1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach. It should eventually be removed.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "codegenprepare"
17 #include "llvm/Transforms/Scalar.h"
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Function.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Instructions.h"
23 #include "llvm/IntrinsicInst.h"
24 #include "llvm/LLVMContext.h"
25 #include "llvm/Pass.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Target/TargetLowering.h"
28 #include "llvm/Transforms/Utils/AddrModeMatcher.h"
29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/Assembly/Writer.h"
34 #include "llvm/Support/CallSite.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/PatternMatch.h"
40 #include "llvm/Support/raw_ostream.h"
42 using namespace llvm::PatternMatch
;
44 static cl::opt
<bool> FactorCommonPreds("split-critical-paths-tweak",
45 cl::init(false), cl::Hidden
);
48 class VISIBILITY_HIDDEN CodeGenPrepare
: public FunctionPass
{
49 /// TLI - Keep a pointer of a TargetLowering to consult for determining
50 /// transformation profitability.
51 const TargetLowering
*TLI
;
53 /// BackEdges - Keep a set of all the loop back edges.
55 SmallSet
<std::pair
<const BasicBlock
*, const BasicBlock
*>, 8> BackEdges
;
57 static char ID
; // Pass identification, replacement for typeid
58 explicit CodeGenPrepare(const TargetLowering
*tli
= 0)
59 : FunctionPass(&ID
), TLI(tli
) {}
60 bool runOnFunction(Function
&F
);
63 bool EliminateMostlyEmptyBlocks(Function
&F
);
64 bool CanMergeBlocks(const BasicBlock
*BB
, const BasicBlock
*DestBB
) const;
65 void EliminateMostlyEmptyBlock(BasicBlock
*BB
);
66 bool OptimizeBlock(BasicBlock
&BB
);
67 bool OptimizeMemoryInst(Instruction
*I
, Value
*Addr
, const Type
*AccessTy
,
68 DenseMap
<Value
*,Value
*> &SunkAddrs
);
69 bool OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
70 DenseMap
<Value
*,Value
*> &SunkAddrs
);
71 bool OptimizeExtUses(Instruction
*I
);
72 void findLoopBackEdges(const Function
&F
);
76 char CodeGenPrepare::ID
= 0;
77 static RegisterPass
<CodeGenPrepare
> X("codegenprepare",
78 "Optimize for code generation");
80 FunctionPass
*llvm::createCodeGenPreparePass(const TargetLowering
*TLI
) {
81 return new CodeGenPrepare(TLI
);
84 /// findLoopBackEdges - Do a DFS walk to find loop back edges.
86 void CodeGenPrepare::findLoopBackEdges(const Function
&F
) {
87 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
88 FindFunctionBackedges(F
, Edges
);
90 BackEdges
.insert(Edges
.begin(), Edges
.end());
94 bool CodeGenPrepare::runOnFunction(Function
&F
) {
95 bool EverMadeChange
= false;
97 // First pass, eliminate blocks that contain only PHI nodes and an
98 // unconditional branch.
99 EverMadeChange
|= EliminateMostlyEmptyBlocks(F
);
101 // Now find loop back edges.
102 findLoopBackEdges(F
);
104 bool MadeChange
= true;
107 for (Function::iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
108 MadeChange
|= OptimizeBlock(*BB
);
109 EverMadeChange
|= MadeChange
;
111 return EverMadeChange
;
114 /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
115 /// debug info directives, and an unconditional branch. Passes before isel
116 /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
117 /// isel. Start by eliminating these blocks so we can split them the way we
119 bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function
&F
) {
120 bool MadeChange
= false;
121 // Note that this intentionally skips the entry block.
122 for (Function::iterator I
= ++F
.begin(), E
= F
.end(); I
!= E
; ) {
123 BasicBlock
*BB
= I
++;
125 // If this block doesn't end with an uncond branch, ignore it.
126 BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
127 if (!BI
|| !BI
->isUnconditional())
130 // If the instruction before the branch (skipping debug info) isn't a phi
131 // node, then other stuff is happening here.
