1 //===-- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass transforms loops that contain branches on loop-invariant conditions
11 // to have multiple loops. For example, it turns the left into the right code:
20 // This can increase the size of the code exponentially (doubling it every time
21 // a loop is unswitched) so we only unswitch if the resultant code will be
22 // smaller than a threshold.
24 // This pass expects LICM to be run before it to hoist invariant conditions out
25 // of the loop, to make the unswitching opportunity obvious.
27 //===----------------------------------------------------------------------===//
29 #define DEBUG_TYPE "loop-unswitch"
30 #include "llvm/Transforms/Scalar.h"
31 #include "llvm/Constants.h"
32 #include "llvm/DerivedTypes.h"
33 #include "llvm/Function.h"
34 #include "llvm/Instructions.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/Analysis/ConstantFolding.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/Dominators.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 #include "llvm/ADT/Statistic.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/STLExtras.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
54 STATISTIC(NumBranches
, "Number of branches unswitched");
55 STATISTIC(NumSwitches
, "Number of switches unswitched");
56 STATISTIC(NumSelects
, "Number of selects unswitched");
57 STATISTIC(NumTrivial
, "Number of unswitches that are trivial");
58 STATISTIC(NumSimplify
, "Number of simplifications of unswitched code");
60 static cl::opt
<unsigned>
61 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
62 cl::init(10), cl::Hidden
);
65 class VISIBILITY_HIDDEN LoopUnswitch
: public LoopPass
{
66 LoopInfo
*LI
; // Loop information
69 // LoopProcessWorklist - Used to check if second loop needs processing
70 // after RewriteLoopBodyWithConditionConstant rewrites first loop.
71 std::vector
<Loop
*> LoopProcessWorklist
;
72 SmallPtrSet
<Value
*,8> UnswitchedVals
;
78 DominanceFrontier
*DF
;
80 BasicBlock
*loopHeader
;
81 BasicBlock
*loopPreheader
;
83 // LoopBlocks contains all of the basic blocks of the loop, including the
84 // preheader of the loop, the body of the loop, and the exit blocks of the
85 // loop, in that order.
86 std::vector
<BasicBlock
*> LoopBlocks
;
87 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
88 std::vector
<BasicBlock
*> NewBlocks
;
91 static char ID
; // Pass ID, replacement for typeid
92 explicit LoopUnswitch(bool Os
= false) :
93 LoopPass(&ID
), OptimizeForSize(Os
), redoLoop(false),
94 currentLoop(NULL
), DF(NULL
), DT(NULL
), loopHeader(NULL
),
95 loopPreheader(NULL
) {}
97 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
);
98 bool processCurrentLoop();
100 /// This transformation requires natural loop information & requires that
101 /// loop preheaders be inserted into the CFG...
103 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
104 AU
.addRequiredID(LoopSimplifyID
);
105 AU
.addPreservedID(LoopSimplifyID
);
106 AU
.addRequired
<LoopInfo
>();
107 AU
.addPreserved
<LoopInfo
>();
108 AU
.addRequiredID(LCSSAID
);
109 AU
.addPreservedID(LCSSAID
);
110 AU
.addPreserved
<DominatorTree
>();
111 AU
.addPreserved
<DominanceFrontier
>();
116 /// RemoveLoopFromWorklist - If the specified loop is on the loop worklist,
118 void RemoveLoopFromWorklist(Loop
*L
) {
119 std::vector
<Loop
*>::iterator I
= std::find(LoopProcessWorklist
.begin(),
120 LoopProcessWorklist
.end(), L
);
121 if (I
!= LoopProcessWorklist
.end())
122 LoopProcessWorklist
.erase(I
);
125 void initLoopData() {
126 loopHeader
= currentLoop
->getHeader();
127 loopPreheader
= currentLoop
->getLoopPreheader();
130 /// Split all of the edges from inside the loop to their exit blocks.
131 /// Update the appropriate Phi nodes as we do so.
132 void SplitExitEdges(Loop
*L
, const SmallVector
<BasicBlock
*, 8> &ExitBlocks
);
134 bool UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
);
135 unsigned getLoopUnswitchCost(Value
*LIC
);
136 void UnswitchTrivialCondition(Loop
*L
, Value
*Cond
, Constant
*Val
,
137 BasicBlock
*ExitBlock
);
138 void UnswitchNontrivialCondition(Value
*LIC
, Constant
*OnVal
, Loop
*L
);
140 void RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
141 Constant
*Val
, bool isEqual
);
143 void EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
144 BasicBlock
*TrueDest
,
145 BasicBlock
*FalseDest
,
146 Instruction
*InsertPt
);
148 void SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
);
149 void RemoveBlockIfDead(BasicBlock
*BB
,
150 std::vector
<Instruction
*> &Worklist
, Loop
*l
);
151 void RemoveLoopFromHierarchy(Loop
*L
);
152 bool IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
= 0,
153 BasicBlock
**LoopExit
= 0);
157 char LoopUnswitch::ID
= 0;
158 static RegisterPass
<LoopUnswitch
> X("loop-unswitch", "Unswitch loops");
160 Pass
*llvm::createLoopUnswitchPass(bool Os
) {
161 return new LoopUnswitch(Os
);
164 /// FindLIVLoopCondition - Cond is a condition that occurs in L. If it is
165 /// invariant in the loop, or has an invariant piece, return the invariant.
166 /// Otherwise, return null.
167 static Value
*FindLIVLoopCondition(Value
*Cond
, Loop
*L
, bool &Changed
) {
168 // Constants should be folded, not unswitched on!
169 if (isa
<Constant
>(Cond
)) return 0;
171 // TODO: Handle: br (VARIANT|INVARIANT).
