1 //===-- PreAllocSplitting.cpp - Pre-allocation Interval Spltting Pass. ----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the machine instruction level pre-register allocation
11 // live interval splitting pass. It finds live interval barriers, i.e.
12 // instructions which will kill all physical registers in certain register
13 // classes, and split all live intervals which cross the barrier.
15 //===----------------------------------------------------------------------===//
17 #define DEBUG_TYPE "pre-alloc-split"
18 #include "VirtRegMap.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveStackAnalysis.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/RegisterCoalescer.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/DepthFirstIterator.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/Statistic.h"
41 static cl::opt
<int> PreSplitLimit("pre-split-limit", cl::init(-1), cl::Hidden
);
42 static cl::opt
<int> DeadSplitLimit("dead-split-limit", cl::init(-1), cl::Hidden
);
43 static cl::opt
<int> RestoreFoldLimit("restore-fold-limit", cl::init(-1), cl::Hidden
);
45 STATISTIC(NumSplits
, "Number of intervals split");
46 STATISTIC(NumRemats
, "Number of intervals split by rematerialization");
47 STATISTIC(NumFolds
, "Number of intervals split with spill folding");
48 STATISTIC(NumRestoreFolds
, "Number of intervals split with restore folding");
49 STATISTIC(NumRenumbers
, "Number of intervals renumbered into new registers");
50 STATISTIC(NumDeadSpills
, "Number of dead spills removed");
53 class VISIBILITY_HIDDEN PreAllocSplitting
: public MachineFunctionPass
{
54 MachineFunction
*CurrMF
;
55 const TargetMachine
*TM
;
56 const TargetInstrInfo
*TII
;
57 const TargetRegisterInfo
* TRI
;
58 MachineFrameInfo
*MFI
;
59 MachineRegisterInfo
*MRI
;
64 // Barrier - Current barrier being processed.
65 MachineInstr
*Barrier
;
67 // BarrierMBB - Basic block where the barrier resides in.
68 MachineBasicBlock
*BarrierMBB
;
70 // Barrier - Current barrier index.
73 // CurrLI - Current live interval being split.
76 // CurrSLI - Current stack slot live interval.
77 LiveInterval
*CurrSLI
;
79 // CurrSValNo - Current val# for the stack slot live interval.
82 // IntervalSSMap - A map from live interval to spill slots.
83 DenseMap
<unsigned, int> IntervalSSMap
;
85 // Def2SpillMap - A map from a def instruction index to spill index.
86 DenseMap
<unsigned, unsigned> Def2SpillMap
;
90 PreAllocSplitting() : MachineFunctionPass(&ID
) {}
92 virtual bool runOnMachineFunction(MachineFunction
&MF
);
94 virtual void getAnalysisUsage(AnalysisUsage
&AU
) const {
96 AU
.addRequired
<LiveIntervals
>();
97 AU
.addPreserved
<LiveIntervals
>();
98 AU
.addRequired
<LiveStacks
>();
99 AU
.addPreserved
<LiveStacks
>();
100 AU
.addPreserved
<RegisterCoalescer
>();
102 AU
.addPreservedID(StrongPHIEliminationID
);
104 AU
.addPreservedID(PHIEliminationID
);
105 AU
.addRequired
<MachineDominatorTree
>();
106 AU
.addRequired
<MachineLoopInfo
>();
107 AU
.addRequired
<VirtRegMap
>();
108 AU
.addPreserved
<MachineDominatorTree
>();
109 AU
.addPreserved
<MachineLoopInfo
>();
110 AU
.addPreserved
<VirtRegMap
>();
111 MachineFunctionPass::getAnalysisUsage(AU
);
114 virtual void releaseMemory() {
115 IntervalSSMap
.clear();
116 Def2SpillMap
.clear();
119 virtual const char *getPassName() const {
120 return "Pre-Register Allocaton Live Interval Splitting";
123 /// print - Implement the dump method.
124 virtual void print(raw_ostream
&O
, const Module
* M
= 0) const {
130 MachineBasicBlock::iterator
131 findNextEmptySlot(MachineBasicBlock
*, MachineInstr
*,
134 MachineBasicBlock::iterator
135 findSpillPoint(MachineBasicBlock
*, MachineInstr
*, MachineInstr
*,
136 SmallPtrSet
<MachineInstr
*, 4>&, unsigned&);
138 MachineBasicBlock::iterator
139 findRestorePoint(MachineBasicBlock
*, MachineInstr
*, unsigned,
140 SmallPtrSet
<MachineInstr
*, 4>&, unsigned&);
142 int CreateSpillStackSlot(unsigned, const TargetRegisterClass
*);
144 bool IsAvailableInStack(MachineBasicBlock
*, unsigned, unsigned, unsigned,
145 unsigned&, int&) const;
147 void UpdateSpillSlotInterval(VNInfo
*, unsigned, unsigned);
149 bool SplitRegLiveInterval(LiveInterval
*);
151 bool SplitRegLiveIntervals(const TargetRegisterClass
**,
152 SmallPtrSet
<LiveInterval
*, 8>&);
154 bool createsNewJoin(LiveRange
* LR
, MachineBasicBlock
* DefMBB
,
155 MachineBasicBlock
* BarrierMBB
);
156 bool Rematerialize(unsigned vreg
, VNInfo
* ValNo
,
158 MachineBasicBlock::iterator RestorePt
,
160 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
161 MachineInstr
* FoldSpill(unsigned vreg
, const TargetRegisterClass
* RC
,
163 MachineInstr
* Barrier
,
164 MachineBasicBlock
* MBB
,
166 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
167 MachineInstr
* FoldRestore(unsigned vreg
,
168 const TargetRegisterClass
* RC
,
169 MachineInstr
* Barrier
,
170 MachineBasicBlock
* MBB
,
172 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
);
173 void RenumberValno(VNInfo
* VN
);
174 void ReconstructLiveInterval(LiveInterval
* LI
);
175 bool removeDeadSpills(SmallPtrSet
<LiveInterval
*, 8>& split
);
176 unsigned getNumberOfNonSpills(SmallPtrSet
<MachineInstr
*, 4>& MIs
,
177 unsigned Reg
, int FrameIndex
, bool& TwoAddr
);
178 VNInfo
* PerformPHIConstruction(MachineBasicBlock::iterator Use
,
179 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
180 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
181 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
182 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
183 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
184 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
185 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
186 bool IsTopLevel
, bool IsIntraBlock
);
187 VNInfo
* PerformPHIConstructionFallBack(MachineBasicBlock::iterator Use
,
188 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
189 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
190 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
191 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
192 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
193 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
194 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
195 bool IsTopLevel
, bool IsIntraBlock
);
197 } // end anonymous namespace
199 char PreAllocSplitting::ID
= 0;
201 static RegisterPass
<PreAllocSplitting
>
202 X("pre-alloc-splitting", "Pre-Register Allocation Live Interval Splitting");
204 const PassInfo
*const llvm::PreAllocSplittingID
= &X
;
207 /// findNextEmptySlot - Find a gap after the given machine instruction in the
208 /// instruction index map. If there isn't one, return end().