132 BasicBlock::iterator BBI
= BI
;
133 if (BBI
!= BB
->begin()) {
135 while (isa
<DbgInfoIntrinsic
>(BBI
)) {
136 if (BBI
== BB
->begin())
140 if (!isa
<DbgInfoIntrinsic
>(BBI
) && !isa
<PHINode
>(BBI
))
144 // Do not break infinite loops.
145 BasicBlock
*DestBB
= BI
->getSuccessor(0);
149 if (!CanMergeBlocks(BB
, DestBB
))
152 EliminateMostlyEmptyBlock(BB
);
158 /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
159 /// single uncond branch between them, and BB contains no other non-phi
161 bool CodeGenPrepare::CanMergeBlocks(const BasicBlock
*BB
,
162 const BasicBlock
*DestBB
) const {
163 // We only want to eliminate blocks whose phi nodes are used by phi nodes in
164 // the successor. If there are more complex condition (e.g. preheaders),
165 // don't mess around with them.
166 BasicBlock::const_iterator BBI
= BB
->begin();
167 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
168 for (Value::use_const_iterator UI
= PN
->use_begin(), E
= PN
->use_end();
170 const Instruction
*User
= cast
<Instruction
>(*UI
);
171 if (User
->getParent() != DestBB
|| !isa
<PHINode
>(User
))
173 // If User is inside DestBB block and it is a PHINode then check
174 // incoming value. If incoming value is not from BB then this is
175 // a complex condition (e.g. preheaders) we want to avoid here.
176 if (User
->getParent() == DestBB
) {
177 if (const PHINode
*UPN
= dyn_cast
<PHINode
>(User
))
178 for (unsigned I
= 0, E
= UPN
->getNumIncomingValues(); I
!= E
; ++I
) {
179 Instruction
*Insn
= dyn_cast
<Instruction
>(UPN
->getIncomingValue(I
));
180 if (Insn
&& Insn
->getParent() == BB
&&
181 Insn
->getParent() != UPN
->getIncomingBlock(I
))
188 // If BB and DestBB contain any common predecessors, then the phi nodes in BB
189 // and DestBB may have conflicting incoming values for the block. If so, we
190 // can't merge the block.
191 const PHINode
*DestBBPN
= dyn_cast
<PHINode
>(DestBB
->begin());
192 if (!DestBBPN
) return true; // no conflict.
194 // Collect the preds of BB.
195 SmallPtrSet
<const BasicBlock
*, 16> BBPreds
;
196 if (const PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
197 // It is faster to get preds from a PHI than with pred_iterator.
198 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
199 BBPreds
.insert(BBPN
->getIncomingBlock(i
));
201 BBPreds
.insert(pred_begin(BB
), pred_end(BB
));
204 // Walk the preds of DestBB.
205 for (unsigned i
= 0, e
= DestBBPN
->getNumIncomingValues(); i
!= e
; ++i
) {
206 BasicBlock
*Pred
= DestBBPN
->getIncomingBlock(i
);
207 if (BBPreds
.count(Pred
)) { // Common predecessor?
208 BBI
= DestBB
->begin();
209 while (const PHINode
*PN
= dyn_cast
<PHINode
>(BBI
++)) {
210 const Value
*V1
= PN
->getIncomingValueForBlock(Pred
);
211 const Value
*V2
= PN
->getIncomingValueForBlock(BB
);
213 // If V2 is a phi node in BB, look up what the mapped value will be.
214 if (const PHINode
*V2PN
= dyn_cast
<PHINode
>(V2
))
215 if (V2PN
->getParent() == BB
)
216 V2
= V2PN
->getIncomingValueForBlock(Pred
);
218 // If there is a conflict, bail out.
219 if (V1
!= V2
) return false;
228 /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
229 /// an unconditional branch in it.
