Fix comment for consistency sake.
[llvm/avr.git] / lib / CodeGen / ELFWriter.cpp
blob55a2f7006434a107cdc3f774a9a3d1d9b86e2670
1 //===-- ELFWriter.cpp - Target-independent ELF Writer code ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the target-independent ELF writer. This file writes out
11 // the ELF file in the following order:
13 // #1. ELF Header
14 // #2. '.text' section
15 // #3. '.data' section
16 // #4. '.bss' section (conceptual position in file)
17 // ...
18 // #X. '.shstrtab' section
19 // #Y. Section Table
21 // The entries in the section table are laid out as:
22 // #0. Null entry [required]
23 // #1. ".text" entry - the program code
24 // #2. ".data" entry - global variables with initializers. [ if needed ]
25 // #3. ".bss" entry - global variables without initializers. [ if needed ]
26 // ...
27 // #N. ".shstrtab" entry - String table for the section names.
29 //===----------------------------------------------------------------------===//
31 #define DEBUG_TYPE "elfwriter"
32 #include "ELF.h"
33 #include "ELFWriter.h"
34 #include "ELFCodeEmitter.h"
35 #include "llvm/Constants.h"
36 #include "llvm/Module.h"
37 #include "llvm/PassManager.h"
38 #include "llvm/DerivedTypes.h"
39 #include "llvm/CodeGen/BinaryObject.h"
40 #include "llvm/CodeGen/FileWriters.h"
41 #include "llvm/CodeGen/MachineCodeEmitter.h"
42 #include "llvm/CodeGen/ObjectCodeEmitter.h"
43 #include "llvm/CodeGen/MachineCodeEmitter.h"
44 #include "llvm/CodeGen/MachineConstantPool.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCSectionELF.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/Target/TargetData.h"
49 #include "llvm/Target/TargetELFWriterInfo.h"
50 #include "llvm/Target/TargetLowering.h"
51 #include "llvm/Target/TargetLoweringObjectFile.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/Mangler.h"
56 #include "llvm/Support/raw_ostream.h"
58 using namespace llvm;
60 char ELFWriter::ID = 0;
62 /// AddELFWriter - Add the ELF writer to the function pass manager
63 ObjectCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
64 raw_ostream &O,
65 TargetMachine &TM) {
66 ELFWriter *EW = new ELFWriter(O, TM);
67 PM.add(EW);
68 return EW->getObjectCodeEmitter();
71 //===----------------------------------------------------------------------===//
72 // ELFWriter Implementation
73 //===----------------------------------------------------------------------===//
75 ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
76 : MachineFunctionPass(&ID), O(o), TM(tm),
77 OutContext(*new MCContext()),
78 TLOF(TM.getTargetLowering()->getObjFileLowering()),
79 is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
80 isLittleEndian(TM.getTargetData()->isLittleEndian()),
81 ElfHdr(isLittleEndian, is64Bit) {
83 MAI = TM.getMCAsmInfo();
84 TEW = TM.getELFWriterInfo();
86 // Create the object code emitter object for this target.
87 ElfCE = new ELFCodeEmitter(*this);
89 // Inital number of sections
90 NumSections = 0;
93 ELFWriter::~ELFWriter() {
94 delete ElfCE;
95 delete &OutContext;
97 while(!SymbolList.empty()) {
98 delete SymbolList.back();
99 SymbolList.pop_back();
102 while(!PrivateSyms.empty()) {
103 delete PrivateSyms.back();
104 PrivateSyms.pop_back();
107 while(!SectionList.empty()) {
108 delete SectionList.back();
109 SectionList.pop_back();
112 // Release the name mangler object.
113 delete Mang; Mang = 0;
116 // doInitialization - Emit the file header and all of the global variables for
117 // the module to the ELF file.
118 bool ELFWriter::doInitialization(Module &M) {
119 // Initialize TargetLoweringObjectFile.
120 const_cast<TargetLoweringObjectFile&>(TLOF).Initialize(OutContext, TM);
122 Mang = new Mangler(M);
124 // ELF Header
125 // ----------
126 // Fields e_shnum e_shstrndx are only known after all section have
127 // been emitted. They locations in the ouput buffer are recorded so
128 // to be patched up later.
130 // Note
131 // ----
132 // emitWord method behaves differently for ELF32 and ELF64, writing
133 // 4 bytes in the former and 8 in the last for *_off and *_addr elf types
135 ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
136 ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
137 ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
138 ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
140 ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
141 ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
142 ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
143 ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
145 ElfHdr.emitWord16(ET_REL); // e_type
146 ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
147 ElfHdr.emitWord32(EV_CURRENT); // e_version
148 ElfHdr.emitWord(0); // e_entry, no entry point in .o file
149 ElfHdr.emitWord(0); // e_phoff, no program header for .o
150 ELFHdr_e_shoff_Offset = ElfHdr.size();
151 ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
152 ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
153 ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
154 ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
155 ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
157 // e_shentsize = Section header entry size
158 ElfHdr.emitWord16(TEW->getSHdrSize());
160 // e_shnum = # of section header ents
161 ELFHdr_e_shnum_Offset = ElfHdr.size();
162 ElfHdr.emitWord16(0); // Placeholder
164 // e_shstrndx = Section # of '.shstrtab'
165 ELFHdr_e_shstrndx_Offset = ElfHdr.size();
166 ElfHdr.emitWord16(0); // Placeholder
168 // Add the null section, which is required to be first in the file.