173 // Hoist simple values out.
174 if (L
->makeLoopInvariant(Cond
, Changed
))
177 if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(Cond
))
178 if (BO
->getOpcode() == Instruction::And
||
179 BO
->getOpcode() == Instruction::Or
) {
180 // If either the left or right side is invariant, we can unswitch on this,
181 // which will cause the branch to go away in one loop and the condition to
182 // simplify in the other one.
183 if (Value
*LHS
= FindLIVLoopCondition(BO
->getOperand(0), L
, Changed
))
185 if (Value
*RHS
= FindLIVLoopCondition(BO
->getOperand(1), L
, Changed
))
192 bool LoopUnswitch::runOnLoop(Loop
*L
, LPPassManager
&LPM_Ref
) {
193 LI
= &getAnalysis
<LoopInfo
>();
195 DF
= getAnalysisIfAvailable
<DominanceFrontier
>();
196 DT
= getAnalysisIfAvailable
<DominatorTree
>();
198 Function
*F
= currentLoop
->getHeader()->getParent();
199 bool Changed
= false;
201 assert(currentLoop
->isLCSSAForm());
203 Changed
|= processCurrentLoop();
207 // FIXME: Reconstruct dom info, because it is not preserved properly.
209 DT
->runOnFunction(*F
);
211 DF
->runOnFunction(*F
);
216 /// processCurrentLoop - Do actual work and unswitch loop if possible
218 bool LoopUnswitch::processCurrentLoop() {
219 bool Changed
= false;
220 LLVMContext
&Context
= currentLoop
->getHeader()->getContext();
222 // Loop over all of the basic blocks in the loop. If we find an interior
223 // block that is branching on a loop-invariant condition, we can unswitch this
225 for (Loop::block_iterator I
= currentLoop
->block_begin(),
226 E
= currentLoop
->block_end();
228 TerminatorInst
*TI
= (*I
)->getTerminator();
229 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
)) {
230 // If this isn't branching on an invariant condition, we can't unswitch
232 if (BI
->isConditional()) {
233 // See if this, or some part of it, is loop invariant. If so, we can
234 // unswitch on it if we desire.
235 Value
*LoopCond
= FindLIVLoopCondition(BI
->getCondition(),
236 currentLoop
, Changed
);
237 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
238 ConstantInt::getTrue(Context
))) {
243 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
244 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
245 currentLoop
, Changed
);
246 if (LoopCond
&& SI
->getNumCases() > 1) {
247 // Find a value to unswitch on:
248 // FIXME: this should chose the most expensive case!
249 Constant
*UnswitchVal
= SI
->getCaseValue(1);
250 // Do not process same value again and again.
251 if (!UnswitchedVals
.insert(UnswitchVal
))
254 if (UnswitchIfProfitable(LoopCond
, UnswitchVal
)) {
261 // Scan the instructions to check for unswitchable values.
262 for (BasicBlock::iterator BBI
= (*I
)->begin(), E
= (*I
)->end();
264 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(BBI
)) {
265 Value
*LoopCond
= FindLIVLoopCondition(SI
->getCondition(),
266 currentLoop
, Changed
);
267 if (LoopCond
&& UnswitchIfProfitable(LoopCond
,
268 ConstantInt::getTrue(Context
))) {
277 /// isTrivialLoopExitBlock - Check to see if all paths from BB either:
278 /// 1. Exit the loop with no side effects.
279 /// 2. Branch to the latch block with no side-effects.
281 /// If these conditions are true, we return true and set ExitBB to the block we
284 static bool isTrivialLoopExitBlockHelper(Loop
*L
, BasicBlock
*BB
,
286 std::set
<BasicBlock
*> &Visited
) {
287 if (!Visited
.insert(BB
).second
) {
288 // Already visited and Ok, end of recursion.
290 } else if (!L
->contains(BB
)) {
291 // Otherwise, this is a loop exit, this is fine so long as this is the
293 if (ExitBB
!= 0) return false;
298 // Otherwise, this is an unvisited intra-loop node. Check all successors.
299 for (succ_iterator SI
= succ_begin(BB
), E
= succ_end(BB
); SI
!= E
; ++SI
) {
300 // Check to see if the successor is a trivial loop exit.
301 if (!isTrivialLoopExitBlockHelper(L
, *SI
, ExitBB
, Visited
))
305 // Okay, everything after this looks good, check to make sure that this block
306 // doesn't include any side effects.
307 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
)
308 if (I
->mayHaveSideEffects())
314 /// isTrivialLoopExitBlock - Return true if the specified block unconditionally
315 /// leads to an exit from the specified loop, and has no side-effects in the
316 /// process. If so, return the block that is exited to, otherwise return null.
317 static BasicBlock
*isTrivialLoopExitBlock(Loop
*L
, BasicBlock
*BB
) {
318 std::set
<BasicBlock
*> Visited
;
319 Visited
.insert(L
->getHeader()); // Branches to header are ok.
320 BasicBlock
*ExitBB
= 0;
321 if (isTrivialLoopExitBlockHelper(L
, BB
, ExitBB
, Visited
))
326 /// IsTrivialUnswitchCondition - Check to see if this unswitch condition is
327 /// trivial: that is, that the condition controls whether or not the loop does
328 /// anything at all. If this is a trivial condition, unswitching produces no
329 /// code duplications (equivalently, it produces a simpler loop and a new empty
330 /// loop, which gets deleted).
