
),
2322 FunctionInnards
.str());
2325 static inline bool isFPIntBitCast(const Instruction
&I
) {
2326 if (!isa
<BitCastInst
>(I
))
2328 const Type
*SrcTy
= I
.getOperand(0)->getType();
2329 const Type
*DstTy
= I
.getType();
2330 return (SrcTy
->isFloatingPoint() && DstTy
->isInteger()) ||
2331 (DstTy
->isFloatingPoint() && SrcTy
->isInteger());
2334 void CWriter::printFunction(Function
&F
) {
2335 /// isStructReturn - Should this function actually return a struct by-value?
2336 bool isStructReturn
= F
.hasStructRetAttr();
2338 printFunctionSignature(&F
, false);
2341 // If this is a struct return function, handle the result with magic.
2342 if (isStructReturn
) {
2343 const Type
*StructTy
=
2344 cast
<PointerType
>(F
.arg_begin()->getType())->getElementType();
2346 printType(Out
, StructTy
, false, "StructReturn");
2347 Out
<< "; /* Struct return temporary */\n";
2350 printType(Out
, F
.arg_begin()->getType(), false,
2351 GetValueName(F
.arg_begin()));
2352 Out
<< " = &StructReturn;\n";
2355 bool PrintedVar
= false;
2357 // print local variable information for the function
2358 for (inst_iterator I
= inst_begin(&F
), E
= inst_end(&F
); I
!= E
; ++I
) {
2359 if (const AllocaInst
*AI
= isDirectAlloca(&*I
)) {
2361 printType(Out
, AI
->getAllocatedType(), false, GetValueName(AI
));
2362 Out
<< "; /* Address-exposed local */\n";
2364 } else if (I
->getType() != Type::VoidTy
&& !isInlinableInst(*I
)) {
2366 printType(Out
, I
->getType(), false, GetValueName(&*I
));
2369 if (isa
<PHINode
>(*I
)) { // Print out PHI node temporaries as well...
2371 printType(Out
, I
->getType(), false,
2372 GetValueName(&*I
)+"__PHI_TEMPORARY");
2377 // We need a temporary for the BitCast to use so it can pluck a value out
2378 // of a union to do the BitCast. This is separate from the need for a
2379 // variable to hold the result of the BitCast.
2380 if (isFPIntBitCast(*I
)) {
2381 Out
<< " llvmBitCastUnion " << GetValueName(&*I
)
2382 << "__BITCAST_TEMPORARY;\n";
2390 if (F
.hasExternalLinkage() && F
.getName() == "main")
2391 Out
<< " CODE_FOR_MAIN();\n";
2393 // print the basic blocks
2394 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
) {
2395 if (Loop
*L
= LI
->getLoopFor(BB
)) {
2396 if (L
->getHeader() == BB
&& L
->getParentLoop() == 0)
2399 printBasicBlock(BB
);
2406 void CWriter::printLoop(Loop
*L
) {
2407 Out
<< " do { /* Syntactic loop '" << L
->getHeader()->getName()
2408 << "' to make GCC happy */\n";
2409 for (unsigned i
= 0, e
= L
->getBlocks().size(); i
!= e
; ++i
) {
2410 BasicBlock
*BB
= L
->getBlocks()[i
];
2411 Loop
*BBLoop
= LI
->getLoopFor(BB
);
2413 printBasicBlock(BB
);
2414 else if (BB
== BBLoop
->getHeader() && BBLoop
->getParentLoop() == L
)
2417 Out
<< " } while (1); /* end of syntactic loop '"
2418 << L
->getHeader()->getName() << "' */\n";
2421 void CWriter::printBasicBlock(BasicBlock
*BB
) {
2423 // Don't print the label for the basic block if there are no uses, or if
2424 // the only terminator use is the predecessor basic block's terminator.
2425 // We have to scan the use list because PHI nodes use basic blocks too but
2426 // do not require a label to be generated.
2428 bool NeedsLabel
= false;
2429 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
2430 if (isGotoCodeNecessary(*PI
, BB
)) {
2435 if (NeedsLabel
) Out
<< GetValueName(BB
) << ":\n";
2437 // Output all of the instructions in the basic block...
2438 for (BasicBlock::iterator II
= BB
->begin(), E
= --BB
->end(); II
!= E
;
2440 if (!isInlinableInst(*II
) && !isDirectAlloca(II
)) {
2441 if (II
->getType() != Type::VoidTy
&& !isInlineAsm(*II
))
2445 writeInstComputationInline(*II
);
2450 // Don't emit prefix or suffix for the terminator.
2451 visit(*BB
->getTerminator());
2455 // Specific Instruction type classes... note that all of the casts are
2456 // necessary because we use the instruction classes as opaque types...
2458 void CWriter::visitReturnInst(ReturnInst
&I
) {
2459 // If this is a struct return function, return the temporary struct.