169 getNullSection();
171 // The first entry in the symtab is the null symbol and the second
172 // is a local symbol containing the module/file name
173 SymbolList.push_back(new ELFSym());
174 SymbolList.push_back(ELFSym::getFileSym());
176 return false;
179 // AddPendingGlobalSymbol - Add a global to be processed and to
180 // the global symbol lookup, use a zero index because the table
181 // index will be determined later.
182 void ELFWriter::AddPendingGlobalSymbol(const GlobalValue *GV,
183 bool AddToLookup /* = false */) {
184 PendingGlobals.insert(GV);
185 if (AddToLookup)
186 GblSymLookup[GV] = 0;
189 // AddPendingExternalSymbol - Add the external to be processed
190 // and to the external symbol lookup, use a zero index because
191 // the symbol table index will be determined later.
192 void ELFWriter::AddPendingExternalSymbol(const char *External) {
193 PendingExternals.insert(External);
194 ExtSymLookup[External] = 0;
197 ELFSection &ELFWriter::getDataSection() {
198 const MCSectionELF *Data = (const MCSectionELF *)TLOF.getDataSection();
199 return getSection(Data->getSectionName(), Data->getType(),
200 Data->getFlags(), 4);
203 ELFSection &ELFWriter::getBSSSection() {
204 const MCSectionELF *BSS = (const MCSectionELF *)TLOF.getBSSSection();
205 return getSection(BSS->getSectionName(), BSS->getType(), BSS->getFlags(), 4);
208 // getCtorSection - Get the static constructor section
209 ELFSection &ELFWriter::getCtorSection() {
210 const MCSectionELF *Ctor = (const MCSectionELF *)TLOF.getStaticCtorSection();
211 return getSection(Ctor->getSectionName(), Ctor->getType(), Ctor->getFlags());
214 // getDtorSection - Get the static destructor section
215 ELFSection &ELFWriter::getDtorSection() {
216 const MCSectionELF *Dtor = (const MCSectionELF *)TLOF.getStaticDtorSection();
217 return getSection(Dtor->getSectionName(), Dtor->getType(), Dtor->getFlags());
220 // getTextSection - Get the text section for the specified function
221 ELFSection &ELFWriter::getTextSection(Function *F) {
222 const MCSectionELF *Text =
223 (const MCSectionELF *)TLOF.SectionForGlobal(F, Mang, TM);
224 return getSection(Text->getSectionName(), Text->getType(), Text->getFlags());
227 // getJumpTableSection - Get a read only section for constants when
228 // emitting jump tables. TODO: add PIC support
229 ELFSection &ELFWriter::getJumpTableSection() {
230 const MCSectionELF *JT =
231 (const MCSectionELF *)TLOF.getSectionForConstant(SectionKind::getReadOnly());
232 return getSection(JT->getSectionName(), JT->getType(), JT->getFlags(),
233 TM.getTargetData()->getPointerABIAlignment());
236 // getConstantPoolSection - Get a constant pool section based on the machine
237 // constant pool entry type and relocation info.
238 ELFSection &ELFWriter::getConstantPoolSection(MachineConstantPoolEntry &CPE) {
239 SectionKind Kind;
240 switch (CPE.getRelocationInfo()) {
241 default: llvm_unreachable("Unknown section kind");
242 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
243 case 1:
244 Kind = SectionKind::getReadOnlyWithRelLocal();
245 break;
246 case 0:
247 switch (TM.getTargetData()->getTypeAllocSize(CPE.getType())) {
248 case 4: Kind = SectionKind::getMergeableConst4(); break;
249 case 8: Kind = SectionKind::getMergeableConst8(); break;
250 case 16: Kind = SectionKind::getMergeableConst16(); break;
251 default: Kind = SectionKind::getMergeableConst(); break;
255 const MCSectionELF *CPSect =
256 (const MCSectionELF *)TLOF.getSectionForConstant(Kind);
257 return getSection(CPSect->getSectionName(), CPSect->getType(),
258 CPSect->getFlags(), CPE.getAlignment());
261 // getRelocSection - Return the relocation section of section 'S'. 'RelA'
262 // is true if the relocation section contains entries with addends.
263 ELFSection &ELFWriter::getRelocSection(ELFSection &S) {
264 unsigned SectionType = TEW->hasRelocationAddend() ?