332 /// If this is a trivial condition, return true, otherwise return false. When
333 /// returning true, this sets Cond and Val to the condition that controls the
334 /// trivial condition: when Cond dynamically equals Val, the loop is known to
335 /// exit. Finally, this sets LoopExit to the BB that the loop exits to when
338 bool LoopUnswitch::IsTrivialUnswitchCondition(Value
*Cond
, Constant
**Val
,
339 BasicBlock
**LoopExit
) {
340 BasicBlock
*Header
= currentLoop
->getHeader();
341 TerminatorInst
*HeaderTerm
= Header
->getTerminator();
342 LLVMContext
&Context
= Header
->getContext();
344 BasicBlock
*LoopExitBB
= 0;
345 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(HeaderTerm
)) {
346 // If the header block doesn't end with a conditional branch on Cond, we
348 if (!BI
->isConditional() || BI
->getCondition() != Cond
)
351 // Check to see if a successor of the branch is guaranteed to go to the
352 // latch block or exit through a one exit block without having any
353 // side-effects. If so, determine the value of Cond that causes it to do
355 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
356 BI
->getSuccessor(0)))) {
357 if (Val
) *Val
= ConstantInt::getTrue(Context
);
358 } else if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
359 BI
->getSuccessor(1)))) {
360 if (Val
) *Val
= ConstantInt::getFalse(Context
);
362 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(HeaderTerm
)) {
363 // If this isn't a switch on Cond, we can't handle it.
364 if (SI
->getCondition() != Cond
) return false;
366 // Check to see if a successor of the switch is guaranteed to go to the
367 // latch block or exit through a one exit block without having any
368 // side-effects. If so, determine the value of Cond that causes it to do
369 // this. Note that we can't trivially unswitch on the default case.
370 for (unsigned i
= 1, e
= SI
->getNumSuccessors(); i
!= e
; ++i
)
371 if ((LoopExitBB
= isTrivialLoopExitBlock(currentLoop
,
372 SI
->getSuccessor(i
)))) {
373 // Okay, we found a trivial case, remember the value that is trivial.
374 if (Val
) *Val
= SI
->getCaseValue(i
);
379 // If we didn't find a single unique LoopExit block, or if the loop exit block
380 // contains phi nodes, this isn't trivial.
381 if (!LoopExitBB
|| isa
<PHINode
>(LoopExitBB
->begin()))
382 return false; // Can't handle this.
384 if (LoopExit
) *LoopExit
= LoopExitBB
;
386 // We already know that nothing uses any scalar values defined inside of this
387 // loop. As such, we just have to check to see if this loop will execute any
388 // side-effecting instructions (e.g. stores, calls, volatile loads) in the
389 // part of the loop that the code *would* execute. We already checked the
390 // tail, check the header now.
391 for (BasicBlock::iterator I
= Header
->begin(), E
= Header
->end(); I
!= E
; ++I
)
392 if (I
->mayHaveSideEffects())
397 /// getLoopUnswitchCost - Return the cost (code size growth) that will happen if
398 /// we choose to unswitch current loop on the specified value.
400 unsigned LoopUnswitch::getLoopUnswitchCost(Value
*LIC
) {
401 // If the condition is trivial, always unswitch. There is no code growth for
403 if (IsTrivialUnswitchCondition(LIC
))
406 // FIXME: This is really overly conservative. However, more liberal
407 // estimations have thus far resulted in excessive unswitching, which is bad
408 // both in compile time and in code size. This should be replaced once
409 // someone figures out how a good estimation.
410 return currentLoop
->getBlocks().size();
413 // FIXME: this is brain dead. It should take into consideration code
415 for (Loop::block_iterator I
= currentLoop
->block_begin(),
416 E
= currentLoop
->block_end();
419 // Do not include empty blocks in the cost calculation. This happen due to
420 // loop canonicalization and will be removed.
421 if (BB
->begin() == BasicBlock::iterator(BB
->getTerminator()))
424 // Count basic blocks.
431 /// UnswitchIfProfitable - We have found that we can unswitch currentLoop when
432 /// LoopCond == Val to simplify the loop. If we decide that this is profitable,
433 /// unswitch the loop, reprocess the pieces, then return true.
434 bool LoopUnswitch::UnswitchIfProfitable(Value
*LoopCond
, Constant
*Val
){
437 Function
*F
= loopHeader
->getParent();
440 // Check to see if it would be profitable to unswitch current loop.
441 unsigned Cost
= getLoopUnswitchCost(LoopCond
);
443 // Do not do non-trivial unswitch while optimizing for size.
444 if (Cost
&& OptimizeForSize
)
446 if (Cost
&& !F
->isDeclaration() && F
->hasFnAttr(Attribute::OptimizeForSize
))
449 if (Cost
> Threshold
) {
450 // FIXME: this should estimate growth by the amount of code shared by the
451 // resultant unswitched loops.
453 DEBUG(errs() << "NOT unswitching loop %"
454 << currentLoop
->getHeader()->getName() << ", cost too high: "
455 << currentLoop
->getBlocks().size() << "\n");
460 BasicBlock
*ExitBlock
;
461 if (IsTrivialUnswitchCondition(LoopCond
, &CondVal
, &ExitBlock
)) {
462 UnswitchTrivialCondition(currentLoop
, LoopCond
, CondVal
, ExitBlock
);
464 UnswitchNontrivialCondition(LoopCond
, Val
, currentLoop
);
470 // RemapInstruction - Convert the instruction operands from referencing the
471 // current values into those specified by ValueMap.