2460 bool isStructReturn
= I
.getParent()->getParent()->hasStructRetAttr();
2462 if (isStructReturn
) {
2463 Out
<< " return StructReturn;\n";
2467 // Don't output a void return if this is the last basic block in the function
2468 if (I
.getNumOperands() == 0 &&
2469 &*--I
.getParent()->getParent()->end() == I
.getParent() &&
2470 !I
.getParent()->size() == 1) {
2474 if (I
.getNumOperands() > 1) {
2477 printType(Out
, I
.getParent()->getParent()->getReturnType());
2478 Out
<< " llvm_cbe_mrv_temp = {\n";
2479 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
2481 writeOperand(I
.getOperand(i
));
2487 Out
<< " return llvm_cbe_mrv_temp;\n";
2493 if (I
.getNumOperands()) {
2495 writeOperand(I
.getOperand(0));
2500 void CWriter::visitSwitchInst(SwitchInst
&SI
) {
2503 writeOperand(SI
.getOperand(0));
2504 Out
<< ") {\n default:\n";
2505 printPHICopiesForSuccessor (SI
.getParent(), SI
.getDefaultDest(), 2);
2506 printBranchToBlock(SI
.getParent(), SI
.getDefaultDest(), 2);
2508 for (unsigned i
= 2, e
= SI
.getNumOperands(); i
!= e
; i
+= 2) {
2510 writeOperand(SI
.getOperand(i
));
2512 BasicBlock
*Succ
= cast
<BasicBlock
>(SI
.getOperand(i
+1));
2513 printPHICopiesForSuccessor (SI
.getParent(), Succ
, 2);
2514 printBranchToBlock(SI
.getParent(), Succ
, 2);
2515 if (Function::iterator(Succ
) == next(Function::iterator(SI
.getParent())))
2521 void CWriter::visitUnreachableInst(UnreachableInst
&I
) {
2522 Out
<< " /*UNREACHABLE*/;\n";
2525 bool CWriter::isGotoCodeNecessary(BasicBlock
*From
, BasicBlock
*To
) {
2526 /// FIXME: This should be reenabled, but loop reordering safe!!
2529 if (next(Function::iterator(From
)) != Function::iterator(To
))
2530 return true; // Not the direct successor, we need a goto.
2532 //isa<SwitchInst>(From->getTerminator())
2534 if (LI
->getLoopFor(From
) != LI
->getLoopFor(To
))
2539 void CWriter::printPHICopiesForSuccessor (BasicBlock
*CurBlock
,
2540 BasicBlock
*Successor
,
2542 for (BasicBlock::iterator I
= Successor
->begin(); isa
<PHINode
>(I
); ++I
) {
2543 PHINode
*PN
= cast
<PHINode
>(I
);
2544 // Now we have to do the printing.
2545 Value
*IV
= PN
->getIncomingValueForBlock(CurBlock
);
2546 if (!isa
<UndefValue
>(IV
)) {
2547 Out
<< std::string(Indent
, ' ');
2548 Out
<< " " << GetValueName(I
) << "__PHI_TEMPORARY = ";
2550 Out
<< "; /* for PHI node */\n";
2555 void CWriter::printBranchToBlock(BasicBlock
*CurBB
, BasicBlock
*Succ
,
2557 if (isGotoCodeNecessary(CurBB
, Succ
)) {
2558 Out
<< std::string(Indent
, ' ') << " goto ";
2564 // Branch instruction printing - Avoid printing out a branch to a basic block
2565 // that immediately succeeds the current one.
2567 void CWriter::visitBranchInst(BranchInst
&I
) {
2569 if (I
.isConditional()) {
2570 if (isGotoCodeNecessary(I
.getParent(), I
.getSuccessor(0))) {
2572 writeOperand(I
.getCondition());
2575 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(0), 2);
2576 printBranchToBlock(I
.getParent(), I
.getSuccessor(0), 2);
2578 if (isGotoCodeNecessary(I
.getParent(), I
.getSuccessor(1))) {
2579 Out
<< " } else {\n";
2580 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(1), 2);
2581 printBranchToBlock(I
.getParent(), I
.getSuccessor(1), 2);
2584 // First goto not necessary, assume second one is...
2586 writeOperand(I
.getCondition());
2589 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(1), 2);
2590 printBranchToBlock(I
.getParent(), I
.getSuccessor(1), 2);
2595 printPHICopiesForSuccessor (I
.getParent(), I
.getSuccessor(0), 0);
2596 printBranchToBlock(I
.getParent(), I
.getSuccessor(0), 0);
2601 // PHI nodes get copied into temporary values at the end of predecessor basic
2602 // blocks. We now need to copy these temporary values into the REAL value for
2604 void CWriter::visitPHINode(PHINode
&I
) {
2606 Out
<< "__PHI_TEMPORARY";
2610 void CWriter::visitBinaryOperator(Instruction
&I
) {
2611 // binary instructions, shift instructions, setCond instructions.
2612 assert(!isa
<PointerType
>(I
.getType()));
2614 // We must cast the results of binary operations which might be promoted.
2615 bool needsCast
= false;
2616 if ((I
.getType() == Type::Int8Ty
) || (I
.getType() == Type::Int16Ty
)
2617 || (I
.getType() == Type::FloatTy
)) {
2620 printType(Out
, I
.getType(), false);
2624 // If this is a negation operation, print it out as such. For FP, we don't
2625 // want to print "-0.0 - X".
2626 if (BinaryOperator::isNeg(&I
)) {
2628 writeOperand(BinaryOperator::getNegArgument(cast
<BinaryOperator
>(&I
)));
2630 } else if (BinaryOperator::isFNeg(&I
)) {
2632 writeOperand(BinaryOperator::getFNegArgument(cast
<BinaryOperator
>(&I
)));
2634 } else if (I
.getOpcode() == Instruction::FRem
) {
2635 // Output a call to fmod/fmodf instead of emitting a%b
2636 if (I
.getType() == Type::FloatTy
)
2638 else if (I
.getType() == Type::DoubleTy
)
2640 else // all 3 flavors of long double
2642 writeOperand(I
.getOperand(0));
2644 writeOperand(I
.getOperand(1));
2648 // Write out the cast of the instruction's value back to the proper type
2650 bool NeedsClosingParens
= writeInstructionCast(I
);
2652 // Certain instructions require the operand to be forced to a specific type
2653 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2654 // below for operand 1
2655 writeOperandWithCast(I
.getOperand(0), I
.getOpcode());
2657 switch (I
.getOpcode()) {
2658 case Instruction::Add
:
2659 case Instruction::FAdd
: Out
<< " + "; break;
2660 case Instruction::Sub
:
2661 case Instruction::FSub
: Out
<< " - "; break;
2662 case Instruction::Mul
:
2663 case Instruction::FMul
: Out
<< " * "; break;
2664 case Instruction::URem
:
2665 case Instruction::SRem
:
2666 case Instruction::FRem
: Out
<< " % "; break;
2667 case Instruction::UDiv
:
2668 case Instruction::SDiv
:
2669 case Instruction::FDiv
: Out
<< " / "; break;
2670 case Instruction::And
: Out
<< " & "; break;
2671 case Instruction::Or
: Out
<< " | "; break;
2672 case Instruction::Xor
: Out
<< " ^ "; break;
2673 case Instruction::Shl
: Out
<< " << "; break;
2674 case Instruction::LShr
:
2675 case Instruction::AShr
: Out
<< " >> "; break;
2678 cerr
<< "Invalid operator type!" << I
;
2680 llvm_unreachable(0);
2683 writeOperandWithCast(I
.getOperand(1), I
.getOpcode());
2684 if (NeedsClosingParens
)
2693 void CWriter::visitICmpInst(ICmpInst
&I
) {
2694 // We must cast the results of icmp which might be promoted.