265 ELFSection::SHT_RELA : ELFSection::SHT_REL;
267 std::string SectionName(".rel");
268 if (TEW->hasRelocationAddend())
269 SectionName.append("a");
270 SectionName.append(S.getName());
272 return getSection(SectionName, SectionType, 0, TEW->getPrefELFAlignment());
275 // getGlobalELFVisibility - Returns the ELF specific visibility type
276 unsigned ELFWriter::getGlobalELFVisibility(const GlobalValue *GV) {
277 switch (GV->getVisibility()) {
278 default:
279 llvm_unreachable("unknown visibility type");
280 case GlobalValue::DefaultVisibility:
281 return ELFSym::STV_DEFAULT;
282 case GlobalValue::HiddenVisibility:
283 return ELFSym::STV_HIDDEN;
284 case GlobalValue::ProtectedVisibility:
285 return ELFSym::STV_PROTECTED;
287 return 0;
290 // getGlobalELFBinding - Returns the ELF specific binding type
291 unsigned ELFWriter::getGlobalELFBinding(const GlobalValue *GV) {
292 if (GV->hasInternalLinkage())
293 return ELFSym::STB_LOCAL;
295 if (GV->isWeakForLinker() && !GV->hasCommonLinkage())
296 return ELFSym::STB_WEAK;
298 return ELFSym::STB_GLOBAL;
301 // getGlobalELFType - Returns the ELF specific type for a global
302 unsigned ELFWriter::getGlobalELFType(const GlobalValue *GV) {
303 if (GV->isDeclaration())
304 return ELFSym::STT_NOTYPE;
306 if (isa<Function>(GV))
307 return ELFSym::STT_FUNC;
309 return ELFSym::STT_OBJECT;
312 // IsELFUndefSym - True if the global value must be marked as a symbol
313 // which points to a SHN_UNDEF section. This means that the symbol has
314 // no definition on the module.
315 static bool IsELFUndefSym(const GlobalValue *GV) {
316 return GV->isDeclaration() || (isa<Function>(GV));
319 // AddToSymbolList - Update the symbol lookup and If the symbol is
320 // private add it to PrivateSyms list, otherwise to SymbolList.
321 void ELFWriter::AddToSymbolList(ELFSym *GblSym) {
322 assert(GblSym->isGlobalValue() && "Symbol must be a global value");
324 const GlobalValue *GV = GblSym->getGlobalValue();
325 if (GV->hasPrivateLinkage()) {
326 // For a private symbols, keep track of the index inside
327 // the private list since it will never go to the symbol
328 // table and won't be patched up later.
329 PrivateSyms.push_back(GblSym);
330 GblSymLookup[GV] = PrivateSyms.size()-1;
331 } else {
332 // Non private symbol are left with zero indices until
333 // they are patched up during the symbol table emition
334 // (where the indicies are created).
335 SymbolList.push_back(GblSym);
336 GblSymLookup[GV] = 0;
340 // EmitGlobal - Choose the right section for global and emit it
341 void ELFWriter::EmitGlobal(const GlobalValue *GV) {
343 // Check if the referenced symbol is already emitted
344 if (GblSymLookup.find(GV) != GblSymLookup.end())
345 return;
347 // Handle ELF Bind, Visibility and Type for the current symbol
348 unsigned SymBind = getGlobalELFBinding(GV);
349 unsigned SymType = getGlobalELFType(GV);
350 bool IsUndefSym = IsELFUndefSym(GV);
352 ELFSym *GblSym = IsUndefSym ? ELFSym::getUndefGV(GV, SymBind)
353 : ELFSym::getGV(GV, SymBind, SymType, getGlobalELFVisibility(GV));
355 if (!IsUndefSym) {
356 assert(isa<GlobalVariable>(GV) && "GV not a global variable!");
357 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
359 // Handle special llvm globals
360 if (EmitSpecialLLVMGlobal(GVar))
361 return;
363 // Get the ELF section where this global belongs from TLOF
364 const MCSectionELF *S =
365 (const MCSectionELF *)TLOF.SectionForGlobal(GV, Mang, TM);
366 ELFSection &ES =
367 getSection(S->getSectionName(), S->getType(), S->getFlags());
368 SectionKind Kind = S->getKind();
370 // The symbol align should update the section alignment if needed
371 const TargetData *TD = TM.getTargetData();
372 unsigned Align = TD->getPreferredAlignment(GVar);
373 unsigned Size = TD->getTypeAllocSize(GVar->getInitializer()->getType());
374 GblSym->Size = Size;
376 if (S->HasCommonSymbols()) { // Symbol must go to a common section
377 GblSym->SectionIdx = ELFSection::SHN_COMMON;
379 // A new linkonce section is created for each global in the
380 // common section, the default alignment is 1 and the symbol
381 // value contains its alignment.
382 ES.Align = 1;
383 GblSym->Value = Align;
385 } else if (Kind.isBSS() || Kind.isThreadBSS()) { // Symbol goes to BSS.
386 GblSym->SectionIdx = ES.SectionIdx;
388 // Update the size with alignment and the next object can
389 // start in the right offset in the section
390 if (Align) ES.Size = (ES.Size + Align-1) & ~(Align-1);
391 ES.Align = std::max(ES.Align, Align);
393 // GblSym->Value should contain the virtual offset inside the section.
394 // Virtual because the BSS space is not allocated on ELF objects
395 GblSym->Value = ES.Size;
396 ES.Size += Size;
398 } else { // The symbol must go to some kind of data section
399 GblSym->SectionIdx = ES.SectionIdx;
401 // GblSym->Value should contain the symbol offset inside the section,
402 // and all symbols should start on their required alignment boundary
403 ES.Align = std::max(ES.Align, Align);
404 ES.emitAlignment(Align);
405 GblSym->Value = ES.size();
407 // Emit the global to the data section 'ES'
408 EmitGlobalConstant(GVar->getInitializer(), ES);
412 AddToSymbolList(GblSym);
415 void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
416 ELFSection &GblS) {
418 // Print the fields in successive locations. Pad to align if needed!