209 MachineBasicBlock::iterator
210 PreAllocSplitting::findNextEmptySlot(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
211 unsigned &SpotIndex
) {
212 MachineBasicBlock::iterator MII
= MI
;
213 if (++MII
!= MBB
->end()) {
214 unsigned Index
= LIs
->findGapBeforeInstr(LIs
->getInstructionIndex(MII
));
223 /// findSpillPoint - Find a gap as far away from the given MI that's suitable
224 /// for spilling the current live interval. The index must be before any
225 /// defs and uses of the live interval register in the mbb. Return begin() if
227 MachineBasicBlock::iterator
228 PreAllocSplitting::findSpillPoint(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
230 SmallPtrSet
<MachineInstr
*, 4> &RefsInMBB
,
231 unsigned &SpillIndex
) {
232 MachineBasicBlock::iterator Pt
= MBB
->begin();
234 MachineBasicBlock::iterator MII
= MI
;
235 MachineBasicBlock::iterator EndPt
= DefMI
236 ? MachineBasicBlock::iterator(DefMI
) : MBB
->begin();
238 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
) &&
239 MII
->getOpcode() != TRI
->getCallFrameSetupOpcode())
241 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
243 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
)) {
244 unsigned Index
= LIs
->getInstructionIndex(MII
);
246 // We can't insert the spill between the barrier (a call), and its
247 // corresponding call frame setup.
248 if (MII
->getOpcode() == TRI
->getCallFrameDestroyOpcode()) {
249 while (MII
->getOpcode() != TRI
->getCallFrameSetupOpcode()) {
256 } else if (LIs
->hasGapBeforeInstr(Index
)) {
258 SpillIndex
= LIs
->findGapBeforeInstr(Index
, true);
261 if (RefsInMBB
.count(MII
))
271 /// findRestorePoint - Find a gap in the instruction index map that's suitable
272 /// for restoring the current live interval value. The index must be before any
273 /// uses of the live interval register in the mbb. Return end() if none is
275 MachineBasicBlock::iterator
276 PreAllocSplitting::findRestorePoint(MachineBasicBlock
*MBB
, MachineInstr
*MI
,
278 SmallPtrSet
<MachineInstr
*, 4> &RefsInMBB
,
279 unsigned &RestoreIndex
) {
280 // FIXME: Allow spill to be inserted to the beginning of the mbb. Update mbb
281 // begin index accordingly.
282 MachineBasicBlock::iterator Pt
= MBB
->end();
283 MachineBasicBlock::iterator EndPt
= MBB
->getFirstTerminator();
285 // We start at the call, so walk forward until we find the call frame teardown
286 // since we can't insert restores before that. Bail if we encounter a use
288 MachineBasicBlock::iterator MII
= MI
;
289 if (MII
== EndPt
) return Pt
;
291 while (MII
!= EndPt
&& !RefsInMBB
.count(MII
) &&
292 MII
->getOpcode() != TRI
->getCallFrameDestroyOpcode())
294 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
297 // FIXME: Limit the number of instructions to examine to reduce
299 while (MII
!= EndPt
) {
300 unsigned Index
= LIs
->getInstructionIndex(MII
);
303 unsigned Gap
= LIs
->findGapBeforeInstr(Index
);
305 // We can't insert a restore between the barrier (a call) and its
306 // corresponding call frame teardown.
307 if (MII
->getOpcode() == TRI
->getCallFrameSetupOpcode()) {
309 if (MII
== EndPt
|| RefsInMBB
.count(MII
)) return Pt
;
311 } while (MII
->getOpcode() != TRI
->getCallFrameDestroyOpcode());
317 if (RefsInMBB
.count(MII
))
326 /// CreateSpillStackSlot - Create a stack slot for the live interval being
327 /// split. If the live interval was previously split, just reuse the same
329 int PreAllocSplitting::CreateSpillStackSlot(unsigned Reg
,
330 const TargetRegisterClass
*RC
) {
332 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(Reg
);
333 if (I
!= IntervalSSMap
.end()) {
336 SS
= MFI
->CreateStackObject(RC
->getSize(), RC
->getAlignment());
337 IntervalSSMap
[Reg
] = SS
;
340 // Create live interval for stack slot.
341 CurrSLI
= &LSs
->getOrCreateInterval(SS
, RC
);
342 if (CurrSLI
->hasAtLeastOneValue())
343 CurrSValNo
= CurrSLI
->getValNumInfo(0);
345 CurrSValNo
= CurrSLI
->getNextValue(0, 0, false, LSs
->getVNInfoAllocator());
349 /// IsAvailableInStack - Return true if register is available in a split stack
350 /// slot at the specified index.
352 PreAllocSplitting::IsAvailableInStack(MachineBasicBlock
*DefMBB
,
353 unsigned Reg
, unsigned DefIndex
,
354 unsigned RestoreIndex
, unsigned &SpillIndex
,
359 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(Reg
);
360 if (I
== IntervalSSMap
.end())
362 DenseMap
<unsigned, unsigned>::iterator II
= Def2SpillMap
.find(DefIndex
);
363 if (II
== Def2SpillMap
.end())
366 // If last spill of def is in the same mbb as barrier mbb (where restore will
367 // be), make sure it's not below the intended restore index.
368 // FIXME: Undo the previous spill?
369 assert(LIs
->getMBBFromIndex(II
->second
) == DefMBB
);
370 if (DefMBB
== BarrierMBB
&& II
->second
>= RestoreIndex
)
374 SpillIndex
= II
->second
;
378 /// UpdateSpillSlotInterval - Given the specified val# of the register live
379 /// interval being split, and the spill and restore indicies, update the live
380 /// interval of the spill stack slot.
382 PreAllocSplitting::UpdateSpillSlotInterval(VNInfo
*ValNo
, unsigned SpillIndex
,
383 unsigned RestoreIndex
) {
384 assert(LIs
->getMBBFromIndex(RestoreIndex
) == BarrierMBB
&&
385 "Expect restore in the barrier mbb");
387 MachineBasicBlock
*MBB
= LIs
->getMBBFromIndex(SpillIndex
);
388 if (MBB
== BarrierMBB
) {
389 // Intra-block spill + restore. We are done.
390 LiveRange
SLR(SpillIndex
, RestoreIndex
, CurrSValNo
);
391 CurrSLI
->addRange(SLR
);
395 SmallPtrSet
<MachineBasicBlock
*, 4> Processed
;
396 unsigned EndIdx
= LIs
->getMBBEndIdx(MBB
);
397 LiveRange
SLR(SpillIndex
, EndIdx
+1, CurrSValNo
);
398 CurrSLI
->addRange(SLR
);
399 Processed
.insert(MBB
);
401 // Start from the spill mbb, figure out the extend of the spill slot's
403 SmallVector
<MachineBasicBlock
*, 4> WorkList
;
404 const LiveRange
*LR
= CurrLI
->getLiveRangeContaining(SpillIndex
);
405 if (LR
->end
> EndIdx
)
406 // If live range extend beyond end of mbb, add successors to work list.
407 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
408 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
409 WorkList
.push_back(*SI
);
411 while (!WorkList
.empty()) {
412 MachineBasicBlock
*MBB
= WorkList
.back();
414 if (Processed
.count(MBB
))
416 unsigned Idx
= LIs
->getMBBStartIdx(MBB
);
417 LR
= CurrLI
->getLiveRangeContaining(Idx
);
418 if (LR
&& LR
->valno
== ValNo
) {
419 EndIdx
= LIs
->getMBBEndIdx(MBB
);
420 if (Idx
<= RestoreIndex
&& RestoreIndex
< EndIdx
) {
421 // Spill slot live interval stops at the restore.
422 LiveRange
SLR(Idx
, RestoreIndex
, CurrSValNo
);
423 CurrSLI
->addRange(SLR
);
424 } else if (LR
->end
> EndIdx
) {
425 // Live range extends beyond end of mbb, process successors.