2695 bool needsCast
= false;
2697 // Write out the cast of the instruction's value back to the proper type
2699 bool NeedsClosingParens
= writeInstructionCast(I
);
2701 // Certain icmp predicate require the operand to be forced to a specific type
2702 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2703 // below for operand 1
2704 writeOperandWithCast(I
.getOperand(0), I
);
2706 switch (I
.getPredicate()) {
2707 case ICmpInst::ICMP_EQ
: Out
<< " == "; break;
2708 case ICmpInst::ICMP_NE
: Out
<< " != "; break;
2709 case ICmpInst::ICMP_ULE
:
2710 case ICmpInst::ICMP_SLE
: Out
<< " <= "; break;
2711 case ICmpInst::ICMP_UGE
:
2712 case ICmpInst::ICMP_SGE
: Out
<< " >= "; break;
2713 case ICmpInst::ICMP_ULT
:
2714 case ICmpInst::ICMP_SLT
: Out
<< " < "; break;
2715 case ICmpInst::ICMP_UGT
:
2716 case ICmpInst::ICMP_SGT
: Out
<< " > "; break;
2719 cerr
<< "Invalid icmp predicate!" << I
;
2721 llvm_unreachable(0);
2724 writeOperandWithCast(I
.getOperand(1), I
);
2725 if (NeedsClosingParens
)
2733 void CWriter::visitFCmpInst(FCmpInst
&I
) {
2734 if (I
.getPredicate() == FCmpInst::FCMP_FALSE
) {
2738 if (I
.getPredicate() == FCmpInst::FCMP_TRUE
) {
2744 switch (I
.getPredicate()) {
2745 default: llvm_unreachable("Illegal FCmp predicate");
2746 case FCmpInst::FCMP_ORD
: op
= "ord"; break;
2747 case FCmpInst::FCMP_UNO
: op
= "uno"; break;
2748 case FCmpInst::FCMP_UEQ
: op
= "ueq"; break;
2749 case FCmpInst::FCMP_UNE
: op
= "une"; break;
2750 case FCmpInst::FCMP_ULT
: op
= "ult"; break;
2751 case FCmpInst::FCMP_ULE
: op
= "ule"; break;
2752 case FCmpInst::FCMP_UGT
: op
= "ugt"; break;
2753 case FCmpInst::FCMP_UGE
: op
= "uge"; break;
2754 case FCmpInst::FCMP_OEQ
: op
= "oeq"; break;
2755 case FCmpInst::FCMP_ONE
: op
= "one"; break;
2756 case FCmpInst::FCMP_OLT
: op
= "olt"; break;
2757 case FCmpInst::FCMP_OLE
: op
= "ole"; break;
2758 case FCmpInst::FCMP_OGT
: op
= "ogt"; break;
2759 case FCmpInst::FCMP_OGE
: op
= "oge"; break;
2762 Out
<< "llvm_fcmp_" << op
<< "(";
2763 // Write the first operand
2764 writeOperand(I
.getOperand(0));
2766 // Write the second operand
2767 writeOperand(I
.getOperand(1));
2771 static const char * getFloatBitCastField(const Type
*Ty
) {
2772 switch (Ty
->getTypeID()) {
2773 default: llvm_unreachable("Invalid Type");
2774 case Type::FloatTyID
: return "Float";
2775 case Type::DoubleTyID
: return "Double";
2776 case Type::IntegerTyID
: {
2777 unsigned NumBits
= cast
<IntegerType
>(Ty
)->getBitWidth();
2786 void CWriter::visitCastInst(CastInst
&I
) {
2787 const Type
*DstTy
= I
.getType();
2788 const Type
*SrcTy
= I
.getOperand(0)->getType();
2789 if (isFPIntBitCast(I
)) {
2791 // These int<->float and long<->double casts need to be handled specially
2792 Out
<< GetValueName(&I
) << "__BITCAST_TEMPORARY."
2793 << getFloatBitCastField(I
.getOperand(0)->getType()) << " = ";
2794 writeOperand(I
.getOperand(0));
2795 Out
<< ", " << GetValueName(&I
) << "__BITCAST_TEMPORARY."
2796 << getFloatBitCastField(I
.getType());
2802 printCast(I
.getOpcode(), SrcTy
, DstTy
);
2804 // Make a sext from i1 work by subtracting the i1 from 0 (an int).