419 const TargetData *TD = TM.getTargetData();
420 unsigned Size = TD->getTypeAllocSize(CVS->getType());
421 const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
422 uint64_t sizeSoFar = 0;
423 for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
424 const Constant* field = CVS->getOperand(i);
426 // Check if padding is needed and insert one or more 0s.
427 uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
428 uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
429 - cvsLayout->getElementOffset(i)) - fieldSize;
430 sizeSoFar += fieldSize + padSize;
432 // Now print the actual field value.
433 EmitGlobalConstant(field, GblS);
435 // Insert padding - this may include padding to increase the size of the
436 // current field up to the ABI size (if the struct is not packed) as well
437 // as padding to ensure that the next field starts at the right offset.
438 GblS.emitZeros(padSize);
440 assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
441 "Layout of constant struct may be incorrect!");
444 void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
445 const TargetData *TD = TM.getTargetData();
446 unsigned Size = TD->getTypeAllocSize(CV->getType());
448 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
449 for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
450 EmitGlobalConstant(CVA->getOperand(i), GblS);
451 return;
452 } else if (isa<ConstantAggregateZero>(CV)) {
453 GblS.emitZeros(Size);
454 return;
455 } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
456 EmitGlobalConstantStruct(CVS, GblS);
457 return;
458 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
459 APInt Val = CFP->getValueAPF().bitcastToAPInt();
460 if (CFP->getType() == Type::getDoubleTy(CV->getContext()))
461 GblS.emitWord64(Val.getZExtValue());
462 else if (CFP->getType() == Type::getFloatTy(CV->getContext()))
463 GblS.emitWord32(Val.getZExtValue());
464 else if (CFP->getType() == Type::getX86_FP80Ty(CV->getContext())) {
465 unsigned PadSize =
466 TD->getTypeAllocSize(Type::getX86_FP80Ty(CV->getContext()))-
467 TD->getTypeStoreSize(Type::getX86_FP80Ty(CV->getContext()));
468 GblS.emitWordFP80(Val.getRawData(), PadSize);
469 } else if (CFP->getType() == Type::getPPC_FP128Ty(CV->getContext()))
470 llvm_unreachable("PPC_FP128Ty global emission not implemented");
471 return;
472 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
473 if (Size == 1)
474 GblS.emitByte(CI->getZExtValue());
475 else if (Size == 2)
476 GblS.emitWord16(CI->getZExtValue());
477 else if (Size == 4)
478 GblS.emitWord32(CI->getZExtValue());
479 else
480 EmitGlobalConstantLargeInt(CI, GblS);
481 return;
482 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
483 const VectorType *PTy = CP->getType();
484 for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
485 EmitGlobalConstant(CP->getOperand(I), GblS);
486 return;
487 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
488 // Resolve a constant expression which returns a (Constant, Offset)
489 // pair. If 'Res.first' is a GlobalValue, emit a relocation with
490 // the offset 'Res.second', otherwise emit a global constant like
491 // it is always done for not contant expression types.
492 CstExprResTy Res = ResolveConstantExpr(CE);
493 const Constant *Op = Res.first;
495 if (isa<GlobalValue>(Op))
496 EmitGlobalDataRelocation(cast<const GlobalValue>(Op),
497 TD->getTypeAllocSize(Op->getType()),
498 GblS, Res.second);
499 else
500 EmitGlobalConstant(Op, GblS);
502 return;
503 } else if (CV->getType()->getTypeID() == Type::PointerTyID) {
504 // Fill the data entry with zeros or emit a relocation entry
505 if (isa<ConstantPointerNull>(CV))
506 GblS.emitZeros(Size);
507 else
508 EmitGlobalDataRelocation(cast<const GlobalValue>(CV),
509 Size, GblS);
510 return;
511 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
512 // This is a constant address for a global variable or function and
513 // therefore must be referenced using a relocation entry.
514 EmitGlobalDataRelocation(GV, Size, GblS);
515 return;
518 std::string msg;
519 raw_string_ostream ErrorMsg(msg);
520 ErrorMsg << "Constant unimp for type: " << *CV->getType();
521 llvm_report_error(ErrorMsg.str());
524 // ResolveConstantExpr - Resolve the constant expression until it stop
525 // yielding other constant expressions.
526 CstExprResTy ELFWriter::ResolveConstantExpr(const Constant *CV) {
527 const TargetData *TD = TM.getTargetData();
529 // There ins't constant expression inside others anymore
530 if (!isa<ConstantExpr>(CV))
531 return std::make_pair(CV, 0);
533 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
534 switch (CE->getOpcode()) {
535 case Instruction::BitCast:
536 return ResolveConstantExpr(CE->getOperand(0));
538 case Instruction::GetElementPtr: {
539 const Constant *ptrVal = CE->getOperand(0);
540 SmallVector<Value*, 8> idxVec(CE->op_begin()+1, CE->op_end());
541 int64_t Offset = TD->getIndexedOffset(ptrVal->getType(), &idxVec[0],
542 idxVec.size());
543 return std::make_pair(ptrVal, Offset);
545 case Instruction::IntToPtr: {
546 Constant *Op = CE->getOperand(0);
547 Op = ConstantExpr::getIntegerCast(Op, TD->getIntPtrType(CV->getContext()),
548 false/*ZExt*/);
549 return ResolveConstantExpr(Op);
551 case Instruction::PtrToInt: {
552 Constant *Op = CE->getOperand(0);
553 const Type *Ty = CE->getType();
555 // We can emit the pointer value into this slot if the slot is an
556 // integer slot greater or equal to the size of the pointer.