473 static inline void RemapInstruction(Instruction
*I
,
474 DenseMap
<const Value
*, Value
*> &ValueMap
) {
475 for (unsigned op
= 0, E
= I
->getNumOperands(); op
!= E
; ++op
) {
476 Value
*Op
= I
->getOperand(op
);
477 DenseMap
<const Value
*, Value
*>::iterator It
= ValueMap
.find(Op
);
478 if (It
!= ValueMap
.end()) Op
= It
->second
;
479 I
->setOperand(op
, Op
);
483 /// CloneLoop - Recursively clone the specified loop and all of its children,
484 /// mapping the blocks with the specified map.
485 static Loop
*CloneLoop(Loop
*L
, Loop
*PL
, DenseMap
<const Value
*, Value
*> &VM
,
486 LoopInfo
*LI
, LPPassManager
*LPM
) {
487 Loop
*New
= new Loop();
489 LPM
->insertLoop(New
, PL
);
491 // Add all of the blocks in L to the new loop.
492 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end();
494 if (LI
->getLoopFor(*I
) == L
)
495 New
->addBasicBlockToLoop(cast
<BasicBlock
>(VM
[*I
]), LI
->getBase());
497 // Add all of the subloops to the new loop.
498 for (Loop::iterator I
= L
->begin(), E
= L
->end(); I
!= E
; ++I
)
499 CloneLoop(*I
, New
, VM
, LI
, LPM
);
504 /// EmitPreheaderBranchOnCondition - Emit a conditional branch on two values
505 /// if LIC == Val, branch to TrueDst, otherwise branch to FalseDest. Insert the
506 /// code immediately before InsertPt.
507 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value
*LIC
, Constant
*Val
,
508 BasicBlock
*TrueDest
,
509 BasicBlock
*FalseDest
,
510 Instruction
*InsertPt
) {
511 // Insert a conditional branch on LIC to the two preheaders. The original
512 // code is the true version and the new code is the false version.
513 Value
*BranchVal
= LIC
;
514 if (!isa
<ConstantInt
>(Val
) || Val
->getType() != Type::Int1Ty
)
515 BranchVal
= new ICmpInst(InsertPt
, ICmpInst::ICMP_EQ
, LIC
, Val
, "tmp");
516 else if (Val
!= ConstantInt::getTrue(Val
->getContext()))
517 // We want to enter the new loop when the condition is true.
518 std::swap(TrueDest
, FalseDest
);
520 // Insert the new branch.
521 BranchInst::Create(TrueDest
, FalseDest
, BranchVal
, InsertPt
);
524 /// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
525 /// condition in it (a cond branch from its header block to its latch block,
526 /// where the path through the loop that doesn't execute its body has no
527 /// side-effects), unswitch it. This doesn't involve any code duplication, just
528 /// moving the conditional branch outside of the loop and updating loop info.
529 void LoopUnswitch::UnswitchTrivialCondition(Loop
*L
, Value
*Cond
,
531 BasicBlock
*ExitBlock
) {
532 DEBUG(errs() << "loop-unswitch: Trivial-Unswitch loop %"
533 << loopHeader
->getName() << " [" << L
->getBlocks().size()
534 << " blocks] in Function " << L
->getHeader()->getParent()->getName()
535 << " on cond: " << *Val
<< " == " << *Cond
<< "\n");
537 // First step, split the preheader, so that we know that there is a safe place
538 // to insert the conditional branch. We will change loopPreheader to have a
539 // conditional branch on Cond.
540 BasicBlock
*NewPH
= SplitEdge(loopPreheader
, loopHeader
, this);
542 // Now that we have a place to insert the conditional branch, create a place
543 // to branch to: this is the exit block out of the loop that we should
546 // Split this block now, so that the loop maintains its exit block, and so
547 // that the jump from the preheader can execute the contents of the exit block
548 // without actually branching to it (the exit block should be dominated by the
549 // loop header, not the preheader).
550 assert(!L
->contains(ExitBlock
) && "Exit block is in the loop?");
551 BasicBlock
*NewExit
= SplitBlock(ExitBlock
, ExitBlock
->begin(), this);
553 // Okay, now we have a position to branch from and a position to branch to,
554 // insert the new conditional branch.
555 EmitPreheaderBranchOnCondition(Cond
, Val
, NewExit
, NewPH
,
556 loopPreheader
->getTerminator());
557 LPM
->deleteSimpleAnalysisValue(loopPreheader
->getTerminator(), L
);
558 loopPreheader
->getTerminator()->eraseFromParent();
560 // We need to reprocess this loop, it could be unswitched again.
563 // Now that we know that the loop is never entered when this condition is a
564 // particular value, rewrite the loop with this info. We know that this will
565 // at least eliminate the old branch.
566 RewriteLoopBodyWithConditionConstant(L
, Cond
, Val
, false);
570 /// SplitExitEdges - Split all of the edges from inside the loop to their exit
571 /// blocks. Update the appropriate Phi nodes as we do so.