2805 if (SrcTy
== Type::Int1Ty
&& I
.getOpcode() == Instruction::SExt
)
2808 writeOperand(I
.getOperand(0));
2810 if (DstTy
== Type::Int1Ty
&&
2811 (I
.getOpcode() == Instruction::Trunc
||
2812 I
.getOpcode() == Instruction::FPToUI
||
2813 I
.getOpcode() == Instruction::FPToSI
||
2814 I
.getOpcode() == Instruction::PtrToInt
)) {
2815 // Make sure we really get a trunc to bool by anding the operand with 1
2821 void CWriter::visitSelectInst(SelectInst
&I
) {
2823 writeOperand(I
.getCondition());
2825 writeOperand(I
.getTrueValue());
2827 writeOperand(I
.getFalseValue());
2832 void CWriter::lowerIntrinsics(Function
&F
) {
2833 // This is used to keep track of intrinsics that get generated to a lowered
2834 // function. We must generate the prototypes before the function body which
2835 // will only be expanded on first use (by the loop below).
2836 std::vector
<Function
*> prototypesToGen
;
2838 // Examine all the instructions in this function to find the intrinsics that
2839 // need to be lowered.
2840 for (Function::iterator BB
= F
.begin(), EE
= F
.end(); BB
!= EE
; ++BB
)
2841 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; )
2842 if (CallInst
*CI
= dyn_cast
<CallInst
>(I
++))
2843 if (Function
*F
= CI
->getCalledFunction())
2844 switch (F
->getIntrinsicID()) {
2845 case Intrinsic::not_intrinsic
:
2846 case Intrinsic::memory_barrier
:
2847 case Intrinsic::vastart
:
2848 case Intrinsic::vacopy
:
2849 case Intrinsic::vaend
:
2850 case Intrinsic::returnaddress
:
2851 case Intrinsic::frameaddress
:
2852 case Intrinsic::setjmp
:
2853 case Intrinsic::longjmp
:
2854 case Intrinsic::prefetch
:
2855 case Intrinsic::dbg_stoppoint
:
2856 case Intrinsic::powi
:
2857 case Intrinsic::x86_sse_cmp_ss
:
2858 case Intrinsic::x86_sse_cmp_ps
:
2859 case Intrinsic::x86_sse2_cmp_sd
:
2860 case Intrinsic::x86_sse2_cmp_pd
:
2861 case Intrinsic::ppc_altivec_lvsl
:
2862 // We directly implement these intrinsics
2865 // If this is an intrinsic that directly corresponds to a GCC
2866 // builtin, we handle it.
2867 const char *BuiltinName
= "";
2868 #define GET_GCC_BUILTIN_NAME
2869 #include "llvm/Intrinsics.gen"
2870 #undef GET_GCC_BUILTIN_NAME
2871 // If we handle it, don't lower it.
2872 if (BuiltinName
[0]) break;
2874 // All other intrinsic calls we must lower.
2875 Instruction
*Before
= 0;
2876 if (CI
!= &BB
->front())
2877 Before
= prior(BasicBlock::iterator(CI
));
2879 IL
->LowerIntrinsicCall(CI
);
2880 if (Before
) { // Move iterator to instruction after call
2885 // If the intrinsic got lowered to another call, and that call has
2886 // a definition then we need to make sure its prototype is emitted
2887 // before any calls to it.
2888 if (CallInst
*Call
= dyn_cast
<CallInst
>(I
))
2889 if (Function
*NewF
= Call
->getCalledFunction())
2890 if (!NewF
->isDeclaration())
2891 prototypesToGen
.push_back(NewF
);
2896 // We may have collected some prototypes to emit in the loop above.
2897 // Emit them now, before the function that uses them is emitted. But,
2898 // be careful not to emit them twice.
2899 std::vector
<Function
*>::iterator I
= prototypesToGen
.begin();
2900 std::vector
<Function
*>::iterator E
= prototypesToGen
.end();
2901 for ( ; I
!= E
; ++I
) {
2902 if (intrinsicPrototypesAlreadyGenerated
.insert(*I
).second
) {
2904 printFunctionSignature(*I
, true);
2910 void CWriter::visitCallInst(CallInst
&I
) {
2911 if (isa
<InlineAsm
>(I
.getOperand(0)))
2912 return visitInlineAsm(I
);
2914 bool WroteCallee
= false;
2916 // Handle intrinsic function calls first...
2917 if (Function
*F
= I
.getCalledFunction())
2918 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
2919 if (visitBuiltinCall(I
, ID
, WroteCallee
))
2922 Value
*Callee
= I
.getCalledValue();
2924 const PointerType
*PTy
= cast
<PointerType
>(Callee
->getType());
2925 const FunctionType
*FTy
= cast
<FunctionType
>(PTy
->getElementType());
2927 // If this is a call to a struct-return function, assign to the first
2928 // parameter instead of passing it to the call.
2929 const AttrListPtr
&PAL
= I
.getAttributes();
2930 bool hasByVal
= I
.hasByValArgument();
2931 bool isStructRet
= I
.hasStructRetAttr();
2933 writeOperandDeref(I
.getOperand(1));
2937 if (I
.isTailCall()) Out
<< " /*tail*/ ";
2940 // If this is an indirect call to a struct return function, we need to cast
2941 // the pointer. Ditto for indirect calls with byval arguments.
2942 bool NeedsCast
= (hasByVal
|| isStructRet
) && !isa
<Function
>(Callee
);
2944 // GCC is a real PITA. It does not permit codegening casts of functions to
2945 // function pointers if they are in a call (it generates a trap instruction
2946 // instead!). We work around this by inserting a cast to void* in between
2947 // the function and the function pointer cast. Unfortunately, we can't just
2948 // form the constant expression here, because the folder will immediately
2951 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2952 // that void* and function pointers have the same size. :( To deal with this
2953 // in the common case, we handle casts where the number of arguments passed
2956 if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(Callee
))
2958 if (Function
*RF
= dyn_cast
<Function
>(CE
->getOperand(0))) {
2964 // Ok, just cast the pointer type.