426 LiveRange
SLR(Idx
, EndIdx
+1, CurrSValNo
);
427 CurrSLI
->addRange(SLR
);
428 for (MachineBasicBlock::succ_iterator SI
= MBB
->succ_begin(),
429 SE
= MBB
->succ_end(); SI
!= SE
; ++SI
)
430 WorkList
.push_back(*SI
);
432 LiveRange
SLR(Idx
, LR
->end
, CurrSValNo
);
433 CurrSLI
->addRange(SLR
);
435 Processed
.insert(MBB
);
440 /// PerformPHIConstruction - From properly set up use and def lists, use a PHI
441 /// construction algorithm to compute the ranges and valnos for an interval.
443 PreAllocSplitting::PerformPHIConstruction(MachineBasicBlock::iterator UseI
,
444 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
445 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
446 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
447 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
448 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
449 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
450 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
451 bool IsTopLevel
, bool IsIntraBlock
) {
452 // Return memoized result if it's available.
453 if (IsTopLevel
&& Visited
.count(UseI
) && NewVNs
.count(UseI
))
455 else if (!IsTopLevel
&& IsIntraBlock
&& NewVNs
.count(UseI
))
457 else if (!IsIntraBlock
&& LiveOut
.count(MBB
))
460 // Check if our block contains any uses or defs.
461 bool ContainsDefs
= Defs
.count(MBB
);
462 bool ContainsUses
= Uses
.count(MBB
);
466 // Enumerate the cases of use/def contaning blocks.
467 if (!ContainsDefs
&& !ContainsUses
) {
468 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
, Uses
,
469 NewVNs
, LiveOut
, Phis
,
470 IsTopLevel
, IsIntraBlock
);
471 } else if (ContainsDefs
&& !ContainsUses
) {
472 SmallPtrSet
<MachineInstr
*, 2>& BlockDefs
= Defs
[MBB
];
474 // Search for the def in this block. If we don't find it before the
475 // instruction we care about, go to the fallback case. Note that that
476 // should never happen: this cannot be intrablock, so use should
477 // always be an end() iterator.
478 assert(UseI
== MBB
->end() && "No use marked in intrablock");
480 MachineBasicBlock::iterator Walker
= UseI
;
482 while (Walker
!= MBB
->begin()) {
483 if (BlockDefs
.count(Walker
))
488 // Once we've found it, extend its VNInfo to our instruction.
489 unsigned DefIndex
= LIs
->getInstructionIndex(Walker
);
490 DefIndex
= LiveIntervals::getDefIndex(DefIndex
);
491 unsigned EndIndex
= LIs
->getMBBEndIdx(MBB
);
493 RetVNI
= NewVNs
[Walker
];
494 LI
->addRange(LiveRange(DefIndex
, EndIndex
+1, RetVNI
));
495 } else if (!ContainsDefs
&& ContainsUses
) {
496 SmallPtrSet
<MachineInstr
*, 2>& BlockUses
= Uses
[MBB
];
498 // Search for the use in this block that precedes the instruction we care
499 // about, going to the fallback case if we don't find it.
500 if (UseI
== MBB
->begin())
501 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
502 Uses
, NewVNs
, LiveOut
, Phis
,
503 IsTopLevel
, IsIntraBlock
);
505 MachineBasicBlock::iterator Walker
= UseI
;
508 while (Walker
!= MBB
->begin()) {
509 if (BlockUses
.count(Walker
)) {
516 // Must check begin() too.
518 if (BlockUses
.count(Walker
))
521 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
522 Uses
, NewVNs
, LiveOut
, Phis
,
523 IsTopLevel
, IsIntraBlock
);
526 unsigned UseIndex
= LIs
->getInstructionIndex(Walker
);
527 UseIndex
= LiveIntervals::getUseIndex(UseIndex
);
528 unsigned EndIndex
= 0;
530 EndIndex
= LIs
->getInstructionIndex(UseI
);
531 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
533 EndIndex
= LIs
->getMBBEndIdx(MBB
);
535 // Now, recursively phi construct the VNInfo for the use we found,
536 // and then extend it to include the instruction we care about
537 RetVNI
= PerformPHIConstruction(Walker
, MBB
, LI
, Visited
, Defs
, Uses
,
538 NewVNs
, LiveOut
, Phis
, false, true);
540 LI
->addRange(LiveRange(UseIndex
, EndIndex
+1, RetVNI
));
542 // FIXME: Need to set kills properly for inter-block stuff.
543 if (LI
->isKill(RetVNI
, UseIndex
)) LI
->removeKill(RetVNI
, UseIndex
);
545 LI
->addKill(RetVNI
, EndIndex
, false);
546 } else if (ContainsDefs
&& ContainsUses
) {
547 SmallPtrSet
<MachineInstr
*, 2>& BlockDefs
= Defs
[MBB
];
548 SmallPtrSet
<MachineInstr
*, 2>& BlockUses
= Uses
[MBB
];
550 // This case is basically a merging of the two preceding case, with the
551 // special note that checking for defs must take precedence over checking
552 // for uses, because of two-address instructions.
554 if (UseI
== MBB
->begin())
555 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
, Uses
,
556 NewVNs
, LiveOut
, Phis
,
557 IsTopLevel
, IsIntraBlock
);
559 MachineBasicBlock::iterator Walker
= UseI
;
561 bool foundDef
= false;
562 bool foundUse
= false;
563 while (Walker
!= MBB
->begin()) {
564 if (BlockDefs
.count(Walker
)) {
567 } else if (BlockUses
.count(Walker
)) {
574 // Must check begin() too.
575 if (!foundDef
&& !foundUse
) {
576 if (BlockDefs
.count(Walker
))
578 else if (BlockUses
.count(Walker
))
581 return PerformPHIConstructionFallBack(UseI
, MBB
, LI
, Visited
, Defs
,
582 Uses
, NewVNs
, LiveOut
, Phis
,
583 IsTopLevel
, IsIntraBlock
);
586 unsigned StartIndex
= LIs
->getInstructionIndex(Walker
);
587 StartIndex
= foundDef
? LiveIntervals::getDefIndex(StartIndex
) :
588 LiveIntervals::getUseIndex(StartIndex
);
589 unsigned EndIndex
= 0;
591 EndIndex
= LIs
->getInstructionIndex(UseI
);
592 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
594 EndIndex
= LIs
->getMBBEndIdx(MBB
);
597 RetVNI
= NewVNs
[Walker
];
599 RetVNI
= PerformPHIConstruction(Walker
, MBB
, LI
, Visited
, Defs
, Uses
,
600 NewVNs
, LiveOut
, Phis
, false, true);
602 LI
->addRange(LiveRange(StartIndex
, EndIndex
+1, RetVNI
));
604 if (foundUse
&& LI
->isKill(RetVNI
, StartIndex
))
605 LI
->removeKill(RetVNI
, StartIndex
);
607 LI
->addKill(RetVNI
, EndIndex
, false);
611 // Memoize results so we don't have to recompute them.
612 if (!IsIntraBlock
) LiveOut
[MBB
] = RetVNI
;
614 if (!NewVNs
.count(UseI
))
615 NewVNs
[UseI
] = RetVNI
;
616 Visited
.insert(UseI
);
622 /// PerformPHIConstructionFallBack - PerformPHIConstruction fall back path.