557 if (TD->getTypeAllocSize(Ty) == TD->getTypeAllocSize(Op->getType()))
558 return ResolveConstantExpr(Op);
560 llvm_unreachable("Integer size less then pointer size");
562 case Instruction::Add:
563 case Instruction::Sub: {
564 // Only handle cases where there's a constant expression with GlobalValue
565 // as first operand and ConstantInt as second, which are the cases we can
566 // solve direclty using a relocation entry. GlobalValue=Op0, CstInt=Op1
567 // 1) Instruction::Add => (global) + CstInt
568 // 2) Instruction::Sub => (global) + -CstInt
569 const Constant *Op0 = CE->getOperand(0);
570 const Constant *Op1 = CE->getOperand(1);
571 assert(isa<ConstantInt>(Op1) && "Op1 must be a ConstantInt");
573 CstExprResTy Res = ResolveConstantExpr(Op0);
574 assert(isa<GlobalValue>(Res.first) && "Op0 must be a GlobalValue");
576 const APInt &RHS = cast<ConstantInt>(Op1)->getValue();
577 switch (CE->getOpcode()) {
578 case Instruction::Add:
579 return std::make_pair(Res.first, RHS.getSExtValue());
580 case Instruction::Sub:
581 return std::make_pair(Res.first, (-RHS).getSExtValue());
586 std::string msg(CE->getOpcodeName());
587 raw_string_ostream ErrorMsg(msg);
588 ErrorMsg << ": Unsupported ConstantExpr type";
589 llvm_report_error(ErrorMsg.str());
591 return std::make_pair(CV, 0); // silence warning
594 void ELFWriter::EmitGlobalDataRelocation(const GlobalValue *GV, unsigned Size,
595 ELFSection &GblS, int64_t Offset) {
596 // Create the relocation entry for the global value
597 MachineRelocation MR =
598 MachineRelocation::getGV(GblS.getCurrentPCOffset(),
599 TEW->getAbsoluteLabelMachineRelTy(),
600 const_cast<GlobalValue*>(GV),
601 Offset);
603 // Fill the data entry with zeros
604 GblS.emitZeros(Size);
606 // Add the relocation entry for the current data section
607 GblS.addRelocation(MR);
610 void ELFWriter::EmitGlobalConstantLargeInt(const ConstantInt *CI,
611 ELFSection &S) {
612 const TargetData *TD = TM.getTargetData();
613 unsigned BitWidth = CI->getBitWidth();
614 assert(isPowerOf2_32(BitWidth) &&
615 "Non-power-of-2-sized integers not handled!");
617 const uint64_t *RawData = CI->getValue().getRawData();
618 uint64_t Val = 0;
619 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
620 Val = (TD->isBigEndian()) ? RawData[e - i - 1] : RawData[i];
621 S.emitWord64(Val);
625 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
626 /// special global used by LLVM. If so, emit it and return true, otherwise
627 /// do nothing and return false.
628 bool ELFWriter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
629 if (GV->getName() == "llvm.used")
630 llvm_unreachable("not implemented yet");
632 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
633 if (GV->getSection() == "llvm.metadata" ||
634 GV->hasAvailableExternallyLinkage())
635 return true;
637 if (!GV->hasAppendingLinkage()) return false;
639 assert(GV->hasInitializer() && "Not a special LLVM global!");
641 const TargetData *TD = TM.getTargetData();
642 unsigned Align = TD->getPointerPrefAlignment();
643 if (GV->getName() == "llvm.global_ctors") {
644 ELFSection &Ctor = getCtorSection();
645 Ctor.emitAlignment(Align);
646 EmitXXStructorList(GV->getInitializer(), Ctor);
647 return true;
650 if (GV->getName() == "llvm.global_dtors") {
651 ELFSection &Dtor = getDtorSection();
652 Dtor.emitAlignment(Align);
653 EmitXXStructorList(GV->getInitializer(), Dtor);
654 return true;
657 return false;
660 /// EmitXXStructorList - Emit the ctor or dtor list. This just emits out the
661 /// function pointers, ignoring the init priority.
662 void ELFWriter::EmitXXStructorList(Constant *List, ELFSection &Xtor) {
663 // Should be an array of '{ int, void ()* }' structs. The first value is the
664 // init priority, which we ignore.
665 if (!isa<ConstantArray>(List)) return;
666 ConstantArray *InitList = cast<ConstantArray>(List);
667 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
668 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
669 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
671 if (CS->getOperand(1)->isNullValue())
672 return; // Found a null terminator, exit printing.
673 // Emit the function pointer.
674 EmitGlobalConstant(CS->getOperand(1), Xtor);
678 bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
679 // Nothing to do here, this is all done through the ElfCE object above.
680 return false;
683 /// doFinalization - Now that the module has been completely processed, emit
684 /// the ELF file to 'O'.
685 bool ELFWriter::doFinalization(Module &M) {
686 // Emit .data section placeholder
687 getDataSection();
689 // Emit .bss section placeholder
690 getBSSSection();
692 // Build and emit data, bss and "common" sections.