230 void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock
*BB
) {
231 BranchInst
*BI
= cast
<BranchInst
>(BB
->getTerminator());
232 BasicBlock
*DestBB
= BI
->getSuccessor(0);
234 DOUT
<< "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB
<< *DestBB
;
236 // If the destination block has a single pred, then this is a trivial edge,
238 if (BasicBlock
*SinglePred
= DestBB
->getSinglePredecessor()) {
239 if (SinglePred
!= DestBB
) {
240 // Remember if SinglePred was the entry block of the function. If so, we
241 // will need to move BB back to the entry position.
242 bool isEntry
= SinglePred
== &SinglePred
->getParent()->getEntryBlock();
243 MergeBasicBlockIntoOnlyPred(DestBB
);
245 if (isEntry
&& BB
!= &BB
->getParent()->getEntryBlock())
246 BB
->moveBefore(&BB
->getParent()->getEntryBlock());
248 DOUT
<< "AFTER:\n" << *DestBB
<< "\n\n\n";
253 // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB
254 // to handle the new incoming edges it is about to have.
256 for (BasicBlock::iterator BBI
= DestBB
->begin();
257 (PN
= dyn_cast
<PHINode
>(BBI
)); ++BBI
) {
258 // Remove the incoming value for BB, and remember it.
259 Value
*InVal
= PN
->removeIncomingValue(BB
, false);
261 // Two options: either the InVal is a phi node defined in BB or it is some
262 // value that dominates BB.
263 PHINode
*InValPhi
= dyn_cast
<PHINode
>(InVal
);
264 if (InValPhi
&& InValPhi
->getParent() == BB
) {
265 // Add all of the input values of the input PHI as inputs of this phi.
266 for (unsigned i
= 0, e
= InValPhi
->getNumIncomingValues(); i
!= e
; ++i
)
267 PN
->addIncoming(InValPhi
->getIncomingValue(i
),
268 InValPhi
->getIncomingBlock(i
));
270 // Otherwise, add one instance of the dominating value for each edge that
271 // we will be adding.
272 if (PHINode
*BBPN
= dyn_cast
<PHINode
>(BB
->begin())) {
273 for (unsigned i
= 0, e
= BBPN
->getNumIncomingValues(); i
!= e
; ++i
)
274 PN
->addIncoming(InVal
, BBPN
->getIncomingBlock(i
));
276 for (pred_iterator PI
= pred_begin(BB
), E
= pred_end(BB
); PI
!= E
; ++PI
)
277 PN
->addIncoming(InVal
, *PI
);
282 // The PHIs are now updated, change everything that refers to BB to use
283 // DestBB and remove BB.
284 BB
->replaceAllUsesWith(DestBB
);
285 BB
->eraseFromParent();
287 DOUT
<< "AFTER:\n" << *DestBB
<< "\n\n\n";
291 /// SplitEdgeNicely - Split the critical edge from TI to its specified
292 /// successor if it will improve codegen. We only do this if the successor has
293 /// phi nodes (otherwise critical edges are ok). If there is already another
294 /// predecessor of the succ that is empty (and thus has no phi nodes), use it
295 /// instead of introducing a new block.
296 static void SplitEdgeNicely(TerminatorInst
*TI
, unsigned SuccNum
,
297 SmallSet
<std::pair
<const BasicBlock
*,
298 const BasicBlock
*>, 8> &BackEdges
,
300 BasicBlock
*TIBB
= TI
->getParent();
301 BasicBlock
*Dest
= TI
->getSuccessor(SuccNum
);
302 assert(isa
<PHINode
>(Dest
->begin()) &&
303 "This should only be called if Dest has a PHI!");
305 // Do not split edges to EH landing pads.
306 if (InvokeInst
*Invoke
= dyn_cast
<InvokeInst
>(TI
)) {
307 if (Invoke
->getSuccessor(1) == Dest
)
311 // As a hack, never split backedges of loops. Even though the copy for any
312 // PHIs inserted on the backedge would be dead for exits from the loop, we
313 // assume that the cost of *splitting* the backedge would be too high.