2967 printStructReturnPointerFunctionType(Out
, PAL
,
2968 cast
<PointerType
>(I
.getCalledValue()->getType()));
2970 printType(Out
, I
.getCalledValue()->getType(), false, "", true, PAL
);
2972 printType(Out
, I
.getCalledValue()->getType());
2975 writeOperand(Callee
);
2976 if (NeedsCast
) Out
<< ')';
2981 unsigned NumDeclaredParams
= FTy
->getNumParams();
2983 CallSite::arg_iterator AI
= I
.op_begin()+1, AE
= I
.op_end();
2985 if (isStructRet
) { // Skip struct return argument.
2990 bool PrintedArg
= false;
2991 for (; AI
!= AE
; ++AI
, ++ArgNo
) {
2992 if (PrintedArg
) Out
<< ", ";
2993 if (ArgNo
< NumDeclaredParams
&&
2994 (*AI
)->getType() != FTy
->getParamType(ArgNo
)) {
2996 printType(Out
, FTy
->getParamType(ArgNo
),
2997 /*isSigned=*/PAL
.paramHasAttr(ArgNo
+1, Attribute::SExt
));
3000 // Check if the argument is expected to be passed by value.
3001 if (I
.paramHasAttr(ArgNo
+1, Attribute::ByVal
))
3002 writeOperandDeref(*AI
);
3010 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true
3011 /// if the entire call is handled, return false it it wasn't handled, and
3012 /// optionally set 'WroteCallee' if the callee has already been printed out.
3013 bool CWriter::visitBuiltinCall(CallInst
&I
, Intrinsic::ID ID
,
3014 bool &WroteCallee
) {
3017 // If this is an intrinsic that directly corresponds to a GCC
3018 // builtin, we emit it here.
3019 const char *BuiltinName
= "";
3020 Function
*F
= I
.getCalledFunction();
3021 #define GET_GCC_BUILTIN_NAME
3022 #include "llvm/Intrinsics.gen"
3023 #undef GET_GCC_BUILTIN_NAME
3024 assert(BuiltinName
[0] && "Unknown LLVM intrinsic!");
3030 case Intrinsic::memory_barrier
:
3031 Out
<< "__sync_synchronize()";
3033 case Intrinsic::vastart
:
3036 Out
<< "va_start(*(va_list*)";
3037 writeOperand(I
.getOperand(1));
3039 // Output the last argument to the enclosing function.
3040 if (I
.getParent()->getParent()->arg_empty()) {
3042 raw_string_ostream
Msg(msg
);
3043 Msg
<< "The C backend does not currently support zero "
3044 << "argument varargs functions, such as '"
3045 << I
.getParent()->getParent()->getName() << "'!";
3046 llvm_report_error(Msg
.str());
3048 writeOperand(--I
.getParent()->getParent()->arg_end());
3051 case Intrinsic::vaend
:
3052 if (!isa
<ConstantPointerNull
>(I
.getOperand(1))) {
3053 Out
<< "0; va_end(*(va_list*)";
3054 writeOperand(I
.getOperand(1));
3057 Out
<< "va_end(*(va_list*)0)";
3060 case Intrinsic::vacopy
:
3062 Out
<< "va_copy(*(va_list*)";
3063 writeOperand(I
.getOperand(1));
3064 Out
<< ", *(va_list*)";
3065 writeOperand(I
.getOperand(2));
3068 case Intrinsic::returnaddress
:
3069 Out
<< "__builtin_return_address(";
3070 writeOperand(I
.getOperand(1));
3073 case Intrinsic::frameaddress
:
3074 Out
<< "__builtin_frame_address(";
3075 writeOperand(I
.getOperand(1));
3078 case Intrinsic::powi
:
3079 Out
<< "__builtin_powi(";
3080 writeOperand(I
.getOperand(1));
3082 writeOperand(I
.getOperand(2));
3085 case Intrinsic::setjmp
:
3086 Out
<< "setjmp(*(jmp_buf*)";
3087 writeOperand(I
.getOperand(1));
3090 case Intrinsic::longjmp
:
3091 Out
<< "longjmp(*(jmp_buf*)";
3092 writeOperand(I
.getOperand(1));
3094 writeOperand(I
.getOperand(2));
3097 case Intrinsic::prefetch
:
3098 Out
<< "LLVM_PREFETCH((const void *)";
3099 writeOperand(I
.getOperand(1));
3101 writeOperand(I
.getOperand(2));
3103 writeOperand(I
.getOperand(3));
3106 case Intrinsic::stacksave
:
3107 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
3108 // to work around GCC bugs (see PR1809).
3109 Out
<< "0; *((void**)&" << GetValueName(&I
)
3110 << ") = __builtin_stack_save()";
3112 case Intrinsic::dbg_stoppoint
: {
3113 // If we use writeOperand directly we get a "u" suffix which is rejected
3115 std::stringstream SPIStr
;
3116 DbgStopPointInst
&SPI
= cast
<DbgStopPointInst
>(I
);
3117 SPI
.getDirectory()->print(SPIStr
);
3121 Out
<< SPIStr
.str();
3123 SPI
.getFileName()->print(SPIStr
);
3124 Out
<< SPIStr
.str() << "\"\n";
3127 case Intrinsic::x86_sse_cmp_ss
:
3128 case Intrinsic::x86_sse_cmp_ps
:
3129 case Intrinsic::x86_sse2_cmp_sd
:
3130 case Intrinsic::x86_sse2_cmp_pd
:
3132 printType(Out
, I
.getType());
3134 // Multiple GCC builtins multiplex onto this intrinsic.