625 PreAllocSplitting::PerformPHIConstructionFallBack(MachineBasicBlock::iterator UseI
,
626 MachineBasicBlock
* MBB
, LiveInterval
* LI
,
627 SmallPtrSet
<MachineInstr
*, 4>& Visited
,
628 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Defs
,
629 DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> >& Uses
,
630 DenseMap
<MachineInstr
*, VNInfo
*>& NewVNs
,
631 DenseMap
<MachineBasicBlock
*, VNInfo
*>& LiveOut
,
632 DenseMap
<MachineBasicBlock
*, VNInfo
*>& Phis
,
633 bool IsTopLevel
, bool IsIntraBlock
) {
634 // NOTE: Because this is the fallback case from other cases, we do NOT
635 // assume that we are not intrablock here.
636 if (Phis
.count(MBB
)) return Phis
[MBB
];
638 unsigned StartIndex
= LIs
->getMBBStartIdx(MBB
);
639 VNInfo
*RetVNI
= Phis
[MBB
] =
640 LI
->getNextValue(0, /*FIXME*/ 0, false, LIs
->getVNInfoAllocator());
642 if (!IsIntraBlock
) LiveOut
[MBB
] = RetVNI
;
644 // If there are no uses or defs between our starting point and the
645 // beginning of the block, then recursive perform phi construction
646 // on our predecessors.
647 DenseMap
<MachineBasicBlock
*, VNInfo
*> IncomingVNs
;
648 for (MachineBasicBlock::pred_iterator PI
= MBB
->pred_begin(),
649 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
) {
650 VNInfo
* Incoming
= PerformPHIConstruction((*PI
)->end(), *PI
, LI
,
651 Visited
, Defs
, Uses
, NewVNs
,
652 LiveOut
, Phis
, false, false);
654 IncomingVNs
[*PI
] = Incoming
;
657 if (MBB
->pred_size() == 1 && !RetVNI
->hasPHIKill()) {
658 VNInfo
* OldVN
= RetVNI
;
659 VNInfo
* NewVN
= IncomingVNs
.begin()->second
;
660 VNInfo
* MergedVN
= LI
->MergeValueNumberInto(OldVN
, NewVN
);
661 if (MergedVN
== OldVN
) std::swap(OldVN
, NewVN
);
663 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator LOI
= LiveOut
.begin(),
664 LOE
= LiveOut
.end(); LOI
!= LOE
; ++LOI
)
665 if (LOI
->second
== OldVN
)
666 LOI
->second
= MergedVN
;
667 for (DenseMap
<MachineInstr
*, VNInfo
*>::iterator NVI
= NewVNs
.begin(),
668 NVE
= NewVNs
.end(); NVI
!= NVE
; ++NVI
)
669 if (NVI
->second
== OldVN
)
670 NVI
->second
= MergedVN
;
671 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator PI
= Phis
.begin(),
672 PE
= Phis
.end(); PI
!= PE
; ++PI
)
673 if (PI
->second
== OldVN
)
674 PI
->second
= MergedVN
;
677 // Otherwise, merge the incoming VNInfos with a phi join. Create a new
678 // VNInfo to represent the joined value.
679 for (DenseMap
<MachineBasicBlock
*, VNInfo
*>::iterator I
=
680 IncomingVNs
.begin(), E
= IncomingVNs
.end(); I
!= E
; ++I
) {
681 I
->second
->setHasPHIKill(true);
682 unsigned KillIndex
= LIs
->getMBBEndIdx(I
->first
);
683 if (!LiveInterval::isKill(I
->second
, KillIndex
))
684 LI
->addKill(I
->second
, KillIndex
, false);
688 unsigned EndIndex
= 0;
690 EndIndex
= LIs
->getInstructionIndex(UseI
);
691 EndIndex
= LiveIntervals::getUseIndex(EndIndex
);
693 EndIndex
= LIs
->getMBBEndIdx(MBB
);
694 LI
->addRange(LiveRange(StartIndex
, EndIndex
+1, RetVNI
));
696 LI
->addKill(RetVNI
, EndIndex
, false);
698 // Memoize results so we don't have to recompute them.
700 LiveOut
[MBB
] = RetVNI
;
702 if (!NewVNs
.count(UseI
))
703 NewVNs
[UseI
] = RetVNI
;
704 Visited
.insert(UseI
);
710 /// ReconstructLiveInterval - Recompute a live interval from scratch.
711 void PreAllocSplitting::ReconstructLiveInterval(LiveInterval
* LI
) {
712 BumpPtrAllocator
& Alloc
= LIs
->getVNInfoAllocator();
714 // Clear the old ranges and valnos;
717 // Cache the uses and defs of the register
718 typedef DenseMap
<MachineBasicBlock
*, SmallPtrSet
<MachineInstr
*, 2> > RegMap
;
721 // Keep track of the new VNs we're creating.
722 DenseMap
<MachineInstr
*, VNInfo
*> NewVNs
;
723 SmallPtrSet
<VNInfo
*, 2> PhiVNs
;
725 // Cache defs, and create a new VNInfo for each def.
726 for (MachineRegisterInfo::def_iterator DI
= MRI
->def_begin(LI
->reg
),
727 DE
= MRI
->def_end(); DI
!= DE
; ++DI
) {
728 Defs
[(*DI
).getParent()].insert(&*DI
);
730 unsigned DefIdx
= LIs
->getInstructionIndex(&*DI
);
731 DefIdx
= LiveIntervals::getDefIndex(DefIdx
);
733 assert(DI
->getOpcode() != TargetInstrInfo::PHI
&&
734 "Following NewVN isPHIDef flag incorrect. Fix me!");
735 VNInfo
* NewVN
= LI
->getNextValue(DefIdx
, 0, true, Alloc
);
737 // If the def is a move, set the copy field.
738 unsigned SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
;
739 if (TII
->isMoveInstr(*DI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
740 if (DstReg
== LI
->reg
)
741 NewVN
->setCopy(&*DI
);
743 NewVNs
[&*DI
] = NewVN
;
746 // Cache uses as a separate pass from actually processing them.
747 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(LI
->reg
),
748 UE
= MRI
->use_end(); UI
!= UE
; ++UI
)
749 Uses
[(*UI
).getParent()].insert(&*UI
);
751 // Now, actually process every use and use a phi construction algorithm
752 // to walk from it to its reaching definitions, building VNInfos along
754 DenseMap
<MachineBasicBlock
*, VNInfo
*> LiveOut
;
755 DenseMap
<MachineBasicBlock
*, VNInfo
*> Phis
;
756 SmallPtrSet
<MachineInstr
*, 4> Visited
;
757 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin(LI
->reg
),
758 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
759 PerformPHIConstruction(&*UI
, UI
->getParent(), LI
, Visited
, Defs
,
760 Uses
, NewVNs
, LiveOut
, Phis
, true, true);
763 // Add ranges for dead defs
764 for (MachineRegisterInfo::def_iterator DI
= MRI
->def_begin(LI
->reg
),
765 DE
= MRI
->def_end(); DI
!= DE
; ++DI
) {
766 unsigned DefIdx
= LIs
->getInstructionIndex(&*DI
);
767 DefIdx
= LiveIntervals::getDefIndex(DefIdx
);
769 if (LI
->liveAt(DefIdx
)) continue;
771 VNInfo
* DeadVN
= NewVNs
[&*DI
];
772 LI
->addRange(LiveRange(DefIdx
, DefIdx
+1, DeadVN
));
773 LI
->addKill(DeadVN
, DefIdx
, false);
777 /// RenumberValno - Split the given valno out into a new vreg, allowing it to
778 /// be allocated to a different register. This function creates a new vreg,
779 /// copies the valno and its live ranges over to the new vreg's interval,
780 /// removes them from the old interval, and rewrites all uses and defs of
781 /// the original reg to the new vreg within those ranges.