314 if (BackEdges
.count(std::make_pair(TIBB
, Dest
)))
317 if (!FactorCommonPreds
) {
318 /// TIPHIValues - This array is lazily computed to determine the values of
319 /// PHIs in Dest that TI would provide.
320 SmallVector
<Value
*, 32> TIPHIValues
;
322 // Check to see if Dest has any blocks that can be used as a split edge for
324 for (pred_iterator PI
= pred_begin(Dest
), E
= pred_end(Dest
); PI
!= E
; ++PI
) {
325 BasicBlock
*Pred
= *PI
;
326 // To be usable, the pred has to end with an uncond branch to the dest.
327 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
328 if (!PredBr
|| !PredBr
->isUnconditional())
330 // Must be empty other than the branch and debug info.
331 BasicBlock::iterator I
= Pred
->begin();
332 while (isa
<DbgInfoIntrinsic
>(I
))
334 if (dyn_cast
<Instruction
>(I
) != PredBr
)
336 // Cannot be the entry block; its label does not get emitted.
337 if (Pred
== &(Dest
->getParent()->getEntryBlock()))
340 // Finally, since we know that Dest has phi nodes in it, we have to make
341 // sure that jumping to Pred will have the same effect as going to Dest in
342 // terms of PHI values.
345 bool FoundMatch
= true;
346 for (BasicBlock::iterator I
= Dest
->begin();
347 (PN
= dyn_cast
<PHINode
>(I
)); ++I
, ++PHINo
) {
348 if (PHINo
== TIPHIValues
.size())
349 TIPHIValues
.push_back(PN
->getIncomingValueForBlock(TIBB
));
351 // If the PHI entry doesn't work, we can't use this pred.
352 if (TIPHIValues
[PHINo
] != PN
->getIncomingValueForBlock(Pred
)) {
358 // If we found a workable predecessor, change TI to branch to Succ.
360 Dest
->removePredecessor(TIBB
);
361 TI
->setSuccessor(SuccNum
, Pred
);
366 SplitCriticalEdge(TI
, SuccNum
, P
, true);
371 SmallVector
<Value
*, 8> TIPHIValues
;
372 for (BasicBlock::iterator I
= Dest
->begin();
373 (PN
= dyn_cast
<PHINode
>(I
)); ++I
)
374 TIPHIValues
.push_back(PN
->getIncomingValueForBlock(TIBB
));
376 SmallVector
<BasicBlock
*, 8> IdenticalPreds
;
377 for (pred_iterator PI
= pred_begin(Dest
), E
= pred_end(Dest
); PI
!= E
; ++PI
) {
378 BasicBlock
*Pred
= *PI
;
379 if (BackEdges
.count(std::make_pair(Pred
, Dest
)))
382 IdenticalPreds
.push_back(Pred
);
384 bool Identical
= true;
386 for (BasicBlock::iterator I
= Dest
->begin();
387 (PN
= dyn_cast
<PHINode
>(I
)); ++I
, ++PHINo
)
388 if (TIPHIValues
[PHINo
] != PN
->getIncomingValueForBlock(Pred
)) {
393 IdenticalPreds
.push_back(Pred
);
397 assert(!IdenticalPreds
.empty());
398 SplitBlockPredecessors(Dest
, &IdenticalPreds
[0], IdenticalPreds
.size(),
403 /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
404 /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
405 /// sink it into user blocks to reduce the number of virtual
406 /// registers that must be created and coalesced.
408 /// Return true if any changes are made.
410 static bool OptimizeNoopCopyExpression(CastInst
*CI
, const TargetLowering
&TLI
){
411 // If this is a noop copy,
412 MVT SrcVT
= TLI
.getValueType(CI
->getOperand(0)->getType());
413 MVT DstVT
= TLI
.getValueType(CI
->getType());
415 // This is an fp<->int conversion?