572 void LoopUnswitch::SplitExitEdges(Loop
*L
,
573 const SmallVector
<BasicBlock
*, 8> &ExitBlocks
)
576 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
577 BasicBlock
*ExitBlock
= ExitBlocks
[i
];
578 std::vector
<BasicBlock
*> Preds(pred_begin(ExitBlock
), pred_end(ExitBlock
));
580 for (unsigned j
= 0, e
= Preds
.size(); j
!= e
; ++j
) {
581 BasicBlock
* NewExitBlock
= SplitEdge(Preds
[j
], ExitBlock
, this);
582 BasicBlock
* StartBlock
= Preds
[j
];
583 BasicBlock
* EndBlock
;
584 if (NewExitBlock
->getSinglePredecessor() == ExitBlock
) {
585 EndBlock
= NewExitBlock
;
586 NewExitBlock
= EndBlock
->getSinglePredecessor();
588 EndBlock
= ExitBlock
;
591 std::set
<PHINode
*> InsertedPHIs
;
592 PHINode
* OldLCSSA
= 0;
593 for (BasicBlock::iterator I
= EndBlock
->begin();
594 (OldLCSSA
= dyn_cast
<PHINode
>(I
)); ++I
) {
595 Value
* OldValue
= OldLCSSA
->getIncomingValueForBlock(NewExitBlock
);
596 PHINode
* NewLCSSA
= PHINode::Create(OldLCSSA
->getType(),
597 OldLCSSA
->getName() + ".us-lcssa",
598 NewExitBlock
->getTerminator());
599 NewLCSSA
->addIncoming(OldValue
, StartBlock
);
600 OldLCSSA
->setIncomingValue(OldLCSSA
->getBasicBlockIndex(NewExitBlock
),
602 InsertedPHIs
.insert(NewLCSSA
);
605 BasicBlock::iterator InsertPt
= EndBlock
->getFirstNonPHI();
606 for (BasicBlock::iterator I
= NewExitBlock
->begin();
607 (OldLCSSA
= dyn_cast
<PHINode
>(I
)) && InsertedPHIs
.count(OldLCSSA
) == 0;
609 PHINode
*NewLCSSA
= PHINode::Create(OldLCSSA
->getType(),
610 OldLCSSA
->getName() + ".us-lcssa",
612 OldLCSSA
->replaceAllUsesWith(NewLCSSA
);
613 NewLCSSA
->addIncoming(OldLCSSA
, NewExitBlock
);
621 /// UnswitchNontrivialCondition - We determined that the loop is profitable
622 /// to unswitch when LIC equal Val. Split it into loop versions and test the
623 /// condition outside of either loop. Return the loops created as Out1/Out2.
624 void LoopUnswitch::UnswitchNontrivialCondition(Value
*LIC
, Constant
*Val
,
626 Function
*F
= loopHeader
->getParent();
627 DEBUG(errs() << "loop-unswitch: Unswitching loop %"
628 << loopHeader
->getName() << " [" << L
->getBlocks().size()
629 << " blocks] in Function " << F
->getName()
630 << " when '" << *Val
<< "' == " << *LIC
<< "\n");
635 // First step, split the preheader and exit blocks, and add these blocks to
636 // the LoopBlocks list.
637 BasicBlock
*NewPreheader
= SplitEdge(loopPreheader
, loopHeader
, this);
638 LoopBlocks
.push_back(NewPreheader
);
640 // We want the loop to come after the preheader, but before the exit blocks.
641 LoopBlocks
.insert(LoopBlocks
.end(), L
->block_begin(), L
->block_end());
643 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
644 L
->getUniqueExitBlocks(ExitBlocks
);
646 // Split all of the edges from inside the loop to their exit blocks. Update
647 // the appropriate Phi nodes as we do so.
648 SplitExitEdges(L
, ExitBlocks
);
650 // The exit blocks may have been changed due to edge splitting, recompute.
652 L
->getUniqueExitBlocks(ExitBlocks
);
654 // Add exit blocks to the loop blocks.
655 LoopBlocks
.insert(LoopBlocks
.end(), ExitBlocks
.begin(), ExitBlocks
.end());
657 // Next step, clone all of the basic blocks that make up the loop (including
658 // the loop preheader and exit blocks), keeping track of the mapping between
659 // the instructions and blocks.
660 NewBlocks
.reserve(LoopBlocks
.size());
661 DenseMap
<const Value
*, Value
*> ValueMap
;
662 for (unsigned i
= 0, e
= LoopBlocks
.size(); i
!= e
; ++i
) {
663 BasicBlock
*New
= CloneBasicBlock(LoopBlocks
[i
], ValueMap
, ".us", F
);
664 NewBlocks
.push_back(New
);
665 ValueMap
[LoopBlocks
[i
]] = New
; // Keep the BB mapping.
666 LPM
->cloneBasicBlockSimpleAnalysis(LoopBlocks
[i
], New
, L
);
669 // Splice the newly inserted blocks into the function right before the
670 // original preheader.
671 F
->getBasicBlockList().splice(LoopBlocks
[0], F
->getBasicBlockList(),
672 NewBlocks
[0], F
->end());
674 // Now we create the new Loop object for the versioned loop.
675 Loop
*NewLoop
= CloneLoop(L
, L
->getParentLoop(), ValueMap
, LI
, LPM
);
676 Loop
*ParentLoop
= L
->getParentLoop();
678 // Make sure to add the cloned preheader and exit blocks to the parent loop
680 ParentLoop
->addBasicBlockToLoop(NewBlocks
[0], LI
->getBase());
683 for (unsigned i
= 0, e
= ExitBlocks
.size(); i
!= e
; ++i
) {
684 BasicBlock
*NewExit
= cast
<BasicBlock
>(ValueMap
[ExitBlocks
[i
]]);
685 // The new exit block should be in the same loop as the old one.
686 if (Loop
*ExitBBLoop
= LI
->getLoopFor(ExitBlocks
[i
]))
687 ExitBBLoop
->addBasicBlockToLoop(NewExit
, LI
->getBase());
689 assert(NewExit
->getTerminator()->getNumSuccessors() == 1 &&
690 "Exit block should have been split to have one successor!");
691 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
693 // If the successor of the exit block had PHI nodes, add an entry for
696 for (BasicBlock::iterator I
= ExitSucc
->begin();
697 (PN
= dyn_cast
<PHINode
>(I
)); ++I
) {
698 Value
*V
= PN
->getIncomingValueForBlock(ExitBlocks
[i
]);
699 DenseMap
<const Value
*, Value
*>::iterator It
= ValueMap
.find(V
);
700 if (It
!= ValueMap
.end()) V
= It
->second
;
701 PN
->addIncoming(V
, NewExit
);
705 // Rewrite the code to refer to itself.