693 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
694 I != E; ++I)
695 EmitGlobal(I);
697 // Emit all pending globals
698 for (PendingGblsIter I = PendingGlobals.begin(), E = PendingGlobals.end();
699 I != E; ++I)
700 EmitGlobal(*I);
702 // Emit all pending externals
703 for (PendingExtsIter I = PendingExternals.begin(), E = PendingExternals.end();
704 I != E; ++I)
705 SymbolList.push_back(ELFSym::getExtSym(*I));
707 // Emit non-executable stack note
708 if (MAI->getNonexecutableStackDirective())
709 getNonExecStackSection();
711 // Emit a symbol for each section created until now, skip null section
712 for (unsigned i = 1, e = SectionList.size(); i < e; ++i) {
713 ELFSection &ES = *SectionList[i];
714 ELFSym *SectionSym = ELFSym::getSectionSym();
715 SectionSym->SectionIdx = ES.SectionIdx;
716 SymbolList.push_back(SectionSym);
717 ES.Sym = SymbolList.back();
720 // Emit string table
721 EmitStringTable(M.getModuleIdentifier());
723 // Emit the symbol table now, if non-empty.
724 EmitSymbolTable();
726 // Emit the relocation sections.
727 EmitRelocations();
729 // Emit the sections string table.
730 EmitSectionTableStringTable();
732 // Dump the sections and section table to the .o file.
733 OutputSectionsAndSectionTable();
735 return false;
738 // RelocateField - Patch relocatable field with 'Offset' in 'BO'
739 // using a 'Value' of known 'Size'
740 void ELFWriter::RelocateField(BinaryObject &BO, uint32_t Offset,
741 int64_t Value, unsigned Size) {
742 if (Size == 32)
743 BO.fixWord32(Value, Offset);
744 else if (Size == 64)
745 BO.fixWord64(Value, Offset);
746 else
747 llvm_unreachable("don't know howto patch relocatable field");
750 /// EmitRelocations - Emit relocations
751 void ELFWriter::EmitRelocations() {
753 // True if the target uses the relocation entry to hold the addend,
754 // otherwise the addend is written directly to the relocatable field.
755 bool HasRelA = TEW->hasRelocationAddend();
757 // Create Relocation sections for each section which needs it.
758 for (unsigned i=0, e=SectionList.size(); i != e; ++i) {
759 ELFSection &S = *SectionList[i];
761 // This section does not have relocations
762 if (!S.hasRelocations()) continue;
763 ELFSection &RelSec = getRelocSection(S);
765 // 'Link' - Section hdr idx of the associated symbol table
766 // 'Info' - Section hdr idx of the section to which the relocation applies
767 ELFSection &SymTab = getSymbolTableSection();
768 RelSec.Link = SymTab.SectionIdx;
769 RelSec.Info = S.SectionIdx;
770 RelSec.EntSize = TEW->getRelocationEntrySize();
772 // Get the relocations from Section
773 std::vector<MachineRelocation> Relos = S.getRelocations();
774 for (std::vector<MachineRelocation>::iterator MRI = Relos.begin(),
775 MRE = Relos.end(); MRI != MRE; ++MRI) {
776 MachineRelocation &MR = *MRI;
778 // Relocatable field offset from the section start
779 unsigned RelOffset = MR.getMachineCodeOffset();
781 // Symbol index in the symbol table
782 unsigned SymIdx = 0;
784 // Target specific relocation field type and size
785 unsigned RelType = TEW->getRelocationType(MR.getRelocationType());
786 unsigned RelTySize = TEW->getRelocationTySize(RelType);
787 int64_t Addend = 0;
789 // There are several machine relocations types, and each one of
790 // them needs a different approach to retrieve the symbol table index.
791 if (MR.isGlobalValue()) {
792 const GlobalValue *G = MR.getGlobalValue();
793 int64_t GlobalOffset = MR.getConstantVal();
794 SymIdx = GblSymLookup[G];
795 if (G->hasPrivateLinkage()) {
796 // If the target uses a section offset in the relocation:
797 // SymIdx + Addend = section sym for global + section offset
798 unsigned SectionIdx = PrivateSyms[SymIdx]->SectionIdx;
799 Addend = PrivateSyms[SymIdx]->Value + GlobalOffset;
800 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
801 } else {
802 Addend = TEW->getDefaultAddendForRelTy(RelType, GlobalOffset);
804 } else if (MR.isExternalSymbol()) {
805 const char *ExtSym = MR.getExternalSymbol();
806 SymIdx = ExtSymLookup[ExtSym];
807 Addend = TEW->getDefaultAddendForRelTy(RelType);
808 } else {
809 // Get the symbol index for the section symbol
810 unsigned SectionIdx = MR.getConstantVal();
811 SymIdx = SectionList[SectionIdx]->getSymbolTableIndex();
813 // The symbol offset inside the section
814 int64_t SymOffset = (int64_t)MR.getResultPointer();
816 // For pc relative relocations where symbols are defined in the same
817 // section they are referenced, ignore the relocation entry and patch
818 // the relocatable field with the symbol offset directly.