3135 switch (cast
<ConstantInt
>(I
.getOperand(3))->getZExtValue()) {
3136 default: llvm_unreachable("Invalid llvm.x86.sse.cmp!");
3137 case 0: Out
<< "__builtin_ia32_cmpeq"; break;
3138 case 1: Out
<< "__builtin_ia32_cmplt"; break;
3139 case 2: Out
<< "__builtin_ia32_cmple"; break;
3140 case 3: Out
<< "__builtin_ia32_cmpunord"; break;
3141 case 4: Out
<< "__builtin_ia32_cmpneq"; break;
3142 case 5: Out
<< "__builtin_ia32_cmpnlt"; break;
3143 case 6: Out
<< "__builtin_ia32_cmpnle"; break;
3144 case 7: Out
<< "__builtin_ia32_cmpord"; break;
3146 if (ID
== Intrinsic::x86_sse_cmp_ps
|| ID
== Intrinsic::x86_sse2_cmp_pd
)
3150 if (ID
== Intrinsic::x86_sse_cmp_ss
|| ID
== Intrinsic::x86_sse_cmp_ps
)
3156 writeOperand(I
.getOperand(1));
3158 writeOperand(I
.getOperand(2));
3161 case Intrinsic::ppc_altivec_lvsl
:
3163 printType(Out
, I
.getType());
3165 Out
<< "__builtin_altivec_lvsl(0, (void*)";
3166 writeOperand(I
.getOperand(1));
3172 //This converts the llvm constraint string to something gcc is expecting.
3173 //TODO: work out platform independent constraints and factor those out
3174 // of the per target tables
3175 // handle multiple constraint codes
3176 std::string
CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo
& c
) {
3178 assert(c
.Codes
.size() == 1 && "Too many asm constraint codes to handle");
3180 const char *const *table
= 0;
3182 // Grab the translation table from TargetAsmInfo if it exists.
3184 std::string Triple
= TheModule
->getTargetTriple();
3186 Triple
= llvm::sys::getHostTriple();
3189 const Target
*Match
= TargetRegistry::lookupTarget(Triple
, E
);
3191 // Per platform Target Machines don't exist, so create it;
3192 // this must be done only once.
3193 const TargetMachine
* TM
= Match
->createTargetMachine(Triple
, "");
3194 TAsm
= TM
->getTargetAsmInfo();
3198 table
= TAsm
->getAsmCBE();
3200 // Search the translation table if it exists.
3201 for (int i
= 0; table
&& table
[i
]; i
+= 2)
3202 if (c
.Codes
[0] == table
[i
])
3205 // Default is identity.
3209 //TODO: import logic from AsmPrinter.cpp
3210 static std::string
gccifyAsm(std::string asmstr
) {
3211 for (std::string::size_type i
= 0; i
!= asmstr
.size(); ++i
)
3212 if (asmstr
[i
] == '\n')
3213 asmstr
.replace(i
, 1, "\\n");
3214 else if (asmstr
[i
] == '\t')
3215 asmstr
.replace(i
, 1, "\\t");
3216 else if (asmstr
[i
] == '$') {
3217 if (asmstr
[i
+ 1] == '{') {
3218 std::string::size_type a
= asmstr
.find_first_of(':', i
+ 1);
3219 std::string::size_type b
= asmstr
.find_first_of('}', i
+ 1);
3220 std::string n
= "%" +
3221 asmstr
.substr(a
+ 1, b
- a
- 1) +
3222 asmstr
.substr(i
+ 2, a
- i
- 2);
3223 asmstr
.replace(i
, b
- i
+ 1, n
);
3226 asmstr
.replace(i
, 1, "%");
3228 else if (asmstr
[i
] == '%')//grr
3229 { asmstr
.replace(i
, 1, "%%"); ++i
;}
3234 //TODO: assumptions about what consume arguments from the call are likely wrong
3235 // handle communitivity
3236 void CWriter::visitInlineAsm(CallInst
&CI
) {
3237 InlineAsm
* as
= cast
<InlineAsm
>(CI
.getOperand(0));
3238 std::vector
<InlineAsm::ConstraintInfo
> Constraints
= as
->ParseConstraints();
3240 std::vector
<std::pair
<Value
*, int> > ResultVals
;
3241 if (CI
.getType() == Type::VoidTy
)
3243 else if (const StructType
*ST
= dyn_cast
<StructType
>(CI
.getType())) {
3244 for (unsigned i
= 0, e
= ST
->getNumElements(); i
!= e
; ++i
)
3245 ResultVals
.push_back(std::make_pair(&CI
, (int)i
));
3247 ResultVals
.push_back(std::make_pair(&CI
, -1));
3250 // Fix up the asm string for gcc and emit it.
3251 Out
<< "__asm__ volatile (\"" << gccifyAsm(as
->getAsmString()) << "\"\n";
3254 unsigned ValueCount
= 0;
3255 bool IsFirst
= true;
3257 // Convert over all the output constraints.
3258 for (std::vector
<InlineAsm::ConstraintInfo
>::iterator I
= Constraints
.begin(),
3259 E
= Constraints
.end(); I
!= E
; ++I
) {
3261 if (I
->Type
!= InlineAsm::isOutput
) {
3263 continue; // Ignore non-output constraints.
3266 assert(I
->Codes
.size() == 1 && "Too many asm constraint codes to handle");
3267 std::string C
= InterpretASMConstraint(*I
);
3268 if (C
.empty()) continue;
3279 if (ValueCount
< ResultVals
.size()) {
3280 DestVal
= ResultVals
[ValueCount
].first
;
3281 DestValNo
= ResultVals
[ValueCount
].second
;
3283 DestVal
= CI
.getOperand(ValueCount
-ResultVals
.size()+1);
3285 if (I
->isEarlyClobber
)
3288 Out
<< "\"=" << C
<< "\"(" << GetValueName(DestVal
);
3289 if (DestValNo
!= -1)
3290 Out
<< ".field" << DestValNo
; // Multiple retvals.