706 for (unsigned i
= 0, e
= NewBlocks
.size(); i
!= e
; ++i
)
707 for (BasicBlock::iterator I
= NewBlocks
[i
]->begin(),
708 E
= NewBlocks
[i
]->end(); I
!= E
; ++I
)
709 RemapInstruction(I
, ValueMap
);
711 // Rewrite the original preheader to select between versions of the loop.
712 BranchInst
*OldBR
= cast
<BranchInst
>(loopPreheader
->getTerminator());
713 assert(OldBR
->isUnconditional() && OldBR
->getSuccessor(0) == LoopBlocks
[0] &&
714 "Preheader splitting did not work correctly!");
716 // Emit the new branch that selects between the two versions of this loop.
717 EmitPreheaderBranchOnCondition(LIC
, Val
, NewBlocks
[0], LoopBlocks
[0], OldBR
);
718 LPM
->deleteSimpleAnalysisValue(OldBR
, L
);
719 OldBR
->eraseFromParent();
721 LoopProcessWorklist
.push_back(NewLoop
);
724 // Now we rewrite the original code to know that the condition is true and the
725 // new code to know that the condition is false.
726 RewriteLoopBodyWithConditionConstant(L
, LIC
, Val
, false);
728 // It's possible that simplifying one loop could cause the other to be
729 // deleted. If so, don't simplify it.
730 if (!LoopProcessWorklist
.empty() && LoopProcessWorklist
.back() == NewLoop
)
731 RewriteLoopBodyWithConditionConstant(NewLoop
, LIC
, Val
, true);
735 /// RemoveFromWorklist - Remove all instances of I from the worklist vector
737 static void RemoveFromWorklist(Instruction
*I
,
738 std::vector
<Instruction
*> &Worklist
) {
739 std::vector
<Instruction
*>::iterator WI
= std::find(Worklist
.begin(),
741 while (WI
!= Worklist
.end()) {
742 unsigned Offset
= WI
-Worklist
.begin();
744 WI
= std::find(Worklist
.begin()+Offset
, Worklist
.end(), I
);
748 /// ReplaceUsesOfWith - When we find that I really equals V, remove I from the
749 /// program, replacing all uses with V and update the worklist.
750 static void ReplaceUsesOfWith(Instruction
*I
, Value
*V
,
751 std::vector
<Instruction
*> &Worklist
,
752 Loop
*L
, LPPassManager
*LPM
) {
753 DOUT
<< "Replace with '" << *V
<< "': " << *I
;
755 // Add uses to the worklist, which may be dead now.
756 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
757 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
758 Worklist
.push_back(Use
);
760 // Add users to the worklist which may be simplified now.
761 for (Value::use_iterator UI
= I
->use_begin(), E
= I
->use_end();
763 Worklist
.push_back(cast
<Instruction
>(*UI
));
764 LPM
->deleteSimpleAnalysisValue(I
, L
);
765 RemoveFromWorklist(I
, Worklist
);
766 I
->replaceAllUsesWith(V
);
767 I
->eraseFromParent();
771 /// RemoveBlockIfDead - If the specified block is dead, remove it, update loop
772 /// information, and remove any dead successors it has.
774 void LoopUnswitch::RemoveBlockIfDead(BasicBlock
*BB
,
775 std::vector
<Instruction
*> &Worklist
,
777 if (pred_begin(BB
) != pred_end(BB
)) {
778 // This block isn't dead, since an edge to BB was just removed, see if there
779 // are any easy simplifications we can do now.
780 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
781 // If it has one pred, fold phi nodes in BB.
782 while (isa
<PHINode
>(BB
->begin()))
783 ReplaceUsesOfWith(BB
->begin(),
784 cast
<PHINode
>(BB
->begin())->getIncomingValue(0),
787 // If this is the header of a loop and the only pred is the latch, we now
788 // have an unreachable loop.
789 if (Loop
*L
= LI
->getLoopFor(BB
))
790 if (loopHeader
== BB
&& L
->contains(Pred
)) {
791 // Remove the branch from the latch to the header block, this makes
792 // the header dead, which will make the latch dead (because the header
793 // dominates the latch).
794 LPM
->deleteSimpleAnalysisValue(Pred
->getTerminator(), L
);
795 Pred
->getTerminator()->eraseFromParent();
796 new UnreachableInst(Pred
);
798 // The loop is now broken, remove it from LI.
799 RemoveLoopFromHierarchy(L
);
801 // Reprocess the header, which now IS dead.
802 RemoveBlockIfDead(BB
, Worklist
, L
);
806 // If pred ends in a uncond branch, add uncond branch to worklist so that
807 // the two blocks will get merged.
808 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Pred
->getTerminator()))
809 if (BI
->isUnconditional())
810 Worklist
.push_back(BI
);
815 DOUT
<< "Nuking dead block: " << *BB
;
817 // Remove the instructions in the basic block from the worklist.
818 for (BasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
; ++I
) {
819 RemoveFromWorklist(I
, Worklist
);
821 // Anything that uses the instructions in this basic block should have their
822 // uses replaced with undefs.
824 I
->replaceAllUsesWith(UndefValue::get(I
->getType()));
827 // If this is the edge to the header block for a loop, remove the loop and
828 // promote all subloops.