782 void PreAllocSplitting::RenumberValno(VNInfo
* VN
) {
783 SmallVector
<VNInfo
*, 4> Stack
;
784 SmallVector
<VNInfo
*, 4> VNsToCopy
;
787 // Walk through and copy the valno we care about, and any other valnos
788 // that are two-address redefinitions of the one we care about. These
789 // will need to be rewritten as well. We also check for safety of the
790 // renumbering here, by making sure that none of the valno involved has
792 while (!Stack
.empty()) {
793 VNInfo
* OldVN
= Stack
.back();
796 // Bail out if we ever encounter a valno that has a PHI kill. We can't
798 if (OldVN
->hasPHIKill()) return;
800 VNsToCopy
.push_back(OldVN
);
802 // Locate two-address redefinitions
803 for (VNInfo::KillSet::iterator KI
= OldVN
->kills
.begin(),
804 KE
= OldVN
->kills
.end(); KI
!= KE
; ++KI
) {
805 assert(!KI
->isPHIKill
&& "VN previously reported having no PHI kills.");
806 MachineInstr
* MI
= LIs
->getInstructionFromIndex(KI
->killIdx
);
807 unsigned DefIdx
= MI
->findRegisterDefOperandIdx(CurrLI
->reg
);
808 if (DefIdx
== ~0U) continue;
809 if (MI
->isRegTiedToUseOperand(DefIdx
)) {
811 CurrLI
->findDefinedVNInfo(LiveIntervals::getDefIndex(KI
->killIdx
));
812 if (NextVN
== OldVN
) continue;
813 Stack
.push_back(NextVN
);
818 // Create the new vreg
819 unsigned NewVReg
= MRI
->createVirtualRegister(MRI
->getRegClass(CurrLI
->reg
));
821 // Create the new live interval
822 LiveInterval
& NewLI
= LIs
->getOrCreateInterval(NewVReg
);
824 for (SmallVector
<VNInfo
*, 4>::iterator OI
= VNsToCopy
.begin(), OE
=
825 VNsToCopy
.end(); OI
!= OE
; ++OI
) {
828 // Copy the valno over
829 VNInfo
* NewVN
= NewLI
.createValueCopy(OldVN
, LIs
->getVNInfoAllocator());
830 NewLI
.MergeValueInAsValue(*CurrLI
, OldVN
, NewVN
);
832 // Remove the valno from the old interval
833 CurrLI
->removeValNo(OldVN
);
836 // Rewrite defs and uses. This is done in two stages to avoid invalidating
838 SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8> OpsToChange
;
840 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(CurrLI
->reg
),
841 E
= MRI
->reg_end(); I
!= E
; ++I
) {
842 MachineOperand
& MO
= I
.getOperand();
843 unsigned InstrIdx
= LIs
->getInstructionIndex(&*I
);
845 if ((MO
.isUse() && NewLI
.liveAt(LiveIntervals::getUseIndex(InstrIdx
))) ||
846 (MO
.isDef() && NewLI
.liveAt(LiveIntervals::getDefIndex(InstrIdx
))))
847 OpsToChange
.push_back(std::make_pair(&*I
, I
.getOperandNo()));
850 for (SmallVector
<std::pair
<MachineInstr
*, unsigned>, 8>::iterator I
=
851 OpsToChange
.begin(), E
= OpsToChange
.end(); I
!= E
; ++I
) {
852 MachineInstr
* Inst
= I
->first
;
853 unsigned OpIdx
= I
->second
;
854 MachineOperand
& MO
= Inst
->getOperand(OpIdx
);
858 // Grow the VirtRegMap, since we've created a new vreg.
861 // The renumbered vreg shares a stack slot with the old register.
862 if (IntervalSSMap
.count(CurrLI
->reg
))
863 IntervalSSMap
[NewVReg
] = IntervalSSMap
[CurrLI
->reg
];
868 bool PreAllocSplitting::Rematerialize(unsigned VReg
, VNInfo
* ValNo
,
870 MachineBasicBlock::iterator RestorePt
,
872 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
873 MachineBasicBlock
& MBB
= *RestorePt
->getParent();
875 MachineBasicBlock::iterator KillPt
= BarrierMBB
->end();
876 unsigned KillIdx
= 0;
877 if (!ValNo
->isDefAccurate() || DefMI
->getParent() == BarrierMBB
)
878 KillPt
= findSpillPoint(BarrierMBB
, Barrier
, NULL
, RefsInMBB
, KillIdx
);
880 KillPt
= findNextEmptySlot(DefMI
->getParent(), DefMI
, KillIdx
);
882 if (KillPt
== DefMI
->getParent()->end())
885 TII
->reMaterialize(MBB
, RestorePt
, VReg
, 0, DefMI
);
886 LIs
->InsertMachineInstrInMaps(prior(RestorePt
), RestoreIdx
);
888 ReconstructLiveInterval(CurrLI
);
889 unsigned RematIdx
= LIs
->getInstructionIndex(prior(RestorePt
));
890 RematIdx
= LiveIntervals::getDefIndex(RematIdx
);
891 RenumberValno(CurrLI
->findDefinedVNInfo(RematIdx
));
898 MachineInstr
* PreAllocSplitting::FoldSpill(unsigned vreg
,
899 const TargetRegisterClass
* RC
,
901 MachineInstr
* Barrier
,
902 MachineBasicBlock
* MBB
,
904 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
905 MachineBasicBlock::iterator Pt
= MBB
->begin();
907 // Go top down if RefsInMBB is empty.
908 if (RefsInMBB
.empty())
911 MachineBasicBlock::iterator FoldPt
= Barrier
;
912 while (&*FoldPt
!= DefMI
&& FoldPt
!= MBB
->begin() &&
913 !RefsInMBB
.count(FoldPt
))
916 int OpIdx
= FoldPt
->findRegisterDefOperandIdx(vreg
, false);
920 SmallVector
<unsigned, 1> Ops
;
921 Ops
.push_back(OpIdx
);
923 if (!TII
->canFoldMemoryOperand(FoldPt
, Ops
))
926 DenseMap
<unsigned, int>::iterator I
= IntervalSSMap
.find(vreg
);
927 if (I
!= IntervalSSMap
.end()) {
930 SS
= MFI
->CreateStackObject(RC
->getSize(), RC
->getAlignment());
933 MachineInstr
* FMI
= TII
->foldMemoryOperand(*MBB
->getParent(),
937 LIs
->ReplaceMachineInstrInMaps(FoldPt
, FMI
);
938 FMI
= MBB
->insert(MBB
->erase(FoldPt
), FMI
);
941 IntervalSSMap
[vreg
] = SS
;
942 CurrSLI
= &LSs
->getOrCreateInterval(SS
, RC
);
943 if (CurrSLI
->hasAtLeastOneValue())
944 CurrSValNo
= CurrSLI
->getValNumInfo(0);
946 CurrSValNo
= CurrSLI
->getNextValue(0, 0, false, LSs
->getVNInfoAllocator());
952 MachineInstr
* PreAllocSplitting::FoldRestore(unsigned vreg
,
953 const TargetRegisterClass
* RC
,
954 MachineInstr
* Barrier
,
955 MachineBasicBlock
* MBB
,
957 SmallPtrSet
<MachineInstr
*, 4>& RefsInMBB
) {
958 if ((int)RestoreFoldLimit
!= -1 && RestoreFoldLimit
== (int)NumRestoreFolds
)
961 // Go top down if RefsInMBB is empty.