819 if (S.SectionIdx == SectionIdx && TEW->isPCRelativeRel(RelType)) {
820 int64_t Value = TEW->computeRelocation(SymOffset, RelOffset, RelType);
821 RelocateField(S, RelOffset, Value, RelTySize);
822 continue;
825 Addend = TEW->getDefaultAddendForRelTy(RelType, SymOffset);
828 // The target without addend on the relocation symbol must be
829 // patched in the relocation place itself to contain the addend
830 // otherwise write zeros to make sure there is no garbage there
831 RelocateField(S, RelOffset, HasRelA ? 0 : Addend, RelTySize);
833 // Get the relocation entry and emit to the relocation section
834 ELFRelocation Rel(RelOffset, SymIdx, RelType, HasRelA, Addend);
835 EmitRelocation(RelSec, Rel, HasRelA);
840 /// EmitRelocation - Write relocation 'Rel' to the relocation section 'Rel'
841 void ELFWriter::EmitRelocation(BinaryObject &RelSec, ELFRelocation &Rel,
842 bool HasRelA) {
843 RelSec.emitWord(Rel.getOffset());
844 RelSec.emitWord(Rel.getInfo(is64Bit));
845 if (HasRelA)
846 RelSec.emitWord(Rel.getAddend());
849 /// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
850 void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
851 if (is64Bit) {
852 SymbolTable.emitWord32(Sym.NameIdx);
853 SymbolTable.emitByte(Sym.Info);
854 SymbolTable.emitByte(Sym.Other);
855 SymbolTable.emitWord16(Sym.SectionIdx);
856 SymbolTable.emitWord64(Sym.Value);
857 SymbolTable.emitWord64(Sym.Size);
858 } else {
859 SymbolTable.emitWord32(Sym.NameIdx);
860 SymbolTable.emitWord32(Sym.Value);
861 SymbolTable.emitWord32(Sym.Size);
862 SymbolTable.emitByte(Sym.Info);
863 SymbolTable.emitByte(Sym.Other);
864 SymbolTable.emitWord16(Sym.SectionIdx);
868 /// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
869 /// Section Header Table
870 void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
871 const ELFSection &SHdr) {
872 SHdrTab.emitWord32(SHdr.NameIdx);
873 SHdrTab.emitWord32(SHdr.Type);
874 if (is64Bit) {
875 SHdrTab.emitWord64(SHdr.Flags);
876 SHdrTab.emitWord(SHdr.Addr);
877 SHdrTab.emitWord(SHdr.Offset);
878 SHdrTab.emitWord64(SHdr.Size);
879 SHdrTab.emitWord32(SHdr.Link);
880 SHdrTab.emitWord32(SHdr.Info);
881 SHdrTab.emitWord64(SHdr.Align);
882 SHdrTab.emitWord64(SHdr.EntSize);
883 } else {
884 SHdrTab.emitWord32(SHdr.Flags);
885 SHdrTab.emitWord(SHdr.Addr);
886 SHdrTab.emitWord(SHdr.Offset);
887 SHdrTab.emitWord32(SHdr.Size);
888 SHdrTab.emitWord32(SHdr.Link);
889 SHdrTab.emitWord32(SHdr.Info);
890 SHdrTab.emitWord32(SHdr.Align);
891 SHdrTab.emitWord32(SHdr.EntSize);
895 /// EmitStringTable - If the current symbol table is non-empty, emit the string
896 /// table for it
897 void ELFWriter::EmitStringTable(const std::string &ModuleName) {
898 if (!SymbolList.size()) return; // Empty symbol table.
899 ELFSection &StrTab = getStringTableSection();
901 // Set the zero'th symbol to a null byte, as required.
902 StrTab.emitByte(0);
904 // Walk on the symbol list and write symbol names into the string table.
905 unsigned Index = 1;
906 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
907 ELFSym &Sym = *(*I);
909 std::string Name;
910 if (Sym.isGlobalValue())
911 Name.append(Mang->getMangledName(Sym.getGlobalValue()));
912 else if (Sym.isExternalSym())
913 Name.append(Sym.getExternalSymbol());
914 else if (Sym.isFileType())
915 Name.append(ModuleName);
917 if (Name.empty()) {
918 Sym.NameIdx = 0;
919 } else {
920 Sym.NameIdx = Index;
921 StrTab.emitString(Name);
923 // Keep track of the number of bytes emitted to this section.
924 Index += Name.size()+1;
927 assert(Index == StrTab.size());
928 StrTab.Size = Index;
931 // SortSymbols - On the symbol table local symbols must come before
932 // all other symbols with non-local bindings. The return value is
933 // the position of the first non local symbol.
934 unsigned ELFWriter::SortSymbols() {
935 unsigned FirstNonLocalSymbol;
936 std::vector<ELFSym*> LocalSyms, OtherSyms;
938 for (ELFSymIter I=SymbolList.begin(), E=SymbolList.end(); I != E; ++I) {
939 if ((*I)->isLocalBind())
940 LocalSyms.push_back(*I);
941 else
942 OtherSyms.push_back(*I);
944 SymbolList.clear();
945 FirstNonLocalSymbol = LocalSyms.size();
947 for (unsigned i = 0; i < FirstNonLocalSymbol; ++i)
948 SymbolList.push_back(LocalSyms[i]);
950 for (ELFSymIter I=OtherSyms.begin(), E=OtherSyms.end(); I != E; ++I)
951 SymbolList.push_back(*I);
953 LocalSyms.clear();
954 OtherSyms.clear();
956 return FirstNonLocalSymbol;
959 /// EmitSymbolTable - Emit the symbol table itself.