416 if (SrcVT
.isInteger() != DstVT
.isInteger())
419 // If this is an extension, it will be a zero or sign extension, which
421 if (SrcVT
.bitsLT(DstVT
)) return false;
423 // If these values will be promoted, find out what they will be promoted
424 // to. This helps us consider truncates on PPC as noop copies when they
426 if (TLI
.getTypeAction(SrcVT
) == TargetLowering::Promote
)
427 SrcVT
= TLI
.getTypeToTransformTo(SrcVT
);
428 if (TLI
.getTypeAction(DstVT
) == TargetLowering::Promote
)
429 DstVT
= TLI
.getTypeToTransformTo(DstVT
);
431 // If, after promotion, these are the same types, this is a noop copy.
435 BasicBlock
*DefBB
= CI
->getParent();
437 /// InsertedCasts - Only insert a cast in each block once.
438 DenseMap
<BasicBlock
*, CastInst
*> InsertedCasts
;
440 bool MadeChange
= false;
441 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
443 Use
&TheUse
= UI
.getUse();
444 Instruction
*User
= cast
<Instruction
>(*UI
);
446 // Figure out which BB this cast is used in. For PHI's this is the
447 // appropriate predecessor block.
448 BasicBlock
*UserBB
= User
->getParent();
449 if (PHINode
*PN
= dyn_cast
<PHINode
>(User
)) {
450 UserBB
= PN
->getIncomingBlock(UI
);
453 // Preincrement use iterator so we don't invalidate it.
456 // If this user is in the same block as the cast, don't change the cast.
457 if (UserBB
== DefBB
) continue;
459 // If we have already inserted a cast into this block, use it.
460 CastInst
*&InsertedCast
= InsertedCasts
[UserBB
];
463 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
466 CastInst::Create(CI
->getOpcode(), CI
->getOperand(0), CI
->getType(), "",
471 // Replace a use of the cast with a use of the new cast.
472 TheUse
= InsertedCast
;
475 // If we removed all uses, nuke the cast.
476 if (CI
->use_empty()) {
477 CI
->eraseFromParent();
484 /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
485 /// the number of virtual registers that must be created and coalesced. This is
486 /// a clear win except on targets with multiple condition code registers
487 /// (PowerPC), where it might lose; some adjustment may be wanted there.
489 /// Return true if any changes are made.
490 static bool OptimizeCmpExpression(CmpInst
*CI
) {
491 BasicBlock
*DefBB
= CI
->getParent();
493 /// InsertedCmp - Only insert a cmp in each block once.
494 DenseMap
<BasicBlock
*, CmpInst
*> InsertedCmps
;
496 bool MadeChange
= false;
497 for (Value::use_iterator UI
= CI
->use_begin(), E
= CI
->use_end();
499 Use
&TheUse
= UI
.getUse();
500 Instruction
*User
= cast
<Instruction
>(*UI
);
502 // Preincrement use iterator so we don't invalidate it.
505 // Don't bother for PHI nodes.
506 if (isa
<PHINode
>(User
))
509 // Figure out which BB this cmp is used in.
510 BasicBlock
*UserBB
= User
->getParent();
512 // If this user is in the same block as the cmp, don't change the cmp.
513 if (UserBB
== DefBB
) continue;
515 // If we have already inserted a cmp into this block, use it.
516 CmpInst
*&InsertedCmp
= InsertedCmps
[UserBB
];
519 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
522 CmpInst::Create(DefBB
->getContext(), CI
->getOpcode(),
523 CI
->getPredicate(), CI
->getOperand(0),
524 CI
->getOperand(1), "", InsertPt
);
528 // Replace a use of the cmp with a use of the new cmp.
529 TheUse
= InsertedCmp
;
532 // If we removed all uses, nuke the cmp.
534 CI
->eraseFromParent();
539 //===----------------------------------------------------------------------===//
540 // Memory Optimization
541 //===----------------------------------------------------------------------===//
543 /// IsNonLocalValue - Return true if the specified values are defined in a
544 /// different basic block than BB.