962 if (RefsInMBB
.empty())
965 // Can't fold a restore between a call stack setup and teardown.
966 MachineBasicBlock::iterator FoldPt
= Barrier
;
968 // Advance from barrier to call frame teardown.
969 while (FoldPt
!= MBB
->getFirstTerminator() &&
970 FoldPt
->getOpcode() != TRI
->getCallFrameDestroyOpcode()) {
971 if (RefsInMBB
.count(FoldPt
))
977 if (FoldPt
== MBB
->getFirstTerminator())
982 // Now find the restore point.
983 while (FoldPt
!= MBB
->getFirstTerminator() && !RefsInMBB
.count(FoldPt
)) {
984 if (FoldPt
->getOpcode() == TRI
->getCallFrameSetupOpcode()) {
985 while (FoldPt
!= MBB
->getFirstTerminator() &&
986 FoldPt
->getOpcode() != TRI
->getCallFrameDestroyOpcode()) {
987 if (RefsInMBB
.count(FoldPt
))
993 if (FoldPt
== MBB
->getFirstTerminator())
1000 if (FoldPt
== MBB
->getFirstTerminator())
1003 int OpIdx
= FoldPt
->findRegisterUseOperandIdx(vreg
, true);
1007 SmallVector
<unsigned, 1> Ops
;
1008 Ops
.push_back(OpIdx
);
1010 if (!TII
->canFoldMemoryOperand(FoldPt
, Ops
))
1013 MachineInstr
* FMI
= TII
->foldMemoryOperand(*MBB
->getParent(),
1017 LIs
->ReplaceMachineInstrInMaps(FoldPt
, FMI
);
1018 FMI
= MBB
->insert(MBB
->erase(FoldPt
), FMI
);
1025 /// SplitRegLiveInterval - Split (spill and restore) the given live interval
1026 /// so it would not cross the barrier that's being processed. Shrink wrap
1027 /// (minimize) the live interval to the last uses.
1028 bool PreAllocSplitting::SplitRegLiveInterval(LiveInterval
*LI
) {
1031 // Find live range where current interval cross the barrier.
1032 LiveInterval::iterator LR
=
1033 CurrLI
->FindLiveRangeContaining(LIs
->getUseIndex(BarrierIdx
));
1034 VNInfo
*ValNo
= LR
->valno
;
1036 assert(!ValNo
->isUnused() && "Val# is defined by a dead def?");
1038 MachineInstr
*DefMI
= ValNo
->isDefAccurate()
1039 ? LIs
->getInstructionFromIndex(ValNo
->def
) : NULL
;
1041 // If this would create a new join point, do not split.
1042 if (DefMI
&& createsNewJoin(LR
, DefMI
->getParent(), Barrier
->getParent()))
1045 // Find all references in the barrier mbb.
1046 SmallPtrSet
<MachineInstr
*, 4> RefsInMBB
;
1047 for (MachineRegisterInfo::reg_iterator I
= MRI
->reg_begin(CurrLI
->reg
),
1048 E
= MRI
->reg_end(); I
!= E
; ++I
) {
1049 MachineInstr
*RefMI
= &*I
;
1050 if (RefMI
->getParent() == BarrierMBB
)
1051 RefsInMBB
.insert(RefMI
);
1054 // Find a point to restore the value after the barrier.
1055 unsigned RestoreIndex
= 0;
1056 MachineBasicBlock::iterator RestorePt
=
1057 findRestorePoint(BarrierMBB
, Barrier
, LR
->end
, RefsInMBB
, RestoreIndex
);
1058 if (RestorePt
== BarrierMBB
->end())
1061 if (DefMI
&& LIs
->isReMaterializable(*LI
, ValNo
, DefMI
))
1062 if (Rematerialize(LI
->reg
, ValNo
, DefMI
, RestorePt
,
1063 RestoreIndex
, RefsInMBB
))
1066 // Add a spill either before the barrier or after the definition.
1067 MachineBasicBlock
*DefMBB
= DefMI
? DefMI
->getParent() : NULL
;
1068 const TargetRegisterClass
*RC
= MRI
->getRegClass(CurrLI
->reg
);
1069 unsigned SpillIndex
= 0;
1070 MachineInstr
*SpillMI
= NULL
;
1072 if (!ValNo
->isDefAccurate()) {
1073 // If we don't know where the def is we must split just before the barrier.
1074 if ((SpillMI
= FoldSpill(LI
->reg
, RC
, 0, Barrier
,
1075 BarrierMBB
, SS
, RefsInMBB
))) {
1076 SpillIndex
= LIs
->getInstructionIndex(SpillMI
);
1078 MachineBasicBlock::iterator SpillPt
=
1079 findSpillPoint(BarrierMBB
, Barrier
, NULL
, RefsInMBB
, SpillIndex
);
1080 if (SpillPt
== BarrierMBB
->begin())
1081 return false; // No gap to insert spill.
1084 SS
= CreateSpillStackSlot(CurrLI
->reg
, RC
);
1085 TII
->storeRegToStackSlot(*BarrierMBB
, SpillPt
, CurrLI
->reg
, true, SS
, RC
);
1086 SpillMI
= prior(SpillPt
);
1087 LIs
->InsertMachineInstrInMaps(SpillMI
, SpillIndex
);
1089 } else if (!IsAvailableInStack(DefMBB
, CurrLI
->reg
, ValNo
->def
,
1090 RestoreIndex
, SpillIndex
, SS
)) {
1091 // If it's already split, just restore the value. There is no need to spill
1094 return false; // Def is dead. Do nothing.
1096 if ((SpillMI
= FoldSpill(LI
->reg
, RC
, DefMI
, Barrier
,
1097 BarrierMBB
, SS
, RefsInMBB
))) {
1098 SpillIndex
= LIs
->getInstructionIndex(SpillMI
);
1100 // Check if it's possible to insert a spill after the def MI.
1101 MachineBasicBlock::iterator SpillPt
;
1102 if (DefMBB
== BarrierMBB
) {
1103 // Add spill after the def and the last use before the barrier.
1104 SpillPt
= findSpillPoint(BarrierMBB
, Barrier
, DefMI
,
1105 RefsInMBB
, SpillIndex
);
1106 if (SpillPt
== DefMBB
->begin())
1107 return false; // No gap to insert spill.
1109 SpillPt
= findNextEmptySlot(DefMBB
, DefMI
, SpillIndex
);
1110 if (SpillPt
== DefMBB
->end())
1111 return false; // No gap to insert spill.
1113 // Add spill. The store instruction kills the register if def is before
1114 // the barrier in the barrier block.
1115 SS
= CreateSpillStackSlot(CurrLI
->reg
, RC
);
1116 TII
->storeRegToStackSlot(*DefMBB
, SpillPt
, CurrLI
->reg
,
1117 DefMBB
== BarrierMBB
, SS
, RC
);
1118 SpillMI
= prior(SpillPt
);
1119 LIs
->InsertMachineInstrInMaps(SpillMI
, SpillIndex
);
1123 // Remember def instruction index to spill index mapping.