3296 // Convert over all the input constraints.
3300 for (std::vector
<InlineAsm::ConstraintInfo
>::iterator I
= Constraints
.begin(),
3301 E
= Constraints
.end(); I
!= E
; ++I
) {
3302 if (I
->Type
!= InlineAsm::isInput
) {
3304 continue; // Ignore non-input constraints.
3307 assert(I
->Codes
.size() == 1 && "Too many asm constraint codes to handle");
3308 std::string C
= InterpretASMConstraint(*I
);
3309 if (C
.empty()) continue;
3316 assert(ValueCount
>= ResultVals
.size() && "Input can't refer to result");
3317 Value
*SrcVal
= CI
.getOperand(ValueCount
-ResultVals
.size()+1);
3319 Out
<< "\"" << C
<< "\"(";
3321 writeOperand(SrcVal
);
3323 writeOperandDeref(SrcVal
);
3327 // Convert over the clobber constraints.
3330 for (std::vector
<InlineAsm::ConstraintInfo
>::iterator I
= Constraints
.begin(),
3331 E
= Constraints
.end(); I
!= E
; ++I
) {
3332 if (I
->Type
!= InlineAsm::isClobber
)
3333 continue; // Ignore non-input constraints.
3335 assert(I
->Codes
.size() == 1 && "Too many asm constraint codes to handle");
3336 std::string C
= InterpretASMConstraint(*I
);
3337 if (C
.empty()) continue;
3344 Out
<< '\"' << C
<< '"';
3350 void CWriter::visitMallocInst(MallocInst
&I
) {
3351 llvm_unreachable("lowerallocations pass didn't work!");
3354 void CWriter::visitAllocaInst(AllocaInst
&I
) {
3356 printType(Out
, I
.getType());
3357 Out
<< ") alloca(sizeof(";
3358 printType(Out
, I
.getType()->getElementType());
3360 if (I
.isArrayAllocation()) {
3362 writeOperand(I
.getOperand(0));
3367 void CWriter::visitFreeInst(FreeInst
&I
) {
3368 llvm_unreachable("lowerallocations pass didn't work!");
3371 void CWriter::printGEPExpression(Value
*Ptr
, gep_type_iterator I
,
3372 gep_type_iterator E
, bool Static
) {
3374 // If there are no indices, just print out the pointer.
3380 // Find out if the last index is into a vector. If so, we have to print this
3381 // specially. Since vectors can't have elements of indexable type, only the
3382 // last index could possibly be of a vector element.
3383 const VectorType
*LastIndexIsVector
= 0;
3385 for (gep_type_iterator TmpI
= I
; TmpI
!= E
; ++TmpI
)
3386 LastIndexIsVector
= dyn_cast
<VectorType
>(*TmpI
);
3391 // If the last index is into a vector, we can't print it as &a[i][j] because
3392 // we can't index into a vector with j in GCC. Instead, emit this as
3393 // (((float*)&a[i])+j)
3394 if (LastIndexIsVector
) {
3396 printType(Out
, PointerType::getUnqual(LastIndexIsVector
->getElementType()));
3402 // If the first index is 0 (very typical) we can do a number of
3403 // simplifications to clean up the code.
3404 Value
*FirstOp
= I
.getOperand();
3405 if (!isa
<Constant
>(FirstOp
) || !cast
<Constant
>(FirstOp
)->isNullValue()) {
3406 // First index isn't simple, print it the hard way.
3409 ++I
; // Skip the zero index.
3411 // Okay, emit the first operand. If Ptr is something that is already address
3412 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3413 if (isAddressExposed(Ptr
)) {
3414 writeOperandInternal(Ptr
, Static
);
3415 } else if (I
!= E
&& isa
<StructType
>(*I
)) {
3416 // If we didn't already emit the first operand, see if we can print it as
3417 // P->f instead of "P[0].f"
3419 Out
<< "->field" << cast
<ConstantInt
>(I
.getOperand())->getZExtValue();
3420 ++I
; // eat the struct index as well.
3422 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3429 for (; I
!= E
; ++I
) {
3430 if (isa
<StructType
>(*I
)) {
3431 Out
<< ".field" << cast
<ConstantInt
>(I
.getOperand())->getZExtValue();
3432 } else if (isa
<ArrayType
>(*I
)) {
3434 writeOperandWithCast(I
.getOperand(), Instruction::GetElementPtr
);
3436 } else if (!isa
<VectorType
>(*I
)) {
3438 writeOperandWithCast(I
.getOperand(), Instruction::GetElementPtr
);
3441 // If the last index is into a vector, then print it out as "+j)". This
3442 // works with the 'LastIndexIsVector' code above.
3443 if (isa
<Constant
>(I
.getOperand()) &&
3444 cast
<Constant
>(I
.getOperand())->isNullValue()) {
3445 Out
<< "))"; // avoid "+0".