545 static bool IsNonLocalValue(Value
*V
, BasicBlock
*BB
) {
546 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
547 return I
->getParent() != BB
;
551 /// OptimizeMemoryInst - Load and Store Instructions have often have
552 /// addressing modes that can do significant amounts of computation. As such,
553 /// instruction selection will try to get the load or store to do as much
554 /// computation as possible for the program. The problem is that isel can only
555 /// see within a single block. As such, we sink as much legal addressing mode
556 /// stuff into the block as possible.
558 /// This method is used to optimize both load/store and inline asms with memory
560 bool CodeGenPrepare::OptimizeMemoryInst(Instruction
*MemoryInst
, Value
*Addr
,
561 const Type
*AccessTy
,
562 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
563 // Figure out what addressing mode will be built up for this operation.
564 SmallVector
<Instruction
*, 16> AddrModeInsts
;
565 ExtAddrMode AddrMode
= AddressingModeMatcher::Match(Addr
, AccessTy
,MemoryInst
,
566 AddrModeInsts
, *TLI
);
568 // Check to see if any of the instructions supersumed by this addr mode are
569 // non-local to I's BB.
570 bool AnyNonLocal
= false;
571 for (unsigned i
= 0, e
= AddrModeInsts
.size(); i
!= e
; ++i
) {
572 if (IsNonLocalValue(AddrModeInsts
[i
], MemoryInst
->getParent())) {
578 // If all the instructions matched are already in this BB, don't do anything.
580 DEBUG(errs() << "CGP: Found local addrmode: " << AddrMode
<< "\n");
584 // Insert this computation right after this user. Since our caller is
585 // scanning from the top of the BB to the bottom, reuse of the expr are
586 // guaranteed to happen later.
587 BasicBlock::iterator InsertPt
= MemoryInst
;
589 // Now that we determined the addressing expression we want to use and know
590 // that we have to sink it into this block. Check to see if we have already
591 // done this for some other load/store instr in this block. If so, reuse the
593 Value
*&SunkAddr
= SunkAddrs
[Addr
];
595 DEBUG(errs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
<< " for "
597 if (SunkAddr
->getType() != Addr
->getType())
598 SunkAddr
= new BitCastInst(SunkAddr
, Addr
->getType(), "tmp", InsertPt
);
600 DEBUG(errs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
<< " for "
602 const Type
*IntPtrTy
= TLI
->getTargetData()->getIntPtrType();
605 // Start with the scale value.
606 if (AddrMode
.Scale
) {
607 Value
*V
= AddrMode
.ScaledReg
;
608 if (V
->getType() == IntPtrTy
) {
610 } else if (isa
<PointerType
>(V
->getType())) {
611 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
612 } else if (cast
<IntegerType
>(IntPtrTy
)->getBitWidth() <
613 cast
<IntegerType
>(V
->getType())->getBitWidth()) {
614 V
= new TruncInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
616 V
= new SExtInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
618 if (AddrMode
.Scale
!= 1)
619 V
= BinaryOperator::CreateMul(V
, ConstantInt::get(IntPtrTy
,
621 "sunkaddr", InsertPt
);
625 // Add in the base register.
626 if (AddrMode
.BaseReg
) {
627 Value
*V
= AddrMode
.BaseReg
;
628 if (isa
<PointerType
>(V
->getType()))
629 V
= new PtrToIntInst(V
, IntPtrTy
, "sunkaddr", InsertPt
);
630 if (V
->getType() != IntPtrTy
)
631 V
= CastInst::CreateIntegerCast(V
, IntPtrTy
, /*isSigned=*/true,
632 "sunkaddr", InsertPt
);
634 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
639 // Add in the BaseGV if present.
640 if (AddrMode
.BaseGV
) {
641 Value
*V
= new PtrToIntInst(AddrMode
.BaseGV
, IntPtrTy
, "sunkaddr",
644 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
649 // Add in the Base Offset if present.