960 void ELFWriter::EmitSymbolTable() {
961 if (!SymbolList.size()) return; // Empty symbol table.
963 // Now that we have emitted the string table and know the offset into the
964 // string table of each symbol, emit the symbol table itself.
965 ELFSection &SymTab = getSymbolTableSection();
966 SymTab.Align = TEW->getPrefELFAlignment();
968 // Section Index of .strtab.
969 SymTab.Link = getStringTableSection().SectionIdx;
971 // Size of each symtab entry.
972 SymTab.EntSize = TEW->getSymTabEntrySize();
974 // Reorder the symbol table with local symbols first!
975 unsigned FirstNonLocalSymbol = SortSymbols();
977 // Emit all the symbols to the symbol table.
978 for (unsigned i = 0, e = SymbolList.size(); i < e; ++i) {
979 ELFSym &Sym = *SymbolList[i];
981 // Emit symbol to the symbol table
982 EmitSymbol(SymTab, Sym);
984 // Record the symbol table index for each symbol
985 if (Sym.isGlobalValue())
986 GblSymLookup[Sym.getGlobalValue()] = i;
987 else if (Sym.isExternalSym())
988 ExtSymLookup[Sym.getExternalSymbol()] = i;
990 // Keep track on the symbol index into the symbol table
991 Sym.SymTabIdx = i;
994 // One greater than the symbol table index of the last local symbol
995 SymTab.Info = FirstNonLocalSymbol;
996 SymTab.Size = SymTab.size();
999 /// EmitSectionTableStringTable - This method adds and emits a section for the
1000 /// ELF Section Table string table: the string table that holds all of the
1001 /// section names.
1002 void ELFWriter::EmitSectionTableStringTable() {
1003 // First step: add the section for the string table to the list of sections:
1004 ELFSection &SHStrTab = getSectionHeaderStringTableSection();
1006 // Now that we know which section number is the .shstrtab section, update the
1007 // e_shstrndx entry in the ELF header.
1008 ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
1010 // Set the NameIdx of each section in the string table and emit the bytes for
1011 // the string table.
1012 unsigned Index = 0;
1014 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
1015 ELFSection &S = *(*I);
1016 // Set the index into the table. Note if we have lots of entries with
1017 // common suffixes, we could memoize them here if we cared.
1018 S.NameIdx = Index;
1019 SHStrTab.emitString(S.getName());
1021 // Keep track of the number of bytes emitted to this section.
1022 Index += S.getName().size()+1;
1025 // Set the size of .shstrtab now that we know what it is.
1026 assert(Index == SHStrTab.size());
1027 SHStrTab.Size = Index;
1030 /// OutputSectionsAndSectionTable - Now that we have constructed the file header
1031 /// and all of the sections, emit these to the ostream destination and emit the
1032 /// SectionTable.
1033 void ELFWriter::OutputSectionsAndSectionTable() {
1034 // Pass #1: Compute the file offset for each section.
1035 size_t FileOff = ElfHdr.size(); // File header first.
1037 // Adjust alignment of all section if needed, skip the null section.
1038 for (unsigned i=1, e=SectionList.size(); i < e; ++i) {
1039 ELFSection &ES = *SectionList[i];
1040 if (!ES.size()) {
1041 ES.Offset = FileOff;
1042 continue;
1045 // Update Section size
1046 if (!ES.Size)
1047 ES.Size = ES.size();
1049 // Align FileOff to whatever the alignment restrictions of the section are.
1050 if (ES.Align)
1051 FileOff = (FileOff+ES.Align-1) & ~(ES.Align-1);
1053 ES.Offset = FileOff;
1054 FileOff += ES.Size;
1057 // Align Section Header.
1058 unsigned TableAlign = TEW->getPrefELFAlignment();
1059 FileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
1061 // Now that we know where all of the sections will be emitted, set the e_shnum
1062 // entry in the ELF header.
1063 ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
1065 // Now that we know the offset in the file of the section table, update the
1066 // e_shoff address in the ELF header.
1067 ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
1069 // Now that we know all of the data in the file header, emit it and all of the
1070 // sections!
1071 O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
1072 FileOff = ElfHdr.size();
1074 // Section Header Table blob
1075 BinaryObject SHdrTable(isLittleEndian, is64Bit);
1077 // Emit all of sections to the file and build the section header table.
1078 for (ELFSectionIter I=SectionList.begin(), E=SectionList.end(); I != E; ++I) {
1079 ELFSection &S = *(*I);
1080 DEBUG(errs() << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
1081 << ", Size: " << S.Size << ", Offset: " << S.Offset
1082 << ", SectionData Size: " << S.size() << "\n");
1084 // Align FileOff to whatever the alignment restrictions of the section are.
1085 if (S.size()) {
1086 if (S.Align) {
1087 for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
1088 FileOff != NewFileOff; ++FileOff)
1089 O << (char)0xAB;
1091 O.write((char *)&S.getData()[0], S.Size);
1092 FileOff += S.Size;
1095 EmitSectionHeader(SHdrTable, S);
1098 // Align output for the section table.
1099 for (size_t NewFileOff = (FileOff+TableAlign-1) & ~(TableAlign-1);
1100 FileOff != NewFileOff; ++FileOff)
1101 O << (char)0xAB;
1103 // Emit the section table itself.
1104 O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());