1124 if (DefMI
&& SpillMI
)
1125 Def2SpillMap
[ValNo
->def
] = SpillIndex
;
1128 bool FoldedRestore
= false;
1129 if (MachineInstr
* LMI
= FoldRestore(CurrLI
->reg
, RC
, Barrier
,
1130 BarrierMBB
, SS
, RefsInMBB
)) {
1132 RestoreIndex
= LIs
->getInstructionIndex(RestorePt
);
1133 FoldedRestore
= true;
1135 TII
->loadRegFromStackSlot(*BarrierMBB
, RestorePt
, CurrLI
->reg
, SS
, RC
);
1136 MachineInstr
*LoadMI
= prior(RestorePt
);
1137 LIs
->InsertMachineInstrInMaps(LoadMI
, RestoreIndex
);
1140 // Update spill stack slot live interval.
1141 UpdateSpillSlotInterval(ValNo
, LIs
->getUseIndex(SpillIndex
)+1,
1142 LIs
->getDefIndex(RestoreIndex
));
1144 ReconstructLiveInterval(CurrLI
);
1146 if (!FoldedRestore
) {
1147 unsigned RestoreIdx
= LIs
->getInstructionIndex(prior(RestorePt
));
1148 RestoreIdx
= LiveIntervals::getDefIndex(RestoreIdx
);
1149 RenumberValno(CurrLI
->findDefinedVNInfo(RestoreIdx
));
1156 /// SplitRegLiveIntervals - Split all register live intervals that cross the
1157 /// barrier that's being processed.
1159 PreAllocSplitting::SplitRegLiveIntervals(const TargetRegisterClass
**RCs
,
1160 SmallPtrSet
<LiveInterval
*, 8>& Split
) {
1161 // First find all the virtual registers whose live intervals are intercepted
1162 // by the current barrier.
1163 SmallVector
<LiveInterval
*, 8> Intervals
;
1164 for (const TargetRegisterClass
**RC
= RCs
; *RC
; ++RC
) {
1165 // FIXME: If it's not safe to move any instruction that defines the barrier
1166 // register class, then it means there are some special dependencies which
1167 // codegen is not modelling. Ignore these barriers for now.
1168 if (!TII
->isSafeToMoveRegClassDefs(*RC
))
1170 std::vector
<unsigned> &VRs
= MRI
->getRegClassVirtRegs(*RC
);
1171 for (unsigned i
= 0, e
= VRs
.size(); i
!= e
; ++i
) {
1172 unsigned Reg
= VRs
[i
];
1173 if (!LIs
->hasInterval(Reg
))
1175 LiveInterval
*LI
= &LIs
->getInterval(Reg
);
1176 if (LI
->liveAt(BarrierIdx
) && !Barrier
->readsRegister(Reg
))
1177 // Virtual register live interval is intercepted by the barrier. We
1178 // should split and shrink wrap its interval if possible.
1179 Intervals
.push_back(LI
);
1183 // Process the affected live intervals.
1184 bool Change
= false;
1185 while (!Intervals
.empty()) {
1186 if (PreSplitLimit
!= -1 && (int)NumSplits
== PreSplitLimit
)
1188 else if (NumSplits
== 4)
1190 LiveInterval
*LI
= Intervals
.back();
1191 Intervals
.pop_back();
1192 bool result
= SplitRegLiveInterval(LI
);
1193 if (result
) Split
.insert(LI
);
1200 unsigned PreAllocSplitting::getNumberOfNonSpills(
1201 SmallPtrSet
<MachineInstr
*, 4>& MIs
,
1202 unsigned Reg
, int FrameIndex
,
1203 bool& FeedsTwoAddr
) {
1204 unsigned NonSpills
= 0;
1205 for (SmallPtrSet
<MachineInstr
*, 4>::iterator UI
= MIs
.begin(), UE
= MIs
.end();
1207 int StoreFrameIndex
;
1208 unsigned StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1209 if (StoreVReg
!= Reg
|| StoreFrameIndex
!= FrameIndex
)
1212 int DefIdx
= (*UI
)->findRegisterDefOperandIdx(Reg
);
1213 if (DefIdx
!= -1 && (*UI
)->isRegTiedToUseOperand(DefIdx
))
1214 FeedsTwoAddr
= true;
1220 /// removeDeadSpills - After doing splitting, filter through all intervals we've
1221 /// split, and see if any of the spills are unnecessary. If so, remove them.
1222 bool PreAllocSplitting::removeDeadSpills(SmallPtrSet
<LiveInterval
*, 8>& split
) {
1223 bool changed
= false;
1225 // Walk over all of the live intervals that were touched by the splitter,
1226 // and see if we can do any DCE and/or folding.
1227 for (SmallPtrSet
<LiveInterval
*, 8>::iterator LI
= split
.begin(),
1228 LE
= split
.end(); LI
!= LE
; ++LI
) {
1229 DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> > VNUseCount
;
1231 // First, collect all the uses of the vreg, and sort them by their
1232 // reaching definition (VNInfo).
1233 for (MachineRegisterInfo::use_iterator UI
= MRI
->use_begin((*LI
)->reg
),
1234 UE
= MRI
->use_end(); UI
!= UE
; ++UI
) {
1235 unsigned index
= LIs
->getInstructionIndex(&*UI
);
1236 index
= LiveIntervals::getUseIndex(index
);
1238 const LiveRange
* LR
= (*LI
)->getLiveRangeContaining(index
);
1239 VNUseCount
[LR
->valno
].insert(&*UI
);
1242 // Now, take the definitions (VNInfo's) one at a time and try to DCE
1243 // and/or fold them away.
1244 for (LiveInterval::vni_iterator VI
= (*LI
)->vni_begin(),
1245 VE
= (*LI
)->vni_end(); VI
!= VE
; ++VI
) {
1247 if (DeadSplitLimit
!= -1 && (int)NumDeadSpills
== DeadSplitLimit
)
1250 VNInfo
* CurrVN
= *VI
;
1252 // We don't currently try to handle definitions with PHI kills, because
1253 // it would involve processing more than one VNInfo at once.
1254 if (CurrVN
->hasPHIKill()) continue;
1256 // We also don't try to handle the results of PHI joins, since there's
1257 // no defining instruction to analyze.
1258 if (!CurrVN
->isDefAccurate() || CurrVN
->isUnused()) continue;
1260 // We're only interested in eliminating cruft introduced by the splitter,
1261 // is of the form load-use or load-use-store. First, check that the
1262 // definition is a load, and remember what stack slot we loaded it from.
1263 MachineInstr
* DefMI
= LIs
->getInstructionFromIndex(CurrVN
->def
);
1265 if (!TII
->isLoadFromStackSlot(DefMI
, FrameIndex
)) continue;
1267 // If the definition has no uses at all, just DCE it.
1268 if (VNUseCount
[CurrVN
].size() == 0) {
1269 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1270 (*LI
)->removeValNo(CurrVN
);
1271 DefMI
->eraseFromParent();
1272 VNUseCount
.erase(CurrVN
);
1278 // Second, get the number of non-store uses of the definition, as well as
1279 // a flag indicating whether it feeds into a later two-address definition.
1280 bool FeedsTwoAddr
= false;
1281 unsigned NonSpillCount
= getNumberOfNonSpills(VNUseCount
[CurrVN
],
1282 (*LI
)->reg
, FrameIndex
,
1285 // If there's one non-store use and it doesn't feed a two-addr, then
1286 // this is a load-use-store case that we can try to fold.
1287 if (NonSpillCount
== 1 && !FeedsTwoAddr
) {
1288 // Start by finding the non-store use MachineInstr.