829 if (Loop
*BBLoop
= LI
->getLoopFor(BB
)) {
830 if (BBLoop
->getLoopLatch() == BB
)
831 RemoveLoopFromHierarchy(BBLoop
);
834 // Remove the block from the loop info, which removes it from any loops it
839 // Remove phi node entries in successors for this block.
840 TerminatorInst
*TI
= BB
->getTerminator();
841 SmallVector
<BasicBlock
*, 4> Succs
;
842 for (unsigned i
= 0, e
= TI
->getNumSuccessors(); i
!= e
; ++i
) {
843 Succs
.push_back(TI
->getSuccessor(i
));
844 TI
->getSuccessor(i
)->removePredecessor(BB
);
847 // Unique the successors, remove anything with multiple uses.
848 array_pod_sort(Succs
.begin(), Succs
.end());
849 Succs
.erase(std::unique(Succs
.begin(), Succs
.end()), Succs
.end());
851 // Remove the basic block, including all of the instructions contained in it.
852 LPM
->deleteSimpleAnalysisValue(BB
, L
);
853 BB
->eraseFromParent();
854 // Remove successor blocks here that are not dead, so that we know we only
855 // have dead blocks in this list. Nondead blocks have a way of becoming dead,
856 // then getting removed before we revisit them, which is badness.
858 for (unsigned i
= 0; i
!= Succs
.size(); ++i
)
859 if (pred_begin(Succs
[i
]) != pred_end(Succs
[i
])) {
860 // One exception is loop headers. If this block was the preheader for a
861 // loop, then we DO want to visit the loop so the loop gets deleted.
862 // We know that if the successor is a loop header, that this loop had to
863 // be the preheader: the case where this was the latch block was handled
864 // above and headers can only have two predecessors.
865 if (!LI
->isLoopHeader(Succs
[i
])) {
866 Succs
.erase(Succs
.begin()+i
);
871 for (unsigned i
= 0, e
= Succs
.size(); i
!= e
; ++i
)
872 RemoveBlockIfDead(Succs
[i
], Worklist
, L
);
875 /// RemoveLoopFromHierarchy - We have discovered that the specified loop has
876 /// become unwrapped, either because the backedge was deleted, or because the
877 /// edge into the header was removed. If the edge into the header from the
878 /// latch block was removed, the loop is unwrapped but subloops are still alive,
879 /// so they just reparent loops. If the loops are actually dead, they will be
881 void LoopUnswitch::RemoveLoopFromHierarchy(Loop
*L
) {
882 LPM
->deleteLoopFromQueue(L
);
883 RemoveLoopFromWorklist(L
);
886 // RewriteLoopBodyWithConditionConstant - We know either that the value LIC has
887 // the value specified by Val in the specified loop, or we know it does NOT have
888 // that value. Rewrite any uses of LIC or of properties correlated to it.
889 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop
*L
, Value
*LIC
,
892 assert(!isa
<Constant
>(LIC
) && "Why are we unswitching on a constant?");
894 // FIXME: Support correlated properties, like:
901 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
902 // selects, switches.
903 std::vector
<User
*> Users(LIC
->use_begin(), LIC
->use_end());
904 std::vector
<Instruction
*> Worklist
;
905 LLVMContext
&Context
= Val
->getContext();
908 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
909 // in the loop with the appropriate one directly.
910 if (IsEqual
|| (isa
<ConstantInt
>(Val
) && Val
->getType() == Type::Int1Ty
)) {
915 Replacement
= ConstantInt::get(Type::Int1Ty
,
916 !cast
<ConstantInt
>(Val
)->getZExtValue());
918 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
919 if (Instruction
*U
= cast
<Instruction
>(Users
[i
])) {
920 if (!L
->contains(U
->getParent()))
922 U
->replaceUsesOfWith(LIC
, Replacement
);
923 Worklist
.push_back(U
);
926 // Otherwise, we don't know the precise value of LIC, but we do know that it
927 // is certainly NOT "Val". As such, simplify any uses in the loop that we
928 // can. This case occurs when we unswitch switch statements.
929 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
)
930 if (Instruction
*U
= cast
<Instruction
>(Users
[i
])) {
931 if (!L
->contains(U
->getParent()))
934 Worklist
.push_back(U
);
936 // If we know that LIC is not Val, use this info to simplify code.
937 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(U
)) {
938 for (unsigned i
= 1, e
= SI
->getNumCases(); i
!= e
; ++i
) {
939 if (SI
->getCaseValue(i
) == Val
) {
940 // Found a dead case value. Don't remove PHI nodes in the
941 // successor if they become single-entry, those PHI nodes may
942 // be in the Users list.
944 // FIXME: This is a hack. We need to keep the successor around
945 // and hooked up so as to preserve the loop structure, because
946 // trying to update it is complicated. So instead we preserve the
947 // loop structure and put the block on an dead code path.
949 BasicBlock
*SISucc
= SI
->getSuccessor(i
);
950 BasicBlock
* Old
= SI
->getParent();
951 BasicBlock
* Split
= SplitBlock(Old
, SI
, this);
953 Instruction
* OldTerm
= Old
->getTerminator();
954 BranchInst::Create(Split
, SISucc
,
955 ConstantInt::getTrue(Context
), OldTerm
);
957 LPM
->deleteSimpleAnalysisValue(Old
->getTerminator(), L
);
958 Old
->getTerminator()->eraseFromParent();
961 for (BasicBlock::iterator II
= SISucc
->begin();
962 (PN
= dyn_cast
<PHINode
>(II
)); ++II
) {
963 Value
*InVal
= PN
->removeIncomingValue(Split
, false);
964 PN
->addIncoming(InVal
, Old
);
973 // TODO: We could do other simplifications, for example, turning
974 // LIC == Val -> false.