3448 writeOperandWithCast(I
.getOperand(), Instruction::GetElementPtr
);
3456 void CWriter::writeMemoryAccess(Value
*Operand
, const Type
*OperandType
,
3457 bool IsVolatile
, unsigned Alignment
) {
3459 bool IsUnaligned
= Alignment
&&
3460 Alignment
< TD
->getABITypeAlignment(OperandType
);
3464 if (IsVolatile
|| IsUnaligned
) {
3467 Out
<< "struct __attribute__ ((packed, aligned(" << Alignment
<< "))) {";
3468 printType(Out
, OperandType
, false, IsUnaligned
? "data" : "volatile*");
3471 if (IsVolatile
) Out
<< "volatile ";
3477 writeOperand(Operand
);
3479 if (IsVolatile
|| IsUnaligned
) {
3486 void CWriter::visitLoadInst(LoadInst
&I
) {
3487 writeMemoryAccess(I
.getOperand(0), I
.getType(), I
.isVolatile(),
3492 void CWriter::visitStoreInst(StoreInst
&I
) {
3493 writeMemoryAccess(I
.getPointerOperand(), I
.getOperand(0)->getType(),
3494 I
.isVolatile(), I
.getAlignment());
3496 Value
*Operand
= I
.getOperand(0);
3497 Constant
*BitMask
= 0;
3498 if (const IntegerType
* ITy
= dyn_cast
<IntegerType
>(Operand
->getType()))
3499 if (!ITy
->isPowerOf2ByteWidth())
3500 // We have a bit width that doesn't match an even power-of-2 byte
3501 // size. Consequently we must & the value with the type's bit mask
3502 BitMask
= ConstantInt::get(ITy
, ITy
->getBitMask());
3505 writeOperand(Operand
);
3508 printConstant(BitMask
, false);
3513 void CWriter::visitGetElementPtrInst(GetElementPtrInst
&I
) {
3514 printGEPExpression(I
.getPointerOperand(), gep_type_begin(I
),
3515 gep_type_end(I
), false);
3518 void CWriter::visitVAArgInst(VAArgInst
&I
) {
3519 Out
<< "va_arg(*(va_list*)";
3520 writeOperand(I
.getOperand(0));
3522 printType(Out
, I
.getType());
3526 void CWriter::visitInsertElementInst(InsertElementInst
&I
) {
3527 const Type
*EltTy
= I
.getType()->getElementType();
3528 writeOperand(I
.getOperand(0));
3531 printType(Out
, PointerType::getUnqual(EltTy
));
3532 Out
<< ")(&" << GetValueName(&I
) << "))[";
3533 writeOperand(I
.getOperand(2));
3535 writeOperand(I
.getOperand(1));
3539 void CWriter::visitExtractElementInst(ExtractElementInst
&I
) {
3540 // We know that our operand is not inlined.
3543 cast
<VectorType
>(I
.getOperand(0)->getType())->getElementType();
3544 printType(Out
, PointerType::getUnqual(EltTy
));
3545 Out
<< ")(&" << GetValueName(I
.getOperand(0)) << "))[";
3546 writeOperand(I
.getOperand(1));
3550 void CWriter::visitShuffleVectorInst(ShuffleVectorInst
&SVI
) {
3552 printType(Out
, SVI
.getType());
3554 const VectorType
*VT
= SVI
.getType();
3555 unsigned NumElts
= VT
->getNumElements();
3556 const Type
*EltTy
= VT
->getElementType();
3558 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3560 int SrcVal
= SVI
.getMaskValue(i
);
3561 if ((unsigned)SrcVal
>= NumElts
*2) {
3562 Out
<< " 0/*undef*/ ";
3564 Value
*Op
= SVI
.getOperand((unsigned)SrcVal
>= NumElts
);
3565 if (isa
<Instruction
>(Op
)) {
3566 // Do an extractelement of this value from the appropriate input.
3568 printType(Out
, PointerType::getUnqual(EltTy
));
3569 Out
<< ")(&" << GetValueName(Op
)
3570 << "))[" << (SrcVal
& (NumElts
-1)) << "]";
3571 } else if (isa
<ConstantAggregateZero
>(Op
) || isa
<UndefValue
>(Op
)) {
3574 printConstant(cast
<ConstantVector
>(Op
)->getOperand(SrcVal
&
3583 void CWriter::visitInsertValueInst(InsertValueInst
&IVI
) {
3584 // Start by copying the entire aggregate value into the result variable.
3585 writeOperand(IVI
.getOperand(0));
3588 // Then do the insert to update the field.
3589 Out
<< GetValueName(&IVI
);
3590 for (const unsigned *b
= IVI
.idx_begin(), *i
= b
, *e
= IVI
.idx_end();
3592 const Type
*IndexedTy
=
3593 ExtractValueInst::getIndexedType(IVI
.getOperand(0)->getType(), b
, i
+1);
3594 if (isa
<ArrayType
>(IndexedTy
))
3595 Out
<< ".array[" << *i
<< "]";
3597 Out
<< ".field" << *i
;
3600 writeOperand(IVI
.getOperand(1));
3603 void CWriter::visitExtractValueInst(ExtractValueInst
&EVI
) {
3605 if (isa
<UndefValue
>(EVI
.getOperand(0))) {
3607 printType(Out
, EVI
.getType());
3608 Out
<< ") 0/*UNDEF*/";
3610 Out
<< GetValueName(EVI
.getOperand(0));
3611 for (const unsigned *b
= EVI
.idx_begin(), *i
= b
, *e
= EVI
.idx_end();
3613 const Type
*IndexedTy
=
3614 ExtractValueInst::getIndexedType(EVI
.getOperand(0)->getType(), b
, i
+1);
3615 if (isa
<ArrayType
>(IndexedTy
))
3616 Out
<< ".array[" << *i
<< "]";
3618 Out
<< ".field" << *i
;
3624 //===----------------------------------------------------------------------===//
3625 // External Interface declaration
3626 //===----------------------------------------------------------------------===//
3628 bool CTargetMachine::addPassesToEmitWholeFile(PassManager
&PM
,
3629 formatted_raw_ostream
&o
,
3630 CodeGenFileType FileType
,
3631 CodeGenOpt::Level OptLevel
) {
3632 if (FileType
!= TargetMachine::AssemblyFile
) return true;
3634 PM
.add(createGCLoweringPass());
3635 PM
.add(createLowerAllocationsPass(true));
3636 PM
.add(createLowerInvokePass());
3637 PM
.add(createCFGSimplificationPass()); // clean up after lower invoke.
3638 PM
.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3639 PM
.add(new CWriter(o
));
3640 PM
.add(createGCInfoDeleter());