1289 SmallPtrSet
<MachineInstr
*, 4>::iterator UI
= VNUseCount
[CurrVN
].begin();
1290 int StoreFrameIndex
;
1291 unsigned StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1292 while (UI
!= VNUseCount
[CurrVN
].end() &&
1293 (StoreVReg
== (*LI
)->reg
&& StoreFrameIndex
== FrameIndex
)) {
1295 if (UI
!= VNUseCount
[CurrVN
].end())
1296 StoreVReg
= TII
->isStoreToStackSlot(*UI
, StoreFrameIndex
);
1298 if (UI
== VNUseCount
[CurrVN
].end()) continue;
1300 MachineInstr
* use
= *UI
;
1302 // Attempt to fold it away!
1303 int OpIdx
= use
->findRegisterUseOperandIdx((*LI
)->reg
, false);
1304 if (OpIdx
== -1) continue;
1305 SmallVector
<unsigned, 1> Ops
;
1306 Ops
.push_back(OpIdx
);
1307 if (!TII
->canFoldMemoryOperand(use
, Ops
)) continue;
1309 MachineInstr
* NewMI
=
1310 TII
->foldMemoryOperand(*use
->getParent()->getParent(),
1311 use
, Ops
, FrameIndex
);
1313 if (!NewMI
) continue;
1315 // Update relevant analyses.
1316 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1317 LIs
->ReplaceMachineInstrInMaps(use
, NewMI
);
1318 (*LI
)->removeValNo(CurrVN
);
1320 DefMI
->eraseFromParent();
1321 MachineBasicBlock
* MBB
= use
->getParent();
1322 NewMI
= MBB
->insert(MBB
->erase(use
), NewMI
);
1323 VNUseCount
[CurrVN
].erase(use
);
1325 // Remove deleted instructions. Note that we need to remove them from
1326 // the VNInfo->use map as well, just to be safe.
1327 for (SmallPtrSet
<MachineInstr
*, 4>::iterator II
=
1328 VNUseCount
[CurrVN
].begin(), IE
= VNUseCount
[CurrVN
].end();
1330 for (DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> >::iterator
1331 VNI
= VNUseCount
.begin(), VNE
= VNUseCount
.end(); VNI
!= VNE
;
1333 if (VNI
->first
!= CurrVN
)
1334 VNI
->second
.erase(*II
);
1335 LIs
->RemoveMachineInstrFromMaps(*II
);
1336 (*II
)->eraseFromParent();
1339 VNUseCount
.erase(CurrVN
);
1341 for (DenseMap
<VNInfo
*, SmallPtrSet
<MachineInstr
*, 4> >::iterator
1342 VI
= VNUseCount
.begin(), VE
= VNUseCount
.end(); VI
!= VE
; ++VI
)
1343 if (VI
->second
.erase(use
))
1344 VI
->second
.insert(NewMI
);
1351 // If there's more than one non-store instruction, we can't profitably
1352 // fold it, so bail.
1353 if (NonSpillCount
) continue;
1355 // Otherwise, this is a load-store case, so DCE them.
1356 for (SmallPtrSet
<MachineInstr
*, 4>::iterator UI
=
1357 VNUseCount
[CurrVN
].begin(), UE
= VNUseCount
[CurrVN
].end();
1359 LIs
->RemoveMachineInstrFromMaps(*UI
);
1360 (*UI
)->eraseFromParent();
1363 VNUseCount
.erase(CurrVN
);
1365 LIs
->RemoveMachineInstrFromMaps(DefMI
);
1366 (*LI
)->removeValNo(CurrVN
);
1367 DefMI
->eraseFromParent();
1376 bool PreAllocSplitting::createsNewJoin(LiveRange
* LR
,
1377 MachineBasicBlock
* DefMBB
,
1378 MachineBasicBlock
* BarrierMBB
) {
1379 if (DefMBB
== BarrierMBB
)
1382 if (LR
->valno
->hasPHIKill())
1385 unsigned MBBEnd
= LIs
->getMBBEndIdx(BarrierMBB
);
1386 if (LR
->end
< MBBEnd
)
1389 MachineLoopInfo
& MLI
= getAnalysis
<MachineLoopInfo
>();
1390 if (MLI
.getLoopFor(DefMBB
) != MLI
.getLoopFor(BarrierMBB
))
1393 MachineDominatorTree
& MDT
= getAnalysis
<MachineDominatorTree
>();
1394 SmallPtrSet
<MachineBasicBlock
*, 4> Visited
;
1395 typedef std::pair
<MachineBasicBlock
*,
1396 MachineBasicBlock::succ_iterator
> ItPair
;
1397 SmallVector
<ItPair
, 4> Stack
;
1398 Stack
.push_back(std::make_pair(BarrierMBB
, BarrierMBB
->succ_begin()));
1400 while (!Stack
.empty()) {
1401 ItPair P
= Stack
.back();
1404 MachineBasicBlock
* PredMBB
= P
.first
;
1405 MachineBasicBlock::succ_iterator S
= P
.second
;
1407 if (S
== PredMBB
->succ_end())
1409 else if (Visited
.count(*S
)) {
1410 Stack
.push_back(std::make_pair(PredMBB
, ++S
));
1413 Stack
.push_back(std::make_pair(PredMBB
, S
+1));
1415 MachineBasicBlock
* MBB
= *S
;
1416 Visited
.insert(MBB
);
1418 if (MBB
== BarrierMBB
)
1421 MachineDomTreeNode
* DefMDTN
= MDT
.getNode(DefMBB
);
1422 MachineDomTreeNode
* BarrierMDTN
= MDT
.getNode(BarrierMBB
);
1423 MachineDomTreeNode
* MDTN
= MDT
.getNode(MBB
)->getIDom();
1425 if (MDTN
== DefMDTN
)
1427 else if (MDTN
== BarrierMDTN
)
1429 MDTN
= MDTN
->getIDom();
1432 MBBEnd
= LIs
->getMBBEndIdx(MBB
);
1433 if (LR
->end
> MBBEnd
)
1434 Stack
.push_back(std::make_pair(MBB
, MBB
->succ_begin()));
1441 bool PreAllocSplitting::runOnMachineFunction(MachineFunction
&MF
) {
1443 TM
= &MF
.getTarget();
1444 TRI
= TM
->getRegisterInfo();
1445 TII
= TM
->getInstrInfo();
1446 MFI
= MF
.getFrameInfo();
1447 MRI
= &MF
.getRegInfo();
1448 LIs
= &getAnalysis
<LiveIntervals
>();
1449 LSs
= &getAnalysis
<LiveStacks
>();
1450 VRM
= &getAnalysis
<VirtRegMap
>();
1452 bool MadeChange
= false;
1454 // Make sure blocks are numbered in order.
1455 MF
.RenumberBlocks();
1457 MachineBasicBlock
*Entry
= MF
.begin();
1458 SmallPtrSet
<MachineBasicBlock
*,16> Visited
;
1460 SmallPtrSet
<LiveInterval
*, 8> Split
;
1462 for (df_ext_iterator
<MachineBasicBlock
*, SmallPtrSet
<MachineBasicBlock
*,16> >
1463 DFI
= df_ext_begin(Entry
, Visited
), E
= df_ext_end(Entry
, Visited
);
1466 for (MachineBasicBlock::iterator I
= BarrierMBB
->begin(),
1467 E
= BarrierMBB
->end(); I
!= E
; ++I
) {
1469 const TargetRegisterClass
**BarrierRCs
=
1470 Barrier
->getDesc().getRegClassBarriers();
1473 BarrierIdx
= LIs
->getInstructionIndex(Barrier
);
1474 MadeChange
|= SplitRegLiveIntervals(BarrierRCs
, Split
);
1478 MadeChange
|= removeDeadSpills(Split
);