978 SimplifyCode(Worklist
, L
);
981 /// SimplifyCode - Okay, now that we have simplified some instructions in the
982 /// loop, walk over it and constant prop, dce, and fold control flow where
983 /// possible. Note that this is effectively a very simple loop-structure-aware
984 /// optimizer. During processing of this loop, L could very well be deleted, so
985 /// it must not be used.
987 /// FIXME: When the loop optimizer is more mature, separate this out to a new
990 void LoopUnswitch::SimplifyCode(std::vector
<Instruction
*> &Worklist
, Loop
*L
) {
991 while (!Worklist
.empty()) {
992 Instruction
*I
= Worklist
.back();
995 // Simple constant folding.
996 if (Constant
*C
= ConstantFoldInstruction(I
, I
->getContext())) {
997 ReplaceUsesOfWith(I
, C
, Worklist
, L
, LPM
);
1002 if (isInstructionTriviallyDead(I
)) {
1003 DOUT
<< "Remove dead instruction '" << *I
;
1005 // Add uses to the worklist, which may be dead now.
1006 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
)
1007 if (Instruction
*Use
= dyn_cast
<Instruction
>(I
->getOperand(i
)))
1008 Worklist
.push_back(Use
);
1009 LPM
->deleteSimpleAnalysisValue(I
, L
);
1010 RemoveFromWorklist(I
, Worklist
);
1011 I
->eraseFromParent();
1016 // Special case hacks that appear commonly in unswitched code.
1017 switch (I
->getOpcode()) {
1018 case Instruction::Select
:
1019 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(0))) {
1020 ReplaceUsesOfWith(I
, I
->getOperand(!CB
->getZExtValue()+1), Worklist
, L
,
1025 case Instruction::And
:
1026 if (isa
<ConstantInt
>(I
->getOperand(0)) &&
1027 I
->getOperand(0)->getType() == Type::Int1Ty
) // constant -> RHS
1028 cast
<BinaryOperator
>(I
)->swapOperands();
1029 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))
1030 if (CB
->getType() == Type::Int1Ty
) {
1031 if (CB
->isOne()) // X & 1 -> X
1032 ReplaceUsesOfWith(I
, I
->getOperand(0), Worklist
, L
, LPM
);
1034 ReplaceUsesOfWith(I
, I
->getOperand(1), Worklist
, L
, LPM
);
1038 case Instruction::Or
:
1039 if (isa
<ConstantInt
>(I
->getOperand(0)) &&
1040 I
->getOperand(0)->getType() == Type::Int1Ty
) // constant -> RHS
1041 cast
<BinaryOperator
>(I
)->swapOperands();
1042 if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(I
->getOperand(1)))
1043 if (CB
->getType() == Type::Int1Ty
) {
1044 if (CB
->isOne()) // X | 1 -> 1
1045 ReplaceUsesOfWith(I
, I
->getOperand(1), Worklist
, L
, LPM
);
1047 ReplaceUsesOfWith(I
, I
->getOperand(0), Worklist
, L
, LPM
);
1051 case Instruction::Br
: {
1052 BranchInst
*BI
= cast
<BranchInst
>(I
);
1053 if (BI
->isUnconditional()) {
1054 // If BI's parent is the only pred of the successor, fold the two blocks
1056 BasicBlock
*Pred
= BI
->getParent();
1057 BasicBlock
*Succ
= BI
->getSuccessor(0);
1058 BasicBlock
*SinglePred
= Succ
->getSinglePredecessor();
1059 if (!SinglePred
) continue; // Nothing to do.
1060 assert(SinglePred
== Pred
&& "CFG broken");
1062 DEBUG(errs() << "Merging blocks: " << Pred
->getName() << " <- "
1063 << Succ
->getName() << "\n");
1065 // Resolve any single entry PHI nodes in Succ.
1066 while (PHINode
*PN
= dyn_cast
<PHINode
>(Succ
->begin()))
1067 ReplaceUsesOfWith(PN
, PN
->getIncomingValue(0), Worklist
, L
, LPM
);
1069 // Move all of the successor contents from Succ to Pred.
1070 Pred
->getInstList().splice(BI
, Succ
->getInstList(), Succ
->begin(),
1072 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1073 BI
->eraseFromParent();
1074 RemoveFromWorklist(BI
, Worklist
);
1076 // If Succ has any successors with PHI nodes, update them to have
1077 // entries coming from Pred instead of Succ.
1078 Succ
->replaceAllUsesWith(Pred
);
1080 // Remove Succ from the loop tree.
1081 LI
->removeBlock(Succ
);
1082 LPM
->deleteSimpleAnalysisValue(Succ
, L
);
1083 Succ
->eraseFromParent();
1085 } else if (ConstantInt
*CB
= dyn_cast
<ConstantInt
>(BI
->getCondition())){
1086 // Conditional branch. Turn it into an unconditional branch, then
1087 // remove dead blocks.
1088 break; // FIXME: Enable.
1090 DOUT
<< "Folded branch: " << *BI
;
1091 BasicBlock
*DeadSucc
= BI
->getSuccessor(CB
->getZExtValue());
1092 BasicBlock
*LiveSucc
= BI
->getSuccessor(!CB
->getZExtValue());
1093 DeadSucc
->removePredecessor(BI
->getParent(), true);
1094 Worklist
.push_back(BranchInst::Create(LiveSucc
, BI
));
1095 LPM
->deleteSimpleAnalysisValue(BI
, L
);
1096 BI
->eraseFromParent();
1097 RemoveFromWorklist(BI
, Worklist
);
1100 RemoveBlockIfDead(DeadSucc
, Worklist
, L
);