650 if (AddrMode
.BaseOffs
) {
651 Value
*V
= ConstantInt::get(IntPtrTy
, AddrMode
.BaseOffs
);
653 Result
= BinaryOperator::CreateAdd(Result
, V
, "sunkaddr", InsertPt
);
659 SunkAddr
= Constant::getNullValue(Addr
->getType());
661 SunkAddr
= new IntToPtrInst(Result
, Addr
->getType(), "sunkaddr",InsertPt
);
664 MemoryInst
->replaceUsesOfWith(Addr
, SunkAddr
);
666 if (Addr
->use_empty())
667 RecursivelyDeleteTriviallyDeadInstructions(Addr
);
671 /// OptimizeInlineAsmInst - If there are any memory operands, use
672 /// OptimizeMemoryInst to sink their address computing into the block when
673 /// possible / profitable.
674 bool CodeGenPrepare::OptimizeInlineAsmInst(Instruction
*I
, CallSite CS
,
675 DenseMap
<Value
*,Value
*> &SunkAddrs
) {
676 bool MadeChange
= false;
677 InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
679 // Do a prepass over the constraints, canonicalizing them, and building up the
680 // ConstraintOperands list.
681 std::vector
<InlineAsm::ConstraintInfo
>
682 ConstraintInfos
= IA
->ParseConstraints();
684 /// ConstraintOperands - Information about all of the constraints.
685 std::vector
<TargetLowering::AsmOperandInfo
> ConstraintOperands
;
686 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
687 for (unsigned i
= 0, e
= ConstraintInfos
.size(); i
!= e
; ++i
) {
689 push_back(TargetLowering::AsmOperandInfo(ConstraintInfos
[i
]));
690 TargetLowering::AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
692 // Compute the value type for each operand.
693 switch (OpInfo
.Type
) {
694 case InlineAsm::isOutput
:
695 if (OpInfo
.isIndirect
)
696 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
698 case InlineAsm::isInput
:
699 OpInfo
.CallOperandVal
= CS
.getArgument(ArgNo
++);
701 case InlineAsm::isClobber
:
706 // Compute the constraint code and ConstraintType to use.
707 TLI
->ComputeConstraintToUse(OpInfo
, SDValue(),
708 OpInfo
.ConstraintType
== TargetLowering::C_Memory
);
710 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
712 Value
*OpVal
= OpInfo
.CallOperandVal
;
713 MadeChange
|= OptimizeMemoryInst(I
, OpVal
, OpVal
->getType(), SunkAddrs
);
720 bool CodeGenPrepare::OptimizeExtUses(Instruction
*I
) {
721 BasicBlock
*DefBB
= I
->getParent();
723 // If both result of the {s|z}xt and its source are live out, rewrite all
724 // other uses of the source with result of extension.
725 Value
*Src
= I
->getOperand(0);
726 if (Src
->hasOneUse())
729 // Only do this xform if truncating is free.
730 if (TLI
&& !TLI
->isTruncateFree(I
->getType(), Src
->getType()))
733 // Only safe to perform the optimization if the source is also defined in
735 if (!isa
<Instruction
>(Src
) || DefBB
!= cast
<Instruction
>(Src
)->getParent())
738 bool DefIsLiveOut
= false;
739 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
741 Instruction
*User
= cast
<Instruction
>(*UI
);
743 // Figure out which BB this ext is used in.
744 BasicBlock
*UserBB
= User
->getParent();
745 if (UserBB
== DefBB
) continue;
752 // Make sure non of the uses are PHI nodes.
753 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
755 Instruction
*User
= cast
<Instruction
>(*UI
);
756 BasicBlock
*UserBB
= User
->getParent();
757 if (UserBB
== DefBB
) continue;
758 // Be conservative. We don't want this xform to end up introducing
759 // reloads just before load / store instructions.
760 if (isa
<PHINode
>(User
) || isa
<LoadInst
>(User
) || isa
<StoreInst
>(User
))
764 // InsertedTruncs - Only insert one trunc in each block once.
765 DenseMap
<BasicBlock
*, Instruction
*> InsertedTruncs
;
767 bool MadeChange
= false;
768 for (Value::use_iterator UI
= Src
->use_begin(), E
= Src
->use_end();
770 Use
&TheUse
= UI
.getUse();
771 Instruction
*User
= cast
<Instruction
>(*UI
);
773 // Figure out which BB this ext is used in.
774 BasicBlock
*UserBB
= User
->getParent();
775 if (UserBB
== DefBB
) continue;
777 // Both src and def are live in this block. Rewrite the use.
778 Instruction
*&InsertedTrunc
= InsertedTruncs
[UserBB
];
780 if (!InsertedTrunc
) {
781 BasicBlock::iterator InsertPt
= UserBB
->getFirstNonPHI();
783 InsertedTrunc
= new TruncInst(I
, Src
->getType(), "", InsertPt
);
786 // Replace a use of the {s|z}ext source with a use of the result.
787 TheUse
= InsertedTrunc
;
795 // In this pass we look for GEP and cast instructions that are used
796 // across basic blocks and rewrite them to improve basic-block-at-a-time
798 bool CodeGenPrepare::OptimizeBlock(BasicBlock
&BB
) {
799 bool MadeChange
= false;
801 // Split all critical edges where the dest block has a PHI.
802 TerminatorInst
*BBTI
= BB
.getTerminator();
803 if (BBTI
->getNumSuccessors() > 1) {
804 for (unsigned i
= 0, e
= BBTI
->getNumSuccessors(); i
!= e
; ++i
) {
805 BasicBlock
*SuccBB
= BBTI
->getSuccessor(i
);
806 if (isa
<PHINode
>(SuccBB
->begin()) && isCriticalEdge(BBTI
, i
, true))
807 SplitEdgeNicely(BBTI
, i
, BackEdges
, this);
811 // Keep track of non-local addresses that have been sunk into this block.
812 // This allows us to avoid inserting duplicate code for blocks with multiple
813 // load/stores of the same address.
814 DenseMap
<Value
*, Value
*> SunkAddrs
;
816 for (BasicBlock::iterator BBI
= BB
.begin(), E
= BB
.end(); BBI
!= E
; ) {
817 Instruction
*I
= BBI
++;
819 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
820 // If the source of the cast is a constant, then this should have
821 // already been constant folded. The only reason NOT to constant fold
822 // it is if something (e.g. LSR) was careful to place the constant
823 // evaluation in a block other than then one that uses it (e.g. to hoist
824 // the address of globals out of a loop). If this is the case, we don't
825 // want to forward-subst the cast.
826 if (isa
<Constant
>(CI
->getOperand(0)))
831 Change
= OptimizeNoopCopyExpression(CI
, *TLI
);
832 MadeChange
|= Change
;
835 if (!Change
&& (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
)))
836 MadeChange
|= OptimizeExtUses(I
);
837 } else if (CmpInst
*CI
= dyn_cast
<CmpInst
>(I
)) {
838 MadeChange
|= OptimizeCmpExpression(CI
);
839 } else if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
841 MadeChange
|= OptimizeMemoryInst(I
, I
->getOperand(0), LI
->getType(),
843 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
845 MadeChange
|= OptimizeMemoryInst(I
, SI
->getOperand(1),
846 SI
->getOperand(0)->getType(),
848 } else if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(I
)) {
849 if (GEPI
->hasAllZeroIndices()) {
850 /// The GEP operand must be a pointer, so must its result -> BitCast
851 Instruction
*NC
= new BitCastInst(GEPI
->getOperand(0), GEPI
->getType(),
852 GEPI
->getName(), GEPI
);
853 GEPI
->replaceAllUsesWith(NC
);
854 GEPI
->eraseFromParent();
858 } else if (CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
859 // If we found an inline asm expession, and if the target knows how to
860 // lower it to normal LLVM code, do so now.
861 if (TLI
&& isa
<InlineAsm
>(CI
->getCalledValue())) {
862 if (TLI
->ExpandInlineAsm(CI
)) {
864 // Avoid processing instructions out of order, which could cause
865 // reuse before a value is defined.
868 // Sink address computing for memory operands into the block.
869 MadeChange
|= OptimizeInlineAsmInst(I
, &(*CI
), SunkAddrs
);